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Computational  linguistics  and corpus  linguistics  are  closely-related disciplines: 

they  both  exploit  electronic  corpora,  extract  various  kinds  of  linguistic 

information  from  them,  and  make  use  of  the  same  methods  to  acquire  this 

information. Moreover, both were heavily affected by "paradigm shifts" from the 

prevailing empiricism of the 1950s, to rationalism, then back again with a revival 

of empirical methods in the 1990s.

Computational linguistics deals with the formal modeling of natural language. 

The  formal  models  can  be  used  to  draw conclusions  about  the  structure  and 

functioning  of  the  human  language  system.  They  also  form  the  basis  of 

implemented  systems  for  the  analysis  and  generation  of  spoken  or  written 

language,  in  a  variety  of  applications.  The  methods  applied  in  building  these 

models are of different kinds since, as a result of the above-mentioned paradigm 

changes, work in computational linguistics has taken two different paths. Both 

branches of computational linguistics aim to build models of natural language, but 

each  exploits  different  techniques:  the  rationalist's  branch  focuses  on  theory-

driven, symbolic, nonstatistical methods, whilst the empiricist's branch focuses on 

corpus-driven and  statistical techniques.  As  we  will  see  later  however,  the 

distinction between the branches is these days less clear, and the two fields seem 

to  be  coming  together  again  as  people  successfully  combine  concepts  and 

methods from each field.

Obviously, the corpus-driven branch of computational linguistics has a natural 

affinity to corpus linguistics, and a shared interest in corpus exploitation. As a 

consequence,  many  research  topics  can  be  attributed  equally  well  to  either 

computational  linguistics or corpus linguistics; examples include part-of-speech 

tagging (see article 25), treebanking (article 17), semantic tagging (article 27), 

coreference resolution (article 28), to name just a few. At opposite extremes of 

computational and corpus linguistics, the ultimate goals of corpus exploitation do 

however diverge: certain domains of corpus-driven computational linguistics aim 

to build "optimal" models "no matter how", and the particular corpus features that 

find their way into such models are not seen as interesting  per se; in contrast, 

corpus linguistics could be said to target exactly these features, the "ingredients" 

of the models. 



The theory-driven branch of computational  linguistics  does not  overlap very 

much with corpus linguistics (except for their common interest in linguistic issues 

in  general),  although  corpora  do  play  a  (minor)  role  in  theory-driven 

computational linguistics, as we will show. So, we could more accurately rephrase 

the  introductory  sentence  as  follows:  "Corpus-driven computational  linguistics 

and corpus linguistics are closely-related disciplines."

Another side branch of research goes back to the early days of computational 

linguistics  and  is  closely  tied  to  artificial  intelligence.  Traditionally,  this  field 

focuses  on  modeling  human  behavior,  including  human  actions  like 

communicating  and  reasoning.  A  lot  of  research  has  gone  into  the  formal 

description  of  world  knowledge  and  inference  drawing.  These  topics  are 

nowadays seeing a revival, in the form of ontologies to encode concepts and the 

relations  between  them,  and  instances  of  the  concepts.  Current  research  on 

dialogue,  such  as  human-machine  communication,  also  draws  heavily  on  this 

branch  of  computational  linguistics.  We will  come back  to  the  issue  of  world 

knowledge in the concluding section.

This  article  gives  a  survey  of  the  research interests  and concerns  that  are 

found  in  the  theory-driven  and  corpus-driven  branches  of  computational 

linguistics, and addresses their relation to corpora and corpus linguistics. Section 

1  deals  with  theory-driven  computational  linguistics  and  Section  2  with  the 

corpus-driven  branch.  In  Section  3,  we  sketch  the  history  of  computational 

linguistics and trace the development of automatic part-of-speech taggers; this 

nicely illustrates the role that corpora have played and still play in computational 

linguistics. Section 4 concludes the article. Needless to say, this paper cannot do 

justice to all the work that has been done in computational linguistics. We hope 

however that the topics we address convey some of the main ideas and interests 

that drive research in this area.

1. Theory-driven computational linguistics 

As a child of the paradigm shift towards rationalism, this branch of computational 

linguistics  relies on the intellect  and on deductive methods in  building formal 

language models. That is, research is driven by theoretical concerns rather than 

empirical  ones.  The research issues addressed here often take up topics from 

theoretical linguistics. For instance, various syntactic formalisms have been the 

object  of  research in  computational  linguistics,  such as Dependency Grammar 

(Tesnière  1959),  HPSG  (Head-Driven  Phrase  Structure  Grammar,  Pollard/Sag 



1994),  LFG  (Lexical  Functional  Grammar,  Bresnan  1982)  or  the  Minimalist 

Program (Chomsky 1993). 

Why is computational linguistics interested in linguistic theories? We see two 

main concerns of such research: firstly, the search for a complete, rigid and sound 

formalization of theoretical frameworks; secondly, concern for implementation of 

linguistic theories. We address both issues in the following sections.

1.1. The formalization of theoretical frameworks

As  already  stated,  computational  linguistics  aims  at  a  complete  and  sound 

formalization of theoretical  frameworks. For instance, for the above-mentioned 

syntactic  formalisms, computational  linguists have defined formalisms that are 

mathematically well-understood: Kaplan/Bresnan (1982) for LFG, Kasper/Rounds 

(1986), King (1989, 1994) and Carpenter (1992) for HPSG, and Stabler (1997) 

with the "Minimalist Grammar" for the Minimalist Program. (Dependency-based 

systems come in a variety of realizations, and are in general formalized to a lesser 

degree than other theories.) 

Other  frameworks  have  started  out  as  well-defined,  purely-mathematical 

formalisms which were first studied for their mathematical properties, and have 

only later been exploited as the representational formats of linguistic theories. 

