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"Every attempt to employ mathematical methods in the study  
of chemical questions must be considered profoundly  
irrational and contrary to the spirit of chemistry.  If
mathematical analysis should ever hold a prominent place
in chemistry - an aberration which is happily almost
impossible - it would occasion a rapid and widespread 
degeneration of that science."

                                                           A. Comte (1830)
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Chapter 1

Introduction

The Royal Swedish Academy of Sciences has awarded the 1998 Nobel Prize in Chem-
istry in the area of quantum chemistry to Walter Kohn and John Pople. The prize
was awarded for pioneering contributions in developing methods that can be used
for theoretical studies of the properties of molecules and the chemical processes in
which they are involved. The prize was divided equally between: “Walter Kohn for
his development of the density-functional theory and John Pople for his development
of computational methods in quantum chemistry”.

Why where advances in this field so highly recognized? What questions are covered
by electronic structure theory?

1. The equilibrium structures of molecules and their excited states;

2. Molecular properties: electrical, magnetic, optical, etc.;

3. Spectroscopy, from NMR to X-ray;

4. Intramolecular interactions, transition states, and reaction paths: reaction mech-
anisms in chemistry and biochemistry;

5. Intermolecular interactions giving potentials which may be used to study macro-
molecules, solvent e↵ects, crystal packing, etc.

Here we are concerned with two types of answers: quantitative and qualitative. Knowl-
edge of the spectrum/geometry for some unstable radical can help to design experi-
ment. On the other hand, calculations can help to interpret results of the experiment,
e.g., to assign complicated spectra, or to establish mechanism of a reaction.

The goal of this class it to provide a guide to electronic structure calculations.
More specifically, to ab initio calculations of electronic structure. “Ab initio” means
“from first principles”. In this class we shall study:

• what are the 1-st principles?

• what approximations do we make?
Ab initio = an art of approximation.

7



8 Introduction

• how to balance accuracy vs cost?

Today there are many packaged programs allowing to perform wide range of elec-
tronic structure calculations, e.g., Q-Chem, Gaussian, GAMESS, PSI, ACES III and
C4 (former ACES II), Spartan, Jaguar, MOLPRO, MOLCAS. General problem is
how to design calculations relevant to a particular problem. You can consult manuals
and learn how to prepare a working input for these programs. By trying to run di↵er-
ent calculations, you will learn about cost of calculations, for example, what kind of
calculations you cannot a↵ord for your system. However, you cannot learn from the
manual, or from o�cially looking output of the program with many digits in energy
what is an accuracy of your calculations, and whether this accuracy is su�cient for
your specific problem. That is why we have to study theory of electronic structure
calculations, namely, what are di↵erent approximation which we use, what are phys-
ical considerations behind them, and what limitations they impose. We shall also
design and perform electronic structure calculations, and analyze their results.

Some general references: course textbook,1 advanced texts,2,3 prerequisites.4 Re-
views on modern electronic structure theory,5,6 http://nobelprizes.com/nobel/nobel.html

1.1 Energy units

In electronic structure calculations we use atomic units. They are defined such that
electron charge, electron mass, and Plank constant equal unity: e=1 (electron charge)
& h̄=1 (Plank constant) & m=1 (electron mass). What are the advantages of the
atomic units?

• Equations assume simpler form, e.g., the Schrödinger equation (SE) for the
hydrogen atom in atomic units is:

(�1

2
r2

r �
1

2M
r2

R � 1

|R� r|) (r, R) = E (r, R) (1.1)

as compared to the SE in the SI units:

(� h̄2

2me
r2

r �
h̄2

2M
r2

R � e2

4⇡✏0|R� r|) (r, R) = E (r, R) (1.2)

• The results do not depend on accuracy to which the universal constants are
known, e.g., e, me and h̄. These constants have being permanently refined,
and atomic units allow for comparing the results of calculations performed 30
years ago and today. In order to compare the results of calculations presented
in SI units, one has to account for di↵erent numerical values of the universal
constants being used in the calculations.

In Szabo book, on page 42 you can find the conversion table of the atomic units
to the SI units. Some important units to remember are listed in Table 1.1.
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Table 1.1: Atomic units: Important constants to remember.
Quantity Atomic units Value

Length ao, or bohr 0.52918 Å
Dipole moment 2 unit charges separated by ao 2.5418 Debyes (D)
Energy hartree 27.211 eV

627.51 kcal/mole
4.36·10�18J
1.042·10�18cal
2.195·105 cm�1

6.58·1015Hz
3.158·105 K

Figure 1.1: Energy range relevant to chemistry and chemical physics.

1.2 Energy range

Let us consider what energy range is of interest for physical chemistry (see Table 1.2
and Fig. 1.1).

Here (and always) we are interested in energy di↵erences, e.g., vibrational spec-
troscopy measures energy spacings between vibrational levels, and so on. However, it
is important to understand how these relative energies are related to the total energy
of the chemical system.

Energy of the hydrogen atom is -0.5 hartree, energy of the ethylene molecule is
about -80 hartree, energy of hexatriene is already couple of hundreds hartree. That
is one of the reasons why electronic structure calculations are so challenging: in
order to address chemical problems we need to achieve an incredible accuracy in
relative energetics relative to the total energy. For example, an error of one percent
in total energy for the ethylene equals 8 hartree. If this error is not uniform upon
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Table 1.2: Energy ranges.
Process Energy, hartree Experiment

Annihilation 104 elementary particles’ physics
Radioactivity 102 Messbauer, synchrotron,

gamma-electron spectroscopies
1 photoelectron spectroscopy

Ionization, electronic excitation, 0.1-0.01 Electronic spectroscopy
dissociation (bond energy) chemistry
Molecular vibrations 10�2-10�3 IR, Raman
Molecular rotations 10�4-10�6 Far IR, radiofrequencies
Spin < 10�4 NMR, EPR
Orientation in molecular solids ultrasound

geometry changes, it can give the same error in vibrational levels, which means that
the error would be 3 orders of magnitude larger than calculated quantity! That is why
electronic structure calculation is an art of making balanced approximations which
result in error cancellation.

1.3 Adiabatic approximation

1.3.1 Potential energy surfaces and the electronic Hamilto-
nian

We start from the non-relativistic Schrödinger equation (SE) for the system of n
electrons and N nuclei. Exact many electron, many nuclei problem is described by
the following SE:

H i(r, R) = Ei i(r, R), (1.3)

where r = r1, r2, . . . , rn, R = R1, R2, . . . , RN represent the electron and nuclear coor-
dinates, respectively, and

H = Te + Tn + Ven + Vee + Vnn (1.4)

The kinetic energy terms are:

Te = �
nX

i

p2i
2

& Tn = �
NX

A

P 2
A

2MA
, (1.5)

where p2 = @2

@x2 +
@2

@y2 +
@2

@z2 = r2 = �.
The Coulomb terms are:

Vee =
1

2

nX

ij

1

|ri � rj|
& Vnn =

1

2

NX

AB

ZAZB

|RA �RB|
& Ven = �

nX

i

NX

A

ZA

|ri �RA|
(1.6)
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The solution of equation (1.3) yields wave functions that depend on the coordi-
nates of all nuclei and all electrons. Intuitively, we feel that nuclear and electronic
motions are very di↵erent, because their masses are very di↵erent, e.g., the proton
mass is 3 orders of magnitude larger than the electron mass. If the masses of nuclei
were infinite, equation (1.3) would reduce to the equation for interacting electrons
moving in the potential of fixed nuclei. Each nuclear configuration would produce
di↵erent external potential, which means that electronic energies/wavefunction would
depend on nuclear positions parametrically. We cannot, however, just set up M = 1
(i.e., TN = 0), since then we would not be able to describe nuclear dynamics (there
would be no dynamics!). But since the nuclear motion is much slower relative to
electronic motion, we can expect that electrons can adjust almost simultaneously to
any new position of nuclei. Let us see how we can separate nuclear and electronic
motion.

Let us define so-called electronic wavefunctions to be solutions of the electronic
SE:

Hel�i(r;R) = Ui(R)�i(r;R) (1.7)

Hel ⌘ Te + Ven + Vee + Vnn (1.8)

We can solve this equation at each fixed geometry of nuclei, and resulting solution
(U and �) will depend parametrically on nuclear geometry (we use ’;’ instead of ’,’ to
distinguish between parametric and explicit dependence on R). Calculated adiabatic
potential energy curves Ui(R) of O2 molecule are shown in Fig. 1.2. We will see later
that U(R) is a potential which governs nuclear motion (bound states — vibrational
motion, unbound states — dissociation, etc). At each internuclear distance, the lowest
energy solution of the electronic SE gives ground state energy. Higher energy solutions
describe electronically excited states. Note that some of the states are unbound, i.e.,
if molecule is excited to one of such states, it dissociates to two oxygen atoms.

Equation (1.8) is the equation of the electronic structure theory. This is what we
solve and this is our “first principle”.

Now we want to express solutions of full problem (1.3) in terms of the solutions
of the electronic problem. We can express the exact wavefunction  as:

 i(r, R) =
X

j

�j(r;R)⇠ij(R) (1.9)

Here functions �j are used as a basis, and so called nuclear functions ⇠ij(R) are
expansion coe�cients to be determined. From now on, we will skip r, R, we will just
remember that �j ⌘ �j(r;R) and ⇠ij ⌘ ⇠ij(R).

Now we want to derive equations for so defined ⇠ij. Substitute ansatz (1.9) into
SE (1.3):

(Hel + TN)
X

j

�j⇠
i
j = Ei

X

j

�j⇠
i
j (1.10)

Multiply this equation by �k on the left, and integrate over the electronic coordinates:

X

j

< �k|Hel|�j >r ⇠
i
j +

X

j

< �k|TN |�j⇠
i
j >r= Ei

X

j

< �k|�j >r ⇠
i
j (1.11)
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Figure 1 displays a complete collection of the lower lying valence electronic states of O2
and a number of the adiabatic potential energy curves which result from Rydberg-valence
interactions.   The states with the vibrational levels indicated by tick marks were calculated by
the RKR method.  The dotted curves are the theoretical potentials generated by Saxon & Liu
[1977] and the dashed curves are from Partridge et al. [1991] or Partridge [Private Comm.].  The
dot-dash curves are diabatic representations of the nl�g Rydberg states with n ⌥ 5.

Figure 1.2: Calculated adia-
batic potential energy curves of O2

molecule. At each internuclear dis-
tance, the lowest energy solution of
the electronic SE gives ground state
energy. Higher energy solutions de-
scribe electronically excited states.
Note that some of the states are un-
bound, i.e., if molecule is excited
to one of such states, it dissociates
to two oxygen atoms. Reproduced
from Morill et al., Review of elec-
tronic structure of molecular oxy-
gen, a web report published on the
NIST website.

Let us analyze Eq. (1.11) term-by-term:

X

j

< �k|Hel|�j >r ⇠
i
j = Uk(R)⇠ik (1.12)

X

j

< �k|�j >r ⇠
i
j = ⇠ik (1.13)

in virtue of Eq. (1.8) and the orthonormality of the electronic functions �j. The
kinetic energy term:

�
X

j

< �k|TN |�j⇠
i
j >r⌘

X

A

X

j

1

2MA
< �k|rArA|�j⇠

i
j >r=

X

A

X

j

1

2MA
< �k|rA{(rA�j)⇠

i
j + �jrA⇠

i
j} >r=

X

A

X

j

1

2MA
< �k|{(r2

A�j)⇠
i
j +rA�jrA⇠

i
j +rA�jrA⇠

i
j + �jr2

A⇠
i
j} >r=

X

A

1

2MA

0

@
X

j

< �k|r2
A�j >r ⇠

i
j + 2

X

j

< �k|rA�j >r rA⇠
i
j +r2

A⇠
i
k

1

A (1.14)
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Therefore we end up with the following set of equations for ⇠ij:

(TN + Uk(R)� Ei) ⇠
i
k =

X

A

1

2MA

0

@
X

j

< �k|r2
A�j >r ⇠

i
j + 2

X

j

< �k|rA�j >r rA⇠
i
j

1

A

(1.15)
If we could neglect terms on the right, we would end up with an eigenproblem for

nuclei moving in the potential Uk, which is mean field potential of electrons (electron
cloud). For each Uk we can find nuclear eigenstates, and eigenstates for di↵erent Uk

are independent. In this case ansatz (1.9) assumes simpler form:

 ik = �i⇠
i
k (1.16)

We can consider PES’s from Fig. 1.2. For bound states, there will be quantized
vibrational energy levels, and localized nuclear vibrational wavefunctions (similar to
harmonic oscillator functions). Solution of the nuclear SE for unbound PES’s will
produce continuum energy levels and wave-like wavefunctions.

In the classical limit, we can consider nuclei as spheres moving on the given poten-
tial Uk. Once nuclei are placed on the given Uk, they will stay on this surface forever:
electronic state Uk cannot change to Ui upon nuclear motion. In other words, elec-
trons can adjust to a new nuclear position simultaneously. They are infinitely fast
relative to nuclei. This is adiabatic (Born-Oppenheimer approximation).

Let us analyze terms on the right. What do they do? Consider their diagonal
part. Some correction to the energy, second is zero. Non-diagonal parts: they couple
nuclear dynamics on di↵erent electronic states. Using classical language, due to this
terms electronic state can change upon the nuclear motion — there is a probability of
non-adiabatic hops. When these terms can be large? When electronic wavefunction
depend strongly on nuclear geometry (derivative terms)! Fig. 1.3 shows adiabatic
PES’s for NaI. At equilibrium, the molecule is ionic. However, lowest energy gas phase
dissociation channel is neutral one. Thus, the wavefunction changes its character from
ionic to neutral, and the derivative coupling may be large. It is possible to consider so
called diabatic states, states that do not change their nature as a function of nuclear
geometry. These states are no longer eigenstates of electronic SE. Thus, they are
coupled by a potential coupling, an o↵-diagonal matrix element of the Hamiltonian in
the basis of diabatic states.

Term < �k|r2
A�j >r ⇠ij is just some potential coupling (acts as additional po-

tential for nuclei). To be important, it has to be large relative to diagonal parts of
the Hamiltonian (potential Uk). So its importance is defined solely by the value of
the integral < �k|r2

A�j >r and the potentials Uk. Term
P

j < �k|rA�j >r rA⇠ij,
however, is di↵erent. It has two parts: integral

P
j < �k|rA�j >r, and nuclear mo-

mentum rA⇠ij. Therefore, this term can become very large when nuclear velocity is
high. Here we can discuss two limits: adiabatic limit: nuclei are very slow, electrons
follow nuclear motion and adjust to it. Nuclear are very fast — electrons cannot
adjust to nuclear motion — non-adiabatic “hops”.

As a homework, use PT to analyze term
P

j < �k|rA�j >r to understand when
it can be large (see Fig. 1.4).
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Figure 1.3: Adiabatic states change their
character from ionic to covalent (and vice-
verse) upon dissociation, and thus inter-
act strongly through the derivative cou-
pling. Two diabatic states preserve the
purely ionic or covalent character. These
are coupled by non-derivative, i.e., poten-
tial, coupling, an o↵-diagonal matrix ele-
ment of the Hamiltonian in the basis of
diabatic states.

1.3.2 Non-Adiabatic Dynamics: An example

Consider photodissociation of bromacetil chloride (Br-CH2COCl).7 As summarized
in Fig. 1.5, once the molecule is photoexcited (with su�cient energy) into S1 state,
there are two channels open for photodissociation: C-Br bond fission and C-Cl bond
fission. The barrier for C-Br bond breaking channel is 10 kcal/mol lower than the
C-Cl one, however, the branching ratio is 0.4:1.0 (in favor of the latter). Why? Non-
adiabatic re-crossing — the NA couplings are much stronger for the C-Br channel,
thus diabatic dynamics, repulsive wall, etc.

1.3.3 Adiabatic approximation: Summary

1. Electronic problem gives PES for ground and excited states.

2. Nuclear dynamics: Nuclear motion on BO surface (bound, unbound levels).
Vibrations and rotations.

3. When Born-Oppenheimer approximation is valid?

4. What can happen when BO breaks?

5. How to solve the full problem (using  el as a basis) ?

1.3.4 Potential energy surfaces: concepts and definitions

Consider a solution of electronic Schrödinger equation: E(R) ⌘ U(R). E(R) defines
nuclear motion (in adiabatic approximation) and is called potential energy surface
(PES).

Gradient (vector): gradR = rR = @
@R1

, . . . , @
@R3n

Hessian (matrix): HRi,Rj = rRirRj =
@2

@Ri@Rj

Stationary points of PES ⌘ gradient vanishes in all directions: @E
@Ri

= 0
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Figure 1.4: The
derivative coupling
becomes large when
PESs approach each
other. The probability
of non-adiabatic tran-
sitions are significant
around so-called conical
intersections.

• minimum (positive curvature in all directions, @2E
@Ri@Rj

> 0) — stable molecular
structures

• maximum (negative curvature in all directions, @2E
@Ri@Rj

< 0)

• saddle point of order m (negative curvature in only m directions, matrix @2E
@Ri@Rj

has m negative roots) — transition structures connecting minima

Figs. 1.6,1.7 show PESs for the dissociation of cyclobutane to two ethylene molecules.
Note minima corresponding to stable products and transition states. Minima are con-
nected through transition states. Barriers define reaction rates.

Figs. 1.8-1.10 show PES’s for HNCO. Number of internal degrees of freedom: 3N-
6, N=4. 6 internal degrees of freedom: RHN , RNC , RCO, ↵HNC , ↵NCO, and torsion
angle (deviation from planarity). Fig. 1.8 is one dimensional diagram along minimal
energy paths connecting di↵erent isomers, e.g., HCNO and HOCN. Fig. 1.9 is a 2D
contour plot, E(RHN ,↵NCO), all other degrees of freedom being frozen. There are
two stable minima connected by transition state (saddle point), and a valley along
dissociation coordinate (also separated by transition states from the stable isomers).
Fig. 1.10, E(RHN ,RNC), shows two dissociation channels.

1.4 Approximation in electronic problem

From now on, we shall use the following notations:

H ⌘ Hel &  ⌘ �el(r;R) (1.17)
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Figure 1.5: Two competing channels found in the photodissociation of Br(CH2)nCOCl.
Following photoabsorption, the molecule on the upper electronic surface can dissociate
along any of two bonds, either C-Cl or C-Br. In spite of the higher adiabatic barrier in
the first channel (0.4 eV di↵erence), the actual branching ratio 1:0.4 is in favor of this
reaction. The reason is that the second reaction is strongly non-adiabatic, such that the
molecule fails to switch its initial bonding electronic configuration to the antibonding one
of the fragmentation products. As a result, the molecule rebounces from the potential wall
and recrosses back to the region of reagents even though it has enough energy to surmount
the adiabatic barrier. Conversely, the C-Cl bond cleavage does successfully proceed via the
adiabatic route. Figure courtesy of Rosendo Valero and Don Truhlar.

Why cannot we solve electronic problem exactly?
H = E , a di↵erential equation in many coordinates, is not directly available for
computer solution !
we must convert it to algebraic equation because we’d like to solve for numbers
(expansion coe�cients) rather than functions !
 =

P
i ci�i, where ci are expansion coe�cients and {�i} — set of many-electron

expansion functions.
What are they?

1.4.1 A valid many-electron function

A valid many-electron function must be single-valued, continuous, and normalized:

<  | >=
Z +1

�1
 ⇤(x) (x)dx (1.18)

It also should posses certain symmetries, i.e.:

• Permutational symmetry (electrons are indistinguishable, so nothing should
change if we swap two electrons).
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Figure 1.6: Schematic depiction of
two possible pathways for ring open-
ing in cyclobutane. The two di-
agrams depict the transition state
and diradical mechanisms, respec-
tively. Reproduced from S. Peder-
sen, J.L. Herek, and A.H. Zewail,
The validity of the “diradical” hy-
pothesis: Direct femtosecond stud-
ies of the transition-state structures,
Science 266, 1359 (1994).

Figure 1.7: Schematic depiction of the
diradical reaction for ring opening in
cyclobutane. Extrusion of the carbon
monoxide group from the parent molecule
can create a diradical (tetramethylene), if
the dissociation is followed shortly by a ra-
diationless transition to the ground elec-
tronic state. Shown are the two chan-
nels for product formation, closure of cy-
clobutane or fragmentation to two ethy-
lene molecules. Reproduced from S. Ped-
ersen, J.L. Herek, and A.H. Zewail, The
validity of the “diradical” hypothesis: Di-
rect femtosecond studies of the transition-
state structures, Science 266, 1359 (1994).

• Spatial symmetry defined by the point group symmetry of the external potential,
i.e., nuclei. For example, consider H2 molecule: nothing should change if we
swap nuclei.

• Be an eigenfunction of spin-operators Ŝz and Ŝ2.

In all of the above, we used the following result from Quantum Mechanics: if a certain
operator Â commutes with the Hamiltonian, i.e., if:

h
Ĥ, Â

i
= 0, (1.19)

Ĥ and Â have common eigenfunctions (eigenfunctions of Ĥ are also eigenfunctions
of Â).

We shall discuss and use all of the above symmetries. Today we will talk only
about permutational symmetry, i.e., the Pauli principle.

Consider a system of indistinguishable particles, e.g., electrons of nuclei. [H,P ] =
0, where P — permutation operator ! H,P have common eigenfunctions.
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on the PES and energies are shown to be essential for such
reactions as NH1CO, O1HCN, CH1NO, and N1HOC.
Credibility of the theoretical approach is confirmed by the
comparison with the literature data for singlet @H,C,N,O# as
well as for PES of the NH1CO, O1HCN and O1HNC
reactions. We applied the global features of the PES to char-
acterize the CH1NO reaction. The global surfaces can be
also used to derive the PES profiles for all possible reactions
in this system, namely, H1NCO, N1HOC, OH1CN,
C1HON, H1CNO, N1HCO, H1CON, and C1HNO.

The neutral @H,C,N.O# system is found to have on the
singlet and triplet potential energy surfaces 7 and 11 bound
isomers, respectively. For both multiplicities, isocyanic acid,
HNCO 1, is the most stable structure. For singlet, it is fol-
lowed by cyanic acid 2 ~28.7 kcal/mol higher in energy than
1!, fulminic acid 3 ~67.9 kcal/mol! and isofulminic acid ~87.1
kcal/mol!. For triplet, the branched NC~H!O isomer 7 is al-
most as stable as 1 ~0.3 kcal/mol relative to triplet HNCO!
and it is followed by HOCN 2 ~27.9 kcal/mol! and HCNO 3
~40.6 kcal/mol!. Isofulminic acid, HONC 4, does not exist on
the triplet PES. The barriers for intramolecular rearrange-
ments within singlet and triplet @H,C,N,O# system are high,

and the isomerization in most cases cannot compete with
fragmentation.

The thermal decomposition of isocyanic acid is shown to
occur via the lowest point on the singlet–triplet seam of
crossing X1 and then via the barrier on the triplet surface.
The activation energy, 92.7 kcal/mol, is equal to the energy
difference between triplet TS1D2 and singlet 1. For the
O(3P)1HCN reaction, the main products are likely to be
H1NCO H1, with some contributions of the NH1CO D2
channel involving the branched NC~H!O intermediate 7,
while the OH1CN D3 and HCNO 3 product channels re-
quire higher activation energies. For O(3P)1HNC, NH1CO
D2 are the major products, and H1NCO H1 as well as
O1HCN O1 can also be produced with negative temperature
dependence. For the reaction of CH with NO, various chan-
nels, such as N1HCO N1, O1HCN O1, H1NCO H1,
OH1CN D3, NH1CO D2, O1HNC O2, etc., are exother-
mic and have negative activation energies. More accurate
calculations at such a level as G240 or G2M41 will be re-
quired for quantitative prediction of the reaction rate con-
stants and product branching ratios.

FIG. 12. Profile of the potential energy surface for the CH~2P!1NO~2P! reaction, calculated at the B3LYP/6-311G(d ,p)1ZPE level.

6453Mebel et al.: Surfaces of the [H,C,N,O] system

J. Chem. Phys., Vol. 105, No. 15, 15 October 1996

Downloaded¬17¬Aug¬2010¬to¬128.125.8.144.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/about/rights_and_permissions

Figure 1.8: Profile of PES for the CH(2⇧)+NO(2⇧) reaction. Note di↵erent isomers and
transition states. Reproduced from: A.M. Mebel, A. Luna, M.C. Lin, and K. Morokuma,
A density functional study of the global potential energy surfaces of the [H,C,N,O] system
in singlet and triplet states, J. Chem. Phys. 105, 6439 (1996).

Consider P12 for 2-particle system:

P12 12 = � 12

P12P12 12 =  12 = �2 12 !
�2 = 1 ! � = ±1 (1.20)

Bosons: P12 12 =  12 (symmetric w.f.).
Fermions: P12 12 = � 12 (antisymmetric w.f.).

Naturally, in this class we are concerned about fermions and antisymmetric wave
functions. What would be a simple and convenient ansatz for such a wave function?
A determinant composed of one-electron functions (orbitals, or, more precisely, spin-
orbitals).

Consider 2-electron system, e.g., He atom. Let us take the following ansatz:

 (1, 2) = �1(1)�2(2), (1.21)

where �(1) is some one-electron function, e.g., a wave function for He+ system (e.g.,
�1 = 1s↵ and �2 = 1s�). In order to make the wave function (1.21) a valid one, we
have to anti symmetrize it:

P12 (1, 2) = P12�1(1)�2(2) = ��1(2)�2(1) 6= � (1, 2) (1.22)
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one side and H(2S) "1- NCO(1 A") on the other. (The 
free NCO molecule has 2II symmetry and is there- 
fore doubly degenerate at linear geometries. In C s 
symmetry the degeneracy is lifted leading to two 
states, one with A' symmetry (the ground state) and 
one with A" symmetry (the excited state). The $1 
state of HNCO correlates with the latter.) A compa- 
rably deep potential well is located at close internu- 
clear separations. There is a small barrier present in 
the I-IN + CO channel, which probably has little 
influence on the bond rupture mechanism. However, 
a significantly higher barrier hinders direct breaking 
of the HN bond. These two transition states (TS) will 
be discussed in more detail below. 

From this potential cut it appears as if the H + 
NCO channel is energetically higher than the 
NI-I(atA) + CO channel. However, this is a misap- 
prehension caused by fixing the bending angle aNC o. 
Along the minimum energy path the NCO fragment 
drastically changes its equilibrium geometry from 
bent NCO inside the well to linear NCO asymptoti- 
cally. This is best seen in Fig. 2 where we show a 
two-dimensional cut through the PES as function of 
the HN bond distance and the NCO bending angle 
for fixed RNC. In contrast to the electronic ground 
state, in which the NCO moiety is almost linear, in 
the excited state NCO is strongly bent. Actually, 
there are two pronounced minima, one for the t rans  
and one for the cis  conformation. In order to leave 
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Fig. 2. Two-dimensional cut through the potential energy surface 
for RNC = 2.50 a o. For more details see Fig. 1. 

250 

200 

o o 

I 

2 2.5 3 3.5 4 4.5 5 5.5 
RN c [ao] 

Fig. 3. Two-dimensional cut through the potential energy surface 
for RHN = 2.00 a0. For more details see Fig. 1. 

either one of the two wells the molecule first has to 
drastically change its shape and to surpass a signifi- 
cant barrier before it reaches the H + NCO product 
channel. Note that the barrier is much smaller for the 
cis  conformer. However, the photodissociation starts 
mainly in the t rans  configuration (,~,(e) = 172o in ~NCO 
the ground state). 

Along the other reaction path, leading to I-IN + 
CO, the variation of the NCO angle is less dramatic. 
In Fig. 3 we show a two-dimensional potential plot 
for RHN ---- 2.00 a 0. One clearly sees the maximum 
around a s c  o ~- 180 ° and RNC = 3.3 a 0 caused by 
the conical intersection with a higher electronic state, 
the saddle point between the t rans  and the  cis  wells 
and the transition states separating the bound regions 
from the HN(a1A)+ CO exit channel. The TS for 
cis  HNCO is higher than for the t rans  conformer. 

Poten t i a l  m in ima .  On our 3D PES the minima are 
located at RNC ---- 2.638 a 0, RHN = 1.940 a 0 and 
aNC o = 125.1 ° for t rans  HNCO and at RNC ---- 2.620 
a 0, RHN = 1.914 a 0 and aNCO=230.2 ° for cis  
HNCO. The corresponding depths with respect to the 
H + NCO asymptotic minimum are 0.820 eV and 
0.748 eV, respectively. This PES has been calculated 
with Rco and flasc being fixed at 2.25 a 0 and 
110 °, respectively. Optimizing the potential in the 
(Rco,/3HNc)-plane around the t rans  minimum yields 
equilibrium data of Rco = 2.266 a 0 and flHaC = 
106.6 ° with the energy being lowered by approxi- 

Figure 1.9: Two-dimensional cut
through the PES of excited 1S1 state
of HNCO. The heavy dot marks the
Franck-Condon point. Reproduced
from: J.-J. Klossika, H. Flöthmann,
C. Beck, R. Schinke, K. Yamashita,
The topography of the HNCO (S1)
potential energy surface and its im-
plications for photodissociation dy-
namics, Chem. Phys. Lett. 276 325
(1997).

However,

P12 [�1(1)�2(2)� �1(2)�2(1)] = �1(2)�2(1)� �1(2)�2(1) =

� [�1(1)�2(2)� �1(2)�2(1)] = � (1, 2) (1.23)

The above (anti-symmetrized) wave function can be compactly written as a determi-
nant:

 (1, 2) = det(�1�2) =
✓
�1(1) �2(1)
�1(2) �2(2)

◆
(1.24)

We should, of course, worry about proper normalization, but this is easy. For the
system of n electrons, the normalization coe�cient is 1p

n! given that one-electron
functions are normalized to one.

Thus, the simplest n-electron antisymmetric functions: determinant composed of
n di↵erent 1-electron functions:

| (x1x2 . . . xn) >=
1p
n!
det{�1�2 . . .�n} =

1p
n!

0

BBB@

�1(1) �2(1) . . . �n(1)
�1(2) �2(2) . . . �n(2)
. . .
�1(n) �2(n) . . . �n(n)

1

CCCA (1.25)

Note that electron labels include not only the coordinates of the electrons, ri, but
also spin, si. Thus we call the one-electron functions “spin-orbitals”.

1.4.2 Towards the exact solution

If we are given a set of M spin-orbitals, then
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6 d orbitals were inactive but correlated. In order to 
save computer time a reference threshold was ap- 
plied, i.e., configuration state functions with norm 
< 0.05 were not taken into account. The Davidson 
correction was utilized in order to approximately 
account for the unlinked cluster effects of higher 
excitations. All calculations are performed with the 
MOLPRO package 2. 

Altogether we have calculated about 5000 points 
on the S~ PES. RNc is varied from 1.80 a 0 to 10 a 0 
with ARNc = 0.25 a 0, 0.5 a o, and 1 a 0 at small, 
medium and large values of the NC bond. The HN 
bond is varied between 1.3 a 0 and 8 a o with ARHN 
----0.25 a 0, 0.5 %, and 1 % .  The NCO angle aNc o 
is varied in the interval [700,270 °] with A a N c  o = 10 ° 
for most of the points. At larger values of RHN 
and/or  RNc, where the anisotropy is not so strong, 
A aNC o = 20 °. Angles < 180 ° represent trans HNCO 
whereas angles > 180 ° mimic the cis isomer. Be- 
cause of the presence of the H atom, the potential is 
not symmetric with respect to aNC o = 180 °, except 
in the H + NCO exit channel, where NCO is linear. 
The HNC angle /3nN c is frozen at 110 ° and the CO 
bond distance Rco is chosen to be 2.25 a 0. Both 
values are close to their values at the equilibrium of 
the S I PES. 

In the regions of the two potential minima or 
along the two reaction paths, regions of the coordi- 
nate space most important for the dissociation dy- 
namics, the CASSCF calculations converged without 
problems. Serious convergence problems were en- 
countered only when the HN and the NC bonds were 
simultaneously elongated. However, this corre- 
sponded to regions of the coordinate space, where 
the energies are quite high and which are therefore 
not sampled in the dissociation process, provided one 
constrains the calculations to photolysis wavelengths 
used in the experiments. Because of a conical inter- 
section with a higher electronic state, particular care 
was required near linearity of the NCO entity. We 
found the calculations to be most stable when the 
NCO angle is varied for fixed bond distances. Prob- 

2 MOLPRO is a package of ab initio programs written by H.-J. 
Werner and P.J. Knowles, with contributions from J. AlmiSf, R.D. 
Amos, M.J.O. Deegan, S.T. Eibert, C. Hampel, W. Meyer, K. 
Peterson, R. Pitzer, A.J. Stone and P.R. Taylor. 

lematic points on the PES were subsequently modi- 
fied so that the potential energy surface was as 
smooth as possible was. Points in regions where both 
bond distances are large were determined by extrapo- 
lation. Finally, a three-dimensional cubic spline rou- 
tine was used for calculating energies between the 
grid points. Despite the numerical problems we are 
confident that the general topography of the PES is 
realistically described and the good agreement with 
known experimental data supports this. In what fol- 
lows the energy is normalized so that E = 0 corre- 
sponds to H + NCO with RNc at its asymptotic 
equilibrium value of 2.322 %, Rco = 2.25 a o and 
OtNC o ---- 180 °. 

3. Results 

Globalpotential energy surface. In Fig. 1 we 
show a two-dimensional cut through the calculated 
three-dimensional PES as function of RNc and RUN; 
the NCO bending angle is fixed at 140 °. The two 
chemically distinct product channels, NH + CO and 
H + NCO, are clearly seen as either the NC bond 
distance or the HN bond distance becomes large. The 
S I state correlates with NH(a lA)+  CO(XIE +) on 
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Fig. I. Two-dimensional cut through the potential energy surface 
for a NCO angle of aNC o = 140 ° (/]HNC = 110° and Rco = 2.25 
a0). Energy normalization is so that (e) H + NCO(RNc n ,aNC o = 
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Figure 1.10: Two-dimensional
cut through the PES of the ex-
cited 1S1 state of HNCO. The
heavy dot marks the Franck-Condon
point. Reproduced from: J.-
J. Klossika, H. Flöthmann, C. Beck,
R. Schinke, K. Yamashita, The to-
pography of the HNCO (S1) poten-
tial energy surface and its implica-
tions for photodissociation dynam-
ics, Chem. Phys. Lett. 276 325
(1997).

• The best solution we can obtain to an N -electron problem will be to combine
together all valid determinants:

 =
X

i

ci�i (1.26)

and use the variational principle to minimize E.

• If those M spin-orbitals are flexible enough to describe any 1-electron function
(“completeness”) then this will yield the exact solution!

Full Configurational Interaction (FCI) is what we have just described.
FCI is exact solution of electronic Schrödinger equation in a given spin-orbital

basis.
How many configurations? It is the number of ways we can draw N di↵erent

spin-orbitals from a pool of M , in a unique fashion:

#configurations = CN
M =

M !

N !(M �N)!
(1.27)

A relatively harmless-looking expression, but devastating in practice. Consider
that both N & M are proportional to the size of molecule

Exponential growth: CN
M ⇡ 10N

Let us see what does it mean in terms of molecules:
Today’s largest FCI calculations:8 methylene, CH2, in TZ2P basis, with core-

orbital frozen. Basis set is large enough to give accurate results, but is still far from
being complete, e.g., errors in excitation energies are ⇡ 0.04 eV.

1.4.3 The notion of a theoretical model chemistry

We have reviewed how to solve the electronic problem exactly, and have declared it
unfeasible, at least in general:
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Table 1.3: Number of configuration for the M/N=5
N M CN

M

2 10 45
4 20 4845
6 30 593775
8 40 7.7*107

10 50 1.0*1010

20 100 5.4*1020

Table 1.4: Number of electrons, N , in some simple molecules
Molecule N
H2O 10
C2H4 16
C4H8 32

• for a fixed ratio N : M , we observe exponential growth in the number of con-
figurations;

• to obtain completeness, M must become very large

There are hence two fundamental approximation that will be usually made in
quantum chemistry:

• we find some way of reducing the number of configurations involved in wave
function:

“we do not solve the exact equations”

“approximate treatments of electron-electron interactions, or electron correla-
tion”

• We do not achieve completeness in the one-particle expansion space

“we do not solve inexact equation exactly”

“basis set truncation error”

These two approximations may be nicely summarized on a chart — first introduced
by Pople in 1965 — a two-dimensional chart of quantum chemistry (see Fig. 1.11).

The one-configurational model is Hartree-Fock theory, the smallest feasible basis
set is termed “minimal”, both these concepts will be discussed in details later.

A given entry on this chart defines a “theoretical model chemistry”, a model of
reality which can be used to make comparisons with experiment and predictions.9

To solve a given problem using electronic structure theory involves the selection
of a theoretical model which is

• feasible when applied to the problem

• su�ciently accurate that meaningful results are obtained
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Partial differential equations in 3n unknowns such as we have
here are completely intractable to solve exactly, and therefore
two important approximations are usually made. Together these
approximations will determine how closely a given calculation
will approach the exact result.
The first approximation is that we do not attempt to solve

the exact equations. Instead, we solve related, but simpler, sets
of equations. For example, it is desirable to reduce the function
of 3n variables to n functions (orbitals), each depending only
on three variables. Each such molecular orbital (MO) would
describe the probability distribution of a single electron and
would be determined by the electron moving in the average
field of all other electrons. Enforcing Fermion antisymmetry
leads us to construct a trial wave function which is a determinant
of molecular orbitals and obtain the optimum MO’s by
variationally minimizing the energy. This is the much used (and
sometimes abused!) Hartree-Fock (HF) approximation,9,10
which is the foundation of much of modern molecular orbital
theory.
The HF method is simply a mean field method applied to

the many-electron problem,11-13 and for this reason the HF
solution is often called the self-consistent field (SCF). As we
shall see in section 4, density functional theories are in a sense
improved SCF methods. Approximations to the many-electron
wave function that go beyond the HF level must include details
of the instantaneous electron-electron correlations, which are
averaged out in the SCF. For this reason, in HF calculations,
electrons approach each other a little too closely, and the HF
wave function is slightly “too ionic” in character. Calculations
which include electron-electron correlation can correct this
deficiency and are discussed in section 3.
The second approximation which is usually invoked is that

we solve the inexact equations (for example, the Hartree-Fock
equations) inexactly. Because computers are far better at solving
algebraic sets of equations rather than differential sets of
equations, it is advantageous to convert the HF equations into
a problem in linear algebra by expanding the unknown molecular
orbital functions in terms of a given, fixed set of functions,
whose number is finite.14 If the functions are wisely chosen,
then as their number increases, increasingly accurate ap-
proximate MO’s will be obtained. These functions are usually
called the atomic orbital (AO) basis, because they are atom-
centered and resemble solutions to the HF problem for the
constituent atoms of a molecule. Standardized basis sets are
now available going under many different, seemingly obscure
acronyms, and detailed reviews15,16 are available to help guide
both the uninitiated and the initiated through this aspect of an
electronic structure calculation.
AO basis functions are Gaussian functions, or linear combi-

nations of Gaussians, since this form permits all required matrix
elements to be evaluated analytically.17 The simplest widely
used basis sets are of the (aptly named) “minimal” type (one
AO per valence atomic orbital, or “single zeta”), while more
flexible sets are the “split valence” or “double zeta” type (two
AO’s per valence atomic orbital). It is possible to proceed to
triple zeta and onward. The physical purpose of providing
multiple basis functions per atomic orbital is to allow the size
of orbitals to increase (for example, along a bond axis) or

diminish (for example, perpendicular to a bond axis). It is also
common to enhance double or triple zeta basis sets with
polarization functions (one or more sets of d functions on first-
row atoms, making basis sets of the form “DZP” or “TZ2P”,
for example) to describe small displacements of the orbitals from
their atomic centers in the molecular environment and for the
description of electron correlation via the methods of section
3. Finally, for anions and Rydberg excited states, additional
diffuse functions are necessary.
The combination of the first approximation, which is to solve

a set of approximate equations, rather than the exact Schrödinger
equation, and the second approximation, which is the use of an
incomplete set of expansion functions for the MO’s, constitutes
(at least in principle!) the sole sources of error in an ab initio
electronic structure calculation. All approximations can there-
fore be conveniently represented on a two-dimensional chart,18
where the two axes correspond to the correlation treatment and
the basis set. Such a chart is given in Figure 1 with a series of
standard approximations listed on the two axes. The basis set
entries on the horizontal axis were described above. We shall
discuss the as-yet-undefined entries on the vertical axis in section
3, as they represent increasing accuracy correlation treatments.
An exact correlation treatment with an infinite (complete) basis
set constitutes a restatement of the Schrödinger equation.
So, what is a theoretical model chemistry, and how does it

connect to these two approximations and the diagram embodied
in Figure 1? Any entry in Figure 1 constitutes, in principle, a
method which can be applied to any molecule, to determine its
properties such as structure, energetics, etc. Thus, if I apply a
given method, say HF, with a given basis set (for instance, the
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Figure 1. A theoretical model chemistry is defined by the two main
approximations that are made in order to make solution of the time-
independent Schrödinger equation tractable. These are the level of
correlation treatment and the extent of completeness of the set of basis
functions which are used to represent the molecular orbitals. The chart
arranges approximations in order of increasing accuracy along the two
axes, so that model chemistries toward the top right approach exact
solution of the Schrödinger equation. The horizontal axis contains a
series of basis sets of increasing quality (minimal, double zeta, double
zeta plus polarization, triple zeta plus double polarization functions,
etc.; see ref 20 for details) as discussed in section 2. The vertical axis
contains a series of increasingly sophisticated models of electron
correlation, as discussed in section 3. The accuracy of these methods
for relative energies is discussed in section 3 and for the calculation of
molecular properties such as geometries and vibrational frequencies in
section 5. State-of-the-art density functional theory methods as discussed
in section 4 lie roughly at the MP2 level of accuracy.
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Figure 1.11: Two-dimensional chart of quan-
tum chemistry. A theoretical model chem-
istry is defined by the two main approxima-
tions that are made in order to make solution
of the Schrödinger equation tractable.These are
the level of correlation treatment and the ex-
tent of completeness of the set of basis func-
tions which are used to represent molecular or-
bitals. The chart arranges approximations in
order of increasing accuracy along the two axe,
so that model chemistries toward the top right
approach exact solution of the Schrödinger equa-
tion (FCI in the complete basis set). The hor-
izontal axis contains a series of (one-particle)
basis sets of increasing complexity (minimal,
double zeta, double-zeta plus polarization, etc).
The vertical axis contains a series of increasingly
sophisticated models of electron correlation. Re-
produced from M. Head-Gordon, J. Phys.Chem.
100, 13213 (1996).

Balancing these 2 factors is what I want you to get out of this course.
Before we begin our studies of di↵erent theoretical model chemistries it is useful

to consider additional attributes that they should possess. These may seem obvious,
but we shall find it is hard to satisfy them all.

1. feasibility (scaling & timing)

2. accuracy (error bars)

3. predictive

4. size-consistent (“size-extensive”)

5. variational

Scaling: how does cost of calculations increase with molecular size increase.
Timing: how much time does it take for a particular system. See Fig. 1.12.

Predictive: no experimental input, or molecule-specific data beyond nuclear po-
sitions, electron number, and state multiplicity should be required: “Electrons &
nuclei in, energies out”. A model chemistry meeting this criterion can be applied in
an unambiguous fashion to any molecule. Black-box tool.

Size-consistency (“size-extensivity”): The energy of a set of identical noninter-
acting molecules should be proportional to their number. Again, obvious to state,
because without this property we cannot reliably compare molecules of di↵erent sizes
(e.g., we cannot look at processes which involve fusing or fragmenting molecules).
But many common approximations are not size-consistent).

Variationality: “upper bound to the energy”.
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compared with experimental infrared and Raman spectroscopy.
The HF method is useful for vibrational frequencies, although
it typically overestimates bond stretch vibrations by roughly
10%, a trend that is sometimes corrected by scaling. KS-DFT
with today’s best functionals is a significant improvement over
HF calculations, as is MP2 theory. For molecules where CCSD-
(T) calculations are possible with large basis sets, sufficient
accuracy is obtained to usually permit unambiguous assignment
of experimental infrared and Raman transitions.50 A number
of misassignments of such transitions have been corrected by
accurate ab initio calculations!
Similar progress is occurring in the use of electronic structure

methods to calculate the other properties delineated in Figure
2. It is beyond my scope to review them in any detail at all
here, other than to note the exciting progress in calculating NMR
properties51 and electrical properties such as dipole moments
and electrostatic potentials. Induced electrical properties such
as static and frequency-dependent polarizabilities seem to pose
greater challenges for electronic structure calculations,52 and to
date ab initio quantum chemical methods have not played a
significant role in associated areas of chemistry such as the
design of novel molecules for nonlinear optical applications.
This is an area where we may expect progress in the future.
There are beautiful connections between response theory for

static response properties, frequency-dependent properties, and
excitation energies because the same response matrices govern
all three classes of problem.12,53 In the case of excitation
energies, this gives us a simple and elegant method of
generalizing a successful ground state wave function ap-
proximation to excited states. Imagine applying a time-
dependent perturbation of adjustable frequency ˆ to a molecular
system described by a ground state model chemistry and
studying the first-order response of the molecular wave function
as a function of applied frequency. At some particular frequen-
cies, the response of the wave function will become very large,
and diverge, and we can immediately identify such frequencies
as being the Bohr frequencies of the molecule within the
theoretical model chemistry! This is the physical basis for
generalizations of the HF and CCSD methods to excitation
energy calculations and is another area where significant
progress is occurring. It permits us to imagine an analog of
Figure 1 for calculations of electronic excited states.

6. Bottlenecks to Treating Large Molecules

Someone looking at the electronic structure field from outside
might rightly speculate that the widespread adoption of elec-
tronic structure methods is in large measure a result of the
dramatic progress that has occurred in the availability of very
high speed computing resources. Today’s high performance
workstations are almost 3 orders of magnitude faster than the
minicomputers and early workstations of 10-15 years ago. In
the realm of supercomputing, we are just now witnessing the
emergence of usable massively parallel computers which is an
exciting development with strong implications for the future of
this field.54 The future rate of improvement in computing
(performance is currently doubling roughly every 2 years) might
well appear to be the primary determinant of how the impact
of electronic structure calculations will grow in the future.
If this is not entirely the case, then what else is important?