Such  formalisms  include  TAG  (Tree-Adjoining  Grammar,  Joshi/Levy/Takahashi 

1975, Joshi 1985), CG (Categorial Grammar, Ajdukiewicz 1935, Bar-Hillel 1953), 

and  especially  its  extension  CCG  (Combinatory  Categorial  Grammar, 

Ades/Steedman  1982,  Steedman  1996);  the  linguistic  relevance  of  these 

formalisms  has  been  addressed,  e.g.,  by  Kroch/Joshi  (1985)  for  TAG,  and  by 

Steedman (1985) for CCG.

What  do  these  formalized  theories  offer?  Armed  with  such  a  theory, 

computational linguists can explore the formal properties of the framework, such 

as  its  structural  complexity.  A  commonly-used  way  of  characterizing  the 

complexity  of  a  framework is  by  the form of  its  rules:  For instance,  a simple 

grammar  rule  like  N  → dog replaces  (expands)  a  noun  by  the  word  dog, 

regardless of the noun's context. A more complex rule would be N → dog / DET _ , 

which restricts the replacement to those contexts in which the noun is preceded 

by a determiner. Grammars are classified according to the most complex rule type 

that they contain: a grammar with rules like the second example above would be a 

member of  the class of  "context-sensitive"  grammars.  (The term "grammar" is 

often used to refer to syntactic rule systems. We call a grammar any linguistic 

rule system, including phonological, morphological, semantic, and pragmatic rule 

systems.) 



This way of characterizing grammars has been introduced by Chomsky (1956, 

1959). For each class of grammars, there is a corresponding class of languages 

that are generated by these grammars, and a corresponding abstract model, the 

"automaton", which represents an alternative way of defining the same class of 

languages. The first two columns of Table 1 display the four complexity classes as 

defined by Chomsky, with the most complex class at the top. Each class properly 

contains the simpler classes below it. This means, e.g., that for any context-free 

language  (or  "Type-2"  language)  we  can  define  a  context-sensitive  grammar 

("Type-1" grammar) to generate that language, but not vice versa. The resulting 

hierarchy of grammars and languages is known as the Chomsky Hierarchy. In the 

following  paragraphs,  we  show  how  each  of  the  above-mentioned  linguistic 

frameworks  relates  to  the  Chomsky  Hierarchy,  then  address  issues  of 

computational complexity (see last column of Table 1).

Structural Complexity

Grammar/Language Class Automaton

Computational 

Complexity

Type 0 Turing machine undecidable

Type 1, context-sensitive linear-bounded automaton NP-complete

Type 2, context-free pushdown automaton O(n3)

Type 3, regular finite-state automaton O(n)

Table 1: Structural complexity (Chomsky Hierarchy) and computational complexity

Unification-based formalisms, such as HPSG and LFG, are in general equivalent to 

a Turing machine (which generates Type-0 languages).  The formalisms of TAG 

and CCG are less complex, but they can still express the famous cross-serial (= 

non context-free)  dependencies observed in Dutch,  Swiss-German, or  Bambara 

(see, e.g., Savitch et al. 1987). TAG and CCG are appealing formalisms because 

they are only slightly more powerful than context-free grammars; that is, they do 

not use the full power of context-sensitive grammars and are therefore easier to 

compute than context-sensitive grammars in general. The complexity class of TAG 

and CCG is not part of the original Chomsky Hierarchy but lies between Types 1 

and  2.  Joshi  (1985),  who  defined  this  class,  coined  the  term "mildly  context-

sensitive".

The  class  of  languages  generated  by  finite-state  automata  or  regular 

expressions (Type-3 languages) has received much attention since the early days 



of research on formal languages (Kleene 1956; Chomsky/Miller 1958; Rabin/Scott 

1959). In the following years, finite-state techniques became especially important 

in the domain of phonology and morphology: with SPE ("The Sound Pattern of 

English"), Chomsky/Halle (1968) introduced a formalism to express phonological 

processes, such as Place Assimilation (such as, "'n' in front of 'p' becomes 'm'"). 

The  formalism  defined  an  ordered  set  of  rewriting  rules  which  operated  on 

phonological features such as [+/-nasal] and superficially resembled the rules of 

context-sensitive grammars: α → β / γ _ δ ("replace α by β in context γ … δ"). It 

turned out though, that the formalism, as used by the phonologists, was in fact 

equivalent  in  power to  finite-state  automata  (Johnson  1972;  Kaplan/Kay  1981, 

1994).  Kaplan  and Kay showed this  by means of  a special  type of  finite-state 

automata,  the  so-called  finite-state  transducers.  Their  alphabet  consists  of 

complex  symbols  like  'n:m'  (or  feature  bundles  representing  the  phonemes), 

which can be interpreted as the "deep" (= lexical) and "surface" representations 

of  phonological  elements:  phonemic  'n'  becomes  orthographic  'm'.  In  the 

formalism of Kaplan and Kay, the rewriting rules are applied in a sequential order. 

Another way of formalizing the mapping from lexical  to surface form was the 

formalism of  "two-level  morphology",  proposed by Koskenniemi  (1983).  In  this 

formalism, declarative rules express parallel constraints between the lexical and 

the  surface  form.  This  formalism  is  again  equivalent  in  power  to  finite-state 

automata.  As  the  name  suggests,  the  formalism  has  been  used  to  formalize 

morphological phenomena (which in part overlap with phonological phenomena, 

but also include morphotactics).

Obviously, structural complexity is an important factor for the implementation 

of a linguistic theory, and implementation is the second concern of theory-driven 

computational  linguistics.  Theories  that  allow  for  more  complex  structures 

require more powerful programs to handle these structures than simpler theories 

do. For instance, a program that interprets context-sensitive rules (such as N → 
dog / DET _ ) needs some mechanism to look at the context of the node that is to 

be  expanded,  whereas programs for  context-free  rules  can do without  such a 

function. 

Complexity is also seen as an issue for theoretical and psycholinguistics, since 

it might be related to questions of learnability and processability of language. A 

sample research question is:  what  bearing does a  certain linguistic  constraint 

have on the system's overall complexity? To answer such questions, computational 

linguists investigate the effects of adding, removing, or altering constraints, for 

instance, by (slightly) re-defining one of the "island conditions" or "move-alpha" in 

Minimalist Grammar. Does this result in a system that is more or less or equally 



complex  as  the  original  system?  (One  might  think,  naively,  that  adding  a 

constraint such as the "shortest move condition" would result in a more restrictive 

grammar, because it does not allow for many of the things that another system 

does allow; research has however shown that intuitions can be misleading.)

Another interesting research topic is the computational complexity (or parsing 

complexity) of a framework: given an input string of length  n (e.g.,  n words or 

characters),  how long does it  take (at least)  to compute an analysis,  and how 

much  storage  space  does  the  computation  need?  As  one  might  expect, 

computational  complexity  parallels  structural  complexity:  the  simpler  a 

grammar/language, the less time or storage space the computation needs.

For  instance,  from  a  computational  point  of  view,  finite-state  automata  (or 

regular/Type-3  grammars)  are  highly  attractive,  since  there  are  efficient 

algorithms to process Type-3 languages which are linear in time. Thus, given an 

input  of  length  n,  these  algorithms  roughly  need  at  most  n steps  to  decide 

whether the input is accepted by a given finite-state automaton, i.e.,  to decide 

whether the input belongs to the language defined by that automaton. Using "big-

O notation", we say that these algorithms run in O(n) time (see last column of 

Table 1). As a result, finite-state techniques have been and are used for a variety 

of  tasks  in  computational  linguistics,  including  speech,  phonological  and 

morphological processing, as well as syntactic analysis. Since, as is well-known, 

natural language syntax requires more powerful models than Type-3 grammars, 

the  finite-state  approaches  approximate more  powerful  grammars,  e.g.,  by  a 

depth  cut-off  in  rule  application  (and  thus  disallowing  deeply-embedded 

structures).

For context-free grammars in general,  there are also a number of relatively 

efficient algorithms, such as the Earley algorithm (Earley 1970) and the Cocke-

Younger-Kasami (CYK) algorithm (Kasami 1965, Younger 1967), both of which run 

in O(n3) time; that is, the algorithm roughly needs at most n3 steps for processing 

an input string of length n.

Turning  now  to  the  class  of  Type-0  (Turing-equivalent)  languages,  Table  1 

states that these are  undecidable. This means that, even if provided with huge 

amounts  of  storage space and time,  there is  no general  algorithm that  would 

deliver  an  analysis  for  any  arbitrary  input  (it  could  well  deliver  analyses  (or 

rejections) for the vast majority of possible input data but not necessarily for all of 

them).  The  property  of  decidability pertains  to  questions  such  as:  given  a 

grammar and a sentence, is there a procedure that tells us whether the sentence 

is accepted/generated by the grammar, in other words, whether the sentence is 



grammatical or not. The answer is that there is no such procedure for Type-0 

languages in general. 

As noted above, unification-based formalisms, such as HPSG and LFG, are in 

general equivalent to a Turing machine. This means that these formalisms would 

also  be  undecidable,  in  general.  Since  this  is  a  highly  problematic  property, 

additional  constraints  have  been  proposed  and  added  to  the  formalisms,  to 

constrain their power and make them decidable. For instance, adding the "off-line 

parsability  constraint"  to the LFG formalism makes it  decidable,  in  particular, 

"NP-complete"  (Johnson  1988).  As  a  result  processing  an  LFG grammar  on  a 

nondeterministic Turing  machine  takes  polynomial time  ("NP"  stands  for 

"nondeterministic, polynomial"): O(nk), where k stands for some constant (which 

can  be  much  larger  than  3,  as  in  the  O(n3)  time  complexity  of  context-free 

algorithms). Computers themselves correspond to deterministic Turing machines 

however, so typical algorithms have to simulate non-determinacy and in this way 

actually take  exponential time for LFG parsing (O(kn) -- here the input length  n 

provides the exponens of the function rather than the basis; as a consequence, 

lengthening  the  input  string  has  a  drastic  effect  on  computation  time). 

Nonetheless,  since  natural  languages  are  mostly  equivalent  to  context-free 

languages, intelligent algorithms exploit this property and thus arrive at parsing 

in polynomial time, for most cases.

Abstract algorithms, such as the Earley algorithm, are used in mathematical 

proofs of complexity. The next step is to turn them into parsing algorithms, which 

determine mechanical ways of applying the grammar rules and constraints and 

using the lexicon entries so that, given an input string, the algorithm can finally 

come up with either an analysis (or multiple analyses) of the input string, or else 

with the answer that the input string is ungrammatical and no analysis can be 

assigned to it. This leads us to the second concern of theory-driven computational 

linguistics: implementing the formalized theories and parsing algorithms.

1.2. Implementation of the theoretical frameworks 

Implementations of linguistic theories can be viewed as "proofs of concept": they 

prove  that  the  formalizations  are  indeed  sound  and  rigid,  and  exhibit  the 

predicted complexity properties. An implementation consists of two parts: (i)  a 

language-specific grammar (e.g. an LFG grammar for English) and (ii) a parser, 

which  analyzes  input  strings  according  to  that  grammar  (and  the  underlying 

formalism). It is the parser that knows how to "read" the grammar rules and to 

construct the trees or feature structures that constitute the analyses of the input 

strings.



The  parsers  are  often  embedded  in  "grammar  development  platforms", 

workbenches (software packages) which support the grammar writer in writing 

and  debugging  the  grammar rules,  e.g.,  by  checking  the  rule  format  ("do  all 

grammar rules end with a full  stop?")  or  by displaying the output  analyses in 

accessible formats. Important platforms for syntactic formalisms are: XLE (Xerox 

Linguistic Environment, from the NLTT group at PARC) for LFG implementations, 

LKB (Lexical Knowledge Builder, Copestake 2002) for HPSG grammars, but also 

used for implementing CCG grammars, and XTAG (Paroubek/Schabes/Joshi 1992) 

for TAG grammars. 