In a related vein, is it or is it not feasible to think of ab initio
calculations on molecules the size of proteins by early in the
next century? In this part of the article we scratch beneath the
surface of the theoretical model chemistries enough to try to
answer these questions and, in the process of doing so, reveal
some of the remarkable progress that has occurred in the

algorithms for much of electronic structure theory. We shall
also see, however, that in many areas equally remarkable
progress is still required in the future! As a rough guide to the
present state of affairs, Figure 3 contains a summary of the
current scalings with molecular size of some of the theoretical
models discussed in sections 2-4 and estimates of the maximum
size of calculation feasible, subject to various assumptions.
If we consider the series of theoretical models, HF (or KS-

DFT methods), MP2, CCSD, and CCSD(T), for a given size
basis set and varying molecular size, M, then in the simplest
analysis their computational requirements scale as M4, M5, M6,
and M7, respectively. For example, M5 scaling implies that
doubling the size of the molecule leads to a calculation roughly
32 times longer. Let me discuss the changing views of
computational bottlenecks in HF calculations (KS-DFT calcula-
tions may be viewed essentially identically) as a first example
to show some of what has been achieved and is being achieved.
Two basic steps are involved, which are repeated iteratively
until the self-consistent field is achieved and the solutions no
longer change. The first step is the construction of the effective
one-electron Hamiltonian matrix (usually termed the Fock
matrix), given a density matrix. The second is the generation
of a new density matrix, usually via the generation of new
molecular orbitals or Kohn-Sham orbitals. How has our ability
to evaluate these two steps improved?
The assertion that the HF method scales as the fourth power

of molecular size arises because of the evaluation of electron-
electron interactions via four-center, two-electron integrals. The
density consists of sums of products of AO’s, and electron-
electron interactions are thereby the sum of a quartic number
of Coulomb interactions between pairs of pairs of AO’s. For
Gaussian AO’s these two-electron integrals can be analytically
evaluated, and there is a large literature on the successful efforts
to reduce their computational cost.55 More important, however,
is the fact that the number of nonnegligible two-electron

Figure 3. Current scalings of electronic structure theory methods with
molecular size, M, and estimates of the maximum molecular sizes (in
terms of numbers of first-row non-hydrogen atoms) for which energy
and gradient evaluations can be tackled by each method at present.
The latter estimates are Very approximate because they depend critically
on many variables beyond simply the size dependence of computational
complexity and the assumed availability of a high-end workstation.
Other factors include the number of energy and gradient evaluations
required (assumed to be fewer than 10), the size of the basis set chosen
(assumed to be DZP quality), molecular symmetry (none assumed),
etc. Typical current calculations are of course on substantially smaller
molecules at each level of theory. Nevertheless, the overall pattern of
steep reduction in maximum feasible molecular size with increasingly
sophisticated electron correlation treatments is an accurate reflection
of the current limits of electronic structure methods. It also illustrates
the need for new algorithms which scale more physically with molecular
size, as discussed in section 6.
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Figure 1.12: Scalings of electronic structure theory
methods with molecular size, M , and estimates of the
maximum molecular sizes (in terms of numbers of first-
row non-hydrogen atoms) for which energy and gradient
evaluations can be tackled by each method at present
(e.g., in 1996). The latter estimates are very approximate
because they depend critically on many variables beyond
simply the size dependence of computational complexity
and the assumed availability of a high-end workstation.
Other factors include the number of energy and gradient
evaluations required (assumed to be fewer than 10), the
size of the basis set chosen (assumed to be DZP qual-
ity), molecular symmetry (none assumed), etc. Typical
current calculations are of course on substantially smaller
molecules at each level of theory. Nevertheless, the overall
pattern of steep reduction in maximum feasible molecu-
lar size with increasingly sophisticated electron correla-
tion treatments is an accurate reflection of the current
limits of electronic structure models. It also illustrates
the need for new algorithms which scale more physically
with molecular size. Reproduced from M. Head-Gordon,
J. Phys.Chem. 100, 13213 (1996).

1.5 Calibration of electronic structure models

How to characterize accuracy of electronic structure calculations? We do not attempt
to obtain truly converged results for each specific molecule but rather are interested in
black-box methods which are not exact, but whose errors we can estimate. Therefore,
it is very important to know what are intrinsic errors of approximate methods, i.e.,
theoretical model chemistry (see Fig. 1.13). An apparent error of a theoretical model
chemistry (total error w.r.t. experiment) consists of the (one-particle basis) set error
and the N -electron error (correlation approximation). The error of a method in the
complete basis set limit is method’s intrinsic error.

Statistics is essential! We adopt somewhat experimental approach: Let us study
a large set of molecules, and statistically analyze errors of di↵erent methods — from
these results we will see what kind of errors one can expect from a given model.

Today, we will discuss calibration results with respect to molecular equilibrium
structures. This is the easiest (for ab initio) part — frequencies, reaction energies,
excited states are more challenging. Calibration results can be found in Refs.3,10,11

1.5.1 Benchmarks: computational details

The set of 19 closed-shell molecules containing first-row atoms have been used for cal-
ibration of electronic structure methods w.r.t. equilibrium structures (see Fig 1.14).
Note that the results do not necessarily carry over to open-shell molecules and
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ror is the difference from the exact result. The exact result is
the basis-set limit !the result obtained with a complete one-
electron basis" for a full configuration-interaction !FCI" wave
function and may here be viewed as the experimental result
corrected for vibrational, nonadiabatic, relativistic, and other
effects, that is, effects neglected when the electronic Schrö-
dinger equation is solved in the Born–Oppenheimer approxi-
mation. The basis-set error is the difference between the
obtained result and the basis-set limit for the same wave-
function model. The intrinsic error !or intrinsic N-electron
error" of the specific wave-function model is the difference
between the basis-set limit and the exact result. Note that the
apparent error is a sum of the basis-set error and the intrinsic
error. For completeness, we have depicted in Fig. 1 also the
N-electron error, which represents the difference between
the result obtained using a given wave-function model and
the FCI model in the same basis.

Even for small systems, it is difficult to calculate the
total electronic energy to an apparent error less than
10mEh#26 kJ/mol—a large error compared with the accu-
racy of many experimental measurements of properties like
atomization energies and reaction enthalpies. However,
properties like atomization energies and reaction enthalpies
represent differences in energies of systems of similar struc-
ture and some cancellation of errors can therefore be ex-
pected when these properties are calculated. Moreover, even
though the cancellation of errors may be expected to be large
for both atomizations and isogyric reactions, a difference is
expected since the number of paired electrons is conserved in
the isogyric reactions but not in the atomizations. The error
in the description of the Coulomb holes9 should therefore be
more similar for the reactants and products of the isogyric

reactions than of the atomizations, leading to a smaller over-
all error in the calculated reaction enthalpies.

The Coulomb holes of a correlated wave function arise
from the Coulomb forces among the electrons and are diffi-
cult to describe by means of one-electron basis sets.10–13 If
the cancellation of errors when subtracting total energies is
not sufficiently strong to remove the deficiency in the de-
scription of the Coulomb hole, explicitly correlated wave
functions may be used to overcome this problem.14–16 How-
ever, calculations with such wave functions are still non-
standard and are typically used to establish basis-set limits in
benchmark calculations. One way to overcome the inaccu-
rate description of the short range region of Coulomb holes
is to employ basis-set extrapolation.17–22 Different ap-
proaches have recently been proposed. The most successful
appears to be the linear two-point formula of Helgaker and
co-workers,22,23 which is physically well motivated and
based on a careful study of the convergence of the total en-
ergy. The two-point extrapolation formula can be used only
with basis sets that systematically improve the description of
the Coulomb hole as do the correlation-consistent basis sets
of Dunning and co-workers. We here investigate the useful-
ness of the two-point extrapolation formula for calculations
of atomization energies and reaction enthalpies. The calcula-
tions employ correlation-consistent basis sets with the cardi-
nal number x ranging from 2 to 6 !in standard terminology,
D, T, and Q are used for the cardinal numbers 2, 3, and 4".3–7
These calculations allow us to calculate accurately statistical
measures of the basis-set errors for the series of cc-pCVxZ
basis sets with x$6. Further, from comparisons with experi-
ment, statistical measures of the intrinsic errors are estab-
lished for Hartree–Fock, MP2, CCSD, and CCSD!T" wave-
function models as are the statistical measures of the
apparent errors using the cc-pCVxZ basis sets. The correla-
tion contributions from the core electrons are analyzed sepa-
rately to establish their magnitude and their convergence as a
function of the cardinal number for atomization energies and
reaction enthalpies. The two-point extrapolation scheme is
also used for the core-correlation contributions.

Related work on atomization energies has been pre-
sented previously. For a set of 13 small molecules, Martin
used the CCSD!T" method and valence correlation-
consistent basis sets augmented for all but the hydrogen
atoms.20 By extrapolation of the results for x!3, 4, and 5
and by addition of core contributions, the mean and maxi-
mum absolute errors of the atomization energies were found
to be 1.3 and 3.8 kJ/mol, respectively. The mean and maxi-
mum absolute errors were later reduced to 0.5 and 1.8 kJ/mol
by Martin and Taylor by extrapolating the Hartree–Fock and
the valence-correlation contributions separately and by using
a correction term for bonds involving nitrogen.24 In an ex-
tensive study covering several properties, Feller and Peterson
calculated atomization energies for a large number of
molecules.25 In an extension of this work, Feller and Peter-
son later calculated atomization energies for 73 small mol-
ecules containing first- and second-row atoms; their best re-
sults have mean and maximum absolute errors of 3 and 11
kJ/mol.26 These results were obtained from valence
CCSD!T" calculations using aug-cc-pVxZ sets with x!3, 4,

FIG. 1. Schematic definition of the errors occurring in ab initio calculations
with finite basis sets and approximative N-electron wave functions models.
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Figure 1.13: Schematic definition of the
errors occurring in ab initio calculations
with finite basis set and approximate N -
electron wavefunctions. Reproduced from:
Bak et al., J. Chem. Phys. 112, 9229
(2000).

molecules containing heavier elements. Moreover, we expect the performance to de-
grade in case of not so well-behaved closed-shell molecules, such as singlet diradicals,
molecules away from equilibrium (e.g. at transition states), etc.

For the molecules from Fig. 1.14, the following hierarchy of approximate (N-
electron) methods have been tested: Hartree-Fock, Møller-Plesset PT (MP2, MP3,
and MP4), CCSD, and CCSD(T). CISD have also been included — it is instructive
to compare this model vs. CCSD which is of approximately same complexity, but is
a size-consistent method. For each approximate N-electron model, the series of one-
particle basis sets of increasing complexity have been used to investigate the basis-set
saturation e↵ect (bases used for structures: cc-pVDZ, cc-pVTZ, cc-pVQZ).

1.5.2 Measures of errors

Let the calculated bond distances for a given method/basis set be denoted by Rcalc
i ,

and let the corresponding experimental numbers be Rexp
i . The error is then given by:

�i = Rcalc
i �Rexp

i (1.28)

The following statistical measures of errors have been calculated: the mean error
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successful of these new hierarchical basis sets are perhaps
the correlation-consistent sets developed by Dunning and
co-workers.5–9 Thus, for all wave functions considered in
this study, we carry out calculations using the following
three correlation-consistent sets: the correlation-consistent
polarized valence double-zeta ~cc-pVDZ! basis, the
correlation-consistent polarized valence triple-zeta ~cc-
pVTZ! basis, and the correlation-consistent polarized va-
lence quadruple-zeta ~cc-pVQZ! basis. For a few selected
molecules and wave functions, additional calculations have
been carried out for even larger correlation-consistent basis
sets.

Perhaps the simplest N-electron hierarchy of wave-
function models is that provided by Mo”ller–Plesset perturba-
tion theory ~MPPT!, containing the models Hartree–Fock
~HF!, second-order Mo”ller–Plesset ~MP2!, third-order
Mo”ller–Plesset ~MP3!, and fourth-order Mo”ller–Plesset
~MP4!, all of which have been included in this study. An
alternative hierarchy is that based on the coupled-cluster
~CC! representation of the electronic structure. This particu-
lar hierarchy contains the models HF, MP2, CCSD, and
CCSD~T!, where CCSD is the coupled-cluster singles and
doubles model10 and CCSD~T! corresponds to CCSD with
perturbative triples corrections added.11 In addition to these
models, we have included in our study the configuration-
interaction singles and doubles ~CISD! model. Although this
model is considerably less important and less useful than
those belonging to the MPPT and CC hierarchies, its histori-
cal importance makes its inclusion in this study worthwhile.

Many investigations have appeared where the accuracy
of molecular equilibrium geometries has been examined for
the standard wave function models.12–18 Our investigation
differs from the previous studies in being more systematic
with regard to the approximations made in the one- and
N-electron spaces, thereby making it easier to identify and
separate the errors introduced at the different levels of
theory. Previous studies have been less systematic in this
respect and have in our opinion not always correctly sepa-
rated the errors introduced in the one- and N-electron spaces,
leading in some cases to incorrect conclusions concerning
the quality of the N-electron models. The number of mol-
ecules considered in this investigation is also larger than in
previous studies and in a few cases new experimental results
have been found, more recent and accurate than those used in
previous investigations, increasing the statistical significance
of the present study. It should be noted, however, that the
present investigation concerns only closed-shell molecules
containing first-row atoms. The results presented in this pa-
per therefore do not necessarily carry over to open-shell mol-
ecules or to molecules containing heavier elements such as
transition-metal compounds.

II. COMPUTATIONAL DETAILS

Calculations of the molecular equilibrium geometries
have been carried out for the 19 molecules in Table I using
the HF, MP2, MP3, MP4, CCSD, CCSD~T!, and CISD wave
functions. For all models, the calculations have been carried

out using the correlation-consistent cc-pVDZ, cc-pVTZ, and
cc-pVQZ basis sets—the primary basis sets considered in
this investigation. To explore basis-set saturation further, ad-
ditional calculations have been carried out in the larger cc-
pV5Z basis for the three molecules N2, H2O, and N2H2. The
correlation-consistent sets provide a hierarchy of molecular
basis sets, where the occupied Hartree–Fock atomic orbitals
are systematically supplemented with correlating functions
designed for an accurate and balanced description of corre-
lation effects in the atomic valence region.

In addition to exploring the convergence of the standard
correlation-consistent hierarchy of basis sets cc-pVXZ, we
have for the three molecules N2, H2O, and N2H2 also con-
sidered the performance of two related correlation-consistent
basis-set hierarchies: the augmented correlation-consistent
sets aug-cc-pVDZ, aug-cc-pVTZ, aug-cc-pVQZ, and aug-cc-
pV5Z; and the correlation-consistent core-valence sets cc-
pCVDZ, cc-pCVTZ, and cc-pCVQZ. In the augmented basis
sets, the standard correlation-consistent basis sets have been
augmented with diffuse functions so as to improve the rep-
resentation of the outer regions of the electronic system.8 In
the core-valence sets, the standard correlation-consistent ba-
sis sets have been augmented with correlating functions of
large exponents, as appropriate for a description of correla-
tion effects in the inner-valence and core regions.9

The CISD calculations and the largest HF and MP2 cal-
culations have been carried out using the Gaussian
program.19 For the remaining calculations in this study, we
have used the ACESII program.20 The calculated electronic
energies and equilibrium structures for the 19 sample mol-
ecules in Table I may be obtained upon request from the
authors. We note that, in all calculations, all electrons were
correlated ~i.e., the 1s orbitals were not kept frozen!. The
experimental bond distances for the 28 distinct bonds in the
19 sample molecules are listed in Table II.

III. RESULTS
A. Measures of errors

In order to quantify the errors in the calculations, we
have considered several statistical measures. Let the calcu-
lated bond distances for a given method and for a given basis
set be denoted by Ri

calc and let the corresponding experimen-
tal numbers be Ri

exp . The error is then given by

D i5Ri
calc2Ri

exp . ~1!

TABLE I. The 19 molecules, on which the statistical analysis is based.

HF, H2O, NH3, CH4, N2, CH2, CO, HCN, CO2, HNC, C2H2, CH2O, HNO,
N2H2, O3, C2H4, F2, HOF, H2O2
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Figure 1.14: The 19 molecules (28 bond distances), on which the statistical analysis is
based. Reproduced from: Helgaker et al., J. Chem. Phys. 106, 6430 (1997).

�̄, the standard deviation in the errors �std, the mean absolute error �̄abs, and the
maximum error �max:

�̄ =
1

n

nX

i

�i (1.29)

�std =

vuut 1

n� 1

nX

i

(�i � �̄)2 (1.30)

�̄abs =
1

n

nX

i

|�i| (1.31)

�max = maxi|�i| (1.32)

Each measure characterizes a specific aspect of the performance. The mean error
and the standard deviation are most important — they show what the average error
(remember about the sign!) is, and what is the width of the distribution. They
quantify both systematic and non-systematic errors. What do we want the error
distribution to be? A delta-like function centered at zero (zero error vs. experiment)
— thus, both �̄ and �std should be small for a reliable method. The mean absolute
error represents the typical magnitude of the errors in calculations, and �max gives
the largest error.

Mean errors and standard deviations are shown in Figs. 1.15,1.16. Note that
small mean errors can combined with large standard deviations (e.g., CISD in small
basis sets). Another observation: mean error for MP2 is very similar to that of the
CCSD(T), however the standard deviation of errors (in large basis sets) for these two
methods is quite di↵erent. Basis set convergence: (i) basis set e↵ects are larger for
more correlated methods; and (ii) only CCSD(T) shows nice convergence towards
very small �std.

A more pictorial view is given in Fig. 1.17. Note that HF does not become more
predictive in larger basis sets. CCSD(T) gives delta-like distribution in cc-pVTz basis
set. MP2 is reasonably good, nice improvement over the Hartree-Fock model.

Mean absolute errors and maximum errors are shown in Figs. 1.18,1.19, respec-
tively.
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We have, for each basis set and each method, calculated the
mean error D̄ , the standard deviation in the errors Dstd , the
mean absolute error D̄abs , and the maximum error Dmax for
the n528 bond distances,

D̄5
1
n (

i51

n

D i , ~2!

Dstd5A 1
n21 (

i51

n

~D i2D̄!2, ~3!

D̄abs5
1
n (

i51

n

uD iu, ~4!

Dmax5max
i

uD iu. ~5!

Each measure characterizes a specific aspect of the perfor-
mance of the methods and the basis sets. Thus, the two first
measures D̄ and Dstd characterize the distribution of errors
about a mean value D̄ for a given method and basis set, thus
quantifying both systematic and nonsystematic errors. The

mean absolute error D̄abs represents the typical magnitude of
the errors in the calculations and Dmax gives the largest error.

B. Mean errors

We begin by considering the mean errors, which are
listed in Table III and plotted in Fig. 1. From Fig. 1, we
conclude that improvements in the one-electron basis shorten
the bond lengths whereas improvements in the N-electron
description usually ~but not invariably! increase the bond
lengths. Thus, going from the cc-pVDZ basis to the cc-pVTZ
basis, the bond lengths are on the average reduced by 0.8 pm
at the Hartree–Fock level and by 1.6 pm at the correlated
levels. Going from the cc-pVTZ basis to the cc-pVQZ basis,
this contraction is much less pronounced—of the order of 0.1
pm. Clearly, for most methods and most applications, the
cc-pVTZ basis should provide results sufficiently close to the
basis-set limit.

For all basis sets, the bond distances increase in the se-
quence HF, CISD, MP3, CCSD, MP2, CCSD~T!, and MP4.
Moreover, the Hartree–Fock bond lengths are too short and
the MP4 bond lengths are too long relative to experiment.
Thus, improvements in the description of correlation effects
tend to increase the bond lengths. We note, however, the

TABLE II. Bond length of the molecules in Table I ordered according to
increasing experimental values.

Molecule Bond Experiment ~pm!

1 HF RFH 91.7a
2 H2O RHO 95.7b
3 HOF RHO 96.57c
4 H2O2 RHO 96.7d
5 HNC RHN 99.4e
6 NH3 RHN 101.2f
7 N2H2 RHN 102.8g
8 C2H2 RCH 106.2h
9 HNO RHN 106.3i
10 HCN RCH 106.5j
11 C2H4 RCH 108.1k
12 CH4 RCH 108.6l
13 N2 RNN 109.77a
14 CH2O RCH 109.9m
15 CH2 RCH 110.7n
16 CO RCO 112.8a
17 HCN RCN 115.3j
18 CO2 RCO 116.0o
19 HNC RCN 116.9e
20 C2H2 RCC 120.3h
21 CH2O RCO 120.3m
22 HNO RNO 121.2i
23 N2H2 RNN 125.2g
24 O3 ROO 127.2p
25 C2H4 RCC 133.4k
26 F2 RFF 141.2a
27 HOF RFO 143.5c
28 H2O2 ROO 145.56d

aReference 32. iReference 26.
bReference 33. jReference 38.
cReference 28. kReference 39.
dReference 31. lReference 40.
eReference 34. mReference 41.
fReference 35. nReference 42.
gReference 36. oReference 43.
hReference 37. pReference 44.

TABLE III. The mean deviations D̄ relative to experiment in the calculated
bond distances ~pm!.

cc-pVDZ cc-pVTZ cc-pVQZ

HF 22.01 22.80 22.91
MP2 1.29 20.15 20.26
MP3 0.40 21.16 21.30
MP4 1.77 0.30 0.24
CCSD 0.96 20.72 20.89
CCSD~T! 1.59 20.05 20.19
CISD 0.11 21.57 21.80

FIG. 1. Mean errors D̄ relative to experiment in the calculated bond dis-
tances ~pm!.

6432 Helgaker et al.: Molecular equilibrium structures

J. Chem. Phys., Vol. 106, No. 15, 15 April 1997

Downloaded¬17¬Aug¬2010¬to¬128.125.8.144.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/about/rights_and_permissions

We have, for each basis set and each method, calculated the
mean error D̄ , the standard deviation in the errors Dstd , the
mean absolute error D̄abs , and the maximum error Dmax for
the n528 bond distances,
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Each measure characterizes a specific aspect of the perfor-
mance of the methods and the basis sets. Thus, the two first
measures D̄ and Dstd characterize the distribution of errors
about a mean value D̄ for a given method and basis set, thus
quantifying both systematic and nonsystematic errors. The

mean absolute error D̄abs represents the typical magnitude of
the errors in the calculations and Dmax gives the largest error.

B. Mean errors

We begin by considering the mean errors, which are
listed in Table III and plotted in Fig. 1. From Fig. 1, we
conclude that improvements in the one-electron basis shorten
the bond lengths whereas improvements in the N-electron
description usually ~but not invariably! increase the bond
lengths. Thus, going from the cc-pVDZ basis to the cc-pVTZ
basis, the bond lengths are on the average reduced by 0.8 pm
at the Hartree–Fock level and by 1.6 pm at the correlated
levels. Going from the cc-pVTZ basis to the cc-pVQZ basis,
this contraction is much less pronounced—of the order of 0.1
pm. Clearly, for most methods and most applications, the
cc-pVTZ basis should provide results sufficiently close to the
basis-set limit.

For all basis sets, the bond distances increase in the se-
quence HF, CISD, MP3, CCSD, MP2, CCSD~T!, and MP4.
Moreover, the Hartree–Fock bond lengths are too short and
the MP4 bond lengths are too long relative to experiment.
Thus, improvements in the description of correlation effects
tend to increase the bond lengths. We note, however, the

TABLE II. Bond length of the molecules in Table I ordered according to
increasing experimental values.

Molecule Bond Experiment ~pm!

1 HF RFH 91.7a
2 H2O RHO 95.7b
3 HOF RHO 96.57c
4 H2O2 RHO 96.7d
5 HNC RHN 99.4e
6 NH3 RHN 101.2f
7 N2H2 RHN 102.8g
8 C2H2 RCH 106.2h
9 HNO RHN 106.3i
10 HCN RCH 106.5j
11 C2H4 RCH 108.1k
12 CH4 RCH 108.6l
13 N2 RNN 109.77a
14 CH2O RCH 109.9m
15 CH2 RCH 110.7n
16 CO RCO 112.8a
17 HCN RCN 115.3j
18 CO2 RCO 116.0o
19 HNC RCN 116.9e
20 C2H2 RCC 120.3h
21 CH2O RCO 120.3m
22 HNO RNO 121.2i
23 N2H2 RNN 125.2g
24 O3 ROO 127.2p
25 C2H4 RCC 133.4k
26 F2 RFF 141.2a
27 HOF RFO 143.5c
28 H2O2 ROO 145.56d

aReference 32. iReference 26.
bReference 33. jReference 38.
cReference 28. kReference 39.
dReference 31. lReference 40.
eReference 34. mReference 41.
fReference 35. nReference 42.
gReference 36. oReference 43.
hReference 37. pReference 44.

TABLE III. The mean deviations D̄ relative to experiment in the calculated
bond distances ~pm!.

cc-pVDZ cc-pVTZ cc-pVQZ

HF 22.01 22.80 22.91
MP2 1.29 20.15 20.26
MP3 0.40 21.16 21.30
MP4 1.77 0.30 0.24
CCSD 0.96 20.72 20.89
CCSD~T! 1.59 20.05 20.19
CISD 0.11 21.57 21.80

FIG. 1. Mean errors D̄ relative to experiment in the calculated bond dis-
tances ~pm!.
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Figure 1.15: Mean errors �̄ relative to experiment in calculated bond distances, pm
(10�12m=0.01 Å). Reproduced from: Helgaker et al., J. Chem. Phys. 106, 6430 (1997).

oscillatory behavior of the Mo”ller–Plesset sequence—the
MP2 bond lengths are intermediate between those obtained
at the MP3 and MP4 levels.

Since improvements in the one-electron and N-electron
descriptions affect the bond lengths in opposite directions,
there is considerable scope for cancellation of errors in the
calculation of bond distances. For example, at the cc-pVDZ
level, the CISD bond lengths are in the mean extremely ac-
curate with a mean deviation of only 0.1 pm, compared with
the CCSD~T! error of 1.6 pm, almost as large in magnitude
as the Hartree–Fock error of 22.0 pm for this basis set.
However, as the description of the one-electron space is im-
proved, the CISD bond distances shorten. At the cc-pVQZ
level, the CISD bond distances are much less accurate than
the other correlated wave functions, with an average error of
21.8 pm compared with the CCSD~T! error of 20.2 pm and
the Hartree–Fock error of 22.9 pm. A similar behavior is
observed for the MP3 bond distances, which are accurate ~in
the mean! at the cc-pVDZ level ~error 0.4 pm! but inaccurate
at the more complete cc-pVQZ level ~error 21.3 pm!.

Clearly, the CISD and MP3 models are not of suffi-
ciently high quality to yield accurate bond lengths for large
basis sets. The CISD and MP3 models should therefore not
be used for the calculation of molecular structures. Their
good performance at the cc-pVDZ level is fortuitous and
does not allow for an improvement of the one-electron de-
scription. It does explain, however, the success of the CISD
wave function in the 1970s for the calculation of molecular
structures for basis sets of polarized double-zeta quality.

At the cc-pVTZ level, two approximations stand out
from the others: MP2 with a mean error of 20.15 pm and
CCSD~T! with a mean error of 20.05 pm. At this level, the
MP4 distances ~with a mean error of 10.30 pm! are also
quite accurate, but less so than the simpler MP2 approxima-
tion. Again, there appears to be a certain element of cancel-
lation of error in these numbers. Thus, at the more elaborate
cc-pVQZ level, the MP2 and CCSD~T! bond distances are,
with mean errors of 20.26 and 20.19 pm, respectively, on
the average less accurate than at the cc-pVTZ level. Also, at
the cc-pVQZ level, the MP4 distances are finally slightly
more accurate than the MP2 distances ~errors 10.24 and
20.26 pm, respectively!. We shall return to a discussion of
the possible sources of errors in these numbers later.

C. Standard deviations

Having discussed the mean errors in the calculated bond
distances, it is appropriate also to consider the standard de-
viations in the errors and thus more fully characterize the
distribution of errors in the calculations. The standard devia-
tions are listed in Table IV and plotted in Fig. 2. Only for
three models does the standard deviation decrease with im-
provements in the basis set: for MP2, for MP4, and in par-
ticular for CCSD~T!. For MP3 and CCSD, the standard de-
viation decreases from cc-pVDZ to cc-pVTZ but increases as
we go to cc-pVQZ. For the CISD wave function, the stan-
dard deviation increases monotonically and for Hartree–
Fock it is always large.

D. Normal distributions

In Fig. 3, we have, for each basis set and each N-particle
approximation, plotted the normal distributions

r~R !5Nc expF2
1
2 S R2D̄

Dstd
D 2G ~6!

based on the mean values and standard deviations in Tables
III and IV. In this expression, Nc is a normalization constant.
Although we make no claim that the errors in the calculated
bond distances are indeed distributed according to the nor-
mal distributions, these plots neatly summarize the perfor-
mance of the various levels of theory.

We note that the Hartree–Fock wave function is charac-
terized by broad distributions centered off the origin, and
that its performance does not improve upon improvement in
the basis set. In contrast, the Mo”ller–Plesset bond distances
are characterized by distributions that are sharper and located
closer to the origin. The relatively poor performance of the
MP3 bond distances compared with MP2 and MP4 is evident
from these plots. We also note that the progression of the
MP4 distribution as the basis set is improved is somewhat
more satisfactory than that of MP2 theory—both with re-
spect to the position of the peak and its width—but only
slightly so. Indeed, considering the significantly higher cost
of the MP4 calculations, the improvement of MP4 over MP2
is rather disappointing.

The performance of the CCSD model is also somewhat
disappointing; its performance is intermediate between that

FIG. 2. Standard deviations Dstd in the errors relative to experiment in the
calculated bond distances ~pm!.

TABLE IV. Standard deviations Dstd in the calculated bond distances rela-
tive to experiment ~pm!.

cc-pVDZ cc-pVTZ cc-pVQZ

HF 2.22 2.21 2.25
MP2 0.77 0.73 0.67
MP3 1.02 0.93 1.04
MP4 0.84 0.65 0.54
CCSD 0.78 0.68 0.79
CCSD~T! 0.82 0.32 0.30
CISD 1.23 1.31 1.48
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oscillatory behavior of the Mo”ller–Plesset sequence—the
MP2 bond lengths are intermediate between those obtained
at the MP3 and MP4 levels.

Since improvements in the one-electron and N-electron
descriptions affect the bond lengths in opposite directions,
there is considerable scope for cancellation of errors in the
calculation of bond distances. For example, at the cc-pVDZ
level, the CISD bond lengths are in the mean extremely ac-
curate with a mean deviation of only 0.1 pm, compared with
the CCSD~T! error of 1.6 pm, almost as large in magnitude
as the Hartree–Fock error of 22.0 pm for this basis set.
However, as the description of the one-electron space is im-
proved, the CISD bond distances shorten. At the cc-pVQZ
level, the CISD bond distances are much less accurate than
the other correlated wave functions, with an average error of
21.8 pm compared with the CCSD~T! error of 20.2 pm and
the Hartree–Fock error of 22.9 pm. A similar behavior is
observed for the MP3 bond distances, which are accurate ~in
the mean! at the cc-pVDZ level ~error 0.4 pm! but inaccurate
at the more complete cc-pVQZ level ~error 21.3 pm!.

Clearly, the CISD and MP3 models are not of suffi-
ciently high quality to yield accurate bond lengths for large
basis sets. The CISD and MP3 models should therefore not
be used for the calculation of molecular structures. Their
good performance at the cc-pVDZ level is fortuitous and
does not allow for an improvement of the one-electron de-
scription. It does explain, however, the success of the CISD
wave function in the 1970s for the calculation of molecular
structures for basis sets of polarized double-zeta quality.

At the cc-pVTZ level, two approximations stand out
from the others: MP2 with a mean error of 20.15 pm and
CCSD~T! with a mean error of 20.05 pm. At this level, the
MP4 distances ~with a mean error of 10.30 pm! are also
quite accurate, but less so than the simpler MP2 approxima-
tion. Again, there appears to be a certain element of cancel-
lation of error in these numbers. Thus, at the more elaborate
cc-pVQZ level, the MP2 and CCSD~T! bond distances are,
with mean errors of 20.26 and 20.19 pm, respectively, on
the average less accurate than at the cc-pVTZ level. Also, at
the cc-pVQZ level, the MP4 distances are finally slightly
more accurate than the MP2 distances ~errors 10.24 and
20.26 pm, respectively!. We shall return to a discussion of
the possible sources of errors in these numbers later.

C. Standard deviations

Having discussed the mean errors in the calculated bond
distances, it is appropriate also to consider the standard de-
viations in the errors and thus more fully characterize the
distribution of errors in the calculations. The standard devia-
tions are listed in Table IV and plotted in Fig. 2. Only for
three models does the standard deviation decrease with im-
provements in the basis set: for MP2, for MP4, and in par-
ticular for CCSD~T!. For MP3 and CCSD, the standard de-
viation decreases from cc-pVDZ to cc-pVTZ but increases as
we go to cc-pVQZ. For the CISD wave function, the stan-
dard deviation increases monotonically and for Hartree–
Fock it is always large.

D. Normal distributions

In Fig. 3, we have, for each basis set and each N-particle
approximation, plotted the normal distributions

r~R !5Nc expF2
1
2 S R2D̄

Dstd
D 2G ~6!

based on the mean values and standard deviations in Tables
III and IV. In this expression, Nc is a normalization constant.
Although we make no claim that the errors in the calculated
bond distances are indeed distributed according to the nor-
mal distributions, these plots neatly summarize the perfor-
mance of the various levels of theory.

We note that the Hartree–Fock wave function is charac-
terized by broad distributions centered off the origin, and
that its performance does not improve upon improvement in
the basis set. In contrast, the Mo”ller–Plesset bond distances
are characterized by distributions that are sharper and located
closer to the origin. The relatively poor performance of the
MP3 bond distances compared with MP2 and MP4 is evident
from these plots. We also note that the progression of the
MP4 distribution as the basis set is improved is somewhat
more satisfactory than that of MP2 theory—both with re-
spect to the position of the peak and its width—but only
slightly so. Indeed, considering the significantly higher cost
of the MP4 calculations, the improvement of MP4 over MP2
is rather disappointing.

The performance of the CCSD model is also somewhat
disappointing; its performance is intermediate between that

FIG. 2. Standard deviations Dstd in the errors relative to experiment in the
calculated bond distances ~pm!.

TABLE IV. Standard deviations Dstd in the calculated bond distances rela-
tive to experiment ~pm!.

cc-pVDZ cc-pVTZ cc-pVQZ

HF 2.22 2.21 2.25
MP2 0.77 0.73 0.67
MP3 1.02 0.93 1.04
MP4 0.84 0.65 0.54
CCSD 0.78 0.68 0.79
CCSD~T! 0.82 0.32 0.30
CISD 1.23 1.31 1.48
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Figure 1.16: Standard deviations �std in the errors relative to experiment in calculated
bond distances, pm (10�12m=0.01 Å). Reproduced from: Helgaker et al., J. Chem. Phys.
106, 6430 (1997).
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of MP2 and MP3. Clearly, the CCSD wave function is not
particularly well suited for the calculation of bond distances.
Only with the addition of triples corrections at the CCSD~T!
level does the coupled-cluster model yield satisfactory re-
sults. Indeed, at the cc-pVTZ and cc-pVQZ levels, the
CCSD~T! model performs excellently, with sharply peaked
distributions close to the origin. From these investigations, it
appears that the inclusion of doubles amplitudes to second
order at the MP2 level yields satisfactory results, but that the
inclusion of doubles to higher orders ~as in MP3, CISD, and
CCSD! without the simultaneous incorporation of triples @as
in MP4 and CCSD~T!# yields bond distances in worse agree-
ment with the exact solution. We finally note that CISD per-
forms less satisfactorily than any other correlated method,
with the possible exception of MP3.

E. Mean absolute deviations

We now consider the mean absolute deviations D̄abs
listed in Table V and plotted in Fig. 4. In Table VI, the mean

absolute deviations D̄abs are scaled such that the CCSD~T!
error in the cc-pVQZ basis is equal to one. With the obvious
exceptions of MP3 and CISD at the cc-pVDZ level, Fig. 4 is
very similar to what we would obtain by plotting the abso-
lute values of the mean values D̄ ~compare with Fig. 1!,
confirming the systematic nature of the errors usually ob-
tained in ab initio calculations. From Fig. 4, the different

FIG. 3. Normal distributions r(R) for the errors in the calculated bond distances. The distributions have been calculated from the mean errors in Table III and
the standard deviations in Table IV ~pm!. For easy comparison, all distributions have been normalized to one and plotted on the same horizontal and vertical
scales.

TABLE V. The mean absolute deviations D̄abs relative to experiment for the
calculated bond distances ~pm!.

cc-pVDZ cc-pVTZ cc-pVQZ

HF 2.11 2.80 2.91
MP2 1.29 0.58 0.54
MP3 0.88 1.16 1.30
MP4 1.77 0.51 0.41
CCSD 1.09 0.72 0.89
CCSD~T! 1.59 0.23 0.22
CISD 0.93 1.57 1.80
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Figure 1.17: Normal distributions for the errors in calculated bond distances. Reproduced
from: Helgaker et al., J. Chem. Phys. 106, 6430 (1997).
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behavior of the wave functions at the cc-pVDZ level on one
side and the cc-pVTZ and cc-pVQZ levels on the other side
is quite evident. Among the correlated methods, the CISD
and MP3 approximations perform best at the cc-pVDZ level
and worst at the cc-pVTZ and cc-pVQZ levels.

At this point, it is appropriate to comment on the relative
performance of the Mo”ller–Plesset approximations. Compar-
ing with Hartree–Fock theory, we note that, for the cc-pVDZ
basis, the absolute mean errors relative to the uncorrelated
description are 61%, 42%, and 84% at the MP2, MP3, and
MP4 levels, respectively. Thus, for this basis set, the im-
provements on the uncorrelated description are small and we
note that MP3 performs better than MP2 and MP4. At the
cc-pVTZ level, the situation is reversed and the errors rela-
tive to the Hartree–Fock description are 21%, 41%, and
18%, respectively. Finally, for the cc-pVQZ basis, the errors
at the MP2, MP3, and MP4 levels are 19%, 45%, and 14%.

These examples demonstrate quite clearly the oscillatory
behavior of the Mo”ller–Plesset sequence and the inherent
inadequacy of the cc-pVDZ basis set in recovering molecular
electronic correlation effects, indicating that any comparison
of the performance of correlated methods relative to experi-
ment based on experience with the cc-pVDZ basis set should
be treated with caution as it may give a completely false
indication of the performance of the various models. The
small cc-pVDZ basis does not have the flexibility needed for
a satisfactory description of the true correlation effects. The
cc-pVTZ basis, on the other hand, yields satisfactory results
for the bond distances and should be sufficient for most pur-
poses.

F. Maximum errors

Finally, in Table VII and Fig. 5, we have listed and
plotted the maximum errors for the various basis sets and
N-electron approximations. These numbers are important in
providing worst-case errors for the different wave functions
and basis sets. Thus, we see that, for the cc-pVQZ basis, the
Hartree–Fock wave function may give errors as large as 8.5
pm, and that the maximum CISD and MP3 errors are as large
as 5.7 and 4.2 pm, respectively. The CCSD wave function

may give errors as large as 3.1 pm at the cc-pVQZ level.
Again, the best methods are MP2, MP4, and CCSD~T!,
whose maximum errors are 1.7, 1.5, and 1.2 pm, respec-
tively.

Some comments are in order for the maximum errors.
First, these numbers are based on a rather small sample of
molecules, containing elements from the first and second
rows only. Clearly, larger errors may be obtained in calcula-
tions on other systems and in particular in calculations on
molecules involving heavier atoms. For example, for the ver-
tical cyclopentadienyl–iron distance in ferrocene, the
Hartree–Fock wave function overestimates the distance by
21 pm,21 MP2 underestimates the same distance by 19 pm,21
whereas CCSD and CCSD~T! give distances within 1–2 pm
of the experimental bond length.22 This particular example
illustrates that, although less accurate for molecules involv-
ing first- and second-row atoms, the CCSD wave function
appears to be more robust than MP2 theory for molecules
containing heavier atoms. It should also be noted that the
maximum errors in Table VII may be associated with errors
in the experimental measurements rather than errors in the
calculations, in particular for the most accurate methods. We
shall return to this point shortly.

G. Detailed plots

In Figs. 6–9, we have plotted the differences between
the calculated and experimental bond lengths for the differ-
ent wave functions: HF in Fig. 6; MP2, MP3, and MP4 in
Fig. 7; CCSD and CCSD~T! in Fig. 8; and CISD in Fig. 9. In
these plots, the 28 distinct bonds found in the 19 sample
molecules have been arranged in order of increasing experi-

FIG. 4. Mean absolute errors D̄abs relative to experiment in the calculated
bond distances ~pm!.

TABLE VI. The mean absolute deviations D̄abs in the calculated bond dis-
tances relative to experiment in units of the deviation at the cc-pVQZ
CCSD~T! level.

cc-pVDZ cc-pVTZ cc-pVQZ

HF 9.40 12.49 12.98
MP2 5.76 2.60 2.40
MP3 3.94 5.17 5.80
MP4 7.90 2.28 1.84
CCSD 4.84 3.22 3.97
CCSD~T! 7.10 1.04 1.00
CISD 4.14 6.99 8.04

TABLE VII. The maximum absolute deviations Dmax in the calculated bond
distances relative to experiment ~pm!.

cc-pVDZ cc-pVTZ cc-pVQZ

HF 7.52 8.29 8.45
MP2 3.16 1.62 1.67
MP3 2.75 3.87 4.24
MP4 3.84 1.77 1.48
CCSD 1.98 2.62 3.07
CCSD~T! 4.55 1.07 1.20
CISD 3.89 5.19 5.72
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of MP2 and MP3. Clearly, the CCSD wave function is not
particularly well suited for the calculation of bond distances.
Only with the addition of triples corrections at the CCSD~T!
level does the coupled-cluster model yield satisfactory re-
sults. Indeed, at the cc-pVTZ and cc-pVQZ levels, the
CCSD~T! model performs excellently, with sharply peaked
distributions close to the origin. From these investigations, it
appears that the inclusion of doubles amplitudes to second
order at the MP2 level yields satisfactory results, but that the
inclusion of doubles to higher orders ~as in MP3, CISD, and
CCSD! without the simultaneous incorporation of triples @as
in MP4 and CCSD~T!# yields bond distances in worse agree-
ment with the exact solution. We finally note that CISD per-
forms less satisfactorily than any other correlated method,
with the possible exception of MP3.

E. Mean absolute deviations

We now consider the mean absolute deviations D̄abs
listed in Table V and plotted in Fig. 4. In Table VI, the mean

absolute deviations D̄abs are scaled such that the CCSD~T!
error in the cc-pVQZ basis is equal to one. With the obvious
exceptions of MP3 and CISD at the cc-pVDZ level, Fig. 4 is
very similar to what we would obtain by plotting the abso-
lute values of the mean values D̄ ~compare with Fig. 1!,
confirming the systematic nature of the errors usually ob-
tained in ab initio calculations. From Fig. 4, the different

FIG. 3. Normal distributions r(R) for the errors in the calculated bond distances. The distributions have been calculated from the mean errors in Table III and
the standard deviations in Table IV ~pm!. For easy comparison, all distributions have been normalized to one and plotted on the same horizontal and vertical
scales.

TABLE V. The mean absolute deviations D̄abs relative to experiment for the
calculated bond distances ~pm!.

cc-pVDZ cc-pVTZ cc-pVQZ

HF 2.11 2.80 2.91
MP2 1.29 0.58 0.54
MP3 0.88 1.16 1.30
MP4 1.77 0.51 0.41
CCSD 1.09 0.72 0.89
CCSD~T! 1.59 0.23 0.22
CISD 0.93 1.57 1.80
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Figure 1.18: Mean absolute errors �̄abs relative to experiment in calculated bond distances,
pm (10�12m=0.01 Å). Reproduced from: Helgaker et al., J. Chem. Phys. 106, 6430 (1997).

mental bond length as given in Table II. Each figure contains
three plots—one for each of cc-pVDZ, cc-pVTZ, and cc-
pVQZ basis sets.

From Fig. 6, we note that the Hartree–Fock wave
function—almost without exception—gives bond lengths
that are too short compared with experiment. In contrast, the
MP4 bond lengths in Fig. 7 are with very few exceptions too
long. The other models may give bond lengths that are either
too short or too long, with a predominance of too long bonds
at the cc-pVDZ level and too short bonds at the cc-pVTZ and
cc-pVQZ levels. In particular, at the cc-pVTZ and cc-pVQZ
levels, the MP3, CCSD, and CISD models invariably give
too short bond distances, whereas the cc-pVDZ CCSD~T!
model gives bond distances that are too long.

For the Hartree–Fock function, the largest deviations
from experiment are found in O3 ~where two electronic con-
figurations are important!, and for the electron-rich nonhy-
drogen bonds in F2, HOF, H2O2, and N2H2. The MP2 model
describes these bonds surprisingly well, whereas the MP3
model still has problems for these bonds. Similar problems
are experienced by the CISD model and to some extent by
the CCSD model. CCSD~T! describes these bonds quite ac-
curately.

The CCSD~T! results with the cc-pVQZ basis in Fig. 8
have a mean absolute deviation of 0.22 pm, smaller than the
estimated error in many experimental investigations. The
maximum deviation for CCSD~T! in the cc-pVQZ basis oc-
curs for the NH bond length in HNO, which is a factor of 5.5

larger than the mean error for this basis set and wave func-
tion. In the other wave-function models, the corresponding
factors between the maximum and mean deviations are be-
tween 2.9 and 3.6. The large maximum error in CCSD~T!
compared with the mean error is probably due to an inaccu-
rately determined experimental bond length for NH in HNO.
This conjecture is substantiated by the fact that the remaining

FIG. 5. Maximum errors D̄max relative to experiment in the calculated bond
distances ~pm!.

FIG. 6. The errors in the calculated bond lengths at the Hartree–Fock level
~pm!.

FIG. 7. Errors relative to experiment in the calculated bond lengths for the
Mo”ller–Plesset models ~pm!.

FIG. 8. Errors relative to experiment in the calculated bond distances at the
CCSD and CCSD~T! levels ~pm!.
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behavior of the wave functions at the cc-pVDZ level on one
side and the cc-pVTZ and cc-pVQZ levels on the other side
is quite evident. Among the correlated methods, the CISD
and MP3 approximations perform best at the cc-pVDZ level
and worst at the cc-pVTZ and cc-pVQZ levels.