For the implementation of phonological and morphological analyzers, widely-

used tools are KIMMO (Karttunen 1983) and its free version, PC-KIMMO, from 

the Summer Institute of Linguistics (Antworth 1990), which embody the two-level 

rules  of  Koskenniemi  (1983).  The  Xerox  research  groups  have  developed  a 

collection of finite-state tools,  which,  among other things,  implement rewriting 

rules  (see,  e.g.  Beesley/Karttunen  2003).  Computational  linguists  have  also 

worked on formalizing and implementing semantics. CCG traditionally uses the 

lambda-calculus,  building  semantic  structures  in  parallel  with  categorial 

structures (Steedman 2000). In the LFG world, the formalism of Glue Semantics 

has been both developed and implemented (Dalrymple 1999); in the HPSG world, 

MRS (Minimal Recursion Semantics, Copestake et al. 2005) has been applied.

An implementation does not only serve as proof of the sound formalization of a 

theoretical framework. It can also serve linguists by verifying their formalization 

of specific linguistic phenomena within this framework. Development platforms 

can  support  the  linguist  user  in  the  formulation  and  verification  of  linguistic 

hypotheses: by implementing a grammar of, e.g., phonological or syntactic rules 

and lexicon entries, the user can verify the outcome of the rules and entries and 

experiment with variants. As early as 1968, Bobrow/Fraser implemented such a 

system, the "Phonological Rule Tester", which allowed the linguist user to define 

rewriting rules as presented in SPE, and to test the effect of the rules on data 

specified in form of bundles of phonemic features.

The  earliest  implementations  consisted  of  grammar  fragments  or  "toy 

grammars",  which  could  handle  a  small  set  of  selected  phenomena,  with  a 

restricted vocabulary. With the advent of more powerful computers, both in speed 

and storage, and of  the availability  of large electronic corpora (see article  4), 

people started to work on broader coverage. Adding rules and lexicon entries to a 

grammar can have quite dramatic effects however, because of unexpected and, 

usually, unwanted interferences. Such interferences can lead to rules canceling 

each  other  out,  or  else  they  give  rise  to  additional,  superfluous  analyses. 



Interferences can provide important hints to the linguist and grammar writer, by 

pointing out that some grammar rules are not correctly constrained. The problem, 

though,  is  that  there  is  no  procedure  to  automatically  diagnose  all  the 

interference problems of a new rule. A useful approximation of such a procedure 

is the use of  testsuites (see article 17), which are representative collections of 

grammatical and ungrammatical sentences (or words, in the case of phonological 

or  morphological  implementations).  After  any  grammar  modification,  the 

grammar is run on the testsuite, and the outcome is compared to previous test 

runs.

1.3. Theory-driven computational linguistics and corpora 

We complete this section by briefly summarizing the main points of interest of 

theory-driven computational linguistics and then address the role of corpora and 

the relation to corpus linguistics. As the name suggests, computational linguistics 

deals  with  "computing  linguistics":  linguistic  phenomena  and  theories  are 

investigated with regard to formal correctness, and structural and computational 

complexity.  A  second aspect  is  the  development  and  verification  of  language-

specific grammars, in the form of implementations.

What role do corpora play in this field? Firstly, as in research in (corpus-based) 

linguistics, corpora serve in computational linguistics as a "source of inspiration"; 

they are used to obtain an overview of the data occurring in natural language and 

to determine the scope of the phenomenon that one wants to examine. Secondly, 

corpus data drive the usual  cyclic  process of theory construction:  we start by 

selecting an initial set of examples that we consider relevant for our phenomenon; 

next, we come up with a first working model (in the form of a set of linguistic 

rules or an actual implementation), which accounts for our initial set of examples; 

we then add more data and test how well the first model fits the new data; if 

necessary, we adjust the model, such that it accounts for both the initial and new 

data;  then  we  add  further  data  again,  and  so  on.  Testsuites  with  test  items 

(sentences or words) for all relevant phenomena can be used to ensure that the 

addition of rules for new phenomena does not corrupt the analysis of phenomena 

already covered by the model.

In the early days of (toy) implementations, evaluation did not play a prominent 

role. However with more and more systems being implemented, both assessment 

of the systems' quality (performance) and comparability to other systems became 

an  issue.  The  performance  of  a  system  can  be  evaluated  with  respect  to  a 

standardized  gold  standard,  e.g.,  in  form  of  testsuites  or  corpora  with 

annotations,  such  as  "treebanks"  (see  article  17).  Performance  is  usually 



measured  in  terms  of  the  grammar's  coverage  of  the  gold  standard.  Other 

measures  include  the  time  needed  to  parse  the  test  corpus,  or  the  average 

number  of  analyses.  As  we will  see  in  the  next  section,  thorough  evaluation, 

according  to  standardized  measures,  has  become  an  important  topic  in 

computational linguistics.

In the scenarios described above, both the analysis and the use of corpus data 

is mainly  qualitative.  That is,  the data is inspected manually  and analyses are 

constructed manually, by interpreting the facts and hand-crafting rules that fit the 

facts. Data selection and analysis are driven by theoretical assumptions rather 

than the  data  itself.  In  this  respect,  theory-driven  computational  linguistics  is 

closely  related  to  (introspective)  theoretical  linguistics  --  and is  unlike  corpus 

linguistics.

An  alternative  strategy  is  to  automatically  derive  and  "learn"  models  from 

corpora,  based  on  quantitative  analyses  of  corpora.  This  method  is  more 

consistent  with the empiricist  paradigm,  which relies  on inductive methods to 

build  models  bottom-up  from  empirical  data.  The  empiricist's  branch  of 

computational linguistics is addressed in the next section.

2. Corpus-driven computational linguistics 

Up to the late 1980s, most grammars (i.e., phonological, morphological, syntactic, 

and  semantic  analyzers)  consisted  of  knowledge-based  expert  systems,  with 

carefully hand-crafted rules, as described in Section 1. At some point,  though, 

manual grammar development seemed to have reached its limit and no further 

progress seemed possible. However the grammars had not yet arrived at a stage 

that  would  permit  development  of  useful  applications  (something  that  was 

urgently  requested  by  funding  agencies).  In  general,  common  deficiencies  of 

hand-crafted systems were:

(i)  Hand-crafted  systems  do  not  easily  scale  up,  i.e.,  they  are  not  easily 

extensible  to  large-scale  texts.  As  described  in  the  previous  sections,  early 

implementations  consisted  of  toy  grammars,  which  covered  a  small  set 

phenomena,  with  a  restricted  vocabulary.  When such  systems are  augmented, 

e.g., to cover real texts rather than artificial examples, interferences occur that 

are  not  easy  to  eliminate.  The  grammars  of  natural  languages  are  complex 

systems of rules, that are often interdependent and, thus, difficult to manage and 

maintain.



(ii) Hand-crafted systems are not robust. Real texts (or speech) usually contain 

many words that are unknown to the system, such as many proper nouns, foreign 

words, hapax legomena and spelling errors (or mispronunciations). Similarly, real 

texts contain a lot of "unusual" constructions, such as soccer results ("1:0") in 

sports news, verbless headers in newspaper articles, syntactically-awkward and 

semantically-opaque idiomatic expressions,  and, of course,  truly-ungrammatical 

sentences. For each of these "exceptions", some "workaround" has to be defined 

that can provide some output analysis for them. More generally speaking, "the 

system needs to be prepared for cases where the input data does not correspond 

to the expectations encoded in the grammar" (Stede 1992). In the case of spelling 

errors  and  ungrammatical  sentences,  it  is  obvious  that  workarounds  such  as 

additional rules or constraint relaxation risk spoiling the actual grammar itself 

and causing it to yield incorrect (or undesirable) analyses for correct sentences.

(iii) Hand-crafted systems cannot easily deal with ambiguity. Natural languages 

are full  of  ambiguities; famous examples are PP attachment alternatives ("The 

man saw the woman with the telescope") or the sentence "I saw her duck under 

the table", with (at least) three different readings. In fact, people are usually very 

good at  picking  out  the  reading  which  is  correct  in  the  current  context,  and 

indeed  are  rarely  conscious  of  ambiguities  and  (all)  potential  readings.  For 

example,  Abney  (1996)  shows  that  the  apparently  impossible  "word  salad" 

sequence "The a are of I" actually has a perfectly grammatical (and sensible) NP 

reading, wich can be paraphrased as "The are called 'a', located in some place 

labeled 'I'" ('are' in the sense of 1/100 hectare). Ambiguity is a real challenge for 

automatic language processing, because  disambiguation often needs to rely on 

contextual information and world knowledge. Moreover, there is a natural tradeoff 

between coverage/robustness  and ambiguity:  the more phenomena a grammar 

accounts for, the more analyses it provides for each input string. This means that 

after having arrived at a certain degree of coverage, research then has to focus on 

strategies of disambiguation.

(iv)  Hand-crafted  systems  are  not  easily  portable to  another  language. 

Development of a grammar for, e.g., Japanese, is of course easier for a grammar 

writer  if  she  has  already  created  a  grammar  for  English,  because  of  her 

experience, and the rules of "best practice" that she has developed in the first 

implementation. It is, however, not often feasible to reuse (parts of) a grammar for 

another language, especially if the two languages are typologically very different, 

such as English and Japanese.

For  the  initial  purposes  of  theory-driven  computational  linguistics,  these 

deficiencies  were  not  so  crucial.  For  applied computational  linguistics,  which 



focuses on the development of real applications, the shortcomings posed serious 

problems.  Thus  researchers  in  applied  computational  linguistics  sought 

alternative  methods  of  creating  systems,  to  overcome  the  deficiencies  listed 

above.  They  found  what  they  were  looking  for  among  the  speech-processing 

community,  who  were  working  on  automatic  speech  recognition  (ASR)  (and 

speech  synthesis,  TTS,  text-to-speech  systems).  Speech  recognition  is  often 

regarded  as  a  topic  of  physical,  acoustic  engineering  rather  than  linguistic 

research, and researchers had successfully applied statistical methods on a large 

scale in the late 1970s. With the success of the ASR systems, people tried, and 

successfully  applied,  the  same  methods  in  other  tasks,  starting  with  part-of-

speech tagging, and then moving on to syntax parsing, etc. The large majority of 

today's  applications  in  computational  linguistics  make  use  of  quantitative, 

statistical information drawn from corpora.

Interestingly though, statistical techniques are not really new to the field of 

computational  linguistics,  which  in  fact  started  out  as  an  application-oriented 

enterprise,  using  mainly  empirical,  statistical  methods.  The  earliest  statistical 

applications are machine translation (e.g.,  Kaplan 1950, Oswald 1952),  speech 

recognition (Davis/Biddulph/Balashek 1952), optical character recognition (OCR, 

Bledsoe/Browning  1959),  authorship  attribution  (Mosteller/Wallace  1964),  or 

essay grading (Page 1967). It was only after the influential ALPAC report in 1966 

(ALPAC 1966), and in the wake of Chomsky's work (e.g., Chomsky 1956, 1957, see 

article 3), that the focus of research switched to rationalism-based, non-statistical 

research (with the exception of speech recognition), and gave rise to the branch 

of research that we called "theory-driven computational linguistics" (this switch is 

addressed in more detail in Section 3). The severe shortcomings of the theory-

driven  (toy)  implementations  however  led  researchers  to  look  for  alternative 

methods, and to re-discover corpus-driven techniques.  But it was not until  the 

1980s that people started to apply statistical methods (on a large scale) to tasks 

such  as  part-of-speech  tagging,  parsing,  semantic  analysis,  lexicography, 

collocation or terminology extraction. Indeed it was even longer before statistical 

methods were once again reintroduced into research on machine translation.