At this point, it is appropriate to comment on the relative
performance of the Mo”ller–Plesset approximations. Compar-
ing with Hartree–Fock theory, we note that, for the cc-pVDZ
basis, the absolute mean errors relative to the uncorrelated
description are 61%, 42%, and 84% at the MP2, MP3, and
MP4 levels, respectively. Thus, for this basis set, the im-
provements on the uncorrelated description are small and we
note that MP3 performs better than MP2 and MP4. At the
cc-pVTZ level, the situation is reversed and the errors rela-
tive to the Hartree–Fock description are 21%, 41%, and
18%, respectively. Finally, for the cc-pVQZ basis, the errors
at the MP2, MP3, and MP4 levels are 19%, 45%, and 14%.

These examples demonstrate quite clearly the oscillatory
behavior of the Mo”ller–Plesset sequence and the inherent
inadequacy of the cc-pVDZ basis set in recovering molecular
electronic correlation effects, indicating that any comparison
of the performance of correlated methods relative to experi-
ment based on experience with the cc-pVDZ basis set should
be treated with caution as it may give a completely false
indication of the performance of the various models. The
small cc-pVDZ basis does not have the flexibility needed for
a satisfactory description of the true correlation effects. The
cc-pVTZ basis, on the other hand, yields satisfactory results
for the bond distances and should be sufficient for most pur-
poses.

F. Maximum errors

Finally, in Table VII and Fig. 5, we have listed and
plotted the maximum errors for the various basis sets and
N-electron approximations. These numbers are important in
providing worst-case errors for the different wave functions
and basis sets. Thus, we see that, for the cc-pVQZ basis, the
Hartree–Fock wave function may give errors as large as 8.5
pm, and that the maximum CISD and MP3 errors are as large
as 5.7 and 4.2 pm, respectively. The CCSD wave function

may give errors as large as 3.1 pm at the cc-pVQZ level.
Again, the best methods are MP2, MP4, and CCSD~T!,
whose maximum errors are 1.7, 1.5, and 1.2 pm, respec-
tively.

Some comments are in order for the maximum errors.
First, these numbers are based on a rather small sample of
molecules, containing elements from the first and second
rows only. Clearly, larger errors may be obtained in calcula-
tions on other systems and in particular in calculations on
molecules involving heavier atoms. For example, for the ver-
tical cyclopentadienyl–iron distance in ferrocene, the
Hartree–Fock wave function overestimates the distance by
21 pm,21 MP2 underestimates the same distance by 19 pm,21
whereas CCSD and CCSD~T! give distances within 1–2 pm
of the experimental bond length.22 This particular example
illustrates that, although less accurate for molecules involv-
ing first- and second-row atoms, the CCSD wave function
appears to be more robust than MP2 theory for molecules
containing heavier atoms. It should also be noted that the
maximum errors in Table VII may be associated with errors
in the experimental measurements rather than errors in the
calculations, in particular for the most accurate methods. We
shall return to this point shortly.

G. Detailed plots

In Figs. 6–9, we have plotted the differences between
the calculated and experimental bond lengths for the differ-
ent wave functions: HF in Fig. 6; MP2, MP3, and MP4 in
Fig. 7; CCSD and CCSD~T! in Fig. 8; and CISD in Fig. 9. In
these plots, the 28 distinct bonds found in the 19 sample
molecules have been arranged in order of increasing experi-

FIG. 4. Mean absolute errors D̄abs relative to experiment in the calculated
bond distances ~pm!.

TABLE VI. The mean absolute deviations D̄abs in the calculated bond dis-
tances relative to experiment in units of the deviation at the cc-pVQZ
CCSD~T! level.

cc-pVDZ cc-pVTZ cc-pVQZ

HF 9.40 12.49 12.98
MP2 5.76 2.60 2.40
MP3 3.94 5.17 5.80
MP4 7.90 2.28 1.84
CCSD 4.84 3.22 3.97
CCSD~T! 7.10 1.04 1.00
CISD 4.14 6.99 8.04

TABLE VII. The maximum absolute deviations Dmax in the calculated bond
distances relative to experiment ~pm!.

cc-pVDZ cc-pVTZ cc-pVQZ

HF 7.52 8.29 8.45
MP2 3.16 1.62 1.67
MP3 2.75 3.87 4.24
MP4 3.84 1.77 1.48
CCSD 1.98 2.62 3.07
CCSD~T! 4.55 1.07 1.20
CISD 3.89 5.19 5.72
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Figure 1.19: Maximum errors �max in calculated bond distances, pm (10�12m=0.01 Å).
Reproduced from: Helgaker et al., J. Chem. Phys. 106, 6430 (1997).



Chapter 2

Slater Rules and many electron
wave-functions

Here we consider some general properties of many-electron wave-functions and how
to work with them (formalisms).

A valid many-electron function must be normalized:

<  | >=
Z +1

�1
 ⇤(x) (x)dx (2.1)

and must be antisymmetric to interchange of any 2 electrons — the Pauli principle.
Simplest n-electron antisymmetric functions: determinant composed of n di↵erent

1-electron functions:

| (r) >=
1p
n!
det{�1�2 . . .�n} =

1p
n!

0

BBB@

�1(1) �2(1) . . . �n(1)
�1(2) �2(2) . . . �n(2)
. . .
�1(n) �2(n) . . . �n(n)

1

CCCA (2.2)

Note that electron labels include not only the coordinates of the electrons, ri, but
also spin, si. Thus we call the 1 electron functions “spin-orbitals”

2.1 Orbitals and many-electron wave-functions

2.1.1 Orbitals: one-electron wave-functions

One-electron wave-function is called orbital, more precisely, spin-orbital, since it de-
pends on spacial and spin coordinates of the electron:  (x) = �(r)s(�), where r —
spacial coordinate of the electron, and � — spin coordinate of the electron.

Spacial part of the spin-orbital, �(r), is called spacial orbital. One-electron spin-
functions s(�) are simple: ↵(�) corresponds to the spin up, �(�) — to the spin down.
Spin-functions are orthonormal: < ↵|↵ >=< �|� >= 1, < ↵|� >= 0.

From the set of N spacial orbitals, {�i(r)}Ni , we can generate 2N set of spin-
orbitals: {�i(r)↵,�i(r)�}Ni , ↵ and � subsets are mutually orthonormal.

29
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2.1.2 Two-electron wave-functions

Let us compose two-electron wave-function from one-electron wave-functions: | (r, �) >=
�1(1)�2(2).

Bosons and fermions

Bosons: symmetric  12:

| (r, �) >= P̂s�1(1)�2(2) =
1p
2
(�1(1)�2(2) + �1(2)�2(1)) (2.3)

Fermions: anti-symmetric  12:

| (r, �) >= P̂as�1(1)�2(2) =
1p
2
(�1(1)�2(2)� �1(2)�2(1)) (2.4)

Can two particles occupy the same spin-orbital? Let us look at | (r) > when
�1 = �2 ⌘ �:

Bosons: | (r, �) >= �(1)�(2) — OK
Fermions: | (r, �) >⌘ 0 — NOT

Conclusion: there can be equivalent bosons in the system, but not equivalent
fermions. There cannot be two electrons with the equivalent spacial and spin wave-
functions (Pauli exclusion principle).

2.2 Slater determinants

Note that two-electron wave-function (2.4) can be written as the following determi-
nant

| (r, �) >=
1p
2

✓
�1(1) �2(1)
�1(2) �2(2)

◆
=

1p
2
(�1(1)�2(2)� �1(2)�2(1)) (2.5)

This result can be readily generalized to the case of n-electron wave-functions:

| (r) >=
1p
n!
det{�1�2 . . .�n} =

|�1�2 . . .�n >=

1p
n!

0

BBB@

�1(1) �2(1) . . . �n(1)
�1(2) �2(2) . . . �n(2)
. . .
�1(n) �2(n) . . . �n(n)

1

CCCA (2.6)

Such form of antisymmetric wave-function is called Slater determinant (SD). Note
that electron labels include not only the coordinates of the electrons, ri, but also
spin, si. Thus we call the 1-electron functions “spin-orbitals”

Note:
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• interchange of two rows of the SD ! interchange of two electrons ! change
sign of the SD.

• if there are two equivalent columns/rows ! SD=0

• Scalar product of two SD composed from orthonormal orbitals: < �i|�j >= 0
if �i,�j di↵er by at least one orbital; if orbital set is the same < �i|�j >= ±1

At home: demonstrate the last point using 2-electron wave-function.
When we compare two SD, we reorder orbitals to be of the maximum coincidence,

and only then calculate di↵erences.
Example: Compare |ijkl > and |alji >

1. Reorder second determinant: |alji >=-|alij >=. . .=-|ijal >.
2. Compare: determinants are di↵erent by ONE orbital.

2.2.1 Matrix elements of electronic Hamiltonian

Electronic Hamiltonian (n electrons, N nuclei):

Hel = Vnn �
nX

i

p

2
i

2

�
nX

i

NX

A

ZA

|ri �RA|
+

nX

i>j

1

|ri � rj|
=

Vnn +
X

i

ĥ(i) +
1

2

nX

ij

v̂(i, j), (2.7)

where Vnn is nuclear repulsion energy (constant), ĥ(i) = �1
2
r2

i �
P

A
ZA

|RA�ri| is a one-

electron operator (kinetic energy of electrons and Coulomb attraction to nuclei), and
v̂(i, j) = 1

|ri�rj | is a two-electron operator (Coulomb electron-electron repulsion).
Total electronic Hamiltonian can be written as follows:

H = Ô1 + Ô2 + Vnn (2.8)

Ô1 =
nX

i

ĥ(i) (2.9)

Ô2 =
1

2

nX

ij

v̂(i, j) (2.10)

ĥ(i) = �1

2
r2

i �
NX

A

ZA

|RA � ri|
(2.11)

v̂(i, j) =
1

|ri � rj|
, (2.12)

where Ô1, Ô2 represent one- and two-electron parts of the electronic Hamiltonian,
respectively, and Vnn is a nuclear repulsion energy.
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Notations for matrix elements

Matrix elements of one- and two- electron operators are called one- and two- electron
integrals. We shall use so called physicist’s notations and use spin-orbitals. (There
are also chemist’s notations, and, also, notations for integrals over spacial orbitals).

< i|h|j >⌘
< �i(1)|h(1)|�j(1) >1=Z

dx�⇤
i (x)h(r)�i(x) (2.13)

< ij|kl >⌘
< �i(1)�j(2)|v(r12)|�k(1)�l(2) >1,2=Z

dx1dx2�
⇤
i (x1)�

⇤
j(x2)v(r12)�k(x1)�l(x2)

< ij||kl >⌘< ij|kl > � < ij|lk > (2.14)

Permutational symmetry of integrals

Prove at home that:

< i|h|j >=< j|h|i >⇤ (2.15)

< ij|kl >=< ji|lk >=

< kl|ij >⇤=< lk|ji >⇤=

< ij||kl >=< ji||lk >=

< kl||ij >⇤=< lk||ji >⇤=

� < ij||lk >= � < ji||kl >=

� < lk||ij >⇤= � < kl||ji >⇤ (2.16)

2.2.2 Slater rules for matrix elements

Matrix elements between Slater determinants of n-electron system
Case(|K >, |L >) < K|Ô1|L > < K|Ô2|L >

|K >= | . . .mn . . . >
PN

m < m|h|m > 1
2

PN
m

PN
n < mn||mn >

|L >= | . . .mn . . . >
|K >= | . . .mn . . . > < m|h|p >

PN
n < mn||pn >

|L >= | . . . pn . . . >
|K >= | . . .mn . . . > 0 < mn||pq >
|L >= | . . . pq . . . >
|K >= | . . .mnl . . . > 0 0
|L >= | . . . pqr . . . >

Don’t forget to reorder determinants to the maximum coincidence.
Slater Rules give all the necessary tools to work with Slater Determinants. How-

ever, it is possible to introduce a more convenient formalism, namely, Second Quan-
tization operators.
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2.2.3 Second Quantization formalism: a tool to derive elec-
tronic structure equations

What’s for?
Second quantization allows us (i) to work with many-particle system with an

arbitrary number of particles; and (ii) to transform (permutational) symmetry of the
determinantal wave-function into algebraic equations.

1. With each spin-orbital �i associate a creation operator â+i . Definition of â+i : for
any Slater determinant, |k . . . l >, operator â+i creates electron on i� th orbital:
â+i |k . . . l >= |ik . . . l >.
Consider two operators â+i and â+j :
â+i â

+
j |k . . . l >= |ijk . . . l >

â+j â
+
i |k . . . l >= |jik . . . l >= �|ijk . . . l >

Thus, anti-commutation relation:

{â+i , â+j } ⌘ â+i â
+
j + â+j â

+
i = 0 (2.17)

Note, that â+i â
+
i = 0 (satisfy Pauli exclusion principle).

2. Annihilation operator âi is defined as an adjoint of the creation operator:
âi = (â+i )

+

What does annihilation operator âi do? âi destroys electron on the orbital i:
âi|ik . . . l >= |k . . . l >
âi|ki . . . l >= �âi|ik . . . l >= �|k . . . l >
Why adjoint?
Consider |K >= |ij >= â+i |j >
Take the adjoint of |K >: ((AB)+ = B+A+)
(|K >)+ =< K| =< j|(â+i )+
We must satisfy < K|K >= 1:
< K|K >=< j|(â+i )+â+i |j >=< j|(â+i )+|ij >
In order to satisfy < K|K >= 1 operator (â+i )

+ must delete electron on orbital
i.

Anti-commutation relation:

{âi, âj} ⌘ âiâj + âj âi = 0 (2.18)

Note, that âiâi = 0 — cannot delete electron twice.

3. Anti-commutator of â+i âj:

{â+i , âj} ⌘ â+i âj + âj â
+
i = �ij (2.19)

4. Vacuum state | > — empty state, no electrons. < | >= 1
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Second Quantization: Summary

1. Vacuum state ⌘ empty state | >, < | >= 1

2. Creation operator â+i ⌘ creates electron on orbital i; â+i | >= |i >, â+i â
+
i = 0,

â+i |i >= 0,

3. Annihilation operator âi ⌘ destroys electron on orbital i; âi|i >= | >, âiâi = 0,
âi| >= 0

4. Anti-commutation relations:

(â+i )
+ = âi

{â+i , â+j } ⌘ â+i â
+
j + â+j â

+
i = 0

{âi, âj} ⌘ âiâj + âj âi = 0

{â+i , âj} ⌘ â+i âj + âj â
+
i = �ij (2.20)

5. Slater determinant, Ô1 and Ô2:

|ijk . . . l >= â+i â
+
j â

+
k . . . â+l

Ô1 =
MX

pq

< p|h|q > â+p âq

Ô2 =
1

2

MX

pqrs

< pq|rs > â+p â
+
q âsâr =

1

4

X

pqrs

< pq||rs > â+p â
+
q âsâr, (2.21)

where M is number of spin-orbitals (sums run over the set of spin-orbitals).

Meaning of Ô1: it can change state of one electron. Thus, deletes one electron in
state q, then creates electron in state p. Two-electron operator: change state of two
electrons.

Now we can derive Slater rules, calculate overlap and matrix elements between
di↵erent Slater determinants.

Second Quantization: Examples

How do we employ creation/annihilation operators? Let us consider several examples.
From now on, I shall use following (simplified) notations:

p ⌘ âp (2.22)

p+ ⌘ â+p (2.23)

|i >⌘ |�i(x) > (2.24)

(2.25)
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Ani-commutation properties {i, j} = 0, {i+, j+} = 0 means that if we are given a
sequence of creation (or annihilation) operators, we can reorder them as we please (a
change of sign must be accounted for):

ijkl = �jikl = jilk (2.26)

i+j+k+l+ = �j+i+k+l+ = j+i+l+k+ (2.27)

(2.28)

However, if we have a string of creation and annihilation operators, interchange is not
that simple:

ij+ = �ij � j+i (2.29)

How do we simplify expressions? We remember that certain combinations equal zero:
i| >= 0, or < |i+ = 0.

What about determinants? Consider |� >= a+1 . . . a+n | >. p+|� > equals to zero
if orbital p is occupied in � (if operator p+ can be found in the string). Why? We can
reorder creation operators as we want, then combination p+p+ will give zero. p|� >
is zero is p is not occupied in � >, and non-zero otherwise. Similarly, we can work
out rules for bra-determinants.

1. How to calculate overlap < �|� >?

< �|� >=< |an . . . a1a+1 . . . a+n | > (2.30)

Consider pair a1a
+
1 = 1� a+1 a1. Second term will give zero, since we can inter-

change a1 with all a+i , i 6= 1 until we have . . . a1| >, which is zero. Performing
the same procedure of with all the rest of pairs of operators we finally have
< | >= 1.

2. Let us now consider some reference determinant:

|�0 >= a+1 . . . a+n | > (2.31)

I will call the orbitals present in |�0 > occupied, and I’ll use indexes i, j, k, l, . . .
for them. I will call all the rest of orbitals virtual orbitals and will use a, b, c, d . . .
for them. When I need to refer to the orbitals which can be either occupied or
virtual, I will use indexes p, q, r, s, . . ..

Now consider determinants generated from |�0 > by substituting one (occupied)
orbital by a virtual orbital. |�a

i > stands for the determinant where all orbitals
are the same as in �0 > except for the orbital i which is replaced by orbital a.
How do we describe this determinant by second quantization?

|�a
i >= a+i|�0 > (2.32)

Similarly, doubly substituted determinants denoted:

|�ab
ij >= a+ib+j|�0 >= �a+b+ij|�0 >= a+b+ji|�0 > . . . (2.33)
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3. Excitation operators Ĉn: generate all possible n-tuple excitations from |�0 >
with arbitrary amplitudes:

Ĉ1 =
X

ia

cai a
+i (2.34)

Ĉ2 =
X

i<j,a<b

cabij a
+b+ji =

1

4

X

ijab

cabij a
+b+ji (2.35)

. . . (2.36)

Factor 1
4
accounts for the fact that the sum over i, j ad a, b is unrestricted and

includes redundant cases, i.e., both i, j and j, i. That could be avoided by
restricting sum for i < j and a < b. That’s how they work:

Ĉ1�0 =
X

ia

cai�
a
i (2.37)

Ĉ2�0 =
1

4

X

ijab

cabij�
ab
ij (2.38)

4. Prove that two excitation operators commute.

5. Consider two determinants: |� >= a+1 . . . a+i . . . a+n | > and a single-substituted
determinant �a

i = a+1 . . . a+a . . . a+n | >, in which ith orbital was replaced by ath
orbital. In a second quantization form, �a

i = a+i|� > (see above discussion).
Overlap < �|�a

i >=< �|a+i|� >= 0 if a is not equal to i. a+i = �ai � ia+,
where second term is zero.

6. Consider operator N̂ =
PM

p=0 p
+p, M is number of spin-orbitals. For a general

n-electron normalized wave-function  =
P

L CL�L, show that <  |N̂ | >= n,
where n is a number of electrons.

For a determinant �L:
p+p�L is zero if p /2 �L and �L otherwise. Thus,

PM
p=0 p

+p�L = n�L, since

n defines how many spin-orbitals are in �L. Thus, <  |N̂ |PL CL�L >=<
 |PL CLn�L >= n <  |PL CL�L >= n <  | >= n.

Operator N̂ =
PM

p=0 p
+p is called a number operator.

7. Consider matrix elements of one-electron part of the Hamiltonian:

< �0|Ô1|�0 >=
MX

pq

< p|h|q >< �0|p+q|�0 >=
X

p2�0

< p|h|p >=
X

i

< i|h|i >

(2.39)

8. Consider matrix elements of Ô1 between the reference and single-substituted
determinants:

< �a
i |Ô1|�0 >=

X

pq

< �0|i+ap+q|�0 >< p|h|q >=
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X

pq

< �0|i+(�ap � p+a)q|�0 >< p|h|q >=

X

pq

< �0|�ap(�iq � qi+)� i+p+(�aq � qa)|�0 >< p|h|q >=

< a|h|i > (2.40)

Term ...qi+ is zero because i is already occupied in �0. For the same reason,
...i+p+... term is zero (can interchange two creation operators). Similarly, ...qa...
is zero because a is not present in �0.
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Chapter 3

Hartree-Fock model: one-electron
approximation

Now, when we have our tools, i.e., second quantization or Slater Rules, we can start
to discuss approximations to electronic Schrödinger equation. Recall how we can find
an exact solution: start from a complete 1-electron basis set, generate a complete n-
electron basis set (Slater determinants), expand the wave-function over the n-electron
basis set, find expansion coe�cients from variational principle. This procedure is
unrealistic. Thus, we introduce approximations to (i) 1-electron basis; and (ii) n-
electron basis.

We start from considering the simplest and crudest approximation (ii) — when
wave-function is represented by a single Slater Determinant. We first consider what
is a physical meaning of such approximation and then we will discuss how to do it,
i.e., how to find a Slater Determinant which is the best possible approximation to the
exact wave-function.

References:.12,13 To do: find original Roothan paper.

3.1 Non-interacting electron gas

In your homework, you have seen that for the separable Hamiltonian H =
Pn

i h(i)
wave-function �(x1, . . . , xn) = �i(x1)�j(x2) . . .�k(xn), where one-particle functions
are eigenstates of one-particle Hamiltonian:

h(i)�k(xi) = ✏k�k(xi) (3.1)

with an energy E = ✏i + ✏j + . . .+ ✏k.
Now let us consider system of n non-interacting electrons, i.e., Ô2=0:

H = Ô1 =
nX

i

h(i) (3.2)

Using second quantization, we shall see that any Slater determinant composed of n
spin orbitals which are eigenstates of h is an eigenstate of H.

39
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First, let us analyze Ô1:

Ô1 =
MX

pq

< p|h|q > p+q =
MX

p

< p|h|p > p+p =
MX

p

✏pp
+p (3.3)

since orbitals p are eigenstates of h. Consider now H|� >=
PM

p < p|h|p > p+p|� >=P
p2� < p|h|p > p+p|� >=

P
p2� < p|h|p > (1 � pp+|� >=

P
p2� < p|h|p > |� >=P

p2� ✏p|� >
Ground state for the system of non-interacting electrons is given by SD in which

n lowest spin-orbitals are populated, �gs = �0. Excited states are given by excited
(substituted) SD: �a

i ,�
ab
ij , . . .. Excitation energies are given by one-electron energies,

e.g., E(�0� > �a
i ) = ✏a � ✏i. This is because electrons do not interact and therefore

excitation of one electron does not change states of other electrons.

3.2 Interacting electrons: mean-field model

If electrons interact very weakly, we can expect that a single SD will be a reason-
able approximation to the wave-function. However, we want to account (somehow)
for electron interaction. Let us consider one-electron approximation, but when one-
electron operators h for each electron include mean-field of all other electrons. This
is a simplest electronic structure model, and it is called Hartree-Fock (self-consistent
field) approximation: each electron moves in the mean-field of other electrons.

What other mean-field models do we know? Adiabatic approximation is a mean-
field model: nuclei move in the mean-field of electrons. Recall:

(TN + U(R))⇠ = E⇠ (3.4)

U(R) =< �el|Hel|�el >r (3.5)

Can we justify mean-field model? In case of adiabatic approximation di↵erent
velocities of electronic and nuclear motion provide such justification. In case of elec-
trons this is not applicable — all electrons move with a same speed. Moreover, pair
Coulomb interactions 1

rij
are strong interactions, and electron can “see” the di↵er-

ence in a local arrangement of other electrons. So why such an approximation may
work? Coulomb interactions are long range interactions. We can hope that long range
e↵ects summed over all electrons are strong enough to beat local pair (correlation)
e↵ects. Also, one electron part of the Hamiltonian is quite large — at least Coulomb
interaction with a nuclei has same order of magnitude.

Aside: Would it work for a system of bosons? He cluster? Are coordinates
important? Normal modes vs Cartesian (vibrational problem is separable in normal
coordinates and is not separable in Cartesian). Why?

So, what is one-particle approximation? It assumes separability of the wave-
function in a sense that

�(1, . . . , n) = Âs (�1(1) . . .�n(n)) = |�1(1) . . .�n(n) >

Etot = ✏1 + . . .+ ✏n
heff�i = ✏i�i (3.6)
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What would one-electron approximations for electrons look like? What is an heff?
Electronic Hamiltonian:

Hel = Vnn +
X

i

ĥ(i) +
1

2

X

ij

v̂(i, j), (3.7)

One electron part ĥ(i) is given by a kinetic energy of electrons and electrostatic in-
teractions with nuclei. Two-electron part v̂(i, j) is a Coulomb interaction of electrons.
Recall: Coulomb field by point charge q:

�(r) =
q

r
(3.8)

Coulomb field by charge distribution ⇢(x):

�(r) =
Z
dx

⇢(x)

|r � x| (3.9)

Coulomb interaction of point charge q0 with a field:

E = �(r)q0 =
q0q

r
= q0

Z
dx

⇢(x)

|r � x| (3.10)

Coulomb interaction of charge distribution ⇢0(r) with a field:

E =
Z
dr�(r)⇢0(r) =

Z
dr⇢0(r)

q

r
=
Z
dr⇢0(r)

Z
dx

⇢(x)

|r � x| (3.11)

Consider Coulomb operator:

Ĵ⇢(1) =
Z ⇢(2)

|r1 � r2|
d2, (3.12)

where ⇢(1) =
R
 (1, 2, . . . n)⇤ (1, 2, . . . n) d2 . . . dn is an electronic density of all the

electrons (probability to find an electron at the volume d1 = dx1d�1 at the 1 =
(r1, �1)).

Interaction of one electron on orbital � with average Coulomb potential is given
by Ĵ⇢(x)�(x). We have, though, to exclude one electron away (create a hole). Let us
introduce exchange operator K̂(x) that acts as follows: when applied to �i (K̂(1)�i(1))
it “deletes” contribution from �i(1) in Coulomb operator. It is said that the exchange
operator takes care of the self-interaction error (the interaction of an electron with
itself).

Resulting form of e↵ective separable (one-electron) Hamiltonian:

ĥeff (x) = ĥ(x) + Ĵ(x)� K̂(x) (3.13)
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3.3 Derivation of HF equations

3.3.1 Variational principle

If we are given an ansatz (a functional form) for the wave-function, how do we find a
best function in this class? For example, consider a one electron function  (r;↵) =
e�↵r that depends on a parameter ↵. The VP tells us that the “best” value of ↵ will
minimize the expectation value E(↵) =<  (↵)|H| (↵) >. Thus, the recipe is: (i)
to obtain an analytic expression for the function E(↵); (ii) take derivative, @E

@↵ ; (iii)
solve for @E

@↵ = 0.
When we consider more complex parameterization (e.g., we can vary functions

themselves, and not just numeric coe�cients), this can be generalized by using the
concept of functional variation. Thus, the general form of the Rayleigh-Schrödinger
VP is:

�

 

E =
< �|H|� >

< �|� >

!

= 0 (3.14)

What does it mean? We can see that for the exact wave-function, this is equivalent
to the Schrödinger equation. What else?

The rules for taking a variation are the same as for taking a derivative. By using⇣
u
v

⌘0
= (u0v�uv0)

v2 and E = <�|H|�>
<�|�> we obtain:

< ��|H � E|� >

< �|� >
+

< �|H � E|�� >

< �|� >
= 0 (3.15)

For real-valued normalized wave-function this reduces to:

< ��|H � E|� >= 0 or < ��|H|� >= 0 (3.16)

What does that mean? Consider 3D space, {x, y, z} and some operator Ĥ oper-
ating on 3D vectors, e.g., Ĥp = s (p, s are 3D vectors). This is shown in Fig. 3.1.
Eigenproblem Ĥr = ✏r means that when Ĥ operates on vector r the result, i.e. vector
Ĥr, is parallel to vector r. Thus:

Ĥr = ✏r < � > (Ĥr)||r < � > (s, Ĥr) = 0 < � > (�r, Ĥr) = 0 (3.17)

where s is any vector orthogonal to r. The last form uses the fact that a small
variation is orthogonal to a vector.

Now consider 2D approximation (vector q from XY plane) of the vector r. How we
can rewrite the original 3D problem for 2D vector? First, note that we cannot satisfy
Ĥq = ✏q, since vector Ĥq has Z-component, and vector q does not. However, we can
minimize a norm of the vector (Ĥq � ✏q). How to do that? Make (XY) component
of the vector Ĥq parallel to q. Thus, (�q, Ĥq) = 0, where �q is any allowed variation
of q, i.e., it belongs to XY plane as well. This is explained in Fig. 3.2

This picture can be readily generalized to the case of non-linear spaces. Consider
2D nonlinear manifold, e.g., a surface of sphere in 3D space (let us simply bend our
XOY plane). If we restrict our approximate function � to this manifold, than the
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Figure 3.1: Consider
3D space and the opera-
tor Ĥ which operates on
3D vectors. For a vector
r which is an eigenvec-
tor of operator H, i.e.,
Ĥr = ✏r, the vector Ĥr
is parallel to the vector
r. Thus, it is orthogonal
to any vector orthogo-
nal to r. Therefore,
it is also orthogonal to
any small variation of
vector r (since small
variations are orthogo-
nal to a varied vec-
tor). Thus, eigenprob-
lem Ĥr = ✏r is equiv-
alent to the following
condition: (�r, Ĥr) = 0.

Ĥ� does not necessarily belongs to the manifold of trial functions — it will have
tangential and orthogonal components. To minimize a di↵erence Ĥ�� ✏� by varying
� within the manifold means to zero out a tangential component of this vector. This,
< ��|H� >= 0, where �� is an allowed variation of �. Allowed variations leave �
within the manifold, and thus are tangential to the manifold.

So, we shall approximate electronic wave-function by a single Slater determinant
and vary orbitals such that the energy is minimal preserving ortho-normality of or-
bitals:

{�i}ni=1, < �i|�j >= �ij
| HF >= |�0 >= |1 . . . n >= a+1 . . . a+n

< �0| =< n . . . 1| = an . . . a1
FIND min�(E({�i}n1 ) =< �0|H|�0 >)

HOLD < �0|�0 >= 1 (3.18)

3.3.2 Expression for Hartree-Fock energy

E({�i}n1 ) =< �0|H|�0 >=< �0|Ô1|�0 > + < �0|Ô2|�0 > (3.19)

One-electron terms:

< �0|Ô1|�0 >=
X

pq

< �0|a+p aq|�0 >< p|h|q > (3.20)
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x
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s = Hr

x
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s = Hr

(!r,Hr)=0

z

Figure 3.2: If vector r is restricted to a 2D subspace, we cannot exactly satisfy the eigen-
problem Hr = ✏r, since the result Hr will, in general, have the component orthogonal to
our 2D plane, i.e., Z component, whereas vector r is not allowed to have it. However, we
still can choose r such that the vector s = Hr is as parallel to r as our restriction allows.
That means that we can make the 2D projection of vector s parallel to vector r. That, in
turn, means, that the best approximation to 3D vector by 2D vector r is achieved when
Hr is orthogonal to any allowed, i.e., that from 2D plane, variation of r. The approximate
solution of the eigenproblem Ĥr = ✏r is thus defined by the condition: (�r, Ĥr) = 0 (where
r is approximate vector of reduced dimensionality, or restricted to a certain manifold, and
�r is any allowed variation).

How do we derive one-electron contributions to energy?

1. Note that aq|�0 > is non-zero only if q 2 {1 . . . n} — sum over q reduces to the
sum over occupied orbitals only;

2. Similarly, p 2 {1 . . . n} — sum over p reduces to the sum over occupied orbitals
only;

3. Interchange a+p and aq: a+p aq = �pq � aqa+p , here second term gives zero since
p, q 2 �0.

< �0|Ô1|�0 >=
NX

i=1

< i|h|i > (3.21)

Two-electron terms:

< �0|Ô2|�0 >=
1

2

X

pqrs

< �0|a+p a+q asar|�0 >< pq|rs >=
1

2

NX

ij

< ij||ij > (3.22)
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Here we use indexes i, j instead of indexes p, q to emphasize that the indexes
belongs to the subspace of orbitals occupied in �0, i.e., i, j 2 �0.

Hartree-Fock energy is:

EHF =< �0|H|�0 >=
NX

i=1

< i|h|i > +
1

2

NX

ij

< ij||ij > (3.23)

We can treat HF energy as a sum of expectation values of one- and two-electron
operators. Let us analyze these operators.

One electron contributions arise from matrix elements of one-electron part of the
Hamiltonian, < i|h|i >. One electron operator h is simple: when applied to an
electron on the orbital |�i > it involves di↵erentiating the orbital (kinetic energy)
and multiplying it by a number (potential energy of the interaction with nuclei).

Consider two electron integrals:

< ij|ij >=
Z
d1d2 �i(1)

⇤�j(2)
⇤ 1

r12
�i(1)�j(2) =

Z
d1 �i(1)

⇤
 Z

d2
�j(2)⇤�j(2)

r12

!

�i(1) =< �i(1)|Ĵj|�i(1) > (3.24)

where we defined a Coulomb operator Ĵj (e↵ective one-electron operator) as:

Ĵj�(1) =
Z
�⇤
j(2)r

�1
12 �j(2)d2 · �(1) (3.25)

Note that the Coulomb operator Ĵj is a local operator. It describes a Coulomb po-
tential created by electron on the orbital j. The total Coulomb operator is:

Ĵ⇢ =
Z ⇢(2)

|r1 � r2|
d2 =

Z
d2
X

j

�⇤
j(2)r

�1
12 �

⇤
j(2) =

X

j

Ĵj (3.26)

Similarly,

< ij|ji >=
Z
d1d2 �i(1)

⇤�j(2)
⇤ 1

r12
�j(1)�i(2) =

Z
d1 �i(1)

⇤
 Z

d2
�j(2)⇤�i(2)

r12

!

�j(1) =< �i(1)|K̂j|�i(1) >, (3.27)

with an non-local exchange operator:

K̂j�(1) =
Z
�⇤
j(2)r

�1
12 �(2)d2 · �j(1) (3.28)

Why exchange? There is no classical analog. If we compare Ĵj�(x) and K̂j�(x) we
see that K̂j interchange orbitals �j and �i.

Thus, Hartree-Fock energy is:

EHF =
X

i

< i|h|i > +
1

2

X

ij

< i|Ĵj � K̂j|i > (3.29)
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I also define a Fock operator, an e↵ective one-electron operator, as:

F̂ (1) = h(1) +
X

j

h
Ĵj(1)� K̂j(1)

i
(3.30)

Fock operator includes one-electron terms (kinetic energy of electron and interaction
with nuclei), Coulomb interaction of an electron with the electron density of all elec-
trons corrected by subtraction of self-interactions. It looks like one-electron operator,
but it depends on the all others electrons as well. Thus, Fock operator is a non-linear
operator.

3.3.3 Derivation of Hartree-Fock equations

EHF =< �0|H|�0 >=
NX

i=1

< i|h|i > +
1

2

NX

ij

< ij||ij > (3.31)

Vary orbitals (i ! i+ �i), collect first order terms to get �E, then find condition
when �E = 0. Don’t forget to keep orbitals orthonormal, < i|j >= �ij, which satisfy
ortho-normality of the total wave-function (optimization with constraint).

Energy variation:

�E =
X

i

[< �i|h|i > + < i|h|�i >] +

1

2

X

ij

[< �ij||ij > + < i�j||ij > +

< ij||�ij > + < ij||i�j >] (3.32)

Using permutational symmetry of 1- and 2-electron integrals and renaming sum-
mation indexes:

�E =
X

i

< �i|h|i > +
X

ij

< �ij||ij > +(�E)⇤ (3.33)

Ortho-normality: restriction on variations �i. We shall use Lagrange multipliers
to impose ortho-normality of the orbitals (< i|j >= �ij):

�E = 0 & < i|j > ��ij = 0 (3.34)

�

0

@E �
X

ij

✏ij(< i|j > ��ij)
1

A = 0 (3.35)

Note, that Lagrange multipliers compose a Hermitian matrix — since orbital
overlap matrix < �i|�j > is a Hermitian matrix as well. In order to satisfy N
independent conditions, we need to use N Lagrange multipliers.

0

@
X

i

< �i|h|i > +
X

ij

< �ij||ij > �
X

ij

✏ij < �i|j >
1

A+

{complex conjugate} = 0 (3.36)
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Have to satisfy for both parts ! vary independently
Have to satisfy for ANY �i !
Result:

h|i > +
X

j

h
Ĵj|i > �K̂j|i >

i
=
X

j

✏ij|j >

F̂ |i >=
X

j

✏ij|j > (3.37)

Canonical Hartree-Fock equations

Consider unitary transformation Uof orbitals:

�̃i(x) =
X

k

�k(x)Uki (3.38)

Thus, transformed row:

⇣
�̃1(x) . . . �̃n(x)

⌘
= (�1(x) . . .�n(x))U (3.39)

Transformed determinant is therefore:

|�̃| = |�U | (3.40)

Note that unitary transformation of occupied orbitals does not change �0, since
det(AB) = detA ⇤ detB, and the determinant of unitary matrix equals unity. There-
fore, we can look for such transformation of orbitals so that matrix ✏ij becomes
diagonal matrix:

F |i >= ✏i|i > (3.41)

This are canonical HF-equations.
Equivalent form of HF equations:

< a|F |i >= 0, (3.42)

where i is an occupied orbital and a is any orbital orthogonal to the subspace of
occupied orbitals, i.e., a virtual orbital.

What we have done? We transformed one many-particle equation into set of
coupled one-particle equations.

3.4 Orbital energies ✏i and Koopmans theorem

HF-energy is:

EHF =
NX

i=1

< i|h|i > +
1

2

NX

ij

< ij||ij >=
X

i

✏i �
1

2

X

ij

< ij||ij >, (3.43)



48 Hartree-Fock model: one-electron approximation

where orbital energies ✏i are:

✏i =< i|h|i > +
NX

j

< ij||ij > (3.44)

Note that Hartree-Fock energy is not a sum of e↵ective one-electron energies ✏i. Why?
Formally, we have lost factor of 1

2
when we di↵erentiated two-electron part of the

energy. But what is a physical meaning of this fact?
To understand why Etot 6= ✏1 + . . . ✏n, where ✏i =< i|F |i >=< i|h|i > + < i|J |i >

� < i|K|i >, consider 2-electrons-on-2-orbitals i, j (✏i and ✏j). ✏i =< i|F |i >=<
i|h|i > + < i|Jj|i > � < i|Kj|i > includes interaction of the electron on orbital i
with the electron on j. Similarly, ✏j includes interaction of the electron on j with an
electron on a. Hence, i� j interaction calculated twice.

Is there any physical meaning of orbital energies? Koopmans theorem says that
orbital energy ✏i gives an ionization potential from the orbital i in a frozen core
approximation:

IP =N�1 Ei �N E0 = �✏i (3.45)

Frozen core approximation means that orbitals do not change when one electron is
removed from the molecule. At home: prove the Koopmans theorem by calculating
energy di↵erences between systems of N and N � 1 electrons.

3.5 Brillouin’s theorem

Another important property of Hartree-Fock determinant �0 is that matrix elements
between HF determinant and any singly excited determinant are zero:

< �a
i |H|�0 >= 0 (3.46)

Why? < �a
i |H|�0 >=< a|F |i >= 0

Another way to prove it is (1) to show that for real-valued function < ��|H|�0 >=
0 from VP, and (2) to show that first variation of the determinant ��0 is given by a
single excited determinants, i.e., ��0 =

P
ia c

a
i�

a
i . Prove at home.

Aside: If we consider the entire space of many-electron wave-functions {�0, �a
i ,

�ab
ij }, in which subspace HF wave-function is defined? In a subspace of reference and

single excitations

3.6 Molecular Orbitals — Linear Combination of
Atomic Orbitals (MOLCAO) approach

Eq. (3.41) is an operator equation, i.e., di↵erential equation. As a next step, we
are going to transform Eq. (3.41) to some set of linear equations. This will be done
by representing eigenstates of the Fock operators, �i (molecular orbitals) by a linear
combination of atomic orbitals (MOLCAO). There are several implementations of
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MO-LCAO approach: (i) Hartree-Fock-Roothaan equations (RHF); (2) Pople-Nesbet
equations (UHF); and (3) Restricted Open-Shell HF (ROHF).

Introduce AO basis: �i =
P

µ Cµi⇠µ, µ = 1 . . .M, i = 1 . . . N . The matrix C is
called molecular orbital matrix. It defines molecular orbitals as a linear combination
of atomic orbitals, Cµi is a coe�cient giving the contribution of AO µ to MO i. AO’s
{⇠} are not orthonormal: < ⇠µ|⇠⌫ >= Sµ⌫ = Sµ⌫ , S is thus an overlap matrix for
atomic orbitals {⇠}. MO {�} are orthonormal:

< �i|�j >= �ij =
MX

µ=1

MX

⌫=1

Cµi < ⇠µ|⇠⌫ > C⌫j =

MX

µ=1

MX

⌫=1

CµiSµ⌫C⌫j =
h
C+SC

i

ij
=>

C+SC = 1̂ (3.47)

To obtain equations for coe�cients C we apply a Linear Variational Principle
(LVP). LVP answers the following question: what are best Ciµ? Variationally they
minimize E:

E =
< �|H|� >

< �|� >
(3.48)

Resulting MO-LCAO equations are:

FC = SCE (3.49)

C+SC = 1 (3.50)

where F is a matrix of Fock operator in AO basis:

Fµ⌫ = hµ⌫ +
MX

��

< µ�||⌫� > P�� (3.51)

where P is a density matrix:

P�� =
NX

i=1

C�iC�i (3.52)

Let us analyze Eqns. (3.49,3.50):

FC = SCE => C+FC = C+SCE => C+FC = E, (3.53)

Which means that Fock matrix is diagonal in the basis of final MOs. Thus, Eqns. (3.49,3.50)
are nothing but generalized matrix eigenproblem.

Why P from Eq. (3.52) is called density matrix? Electronic density, i.e., proba-
bility to find an electron at point x:

⇢(x1) =
Z
 (x1, x2, . . . , xn) (x1, x2, . . . , xn)dx2 . . . dxn (3.54)
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For  ⌘ �0 (a single Slater determinant):

⇢(x1) =
Z
�0(x1, x2, . . . , xn)�0(x1, x2, . . . , xn)dx2 . . . dxn =

Z
Âs [�1(x1)�2(x2) . . .�n(xn)]⇥ Âs [�1(x1)�2(x2) . . .�n(xn)] dx2 . . . dxn =

NX

i=1

�2
i (x1), (3.55)

where Âs is anti-symmetrizing operator. This is a very sensible result — for non-
interacting electrons, the probability to find an electron is sum over one-electron
probabilities (electrons are independent, and so are the probabilities!).

By substituting �i =
P

µ Cµi⇠µ into the above expression for density:

⇢(x) =
NX

i=1

�2
i (x) =

NX

i=1

MX

µ=1

MX

⌫=1

Cµi⇠µC⌫i⇠⌫ =
X

µ⌫

Pµ⌫⇠µ⇠⌫ (3.56)

Matrix P thus tells us how to calculate electronic density once molecular orbital
coe�cients are known.

3.6.1 Linear Variational Principle

Here is a brief description of LVP.

| >=
X

k

Ck|⇠k >

E =
< �|H|� >

< �|� >
=

P
kl CkCl < ⇠k|H|⇠l >P
kl < ⇠k|⇠l > CkCl

(3.57)

Consider, when @E
@Ci

= 0. Do this as an implicit derivative:

@E

@Ci
=

1

(
P

kl < ⇠k|⇠l > CkCl)2

2
X

m

Ck < ⇠m|H|⇠i >
X

kl

< ⇠k|⇠l > CkCl �

2
X

m

< ⇠m|⇠i > Cm

X

kl

CkCl < ⇠k|H|⇠l > (3.58)

To satisfy @E
@Ci

= 0, we need to zero numerator:

0 = 2
X

m

Ck < ⇠m|H|⇠i >
X

kl

< ⇠k|⇠l > CkCl �
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2
X

m

< ⇠m|⇠i > Cm

X

kl

CkCl < ⇠k|H|⇠l >
X

m

Cm < ⇠k|H|⇠i >= E
X

m

< ⇠i|⇠m > Cm

HC = SCE (3.59)

3.6.2 HF MO-LCAO equations using density matrices

We can write HF energy using density matrix:

�i =
X

µ

Cµi⇠µ, µ = 1 . . .M, i = 1 . . . N

Pµ⌫ =
nX

i=0

CµiC⌫i

E =
X

i

< i|h|i > +
1

2

X

ij

(< ij|ij > � < ij|ji >) =

X

i

X

µ⌫

CµiC⌫i < µ|h|⌫ > +

1

2

X

ij

X

µ⌫��

< µ⌫|�� > CµiC⌫jC�iC�j �

1

2

X

ij

X

µ⌫��

< µ⌫|�� > CµiC⌫jC�iC�j =

X

i

X

µ⌫

CµiC⌫i < µ|h|⌫ > +

1

2

X

ij

X

µ⌫��

< µ⌫||�� > CµiC⌫jC�iC�j =

Tr[Pµ⌫hµ⌫ ] +
1

2
Tr[Pµ� < µ⌫||�� > P⌫�] =

Tr[Ph+
1

2
PIIP ] (3.60)

E = Tr[Ph] +
1

2
Tr[PIIP ] (3.61)

@E

@P
= F = h+ IIP (3.62)

3.7 How to solve it?

How to chose an atomic orbital basis? We’ll discuss basis sets in details later. The
main idea is to take atomic functions from solutions of an atomic problem, i.e.,
hydrogen-like atomic functions.
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Once basis set is chosen, we have to solve somehow a nonlinear system of Roothan
equations. It is done by iterative procedure, that’s why HF method is often referred
to as self-consistent field.

The first step is to take some zero-order (guess) orbitals, C0. Once we have
some set of MO, we can calculate the Fock operator, our e↵ective one-particle Hamil-
tonian. Once we have a Hamiltonian, how do we minimize the energy of the n-
electron wavefunction? As in non-interacting electrons model, we diagonalize the
one-particle Hamiltonian and occupy lowest n levels (this is called the Aufbau princi-
ple). Note that for interacting electrons the Aufbau Principle does not always work,
since EHF 6= P

i ✏i. Therefore, di↵erent electron occupations should be tested.
Those new occupied orbitals (new molecular orbitals, C1) define new density ma-

trix, new Fockian, and new molecular orbitals from diagonalization of the new Fock-
ian. If new molecular orbitals are the same as old MO’s, the equations have been
solved. This is a self-consistent procedure:

1. Input: nuclei, electrons & basis set;

2. Make initial guess for MO (e.g., diagonalize h);

3. Make density matrix from MO;

4. Make Fock operator (rate determining step);

5. Diagonalize F ;

6. Check whether MO’s have converged, i.e., if |Cn �Cn�1| < ✏. If not — go back
to step 3.

Actually, such procedure almost never converges. Numerous enhancements are
used in practice, i.e., computational methods for many-dimensional optimization (use
“gradients” and “Hessians” of the energy with respect to orbital rotations; or DIIS
method — extrapolation by using data from previous iterations).