The reasons mentioned so far for re-discovering statistical methods are rather 

pragmatic, technically-motivated reasons. Following Chomsky, one could say that 

corpus-driven  approaches  are  misguided,  since  they  model  language  use,  i.e., 

performance rather than competence, in Chomsky's terms. However, many people 

today claim that competence grammar takes an (overly) narrow view of natural 

language, by restricting language to its algebraic properties, and that statistical 

approaches can provide insights about other linguistically-relevant properties and 



phenomena of natural language, such as language change, language acquisition, 

and  gradience  phenomena  (see,  e.g.,  Klavans/Resnik  1996;  Bod/Hay/Jannedy 

2003; Manning/Schütze 1999, ch. 1). Thus there may be theory-driven reasons to 

re-focus on corpus-driven methods.  In  the next  section,  we present  prominent 

concepts  and  methods  used  in  statistical  approaches  and  then  discuss  how 

statistical methods overcome the above-mentioned deficiencies.

2.1. Concepts and methods of statistical modeling of language 

In  Section 1,  we introduced formal  models  of  language in  the form of  formal 

grammars and automata as defined by the Chomsky Hierarchy. These models take 

words or sentences as input and produce linguistic analyses as output, e.g. part-

of-speech tags or syntactic trees, or the input can be rejected as ungrammatical. 

Statistical (or probabilistic) formal models also take words or sentences as input 

and produce linguistic analyses for them. In addition, they assign probabilities to 

all  input-output  pairs.  For  instance,  a  statistical  part-of-speech  tagger  might 

assign probability 0.7 to the input-output pair book-NN ("book" as singular noun) 

and  0.3  to  the  pair  book-VB ("book"  as  verb  base  form).  Ungrammatical  and 

absurd analyses like  book-CD (cardinal number) would receive very low or zero 

probability.

The models  used in corpus-driven computational  linguistics  are probabilistic 

variants of the formal grammars and automata defined by the Chomsky Hierarchy. 

For  instance,  a  probabilistic  context-free  grammar (PCFG)  can  be  seen  as  an 

ordinary  context-free  (Type-2)  grammar  whose  analyses  are  augmented  by 

probabilities. Applying an implementation of a PCFG, e.g. for English, to an input 

sentence  typically  results  in  a  huge  number  of  different  syntactic  analyses 

(thousands or even millions), each supplied with a probability. The probabilities 

impose a natural order on the different analyses: the most probable analyses are 

the most plausible ones, and indeed most likely the correct ones. In sum then, the 

probabilistic models arrange the individual analyses of some input along a scale of 

probabilities, marking them as more or less plausible, relative to each other.

Due  to  their  favorable  computational  properties,  Type-3  models  are  again 

highly  popular,  just  as  in  theory-driven  computational  linguistics.  The  most 

prominent probabilistic Type-3 models are n-gram models (which we describe in 

more detail below) and Hidden Markov Models. Most work on statistical syntactic 

parsers deals with PCFGs (Type-2 models), while comparatively less research has 

been devoted to probabilistic variants of Type-1 grammars.

Comparing  statistical  with  non-statistical  models,  we  could  say  that  non-

statistical models are simplified versions of statistical models in that they assign 



just two "probability values": "1" to all grammatical inputs (= "accept"), and "0" to 

all ungrammatical ones (= "reject"). It is the task of the grammar writer to write 

the grammar rules in such a way that all  and only the correct input words or 

sentences are accepted. In contrast, rules of statistical models are usually written 

in a very general way (similarly to underspecified rules in "universal grammar"), 

and may -- at least in theory -- even include absurd assignments such as book-CD, 

or rules that are ungrammatical in the language under consideration, such as PP 

→ NP P in an English grammar. The probabilities that are assigned to these rules 

would be very low or equal to zero, and all analyses that these rules participate in 

would "inherit"  some bit  of  the low probability  and thus be marked as rather 

implausible.

Where do the probabilities for the rules come from? The models themselves 

only  define  the  factors  (parameters)  that  are  assigned  the  probabilities.  For 

PCFGs,  these factors are context-free grammar rules.  For simpler  models,  the 

factors can be word forms, part-of-speech (PoS) tags, sequences of PoS tags, pairs 

of  word forms and PoS tags,  etc.  For instance,  a model  could define  that  the 

probability  of  a  PoS  assignment  such  as  book-NN depends  on  the  individual 

probabilities of the word and PoS tag in isolation ("How probable is it that the 

word 'book' occurs in some text, compared to all other words? How probable is 

the tag 'NN', compared to all other PoS tags?"). The question is then where the 

individual probabilities come from and how their probabilities are combined to 

produce the overall probability of book-NN.

The answer to the first question is that the probabilities can be derived from 

corpus statistics. The basic idea in statistical modeling of linguistic phenomena is 

to "take a body of English text (called a corpus) and learn the language by noting 

statistical regularities in that corpus" (Charniak 1993, 24). Put in technical terms 

then, most statistical modeling relies on the assumption that the  frequencies of 

so-called  events  (the  occurrences  of  a  certain  word,  part-of-speech  tag  or 

syntactic  configuration),  as observed in a corpus,  can be used to compute (or 

estimate)  the  probabilities of  these  linguistic  events,  and  thereby  to  detect 

regularities and generalizations in the language.

For  instance,  an  existing,  non-statistical  grammar  can  be  augmented  with 

probabilities by running the original grammar on a corpus and keeping a record 

of  how  often  the  individual  rules  are  applied  in  the  analyses  (as  in 

Black/Lafferty/Roukos 1992). Another way is to use annotated corpus data (e.g., 

treebanks) both to induce grammar rules, by reading off rules from the corpus, 

and to assign probabilities to them (e.g., Charniak 1996, Bod 1998). Finally, plain 



text data, without annotations, can also be used to induce statistical grammars, 

such as syntactic parsers (van Zaanen 2000).