3.7.1 Connection to computation

Memory: need a bunch of matrices (F,H, S, etc) — say 4-8. Mem ⇡ 5*M2, M —
basis set size.

Double is 8B. For 126 MB of memory — 18 M doubles (⇡ 18,000,000) — Mmax ⇡
2, 000. How do we connect Mmax with molecular size? Depend on the basis. In
minimal basis set (1 function per atomic orbital) CH2 has 7 functions in minimal
basis, (CH2)300.

Computational part is dominated by Fock matrix computation: F=H+IIP:

Fµ⌫ = hµ⌫ +
X

��

< µ⌫||�� > P�� (3.63)

Cost ⇡ (# iterations)xM4x(cost per integral) Cost per integral ⇡ 100 flop. #
of iterations ⇡ 10-20. Cost ⇡ 103 � 104 ⇤ N4. For 100 basis functions: 1011 �
1012 adds/mults. For computer 107 flops time is 104-105 seconds (few hours). My
computers (2003) — couple of minutes.
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3.7.2 Tricks of the trade

1. For very small molecules:

Use “in core integrals” — compute them once. This reduces cost per iteration
to about 10 flops. However, need M4 memory (actually, M4/8). Often — “on
disk integrals”, then IO rate is important.

2. Large molecules:

Number of non-zero integrals grows as only O(M2) (= K2M2), where K is
e↵ective # of neighbors. K ⇡ 100� 200.

3. Very large molecules:

Linear scaling models (M. Head-Gordon, G. Scuseria groups) (use multipoles,
sparsity of density, avoid diagonalization).

PICTURE OF THE COST.
Start see di↵erence for N ⇡ 200

3.7.3 Conclusions

• Large calculations with HF method are feasible

• You now can estimate whether YOUR HF calculation is feasible.

Note: all discussion was about single energy point. But we need at least optimized
geometries, etc.
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Chapter 4

Basis sets

Why do we use atomic basis set for molecules? Because we know that chemical bond-
ing can be described qualitatively by considering linear combinations of atomic or-
bitals. Consider H2 molecule. Wave functions for individual H-atoms are 1s-functions.
From these two orbitals we can prepare two molecular orbitals:

�1(r) =
1p

2 + sAB
(1sA + 1sB) ⌘ �(r) (4.1)

�2(r) =
1p

2� sAB
(1sA � 1sB) ⌘ �⇤(r) (4.2)

� is so-called bonding orbital, and �⇤ is antibonding orbital. Hartree-Fock wave
function for the H2 is:

�0 =
1p
2
�(1)�(2)(↵� � �↵) (4.3)

And this is how Hartree-Fock model describes chemical bonding. We shall discuss H2

example in more details next time. Now we are concerned about atomic basis sets
for electronic structure calculations.

4.1 Atomic orbitals: Slater type orbitals and con-
tracted Gaussians

What do we know about atomic wave functions? For hydrogen-like atom (one electron
moving in the Coulomb potential U(r) = �Z

r ) we can solve the Scarödinger equation
analytically:

En = � Z2

2n2
(4.4)

�nlm(r, ✓,�) = exp(�⇠|r|)Pnl(r)Ylm(✓,�) (4.5)

The energy levels for the hydrogen-like atom are shown in Fig. 4.1.
The radial part of the wave function (4.5) is called Slater type orbital, and its

important features are: (i) nuclear cusp; and (ii) asymptotic exponential decay. See
Fig. 4.2a.

55



56 Basis sets

Figure 4.1: Energy levels in
hydrogen-like atoms: En = � Z2

2n2 .
The degeneracy between the levels
with the same n but di↵erent l is a
special feature of the Coulomb po-
tential; it is lifted in other central-
symmetric potentials.

Figure 4.2: Slater-type
versus Gaussian-type orbital.
Note di↵erent shape at r=0
and di↵erent asymptotic
behavior (at r ! 1). STO
exhibits a cusp and a slower
decay.

For many electron atoms there is no analytic solution, but asymptotic behavior
(cusp and tail) are described correctly by Slater type functions. The structure of
energy levels is also similar to those of the hydrogen atoms except for the fact that
the degeneracy between levels with same principal quantum number n is removed,
and levels with di↵erent angular momentum (l) are non-degenerate.

Thus, these hydrogenic atom solutions must be right form for atoms. Then we can
mix them together to form molecular orbitals. However, these exponential functions
are intractable for practical calculations because we cannot calculate e�ciently the
2-electron integrals (six-dimensional integrals). Contrary to Slater type functions,
Gaussian functions 1s = e�⇠r

2
are tractable (because product of two Gaussians is

a Gaussian centered in between), but they have (1) wrong shape at nuclei (nuclear
cusp) and (2) have too rapid decay at large r. Fig. 4.2 compares STO with GTO.

The solution is to take fixed combination of several Gaussian functions (contrac-
tions) to get roughly the right shape (including any radial nodes, etc):

⇠i(r) =
mX

d=1

dime
�↵mr2 , (4.6)

where ⇠i is an atomic basis function obtained by contraction ofm primitive Gaussians,
and the coe�cients dim are frozen (i.e., not changed in SCF calculations).

STO-3G basis (introduced in 1969) (Slater-type-orbital (modeled by a contraction
of) 3 Gaussian functions. STO-3G is called the minimal basis set. In the minimal
basis set we take only valence orbitals (1s for H atom, 1s, 2s and 2p for Li atom,
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Figure 4.3: Contracted Gaussian
functions can approximate STO.
The quality of fit can be system-
atically improved by taking more
Gaussians.

etc). This is a minimum required to qualitatively describe chemical bonding. The
contraction scheme for STO basis for the C atom is (6s3p)/[2s1p]. A common way of
determining contractions is from results of atomic SCF calculations. In these atomic
calculations one uses a relatively large basis of uncontracted Gaussians, optimizes all
exponents, and determines the SCF coe�cients of each of the derived atomic orbitals.
Then these exponents are used in primitive Gaussians, and SCF coe�cients are used
to derive contraction coe�cients.

We can improve the description by taking (a) more Gaussians (STO-nG) (actually,
3 is good enough!) (b) more basis functions.

4.2 Extensions

Basis set extensions: what if STO-3G is no good? In order to understand how to
improve it, we have to understand what e↵ects it may fail to describe.

4.2.1 Non-isotropic e↵ects: multiple-zeta bases

STO-3G mimics one Slater function with exponent zeta (STO can be called single-zeta
basis). Therefore atoms stay isotropic in the molecule. To describe anisotropic e↵ects,
we are “splitting the representation”: a “double zeta” basis supplies 2 functions
(Slater) per atomic orbital called “inner” and “outer”. The “inner” AO is slightly less
di↵use and the “outer” AO is slightly more di↵use than optimized STO functions.
This allows the shape of AO to change upon going to the molecular environment.
Example:
HCN: pz ! � bond
px, py ! 2 ⇡ bonds
⇡ bonds are more di↵use. In � “inner” orbital has more weight, in ⇡ — “outer”

These defines the following sequence of bases sets: Double-Zeta, Triple-Zeta, etc.
Many basis sets were developed by Huzinaga and Dunning.

“Split-valence basis” of Pople is essentially the same — except that the core is
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single zeta (assumes that the core orbitals do not change much upon chemical trans-
formations.

A standard selection of split-valence, DZ basis sets is 3-21G: ’3’ — minimal core
composed of 3 Gaussians; and ’-21’ — split-valence, valence orbitals are described
by inner orbital (composed of two Gaussians) and an outer orbital (composed of 1
Gaussian). The general contraction scheme for carbon is (6s3p)/[3s2p].

You will now understand meaning of 6-31G, 4-31G — there have slightly more
Gaussians, but no more contracted functions. Dunning DZ basis (9s5p)/[4s2p] is
di↵erent from 3-21G.

Triple-zeta: 3 (Slater) orbitals per AO. TZP, 6-311G basis

Also Quadrupole, Pentupole zeta.

It is dangerous, however, to increase only a number of s and p functions. For
example, in the limit of a large number of s and p functions equilibrium geometry
of the ammonia become planar. That is because so constructed basis set is not well
balanced. What are e↵ects that are omitted in these basis sets? Polarization e↵ects —
asymmetric distribution of the electron density around the nuclei in the asymmetric
electric field.

4.2.2 Polarized basis sets

Consider atom in an electric field: its electronic density is distorted, and it is no
longer possesses spherical symmetry (atom is polarized by an applied field). Atoms
in molecules experience influence of an electric field, therefore, we have to account for
the polarization e↵ects.

“Polarization functions” are functions of the higher angular momentum and their
purpose is to allow polarization of charge. An atomic orbital may be distorted by
mixing with a higher angular momentum function:
s+p ! “polarized” (distorted, shifted) s-level;
p+d ! “polarized” p-level.

We can add higher angular momentum functions to a basis to permit the energy
lowering that results from polarization e↵ects.

Cases where polarization is important: (1) bonding in highly polar molecules
(NH3) is a good example (2) strained ring system (C3, discuss hybridization, explain
why strained, banana bonds) (3) hypervalency — expanded coordination shells for
second row atoms and below (SF6).

Notations for polarized basis set: 6-31G*, 6-31G**,6-31G(d,p). d describes “heavy”
atom polarization, p describes hydrogen atom polarization.

3-21G(*) basis: split valence plus polarization function on second row and below.
Similar set of Dunning: DZP.

STO-3G* basis: minimal basis plus polarization function on second row and below.

Caveat: pure angular momentum (5d, 7f, . . .) polarization versus Cartesian (6d,
8f, etc).
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4.2.3 Di↵use functions

A further split of the valence space to allow a good description of more di↵use charge
distribution (appropriate for anions, Rydberg states, electronically excited molecules,
van der Waals clusters).

Notations: 6-31+G(*), 6-31++G, 6-311++G(d). ’+’ means that one set of di↵use
orbitals is added to the basis. For H atom this is one di↵use s-orbital, and for second
row atoms — one s and one p di↵use orbitals. When two sets of di↵use functions are
requested (’2+’), this means that two di↵use s functions are added for hydrogen, and
two di↵use s and two di↵use p orbitals are added to second row atoms.
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Chapter 5

H2 example

We shall consider a simple example: H2 molecule in a minimal basis set. We shall
analyze FCI solution (which is an exact solution in the given one electron basis set)
and compare it with Hartree-Fock solution. Also, we shall discuss symmetry and
spin-symmetry of the wavefunctions by using this simple example.

5.1 Symmetry and spin of an electronic wavefunc-
tion

The exact wavefunction must possess proper point group and spin symmetries. Point
group symmetry is imposed by a point group symmetry of the external potential, e.g.,
nuclear potential.

Since non-relativistic Hamiltonian commutes with a spin-operators, they have a
set of common eigenstates. Concerning eigenstates of spin operators, we have two
operators: S2 and Sz. Exact wavefunctions are therefore eigenstates of S2 and Sz:

Sz|� >= mz|� > (5.1)

S2|� >= s(s+ 1)|� >, (5.2)

where |� > is a valid spin function, and mz gives projection of the spin on the z-axis,
and s characterizes the absolute value of spin. Term multiplicity (number of states
with the same s but di↵erent mz) is given by ⇤ = 2s+ 1 (because mz = �s . . . s).

However, in a case of approximate non-linear equations, such as HF equations,
the approximate wavefunction does not necessarily possess these properties. We can
impose proper symmetry by restricting variations of the orbitals, which means that
the solution may not be the best in a variational sense. What is better: correct
symmetry or best variational solution (Löwdin dilemma)? Hard question... Example:
weakly interacting gas and its condensation.

Today we shall consider one- and two- electron spin functions. At home, you
shall see that certain conditions must be imposed on the spatial part of the general
two-electron Hartree-Fock wavefunction in order to restrict it to the proper spin-
symmetry.1

1Restricted HF: Sz, S
2. Orbitals are forced to be the same for ↵ and � electrons: {�i(x)↵,�i(x)�}.
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5.1.1 One- and two-electron spin functions

One-electron spin functions are just familiar ↵ and � states:

|↵ >=
✓
1
0

◆
|� >=

✓
0
1

◆
(5.3)

Cartesian components of one-electron spin operator are given by Pauli matrices:

�x =
1

2

✓
0 1
1 0

◆
�y =

1

2

✓
0 �i
i 0

◆
�z =

1

2

✓
1 0
0 �1

◆
(5.4)

Spin-operator, S, is given therefore by a vector composed of Pauli matrices:

S = ~S = ~ex�x + ~ey�y + ~ez�z (5.5)

Operator S2 for one electron is just a scalar product of S · S:

S2 = �2
x + �2

y + �2
z =

3

4
Ê, (5.6)

where Ê is a unit matrix. Operator Sz = �z.
We are interested in wavefunctions which are eigenstates of Sz and S2. Let us see

how Sz and S2 act on the |↵ > and |� > states:

Sz ↵ = �z|↵ >=
1

2

✓
1 0
0 �1

◆✓
1
0

◆
=

1

2

✓
1
0

◆
=

1

2
|↵ >

Sz|� >= �z|� >=
1

2

✓
1 0
0 �1

◆✓
0
1

◆
= �1

2

✓
0
1

◆
= �1

2
|� >

S2|↵ >=
3

4
|↵ >

S2|� >=
3

4
|� >

(5.7)

Thus, |↵ > and |� > are eigenstates of Sz with an eigenvalues 1
2
and �1

2
, respec-

tively, and eigenstates of S2 with an eigenvalue of 3
4
.

We shall also need to know how operators �x and �y act on ↵ and � functions:

�x|↵ >=
1

2
|� > (5.8)

�x|� >=
1

2
|↵ > (5.9)

�y|↵ >=
i

2
|� > (5.10)

�y|� >= � i

2
|↵ > (5.11)

(5.12)

Unrestricted HF: Sz is ok, S2 — not. Orbitals may di↵er for ↵ and � electrons: {�i(x)↵, i(x)�}.
General HF: Sz, S

2 —not. Orbitals are complex and assumes a most general form: {�i(x)↵+ i(x)�}
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How do we construct two-electron wavefunctions and operators? Wavefunctions
are given by a linear combinations of products of ↵ and �. We shall find what
combinations are legal. Two-electron spin operators are given by a sum of one-
electron operators:

~S(1, 2) = ~S(1) + ~S(2) (5.13)

Sz(1, 2) = Sz(1) + Sz(2) (5.14)

S2(1, 2) =
h
~S(1) + ~S(2)

i2
= (5.15)

S2(1) + S2(2) + 2~S(1) · ~S(2) = (5.16)
3

2
Ê + 2 [�x(1)�x(2) + �y(1)�y(2) + �z(1)�z(2)] (5.17)

Let us consider now the following two-electron wavefunctions: ↵(1) · ↵(2), �(1) ·
�(2), and ↵(1) · �(2).

Applying Sz to ↵(1) · ↵(2):

Sz(1, 2)

↵(1) · ↵(2)

�
=

↵(2) ·

sz(1)↵(1)

�
+ ↵(1) ·


sz(2)↵(2)

�
=

1 · [↵(1) · ↵(2)] (5.18)

Applying S2 to ↵(1) · ↵(2):

S2(1, 2)

↵(1) · ↵(2)

�
=

3

2
Ê

↵(1) · ↵(2)

�
+ 2


�x(1)↵(1)

�
·

�x(2)↵(2)

�
+

2

�y(1)↵(1)

�
·

�y(2)↵(2)

�
+ 2


�z(1)↵(1)

�
·

�z(2)↵(2)

�
=

3

2
·

↵(1) · ↵(2)

�
+ 2 · 1

4
·
⇢
�(1) · �(2) + (�1)�(1) · �(2) + ↵(1) · ↵(2)

�
=

2 · [↵(1) · ↵(2)] (5.19)

Conclusion: ↵(1) · ↵(2) is an eigenfunction of the operators Sz and S2 and its
eigenvalues are respectively 1 and 2. Since 2 =< S2 >= s(s + 1), it follows that
s = 1. The term multiplicity is defined as ⇤ = 2s + 1 and is equal to 3. Similarly,
�(1) · �(2) is an eigenfunction of the operators Sz and S2 and their eigenvalues are
respectively -1 and 2. Since 2 =< S2 >= s(s + 1), it follows that s = 1. The term
multiplicity is 3.

Applying Sz to ↵(1) · �(2):

Sz(1, 2)

↵(1) · �(2)

�
= �(2) ·


�z(1)↵(1)

�
+ ↵(1) ·


�z(2)�(2)

�
=

↵(1) · �(2)� ↵(1) · �(2) = 0 · [↵(1) · �(2)] (5.20)

Applying S2 to ↵(1) · �(2):

S2(1, 2)

↵(1) · �(2)

�
=

3

2
Ê

↵(1) · �(2)

�
+ 2


�x(1)↵(1)

�
·

�x(2)�(2)

�
+
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2

�y(1)↵(1)

�
·

�y(2)�(2)

�
+ 2


�z(1)↵(1)

�
·

�z(2)�(2)

�
=

3

2
·

↵(1) · �(2)

�
+ 2 · 1

4
·
⇢
�(1) · ↵(2) + i�(1) · (�i)↵(2) + ↵(1) · (�1)�(2)

�
=

= [↵(1) · �(2)] + [�(1) · ↵(2)](5.21)

Conclusion: ↵(1) · �(2) is an eigenfunction of the operator Sz. The eigenvalue
is 0. ↵(1) · �(2) is not an eigenfunction of the operator S2. We can calculate the
expectation value of < S2 >:

< S2 >=< ↵(1) · �(2)|S2|↵(1) · �(2) >=

< ↵(1) · �(2)|↵(1) · �(2) + �(1) · ↵(2) >= 1 (5.22)

Similarly, �(1) · ↵(2) is an eigenfunction of Sz and is not an eigenfunction of S2.
We can consider linear combinations 1p

2
(↵� ± �↵).

Applying Sz to 1p
2
[↵(1) · �(2) + �(1) · ↵(2)]:

Sz(1, 2)
1p
2


↵(1) · ↵(2) + �(1) · ↵(2)

�
= 0 ·


↵(1) · ↵(2) + �(1) · ↵(2)

�

Applying S2 to 1p
2
[↵(1) · �(2) + �(1) · ↵(2)]:

S2(1, 2)
1p
2


↵(1) · �(2) + �(1) · ↵(2)

�
= 2 ·


↵(1) · �(2) + �(1) · ↵(2)

�

Conclusion: 1p
2
[↵(1) · �(2) + �(1) · ↵(2)] is an eigenfunction of the operators Sz and

S2 with eigenvalues are respectively 0 and 2. s is 1, and multiplicity equals 3.
Applying Sz to 1p

2
[↵(1) · �(2)� �(1) · ↵(2)]:

Sz(1, 2)
1p
2


↵(1) · ↵(2)� �(1) · ↵(2)

�
= 0 ·


↵(1) · ↵(2)� �(1) · ↵(2)

�

Applying S2 to 1p
2
[↵(1) · �(2)� �(1) · ↵(2)]:

S2(1, 2)
1p
2


↵(1) · �(2)� �(1) · ↵(2)

�
= 0 ·


↵(1) · �(2) + �(1) · ↵(2)

�

Conclusion: 1p
2
[↵(1) · �(2)� �(1) · ↵(2)] is an eigenfunction of the operators Sz and

S2 with eigenvalues 0 and 0, respectively. s = 0 and the term multiplicity ⇤ = 1.
To summarize, Table 5.1 gives valid spin-functions for two electrons.
Note that multiplicity can define spatial symmetry. Triplet functions are symmet-

ric with respect to electron permutations, hence, must be combined with an antisym-
metric spatial part. Singlets are antisymmetric, should be combined with symmetric
spatial part.
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Table 5.1: Valid two-electron spin-functions
Sz < S2 >= s(s+ 1) Multiplicity ⇤ = (2s+ 1)

↵(1)↵(2) 1 2 3 (triplet)
�(1)�(2) -1 2 3 (triplet)
1p
2
(↵(1)�(2) + �(1)↵(2)) 0 2 3 (triplet)

1p
2
(↵(1)�(2)� �(1)↵(2)) 0 0 1 (singlet)

5.2 H2: Hartree-Fock wavefunction

We have two atoms: HA & HB. In a minimal basis set there are two 1s orbitals
centered on each atom: 1sA & 1sB.

Here we shall restrict our HF wavefunction to be of correct symmetry. This leads
to restricted HF (usually it means spin-restricted HF, a model when HF wavefunction
has correct spin symmetry).

General HF solution would be:

|�(1, 2) >= |�1�2 >=
1p
2

✓
�1(1) �2(1)
�1(2) �2(2)

◆
, (5.23)

where �1, �2 can have any kind of spin or spatial part
If we require correct spin symmetry, we end up in forcing each orbital to have a

pure spin (↵ or �, but not a mixture), and spatial parts to be the same for ↵ and �
spin-orbitals.

Such, for singlet function we end up with:

|�RHF (1, 2) >= |�↵ �� >=
1p
2

✓
�(1)↵(1) �(1)�(1)
�(2)↵(2) �(2)�(2)

◆
=

1p
2
(�(1)�(2)↵(1)�(2)�

�(2)�(1)�(1)↵(2)) =
1p
2
�(1)�(2) ⇤ [↵(1)�(2)� �(1)↵(2)] (5.24)

What is that? Properly anti-symmetrized doubly occupied orbital �, with a singlet
spin function.

What can � be for H2? Most general form:

� = c1sA + c2sB
c21 + c22 + 2c1c2 < sa|sb >= 1 (5.25)

For this particular case there is no need to solve HF equations to find coe�cients
c1 and c2 if we require wavefunction to have correct symmetry.
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Consider now spatial symmetry of that wavefunction. Point group is C1v. For
the minimal basis set we can disregard symmetry associated with rotations and the
plane (1s functions are symmetric). The non-trivial symmetry element is an inversion
center i. Wavefunction should be either gerade or ungerade symmetry. For �1(1)�2(2)
wavefunction that means that orbitals �1 and �2 should have either gerade or ungerade
symmetry.

This means that we have restriction on coe�cients ci: c1 = ±c2 This results in
two orthogonal MO’s (we skip normalization factor of 1p

2(1±<sA|sB>)
):

� = (sA + sB)

�⇤ = (sA � sB) (5.26)

Orbital � is gerade, �⇤ — ungerade. Wavefunctions: �(1)�(2), �⇤(1)�⇤(2) are gerade;
�(1)�⇤(2)� �⇤(1)�(2), �(1)�⇤(2) + �⇤(1)�(2) are ungerade.

Energy of orbital � is lower than that of �⇤ We can see it from nodes. Or derive
from integrals. Energy gap depends on overlap. For small distances, it is large.
For large distances, when two-center integrals and overlap are zero, � and �⇤ are
degenerate.

That in conjunction with Aufbau principle gives for HF solution:

|�0 >=
1p
2
�(1)�(2) [↵(1)�(2)� �(1)↵(2)] (5.27)

We can also show that HF energy of �2 is lower than energy of (�⇤)2 (when orbitals
are not degenerate). Orbital � is called bonding orbital, orbital �⇤ — antibonding.
Chemical bond formation: electronic density between atoms. Di↵erential density.
(Do at home).

5.2.1 Analysis of Hartree-Fock wavefunction

Now lets analyze spatial part of �0:

�0 = �� = (sA + sB)(sA + sB) =

sAsA + sBsB + sAsB + sBsA =

H�
AH

+
B +H+

AH
�
B +HAHB +HAHB (5.28)

Configurations H�
AH

+
B and H+

AH
�
B are ionic: they describe situation when both

electrons are localized near one of the H-atoms (there is unit probability to find both
electrons near one H-atom).

Configuration HAHB is covalent: it describes situation when one electron is local-
ized near one of the H-atoms, and second electron is localized near another H-atom
(there is unit probability to find electrons near di↵erent atoms).
�0 alone is a mixture of ionic and covalent configurations in a fixed proportion.

We have no variational freedom to vary degree of ionicity in HF wavefunction.
Conclusions:
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• can be wrong for strongly ionic/strongly covalent situation;

• cannot describe ether neutral (H2 ! H + H), or ionic (H2 ! H+ + H�)
dissociation.

This is very important limitation of the Hartree-Fock model: it cannot describe
chemical bond breaking.

5.2.2 Unrestricted Hartree-Fock wavefunction

What if we do not impose correct symmetry on the Hartree-Fock wavefunction? The
resulting model is called unrestricted Hartree-Fock. In this model we do not apply any
restrictions on �0 — just looking for the lowest energy solution. In (spin) unrestricted
HF orbitals for ↵ and � electrons are di↵erent. As a result, �0 is eigenstate of Sz,
but not an eigenstate of S2.

For the H2 molecule at the dissociation limit we have:

�UHF
0 (r ! 1) = |sA↵sB� >=

1p
2

✓
sA(1)↵(1) sB(1)�(1)
sA(2)↵(2) sB(2)�(2)

◆
=

1p
2
(sA(1)↵(1)sB(2)�(2)�

sB(1)�(1)sA(2)↵(2))

(5.29)

This wavefunction does describe covalent dissociation (it does not have any ionic con-
tributions in it). However, it does not possess proper symmetry. This wavefunction
is an eigenstate of Sz, but not an eigenstate of S2. We can calculate expectation
value for S2: < S2 >=1, meaning that such wavefunction is a mixture of singlet
(< S2 >=0) and triplet (< S2 >=2) states. It is said to be spin-contaminated.
Spin-contamination means that approximate wavefunction does not give < S2 >
corresponding to the pure spin-cases.

We can see that unrestricted HF wavefunction is a mixture of singlet and triplet by
considering linear combination of covalent singlet and covalent triplet wavefunctions:

 singlet
cov = (sAsB + sBsA)(↵� � �↵) =

(sA↵sB� � sB�sA↵) +

(sB↵sA� � sA�sB↵)

 triplet
cov = (sAsB � sBsA)(↵� + �↵) =

(sA↵sB� � sB�sA↵) +

(sA�sB↵� sB↵sA�)

 UHF
0 =

1p
2
( singlet

cov + triplet
cov ) (5.30)
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�UHF
0 is a mixture of singlet and triplet. Singlet and triplet are degenerate at the

dissociation limit, so energetically UHF is better that RHF. However, the lack of
proper symmetry is very serious problem.

Note that in this case UHF wavefunction does not have correct spatial symmetry:
it is a mixture of gerade and ungerade functions.

Spin-contamination may occur not only at dissociation limit, but also at equilib-
rium. One of the examples: HF for radicals.

PICTURE of alpha and beta MO’s here
Two models are available: UHF and ROHF. For UHF calculations one has to

analyze what is < S2 >. For doublet radicals it should be 0.75. If it is much di↵erent
from that — you have to be very cautious about the results. ROHF — not necessarily
better... Radicals are more problematic for HF theory than closed-shell molecules.

5.3 H2: an exact solution in the minimal basis set

Let us construct now a multi-electron basis set for H2, and analyze FCI wavefunction.
Consider single excitations:
Excitation �� ! �⇤↵:

��
⇤↵
�� = |�↵, �⇤↵ >=

1p
2

✓
�(1)↵(1) �⇤(1)↵(1)
�(2)↵(2) �⇤(2)↵(2)

◆
=

1p
2
(�(1)�⇤(2)� �⇤(1)�(2))↵(1)↵(2) (5.31)

This is a triplet state (pure spin state).
Similarly, excitation �↵ ! �⇤�:

��
⇤�
�↵ = |��, �⇤� >=

1p
2
(�(1)�⇤(2)� �⇤(1)�(2)) �(1)�(2) (5.32)

Excitation �� ! �⇤�:

��
⇤�
�� = |�↵, �⇤� >=

1p
2

✓
�(1)↵(1) �⇤(1)�(1)
�(2)↵(2) �⇤(2)�(2)

◆
=

1p
2
(�(1)�⇤(2)↵(1)�(2)�

�⇤(1)�(2)�(1)↵(2)) (5.33)

This is not a pure spin state (is not an eigenstate of Ŝ2).
Similarly, excitation �↵ ! �⇤↵

��
⇤↵
�↵ = |��, �⇤↵ >=
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1p
2

✓
�(1)�(1) �⇤(1)↵(1)
�(2)�(2) �⇤(2)↵(2)

◆
=

1p
2
(�(1)�⇤(2)�(1)↵(2)�

�⇤(1)�(2)↵(1)�(2)) (5.34)

This is not a pure spin state (is not an eigenstate of Ŝ2).
We can take linear combination of two last determinants:

��
⇤�
�� + ��

⇤↵
�↵ =

1p
2
(�(1)�⇤(2)� �⇤(1)�(2))

(↵(1)�(2) + �(1)↵(2)) (5.35)

��
⇤�
�� � ��⇤↵

�↵ =

1p
2
(�(1)�⇤(2) + �⇤(1)�(2))

(↵(1)�(2)� �(1)↵(2)) (5.36)

Note that first linear combination is a pure triplet function (with < Sz >=0),
whereas second is a pure singlet.

As a consequence of Pauli principle, spatial part of triplets is antisymmetric with
respect to electron interchange. Spatial part of singlets is symmetric.

Can last singlet be present in FCI wavefunction? No, because of symmetry con-
siderations. It is of ungerade symmetry (gxu=u), when HF determinant is gerade.

FCI wavefunction:
 FCI = C0�0 + C1�1, (5.37)

where

�0 = �� [↵� � �↵] (5.38)

�2 = �⇤�⇤ [↵� � �↵] (5.39)

At equilibrium, when there is an energy gap between � and �⇤, �0 has energy
much lower than �2, and C0 is large.

At large rAB, when � and �⇤ are degenerate, coe�cients C0 and C1 are of the
same magnitude.

As we have shown in the previous section, �0 is a mixture of the ionic and covalent
configurations in a fixed proportion:

�0 = �� = (sA + sB)(sA + sB) =

sAsA + sBsB + sAsB + sBsA =

H�
AH

+
B +H+

AH
�
B +HAHB +HAHB (5.40)

Similarly, �2 is given by:

�2 = �� = (sA � sB)(sA � sB) =

sAsA + sBsB � sAsB � sBsA =

H�
AH

+
B +H+

AH
�
B �HAHB �HAHB (5.41)
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Therefore, FCI has enough variational freedom to describe both ionic and covalent
dissociation by mixing these two configurations:

�0 � �2 = HAHB +HBHA

�0 + �2 = H+
AH

�
B +H�

AH
+
B

(5.42)



Chapter 6

Qualitative molecular orbital
theory

From the H2 example, we now understand how the Hartree-Fock model describes
bonds in molecules: additional stabilization (w.r.t. individual fragments) is achieved
by “sharing” the electrons which occupy molecular bonding orbitals (which have more
density between the atoms).

It is possible to generalize many of the HF results in a qualitative picture which
can be used to analyze bonding. There are numerous variants of such qualitative (or
even semi-quantitative) models. I am going to discuss the simplest variant and give
you examples of how it can be used.

Qualitative molecular orbital theory rules:

1. MOs are formed only from AOs which are close in energy.

2. Two interacting AOs form bonding (lower energy, no node between fragments)
and anti-bonding (higher energy, node) pair.

3. Bonding-antibonding splitting is proportional to the overlap between AOs and
is zero when overlap is zero.

4. Overlap (and thus bonding-antibonding splittings) decrease in the following
sequence of MOs : � ! ⇡ ! � . . .

5. Bond energy (or stabilization energy w.r.t. fragments) is roughly equal to one-
electron energies (sum of energies of occupied MOs) minus small electron re-
pulsion (which only becomes important when orbitals are degenerate or nearly
degenerate).

6. Bond order equals 1
2
(Nelectrons�on�bonding�orbitals�Nelectrons�on�anti�bonding�orbitals).

Related very useful qualitative tool: Hückel theory.
Examples:
1. O2 molecule: consider MOs, calculate bond order, define multiplicity. Relative

stability of the neutral, cation, and anion.
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2. CH2Cl radical.14,15 Bond contraction relative to saturated compound, anoma-
lous charge distributions. Excited states and their properties: lowest valence (⇡⇤ ! �⇤

transition) and Rydberg states.
3. Why weakly bound covalent dimers are so weakly bound? Bond formed by

anti-bonding orbitals: NO and (NO)2. Mention multi-reference character.
4. Al-ethylene dimer: covalently bound vs. van der Waals.16

5. Ethylene and twisted ethylene. Covalent nature of triplets. Singlet states.



Chapter 7

Performance of Hartree-Fock
theory

Notation for a model chemistry: correlation treatment/basis set (correlation approx-
imation/algebraic approximation — basis set truncation).

Hence, our first model is HF/STO-3G. There are two approaches how to obtain
believable results form our calculations.

• for our molecule, apply a series of improved models until converged results are
obtained: “molecule at a time approach”;

• for a given theoretical model, understand how it treats a whole range of chemical
problems, and it will then acquire some predictive credibility.

The second approach is more powerful, as it permits us to study trends in a natural
way. We have already discussed these ideas in the beginning, when talking about ab
initio “error bars”, predictability, and calibration of approximate models.

We will test performance of HF theory for:

1. Optimized molecular geometries (AHn, ABHn, first row atoms, second row
atoms);

2. Vibrational frequencies;

3. Relative energies:

• internal rotation;

• bond dissociation energies;

• transition states;

• isogyric reactions (conserve number of electron pairs);

• isodesmic reaction (conserve number of bonds of the same type).
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7.1 Geometries

Geometry optimization for closed shell, neutral molecules. Consider the sequence
STO-3G ! 3-21G ! 6-31G*, i.e., single-zeta ! double-zeta ! double-zeta with
polarization.

7.1.1 AHn molecules

Molecules: H2, LiH, CH4, NH3, H2O, HF, NaH, SiH4, PH3, H2S, HCl. Total: 21 bond
lengths, 8 angles. Results are in Table 7.1.

Table 7.1: Results for the 11 AHn molecules
Basis < |rcalc � rexp| >, Å

STO-3G 0.060
3-21G 0.016
6-31G* 0.014

7.1.2 AHnBHm molecules

Consider AB bonds:

1. STO-3G:

• single bonds involving C are quite good (0.02-0.03 Å);

• Single bonds between other elements show much larger errors;

• Multiple bonds not well described;

• Overall < |rcalc � rexp| >=0.082Å.

2. 3-21G:

• Multiple bonds better described;

• Single bonds not uniformly improved;

• Overall < |rcalc � rexp| >=0.067Å.

3. 6-31G*:

• Generally improved results except for bonds between electropositive ele-
ments (first row atoms);

• Multiple bonds slightly underestimated ( 0.01-0.02 Å);

• Overall estimate for accuracy for organic molecules approaches 0.01Å, 1o.
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Table 7.2: Overall results for polyatomics. (An average error in Å).
Basis Single bond Multiple bond All bonds

STO-3G 0.030 0.027 0.029
3-21G 0.033 0.019 0.029
3-21G* 0.015 0.018 0.016
6-31G* 0.020 0.021 0.020

7.1.3 Overall results for polyatomics

Overall results for polyatomics are in Table 7.2. Examples for specific molecules are
given in Table 7.3.

Is error a systematic? Not quite. In a Hartree-Fock limit — generally underesti-
mated bond length. Why underestimates? HF is too ionic. Why STO — overesti-
mates? No polarization. Angles change correspondingly.

Table 7.3: Composed table from Szabo (bond lengths are in bohr).
Basis H2 N2 CO CH4 NH3 H20 FH

STO-3G 1.346 2.143 2.166 2.047 1.952 1.871 1.807
4-31G 1.380 2.050 2.132 2.043 1.873 1.797 1.742
6-31G* 2.039 2.105 2.048 1.897 1.791 1.722
6-31G** 1.385 2.048 1.897 1.782 1.703
NHFL 2.013 2.081 2.048 1.890 1.776 1.696
Exp 1.401 2.074 2.132 2.050 1.912 1.809 1.733

Hyper-valent molecules: PF5, SF6, FClO2, FClO3 (results in Table 7.4).

Table 7.4: Hypervalent molecules: PF5, SF6, FClO2, FClO3.
Basis < |rcalc � rexp| >

STO-3G 0.125
3-21G* 0.015
6-31G* 0.014

Overall: HF theory with DZ or DZP basis is quite accurate (0.01-0.02Å, 1-2o) for
compounds with 1st and 2nd row atoms. Basis set convergence is fast.

7.2 Harmonic vibrational frequencies

STO-3G generally very poor — we shall not study it further. Results are in Table 7.5.
Comparison with the experiment is di�cult, because experimental data include an-
harmonicity, which tends to make results lower than if only the harmonic part of the
potential was used (see Fig. 7.1).
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Figure 7.1: Harmonic and anhar-
monic potentials. All three poten-
tials have identical harmonic part.
Positive anharmonicity (i.e., !01 <
!harm) is common in stretching vi-
brations. Negative anharmonicity
(i.e., !01 > !harm) may occur in
bending, torsional, and out-of-plane
vibrations.

Table 7.5: Vibrational frequencies.
Basis �⌫, %

AHn 3-21G 7.1
6-31G* 8.0

AHnBHn 3-21G 12.8
6-31G* 13.0

3-5% of the error may be anharmonicity. What do these percents mean? For
⌫=1500cm�1 (C-C bond) 1% means 15 cm�1. Error is systematic, not random. Fre-
quencies are too high. Overall: �⌫(3 � 21G) ⇡ �⌫(6 � 31G⇤)=11% larger then
observed. Hence, can scale by 0.9 to empirically correct. This helps to calculate
reliable zero-point energies in particular.

Why larger? HF is too ionic, bond strength is overestimated.

7.3 Relative energies

7.3.1 Internal rotation

Generally quite successful, because no bonds are made or broken (error cancellation).
6-31G* is needed for reasonable treatment of conjugated molecules.
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7.3.2 Bond strength

Generally a disaster.
Cannot do directly — from H2 example must be clear that we cannot describe

dissociation curves & transition states.
Can do indirectly, by calculating energy di↵erences: calculate AB, then separately

A and B and not non-interacting A B.
AH bond energies: �E ⇡ 24-40 kcal/mol ⇡ 1-2 eV For the reference: typical AH

bond strength ⇡ 100 kcal/mol ⇡ 5 eV.
AB bond strength: similarly, but errors are larger for all basis sets, up to 50

kcal/mol.
Why so bad? Hydrogenation energies: slightly better (closed shell reactions).

7.3.3 Isogyric & isodesmic reactions

The origin of the worst failure we have seen in bond strength is not in the basis
set: it is neglect of electron correlation due to making Hartree-Fock approximation.
Correlation is largest for electrons close together. Hence, in bond breaking process
— use isogyric reactions (conserve # of electron pairs).

Example: C-H bond strength.
Reaction

CH4(
1A1) ! CH3(

2A
00

2) +H(2S) (7.1)

is non-isogyric.
Reaction

CH4(
1A1) +H(2S) ! CH3(

2A
00

2) +H2(
1⌃+

g ) (7.2)

is isogyric.
Then can try to balance the chemistry more closely between left and right sides

of a reaction.
Isodesmic reactions: conserve # of bonds of each formal type — only alter their

connectivity.
Examples:

1. internal rotation;

2. many problems involving relative energetics of isomers;

3. bond separation reactions — separate all heavy atom linkages into 2 atom par-
ents, balancing with 1 atom hydrides;

Example:

CH3 � CH = C = O + 2CH4 ! CH3 � CH3 +

CH2 = CH2 + CH2 = O (7.3)

even STO-3G is OK for molecules with a single dominant valence structure;
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4. heats of formation: combine known results with isodesmic reactions to predict
unknowns.

Example: isomerization energy of CH3CH2OH ! CH3OCH3. Can be calculated
directly (this is isogyric reaction), or by isodesmic reactions as follows:

CH3CH2OH + CH4 !
CH3CH3 + CH3OH +BSE(CH3CH2OH) (7.4)

�H(CH3CH2OH) = �H(CH3CH3) +�H(CH3OH)�
�H(CH4)� BSE(CH3CH2OH) (7.5)

CH3OCH3 +H2O ! 2CH3OH +BSE(CH3OCH3) (7.6)

�H(CH3OCH3) = 2�H(CH3OH)�
�H(H2O)� BSE(CH3OCH3) (7.7)

Note: isomerization energy of CH3CH2OH ! CH3OCH3 is then much better
predicted than by the direct (isogyric) energy di↵erence, especially with small basis
sets.

�E = �H(CH3OCH3)��H(CH3CH2OH) =

�H(CH3OH)��H(H2O)

��H(CH3CH3) +�H(CH4)

�BSE(CH3OCH3) + BSE(CH3CH2OH) (7.8)

The trick is general, can be used with more advanced methods.
To conclude: while we can use simple tricks like isodesmic reactions to “dodge the

bullet” of electron correlation in some cases, it is also clear that we simply cannot get
away with Hartree-Fock theory in general, especially for molecules with non-classical
structures. We must look into the problem of electron correlation.

7.4 Conclusions

1. Energy point: Scaling: N4. Memory: N2. Linear scaling models. Rather
feasible. Gradients and frequencies are more expensive.

2. Accuracy?

• Geometries: HF theory with DZ or DZP basis is quite accurate (0.01-
0.02Å, 1-2o) for compounds with 1st and 2nd row atoms.
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• Frequencies: �⌫(3 � 21G) ⇡ �⌫(6 � 31G⇤) = 11%. Error is systematic,
can use scaling.

• Energetics:

– internal rotation: OK;

– bond strength — disaster (1-2) eV (for 5 eV AH bonds), and larger;

– dissociation and transition states — disaster;

– isogyric reactions — OK;

– isodesmic reactions — OK;

– When breaks: multireference, bond-breaking problem, radicals, dirad-
icals.

3. Predictive: yes.

4. Size-extensive: yes (for two closed-shell fragments); (Size-consistent: no).

5. Variational: yes.
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Chapter 8

Reduced density matrices and
electronic density

Reduced density matrices are very important in electronic structure since they (i)
allow for compressing information; (ii) are used to for wave function analysis; (iii)
some results can be written in a general form using density matrices, i.e., independent
on the ansatz we use.

8.1 Density matrices

Consider (1, . . . , N) normalized anti-symmetrized N-electron wave function, 1, . . . , N
spin and spacial coordinates of i-th electron, i ⌘ (ri, �i). Below we define functions
which are called density matrices.

8.1.1 One-particle density matrix

One-particle density matrix (OPDM) is not a matrix, but a function of two arguments:

⇢1(1
0, 1) ⌘ N

Z
 ⇤(10, 2, . . . , N) (1, 2, . . . , N)d2 . . . dN (8.1)

Why is it called matrix? Does not really matter... It’s arguments, 10 and 1 which
refer to coordinates of the first electron, make it look like a matrix.

Diagonal of one-particle density matrix:

⇢(1) ⌘ ⇢1(1
0, 1)|10=1 = N

Z
 ⇤(1, 2, . . . , N) (1, 2, . . . , N)d2 . . . dN (8.2)

⇢(1) is just electron density. Probability to find an electron in a volume dr is given
by

R
⇢(r, �)d� = ⇢(r). Normalization results:

R
⇢(1)d1 = N .

8.1.2 Two-particle density matrix

⇢2(1
0, 20, 1, 2) ⌘ N(N � 1)

2

Z
 ⇤(10, 20, 3, . . . , N) (1, 2, 3, . . . , N)d3 . . . dN (8.3)

81
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Diagonal of two-particle density matrix:

⇢2(1, 2) ⌘ ⇢2(1
0, 20, 1, 2)|10=1,20=2 =

N(N � 1)

2

Z
 ⇤(1, 2, . . . , N) (1, 2, . . . , N)d3 . . . dN

(8.4)

8.1.3 K-particle density matrix

⇢K(1
0, 20, . . . , K 0, 1, 2, . . . , K) ⌘ Ck

N

Z
 ⇤(10, 20, . . . , K 0, . . . , N) (1, 2, . . . , K, . . . , N)dK+1 . . . dN

(8.5)
Relation between K and K � 1 particle density matrix:

⇢K�1 =
CK�1

N

CK
N

Z
⇢K(1

0, 20, . . . , K 0, 1, 2, . . . , K)|K0=KdK (8.6)

We always can perform integration over spin-coordinates and calculate spacial
density matrix from spin density matrix.

8.1.4 Why do we need density matrices?

This is a way to compress information!

Diagonal OPDM

Diagonal OPDM defines number of electrons:
Z
⇢(r)dr = N (8.7)

Matrix elements of one-electron operators

For one-electron operator A =
P

i hi, where hi is one-electron operator for i-th parti-
cle:

<  |A| >=
NX

i=1

<  |hi| >=

NX

i=1

Z
 ⇤(1, 2, . . . , N)hi (1, 2, . . . , N)d1 . . . dN =

N
Z
 ⇤(1, 2, . . . , N)h1 (1, 2, . . . , N)d1 . . . dN =

Z
[h1⇢1(1

0, 1)]10=1 d1 (8.8)

Here we use antisymmetry of  : we permute i and 1 in both  ⇤ and  , and
this does not change the integral. Then we can rename variables under the integral
(1 ! i, i ! 1), etc.

If A does not a↵ect spin, <  |A| >=
R
[h1⇢1(r01, r1)]r01=r1

dr1.
We have astonishing compression of information here: instead of general N -

electron wave function, we have function of two coordinates only, OPDM!
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Matrix elements of two-electron operators

Similarly, for any B(1, 2):

<  |B| >=
Z

[B12⇢2(1
0, 20, 1, 2)]10=1,20=2 d1d2 (8.9)

For Coulomb interaction and the like (B12 = B(|r1�r2|), only diagonal part of TPDM
is needed:

<  |B| >=
Z
B12⇢2(r1, r2)dr1dr2 (8.10)

Actually, we need only radial part of the dependence of ⇢2 on r1 � r2.

Energy expression

For the electronic Hamiltonian:

Hel =
X

i

Ti +
X

i

vi +
1

2

X

ij

1

rij
(8.11)

total energy is given:

E = �1

2

Z
r2

r⇢1(r
0, r)|r0=rdr +

Z
v(r)⇢1(r)dr +

Z ⇢2(r1, r2)

|r1 � r2|
dr1dr2 (8.12)

Conclusion: to calculate energy we need only OPDM and TPDM!
Can we rewrite Shrödinger equation for density only? Not quite. We’ll get set

of equations up two N-particle density matrix which is equivalent to the N-electron
wave function... How to truncate? Unclear.

N-representation problem: unclear, how to find only densities which correspond to
antisymmetric wave function. There are developments in these directions — di↵erent
approximations to truncation are used.

Matrix representation of density matrix

In practical implementations, we use matrix representations of operators and other
quantities. In the basis of molecular orbitals {�p}, the one-particle density matrix,
⇢1(10, 1), is represented as follows:

⇢1(1
0, 1) =

X

pq

�pq�p(1
0)�q(1) (8.13)

where �pq is a matrix also called OPDM:

�pq =
Z
�p(1

0)⇢1(1
0, 1)�q(1)d1

0d1 (8.14)

⇢1(10, 1) and �pq are related to the density operator described below.
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Density operator and matrix of density operator

Consider operator P̂ (also called density matrix):

P̂�(1) =
Z
⇢1(1

0, 1)�(10)d10 =  (1) (8.15)

P̂ is one-electron operator, and ⇢1 is a kernel of integral operator P̂ . We can calculate
matrix of the operator P̂ in the basis of molecular orbitals, e.g.:

�pq =
Z
�p(1)⇢1(1

0, 1)�q(1
0)d10d1 =< p|P̂ |q > (8.16)

Can we represent density matrix operator in a second quantization? As any other
one-particle operator:

P̂ =
X

pq

�pqp
+q (8.17)

�pq is a matrix representation of density matrix operator (in the basis of one-particle
functions, e.g., spin-orbitals). �pq is also called density matrix! What is �pq, i.e., how
can we calculate it? We can use Eq. (8.16), or simply calculate:

�pq =<  |p+q| >, (8.18)

where  is N electron wave function. One can prove the above equation by combining
Eq. (8.16) and Eq. (8.1):

�pq =< �p|P̂ |�q >=
Z
�p(1

0)⇢1(1
0, 1)�q(1)d1

0d1 =

N
Z
�p(1

0) ⇤(10, 2, . . . , N) (1, 2, . . . , N)�q(1)d1
0d1d2 . . . dN =

N
Z

d2 . . . dN
✓Z

d10�p(1
0) ⇤(10, 2, . . . , N)

◆✓Z
d1 (1, 2, . . . , N)�q(1)

◆
(8.19)

What is an e↵ect of
R
d1 (1, 2, . . . , N)�q(1)? Exactly as q| >! Annihilation of the

orbital �q from all the determinants in  which contain this orbital, and annihilation
of all the determinants which do not have it! Likewise,

R
d10�p(10) ⇤(10, 2, . . . , N) ⌘<

 |p+|.

An important property of OPDM:

Tr[�] = N (8.20)

Recall the number operator,
P

p p
+p and use the definition of trace to prove it. Al-

ternatively, this can be proved by using Eq. (8.14):

Tr[�] =
X

p

�pp =
Z
�⇤
p(1

0)⇢1(1
0, 1)�p(1)d1

0d1 =

N
Z
�⇤
p(1

0) ⇤(10, 2, . . . , N) (1, 2, . . . , N)�q(1)d1
0d1d2 . . . dN =

N
Z
d2 . . . dN

✓Z
d10�⇤

p(1
0) ⇤(10, 2, . . . , N)

◆✓Z
d1 (1, 2, . . . , N)�p(1)

◆
= N (8.21)



8.1 Density matrices 85

H2 example: Density Matrix for Hartree-Fock and FCI wave functions

Let us consider simple example: H2 molecule in the minimal basis set, and let us
calculate matrix of the operator P̂ in the basis of �↵, ��, �⇤↵, and �⇤� orbitals for
the Hartree-Fock wave function and for the FCI wave function. We shall use second
quantization to do the job. An alternative derivation is given in the next section.

We shall first calculate density matrices for the general HF wave function:

�pq =< �0|p+q|�0 >=< �0|i+j|�0 >= �ij (8.22)

Here, as usual, p, q denote general (occupied or virtual) spin-orbitals, and i, j refer to
spin-orbitals occupied in �0.

Thus, for the H2 the matrix of the operator R̂ assumes the following form in the
basis of {�↵, ��, �⇤↵, �⇤�} orbitals:

� =

0

BBB@

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

1

CCCA (8.23)

The result is general in a sense that for any Slater determinant composed of
N spin-orbitals, OPDM consists of two blocks: one is diagonal unit matrix (in the
occupied-occupied block), and zero for virtual-virtual block. For example, for the
doubly excited determinant, �1 = (�⇤)2, we have:

� =

0

BBB@

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

1

CCCA (8.24)

For the FCI wave function,  = C0�0 + C1�1, we have:

�pq =<  |p+q| >= C2
0 < �0|p+q|�0 > +C2

1 < �1|p+q|�1 > +

C0C1 < �0|p+q|�1 > +C1C0 < �1|p+q|�0 > (8.25)

Last two terms are zero (because �1 and �0 do not share a single spin-orbital), thus:

� =

0

BBB@

C2
0 0 0 0
0 C2

0 0 0
0 0 C2

1 0
0 0 0 C2

1

1

CCCA (8.26)

Since C2
0 + C2

1 = 1 (normalization condition), we see that (i) eigenvalues of density
matrix are non-negative and smaller or equal 1; (ii) they sum up to the number of
electrons; (iii) they can be interpreted as populations of natural orbitals; and (iv)
they bear some information about correlation e↵ects in a compact form.

Alternative derivation:
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For the Hartree-Fock wave function, we have:

⇢1(1
0, 1) ⌘ N

Z
�⇤

0(1
0, 2, . . . , N)�0(1, 2, . . . , N)d2 . . . dN =

X

i2�0

�⇤
i (1

0)�i(1) (8.27)

Thus, for the H2 the matrix of the operator R̂ assumes the following form in the basis
of {�↵, ��, �⇤↵, �⇤�} orbitals:

� =

0

BBB@

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

1

CCCA (8.28)

We can see that Hartree-Fock orbitals are eigenvectors of the P , and that their
eigenenergies are the same as populations of molecular orbitals in the Hartree-Fock
wave function. They are greater or equal zero, and smaller or equal one. Their sum
(or trace of the matrix of R̂) is equal to the number of electrons, two in the case of
H2.

Alternatively, for the doubly excited determinant, �1 = (�⇤)2 we have:

� =

0

BBB@

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

1

CCCA (8.29)

For the FCI wave function,  = C0�0 + C1�1, we have:

⇢1(1
0, 1) ⌘ N(

Z
C2

0�
⇤
0(1

0, 2, . . . , N)�0(1, 2, . . . , N)d2 . . . dN +
Z
C2

1�
⇤
1(1

0, 2, . . . , N)�1(1, 2, . . . , N)d2 . . . , dN) =

C2
0(�(1

0)↵(10)�(1)↵(1) + �(10)�(10)�(1)�(1)) +

C2
0(�

⇤(10)↵(10)�⇤(1)↵(1) + �⇤(10)�(10)�⇤(1)�(1)) (8.30)

Thus, matrix of P̂ is:

� =

0

BBB@

C2
0 0 0 0
0 C2

0 0 0
0 0 C2

1 0
0 0 0 C2

1

1

CCCA (8.31)

Since C2
0 + C2

1 = 1 (normalization condition), we see that (i) eigenvalues of density
matrix are non-negative and smaller or equal 1; (ii) they sum up to the number of
electrons; (iii) they bear some information about correlation e↵ects in a compact
form.

Natural orbitals and density matrices

We can generalize these observations. Below are listed several important properties
of the density matrix operator P̂ and corresponding density matrix �:
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1. When acts of the function from L2, result is also L2;

2. P̂ is a Hermitian operator, and � is a Hermitian matrix;

3. P̂ has a complete set of eigenvectors {�i} with eigenvalues {ni}. �i are called
natural orbitals, ni — populations of natural orbitals. Matrix � is a diagonal
matrix in the basis of natural orbitals.

R
⇢1(1)d1 =

P
i ni or Tr[�] =

P
i ni;

⇢1(10, 1) =
P

i ni�⇤
i (1

0)�i(1) =
P

i ni|�i >< �i| or P =
P

p nip+p;

� =

0

BBB@

n1 0 . . . 0
0 n2 . . . 0
. . . . . . . . . . . .
0 0 . . . ni

1

CCCA (8.32)

4. 0  ni  1. For a wave function that is a single Slater determinant all ni equal
1 for the occupied orbitals, and zero for the virtual orbitals.

5.
P

i ni = N .

About N-representation problem:
Important property of the one-particle density is the following: If 0  ni  1 andP

i ni = N , then we can write

⇢1(1
0, 1) =

X

k

↵k⇢
k
1(1

0, 1) (8.33)

where ↵k > 0,
P

k ↵k = 1 and ⇢k is OPDM for the Slater determinant composed of N
natural orbitals �i.

On the other hand, any density ⇢(r) can represent (if
R
⇢(r)dr = N):

⇢(r) =
X

i

�i(r)
2 (8.34)

Proof: Consider sphere ⌦ centered in the point A. Let us find such ⌦ that
Z

⌦1

⇢(r)dr = 1 (8.35)

Let us take �1 as
p
⇢ inside ⌦ and zero outside. Then can write

⇢(r) = �2
1(r) + ⇢1(r) (8.36)

where ⇢1(r) � 0 and
R
⇢1(r)dr = N � 1. Repeat N times and get ⇢(r) =

P
i �i(r)2.

Such functions are orthonormal: < �i|�j >= 0

Two-particle density matrix

�pqrs =<  |p+q+sr| > (8.37)
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Density matrices and expectation values

For one-particle operators:

<  |Ô1| >= Tr[O1�] (8.38)

For two-particle operators:

<  |Ô2| >=
1

2
Tr[O2�] (8.39)

Prove by using second quantization representation of both.

8.2 Using electronic density and density matrices
for the analysis of electronic structure calcu-
lations

One-electron density characterizes electron distribution in the molecule, i.e., probabil-
ity to find an electron at some point, and it is of the great quantitative and qualitative
value.

Quantitative value: we need OPDM in order to calculate expectation values of
one-particle density matrices, e.g., multipole moments, or spatial extent of the wave
function.

Qualitative value of density is that it helps to analyze wave function in terms of
familiar models of chemical bonding. Recall H2 example: we saw that bonding orbital
has more density between atomic centers than just in case of non-interacting atoms.
Later on we shall discuss how to get this type of information (Bader AIM analysis).

We also would like to relate density with some familiar models:

• Lewis structures: H:O:H + two lone pairs on oxygen. Lewis structure for wa-
ter would be (core)2(�(OH))2(�(OH))2(n1)2(n2)2, where ni denotes lone pairs on
oxygen. Deviations from Lewis structures are also interesting.

• Ionicity of the bond: H+�Cl��.

• Hybridization model: sp, sp2, sp3, and so on.

• Bond orders, e.g., single, double, triple bonds.

Such analysis is of great interest in cases where structure of the molecule is not trivial,
e.g., radicals, clusters, highly energetic species (O4). That is why there are di↵erent
schemes of wave function analysis.
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8.2.1 Multipole moments

Dipole moment characterizes charge separation in the molecule. Quadrupole moments
describe charge asymmetry (deviation from spherical symmetry).

The dipole moment operator is given by:

µ = �
X

i

ri +
X

A

ZARA (8.40)

Expectation value of this one-electron operator is:

<  |µx| >=
Z
[x⇢(r0, r)]|r=r0dr = Tr[µx�] (8.41)

where � is a density matrix (matrix of the density operator P̂ ) and µx is a matrix of
the x-component of the dipole moment operator: µx

pq =< p|µx|q >.
Usually it is convenient to calculate both µ and � in the atomic basis.
The traceless quadrupole moment tensor is defined as:

Qij =
X

l

ql(3(xi)l · (xj)l � r2�ij), (8.42)

where ij mark Cartesian components {XYZ} of the coordinate of the point charge
ql. For electrons, all ql equal -1, and the electronic matrix elements of the quadrupole
tensor are :

Q = 3 ·

0

B@
<  |x2 � r2| > <  |xy| > <  |xz| >
<  |yx| > <  |y2 � r2| > <  |yz| >
<  |zx| > <  |zy| > <  |x2 � r2| >

1

CA (8.43)

where r2 = x2 + y2 + z2. The x2, y2, xy, . . . operators are also one-electron operators.

The <  |x2| >, <  |y2| >, and <  |z2| > matrix elements can be used to
estimate the spatial extend of the wave function, e.g., in order to assign Rydberg or
valence character to excited states.

8.2.2 Di↵erent orbitals

There several types of orbitals we use in electronic structure calculations:

1. Initial non-orthogonal atomic orbitals (AOs) {�p}. Overlap matrix S is defined
as Spq =< �p|�q >.

2. Orthogonalized atomic orbitals. We can orthogonalize any given basis set in
several possible ways. Since the meaning of atomic orbitals is transparent, we
would like to orthogonalize AO set such that the deviation of the new set from
the original one is minimal:

minT ||�� �T ||, T+ST = 1 (8.44)

where T is a transformation we seek. The result is T = S�1/2. This is called
symmetric orthogonalization, or Löwdin orthogonalization.
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3. Canonical Hartree-Fock orbitals (those which diagonalize Fock operator) —
delocalized molecular orbitals (MOs). They are delocalized over the entire
molecule. Their energies gives IP’s and EA’s (Koopmans theorem).

4. Natural orbitals (NOs): those which diagonalize density operator (eigenvectors
of density operator).

⇢(10, 1) =
X

i

ni�i(1
0)�i(1) (8.45)

P̂ =
X

p

npp
+p (8.46)

Natural orbitals and their population give the information about correlation.
NOs are the the most compact basis for representing density.

5. Localized orbitals. Why do we need them? In order to analyze wave function.
For example, we would like to write down the wave function for water in terms
in localized rather than delocalized orbitals. How to define localized orbitals?
There is no unique scheme. In general, variational principle is used to define
localization:

min(< �k�l|g|�k�l >) (8.47)

max(< �k�k|g|�k�k >) (8.48)

Or Boys localization: maximum separation of centroids???

8.2.3 Population analysis

Consider density matrix � in the AO basis set. Number of electrons is:

N =
Z
⇢(10, 1)|10=1d1 = Tr[�S], (8.49)

where � is a density matrix in the AO basis set, and S is an overlap matrix.
Why?

⇢(10, 1) =
X

µ⌫

�µ⌫⇠µ(1
0)⇠⌫(1) (8.50)

⇢(1) = ⇢(10, 1)|10=1 =
X

µ⌫

�µ⌫⇠µ(1)⇠⌫(1) (8.51)

N =
Z
d1⇢(1) =

Z
d1
X

µ⌫

�µ⌫⇠µ(1)⇠⌫(1) =

X

µ⌫

�µ⌫
Z
d1⇠µ(1)⇠⌫(1) =

X

µ⌫

�µ⌫Sµ⌫ =

X

µ

(�S)µµ = Tr[�S] (8.52)
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It is possible to interpret [�S]µµ as a number of electrons associated with atomic
orbital µ. This is called Mulliken population analysis:

qA = ZA �
X

µ2A
[�S]µµ (8.53)

where ZA is the charge of atomic nucleus A; the index of summation indicates that
we only sum over the basis functions centered on A.

This definition is by no means unique. Since Tr[AB] = Tr[BA],

N = Tr[S↵�S1�↵] (8.54)

for any ↵. With ↵ = 1
2
, we have:

N = Tr[S1/2�S1/2] = Tr[�0], (8.55)

where �0 is the density matrix in terms of symmetrically orthogonalized basis set.
The diagonal elements of �0 are used for Löwdin population analysis:

qA = ZA �
X

µ2A
[S1/2�S1/2]µµ (8.56)

Thus, we see that both schemes involve arbitrariness. However, both can be used
to observe trends, e.g., changes of bond polarity as shown in Table 8.1. Note that,
though the trend (more polar bonds for more electronegative atoms) is reproduced
correctly, however, absolute values are questionable. Especially dangerous would be
to compare results from the di↵erent basis sets, e.g., 6-31G* calculations on methane
compared to an STO-3G calculations on ammonia would predict that CH bond in
the latter is more polar than the NH bond in the former. Going from the 6-31G*
to 6-31G** basis set, we add more functions on hydrogen, that is why population
analysis assigns more electrons to the hydrogen in ** basis set. Another example: if
we would calculate H2O in the very large basis set (up to complete basis set limit),
but such that all functions are centered on oxygen, both population analysis would
assign all electrons to the oxygen. Despite the ambiguity in so defined charges, this
is still a useful tool of analysis.

8.2.4 Natural Bond Orbital program

The NBO program17 is interfaced to the many electronic structure programs. Goal is
to analyze electronic density in terms of Lewis structures and hybridization theory.
Theory of NBO analysis is given in Ref. 18.

As input, the program uses density matrix in some basis set and these basis set
orbitals. It is applicable to any wave function given that OPDM is calculated.

NBO performs series of transformations of the input basis set {�µ} to various
localized basis sets [natural atomic orbitals (NAOs), hybrid orbitals (NHOs), bond
orbitals (NBOs), and localized molecular orbitals (NLMOs)]:
input basis ! NAOs ! NHOs ! NBOs ! NLMOs.
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Table 8.1: Mulliken and Löwdin SCF population analysisa. Net charge on hydrogen
is shown.

Basis set CH4 NH3 H2O FH
STO-3G 0.06 0.16 0.18 0.21
4-31G 0.15 0.30 0.39 0.48
6-31G* 0.16 0.33 0.43 0.52
6-31G(*,*) 0.12 0.26 0.34 0.40
STO-3G 0.03 0.10 0.13 0.15
4-31G 0.10 0.20 0.28 0.36
6-31G* 0.16 0.27 0.36 0.45
6-31G(*,*) 0.11 0.18 0.23 0.27

a composed table from Ref. 1.

The localized sets may be transformed to delocalized natural orbitals (NOs), or
canonical molecular orbitals (MOs).

Below we discuss how these transformation are performed, and how these localized
orbitals are defined. We shall also analyze Q-Chem output of NBO analysis for the
water molecule.

Occupancy-weighted symmetric orthogonalization

In the NAO procedure, non-orthogonal AOs {�̃µ} are transformed to correspond-
ing orthonormal AOs {�µ} by the occupancy weighted symmetric orthogonalization
(OWSO) procedure:

�µ =
X

⌫

�̃⌫T
OWSO
⌫µ (8.57)

The transformation matrix TOWSO is found from variational principle. It minimizes
the occupancy weighted mean-squared deviation of the new orbitals {�µ} from the
parent set of non-orthogonal orbitals {�̃µ}:

min{
X

µ

!µ||�µ � �̃µ||}, (8.58)

where weighting factor !µ is taken as occupancy of �̃µ (diagonal expectation value of
the density operator P̂ :

!µ =< �̃µ|P̂ |�̃µ >= [�S]µµ, (8.59)

where � is a density matrix in the parent basis set, and S is an overlap matrix. Such
variational principle is a generalization of the Löwdin symmetric orthogonalization
procedure, which corresponds to choosing !µ = 1 for each µ. In OWSO procedure,
those orbitals having highest occupancy are most strongly preserved in their original
form, while orbitals of low occupancy can distort more freely to achieve orthonormal-
ity. This procedure ensures stability in large basis sets. For small near-minimal basis
sets TOWSO is very close to the Löwdin transformation S�1/2.
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Natural orbitals and one-particle density matrix

Natural orbitals are defined as eigenstates of OPDM:

P̂�i = !i�i (8.60)

where !i are called populations or occupation numbers. By their definition, NAOs
have an important optimum property that leads to the most rapid convergent expan-
sion of the electron density ⇢(r) in a finite basis set:

⇢(r) ⇡
nX

k=1

!k�k(r)
2 (8.61)

Thus, NAO’s are the optimal basis set to represent one-electron density.

Natural atomic orbitals

Localized NAOs are obtained as eigenvectors of localized blocks of the density ma-
trix. Procedure is the following: diagonalize block of OPDM associated with atomic
functions localized on the given atom. Then remove interatomic overlap by OWSO
procedure. Orbitals centered on one atom are already orthogonal among themselves.

These orbitals are used to define NAO charges:

qA = �
X

i

PA
ii + ZA (8.62)

They also are used to define natural atomic electronic configuration, e.g., (1s)1.99(2s)1.90 . . ..
Such, inter- and intra- molecular charge transfer can be calculated. Moreover,

energy change associated with this charge transfer can be calculated as well.

Bond eigenvectors: natural hybrids and natural bond orbitals

In NAOs basis, density matrix has the following form: it is diagonal in localized
blocks, and it has non-diagonal non-zero blocks:

PICTURE OF P HERE
With the density matrix transformed to NAO basis, the NBO program begins

search for an optimal natural Lewis structure:

1. NAOs of high occupancy (> 1.999 e) are removed as unhybridized core orbitals.

2. NAO’s with an occupancy (> 1.90) are identified as lone pairs.

3. Two-centered blocks of density matrix (PAB) are analyzed: program searches
for bond vectors �AB (� here is a generic notation for any occupied orbital, it
can refer to ⇡ bond as well) with high occupancy (> 1.90).

4. If insu�cient number of bonds is found, the program analyzes three-centered
blocks and looks for three-centered bonds.
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5. Each �AB is decomposed into its normalized hybrid contributions hA and hB

from each atom:
�AB = cAhA + cBhB, (8.63)

where hA, hB are so called natural hybrid orbitals composed of NAOs. Hybrids
from each center participating in di↵erent bonds are symmetrically orthogonal-
ized to remove intra-atomic overlap.

As a result, molecular wave function can be rewritten as “natural Lewis struc-
ture”: (core)2(nA)2�2

AB. Generally, there is some deviation from the idealized Lewis
structure, e.g., not all population numbers are equal to 2. Total Lewis occupancy can
be calculated and the quantity called % of Lewis structure is then can be derived.
Usually, this numbers are very high: more than 99%: for ethylene, % ⇢(Lewis) is
99.74%, for benzene: 97.12%. Benzene has resonance structure, which reduce the
dominant character of the localized Lewis structure.

Natural localized molecular orbitals

Since total occupancy of NBOs is not equal to the number of electrons, we have some
contribution of remaining weakly occupied NBOs. The most important of these are
Lewis anti-bonds �⇤

AB:
�⇤
AB = cAhA � cBhB, (8.64)

Don’t get confused by these anti-bonds – they are not the same as virtual orbitals
in HF theory. NBO analysis of HF wave function will produce some weakly populated
natural Lewis anti-bonds. Their presence is not related to the correlation e↵ects, but
to the deviation of molecular wave function from the strictly localized Lewis structure.

Thus, these NLMOs are found by NBO program by minimizing ��⇤ coupling
elements of the density matrix P .

Associated energy change can be calculated.

Hyper-conjugative interactions in NBO analysis

Hyper-conjugative interactions are defined as interactions not described by Lewis
structure. These are weak departures (� ! �⇤) from a strictly localized Lewis struc-
ture. They are also called “non-covalent” e↵ects.

Natural energy decomposition

Total energy can be decomposed into several components associated with a particular
type of interactions.

Hartree-Fock calculations of water: NBO analysis

The current version of Q-CHEM supports only NBO analysis of SCF, DFT, or
CC/EOM-CC wave functions. See the NBO tutorial on the web.
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NBO analysis: Formaldehyde example

Geometry:

----------------------------------------------------
Standard Nuclear Orientation (Angstroms)

I Atom X Y Z
----------------------------------------------------

1 C 0.000000 0.000000 0.529237
2 O 0.000000 0.000000 -0.672963
3 H 0.927500 0.000000 1.104138
4 H -0.927500 0.000000 1.104138

----------------------------------------------------

HF/6-31G(d):

Natural Population
Natural ---------------------------------------------

Atom No Charge Core Valence Rydberg Total
--------------------------------------------------------------------

C 1 0.32443 1.99972 3.63992 0.03592 5.67557
O 2 -0.58199 1.99982 6.55763 0.02454 8.58199
H 3 0.12878 0.00000 0.86909 0.00213 0.87122
H 4 0.12878 0.00000 0.86909 0.00213 0.87122

====================================================================
* Total * 0.00000 3.99954 11.93574 0.06472 16.00000

Natural Population
--------------------------------------------------------

Core 3.99954 ( 99.9884% of 4)
Valence 11.93574 ( 99.4645% of 12)
Natural Minimal Basis 15.93528 ( 99.5955% of 16)
Natural Rydberg Basis 0.06472 ( 0.4045% of 16)

--------------------------------------------------------

Atom No Natural Electron Configuration
----------------------------------------------------------------------------

C 1 [core]2s( 1.03)2p( 2.61)3s( 0.01)3p( 0.02)3d( 0.01)
O 2 [core]2s( 1.71)2p( 4.85)3p( 0.01)3d( 0.02)
H 3 1s( 0.87)
H 4 1s( 0.87)

NATURAL BOND ORBITAL ANALYSIS:

Occupancies Lewis Structure Low High
Occ. ------------------- ----------------- occ occ

Cycle Thresh. Lewis Non-Lewis CR BD 3C LP (L) (NL) Dev
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=============================================================================
1(1) 1.90 15.89491 0.10509 2 4 0 2 0 0 0.05

-----------------------------------------------------------------------------

Structure accepted: No low occupancy Lewis orbitals

--------------------------------------------------------
Core 3.99954 ( 99.988% of 4)
Valence Lewis 11.89538 ( 99.128% of 12)

================== ============================
Total Lewis 15.89491 ( 99.343% of 16)

-----------------------------------------------------
Valence non-Lewis 0.08099 ( 0.506% of 16)
Rydberg non-Lewis 0.02410 ( 0.151% of 16)

================== ============================
Total non-Lewis 0.10509 ( 0.657% of 16)

--------------------------------------------------------

(Occupancy) Bond orbital/ Coefficients/ Hybrids
-------------------------------------------------------------------------------

1. (2.00000) BD ( 1) C 1- O 2
( 33.02%) 0.5747* C 1 s( 0.00%)p 1.00( 99.55%)d 0.00( 0.45%)

0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.9961 -0.0570 0.0000 0.0000
0.0000 0.0000 -0.0671 0.0000 0.0000

( 66.98%) 0.8184* O 2 s( 0.00%)p 1.00( 99.57%)d 0.00( 0.43%)
0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.9978 -0.0062 0.0000 0.0000
0.0000 0.0000 0.0658 0.0000 0.0000

2. (1.99993) BD ( 2) C 1- O 2
( 33.31%) 0.5771* C 1 s( 32.17%)p 2.10( 67.51%)d 0.01( 0.32%)

0.0000 -0.5626 -0.0718 -0.0052 0.0000
0.0000 0.0000 0.0000 0.8163 0.0932
0.0000 0.0000 0.0000 0.0082 -0.0560

( 66.69%) 0.8167* O 2 s( 42.56%)p 1.34( 56.92%)d 0.01( 0.52%)
0.0000 -0.6519 -0.0248 0.0004 0.0000
0.0000 0.0000 0.0000 -0.7543 -0.0145
0.0000 0.0000 0.0000 0.0020 -0.0719

3. (1.99573) BD ( 1) C 1- H 3
( 57.62%) 0.7591* C 1 s( 33.99%)p 1.94( 65.79%)d 0.01( 0.22%)

0.0000 0.5827 -0.0197 -0.0013 0.7060
-0.0097 0.0000 0.0000 0.3992 0.0009
0.0000 0.0383 0.0000 0.0267 -0.0041

( 42.38%) 0.6510* H 3 s(100.00%)
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1.0000 0.0083
4. (1.99573) BD ( 1) C 1- H 4

( 57.62%) 0.7591* C 1 s( 33.99%)p 1.94( 65.79%)d 0.01( 0.22%)
0.0000 0.5827 -0.0197 -0.0013 -0.7060
0.0097 0.0000 0.0000 0.3992 0.0009
0.0000 -0.0383 0.0000 0.0267 -0.0041

( 42.38%) 0.6510* H 4 s(100.00%)
1.0000 0.0083

5. (1.99972) CR ( 1) C 1 s(100.00%)
1.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000

6. (1.99981) CR ( 1) O 2 s(100.00%)p 0.00( 0.00%)
1.0000 0.0003 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 -0.0002 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000

7. (1.98780) LP ( 1) O 2 s( 57.45%)p 0.74( 42.48%)d 0.00( 0.07%)
-0.0003 0.7578 -0.0143 0.0002 0.0000
0.0000 0.0000 0.0000 -0.6517 -0.0065
0.0000 0.0000 0.0000 0.0021 -0.0273

8. (1.91619) LP ( 2) O 2 s( 0.00%)p 1.00( 99.80%)d 0.00( 0.20%)
0.0000 0.0000 0.0000 0.0000 0.9990

-0.0077 0.0000 0.0000 0.0000 0.0000
0.0000 0.0443 0.0000 0.0000 0.0000

....................................

The shapes of natural bond orbiltals are easier to interpret that the delocalized MOs.
For exmaple, the lone pair NBO is not mixed with �CH , the �CH orbitals are localized,
etc.

8.2.5 Partial charges and dipole moments: Formaldehyde ex-
ample

One obvious way to judge the quality of partial atomic charges {qA} is to compare
the dipole moment computed as an expectation value for the given wave function
with the dipole moment computed using partial charges derived from the same wave
function:

µ =<  |µ̂| >= Tr[�µ] (8.65)

µ =
X

A

qARA (8.66)

If we use Å to specify the coordinates, then the the conversion factor to Debye is
1/0.52918 · 2.5418 = 4.803.
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This is demonstrated for formaldehyde using HF in two di↵erent basis sets. The
geometry is given above.

Results in 6-31G(d):

Ground-State Mulliken Net Atomic Charges

Atom Charge (a.u.)
----------------------------------------

1 C 0.134468
2 O -0.427755
3 H 0.146644
4 H 0.146644

----------------------------------------
Sum of atomic charges = 0.000000

-----------------------------------------------------------------
Cartesian Multipole Moments

-----------------------------------------------------------------
Dipole Moment (Debye)

X 0.0000 Y 0.0000 Z 2.7570
Tot 2.7570

..........................
Natural Population

Natural ---------------------------------------------
Atom No Charge Core Valence Rydberg Total

--------------------------------------------------------------------
C 1 0.32443 1.99972 3.63992 0.03592 5.67557
O 2 -0.58199 1.99982 6.55763 0.02454 8.58199
H 3 0.12878 0.00000 0.86909 0.00213 0.87122
H 4 0.12878 0.00000 0.86909 0.00213 0.87122

====================================================================
* Total * 0.00000 3.99954 11.93574 0.06472 16.00000

The dipole moments computed using partial Mulliken and NBO charges are 3.27
and 4.07 Debye, respectively.

Results in 6-311+G(d,p):

Ground-State Mulliken Net Atomic Charges

Atom Charge (a.u.)
----------------------------------------

1 C 0.106462
2 O -0.308306
3 H 0.100922
4 H 0.100922

----------------------------------------
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Sum of atomic charges = 0.000000

-----------------------------------------------------------------
Cartesian Multipole Moments

-----------------------------------------------------------------
Dipole Moment (Debye)

X 0.0000 Y 0.0000 Z 2.9443
Tot 2.9443

...............................
Natural Population

Natural ---------------------------------------------
Atom No Charge Core Valence Rydberg Total

--------------------------------------------------------------------
C 1 0.39789 1.99971 3.56085 0.04155 5.60211
O 2 -0.57583 1.99978 6.55715 0.01889 8.57583
H 3 0.08897 0.00000 0.90836 0.00267 0.91103
H 4 0.08897 0.00000 0.90836 0.00267 0.91103

====================================================================
* Total * 0.00000 3.99949 11.93472 0.06579 16.00000

The Mulliken and NBO dipole moments are 2.34 and 3.81 Debye, respectively.
Note that the trend (the dipole moment increase in a larger basis set) is not repro-
duced and the absolute values are quite o↵. However, the NBO dipoles are less basis
set dependent.
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Chapter 9

Practice of electronic structure
calculations

9.1 Packaged programs for electronic structure cal-
culations

There are several widely (and sometimes wildly) used ab initio packages which focus
on di↵erent methods. Every package has a homepage, where you can find a detailed
information about its functionality.

We can consider GAUSSIAN as a standard for basic ab initio calculations: SCF,
DFT, MP2, QCISD, CIS methods are implemented.

Q-CHEM package is an alternative to the Gaussian. It has similar functionality,
and it has very powerful tools for linear scaling. It has a variety of CC and EOM-CC
codes.

GAMESS is non-commercial and it is the best MCSCF package.
Former ACES II (non-commercial) is the most complete coupled-cluster package.

Now it is available as ACES III (Florida version) and C4 (Austin-Mainz-Budapest).
PSI (non-commercial) has coupled-cluster methods, fancy CI, the best FCI code,

MCSCF.
SPARTAN uses (dumbed-down) Q-CHEM engine and is famous for its excellent

graphics and user-friendly interface.
In this course, we will use mostly Q-CHEM. We will begin by using WebMO

interface, but for production-level runs on HPC we will need to learn how to manually
edit input files and submit jobs using batch files.

9.2 Getting help

Up-to-date materials relevant to this course are on the web:
http://iopenshell.usc.edu/krylovgroup/chem545.html

Link “Practice of ab initio calculations” from this page contains some notes/links
about performing and designing calculations using packaged programs. It also presents
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some site-specific tips, e.g., how to connect, computer usage policies, etc.
I also recommend to read some general explanations about setting up ab initio

calculations. Check out the following links: “How to run a Quantum Chemistry
Program” and “How to construct a Z-Matrix”.

Q-CHEM manual can be downloaded in a PDF format. All manuals are available
as hard copies in SSC#409.

9.3 How to run ab initio program?

9.3.1 Coordinates

You must specify a geometry of the molecule you you wish to study. Generally, you
have two input choices:

• Cartesian: Specify the Atomic Symbol and the XYZ coordinates of the atom.

• Z-matrix: Specify the internal bond distances and angles between atoms. A
ball and stick model is useful.

A simple way to perform transformation from Cartesian coordinates to intra-
molecular is to use xmol program (installed on almaak) or jmol.

Sources of coordinates:

1. X-ray crystallography, NMR: X-Ray is good for solid phase structures and crys-
tallized organics and proteins. NMR is useful for liquid phase structures.

2. Books - these will provide you with bond distances between di↵erent elements.
However, you will still need to determine angles on your own.

3. Previous calculations - One can use a various set of software packages to get
molecular geometries.

Insight (tm) is one such useful package. You can build a molecule from fragments
then optimize the geometry with a classical force field algorithm. Also, you can use
the a semi-empirical method for structures such as AM1. Finally, you can use any
number of ab initio packages to optimize a guess structure into a valid geometry.

Note that when you are performing accurate methods such as coupled-cluster
theory, you should use the best geometry available, i.e., one from a SCF or MP2
geometry optimization using a medium sized basis set.

Z-matrix

A Z-matrix is used to define connectivity between atoms in a molecule. The param-
eters one needs are distances, angles and dihedral angles. We will show a few simple
examples of how to make Z-matrices in this text. Sometimes it is a good idea to think
before attempting to write a Z-matrix. What is it you are planning on doing with the
molecule? If you are going to do a geometry optimization for the ground state, then
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it would be a good idea to enforce symmetry. Looking at the benzene example below,
one can see that the D6h symmetry will never be broken. When optimizing, only the
bond distances have a chance of changing, since the angles are forced to 120 degrees.
However, if one is going to do a transition state search, then the Z-matrix should be
as flexible as possible, to allow for any symmetry- breaking geometry changes. Taking
the time to plan what one is going to do can save time hunting for why the desired
output was not achieved.

Sample: Water
H
O 1 OH
H 2 OH 1 OHO

OH = 1.08
OHO = 107.5

For water, all we need is a bond distance and an angle. We start with the first
atom, hydrogen, on a line of its own. The next line begins with the second atom,
oxygen, and then states with which atom to measure the bond distance OH from, in
this case, atom one. On the next line, the third atom, hydrogen, is OH distance away
from atom two and has a bond angle of OHO in relation to atom one.

9.3.2 Charge

This determines the net charge of the system of interest and implicitly tells the
program how many electrons there will be.

9.3.3 Spin Multiplicity

This field determines the net di↵erence between up and down spins in the molecule.
Note how you have to tell the program beforehand whether your molecule in the
ground state is a singlet, triplet, etc. If you are not sure of the multiplicity, then run
some calculations with di↵erent settings and determine which ones look reasonable.
Sometimes, ground state multiplicity is self-evident. Other times, it is nearly impos-
sible to determine the proper multiplicity because either there are near-degeneracies
in the ground state, or correlation and basis set e↵ects are crucial.

9.3.4 Basis Set

The importance of selecting a good basis set is a key to getting reasonable results.
This topic will covered in more detail in the future. For now, it is important to know
that the simplest basis set is a minimal one but it typically provides poor answers.
Medium sized basis sets typically are 3 or 4 times larger and are useful for geometry
optimizations and properties of well-behaved molecules. Finally large basis sets can
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be on the order of 10+ times larger than a minimal set and they are useful for ”ultra-
accurate” results.

9.3.5 Methods

One can choose from a multitude of methods which include:

1. SCF - Self Consistent Field theory (Ground State)

• Hartree - Fock theory : A starting point for correlated and excited state
methods;

• DFT - Density Functional Theory: A quick and reasonably accurate method.
(Well, some people call it Dirty Fast Trick... Do not tell it to anybody!)

2. MP2 - Moller - Plesset perturbation theory (Ground State). This is the simplest
correlation correction to the SCF energy and derivatives.

3. CCD, CCSD, CCSD(T), ... - Coupled-cluster theories. These are more ad-
vanced forms of correlation corrections which correspondingly take longer to
perform.

4. CI - Configuration interaction (Grd. State and Exc. State) CIS and CIS(D)
are useful first approximations to excited states of molecules. Higher order CI
such as CISDTQ can be useful a correlation correction to the ground state and
excited states.

5. Geometry optimizations. A molecule of interest can be optimized with respect
to the electronic potential energy surface generated by SCF and MP2 calcula-
tions.

6. Properties. Di↵erent programs o↵er a wide range of calculated properties of
molecules. They include energies, dipoles, polarizabilities, vibrational frequen-
cies, NMR shifts, ...

These are general notes about input. However, usually you have to specify much
more information to set up calculations. Also, formats of input files are very di↵erent.

9.4 Tricks of the trade

Performing calculations is not simple. You can make mistakes in preparing input
(most frequent problems) and program will either crush, or give an incorrect results.
Therefore you have to always analyze output file. Also, it is good to perform some
benchmarks to make sure that everything is correct. When starting use of another
package, it is always good to run some test problems in both packages to compare
results (must be same!). When starting to work on a new problem, good test is to run
minimal basis set calculations in order to see that your input is correct , to analyze
valence MOs, etc.
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Why outputs are so large? Extra information is given to help you to check your
results or to find out why the program does not work. Always look at Z-matrix
program prints as an output to make sure it looks correct. Check symmetry. For the
test, nuclear repulsion energy is good, since it does not depend on basis set/model,
but on geometry only. Good test for performing calculations of the same molecule
with di↵erent methods, bases, packages.

Then good thing to look at are molecular orbitals, analyze their symmetries and
energies. Sometimes SCF can converge to a wrong solution (since it is non-linear
problem). If you get occupied orbitals with positive energy, or virtual orbitals with
negative energy, or if the HOMO-LUMO gap is too small, possibly something is very
wrong. However, sometimes it can be a correct answer. Which would mean that HF
breaking down. Why? Recall MP2 or H2 problem.

Frequencies: negative frequencies mean two things: this is not a minima, or HF
wavefunction breaks symmetry, or is very poor.

9.5 Molecular properties

Atomic charges: characterize screening — how much density resides on atoms. Mul-
tipole moments: dipoles, quadrupoles, etc. HF: Koopmans’ IP (orbital energies).
Electronic spatial extent — how di↵use electron cloud is. Rydberg character. Ther-
mochemical data — can calculate heats of formation, enthalpies. etc.

9.6 How to present results

Tables arranged as follows: Experiment: last line. Total energies are given in a first
column. 6 digits in total energy is a standard. Good style is to provide nuclear
repulsion energy.
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Chapter 10

Electron correlation

References: 5, 6.

10.1 Introduction of the correlation problem

Electron correlation energy is defined as a di↵erence between Hartree-Fock energy in
the infinite basis set and the exact energy:

Ecorr = Eexact � EHF (10.1)

We also can define correlation energy in the given finite basis set:

Ecorr = EFCI � EHF , (10.2)

where EHF is Hartree-Fock energy in the given finite basis set, and EFCI is full
configuration interaction energy calculated in the same basis set.

What is a Hartree-Fock energy? Hartree-Fock problem is finding the best sin-
gle determinant wavefunction in a self-consistent field procedure, which is repeated
diagonalization of an e↵ective one-electron Hamiltonian:

Fµ⌫ = hµ⌫ +
X

��

< µ⌫||�� > P�� (10.3)

P�� =
NX

i=1

C�iC�i (10.4)

This is a mean-field procedure. All electron interactions are averaged. Correlations
are averaged out and each electron moves in the average field of the others. This
means that electrons do not feel instantaneous positions of other electrons. Instead,
they feel averaged in time positions of other electrons.

Our task is now to develop systematic improvements to the mean-field model.
Why correlation energy is important? On the one hand, correlation energy is

usually smaller than 1% of the total electron energy. However, it is crucial because
it changes in most chemical processes. Consider H2 dissociation: at equilibrium
geometry, electrons must be correlated. Their correlation energy is omitted from
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Hartree-Fock wavefunction. On the dissociation limit, there is no electron correlation:
each atom has one electron. Hence, for each of the individual H-atoms one electron
approximation is exact. So correlation energy changes along dissociation curve from
some finite value to zero. Rough order of magnitude for correlation energy is about 50-
100 kJ/mol (0.5-1.0 eV) per electron pair. It is exactly the same order of magnitude as
chemical transformation energies. Hence, Hartree-Fock energy for the H2 dissociation
is wrong by about 0.5-1.0 eV, which is the same order of magnitude as H-H bond
energy.

Like energy itself, the correlation energy scales with the size of the molecule, it is
an extensive property.

Bond energies are a leading manifestations of electron correlation, but there are
presumably a lot of other (may be less crucial) e↵ects on molecular structure.

10.1.1 Chemical consequences of electron correlation

In this section we consider qualitative chemical consequences of electron correlation.

Ionicity

The Hartree-Fock model lets electrons get slightly too close to each other (because of
averaging out instantaneous repulsions). Therefore, polarity is slightly overestimated
by Hartree-Fock model. For example, calculated dipole moments at HF/6-31G* are
typically 20% too big.

We can demonstrate that Hartree-Fock wavefunction is too ionic by considering
H2 molecule in a minimal basis set:

�RHF = ��(↵� � �↵) =

(sA + sB)(sA + sB)(↵� � �↵) =

(sAsA + sBsB + sAsB + sBsA)(↵� � �↵) =

H�
AH

+
B +H+

AH
�
B +HAHB +HAHB (10.5)

Hartree-Fock wavefunction is a mixture of ionic and covalent pieces in a fixed
proportion. This is always wrong, but it is especially bad as one approach dissociation
when there should be zero probability of getting H+ and H�!

Bond lengths

Due to ionic character, bond lengths are generally underestimated. Correspondingly,
frequencies are overestimated. As a result, molecules at Hartree-Fock level of theory
are too rigid.

Correlation treatment would decrease ionicity and will lead to the bond length
increase. Why? The Hartree-Fock model describes chemical bond by a formation of
bonding and antibonding orbitals, bonding orbitals being occupied, antibonding or-
bitals completely unoccupied. Full configurational interaction wavefunction includes
all possible excited determinants. Hence, “electron correlation” must be associated
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with antibonding orbitals becoming fractionally occupied, due to other determinants
mixing with Hartree-Fock one. Hence, bond length will increase, and frequencies will
decrease.

Electron-molecule scattering

In the HF approximation molecule’s electron see the time averaged position of the
scattering electron. In reality, the molecular electrons polarize in response to the
instantaneous position of the scattering electron.

Basic point: understanding the chemistry of Hartree-Fock model leads you to a
rough understanding of the role of correlation without any mathematics. It should
also give you some instinct for when to trust Hartree-Fock calculations and when not
to.

10.1.2 Dynamical and non-dynamical correlation

We can distinguish, in general, two di↵erent e↵ects associated with electron corre-
lation: dynamical and non-dynamical correlation. There is no rigorous definition of
these two e↵ects. There is no rigorous way to separate these two e↵ects as well. We
distinguish dynamical and non-dynamical correlation as two asymptotic cases.

The e↵ect of correlation is dual. Remember uncertainty principle? Is electron a
particle or a wave? We can measure electron di↵raction, when electrons behave as
waves. On the other hand, electrons can interact with individual molecules, and we
can count individual electrons when they hit luminescent screen (on impact, electrons
interact with an individual molecules). When we have electron localized in space,
its momentum (and, hence, kinetic energy) is undefined. Similarly, when energy of
electron is well defined, its position is undefined (they behave like a waves).

Dynamical correlation can be considered as a local interaction of two electrons,
their energies undefined. Non-dynamical correlation is associated with degeneracy:
interaction of two electrons (may be well separated in space) with a same energy.

Since, we did not define rigorously, how do we distinguish dynamical and nondy-
namical correlation:

Ecorr 6= End + Edyn (10.6)

Later I’ll introduce rigorous definition of both components for which we’ll have
this hold:

Ecorr = End + Edyn (10.7)

Dynamical correlation

Dynamical correlation is the physical e↵ect associated with electrons avoiding each
other at short range and their fluctuations being correlated at long range. This
is a mostly local (in space) e↵ect. But it is wide in energy coordinate: there are
contributions from electrons with very di↵erent energy (occupying well separated in
energy orbitals). Many small contributions sum up to the large quantity.
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Nondynamical correlation

Nondynamical correlation arises when two or more electronic states are nearly de-
generate. The electrons fluctuate with frequencies proportional to the energy gaps
between electronic states. If two or more states are nearly degenerate, we have a
low frequency oscillations, hence, slow electron motions. For slow electrons mean-
field would not work as good as for fast electrons. Another way to see it: kinetic
energy of electrons (plus nuclear-electron interaction) against pair electron-electron
interactions. For slow electrons we have decrease of one-electron part of the total
Hamiltonian.