The process of calculating probabilities on the basis of a model and corpus data 

is  called  parameter  estimation (or  training):  the  fillers  of  the  parameters  are 

assigned  probabilities,  resulting  in  an  instance  of  the  formal  model.  A  model 

instance can in turn be used to predict future occurrences of linguistic events, 

and  thereby  be  applied  to  analyse  previously-unseen  language  data.  How the 

individual probabilities result from corpus frequencies and combine to an overall 

probability is a matter of probability theory. Statistical models are based on the 

(simplifying) assumption that their parameters are statistically independent. The 

individual  probabilities  of  "competing candidates"  therefore sum up to 1.  In  a 

PCFG, for instance, the probabilities of all rules with the same left-hand side (e.g., 

NP → N, NP → DET N, NP → ...) sum up to 1. The probability of a PCFG analysis 

of a complete sentence is then computed as the product of the probabilities of the 

rules that participate in the analysis. 

How the parameters are actually assigned their probabilities depends on the 

algorithm  that  is  applied.  For  Type-3  models,  a  commonly-used  estimator 

algorithm  is  the  "forward-backward  algorithm"  (also  called  "Baum-Welch 

algorithm", Baum 1972); for PCFGs, the "inside-outside algorithm" is used (Baker 

1979).  Both types  of  algorithms  are  specific  instances  of  a  general  algorithm 

called "Expectation Maximization" (EM, Dempster/Laird/Rubin 1977).

Having built a model instance, we need algorithms to apply the model to new 

input data, similar to the algorithms that interpret and apply the grammars within 

theory-driven computational  linguistics;  this  task is  often called  decoding.  The 

Earley and CYK algorithms for context-free grammars, which we mentioned in 

Section  1.1,  can  be  modified  and  applied  to  PCFGs.  For  Type-3  and  Type-2 

models, the most prominent decoding algorithm is Viterbi (Viterbi 1967). As with 

theory-based  computational  linguistics,  computational  complexity  of  the 

frameworks  is  an  important  issue:  the  training  and  decoding  algorithms 

mentioned above are of polynomial computational complexity.

We now address selected concepts and methods of statistical modeling in more 

detail.

2.1.1. Noisy channel

The task of decoding is neatly illustrated by the metaphor of the noisy channel. As 

already mentioned, many statistical approaches were inspired by work in the area 

of speech recognition. The aim of speech recognition is to map speech signals to 

words,  and  to  this  end,  the  acoustic  signal  must  be  analyzed.  Very  often  the 



system cannot uniquely determine a particular word, e.g., words such as "big" or 

"pig" are hard to distinguish on an acoustic basis only. 

In  his  theory  of  communication  ("Information  Theory"),  Shannon  (1948) 

develops the metaphor of the noisy channel to describe problems such as these, 

which  arise  in  the  process  of  communication.  According  to  the  noisy-channel 

model, communication proceeds through a "channel" which adds "noise" to the 

signal: original signal → noisy channel → perturbed signal. For instance, a source 

word  like  "pig"  might  be  "disturbed"  by  the  channel  and  come  out  as  or  be 

misheard as "big". Or else a source word might be disturbed in that one of its 

letters is deleted, resulting in a spelling error. The aim of information theory, and 

cryptography in general, is to reconstruct (decode) the original source signal from 

the  perturbed  signal  at  the  end  of  the  channel.  How  can  this  be  done 

automatically? For this, we combine three types of information: (i) the perturbed 

signal  (which we have at hand);  (ii)  some measure of "similarity" between the 

perturbed signal and all source signal candidates (we prefer signal pairs that are 

rather  similar  to  each  other  than  unsimilar);  (iii)  the  prior  (unconditioned) 

probability  of  the  source  candidates,  specifying  how  probable  it  is  that  the 

speaker actually  uttered that source signal  (we prefer  source signals  that  are 

usual, frequent signals, over unfrequent ones).

For calculating similarity (ii)  and prior probability (iii),  we can use statistics 

derived from corpora: (iii)  can be estimated on the base of a large (balanced) 

corpus, by counting word occurrences (or occurrences of parameters other than 

wordforms, as specified by the model at hand). We thus might learn that "big" is a 

highly probable word, and "pig" is less probable. For (ii), we need a list of word 

pairs that are commonly mixed up (or misspelt) and the numbers for how often 

that happens. This information can be calculated on the basis of a corpus that is 

annotated with the relevant information. In this way, we might learn that "pig" is 

often misheard as "big". Based on this information, we can calculate the optimal 

candidate  for  the  source  signal,  which  realizes  the  best  combination  of  being 

similar to the perturbed signal and of being a probable word itself (although what 

counts as "similar" depends on the specific task).

2.1.2. Bayes' rule 

The  three  components  (i)-(iii)  of  the  noisy-channel  model  stand  in  a  certain 

relation to each other, and this relation is made explicit by an equation, called 

Bayes' rule (or Bayes' law). The equation captures the fact that we can swap the 

dependencies  between  source  and  perturbed  signal:  we  are  interested  in 

determining the most probable source signal (what we are trying to reconstruct) 



given a perturbed signal:  argmaxsource∈X P(source|perturbed), where  X is a set of 

alternative sources for the given "perturbed". According to Bayes' rule, this can 

be  computed  as  argmaxsource∈X P(perturbed|source)∗P(source),  in  which  the 

arguments  of  the  probability  function  P are  switched.  In  fact  we  effectively 

applied  this  rule  already in  our  informal  reasoning of  how to  reconstruct  the 

source  signal:  the  first  factor  of  the  product  expresses  our  vague  notion  of 

similarity (ii), the second factor captures the prior probability of the source signal 

(iii).