Generally, degeneracy is an indication that non-dynamical correlation is impor-
tant. As a pathological example, we consider electron scattering from the molecule.
For a free electron which has a continuum of energy levels degeneracy is very high.
As another example, consider H2 dissociation. On dissociation limit, bonding � and
anti-bonding �⇤ orbitals become degenerate. As a result two Slater determinants (�)2

and (�⇤)2 become degenerate.
So non-dynamical correlation is important in

1. electron-molecule scattering;

2. bond-dissociation;

3. anions;

4. molecules with several Lewis structures;

5. diradicals.

This e↵ect is non-local (electrons occupying degenerate orbitals can be far apart
spatially), but narrow in energy coordinate (electrons occupy degenerate states).

In terms of FCI wavefunction:

 = C0�0 + CL�L (10.8)

dynamical correlation is associated with a contributions from many excited deter-
minants with a small coe�cients CL; non-dynamical correlation is associated with a
contributions from several configurations with a large coe�cients.

Consider H2 dissociation. FCI wavefunction would be all double excitations from
the reference configuration (�)2:

 = C0(�)
2 + C1(�

⇤)2 +
X

i

Ci(�i)
2 (10.9)

At equilibrium all coe�cients Ci are small. But the gross e↵ect can be large, when
we sum contributions from many determinants. On dissociation, coe�cient C1 will
become very large. As a result, contribution from a single (�⇤)2 configuration would
be large. Hence, we have dynamical correlation at equilibrium, and non-dynamical
correlation at dissociation limit. Which makes sense: at small distances, local e↵ects
prevail, whereas at large separations, we have non-local e↵ects.

Picture of MO of H2 here.
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Unrestricted Hartree-Fock wavefunction as a tool to describe non-dynamical
correlation

The non-dynamical correlation is the e↵ect of mixing in a few other determinants
necessary to get a qualitatively correct wavefunction (e.g. for dissociation). This
can be achieved e.g. by UHF, or, alternatively by mixing a couple of determinants
together.

Qualitatively correct wavefunction for � bond dissociation:

 = C0(�
2) + C1(�

⇤)2, (10.10)

Unrestricted Hartree-Fock wavefunction has no restriction to be of correct sym-
metry. Hence, variational principle will yield at dissociation limit molecular orbitals,
which are localized near individual atoms, instead of delocalized molecular orbitals �
and �⇤.

�UHF
0 (r ! 1) = |sA↵sB� >=

1p
2

✓
sA(1)↵(1) sB(1)�(1)
sA(2)↵(2) sB(2)�(2)

◆
=

1p
2
(sA(1)↵(1)sB(2)�(2)� sB(1)�(1)sA(2)↵(2)) (10.11)

Hence, UHF wavefunction can describe electron localization near individual atoms.
In contrast to the RHF-wavefunction, it corresponds to the pure covalent structure.
However, it has incorrect symmetry. We can show that �UHF

0 is a mixture of singlet
and triplet states:

 singlet
cov = (sAsB + sBsA)(↵� � �↵) =

(sA↵sB� � sB�sA↵) + (sB↵sA� � sA�sB↵) (10.12)

 triplet
cov = (sAsB � sBsA)(↵� + �↵) =

(sA↵sB� � sB�sA↵) + (sA�sB↵� sB↵sA�) (10.13)

 UHF
0 =

1p
2
( singlet

cov + triplet
cov ) (10.14)

UHF-wavefunction is not an eigenstate of S2: < S2 >⌘<  UHF |S2| UHF >=1 on
dissociation limit.  UHF is spin-contaminated. < S2 >=0 for singlet and 2 for triplet.

10.1.3 Conclusions

Electron correlation energy is defined as a di↵erence between exact and uncorrelated
mean-field Hartree-Fock model. Hartree-Fock, an one-electron, mean-field approx-
imation, approximates many-electron wavefunction by a single Slater determinant.
Hence, following e↵ects are omitted in Hartree-Fock model:

1. local interaction of electrons (dynamical correlation);

2. e↵ect of several nearly degenerate configurations (non-dynamical correlation).
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H2 example: at equilibrium, we want to include local e↵ect of electron repulsion.
At dissociation, we need non-local e↵ects: two configuration (�)2 and (�⇤)2 are de-
generate, we need two determinants to describe a wavefunction on dissociation limit.
Hence, we have dynamical and non-dynamical correlation e↵ects. Consider two situ-
ations for calculation of dissociation energy: Start: calculate EHF of H2 molecule at
equilibrium. Then (i) calculate EHF of H2 molecule at large distance. In this case
we missed dynamical correlation at equilibrium and non-dynamical correlation at dis-
sociation. (ii) Calculate EHF of each of H atoms. Then we missed only dynamical
correlation energy at equilibrium. Both are important

10.2 Structure of FCI matrix and di↵erent approaches
to electron correlation

10.2.1 Intermediate normalization

It is convenient to employ so called intermediate normalization of the wavefunction
instead of familiar normalization condition:

<  | >= 1 (10.15)

Intermediate normalization requires that the weight of reference determinant (usually,
Hartree-Fock determinant) equals unit:

< �0| >= 1 (10.16)

Thus, a general wavefunction assumes the following form:

 FCI = �0 +
X

L

CL�L (10.17)

With normalization condition (10.15), the energy is given by the familiar expectation
value:

E =<  |H| > (10.18)

With intermediate normalization (10.16) the energy expression assumes the following
form:

E =< �0|H| > (10.19)

To show that, consider matrix element < �0|H| > for the wavefunction  which is
an eigenfunction of H. Thus, energy calculated as (10.19) is the same as calculated by
(10.18) for the exact wavefunction (but not the same for an approximate). However,
for some approximate models (e.g., truncated CI) both equation give the same answer.

To proceed to di↵erent approaches for correlation energy calculation, consider FCI
wavefunction and compare it against HF one. Lets think our basis is large enough to
be complete.

 FCI = �0 +
X

L

CL�L = (1 + Ĉ1 + Ĉ2 + . . . ĈN)�0, (10.20)
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where operator ĈM excites M electrons in all possible ways from reference configura-
tion �0:

Ĉ1 =
X

i2occ,a2virt
tai a

+
a ai

Ĉ2 =
1

4

X

ij2occ,ab2virt
tabij a

+
a a

+
b aiaj (10.21)

Orbital picture here. (Occupied, virtuals, several excited determinants).
FCI solution: in the basis of all �L, diagonalize matrix of the total Hamiltonian,

and find its eigenvalues and eigenvectors.
How does the Hamiltonian matrix look like in the basis of excited determinants?
FCI matrix picture here.....
Several observations:

1. For intermediate normalization and for Hartree-Fock reference, we have:

E =< �0|H|(1+C1+C2+. . . CN)�0 >=< �0|H|�0 > + < �0|H|C2�0 >= E0+Ecorr,
(10.22)

where E0 is Hartree-Fock energy, and correlation energy Ecorr depends explic-
itly only on the amplitudes (weights) of doubly excited configurations. That
does not mean, however, that we can disregard all other excitations, since they
are coupled through Hamiltonian with double excitations, and therefore define
coe�cients of doubly excited determinants in FCI wavefunction.

2. Correlation is associated with the population antibonding orbitals.

3. We can associate di↵erent orders in excitations with pair correlations, triple
correlations, etc. (E.g., for H2 only single and double excitations are possible,
hence, FCI is CISD). For HeH — only triple excitations, etc. Hence, we can
hope that the weight of higher order excitations would die in a FCI wf.

4. Di↵erent determinants: a few degenerate contribute a lot (have large CI coe�-
cients) into total energy. Or a lot of non-degenerate (with small CI coe�cients)
contribute totally a lot into the energy. Again, first case is non-dynamical
correlation, second one — dynamical correlation.

Practical electron correlation methods. Idea — try to include e↵ects of pair-
electron correlation first, then three-particle e↵ects, and so on.

1. MCSCF theory: no dynamical correlation. Exponential as it is FCI in a smaller
subspace. For small active spaces (i.e., � � �⇤ and the like), scaling is just like
for the Hartree-Fock method: N2 �N3.

2. Superposition of configurations (configurational interaction)

3. Perturbation theory (MP2,MP3). MP2 (2nd order P.T.) — perturbative treat-
ment of pair correlations. N4 �N5
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4. Coupled cluster theory with singles and doubles. Self-consistent treatment of
pair correlations. N6

5. The e↵ect of triple excitations CCSD(T) theory. Corrections for triple excita-
tions. N7

6. Gaussian-2 theory and chemical accuracy

10.2.2 Summary

• Correlation energy: di↵erence between exact and uncorrelated (HF) model.
HF is one-electron, mean-field approximation. E↵ects omitted: (1) local inter-
action of electrons; (2) e↵ect of several nearly degenerate configurations. H2

example: at equilibrium, we want to include local e↵ect of electron repulsion.
At dissociation, we need non-local e↵ects: two configuration (�)2 and (�⇤)2 are
degenerate, we need two determinants to describe a wavefunction on dissoci-
ation limit. Hence, we have dynamical and non-dynamical correlation e↵ects.
Consider two situations for calculation of dissociation energy: Start: calculate
EHF of H2 molecule at equilibrium. Then (i) calculate EHF of H2 molecule
at large distance. In this case we missed dynamical correlation at equilibrium
and non-dynamical correlation at dissociation. (ii) Calculate EHF of each of H
atoms. Then we missed only dynamical correlation energy at equilibrium. Both
are important...

• Intermediate normalization is more convenient in electronic structure: < �0| >=
1 (amplitude of the reference determinant is unit). For so normalized wavefunc-
tion energy is: E =< �0|H| >. By analyzing FCI matrix we get: E = E0+ <
�0|H|C2�0 >. Hence, correlation energy is Ecorr =< �0|H|C2�0 >.

• Di↵erent determinants in FCI wavefunction: a few degenerate contribute a lot
(have large CI coe�cients) into total energy. Or a lot of non-degenerate (with
small CI coe�cients) contribute totally a lot into the energy. Again, first case
is non-dynamical correlation, second one — dynamical correlation.

10.3 Configurational interaction

Good review: 19.
First ideas about electron correlation were associated with configurational inter-

action. If Hartree-Fock models is so good (gets 99% of the total energy), may be
inclusion of several more important determinants will make it excellent? General CI
wavefunction:

 =
X

L

CL�L (10.23)

Consideration (MCSCF and CI): (i) how do I select important configurations? (ii)
can I include a systematically chosen set of configurations?
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10.3.1 MCSCF model

Goal — to describe non-dynamical correlation (e↵ects of a small number of quasi-
degenerate configurations). How to include important configurations? If we solve
Hartree-Fock problem and get �0, we can consider then excited determinants and
select several (using our chemical intuition) which are important for a particular
case. Then we can diagonalize Hamiltonian in the basis of this configurations. This
is not a good approach. Why? Because orbitals were optimized in HF procedure to
give a lowest energy for a single determinant! Hence, we have unbalanced description:
orbitals are best for one of the determinants, and of poor quality for another. Hence,
HF (SCF) model were generalized to MCSCF model, in which both orbitals and CI
coe�cients are optimized variationally to give a lowest energy for the wavefunction
(10.23).

Consider �-bond dissociation in H2 molecule (Fig. 10.1). Simplest qualitatively

     
 E 

               σ∗=s1−s2, 

                     

      

                          
                                 + 
                            s1      s2

             

               σ=s1+s2,    

                     RH−H

Figure 10.1: Molecular orbital picture for H2 dis-
sociation. At equilibrium, the two hydrogen s or-
bitals form bonding � and anti-bonding �⇤ orbitals
which are well separated in energy. The wave-
function describing chemical bond formation can
be represented by doubly occupying the � orbital.
For a large nuclear separation, when � and �⇤ are
degenerate, electrons are localized near individual
H atoms and occupy orbitals s1 and s2.

correct wavefunction must include 2 determinants:

 = C0 0 + C1 1 (10.24)

 0 = (�)2

 1 = (�⇤)2

Then we optimize both orbitals and CI coe�cient at each nuclear geometry. Wave-
function (10.24), often referred as a two-configuration SCF (TCSCF) wavefunction,
is the simplest example of a multi-configurational SCF (MCSCF) wavefunction. In
this example the orbitals � and �⇤ define the active space (Fig. 10.2), which is the set
of orbitals whose occupations vary among the di↵erent configurations included in an
MCSCF wavefunction.

If a minimal basis set is used, then the � and �⇤ orbitals are determined by symme-
try, and the two configurations (�)2 and (�⇤)2 are the only ones allowed by symmetry
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                       restricted virtual
                         (non−valence) 

                       active virtual
                          (valence)

                       active occupied
                          (valence) 

                       restricted core 

Figure 10.2: Schematic representation of ac-
tive and restricted orbital spaces. Excita-
tions are allowed within the window of ac-
tive orbitals. Orbitals in each subspace are
defined variationally, by minimizing total en-
ergy with respect to orbital rotations be-
tween restricted/active subspaces.

for the ground state of H2. Hence, for this particularly simple example, the TC-
SCF wavefunction (10.24) happens to be identical to a full configuration interaction
(FCI) wavefunction in the active space of � and �⇤ orbitals. More generally, a FCI
wavefunction defined in an active space of variationally optimized orbitals is called a
complete-active-space SCF (CASSCF) wavefunction,20 also known as full optimized
reaction space (FORS).21 For the H2 molecule, when there are only two valence
orbitals, wavefunction (10.24) recovers all non-dynamical correlation.22 For other
molecules, however, the valence space contains more orbitals. Then, although two
electronic configurations of the form (�)2 and (�⇤)2 will dominate the dissociation of
� bonds, other electronic configurations in the valence space can be important in the
zero-order wavefunction. For instance, to describe the dissociation of each particular
bond in a polyatomic molecule by a TCSCF wavefunction, di↵erent � and �⇤ orbitals
should be included in the active space. However, describing the dissociation of two
� bonds at the same time (or one double bond) requires an MCSCF wavefunction
including four electronic configurations. More generally, a zero-order wavefunction
which includes all electronic configurations that can be formed by distributing the
valence electrons among the valence orbitals (bonding, anti-bonding, and lone pair
orbitals) is capable of describing the breaking of any type of chemical bond (double,
triple, etc.) and, moreover, the simultaneous breaking of any number of bonds. In
other words, the non-dynamical correlation energy may be defined as the di↵erence
between full configuration interaction within the space of all valence orbitals, and a
single determinant of molecular orbitals (Hartree-Fock theory).22 Hence, the CASSCF
wavefunction incorporates all non-dynamical correlation when the full valence active
space is considered. Dynamical correlation energy, which is the di↵erence between
the FCI and CASSCF energies,22 can be included later. Unfortunately, the exact
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calculation of non-dynamical correlation energy, as defined above, involves computa-
tional complexity that grows exponentially with molecular size and is thus unfeasible
beyond systems of just two or three heavy atoms.

One strategy to approximate non-dynamical correlation for larger systems is to
perform CASSCF calculations in smaller active spaces. In that case, non-dynamical
correlation is no longer completely described in the zero-order wavefunction. Practi-
cally, this approximation introduces arbitrariness into theoretical descriptions because
the active space is no longer uniquely defined and must be chosen based on physical
considerations for each particular process. Often small active orbital spaces lead to
significant errors, which cannot be completely recovered by subsequent calculations of
dynamical correlation. It has been shown by Davidson23 that CASSCF calculations
for the Cope rearrangement performed in a ⇡-orbitals active space is qualitatively in-
correct, and inclusion of �-⇡ correlation by subsequent CASMP2 calculations changes
the energetics along the reaction coordinate significantly. Another case where a large
active space is necessary is reported by Chaban et.al.:24 their study of N2O2 isomers
demonstrated that the CASSCF space should include not only four NO bonds and
one NN bond, but also the oxygen lone pairs. The resulting CASSCF space—14
electrons distributed in 12 orbitals, denoted (14,12)—is very close to today’s limit for
the CASSCF method.

Next, we consider the torsional barrier in the ethylene molecule. This example,
though simple, represents a wide class of chemically important problems such as
transition states and diradicals.25,26 The molecular orbital picture of ethylene at the
equilibrium geometry and along the twisting coordinate is sketched in Fig. 10.3. At
the equilibrium geometry, the two carbon p orbitals perpendicular to the molecular
plane form bonding ⇡ and anti-bonding ⇡⇤ orbitals. The ground state (labelled the
N state) doubly occupies the ⇡-orbital. A ⇡ ! ⇡⇤ excitation results in the V state.
Doubly occupying the ⇡⇤ orbital results in the Z state. As we twist ethylene around
the C–C bond, the overlap between the two p orbitals decreases and becomes zero at
90o. Therefore, at 90o the ⇡ and ⇡⇤ orbitals become degenerate and the ⇡ bond is
broken. In order to describe twisted ethylene at 90o, we have to introduce the two
configurations (⇡)2 and (⇡⇤)2 consistently into our zero-order description.

Other examples: dissociation of double bond (C=C), or triple bond (N2). Discuss
minimal reasonable active space in each case.

Summary

MCSCF theory does not include dynamical correlation. The goal of MCSCF model
is to provide correct zero-order wavefunction. It includes one determinant for each
Lewis structure. To achieve accurate results, the dynamical correlation should be
included by other models, e.g., by perturbation theory.

CASSCF wavefunction is FCI defined in an active (orbital) space with orbitals
being variationally optimized. Both CI coe�cients and orbitals are defined variation-
ally.

Qualitatively correct size-consistent zero-order wavefunction suitable for PES’s:
CASSCF defined in a full valence space (all bonding, antibonding, and lone pairs
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                V (ππ*) 
                        
     π*
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Figure 10.3: Schematic molecular or-
bital picture of ground and excited
states of ethylene along the torsional
coordinate. Twisted ethylene at 90o

can be considered as a simple diradical
transition state.

orbitals). It is well defined. Non-dynamical correlation energy can be defined as a
correlation energy of this wavefunction. We can define then the di↵erence between
FCI and the so defined non-dynamical correlation energy. Thus:

Eex = End + Edyn (10.25)

Unfortunately, such calculations are unfeasible because of exponential scaling of
FCI expansion. Traditional approach is to take smaller active space based on physical
considerations. Criticism: MCSCF thus becomes “molecule-at-a-time”chemistry, due
to the need to pick configurations (active space). It will not be systematic and could
even be worse than HF if done poorly.

Tradeo↵: flexibility vs. systematization. Tailored garments vs. o↵-the-shelf cloth-
ing!

10.3.2 Truncated CI methods

Superposition of configurations (configurational interaction) CI is a brute force ap-
proach, no chemical intuition necessary, no configuration selection should be done.

1. all double excitations? (CID)

 CID = �0 + C2�0 = �0 +
1

4

X

ijab

cabij�
ab
ij (10.26)



10.4 Many-body perturbation theory 119

2. all single and double excitations? (CISD)

 CISD = (1 + C1 + C2)�0 =

�0 +
X

ia

cai�
a
i +

1

4

X

ijab

cabij�
ab
ij (10.27)

No. Or at least not acceptably. Because of the size-consistency problem. CID,
CISD, MCSCF are generally not size consistent. Results degrade as molecular size
increases.

E.g. CISD is exact for H2 (same as FCI), but for 2 separate H2, CISD is not exact,
because the product wavefunction involves product of doubles (quadruples). That’s
why CISD (as any truncated CI method) is not size consistent. In a sense, it is worse
than HF!

Reminder: Size-consistency (size-extensivity) means that calculation on a system
of non-interacting fragments should give the same energy as the sum of energies from
separate calculations on the individual fragments.

EAB = EA + EB (10.28)

HF is size-consistent when two closed-shell fragments are considered (for two H2

molecules, but not for two H-atoms!) FCI is size-consistent (just like nature!) Other
truncated CI methods are not. Why size-consistency is important even we do not
describe bond-breaking? Because there are other manifestations, even at equilibrium
geometries. For example, quality of results degrade with molecular size increase for
size-inconsistent models.

We should consider theoretical model chemistries which are size-consistent! So
today we do not consider truncated CI models as a practical methods for electronic
correlation. However, CI provides a convenient language for correlation problem.

10.4 Many-body perturbation theory

In this section we consider perturbative treatment of electron correlation. Idea: if
HF theory gets 99% of the way to the right energy, may be we can get the rest by
perturbation theory. Goal of MP2 theory is to recover dynamical correlation when a
zero-order wavefunction, e.g., the Hartree-Fock wavefunction, is qualitatively correct.

10.4.1 Derivation of MP2 correlation energy

Second-order perturbation theory for many-electron wavefunction was introduced by
C. Møller and M.S. Plesset.27 It is called MP2 (higher orders — MP3, MP4, etc.).

Let us recall 1-st and 2-nd orders of the Rayleigh-Schrödinger perturbation theory
(with intermediate normalization of the wavefunction):

H0 
(0)
i = E(0)

i  
(0)
i (10.29)

H = H0 + �V (10.30)
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<  (0)
i | (1)

i >= 0 (10.31)

E(1)
i =<  (0)

i |V | (0)
i > (10.32)

⇣
E(0)

i �H0

⌘
| (1)

i >=
⇣
V � E(1)

i

⌘
| (0)

i > (10.33)

E(2)
i =<  (0)

i |V | (1)
i > (10.34)

How can we calculate PT corrections for the Hartree-Fock wavefunction? What
is tricky here? To apply the RS perturbation theory we need exact solutions of some
zero-order Hamiltonian. Can we find some Hamiltonian for which HF wavefunction
is an exact solution? Yes, this is Fock operator:

F�K =
X

i2�K

✏i�K (10.35)

Note that the eigenenergy of |�0 > is not equal the Hartree-Fock energy. So, let us
consider this mean-field Fock operator as our zero-order Hamiltonian. Let us consider
the di↵erence between the exact Hamiltonian and the zero-order Hamiltonian:

V = H � F, (10.36)

where the perturbation V is fluctuation potential (contains electron correlations), H
is the exact Hamiltonian, and F is the mean-field Fock operator of HF theory.

Imagine the matrix of H in the basis of determinants. If our starting point is HF,
then the question as far as PT goes — what is it coupled to?

Matrix elements of Fock operator in the basis of determinants is very simple:

< �L|F |�L >=
X

i2�L

✏i (10.37)

< �L|F |�K >= 0, K 6= L (10.38)

So, the Fock operator is just a diagonal of the matrix. V has all non-diagonal blocks,
some of them zero. Which blocks are zero? Reference – single excitations (Brillouin
theorem). Also between blocks when excitation is di↵erent more than by 2. Ground
state is coupled through Hamiltonian to doubles. (Slater rules, pair interaction in the
exact Hamiltonian).

!! Picture here: FCI matrix and Fock matrix !!
Consider the exact problem for the ground state wavefunction:

H 0 = E 0 (10.39)

Then let us expand perturbation V and wavefunction  0 in series of �:

(F + �V )( (0)
0 + � (1)

0 + �2 (2)
0 + . . .)

= (E(0)
0 + �E(1)

0 + �2E(2)
0 + . . .)( (0)

0 + � (1)
0 + �2 (2)

0 + . . .) (10.40)

Now lets collect terms proportional to the given power of �
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Zero order

Collect terms proportional to �0

F (0)
0 = E(0)

0  
(0)
0

E(0)
0 =<  (0)

0 |F | (0)
0 >=

occX

i

✏i (10.41)

So, as we expected,  (0)
0 ⌘ �0. But E

(0)
0 6= EHF !

First order

Collect terms proportional to �1:

F (1)
0 + V (0)

0 = E(0)
0  

(1)
0 + E(1)

0  
(0)
0

E(1)
0 =<  (0)

0 |V | (0)
0 >= �1

2

occX

ij

< ij||ij > (10.42)

This is the missing part of the Hartree-Fock energy! Thus:

EHF =<  (0)
0 |H| (0)

0 >= E(0)
0 + E(1)

0 (10.43)

the HF energy is correct through 1st order in V!
What does  (1)

0 look like?

(F � E(0)
0 ) (1)

0 = �(V � E(1)
0 ) (0)

0 (10.44)

As usual  (1)
0 is orthogonal to the  (0)

0 . Lets look in terms of determinants what
excitations contribute to  (1)

0 . We will write expression for  (1)
0 in our basis which is

all excited determinants:

 (1)
0 = (T1 + T2 + . . .)�0 =
X

ia

tai�
a
i +

1

2

X

ijab

tabij�
ab
ij + . . . (10.45)

Now lets find coe�cients t by projecting  (1) on di↵erent determinants:

< �a
i |(F � E(0)

0 ) (1)
0 >= tai (✏a � ✏i) =

< �a
i |� (V � E(1))|�0 >=< �a

i |� (H � F � E(1))|�0 >= 0 (10.46)

< �a
i |H|�0 >= 0 by the Brillouin theorem, < �a

i |F |�0 >= 0 because the Fockian
is just diagonal matrix in the basis of determinants, and the last term is zero due to
orthonormality (E(0) is just a number).

Therefore, there is no single excitations in first order PT corrections to the HF
wavefunction.
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Double excitations

< �ab
ij |F � E(0)| (1)

0 >= (✏a + ✏b � ✏i � ✏j)t
ab
ij =

< �ab
ij |� (V � E(1))|�0 >=< �ab

ij |� (H � F )|�0 >=

� < �ab
ij |H|�0 >= � < ij||ab > (10.47)

We get < �ab
ij |H|�0 >=< ij||ab > by using the Slater rules. < �ab

ij |F |�0 > is zero
for the same reason as before: the Fockian is diagonal matrix (in the basis of excited
determinants). < �ab

ij |E(1)|�0 > is zero because E(1) is just a number, and excited
determinant is orthogonal to a reference one (Slater rules). Hence, the coe�cients in
first-order PT corrections to the wavefunction would be:

tabij = � < ij||ab >
✏a + ✏b � ✏i � ✏j

(10.48)

Second order

The second-order energy (MP2 energy) is:

F (2) + V (1) = E(0) (2) + E(1) (1) + E(2) (0)

E(2) =<  (0)|V | (1) > (10.49)

MP2 energy:

E(2) = �1

4

X

ijab

< ij||ab >2

✏a + ✏b � ✏i � ✏j
(10.50)

We can represent it graphically, by looking at the FCI matrix.
We should have expected this — only doubles coupled to HF determinant. Schemat-

ically,
 (1) =

X

d

td�d (10.51)

td = � Vod

E(0)
d � E(0)

0

(10.52)

Here �d = �ab
ij —doubly substituted determinants, and td = tabij are the amplitudes

(coe�cients) of double substitutions.

E(2) =
X

d

� V 2
od

E(0)
d � E(0)

0

(10.53)

Contributions to correlation energy from all double excitations

1. “pair correlation theory” — there is a contribution to correlation energy which
comes from each pair of electrons;

2. correlation energy is negative-definite;

3. correlation energy is size-consistent;

4. the energy is not variational.
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10.4.2 Computational cost of MP2 theory

E(2) =
X

d

� V 2
od

E(0)
d � E(0)

0

= �1

4

X

ijab

< ij||ab >2

✏a + ✏b � ✏i � ✏j
(10.54)

How many doubles are there? O2V 2. Number of occupied pairs times number of
virtual pairs. Hence, there is quartic number of double excitations.

What is a cost of making the matrix elements < ij||ab >, two-electron integrals
in the molecular orbitals basis?

Suppose we have AO integrals computed and stored. Then cost is that of trans-
forming a 2-electron integrals from the original AO basis to the MO basis.

This is a sequence of matrix multiplies:

< ab||ij >=
X

µ

Cµa

"
X

⌫

C⌫b

"
X

�

C�i

"
X

�

C�j < µ⌫||�� >

###

(10.55)

Costs O(N5) to make O(N4) transformed integrals (N is number of basis func-
tions).

Hence, HF theory scales approximately N2 � N3, and this is iterative procedure
(we recalculate Fockian at each self-consistent field) iteration.

MP2 theory scales as N5, and this is non-iterative method.

10.4.3 Local MP2

For small systems, all double excitations (O2V 2) can contribute into the total energy
from Eq. (10.50). For a large system, however, number of terms which contribute into
MP2 energy depend on how the orbitals are represented. The MO’s that diagonalize
F (canonical MO’s) are delocalized. This does not change as a system gets bigger.
Hence, all determinants can contribute into MP2 energy.

We can find a transformation which localizes occupied and virtual orbitals. Then
we have smaller number of determinants which contribute into MP2 energy. This is
a basis of local MP2 theories. Local MP2 models has been developed in MHG group
bring MP2 down to quadratic (N2) scaling by solving the equations in terms of local
atomic orbital quantities.

10.4.4 Limitations of MP2 theory and higher orders of MBPT

What correlation (dynamical or non-dynamical) is MP2 capable of describing? Dy-
namical. The very idea of local MP2 assumes that e↵ect is local. MP2 energy, as a
HF energy depends only on the subspaces of occupied and virtual orbitals. Hence,
can find transformation to local orbitals.

MP2 is a complete failure in the cases when non-dynamical correlation is impor-
tant. Why? Because degeneracy disable use of perturbation theory. We can see it
from Eq. (10.50), which goes to the negative infinity when orbitals become degener-
ate. Such, for H2 example:

EMP2 = �< ��||�⇤�⇤ >

✏� � ✏�⇤
(10.56)



124 Electron correlation

On the dissociation limit, � and �⇤ are degenerate, hence... Other way to see it. PT
assumes that perturbation V is small, and can be expanded in a small series of �.
Hence, wavefunction also can be represented as

 =  (0) + � (1) + �2 (2) + . . . (10.57)

However, for the cases when nondynamical correlation is important, we have several
determinants in FCI expansion which have large expansion coe�cients. For H2 exam-
ple, we have equal coe�cients for both determinants at the dissociation limit. Hence,
assumption that � is a small parameter is not valid.

Collapse to the negative infinity on dissociation limit is a well-known behavior of
MP2 correlation energy.

Conclusion: MP2 theory would be a complete failure for the cases when non-
dynamical correlation is important:

1. bond-breaking process and transition states;

2. molecules with several Lewis structures;

3. anions;

4. radicals and diradicals.

Higher orders of PT are not useful. Examples: bondlength and divergence of MP
expansions. References... MP3, MP4 are occasionly used, but if MP2 has trouble
the best way to fix it is not usually higher orders of PT, but rather treating electron
correlation self-consistently, not perturbatively.

H2: dissociation curve for H2 described by MP2 would be a complete failure. How-
ever, we can achieve excellent results by doing PT on top of MCSCF wavefunction.

General consideration: include non-dynamical correlation into zero-order wave-
function. Then rest of the e↵ects would be small, and we can make it by using
PT.

10.4.5 Basis set and electron correlation methods

Why did we need basis set larger then minimal atomic basis set for HF theory? To
describe how orbitals change in a molecular environment (become more di↵use, po-
larized in a chemical bond direction, etc). Hence, our consideration for basis set
choice for HF calculations was to have basis set flexible enough to describe well occu-
pied subspace (bonding orbitals). Something new happens as we proceed to electron
correlation in general and to MP2 theory in particular. Since electron correlation is
associated with antibonding and other virtual orbitals become fractionally occupied,
we have represent both the virtual and occupied space accurately.

Se, we expect that there will be even more stringent requirements on the basis set
than were required in HF theory!

New e↵ects:

1. radial (in-out) correlation;
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2. angular correlation;

3. two-electron cusp;

Radial (in-out) correlation

When electron is near the nucleus, other will tend to stay relatively far away. Hence,
we need multiple-zeta basis sets. The “correlation-consistent” basis set of Dunning
et. al.28

!!Figure here!!!
!! table here !!

Angular correlation

If we imagine subdividing an atom volume by angle, then there will be a tendency
for stable configuration to involve electron that are in distinct angular segments.
Describing this type of correlation requires higher angular momentum functions.

!! figure here!!

Two electron cusp

Similarly to electron-nuclear cusp, there is a electron-electron cusp due to Coloumb
interaction of two electrons. To describe it, we need large basis sets, since it is di�cult
to approximate this two electron function by products of one-electron functions. This
is one of the reasons for slower basis set convergence for correlated methods.

Conclusions

The smallest basis set suitable for use with correlation methods — DZP or 6-31G*
size.

Larger basis sets such as “correlation consistent” basis sets yield further systematic
improvements: cc-pVDZ cc-pVTZ cc-pVQZ cc-pVPZ.

These bases are meant to be used with frozen core. For includig core correlation
e↵ects, one needs cc-cVXZ series.

10.4.6 Performance of MP2 theory

Given an adequate basis set, MP2 is a systematic improvement over HF theory (in
case that HF wavefunction is qualitatively correct). MP2 gives approximately 80%
of correlation energy.

General performance of MP2:

• For geometries and frequencies errors significantly reduced (by factor 2-3);

• relative energetics is usually improved, but not nearly enough.
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10.5 Coupled cluster theory

Objective: a more satisfactory formulation of the Shrödinger equation than configu-
ration interaction such that size-extensive truncation is possible.

In configuration interaction model wavefunction is represented as a linear super-
position of Slater determinants:

 = (1 + C1 + C2 + . . . Cn)�0, (10.58)

where Cm represents all possible n-fold excitations. We have seen that this is physi-
cally inappropriate when truncated. Alternative form is to take an exponential:

 = exp(T1 + T2 + . . .+ Tn)�0 (10.59)

Tn operators also represent n-fold excitations. Form of Tn:

T1 =
X

ia

tai a
+
a ai =

X

ia

tai a
+i

T2 =
1

4

X

ijab

tabij a
+
a a

+
b aiaj =

X

ijab

tabij a
+b+ij (10.60)

Both anzats are exact when carried to n-fold excitations. We can expand exponent
to see relation between CI operators and cluster operators:

exp(T1 + T2 + . . .+ Tn) = (1) + (T1 + T2 + . . .+ Tn) +
1

2!
(T1 + T2 + . . .+ Tn)

2 +

1

3!
(T1 + T2 + . . .+ Tn)

3 + . . .(10.61)

C1 = T1

C2 = T2 +
1

2
T 2
1

C3 = T3 + T1T2 +
1

3!
T 3
1

C4 = T4 + T3T1 +
1

2
T 2
2 +

1

2
T2T

2
1 +

1

4!
T 4
1 (10.62)

Comparing the groups, we see that truncating CC at singles and doubles gives us
an approximate description of all higher excitations through n-fold.

Physical meaning: for CCSD, correlation between pairs of electrons (T2T2) is in-
cluded. These specific quadrupole excitations are analogous to simultaneous collision
of two pairs of electrons, and contributions from these events is more significant that
contributions fro the collisions of four electrons.

10.5.1 Size-extensivity

Size-extensivity is immediate: product form for non-interacting fragments:

exp(A+B) = exp(A) exp(B) (10.63)

provided that the operators A and B commute: [A,B] = 0.



10.5 Coupled cluster theory 127

10.5.2 How to solve?

How can we determine the cluster coe�cients?

1. variationally? No — equations do not terminate:

< eT1+T2�|eT1+T2� >=< �|� > + < T1�|T1� > + < (T2+
1

2
T 2
1�)|(T2+

1

2
T 2
1 )� > + . . .

(10.64)

2. Solve eigenvalue problem in a subspace:

(H � E) = 0 (10.65)

Satisfy this equation in the space of

• the HF determinant;
< �0|H � E| >= 0 (10.66)

• all single substitutions:

< �a
i |H � E| >= 0 (10.67)

• all double substitutions:

< �ab
ij |H � E| >= 0 (10.68)

enough equations to determine:

• energy;

• single coe�cients;

• double coe�cients;

The above equations are very similar to the variational CISD equations. In fact,
they are identical if one takes | >= (1+C1+C2)�0 and not | >= exp(T1+T2)�0.
What does this similarity mean? CISD is derived by using the variational principle:

< � |H| >= 0 (10.69)

where � is any allowed variation of the wavefunction. For the CISD wavefunction:

� CISD 2 span{�0,�
a
i ,�

ab
ij }, (10.70)

i.e., belongs to the linear subspace of the reference, single, and double excitations.
For the CCSD wavefunction, � is defined as some curvilinear subspace of the same
dimensionality (e.g., sphere vs. plane in 3-D space). We can approximate this more
complicated manifold by the linear part:

� CCSD ⇡2 span{�0,�
a
i ,�

ab
ij } (10.71)
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10.5.3 CCSD model

CCSD equations

 = eT1+T2�0

< �0|H � E| >= 0

< �a
i |H � E| >= 0

< �ab
ij |H � E| >= 0 (10.72)

How the equations terminate in this case? Quite naturally, by Slater rules:

E =< �0|H|�0 > + < �0|H|(1
2
T 2
1 + T2)�0 >= EHF + Ecorr

< �a
i |H � E|(1 + T1 + T2 + T1T2 +

1

2
T 2
1 +

1

6
T 3
1 )|�0 >

< �ab
ij |H � E|(1 + T1 + T2 + T1T2 +

1

2
T 2
1 +

1

2
T 2
1 T2

1

6
T 3
1 +

1

24
T 4
1 +

1

2
T 2
2 )|�0 >(10.73)

(10.74)

Properties of CCSD

1. Size-extensive!

2. Exact for isolated pairs of electrons. A good sign since molecules consist of
interacting pairs of electrons!

3. Non-variational.

4. Computational cost is N6 and iterative.

5. Fails for bond-breaking: explain imbalance.

Recovery of correlation energy

CCSD at equilibrium geometries recovers⇡ 95% of correlation energy. Is this enough?
In general, not quite. Correlation energy is about 1 eV per local pair. This gives 4
eV correlation energy for C atom (bound to 4 neighbors). We get 0.2 eV error per C
atom. This is still not quite enough — but close!

10.5.4 CCSD(T) model

What is missing in CCSD model? It is the e↵ect of triple excitations. Let us estimate
this perturbatively:

< �abc
ijk |F |T3�0 > + < �abc

ijk |V |(T1 + T2)�0 >= 0 (10.75)

This is not PT corrections for CCSD, this is PH estimate of triples contributions.
Anyway, leading contribution is due to triples.



10.6 Approximation of coupled-cluster theory: quadratic CI (QCI) model 129

method scaling iterative?
HF N2-N3 yes
MP2 N5 no (must do HF first)
CCSD N6 yes (must do HF first)
CCSD(T) N7 no (must do CCSD first)
CCSDT N8 yes (must do HF first)

What is its e↵ect on the energy? Work by analogy with PT:

�ET =
1

36

X

ijkabc

tabcijk < �abc
ijk |V |T2�0 > (10.76)

This method, CCSD(T), is

1. Size-extensive!

2. Computational cost is N7 and non-iterative. CCSD must be solved first.

3. Recovers ⇡ 99% of correlation energy for normal molecules. Hence can approach
chemical accuracy!

4. Non-variational.

Accuracy of CCSD(T): bondlength: 0.002 Å, frequencies: ⇡ 10 cm�1

Alternatively, one can consider PT corrections for the CCSD wavefunctions. These
will have both triples and quadruples! CCSD(2) method.

We can include e↵ect of triples non-perturbatively, hence, we’ll get CCSDT equa-
tions. How? Lets write them in class.

Lets pause to consider where we are:
Picture here: X-axis: min, DZ, DZP, 6-311G(2df) cc-pVDZ, cc-pVTZ, cc-pVQZ,

cc-pV5Z. Y-axis: HF, MP2, CCSD, CCSD(T), CCSDT.

10.6 Approximation of coupled-cluster theory: quadratic
CI (QCI) model

QCISD method: Ref.29.
QCI equation is an attempt to make truncated CI to be size-extensive. On the

other hand, QCI equations can be viewed as an approximation to CC equations. In
some cases QCI is equivalent to CC. For example, CID is the same as QCCD.

QCISD equations:

< �0|H � E| >= 0

< �a
i |H � E|(1 + T1 + T2 + T1T2) >= 0

< �ab
ij |H � E|(1 + T1 + T2 +

1

2
T 2
2 ) >= 0 (10.77)
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QCISD equations contain important non-linear terms, We can prove that the
QCI energy is size-extensive (due to this terms!). Note that there is no wavefunction
associated with QCI model.

Scaling of QCI is the same as scaling for CCSD, but timings are much more
favorable.

10.7 Seasoned coupled cluster methods

1. Is CCSD size-extensive? Is it size-consistent? Explain.

2. Derivation of CCD equations. What is missing here? Orbital relaxation.

3. Brueckner CCD model. Optimized-orbitals CCD model. Relate to Hartree-
Fock equations: < �a

i |H|�0 >= 0, or @E0
@✓ia

= 0. E↵ect of single excitations in
CCSD theory, T1 diagnostics.

4. Coupled cluster wavefunctions for multireference problem: VOOCCD model.
Dissociation example. Ethylene example.

The excellent performance of the VOOCCD model for challenging multi-reference
problems such as the torsion of ethylene and chemical bond breaking has been demon-
strated in ref.30 (See Figs. 10.4-10.6). Recently, Sherrill et al. compared the perfor-
mance of the VOOCCD, CASSCF (in the full valence active space), and TCSCF
(CASSCF in 2x2 active space) models for several molecules with significant diradi-
cal character, such as twisted ethylene, methylene, and ozone (Table 10.1 reproduces
results for the methylene). The comparison of optimized geometries, energies, and
molecular properties (e.g., dipole moments, frequencies and IR-intensities) has shown
that VOOCCD does accurately approximate the CASSCF wavefunction, while the
alternative TCSCF approximation gives much larger errors (nearly same as Hartree-
Fock model).
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Figure 10.4: Ethylene torsional barrier
using a DZP basis set. The RHF SCF
energy at for the planar structure is -
78.049241 hartree.
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Figure 10.5: The torsional barrier for
ethylene as computed by CASSCF(12,12),
TCSCF [CASSCF(2,2)] and VOO-CCD
using a DZP basis set. An absolute er-
ror of 0.113 hartree is subtracted from the
TCSCF energy in order to compare all
three curves on the same scale. The VOO-
CCD total energy is -78.188456 at equilib-
rium and -78.061061 at the barrier.
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Figure 10.6: C-H bond dissociation in
ethylene using CASSCF(12,12) and VOO-
CCD with a DZP basis set.

Table 10.1: Comparison of the restricted Hartree-Fock, TCSCF, and VOOCCD mod-
els against CASSCF in the full valence active space. Total energies, dipole moments,
equilibrium geometries, and harmonic vibrational frequencies and infrared intensities
(in parentheses) are calculated for ã1A1 CH2 using DZP and TZ2P basis setsa.

Method Energy µe re ✓e !1 (a1) !2 (a2) !3 (a3)
DZP RHF -38.885 590 2.102 1.1005 103.74 3120 (61) 1490 (1) 3193 (96)
DZP TCSCF -38.906 002 1.858 1.1035 102.72 3094 (68) 1512 (<1) 3158 (112)
DZP VOOCCD -38.944 141 1.748 1.1333 100.65 2798 (84) 1413 (<1) 2863 (132)
DZP CASSCF -38.944 322 1.742 1.1335 100.66 2795 (85) 1411 (<1) 2861 (133)
TZ2P RHF -38.892 826 1.972 1.0945 103.73 3105 (64) 1503 (4) 3169 (77)
TZ2P TCSCF -38.914 802 1.744 1.0967 102.99 3085 (67) 1527 (4) 3140 (92)
TZ2P VOOCCD -38.953 446 1.657 1.1235 101.00 2797 (76) 1434 (<1) 2859 (103)
TZ2P CASSCF -38.953 635 1.651 1.1238 100.98 2800 (74) 1435 (1) 2861 (102)

a Bond lengths in Å, bond angles in degrees, dipole moments in Debye, frequencies in cm�1,
and infrared intensities in km mol�1.



Chapter 11

High accuracy quantum chemistry

11.1 Overview

Chemical accuracy: errors about 1 kcal/mol ⇡ 0.05 eV.
Approaches:

1. Complete basis extrapolation — Taylor style. (?) | ¯�E| ⇡ 0.2 kcal/mol. Tiny
systems only.

2. Alternative methods to make the extrapolation from cheaper calculations...
CBS models

3. Give up on extrapolation and adopt a more explicitly empirical approach,,,
G1/G2 models.

4. G3 and G3S models.

Details: CBS style extrapolation — still somewhat empirical and hard to apply,
but based on rigorous 2-e results

G2, G2-MP2: somewhat complicated, but e�cient.
Final comments: research issues a) unphysical scaling; b) (L+ 1

2
)�4convergence

11.2 Energy additivity schemes. Gaussian-1 / Gaussian-
2 / Gaussian-3 theory

Gaussian-2 (G2) theory31 approximates a very high level calculations CCSD(T)/Infinite
basis by a series of lower level calculations that use finite basis sets and lower levels of
electron correlation treatment in many cases. G3 and G3S theories32,33 are somewhat
improved modifications of G2 theory.

• Step 1: optimize molecular geometry. Note that low levels of theory work quite
well for this purpose, hence, can use MP2/6-31G*, which is not the full basis
and highest level of correlation

133
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• Step 2: evaluate zero point energy at nuclear geometry (recall harmonic oscil-
lator):

EZPE =
1

2

modesX

↵

h̄!↵ (11.1)

Remember, that low-level theory was pretty good for frequencies. Hence, we use
HF/6-31G* geometry and HF/6-31G* frequencies scaled by 0.893 to calculate
EZPE.

• Step 3.: evaluate electronic energy at optimized geometry:

1. basic correlation energy calculation: QCISD(T)/6-311G(d,p). (QCISD(T)
is a theory which can be viewed as a simplified version of CCSD(T). It
performs quite similarly.)

2. e↵ect of basis set extensions from 6-311G(d,p) to 6-311+G(3df,2p)

�MP2 = MP2/6311 +G(3df, 2p)�MP2/6� 311G(d, p) (11.2)

We are using MP2 theory instead of full CCSD(T) (or QCISD(T)). This is
because the e↵ect of such extensions is mostly to add high-energy unoccu-
pied orbitals whose e↵ect can be estimated reasonably well by perturbation
theory. Remember, we do this for reasons of expediency only

3. e↵ect of basis set extensions from 6-311+G(3df,2p) to infinity. An empir-
ical correction for the remaining basis set deficiencies is added:

�HLC = An↵ � Bn� (n↵ � n�) (11.3)

Value of B is the error in the energy of the H-atom. B=0.19 mhartree

Value of A is fitted to make mean derivation from experiment zero for
55 well established heats of formation. A=4.81 mhartree (⌘ 0.13 eV per
electron pair)

This sizable correction per electron pair reinforces how hard it is to get
correlation energies converged with respect to basis set.

Overall term:

E [G2(MP2)] = E [QCISD(T )/6� 311G(d, p)] + �MP2 + �HLC + �ZPE (11.4)

11.2.1 Chemistry using G2(MP2) model

Results for first and second row compounds. Average absolute deviation compared
to the experiment. MAD — mean absolute deviation

1. Dissociation energies: MAD=1.16 kcal/mol=0.050 eV.

2. Proton a�nities (M +H+ ! MH+): MAD=1.04 kcal/mol=0.045eV.
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3. Ionization energies (M ! M+ + ē): MAD=1.24 kcal/mol=0.054 eV

4. Electron a�nities (M + ē ! M�): MAD=1.29 kcal/mol=0.056 eV

Overall MAD=1.58 kcal/mol, which means uncertainty is ± 3 kcal/mol. What
is a range of accessible chemistry? G2(MP2) theory can be applied up to system
containing about 7 first row atoms.

11.2.2 A critique of G2(MP2) theory

1. since it is based on single-reference models, it cannot describe non-dynamical
correlation. Therefore can be used only to describe molecules at equilibrium.
Cannot apply to study inherently multi-reference situations, such as transition
states along reaction coordinate;

2. higher level correction is empirical and cannot be fully transferable;

3. use of harmonic zero-point energies and empirically scaled HF frequencies;

4. approximations in all parts of the calculation are potentially suspect;

11.2.3 Getting better accuracy

If we still want better results then a more expensive G2 model is available. It replaces
MP2 evaluation of the first basis set extension e↵ect with MP4 evaluations of basis
set extension e↵ects in stages:

1. Di↵use:

�E(+) = E [MP4/6� 311 +G(d, p)]� E [MP4/6� 311G(d, p)] (11.5)

2. Higher polarization on non-H atoms:

�E(2df) = E [MP4/6� 311G(2df, p)]� E [MP4/6� 311G(d, p)] (11.6)

3. Extra polarization functions:

�E(3df) = E [MP2/6� 311 +G(3df, 2p)]� E [MP2/6� 311G(2df, p)]

�E [MP2/6� 311 +G(d, p)] + E [MP2/6� 311G(d, p)](11.7)

Overall e↵ect of basis set extension:

� = �E(+) +�E(2df) +�E(3df) (11.8)

Result: MAD=1.21 kcal/mol.
A small but systematic improvement. Computation time is significantly increased

however.
G3 theory and G3 theory using scaled energies32,33 G3: 1.01 kcal/mol, G3S: 0.99

kcal/mol. G3 includes spin-orbital corrections and uses larger basis sets.
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11.3 Alternatives to G2 theories

11.3.1 Complete basis set (CBS) methods

Instead of using higher-level correction to move to the complete basis set limit, one
can attempt to extrapolate calculations using features of the known pair correlation
energy function for He.

This leads to somewhat less expense and potentially less empiricism.
References:.34–36

However, the reduction in expense for simple CBS models is accompanied by a
reduction in accuracy, and the reduction is relatively small.

CBS-4: MAD= 2 kcal/mol
CBS-q: MAD= 1.7 kcal/mol
CBS-Q: MAD= 1.0 kcal/mol
Note that empirical factors remain.



Chapter 12

Density functional theory

References: Reviews: Refs. 37, 38. DFT: Ref. 39. The Q-CHEM manual contains a
concise overview of the theory and di↵erent functionals. Excellent book: 40.

Outline:

• Return to density matrices;

• Basis of DFT: Hohenberg-Kohn theorems;

• Kohn-Sham equations;

• Approximate functionals: LDA, GGA, ADM (Hybrids);

• Performance and limitations, self-interaction errors;

• New range-separated functionals (wB97X and BNL);

• Empirical dispersion correction: ’-D’ methods.

12.1 Hohenberg-Kohn theorems

Exact electronic density, ⇢(r), of the ground state defines everything about molecule.
Why? First,

R
⇢(r) = N . Second, nuclear cusp positions define location of nuclei.

Third, gradient of density at nuclei defines nuclear charges (result from cusp condi-
tion).

@

@ra
⇢̄(ra)|ra=0 = �2Za⇢̄(0), (12.1)

where ⇢̄(ra) is a spherical average of ⇢(ra), a radial part of electronic density. There-
fore, we know positions of nuclei, their charges and number of electrons. Hence, we
can write Shrödinger equation, solve it (in principle), get exact N-electron wavefunc-
tion and exact energy. Which means that we know all about the system.

The reasoning presented above summarizes the so-called Wilson proof of DFT.
Here are some recollections of Mel Levy:41 “During the conference [1979, shortly
after Hohenberg-Kohn proof was presented], I had an interesting lunch with E. Bright
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Wilson. I was already aware of his unpublished density-functional type existence
theorem for Coulomb systems. As known from the work of Kato, the cusps of an
eigenstate density determines the positions and charges on the nuclei, and hence
v(r). Then, integration of the density gives T and Vee. Hence, an eigenstate Coulomb
⇢ determines H, and thus, determines all the properties of the system. (Observe,
however, that Wilson’s approach does not address directly variational calculations,
in part because most trial densities do not belong to Coulomb eigenstates.)

What was particularly memorable for me was Wilson’s reaction to the conse-
quences of his own beautiful proof. If I remember correctly, he expressed that he
actually lost some interest in the HohenbergKohn theorem and felt less optimistic
about its practical implications after feeling that his proof for Coulomb densities was
essentially self-evident. I guess he was not the first to assume emotionally that the
value of a theorem is necessarily proportional to its di�culty of proof. But that was
a long time ago.”

In the discussion below, we consider the following electronic Hamiltonian:

Hel =
X

i

Ti +
X

i

vi +
1

2

X

ij

1

rij
, (12.2)

where v̂ = vi denotes one-particle potential operator often referred to as the “external
potential”. In molecular applications, v̂ is the electrostatic field due to the nuclei. It
is “external” with respect to the electrons.

12.1.1 Hohenberg-Kohn theorem I

The ground state electron density ⇢(r) determines the external potential v(r) uniquely
(to within an additive constant C):

⇢(r) ! v(r) (unique) (12.3)

Proof (by contradiction, reductio ad absurdum): Let there be two external poten-
tials v1(r), v2(r) arising from the same ⇢(r). Thus there will be two Hamiltonians,
H1 and H2 with the same (ground state) density, but di↵erent wavefunctions  1 and
 2:

Hi i = E0
i i, i = 1, 2 (12.4)

We can use variational principle (VP) to make the following estimations for the
ground state energies:

E0
1 <<  2|H1| 2 >=<  2|H2| 2 > + <  2|H1�H2| 2 >= E0

2+
Z
⇢(r)[v1(r)�v2(r)]dr

(12.5)
Similarly,

E0
2 <<  1|H2| 1 >=<  1|H1| 1 > + <  1|H2�H1| 1 >= E0

1+
Z
⇢(r)[v2(r)�v1(r)]dr

(12.6)
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Combining both inequalities together, we obtain contradiction:

E0
1 + E0

2 < E0
2 + E0

1 (12.7)

Hence, external potential is uniquely defined by ⇢(r).
We can therefore represent energy as a functional of density:

E[⇢] = Vne[⇢] + T [⇢] + Vee[⇢] =
Z
⇢(r)v(r)dr + T [⇢] + Vee[⇢] (12.8)

We do not know what is T [⇢] and Vee[⇢] except for the fact that Vee[⇢] contains
Coulomb interaction J [⇢]:

J [⇢] =
1

2

Z ⇢(r1)⇢(r2)

r12
dr1dr2 (12.9)

12.1.2 Hohenberg-Kohn theorem II

Introduces VP for the ground state density. Any approximate density, ⇢̃, defines some
H̃ and, therefore,  ̃. Using regular VP:

<  ̃|H| ̃ >= E[⇢̃] � E[⇢exact] (12.10)

We have equality only when ⇢̃ = ⇢exact.
Hence, VP for the density:

�E[⇢]� µ�
Z

⇢(r)dr �N
�
= 0 (12.11)

Can solve them to get density. The only catch is that we do not know is how to
write the functional, E[⇢]!

12.2 Kohn-Sham equations

E[⇢] = Ts[⇢] +
Z
⇢(r)v(r)dr +

1

2

Z ⇢(r1)⇢(r2)

|r1 � r2|
+ Exc[⇢], (12.12)

where Ts is kinetic energy of non-interacting system with density ⇢(r) in the ap-
propriate v(r). Here v(r) is just a Coulomb potential — this is a second term in
the equation. The third term is the classical Coulomb electron-electron interaction
(which includes self-interaction). The last term is exchange-correlation energy, and
it is defined by Eq. (12.12)

If Exc is ignored, we obtain Hartree approximation (not Hartree-Fock!).
The Kohn-Sham equations use the fact that any density can be represented as:

⇢(r) =
NX

i=1

�2
i (r), (12.13)

where �2
i (r) are some orthonormal orbitals (proof).
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Is there any relations between orbital �2
i (r) and some real one-electron functions?

In some cases. Consider non-interacting electron gas (N electrons) in some external
field v(r). Then wavefunction of the system is separable and is given by a single Slater
determinant composed of one-electron functions:

�(1, . . . N) = |�1 . . .�N >, (12.14)

where orbitals �i are solutions of one-electron problem with the Hamiltonian:

H =
NX

i=1

(�1

2
r2

i + v(ri)) (12.15)

This is an exact solution of Schrödinger equation for N non-interacting electrons in
the external field. Density ⇢(r) for the single Slater determinant is:

⇢(r) = N
Z
�2(1, . . . , N)d2 . . . dNd�1 =

NX

i=1

�2
i (r) (12.16)

Hence, in a case of non-interacting gas, orbitals �i are one-electron wavefunctions.
Kohn-Sham equations:

 

�1

2
r2 + v(r) +

Z ⇢(r0)

|r � r0|dr
0 + vxc � ✏i

!

�i(r) = 0 (12.17)

Here �i are just a set of one-electron functions. They are called Kohn-Sham
orbitals. vxc is defined as follows:

vxc(r) ⌘
�Exc[⇢(r)]

�⇢(r)
(12.18)

Here vxc(r) depends on density ⇢(r) — if we change ⇢, vxc will change. However, we
write vxc(r) because there is a value of vxc at point r defined, and we can use it as
a local potential, that is, integrate it to get total Exc. vxc can be described as the
one-electron operator for which the expectation value of the KS Slater determinant
is Exc:

Exc[⇢(r)] =
Z
⇢(r)vxc[⇢(r)]dr (12.19)

Kohn-Sham energy is then:

E = ET + EV + EJ + EXC , (12.20)

where each term is a functional of ⇢(r) and can be expressed in terms of Kohn-Sham
orbitals and density as:

ET =
NX

i=1

�1

2
< �i|r2

i |�i > (12.21)

EV = �
MX

A=1

Z ZA⇢(r)

|r �RA|
dr (12.22)

EJ =
1

2

Z ⇢(r1)⇢(r2)

|r1 � r2|
(12.23)

EXC =
Z
⇢(r)vxc[⇢(r)]dr =

Z
f(⇢,r⇢, . . .)dr (12.24)
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Here there was no approximation done. Equation (12.20) is the exact equation
given that the vxc is known. The equation is similar to Hartree-Fock equation. Or-
bitals �i are called Kohn-Sham orbitals, and they just represent a basis to write the
density ⇢(r).

If we neglect vxc, the resulting equation is Hartree approximating (non-interacting
system of N particles, not anti-symmetrized). If we replace this term by an exact
exchange:

Exc = �1

4

Z Z ⇢1(r, r0)2

|r � r0| drdr
0 (12.25)

which will give Hartree-Fock approximation. Then KS orbitals will be HF orbitals.
KS orbitals are of great qualitative value. For example, for isolated system, i.e.
v(1) = 0, highest ✏i controls asymptotic decay of ⇢, and is negative of the exact
many-body ionization potential.

KS equations are in principle exact, if we use the exact vxc. On the other hand,
when we use approximations for vxc, we do not have a systematic way to improve
quality of our calculations. This is di↵erent from other electronic structure models,
such as CI or CC, when we can get exact results if we have enough computer power.
Conclusion: unclear how to get exact results from DFT.

How do we solve Kohn-Sham equations? As HF equations, by self-consistent
procedure in a basis set. Select basis set (usually, atomic basis), represent KS-orbitals
as a linear combination of basis orbitals, get equations for the expansion coe�cients
and solve self-consistent problem: guess for orbitals/density ! calculate e↵ective
Hamiltonian ! diagonalization ! check convergence ! next step. In fact, same
computer code is often used for the DFT and SCF calculations, apart from the changes
in integral evaluations (i.e., grid techniques are used for the DFT integrals).

12.3 Approximations for Exc

12.3.1 Local Density Approximation

For the uniform electron gas (called jellium) in the box with the density ⇢ which
is constant, and with positive background Eb, uniformly spread charge of the same
density:

Exc = N✏xc(⇢) =
Z
✏xc(⇢)⇢dr, (12.26)

where ✏xc is exchange-correlation energy per electron, N is number of electrons. ✏xc
can be evaluated with a high precision – there are analytical expressions for the
exchange part and numerical (quantum Mote Carlo calculations) results for the cor-
relation. LDA generalizes this equation to:

ELDA
xc ⌘

Z
✏xc[⇢(r)]⇢(r)dr, (12.27)

where ✏xc is the exchange-correlation energy per particle of a uniform interacting
electronic gas of density ⇢ (note, that ⇢ is constant for uniform gas). In LDA, the
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results for the uniform gas are modified in Eq. (12.27) where the constant ⇢ is replaced
by a function ⇢(r). This assumes that actual density varies slowly (which is actually
quite strange assumption when molecules are considered!). LDA is exact when length
over which the density varies is much larger than the mean particle spacing.

Uniform electron gas exchange expression:

Ex[⇢(r)] = �9↵

8
(
3

⇡
)
1
3

Z
⇢(r)

4
3dr (12.28)

For the uniform gas, ↵ = 2/3, for the so-called Slater exchange ↵ = 1, and for the
DFT predecessor, the X↵ method, ↵ is empirically chosen to be 3/4. The Slater
exchange expression is derived assuming that exchange hole can be approximated by
a sphere of constant potential with the radius depending on the density.

LDA (or LDSA) functionals: VWN (Vosko, Wilk, Nusair), SVWN (’S’ for ’Slater’).
Vosko, Wilk, Nusair fit some functional form to the numerical results for the uniform
gas, and used the uniform gas exchange functional given above. In SVWN, they use
Slater exchange (same form, di↵erent ↵).

LDA does not have have correct asymptotic behavior. Why? because real density
changes, hence, Exc should be corrected by terms depending on density gradients (like
Taylor expansion). KS orbitals of LDA are very close to the HF orbitals.

12.3.2 Generalized Gradient Approximation

GGA models correct LDA accounting for non-uniform density by introducing gradient
of density into Exc:

EGGA
xc =

Z
f(⇢(r),r⇢(r))dr = ELDA

xc [⇢(r)] +�Exc[
|r⇢|
⇢4/3

] (12.29)

The last term depends on the dimensionless reduced gradient of density (how fast the
density changes).

EGGA
xc depends both on density and its gradient, and can reproduce correct asymp-

totic behavior of ⇢(r). Locality versus non-locality: r⇢(r) is a local quantity, but
it allows us to get some information about density away from where we are (think
Taylor expansion). What is f(⇢(r),r⇢(r)) then?

There are several flavors of GGA exchange. Becke (denoted by ’B’) has correct
asymptotic behavior of energy density and includes one empirical parameter (op-
timized for nobel gases). Similar exchange functionals: CAM, PW, FT97, mPW.
Alternative exchange with no empirical parameters: B86, P, LG, PBE.

Correlation functionals in GGA: P86, PW91, B95. The most successful so far
is Lee-Yang-Parr correlation potential (LYP). It has 4 empirical parameters and has
exact cancellation of SIE in one-electron systems (more on SIE later). LYP was
derived from an actual correlated wavefunction for two electron system (He atom).

A complete exchange correlation: B-LYP (Becke exchange + Lee-Yang-Parr cor-
relation). Most commonly used GGA’s: BLYP, BP86, BPW91.
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Criticism: most GGAs use empirical corrections. GGA is also local model, how-
ever, real exchange/correlation are non-local. However, their is some error cancella-
tion, exchange-correlation together are more local than each of them separately.

12.3.3 Adiabatic connection methods and hybrid functionals

One can consider a system with “tunable” electron-electron interaction. Let the
parameter � define the strength of the interactions, e.g., � = 0 correspond to a non-
interacting system, whereas � = 1 corresponds to the fully interacting system. Then,
under certain assumptions, Exc for the interacting system is given by the following
integral:

Exc =
Z 1

0
 (�)Vxc(�) (�)d�, (12.30)

where  (�) is the exact wavefunction corresponding to �. We know what is Exc at
� = 0 — it is just Hartree-Fock exchange. Thus,

Exc = EHF
x + z(EDFT

ex � EHF
x ), (12.31)

where EDFT
ex is the (unknown) DFT exchange-correlation functional for the fully in-

teracting system which we are after. This allows us to justify the following expression
for Exc:

Exc = (1� a)EDFT
xc + aEHF

x (12.32)

where a is a parameter 0 < a < 1 that controls the amount of the “Hartree-Fock
exchange” (sometimes misleadingly referred to as “exact exchange”) in a functional.
These functionals are called ’Hybrids’. One example is H&H (half-and-half) in which
the fraction of HF exchange is 50%.

This idea was taken further and three-parameter hybrids were developed (e.g.,
B3PW91), of which the most successful is B3LYP:

EB3LY P = (1� a)ELSDA
x + aEHF

x + b�EB
x + (1� c)ExLSDA + cELY P

c (12.33)

where a,b, and c have the same values as in B3PW91: a=0.2, b=0.72, c=0.81.

12.4 Performance of DFT theory

How the KS equations are solved? Using the same self-consistent procedure as in
HF. The only di↵erence is evaluation of vxc integrals. Those are computed using
numerical grids. The density of the grid, which can be controlled by the user, defines
accuracy. One should use tighter grids when performing finite-di↵erence calculations
of frequencies.

Some features of KS-DFT:

• Scaling is N3, very inexpensive. Forming “Fock” matrix is about N2. Also can
be formulated using local linear scaling formulation.

• Though potentially can be exact, unclear how to get exact solution.
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• Using empirical factors. As any empirical model, breaks in some cases unex-
pectedly. Not an ab initio theory.

• Variational, but, since uses empirical corrections, is not related to the exact
energy.

• Geometries, frequencies: improvement over HF. Energetics: varies (MAE for
B3LYP are 3 kcal/mol on the G2 set).

• Does not describe non-dynamical correlation (since using local approximations):
fails for dissociation, transition states, diradicals. For energetics errors are about
6 kcal/mol.

• Can be extended for excited states (via time-dependent formalism).

• Fails for weakly bound systems (van der Waals interactions, hydrogen bonding).

• Self-interaction error: H+
2 example.

• Describes well structures, frequencies, and charge densities. Discuss tables here.

• Used for ab initio MD: Car-Parrinello and Born-Oppehneimer. Simultaneous
dynamics of electrons and nuclei (CPMD and BOMD).

12.5 Recent developments in DFT

12.5.1 Range-separated functionals

These functionals attempt to mitigate SIE by using exact HF exchange for the long-
range Coulomb interaction.42 Functionals along these lines are known variously as
“Coulomb-attenuated” functionals, “range-separated” functionals, or (our preferred
designation) “long-range-corrected” (LRC) density functionals. Whatever the nomen-
clature, these functionals are all based upon a partition of the electron–electron
Coulomb potential into long- and short-range components, using the error function
(erf, see Fig. 12.1):

1

r12
⌘ 1� erf(!r12)

r12
+

erf(!r12)

r12
, (12.34)

The first term on the right in Eq. (12.34) is singular but short-range, and decays
to zero on a length scale of ⇠ 1/!, while the second term constitutes a non-singular,
long-range background. The basic idea of LRC-DFT is to utilize the short-range
component of the Coulomb operator in conjunction with standard DFT exchange
(including any component of Hartree–Fock exchange, if the functional is a hybrid),
while at the same time incorporating full Hartree–Fock exchange using the long-
range part of the Coulomb operator. This provides a rigorously correct description of
the long-range distance dependence of charge-transfer excitation energies, but aims
to avoid contaminating short-range exchange–correlation e↵ects with extra Hartree–
Fock exchange.



12.5 Recent developments in DFT 145

Figure 12.1: The error function
(erf) is defined as: erf(x) =
2
⇡

R x
0 e�t2dt. The compimentary er-

ror function, denoted by erfc, is de-
fined as: erfc(x) = 1� erf(x).

Consider an exchange–correlation functional of the form

EXC = EC + EGGA
X + CHF E

HF
X , (12.35)

in which EC is the correlation energy, EGGA
X is the (local) GGA exchange energy, and

EHF
X is the (non-local) Hartree–Fock exchange energy. The constant CHF denotes the

fraction of Hartree–Fock exchange in the functional, therefore CHF = 0 for GGAs,
CHF = 0.20 for B3LYP, CHF = 0.25 for PBE0, etc. The LRC version of the generic
functional in Eq. (12.35) is

ELRC
XC = EC + EGGA,SR

X + CHF E
HF,SR
X + EHF,LR

X , (12.36)

in which the designations “SR” and “LR” in the various exchange energies indicate
that these components of the functional are evaluated using either the short-range
(SR) or the long-range (LR) component of the Coulomb operator. (The correlation
energy EC is evaluated using the full Coulomb operator.) The LRC functional in
Eq. (12.36) incorporates full Hartree–Fock exchange in the asymptotic limit via the
final term, EHF,LR

X . To fully specify the LRC functional, one must choose a value
for the range separation parameter ! in Eq. (12.34); in the limit ! ! 0, the LRC
functional in Eq. (12.36) reduces to the original functional in Eq. (12.35), while the
! ! 1 limit corresponds to a new functional, EXC = EC+EHF

X . It is well known that
full Hartree–Fock exchange is inappropriate for use with most contemporary GGA
correlation functionals, so the latter limit is expected to perform quite poorly. Values
of ! > 1.0 bohr�1 are probably not worth considering.

There are several of these functionals in Q-CHEM. Our favorites are !B97X43 and
BNL.44,45

12.5.2 Empirical dispersion-corrected functionals

This is a very simple trick46 that works surprisingly well: an empirical C6
R6 poten-

tial terms are added to all atoms describing the dispersion interactions. Examples:
B3LYP-D, BLYP-D, etc. Our favorite so far: !B97X-D (Ref. 43).



146 Density functional theory

12.5.3 DFT benchmarks

There are a lot of papers benchmarking di↵erent aspects of DFT using a variety
of datasets. This review gives a reasonable overview of benchmakring studies: Rf.
47. Grimme’s paper48 is more recent, but he overlooked some of the best recent
developments. This paper of Head-Gordon is very useful.43

Figure 12.2: Independent com-
parison of an established GGA
(BLYP) against an established
hybrid (B3LYP), a recent range-
separated hybrid (!B97X), and
a range-separated hybrid that in-
cludes an empirical long-range
dispersion correction (!B97X-D).
MAE (mean average errors) are
computed for the atomization en-
ergies (48 reactions comprising
the G3/05 test set) and weak
interactions (25 intermolecular
complex binding energies).43,49



Chapter 13

Excited States

13.1 What is an excited state?

What is an excited state? When a molecule absorbs a photon, it changes its energy.
It can change energy of vibrations, or of the electronic state. To distinguish between
di↵erent excitations, let us recall that we solve (in adiabatic approximation) the
electronic Shrödinger equation:

Hel k = Ek k (13.1)

The lowest eigenvalue E0 is electronic energy of the lowest electronic state, the ground
state. Higher eigenvalues correspond to excited states. We call these states electron-
ically excited states.

How many excited states does a molecule have? Infinite number. We should
distinguish between the bound (with respect to electron detachment) and continuum
(above the ionization threshold) states. In this chapter, we are concerned with the
low-lying electronically excited states that are below the ionization continuum.

In the two limiting cases, the excited states are simple.

If we consider the exact solution of the SE, FCI in CBS, then the lowest FCI
eigenstate is our ground state, and higher FCI roots are our excited states. Ground
and excited states are treated on the same footing (diagonalization of the Hamiltonian
matrix).

If we consider non-interacting electrons, then any Slater determinant composed
from orbitals that are eigenstates of the one-electron Hamiltonian is an eigenstate of
the full Hamiltonian. The Aufbau principle tells us what is the lowest-energy state.
All other electron distributions give rise to excited states, and the respective excitation
energies are given by orbital di↵erences, e.g., the excitation energy for i ! a excited
state is ✏a � ✏i.

What is di�cult, however, is developing approximate wave functions for inter-
acting electrons. The two principal problems are: (i) limitations of VP; and (ii)
open-shell character of the excited-state wave functions.

147
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13.2 Variational Principle for excited states

Recall that our approximate methods for ground-state wave functions were based on
VP, e.g., the HF and KS equations were derived by applying VP, the existence of the
density functional was proven via VP.

For the ground state energy, VP reads as following. For any trial wavefunction  ̃,
such that <  ̃| ̃ >= 1

Ẽ =<  ̃|H| ̃ >� E0 (13.2)

Moreover, if the Ẽ = E0,  ̃ =  . The closer Ẽ is to E0, the smaller is a di↵erence
(in terms of the norm) between  ̃ and  .

Thus, we can say nothing about excited states energies, except for some specific
cases. When the Hamiltonian matrix is block-diagonal because of symmetry (or spin
symmetry), then we can apply VP in each block separately, as demonstrated for the
H2 example below.

13.3 Example: excited states of H2 in the minimal
basis

Recall H2 problem in a minimal basis set. Molecular orbitals in a minimal basis are
defined solely by symmetry:

� = (sA + sB)

�⇤ = (sA � sB) (13.3)

Orbital � is gerade, �⇤ — ungerade
Wavefunctions: �(1)�(2), �⇤(1)�⇤(2) are gerade; �(1)�⇤(2)��⇤(1)�(2), �(1)�⇤(2)+

�⇤(1)�(2) are ungerade;
Ground-state HF wavefunction:

|�0 >=
1p
2
�(1)�(2) [↵(1)�(2)� �(1)↵(2)] (13.4)

This is singlet, gerade symmetry, ⌃ state: 1⌃+
g . We have found from the symmetry

consideration that from all excited determinants only doubly excited one is of the same
symmetry and can be mixed with  0:

|�1 >=
1p
2
�⇤(1)�⇤(2) [↵(1)�(2)� �(1)↵(2)] (13.5)

Solution of FCI problem in this basis will yield energies of two 1⌃+
g states. Note

that determinant |�1 > is not an approximation to the second 1⌃+
g state. VP only

states that energy of |�1 > configuration is upper bound of the ground state |�0 >.
Recall singly excited states. They all are of ungerade symmetry and can be both

singlet and triplet. Some of the triplets are single-determinantal, whereas other are
linear combination of two Slater determinants.

We have the following singly excited determinants:
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• Excitation �� ! �⇤↵:

��
⇤↵
�� = |�↵, �⇤↵ >=

1p
2

✓
�(1)↵(1) �⇤(1)↵(1)
�(2)↵(2) �⇤(2)↵(2)

◆
=

1p
2
(�(1)�⇤(2)� �⇤(1)�(2))↵(1)↵(2) (13.6)

This is a triplet state (pure spin state)

• Similarly, excitation �↵ ! �⇤�:

��
⇤�
�↵ = |��, �⇤� >=

1p
2
(�(1)�⇤(2)� �⇤(1)�(2)) �(1)�(2) (13.7)

• Excitation �� ! �⇤�

��
⇤�
�� = |�↵, �⇤� >=

1p
2

✓
�(1)↵(1) �⇤(1)�(1)
�(2)↵(2) �⇤(2)�(2)

◆
=

1p
2
(�(1)�⇤(2)↵(1)�(2)�

�⇤(1)�(2)�(1)↵(2)) (13.8)

This is not a pure spin state (is not an eigenstate of Ŝ2).

• Similarly, excitation �↵ ! �⇤↵

��
⇤↵
�↵ = |��, �⇤↵ >=

1p
2

✓
�(1)�(1) �⇤(1)↵(1)
�(2)�(2) �⇤(2)↵(2)

◆
=

1p
2
(�(1)�⇤(2)�(1)↵(2)�

�⇤(1)�(2)↵(1)�(2)) (13.9)

This is not a pure spin state (is not an eigenstate of Ŝ2).

We can take linear combination of the two Ms = 0 determinants:
1p
2

⇣
��

⇤�
�� + ��

⇤↵
�↵

⌘
=

1

2
(�(1)�⇤(2)� �⇤(1)�(2))

(↵(1)�(2) + �(1)↵(2)) (13.10)
1

2

⇣
��

⇤�
�� � ��⇤↵

�↵

⌘
=

1

2
(�(1)�⇤(2) + �⇤(1)�(2))

(↵(1)�(2)� �(1)↵(2)) (13.11)



150 Excited States

These combinations are eigen-states of Ŝ2.

The structure of FCI matrix is block-diagonal because: (i) the matrix elements
between gerade and ungerade determinants are zero; and (ii) the matrix elements
between di↵erent Ms determinants are zero.

One block contains two ⌃g determinants. One block has two ⌃u determinants.
The high-spin ⌃u determinants form two more blocks. In each of the uncoupled
blocks we can apply VP. Why? Because these states are orthogonal by symmetry
(spin-symmetry) to the exact (FCI) lowest states of H2.

For example, for the triplet states:

< �T |H|�T >� E(3⌃+
u ) (13.12)

However, for the singlet 1⌃u state, we cannot get anything useful from:

< �S|H|�S >� E(1⌃+
u ) (13.13)

because the singlet wavefunction is a combination of the two Slater determinants.
If we consider larger basis sets, the situation becomes more complicated as the

sizes of di↵erent symmetry blocks increase. However, we still can find wavefunctions
of the lowest triplet state by the HF procedure optimizing orbitals (which are not
defined by symmetry anymore) for the high-spin determinant. This is not true for
the lowest excited singlet state.

Conclusion: we cannot directly apply HF model for the excited states, except
for special cases when excited state have di↵erent symmetry/spin-symmetry. Just or-
thogonality to an approximate ground-state wavefunction is not su�cient for accurate
results. Even though we can apply linear VP and solve CI problem in non-interacting
blocks, we cannot expect a good error cancellation for energy di↵erences between the
states (excitation energies). Moreover, we know that the error cancellation can be
very poor (consider the high-spin 3⌃u and X1⌃g states).

As follows from the analysis of the 1⌃u wave function, the excited states are
often multi-configurational. For example, the Ms = 0 triplet and singlet ⌃u states are
linear combination of two determinants with equal weights, which is necessary to have
correct spin. What are the implications of that? Consider two Ms = 0 determinants,
�1 = |�↵�⇤� > and �2 = |���⇤↵ >. The Hamiltonian matrix in this basis is:

H =
✓
✏ �
� ✏

◆
, (13.14)

where ✏ =< �1|H|�1 >=< �2|H|�2 > and � =< �1|H|�2 >. The eigenstates
of this problem are the familiar ± combinations of the two determinants, and the
respective eigenenergies are ✏±|�|. So what is the value of �? Using the Slater rules
to evaluate the matrix element, we obtain:

� = � < ��⇤|�⇤� > (13.15)
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This is the exchange integral. For non-interacting electrons, there is no coupling (no
Coulomb repulsion potential), and the spin coupling is not important, only the orbital
energies matter. For the interacting electrons, the triplet and singlet states will be
split by 2�. How large could it be? Several eV are not uncommon.

13.4 Configuration Interaction Singles

The simplest excited-state theory is CIS (Configuration Interaction Singles). The
excited states are described as linear combination of singly-excited determinants, and
the respective amplitudes are obtained by diagonalizing the Hamiltonian in the basis
of all single excitations. Obviously, this approach can only describe the states which
dominated by one-electron excitations (singly-excited states).

The formal justification of CIS relies on the Brillouin theorem, i.e., that single
excitations are not coupled to the HF wavefunction. More rigorously, CIS can be
derived by using linear response formalism and the Tamm-Danko↵ theorem.50,51

CIS yields reasonable transition energies only when HF is a good approximation
for the ground-state wavefunction. We just solve the CI problem in a block of single
electronic excitations. Note that we do not necessary obtain excited states energies
above the ground HF state energy.

Implementations of CIS: see Refs. 52, 53.

13.4.1 Tamm-Danko↵ theorem

Consider ground state HF wavefunction �0. Hartree-Fock equations define set of
occupied and virtual orbitals:

F |p >= ✏p|p > (13.16)

Consider all single excitations from |�0 >: given by |�a
i >, i 2 OCC, a 2 V IRT .

The Brillouin theorem states that < �a
i |H|�0 >= 0. which is a consequence of

variational derivation of HF energy (first variation of HF wavefunction includes single
excitations – only them and all of them. Variational condition says that �E =<
��0|H|�0 >= 0.

Hamiltonian projected to the subspace of HF wavefunction and single excitations
is then:

H̃ =
✓
ẼHF 0
0 Ẽa

i

◆
(13.17)

Note that VP does not imply that Ẽk � ẼHF ! When proving theorem for the
excited states, we used re-ordered approximate states.

However, if HF is a good wavefunction, in a sense that it it much lower in energy
than any of Ẽk, we will have than:

EHF = Ẽ0 � E0 (13.18)

Ẽk � Ek (13.19)

Than we can hope that transitions energies would be OK.



152 Excited States

13.4.2 CIS model

This is the essence of CIS model — the eigenproblem for the Hamiltonian projected
into the space of all single excitations is solved. The the resulting energies approxi-
mate excited states.

HsCs = CsEs (13.20)

 CIS =
X

ia

Ca
i �

a
i (13.21)

Note that CIS wavefunction includes some correlation e↵ects, since it is a linear
combination of the excited determinants. It is useful to analyze the di↵erence be-
tween CIS energies and Koopmans theorem estimates (exchange and configuration
interaction).

Do we have diagnostics to predict when CIS breaks? Diagonal elements of <
�a

i |H|�b
j >, Hamiltonian projected into the space of single excitations are equal to

the sum of orbital energies from the given Slater determinant. Hence, di↵erence
between Hartree-Fock determinant and the lowest diagonal value is Ea

i = ✏a � ✏i,
where i, a correspond to the HOMO and LUMO. If this gap is large, diagonalization
of H̃ probably would not make the lowest CIS energy lower than the HF energy.

CIS calculation of water

Consider CIS calculations for water with 6-31G*. The two lowest states are:

Excited state 1: excitation energy (eV) = 8.7533
Total energy for state 1: -75.689068475536
Multiplicity: Triplet
Trans. Mom.: 0.0000 X 0.0000 Y 0.0000 Z
Strength : 0.0000
D( 5) --> V( 1) amplitude = 0.9858

Excited state 2: excitation energy (eV) = 9.7107
Total energy for state 2: -75.653883859812
Multiplicity: Singlet
Trans. Mom.: 0.0000 X 0.2763 Y 0.0000 Z
Strength : 0.0182
D( 5) --> V( 1) amplitude = 0.9919

...................................................
--------------------------------------------------------------

Orbital Energies (a.u.) and Symmetries
--------------------------------------------------------------

Alpha MOs, Restricted
-- Occupied --

-20.558 -1.346 -0.714 -0.571 -0.498
1 A1 2 A1 1 B1 3 A1 1 B2
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-- Virtual --
0.213 0.307 1.032 1.133 1.168 1.178 1.385 1.431
4 A1 2 B1 3 B1 5 A1 2 B2 6 A1 4 B1 7 A1
2.021 2.031 2.067 2.636 2.966 3.978
8 A1 1 A2 3 B2 9 A1 5 B1 10 A1

Note the splitting between the singlet and triplet: 0.96 eV. The states have the
same orbital character, HOMO!LUMO excitation. The wave functions are domi-
nated by this transition (99%). The Koopmans estimate of the excitation energy is
0.71 hartree (19 eV)! Symmetry of these states: B2. What is the character of these
states? We need to look at the orbital shapes.

13.4.3 Excited state character.

Valence versus Rydberg excited states – see Ref. 54.

Rydberg states: What are they?

Rydberg states in atoms are defined as electronically excited states derived by exciting
one of the electrons into an orbital with a principal quantum number larger than that
of the valence shell.55 Because of the di↵use character of the target orbital, these
states resemble the states of a hydrogen-like atom, and their energy levels behave
similarly to hydrogen-like atomic levels. This is the essence of the Rydberg formula56

that describes the convergence of the Rydberg series in many-electron atoms to the
respective ionization energies (IEs):

Eex = IE � Ryd

(n� �)2
, (13.22)

where Eex is the excitation energy of the Rydberg state (in eV), Ryd = 13.61 eV, n
is the principal quantum number, and � is the quantum defect parameter accounting
for the penetration of the excited Rydberg electron to the cation core.

The distinction between Rydberg and valence states in polyatomic molecules is
more qualitative. Molecular Rydberg states are excited states whose configurational
expansion is dominated by configurations in which the excited electron occupies dif-
fuse (Rydberg) orbitals. Similarly to atomic Rydberg states, molecular Rydberg
states can be described as having an ionized core with a weakly bound electron. Al-
though the core is no longer spherically symmetric, the Rydberg formula can still be
employed to describe energy levels. The quantum defect �, which depends on the size
and the shape of the molecule, usually has values of 0.9-1.2 for s-states, 0.3-0.9 for
p-states, and smaller or equal to 0.1 for d-states.56 These ranges are much narrower
within a homologous series of molecules or radicals.54 The situation can be more
complex in molecules with closely-lying ionized states due to, for example, more than
one Rydberg center. In CH3NH2 two Rydberg series are observed, one centered on
the carbon atom and the other on the nitrogen.57 Likewise, in vinyl radicals, one Ry-
dberg series is obtained by exciting the unpaired electron to a Rydberg state, whereas
another involves excitation of the ⇡ bond.58
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In spite of these complications, the Rydberg formula can often be used as one
of the assignment criteria of electronically excited states of molecules and radicals.
For example, if the quantum defect computed by using Eq. (13.22) with known IE
and Eex falls within the � interval typical of a specific class of molecules, the state
with energy Eex can be defined as Rydberg (provided, of course, that the character
of the target MO is consistent with the suggested l,m quantum numbers). Larger
deviations of � from the characteristic values indicate interactions with nearby valence
states and/or strong perturbations by the core.

Because the molecular core is no longer symmetric, assigning s, p, or d character
to a molecular Rydberg state is only qualitative, and Rydberg states with di↵erent
l but with the same symmetry can interact with each other. Nevertheless, visual
inspection of MOs and wave function amplitudes shows that many molecular Rydberg
states can indeed be described as s or p or d states. Fig. 13.1 shows Dyson orbitals59

corresponding to the excited states of the NO dimer1. The orbitals are no longer atom-
centered, and three p-orbitals are no longer degenerate due to the core asymmetry.
However, because the spatial extent of the orbitals is very large relative to the dimer
core, they preserve their hydrogen-atom like appearance. For example, one of the A1

state can be easily identified as an s-like Rydberg state, whereas another A1 and two
B2 states resemble p orbitals. Note that the spatial extent of the second B2 state is
less than that of the A1 states, because of its interactions with the valence state of
the same symmetry.

11B2

21B2

11A1

21A1

Figure 13.1: Dyson orbitals corresponding
to the two B2 (left) and two A1 states of
(NO)2 (the numbering of the states is not
spectroscopic and is only used to distinguish
the states, e.g., 1A1 state is not the low-
est A1 state of the dimer, rather, the lowest
of the two A1 Rydberg states considered in
this example). The B2 states are of a mixed
Rydberg-valence character, whereas the A1

states are predominantly Rydberg. Note the
similarity between the respective Dyson MOs
and the hydrogen-atom like orbitals.

We note also the di↵erence in size of low-lying Rydberg and valence states, which
can be quantified by expectation values of r̂2. < r2 > for valence states that involve
n, ⇡⇤ or �⇤ are very similar to the ground state values. The di↵erence between the
< r2 > values for the ground and excited states, � < r2 >, provides a better measure
of the extent of electronic density in the excited states than just the value of < r2 >,
because the latter depends on the molecular size, whereas the former does not, which

1Dyson orbitals allow one to visualize di↵erences between correlated multi-configurational wave
functions of the neutral species and the respective cations, and are particularly useful when analyzing
electron distributions in excited states.
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enables comparisons between molecules of di↵erent sizes. In small molecules, the
typical values of < r2 > are 10-12 (Å)2, and the change in < r2 > upon excitation
from the ground to a valence state,� < r2 >, is less that 1 (Å)2, whereas for the 3s
or 3p Rydberg state � < r2 > are about 12 (Å)2.

This can serve as another basis of identification and assignments of Rydberg states
(see, for example, assignment of Rydberg and valence states of diazomethane in Ref.
60). Rydberg-valence state interactions are expected to transpire in the region closest
to the core, a↵ecting vibrational levels as well.

13.4.4 Performance of the CIS model

What are the limitation for CIS?

• Neglect of non-dynamical correlation for the ground state: as the HF model,
CIS will break when HF description fails. Examples: dissociation curves by
CIS.

PICTURE HERE

This is even more frustrating than HF behavior, because often excited states
minima corresponds to the significant geometry changes of the excited molecule,
i.e., bond breaking. Hence, often CIS can break at the stationary points on the
excited state — even though HF would be a good wavefunction at the ground
state equilibrium geometry.

However, CIS includes some non-dynamical correlation, for example, it can
describe singly excited states which are linear combination of two determinants,
such as singly excited ⌃u state of H2.

• Related problem arises when there is (near)-degeneracy obtained at CIS level.
Nearly degenerate CIS states can strongly mix when correlation is included,
hence, they can change considerably. Such states are of questionable accuracy.

• Cannot describe doubly and other multiply excited states. However, they are
important. Also, they can mix with singly excited states and to change them
considerably. Example: Ag, Bu states of butadiene and hexatriene.

• The lack of dynamical correlation. This can yield errors of 1 eV even if CIS
wavefunction is qualitatively correct. This e↵ect (changes in non-dynamical
correlation upon excitation) is called di↵erential correlation e↵ects. Why does
non-dynamical correlation changes? We separate electron pair by promoting
one electron up.

CIS is a semi-quantitative model. Errors can be as large as 1.5 eV, but the or-
dering of the states is often OK. So, it is inexpensive (scaling is N5 due to integral
transformation) model for qualitative analysis.

The attractive features of CIS: the model is size-extensive (as the HF model itself)
and predictive (does not require any extra input).
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Why is it size-extensive? Because we have only single excitations, and for the
separated fragments these excitations can be on one fragment only. It is variational
— in some sense.

13.5 CIS(D) models

One possibility to improve CIS model is to include dynamical correlation correction
similar to MP2 model for the ground state.61,62 As far as PT is concerned, there are
two distinct situations: degenerate and nondegenerate PT. In case of degeneracy, we
cannot just correct energies of individual states, but have to re-diagonalize perturbed
degenerate blocks.

Consider first MP2 correction for the ground state energy:

E =< �0|V |T2�0 >, (13.23)

where V is a fluctuation potential (V = H�F ), and T2 are double excitation operator.
We have seen that first order corrections to the zero-order wavefunction include only
T2, and which are defined from:

< �ab
ij |F + V � E0|T2�0 >= 0 (13.24)

Similarly, PT can be applied to CIS states ( CIS = U1�0 =
P

ia u
a
i�

a
i ). CIS

equations are:
< �a

i |F + V � E|U1�0 >= !ua
i (13.25)

Consider first CIS-MP2 corrections. This theory is based on the assumption that
similar physics holds for the excited states, with two modifications relative to MP2.
First, double substitutions from CIS give triple excitations from the �0, and, second,
Brillouin’s theorem does not hold for CIS, thus we must also include single substi-
tutions from CIS, which are double excitations from the reference HF determinant.
Corrections are:

ECIS�MP2 =<  CIS|V |U2�0 > + <  CIS|V |U3�0 > (13.26)

U2 and U3 equations are found from first order PT expressions for the CIs wavefunc-
tions, and they a set of equations should be solved to define these amplitudes. This is
computationally demanding (scaling is N6, as for CCSD). Moreover, these corrections
are not size-extensive!

CIS(D) model takes care of these problems. Again, we are considering non-
degenerate case. CIS(D) approximates U3 term by product of T2U1, where T2 are
ground state MP2 amplitudes and U1 are CIS amplitudes, thus assuming that for
“inactive” electrons correlation e↵ects do not change upon excitation.

ECIS(D) =<  CIS|V |U2�0 > + <  CIS|V |U1T2�0 > (13.27)

The scaling of CIS(D) is N5 and it is size-extensive!
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Performance of CIS(D) model is greatly improved. (DISCUSS TABLES). (02.-0.5
eV for many cases where CIS errors were of 1.5 eV). There is, however, important
problem associated with degeneracy. We do not expect this theory based on non-
degenerate PT theory to work well when zero-order states are degenerate. What to
do? This questions consists of two: (i) How do we know where CIS(D) unreliable?
(ii) How do we correct it?

There is simple diagnostic (✓ diagnostic) for CIS(D) model. It estimates maximum
possible mixing of the zero-order CIS state with other states expressed in terms of
angle (Givens rotations). When this angle is large, then CIS(D) is unreliable.

Theory which corrects CIS(D) for degeneracy: CIS(D1) model. Performs better
for degenerate situations.

SOS-CIS(D) method:63 very fast and surprisingly accurate.

13.6 Higher order CI

The question now is — can we systematically improve CIS model? Can we, for
example, include all double excitations as well?

PICTURE OF FCI AGAIN.
The answer is not quite. Though from VP we know that by expanding our linear

subspace (defined by many electron basis set) we will get closer and closer to the
exact energies, our transition energies can become worse. How? Because we know
nothing about how fast each of the CI roots approaching exact solution. And that
is exactly the case. Consider CISD. Doubles are coupled to the �0. Which means
that our CISD ground state wf will include all double excitations fro m �0. However,
since triples are not included, excited state wavefunction does not include double
excitations. This results in non-balanced description of the excited and ground state.
CIS excitation energies are usually much more accurate than those of CISD.
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Chapter 14

Equation-of-Motion methods for
open-shell and electronically
excited species

This chapter is based on References 64,65. There is a more recent and more focused
review on EOM-CC approaches which I am going to use for lectures – Ref. 66.

14.1 Introduction

High-level calculations of closed-shell molecules can now be carried out almost rou-
tinely due to the availability of e�cient and user-friendly electronic structure packages
featuring a hierarchy of “theoretical model chemistries”.9 The well-defined nature of
these approximate methods of solving electronic Schrödinger equation enables their
calibration3 thus providing error bars for each model. By using these error bars as
criteria for balancing accuracy versus computational cost, a chemist can choose just
the right tool for a particular problem at hand, and use it in a “black box” fashion.

As defined by Pople, “theoretical model chemistry” consists of a pair of well-
defined approximations to the exact wavefunction: correlation treatment and one-
electron basis set.9 Fig. 14.1 summarizes a hierarchy of approximate methods for
correlation treatment?, 3, 67 in the ground and excited states. Both the ground and ex-
cited states’ series converge to the exact solution, and the accuracy of the description
improves with each additional step of sophistication (at the price of increased compu-
tational cost, of course). Fortunately, chemically and spectroscopically relevant an-
swers can be obtained within computationally tractable (for moderate-size molecules)
models. For example, the coupled-cluster model with single and double excitations68

augmented by triple excitations treated perturbatively [CCSD(T)]69 yields highly
accurate structural (errors in bond lengths of 0.002-0.003 Å) and thermochemical
(errors of less than 1 kcal/mol in reaction enthalpies) data.3 Excitation energies can
be calculated with 0.1-0.3 eV accuracy70 by the excited states’ counterpart of CCSD,
equation-of-motion for excitation energies (EOM-EE) CCSD method.71–73 Note that
multi-configurational excited states, e.g., open-shell singlets, are correctly described

159
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Figure 14.1: The hierarchy of approximations to an N -electron wavefunction. Models of in-
creasing complexity for ground and excited state wavefunctions are presented in the left and
right panels, respectively. The simplest description of an N -electron wavefunction is given
by a single Slater determinant composed of spin-orbitals, i.e., states of pseudo-independent
electrons moving in the field of nuclei and a mean field of other electrons [self-consistent filed
(SCF), or Hartree-Fock (HF) model]. The e↵ects of electron interaction, i.e., correlation,
can gradually be turned on by including single, double, and higher excitations (T1, T2, etc).
This can be done perturbatively, e.g., as in the Møller-Plesset theory (MP), or explicitly,
e.g., as in coupled-cluster (CC) methods. The corresponding excited states’ models can be
derived within the linear response (LR) or equation-of-motion (EOM) formalisms, in which
the excited states are described as electronic excitations from approximate ground state
wavefunctions (the operator Rm generates all possible m-electron excitations out of the ref-
erence determinant �0). For example, the SCF analog for excited states, the configuration
interaction singles (CIS) model, describes excited states as a linear combination of all singly
excited determinants. Similarly to the ground state models, accuracy can systematically
be improved by including higher excitations. Both series converge to the exact solution of
the Schrödinger equation (in a given one-electron basis set) — full configuration interaction
(FCI), which, in turn, becomes exact in the limit of the complete one-electron basis set.

by the single-reference (SR) excited state models, provided that their wavefunctions
are dominated by single-electron excitations. For example, the two-configurational
1,3⇡ ! ⇡⇤ excited states of ethylene are correctly described even at the CIS level,
since both configurations, ⇡↵⇡⇤� and ⇡�⇡⇤↵, are single-electron excitations from the
ground state ⇡↵⇡� determinant.

Unfortunately, the above error bars are valid only for species whose ground state
wavefunction is dominated by a single Slater determinant and for excited states dom-
inated by single electron excitations. This restricted the mainstream applications of
SR models to well-behaved molecules such as closed-shell species at their equilib-
rium geometries, some doublet radicals, or triplet diradicals, leaving many chemically
important situations (e.g., transition states, bond-breaking, singlet diradicals74 and
triradicals) to the domain of multi-reference methods.75,76

To understand the origin of the breakdown of the SR methods away from equi-
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librium, consider the torsional potential in ethylene (Fig. 14.2). Whereas at its equi-
librium geometry ethylene is a well-behaved closed-shell molecule whose ground and
⇡-valence excited states can be described accurately by SR models (except for the
doubly excited Z-state), it becomes a diradical at the barrier, when the ⇡-bond is
completely broken.77 Thus, at the twisted geometry all of ethylene’s ⇡-valence states
(N , T , V , and Z) are two-configurational, except for the high-spin components of the
triplet.

The traditional recipe for computing ethylene’s torsional potential for the ground
and excited states would involve state-by-state (or state-averaged) calculations with
the two-configurational SCF (TCSCF) method, the simplest variant of complete ac-
tive space SCF (CASSCF) further augmented by perturbation theory (MRPT) or
configuration interaction (MRCI) corrections.75 Similar ideas have also been explored
within CC formalism.30,78–80

Here we discuss an alternative strategy, the spin-flip (SF) approach, which is, as
any EOM model, a multi-state method (i.e., yields several states in one computation),
does not require an active space selection and orbital optimization (thus, is genuinely
a robust “black-box” type SR method), and treats both non-dynamical and dynamical
correlation simultaneously (i.e., is not a two-step procedure).

As mentioned above, theMs=±1 components of the T -state of ethylene (Fig. 14.2)
are single-determinantal at the ground state equilibrium geometry, and remain single-
determinantal at all values of the twisting angle. Therefore, they can be accurately
described by SR methods at all the torsional coordinates.81 Moreover, all the low-
spin Ms=0 determinants from Fig. 14.2 are formally single-electron excitations from
the high-spin triplet state involving a spin-flip of one electron. This immediately
suggests employing EOM or LR formalism and describing the target Ms = 0 states
as spin-flipping excitations from the well-behaved high-spin reference state. This is
the essence of the SF approach82–88 described below.

14.2 Equation-of-motion: A versatile electronic struc-
ture tool

EOM approach?,71,73,87,89–91 is a powerful and versatile electronic structure tool that
allows one to describe many multi-configurational wavefunctions within a single-
reference formalism.92 Conceptually, EOM is similar to configuration interaction
(CI): target EOM states are found by diagonalizing the so-called similarity trans-
formed Hamiltonian H̄ ⌘ e�THeT :

H̄R = ER, (14.1)

where T and R are general excitation operators w.r.t. the reference determinant
|�0 >. Regardless of the choice of T , the spectrum of H̄ is exactly the same as that
of the original HamiltonianH — thus, in the limit of the complete many-electron basis
set, EOM is identical to FCI. In a more practical case of a truncated basis, e.g., when T
andR are truncated at single and double excitations, the EOMmodels are numerically
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Figure 14.2: Around equilibrium, the
ground state (N -state) wavefunction of
ethylene is dominated by the ⇡2 config-
uration. However, as a degeneracy be-
tween ⇡ and ⇡⇤ develops along the tor-
sional coordinate, the importance of the
(⇡⇤)2 configuration increases. At the bar-
rier, where ⇡ and ⇡⇤ are exactly degen-
erate, the qualitatively correct wavefunc-
tion for the N -state must include both
configurations with equal weights. That
is why the quality of the SR wavefunc-
tions degrades as the molecule is twisted:
even when the second configuration is ex-
plicitly present in a wavefunction (e.g., as
in the CCSD or CISD models), it is not
treated on the same footing as the refer-
ence configuration, ⇡2. The singlet and
triplet ⇡⇡⇤ states (the V and T states, re-
spectively) are formally single-electron ex-
citations from the N -state, and are well
described by the SR excited states’ mod-
els (despite the fact that both the singlet
and the Ms=0 component of the triplet are
two-configurational and therefore are not
accessible by the ground state SR meth-
ods). The Z-state, however, is formally
a doubly-excited state with respect to the
N -state, and therefore SR models will not
treat it accurately. Note that the high-
spin Ms = ±1 components of the triplet
T -state remain single-determinantal at all
the torsional angles. Moreover, all the
Ms = 0 configurations employed in the
N , V , T , and Z states are formally single-
electron excitations which involve a spin-
flip of one electron with respect to any of
the two high-spin triplet configurations.
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superior to the corresponding CI models,93 because correlation e↵ects are “folded in”
in the transformed Hamiltonian. Moreover, the truncated EOM models are rigorously
size-extensive,94,95 provided that the amplitudes T satisfy the CC equations for the
reference state |�0 >:

< �µ|H̄|�0 >, (14.2)

where �µ denotes µ-tuply excited determinants, e.g., {�a
i ,�

ab
ij } in the case of CCSD.

The computational scaling of EOM-CC and CI methods is identical, e.g., both
EOM-CCSD and CISD scale as N6. By combining di↵erent types of excitation op-
erators and references |�0 >, di↵erent groups of target states can be accessed as
explained in Fig. 14.3. For example, electronically excited states can be described
when the reference |�0 > corresponds to the ground state wavefunction, and opera-
tors R conserve the number of electrons and a total spin.71–73 In the ionized/electron
attached EOM models,96–98 operators R are not electron conserving (i.e., include dif-
ferent number of creation and annihilation operators) — these models can accurately
treat ground and excited states of doublet radicals and some other other open-shell
systems. For example, singly ionized EOM methods, i.e., EOM-IP-CCSD and EOM-
EA-CCSD, have proven very useful for doublet radicals whose theoretical treatment
is often plagued by symmetry-breaking. Finally, the EOM-SF method82,87 in which
the excitation operators include spin-flip allows one to access diradicals, triradicals,
and bond-breaking without using spin- and symmetry-broken UHF references.

To summarize, the EOM approach enables one to describe manymulti-configurational
wavefunctions within a single-reference formalism. The EOM models are rigorously
size-extensive, and their accuracy can be systematically improved (up to the exact
FCI results) by including higher excitations explicitly or perturbatively. Moreover,
the EOM methods are multi-state schemes — several target states are obtained in the
single diagonalization step. This results in an improved accuracy due to the built-in
error cancellation and greatly simplifies the calculation of coupling elements, such
as non-adiabatic or spin-orbit couplings, between the states. Simpler formalism also
facilitates implementation of analytic gradients and properties calculations73,96,99,100

14.3 The spin-flip method

In traditional (non-SF) SR excited states EOM models, the excited state wavefunc-
tions are parameterized as follows (see Fig. 14.1):

 s,t
Ms=0 = R̂Ms=0 ̃

s
Ms=0, (14.3)

where  ̃s
Ms=0 is a closed-shell reference wavefunction, and the operator R̂ is an excita-

tion operator truncated at a certain level of excitation consistent with the theoretical
model employed to describe the reference state. Note that only excitation operators
that do not change the total number of ↵ and � electrons, i.e. Ms=0, need to be
considered in Eq. (14.3).

As explained in the Introduction, this scheme breaks down both for ground and ex-
cited states when orbitals from occupied and virtual subspaces become near-degenerate,
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e.g. at the dissociation limit or in diradicals (see Fig. 14.2). To overcome this prob-
lem, the SF model employs a high-spin triplet reference state, which is accurately
described by a SR wavefunction. The target states, closed- and open-shell singlets
and triplets, are described as spin-flipping excitations:

 s,t
Ms=0 = R̂Ms=�1 ̃

t
Ms=+1, (14.4)

where  ̃t
Ms=+1 is the ↵↵ component of the triplet reference state,  s,t

Ms=0 stands for the

final (Ms=0) singlet and triplet states, respectively, and the operator R̂Ms=�1 is an
excitation operator that flips the spin of an electron. As can be seen from Fig. 14.2,
all the configurations used to describe diradical-type wavefunctions (e.g., N , V , T ,
and Z states of ethylene) are formally single excitations with respect to the high-spin
component of the triplet (|⇡↵⇡⇤↵ >).

Fig. 14.4 shows the reference high-spin configuration and the spin-flipping single
and double excitations for four electrons in four orbitals system. The first configura-
tion in the second row corresponds to a ground-state closed shell singlet. It is followed
by the configuration that becomes degenerate with it at the dissociation limit. Two
next configurations complete a set necessary to describe all diradicals’ states, e.g.,
states which can be derived by distributing two electrons over two (nearly) degener-
ate orbitals (N , V , T , and Z states of twisted ethylene are of this type). It is easy to
see that these four configurations are treated on an equal footing in our model, and
that other configurations do not introduce imbalance in their treating.

Therefore, the SF ansatz (14.4) is su�ciently flexible to describe changes in ground
state wavefunctions along a single bond-breaking coordinate. Moreover, it treats both
closed-shell (e.g., N and Z) and open-shell (V and T ) diradicals’ states in a balanced
fashion, i.e., without overemphasizing the importance of one of the configurations.

Note that the SF set of determinants is not a spin-complete set. Whereas all
the closed-shell and open-shell diradical configurations appear as single excitations
(first four in the second row in Fig. 14.4), the counterparts of other single SF deter-
minants (i.e., those which include excitations of electrons from doubly occupied or
to the unoccupied MO’s) are formally double or triple excitations. Thus, when all
singles and doubles are included into the SF model, the resulting wavefunctions are
not eigenstates of S2, i.e., are spin-contaminated. However, the spin-contamination
is rather small — because the SF excitations within the open-shell form a spin-
complete set. For example, the values of < S2 > for the X3B1, ã1A1, b̃1B1, and c̃1A1

states of methylene at their equilibrium geometries are 1.9991, -0.0011, -0.0007, and
-0.0007, respectively, at the EOM-SF-CCSD/TZ2P level using UHF reference. The
spin-completeness of SF models can be achieved by including a subset of higher exci-
tations.88 Although this increase a computational cost of a model, the scaling remains
the same.88 Most importantly, the size-extensivity of SF models is not violated as a
result of extending the determinantal subspace.

Similarly to traditional excited state theories, the description of the final states
can be systematically improved by employing theoretical models of increasing com-
plexity for the reference wavefunction as summarized in Fig. 14.5. For example, the
simplest SF model employs a Hartree-Fock wavefunction, and the operator R̂ is then
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truncated at single excitations (SF-CIS or SF-SCF).82,88 SF-CIS can be further aug-
mented by perturbative corrections [SF-CIS(D) or SF-MP2].83 A yet more accurate
description can be achieved by describing the reference wavefunction by a coupled-
cluster model, e.g., CCSD87 or OO-CCD.82,101 In this case, the excitation operator
R̂ consists of single and double excitation operators involving a flip of the spin of an
electron.82 Finally, inclusion of triple excitations in the EOM operator R results in the
EOM-SF(2,3)102 model, which is capable of chemical accuracy. The corresponding SF
equations in spin-orbital form are identical to those of traditional excited state the-
ories, i.e., CIS, CIS(D), EOM-EE-CCSD or EOM-EE-OOCCD, and EOM-EE(2,3),
however, they are solved in a di↵erent determinantal subspace: non-SF theories con-
sider only Ms=0 excitation operators, whereas SF operates in the Ms=-1 subspace.
The computational cost and scaling of the SF models are identical to those of the
corresponding non-SF excited state theories.

Two of the SF models, SF-CISD and SF-DFT, deserve special mention. By using
the SF approach, CI can be formulated in a rigorously size-extensive way.84,88,94 For
example, the SF-CISD model is (i) variational, (ii) size-consistent, and (iii) exact for
two electrons thus simultaneously satisfying these three highly desirable properties.9

Lastly, the SF approach implemented within the time-dependent (TD) density
functional theory (DFT) extends DFT to multi-reference situations with no cost in-
crease relative to the non-SF TD-DFT. Similarly to DFT and TD-DFT, the SF-DFT
model86 is formally exact and therefore will yield exact answers with the exact den-
sity functional. With the available inexact functionals, the SF-DFT represents an
improvement over its non-SF counterparts, e.g., it yields accurate equilibrium prop-
erties and singlet-triplet energy gaps in diradicals.86 All of the above SF models, as
well as the corresponding spin-conserving models and analytic gradients for SF-CIS,
SF-TDDFT, and EOM-EE/SF-CCSD100 are implemented in the Q-CHEM electronic
structure package.103

14.4 The spin-flip method for bond-breaking: the
ethylene torsional potential

Fig. 14.6 shows the torsional potential calculated by the SF [SF-CIS, SF-CIS(D), and
SF-OD] and non-SF (restricted and unrestricted HF and OD) methods.82,83,104 All
curves are compared with the TC-CISD curve.83 The unbalanced treatment (within
a single reference framework) of (⇡)2 and (⇡⇤)2 configurations results in unphysical
shapes of the PES, i.e., a cusp at 90o and large errors in barrier heights. The spin-
unrestricted PESs are smooth; however, the barrier height is usually underestimated,
even by the highly correlated methods.104 Moreover, the shape of the unrestricted
PES can be quite wrong, for example, the U-OD curve is too flat around the barrier
as compared against the TC-CISD one (see Fig. 14.6). Also, the UHF based wave-
functions are heavily spin-contaminated around the barrier even for highly correlated
methods such as coupled-cluster models .104 All the SF models produce smooth PESs.
Quantitatively, SF-SCF represents a definite advantage over both the RHF and UHF
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results. Similarly, the SF-OD curve is closer to our reference TC-CISD curve than ei-
ther R-OD or U-OD. The SF-CIS(D) curve is very close to the more expensive SF-OD
one. Similar performance of the SF methods has been observed for bond-breaking in
HF, BH, and F2.82–84

14.5 The spin-flip method for diradicals

Diradicals25,74,105 represent the most clear-cut application of the SF approach be-
cause in these systems the non-dynamical correlation derives from a single HOMO-
LUMO pair (e.g., ⇡ and ⇡⇤ in twisted ethylene). In this section we present results for
trimethylenemethane (TMM), a very challenging case due to the exact degeneracy of
its frontier orbitals (for a detailed review of previous TMM studies, see Ref.106).

The ⇡-system of TMM is shown in Fig. 14.7: four ⇡-electrons are distributed
over four molecular ⇡-type orbitals. Due to the exact degeneracy between the two e0

orbitals at the D3h structure, the ground state of TMM is a 3A0
2 state (similar to the

T -state in ethylene), in agreement with Hund’s rule predictions.
The vertical excitation energies are summarized in Fig. 14.7 (with C2v symmetry

labels).85,106 The three lowest singlet states are the diradical singlet states (similar
to the N , V , and Z states of ethylene). However, excited states that derive from
excitations of other ⇡ electrons are also relatively low in energy. The first closed-
shell singlet, 1A1 and the open-shell singlet 1B2 (similar to the N and V states of
ethylene, respectively) are degenerate at the D3h geometry due to the degeneracy
of a2 and 2b1 orbitals (note that CASSCF fails to reproduce this exact degeneracy,
unless the state-averaged orbital optimization is performed). The second closed-shell
singlet 21A1 (an analog of the Z-state) is followed by a pair of degenerate triplets,
3A1 and 3B2, obtained by excitation of one electron from the doubly occupied 1b1
orbital to the a2 or 2b1 degenerate orbitals. Finally, there is a quintet 5B2 state in
which all ⇡-orbitals are singly occupied. We do not discuss low-lying states derived
from electron excitations beyond the TMM’s ⇡-system. Several such states appear
between the pair of degenerate triplets and the quintet state. The SF-OD and SF-
CCSD models should be augmented by higher excitations to achieve a quantitatively
accurate description of these states.102

In accordance with the Jahn-Teller theorem, the degeneracy between the degen-
erate states (closed-shell and open-shell singlets, and a pair of triplets) can be lifted
in lower symmetry. The closed-shell singlet is stabilized at the planar C2v geometry,
with one short CC bond. The open-shell singlet prefers an equilibrium structure with
one long CC bond and a twisted methylene group. The second 1A1 state prefers D3h

equilibrium geometry. The EOM-SF-CCSD/EOM-SF(2,3) adiabatic singlet-triplet
energy separations for the three lowest singlet states are 0.51/0.65 eV, 0.92/0.77 eV,
and 4.34/4.03 eV for the 11B1, 11A1, and 21A1 states, respectively102 (in the basis set
composed of the cc-pVTZ basis on carbons and the cc-pVDZ basis on hydrogens).
These energies are very close to the MRPT values85 of 0.71 and 0.83 eV (for the
11B1 and 11A1 states, respectively). With regard to experiment, the lowest adiabatic
state, 11B1, has not been observed in the photoelectron spectrum107 because of un-
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favorable Franck-Condon factors. The experimental adiabatic energy gap (including
ZPE) between the ground triplet state and the 11A1 state is 0.70 eV. The estimated
experimental Te is 0.79 eV, which is in excellent agreement with the EOM-SF(2,3)
estimate.

In our detailed benchmarks study,85,102 we calculated the singlet-triplet energy
separations for a large number of systems, i.e., O,C, and Si atoms, O2, NH, NF, and
OH+ diatomics, methylene isovalent series (CH2, NH

+
2 , SiH2, and PH+

2 ), benzynes,
and TMM. In all these cases, the SF models performed very well. The typical errors
for EOM-SF-OD/EOM-SF-CCSD are less than 1 kcal/mol, and the maximum error
was 3 kcal/mol, as compared to the experimental or highly accurate multi-reference
values. Inclusion of triples in the EOM part brings the error bars down to hundredths
of eV.

14.6 Trirdicals

Triradicals108–111 — species with three unpaired electrons distributed over three nearly
degenerate orbitals — feature even more extensive electronic degeneracies than di-
radicals. Fig. 14.8 shows valid triradical wavefunctions with a positive projection
of the total spin, i.e., with MS=+3

2
, 1
2
. Note that only the high-spin component of

the quartet state, the first configuration in Fig. 14.8, is single-configurational, while
all the low-spin states are multi-configurational and are, therefore, not accessible by
the traditional ground state single-reference methods. However, all these states can
accurately be described by the SF models as:

 d,q
MS=1/2 = R̂MS=�1 ̃

q
MS=3/2, (14.5)

where  ̃q
MS=3/2 is the ↵↵↵ high-spin reference determinant, R̂MS=�1 is an excitation

operator that flips the spin of an electron (↵ ! �), and  d,q
MS=1/2 stands for the

wavefunctions of the doublet and quartet target states. Since all the configurations
(with MS = 1/2) present in the low-lying triradical states are formally obtained from
theMS = 3/2 reference state by single excitations including a spin-flip, the SF method
provides a balanced description of all the triradical states from Fig. 14.8.

Note that, although all the target states – the quartet, the open-shell doublets
and and the closed-shell doublets – are multi-configurational, they are treated by SF
within a single-reference formalism.

The SF method enabled recent studies of electronic structure of triradicals.109–111

These works focused on interactions between the radical centers in finite size molecules
and structural, spectroscopic, and thermochemical signatures of these interactions.
For example, we have found that there is a bonding interactions between radical
centers in the C6H3 isomers that results in considerably tighter equilibrium geome-
tries (i.e., the distance between radical centers contracts by 0.05 Å relative to the
parent benzene molecule) and higher vibrational frequencies.109,110 The energies of
these interactions vary between 0.5 kcal/mol to up to 37 kcal/mol that constitutes
approximately one third of a normal chemical bond.110 These bonding interactions
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also determine the multiplicity of the ground state — in all three isomers, multiplicity
of the ground state is doublet.

In the 5-dehydro-m-xylylene (DMX) triradical111 shown in Fig. 14.9, the interac-
tion between radical centers is rather weak due to the �-⇡ character of the orbitals
that host the unpaired electrons. Overall, the interaction between the centers results
in an unusual electron arrangement — the ground state of DMX is an open-shell
doublet state, i.e., the three unpaired electrons are localized at their radical centers,
and, contrary to Hund’s rule, are coupled antiferromagneticaly. Low lying electronic
states of DMX are shown in Fig. 14.10. The dense nature of the DMX electronic
spectrum renders MR calculations of this system extremely di�cult.

14.7 Conclusions

The realm of HF!MP2!CCSD!CCSD(T)!CCSDT! . . . hierarchy of approxi-
mations to the exact many-electron wavefunction ends when a wavefunction acquires
considerable multi-configurational character, e.g. due to small HOMO-LUMO gap at
a dissociation limit, or in electronically excited states. Traditionally, these and other
chemically important situations were treated by multi-reference methods that must
be tailored to suit a specific problem at hand. The single-reference EOM-CC theory
o↵ers an alternative approach to multi-configurational wavefunctions, which truly
complies with a set of Pople’s attributes of a “theoretical model chemistry”. The
EOM-CC methods are rigorously size-extensive, include both dynamical and non-
dynamical correlation in a balanced fashion, and describe several electronic states
in a single computational scheme. Recently, we introduced a new EOM method,
EOM-SF, that extended the applicability of SR EOM-CC methods to bond-breaking,
diradicals, and triradicals. Both closed and open shell type target states are described
within a single reference formalism as spin-flipping, e.g., ↵ ! �, excitations from the
high-spin triplet (Ms=1) or quartet( Ms=3/2) reference state for which both dynami-
cal and non-dynamical correlation e↵ects are much smaller than for the corresponding
low-spin states. Formally, the new theory can be viewed as an EOM model where the
excited states are sought in the basis of determinants conserving the total number of
electrons but changing the number of ↵ and � electrons.
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Figure 14.3: In EOM formalism, target states  are described as excitations from a refer-
ence state  0:  = R 0, where R is a general excitation operator. Di↵erent EOM models
are defined by choosing the reference and the form of the operator R. In the EOM models
for electronically excited states (EOM-EE, upper panel), the reference is the closed-shell
ground state Hartree-Fock determinant, and the operator R conserves the number of ↵ and
� electrons. Note that two-configurational open-shell singlets are correctly described by
EOM-EE since both leading determinants appear as single electron excitations. However,
EOM-EE fails when a small HOMO-LUMO gap causes the ground state wavefunction to
be a mixture of two closed-shell determinants (the reference and the doubly excited one):
although both determinants may be present in the target wavefunction, they are not treated
on an equal footing. The second and third panels present the EOM-IP/EA models. The
reference states for EOM-IP/EA are determinants for N + 1/N � 1 electron states, and
the excitation operator R is ionizing or electron-attaching, respectively. Note that both
the EOM-IP and EOM-EA sets of determinants are spin-complete and balanced w.r.t. the
target multi-configurational ground and excited states of doublet radicals. Finally, the
EOM-SF method (the lowest panel) employs the hight-spin triplet state as a reference, and
the operator R includes spin-flip, i.e., does not conserve the number of ↵ and � electrons.
All the determinants present in the target low-spin states appear as single excitations, which
ensures their balanced treatment both in the limit of large and small HOMO-LUMO gaps.
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R1(Ms=-1) F0

F0

R2(Ms=-1) F0
Figure 14.4: Four electrons in four orbitals system. Configuration �0 is the reference
configuration. Single-electron excitations with spin-flip produce configurations in the first
row. Two-electron excitations with a single spin-flip produce configurations in the second
row. Note that non-spin-flipping excitations or excitations that flip the spin of two electrons
produce Ms=±1 configurations, which do not interact through the Hamiltonian with the
final Ms=0 states, and thus are not present in the model.
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Figure 14.5: Hierarchy of the SF
models. Similarly to the non-SF SR
methods, the SF models converge
to the exact n-electron wavefunc-
tion when the spin-flipping opera-
tor R̂ includes up to n-tuple exci-
tations. For example, the EOM-SF-
CCSD model is exact for two elec-
trons.
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Figure 14.6: Ethylene torsion, DZP basis.
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to the reference TC-CISD curve than the
corresponding spin-restricted and spin-
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Figure 14.7: On the right, the ⇡-system of TMM and the electronic configuration of the
ground state are shown (C2v labels are used). The left panel presents electronic states of
TMM at the ground state equilibrium D3h geometry, and at the two Jahn-Teller C2v dis-
torted structures (equilibrium geometries of the 11B1 and 11A1 states). The corresponding
adiabatic singlet-triplet gaps are also shown.
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Figure 14.8: Triradicals’
wavefunctions that are eigen-
functions of Ŝ2. Note that
all the Ms = 1/2 configura-
tions present in the low-lying
triradical states are formally
obtained from the Ms = 3/2
reference state by single ex-
citations including a spin-flip.
The coe�cients � that define
the mixing of closed-shell de-
terminants depend on the en-
ergy spacing between the or-
bitals, while the coe�cients
of the open-shell determinants
are determined solely by the
spin-symmetry requirements.
Spatial symmetry determines
further mixing of the above
wavefunctions.
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Figure 14.9: Structure and molecular orbitals of DMX.
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Chapter 15

Excited states: old notes

15.1 Variational Principles for excited states

How can we estimate energies of the excited states?

15.1.1 VP for the ground state

For ground state energy, we have VP: for any trial wavefunction  ̃, such that <
 ̃| ̃ >= 1

Ẽ =<  ̃|H| ̃ >� E0 (15.1)

Moreover, if the Ẽ = E0,  ̃ =  . The closer Ẽ is to E0, the smaller is a di↵erence
(in terms of norm) between  ̃ and  .

15.1.2 Excited states from VP

Theorem 1

If we have  0, . . . , N , N exact lowest eigenvalues, and some  ̃ which is orthogonal
to these lowest exact eigenfunctions, <  ̃| ̃ >= 1 and <  ̃| k >= 0, k = 0, . . . , N ,
then:

<  ̃|H| ̃ >� EN+1 (15.2)

Proof: if  0, . . . , N are exact eigenfunctions, then matrix of the Hamiltonian is
block-diagonal, there is no coupling between block of <  k|H| l > and the rest of the
Hamiltonian. Then for orthogonal function we get a problem in orthogonal subspace,
where EN+1 is the lowest eigenvalue. This problem is thus equivalent to the ground
state problem.

PICTURE HERE: block diagonal Hamiltonian.
If the orthogonality to the exact ground state wavefunction is not satisfied, the

only thing we know for sure, that the energy of our trial wavefunction is an upper
bound of the ground state energy.

This result is not practical, since we do not know exact ground state wavefunction,
but an approximate one only.

173
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When it is useful? When there are symmetry restriction and when excited states
are orthogonal to the ground state due to specific symmetry. For example, we can
always calculate lowest triplet state for the molecules which ground state is singlet
state because the triplet is always orthogonal to exact ground state singlet state due
to spin-symmetry. Such calculations can be done by Hartree-Fock model, or by other
ground-state methods, exactly as we calculate ground states. The same approach can
be applied when when have point group symmetry involved. Consider, for example,
water molecule. It belongs to c2v point group. For c2v we have the following irreducible
representations (Table 15.1):

Table 15.1: Characters for irreducible representations for c2v point group. Molecule
is in the ZOX or ZOY plain such that OZ runs between two hydrogens.
Irrep: E C2 (Z-axis) �v (ZOX) �0

v (ZOY )
A1; z 1 1 1 1
B2; y 1 -1 -1 1
A2 1 1 -1 -1
B1; x 1 -1 1 -1

In the minimal basis set, there are the following molecular orbitals: 1a1, 2a1, 1b1, 3a1, 1b2
(occupied) and 4a1, 2b1 (virtual). These are valence orbitals, except for 1a1 which is a
core 1s orbital of oxygen. Ground state belongs to the fully symmetric irrep A1 (this
is always a case for closed shell molecule — because doubly occupied orbital is al-
ways fully symmetric). Consider now singly excited valence states. We shall use very
qualitative description and describe them as one-electronic excitations described by a
single substituted Slater determinant. Such description is very crude and would not
give even qualitatively correct energies (let alone that we disregard Rydberg states!),
but we can use it to analyze symmetry of the valence states. Possible valence single
excitations are listed in Table 15.2.

Table 15.2: Symmetries of valence single excitations in water molecule.
Excitation Symmetry
1b2 ! 4a1 B2

1b2 ! 2b1 A2

2(3)a1 ! 4a1 A1

2(3)a1 ! 2b1 B1

1b1 ! 4a1 B1

1b1 ! 2b1 1A1

Thus, the structure of the Hamiltonian in the basis of these determinants assumes
the block diagonal form, and we can use Hartree-Fock (and above) models to describe
states of B1, B2, and A2 symmetry (for both singlet and for triplet states). Practically,
it is very easy to do with PSI, where we can require proper electronic configuration
manually (by using docc input).
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This is not very general approach, since it is limited to the lowest states of the
symmetry (and spin-symmetry) other than ground state. Moreover, the quality of
such calculations is often lower than quality of the ground state calculations, and
therefore there can be very large errors in excitation energies (imbalance and no error
cancellation). Why does it happen? Because excited states are often inherently mul-
tireference (open shell) states and cannot be described by a single reference models.

Theorem 2

There is, however, stronger result, for Ritz VP. Ritz VP is linear variational principle,
when subspace of trial functions is a linear subspace:

 ̃ =
NX

k=1

Ck ̃k (15.3)

Let us consider Hamiltonian H̃, projected Hamiltonian to the space of trial func-
tions.

H̃ = PHP (15.4)

P =
NX

k=1

| ̃k ><  ̃k| (15.5)

P ( k + ?) =  k (15.6)

P is a projection operator into the space of { ̃k}, P 2 = P . We can solve for projected
Hamiltonian:

H̃ ̃k = Ẽk ̃k (15.7)

Then we have
Ẽk � Ek, (15.8)

where Ek are exact energies, and Ẽk is variational. This is important result which says
that we do have some kind of variational estimation for the excited states. Namely,
for any linear subspace formed by trial functions, eigenvalues of the Hamiltonian in
this subspace gives us upper bounds of corresponding sequential eigenstates of the
exact Hamiltonian. Note, however, that exact states which are orthogonal to our trial
states will not be described, e.g., if we consider configuration interaction with singly
excited states only, doubly excited states would be completely missed. Note also that
we can tell nothing about transition energies, Ek � Ei, and transition energies are
what we want to calculate.

Another result says that if we expand our linear space, our variational energies
getting closer to the exact energies. Which means that we can improve our excited
state energies by expanding subspace, and that, in principle, we can converge to the
exact solutions.

In more rigorous formulation: let us expand our subspace by adding one more
function,  ̃N+1, orthogonal to the “zero-order” set of trial functions  ̃k, k = 1, . . . , N .
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Let us call variational energies for the “zero-order” set of trial functions Ẽ0
k , and new

variational energies Ẽk. The theorem says that

Ẽ0  Ẽ0
0  Ẽ1  . . .  Ẽ0

N  ẼN + 1 (15.9)

Proof: Consider our zero-order basis, set of N  ̃k. Let us call projected Hamiltonian
(Hamiltonian in the basis of these functions), as H̃0:

H̃0 = PHP (15.10)

P =
NX

k=1

| ̃k ><  ̃k| (15.11)

(H̃0)ij =<  ̃i|H| ̃j > (15.12)

We can diagonalize H̃0, and use a new set of its eigenfunctions instead of original  ̃k.
Then

H̃0 =
NX

k=1

| ̃k ><  ̃k|Ẽ0
k (15.13)

Secular problem now reads:

✓
H̃0 a

a

+ b

◆✓
C

0

C

◆
= Ẽ

✓
C

0

C

◆
(15.14)

here H̃0 is the Hamiltonian projected into the space of zero-order trial functions, b
is a matrix element for the new added trial function: b =<  ̃N+1|H| ̃N+1 >, a

represents couplings: ak =<  ̃k|H| ̃N+1 >, and coe�cients C

0, C are coe�cient of
the new wavefunction:

 ̃ =
NX

k=1

C0
k ̃k + C ̃N+1 (15.15)

This results in the following equations:

H̃0C
0 + Ca = ẼC

0 (15.16)

a

+
C

0 + bC = ẼC (15.17)

(15.18)

We can now find C

0 from the first equation, substitute into second, and cancel
number C. Then we can use the fact that H̃0 is diagonal to take inverse operator:

C

0 = �(H̃0 � Ẽ)�1Ca (15.19)

Ca

+(Ẽ � H̃0)
�1
a+ bC = ẼC (15.20)

Ẽ = b+
NX

k=1

a2k
Ẽ � Ẽ0

k

(15.21)

We have equation of the type: Ẽ = f(Ẽ). We can solve it graphically: plot y = Ẽ
and y = f(Ẽ), and points where these two graphs cross are our solutions.
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PICTURE HERE

As a result, we have estimations:

Ẽk  Ẽ0
k (15.22)

which we wanted to prove — that expansion of the basis makes our estimations for
excited states better.

Now we have to prove that Ek  Ẽk. How to do that? Let us start from the exact
solution, and then will decrease size of the space. With previous result by induction
we prove Ek  Ẽk.

This is important result showing that in principle we can describe excited states by
a general CI model. However, practically, truncated CI models are not very accurate,
and later we’ll see why. We shall see that often larger linear subspaces would yield
poorer approximations to transition energies! Moreover, what if in our subspace there
is no vectors which can represent certain states??? For example, if for C2v molecule,
we take A1 determinants only, then we will not even know that other excited states
exist. Likewise, at the CIS level, we remain blissfully unaware of doubly excited
states!

Theorem 3

Now we shall consider so called minimax theorem, which does not require orthogo-
nality to the exact ground state. It is though applicable to the linear spaces.

Minimax theorem says that if we consider variational estimation of the k � th
state of the Hamiltonian defined by:

Ẽk = min 
<  |H| >

<  | >
(15.23)

< �i| >= 0, i = 1, . . . , k � 1 (15.24)

where {�i} are k�1 lowest exact eigenvalues of the Hamiltonian, the Ẽk can be found
from the following condition:

Ẽk = max�̃imin 
<  |H| >

<  | >
(15.25)

< �̃i| >= 0, i = 1, . . . , k � 1 (15.26)

where �̃i are k � 1 some arbitrary functions.
This means that: (i) we first fix {�̃i} and find minimum of E = < |H| >

< | > with

satisfying orthonormality condition < �̃i| >= 0; (ii) this E = E[{�̃i}] — is a
functional of {�̃i}. To find Ẽk, we have to find maximum of E[{�̃i}] by varying all
{�̃i}.

Proof: The dimensionality of the subspace defined by {�̃i} is k�1. Therefore if we
consider k trial functions { i}, we can find at least one linear combination orthogonal
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to the subspace defined by {�̃i}. The energy of this function is:

E =
<  |H| >

<  | >
=

Pk
l=1 |cl|2E 0

lPk
l=1 |cl|2

 E 0
k (15.27)

Thus, it always lower that E 0
k and equality can be achieved by finding maximum of all

minima. On the other hand, setting k�1 {�̃i} equal to exact k�1 lowest eigenstates
of H, we achieve equality.

15.2 MCSCF models for excited states

Because of the limitations of CIS (lack of non-dynamical correlation and ability to
describe doubly-excited electronic states), MCSCF methods are considered to be the
best today.

Ground state MCSCF wavefunction:

 =
X

L

CL�L, (15.28)

where L is usually small, and configurations are selected based on physical consider-
ations. In MCSCF approach both coe�cients CL and orbitals are varied t optimize
total energy of MCSCF wavefunction.

How can we describe excited states by MCSCF approach?
Option 1: Take similar anzats,  ⇤ =

P
L⇤ CL⇤�L⇤ , and optimize energy (find best

orbitals and best coe�cients for this wavefunction). Problems:

• We will face same problems as with HF approximation: variational collapse to
the ground state when states are not orthogonal by symmetry/spin-symmetry.

• Such approach will result in di↵erent set of orbitals for each of the states (e.g.,
group and excited). Non-orthogonal orbitals complicate significantly calculation
of matrix elements between di↵erent states (e.g., transition dipole moments,
non-adiabatic and spin-orbit couplings).

• Such approach su↵ers from arbitrariness in configuration selection. This prob-
lem becomes even more complicated than for ground state. Reasons: (i) While
for the ground state valence configurations are of the major importance, ex-
cited states often involve mixing with non-valence configurations, e.g., Rydberg
states. Besides, balanced description of two di↵erent states becomes merely
impossible.

Option 2: Solve the problem for ground state. Describe excited states as higher
CI roots. Not very good – since orbitals are optimized for ground state, hence,
ground state is described much better than excited states. Non-balanced description
introduces large errors into transition energies.



15.3 Linear Response Formalism for Ground and Excited States 179

Option 3: State-averaged procedure. Consider ground state and excited state
functions written as:

 =
X

L

CL�L (15.29)

 ⇤ =
X

L⇤
CL⇤�L⇤ (15.30)

use the same set of orbitals for both states. Minimize averaged energy of both states:

E = n0E0 + n⇤E⇤ = n0 <  |H| > +n⇤E⇤ <  ⇤|H| ⇤ >, (15.31)

where n0, n⇤ some arbitrary weights.
Both states are described equally poorly — neither of them is completely happy

with the orbitals. However, we do not have problems with non-orthogonal orbitals
and when states intersects.

Option 4: Describe excited state wavefunction by single excitations from the MC-
SCF wavefunction. This is generalization of CIS model, which is possible due to
the variational nature of MCSCF wavefunction. Here we use generalized Brillouin
theorem. This is most rigorous way to define excited states on top of MCSCF wave-
function. However, it assumes that orbital relaxation is small for excited states, which
is not always the case. Such models (MCLR) were tested, and found to be not very
e�cient.

Accurate theories: MCSCF corrected for dynamical correlation: CASPT2, etc.

15.3 Linear Response Formalism for Ground and
Excited States

15.3.1 Time-dependent variational principles

Frenkel time-dependent variational principle:

< ��|H + V (t)� i
@

@t
|� >= 0 (15.32)

Explain meaning of this principle. In linear parameterizations — result is CI. In
non-linear parameterizations — more complicated.

15.3.2 Linear response

For non-variational methods can replace variation �� to some other subspace.
Our starting point is time-dependent Schrödinger equation:

(H + �V (t))| (t) >= i
@

@t
| (t) > (15.33)

Since we do not know exact solution of the problem with time-independent Hamil-
tonian H, we cannot apply standard time-dependent perturbation theory approach
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for the whole problem (15.33). Instead, we shall seek for the solution of Eq(15.33) in
the given finite subspace ⌦ defined by the some basis functions {�L}NL=1. To find a
solution of Eq(15.33) in the subspace ⌦ we have to satisfy the following set of coupled
equations:

< �L|
 

(H + �V (t))� i
@

@t

!

| (t) >= 0, L = 1, . . . , N (15.34)

We shall solve projective equations (15.34) by means of perturbation theory. Zero-
order solution (� = 0) shall define ground state energy and wavefunction. Poles
of first order response equation will define resonances of ground state wavefunction,
which correspond to excitation energies. Since resonance conditions in first order
equations must be satisfied at any perturbation V, hence, we must satisfy them for
V = 0 as well. This means that we do not need to know what is an perturbation V.
However, we can use some information about time-dependence of V in order to guess
about functional form of | (t) >. In other words, explicit form of V helps us to pick
up a correct anzats for | (t) >.

15.3.3 CIS by linear response

Let us apply the linear response formalism to the Hartree-Fock wavefunction. Let us
remember, that linear response will give us ground state and excited states energies.

To proceed with the derivation, we have to decide about basis |�L > (many
electron basis) we will use. The basis is defined by the space in which wavefunction
is defined. Where HF wavefunction is defined? In a space of a single determinant?
Yes, EHF =< �0|H|�0 >. Is that all? No, HF wavefunction is defined in a space of
single excitations as well:

F�i = ✏i�i (15.35)

< �a
i |H|�0 >= 0 (15.36)

These are two equivalent forms of Hartree-Fock equations. First equation is what
we derived, second equation is Brillouin theorem, an equivalent form of Hartree-Fock
equations. The second equation shows that HF wavefunction is defined in a space
of reference determinant and single excitations (VP results in the fact that single
excitations do not mix with the HF reference).

We, hence, start from the following set of equations:

< �L|
 

H � i
@

@t

!

| (t) >=< �L|�V (t)| (t) >, �L = {�0,�
a
i } (15.37)

Wavefunction is given:

 (t) = �0e
�iE0t + �T1�0e

�iE1t (15.38)

, where �0 is time-independent Slater determinant, E0 is energy of the ground state,
and E1 is an energy of the excited state. Here we use “frozen-orbitals” approximation
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— we do not introduce time-dependence into the molecular orbitals, only into the
amplitudes/phase of the wavefunction. For zero-order (�0) we have:

 (0)(t) = �0e
�iE0t (15.39)

< �L|(H � i
@

@t
)|�0e

�iE0t >= 0 (15.40)

which gives:

< �L|H|�0 > e�iE0t � E0 < �L|�0 > e�iE0t = 0 (15.41)

< �L|H|�0 >= E0 < �L|�0 > (15.42)

< �0|H|�0 >= E0 (15.43)

< �a
i |H|�0 >= 0 (15.44)

(15.45)

These are Hartree-Fock equations! Now consider first order (�1):

 (1)(t) = T1�0e
�iE1t (15.46)

< �L|(H � i
@

@t
)|T1�0e

�iE1t >=< �L|V (t)|T1�0e
�iE1t > (15.47)

(15.48)

Since we seek for the resonance conditions, we have to satisfy the equation for any
V , including V = 0. Hence,

< �L|(H � i
@

@t
)|T1�0e

�iE1t >= 0 (15.49)

< �L|H|T1�0 > e�iE1t � E1 < �L|T1�0 > e�iE1t = 0 (15.50)

< �L|H|T1�0 >= E1 < �L|T1�0 > (15.51)

< �0|H|T1�0 >= 0 (15.52)

< �a
i |H|T1�0 >= E1t

a
i (15.53)

(15.54)

These are CIS equations!

15.3.4 EOM-CC: Excitation energies for the CC wavefunc-
tions by linear response theory. CCD example

Let us start from the general definition of the time-dependent coupled-cluster wave-
function

| (t) >= eT (t)|�0 > e�iE(�,t) (15.55)

We introduce no time-dependence into |�0 > using frozen orbitals approximation.
We will truncate operator T by including only single and double excitations. For
ground state we will retain only double excitations (CCD model).

T (t) = T2 + �U1(t) + �U2(t) (15.56)
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For the sake of simplicity we make an assumption about form of the perturbation
V:

�V (t) = �µ̂(ei!t + e�i!t) (15.57)

Form of perturbation Eq.(15.57) defines time-dependence in a wavefunction ampli-
tudes in first-order response equations: time-dependence of amplitudes in linear re-
sponse follows time-dependence of perturbation:

U1(t) = U1e
�i!t

U2(t) = U2e
�i!t (15.58)

The subspace ⌦ is defined by the truncation of operator T (15.56) in the wavefunc-
tion (15.55): reference Hartree-Fock determinant, all single and double excitations
define a subspace for Eq.(15.34).

Zero-order solution of Eq(15.33) for CCD-wavefunction (15.55,15.56) yields equa-
tions defining projective Brueckner CCD energy and wavefunction:

E(0) = ECCD =< �0|H|(1 + T2)�0 > (15.59)

< �a
i |H|(1 + T2)�0 >= 0 (15.60)

< �ab
ij |H|(1 + T2 +

1

2
T 2
2 )�0 >= aabijECCD (15.61)

Since our ground state model is not projective Brueckner CCD, the linear response
equations for VBCCD can be di↵erent from equations below. For now, we will use
linear response equations for projective BCCD model as they are.

First order response equations results in:

< �a
i |H|(U1 + U2 + U1T2)�0 >= ua

i (ECCD + !)(15.62)

< �ab
ij |H|(U1 + U2 + U1T2 + U2T2)�0 > �aabij < �0|H|(U1 + U2)�0 >= uab

ij (ECCD + !)(15.63)
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