Bayes' rule is not restricted to linguistic applications but can be found in every-

day reasoning. For instance, a doctor usually applies Bayes' rule in the diagnosis 

of a disease (example from Charniak 1993, 23). The doctor's task is to determine, 

given a certain symptom, the most probable disease (P(disease|symptom)). Often, 

the doctor does not know the values for all possible diseases (a symptom can co-

occur with a number of different diseases). However, she knows quite well which 

symptoms  are  usually  associated  with  a  disease  (P(symptom|disease)).  Put 

differently, the doctor's knowledge is indexed by diseases, whereas the task at 

hand requires an index of symptoms. In addition however, the doctor knows how 

often  a  disease  occurs  (P(disease)),  i.e.,  which  diseases  are  worthy  of 

consideration.  With this  knowledge,  she can derive  the most probable  disease 

given the symptom (P(disease|symptom)).

2.1.3. N-gram models (= Markov models) and Hidden Markov Models 

Up to now, we have applied the noisy-channel model to decode isolated words, 

and this approach seems sensible for simple tasks like spelling correction. For 

speech  recognition  and  other  tasks,  however,  it  may  make  a  big  difference 

whether we look at isolated words or words in context: the prior probability of 

"big" might well be higher than that of "pig"; however in a context such as "The 

nice _ likes John", we know for sure that it is more probable that "pig" will occur 

than "big", and corpus data should somehow provide evidence for that. That is, we 

have in fact to deal with entire sentences (or even complete texts) rather than just 

words.  We thus  need to  know the prior  probability  of  source  candidates  that 

consist of entire sentences, and we need likewise to measure similarity between 

pairs of sentences. Obviously, however, we do not have corpora that contain all 

possible source sentences (because language is infinite), so that we could directly 

read  off  the  information.  Instead,  we have to  approximate the  information  by 

looking at spans of words rather than entire sentences. The spans usually consist 

of two words (bigrams) or three words (trigrams). For instance, the sentence "The 



nice pig likes John" contains the trigrams "The nice pig", "nice pig likes", and "pig 

likes John".

A list of n-grams (for some natural number n) together with their probabilities 

derived from a corpus (by counting their occurrences) constitutes an instance of a 

Markov  model  and  is  called  a  language  model.  Using  a  bigram  or  trigram 

language model, a speech analysis system can now compute that it is much more 

probable that "pig" will occur than "big" in the context "Another nice _ likes Mary" 

(even if this particular sentence was not part of the training corpus).

The noisy-channel model and n-gram models can be applied in a large variety 

of  tasks.  One  of  the  earliest  considerations  of  automatic  machine  translation 

refers to the noisy-channel model and cryptography: "When I look at an article in 

Russian, I say 'This is really written in English, but it has been coded in some 

strange symbols. I will now proceed to decode.'" (Weaver 1949; also see Section 

3.1  below).  According  to  this  view,  an  extreme  form  of  "perturbation"  has 

occurred when an English source text is affected in such a way that it comes out 

as  a  Russian  text.  The  same  statistical  methods  above  can  be  used  in 

reconstructing the source, i.e., in translating Russian "back" to English. 

The  model  can  also  be  used  for  linguistic  analyses,  such  as  part-of-speech 

tagging. Here, the "perturbed" signal is words in a text, and we use the model to 

reconstruct  the  corresponding  parts  of  speech  of  the  words  as  the  assumed 

source signal. For this kind of task, Hidden Markov Models (HMM) are used, an 

extension of n-gram (Markov) models. In a HMM, multiple paths can lead to the 

same output,  so  that  the  functioning  of  the  automaton  can  be  observed  only 

indirectly, whence the term "hidden". For example, the task of a PoS tagger is to 

deliver the correct PoS tags of some input words. The "visible" information is then 

the sequence of input words, and the "hidden" information is the corresponding 

sequence  of  PoS  tags  (which  we  are  interested  in).  HMMs  combine  the 

probabilities of the visible information with those of the hidden information, so 

that we can reconstruct the PoS tag sequence from the word sequence.

The  shared  assumption  of  n-gram-based  approaches  is  that  linguistic 

phenomena of different kinds depend, to a large extent, on "some" local context 

information only. For instance, one might assume that for modeling word-related 

phenomena such as parts of speech, only the current  word and its immediate 

neighbours,  or  only  up  to  two words  to  the  left,  are  "relevant";  for  modeling 

constituent-related  phenomena,  only  up  to  two  constituents  to  the  left  are 

relevant, etc. (this is called a "Markov assumption", here of third order, because 

probabilities  depend on three items:  the  current  word/constituent  and its  two 

neighbours). These assumptions seem justified in the light of the cognitive, iconic 



Proximity Principle: "Entities that are closer together functionally, conceptually, or 

cognitively  will  be placed closer together at the code level,  i.e.,  temporally or 

spatially"  (Givón 1991,  89).  Certainly,  it  is  true that  there are many linguistic 

phenomena  that  involve  "long-distance  dependencies",  such  as  circumfixes  in 

morphology and agreement or wh-movement in syntax -- however, the idea is that 

a  "sufficient"  amount  of  data can be modeled  successfully  by looking at  local 

context  only.  For  instance,  Marshall  (1983)  observes  that  in  general  a  local 

context of two words provides enough information to yield "satisfactory results" in 

the automatic assignment of part-of-speech tags (see Section 3.2.4 below).

2.1.4. Supervised and unsupervised learning 

(See articles 41 and 42.) We already mentioned that a probabilistic CFG can be 

trained on the basis of annotated or raw corpus data. If, due to annotations, the 

parameters  of  the  probabilistic  model  are  directly  observable  in  the  training 

corpus,  we  are  dealing  with  "supervised"  learning;  if  the  parameters  are  not 

observable, it is called "unsupervised" learning.

In  the  scenarios  described  above,  we  measured  "similarity"  between  the 

observed signal and source signal candidates. To do this, we need corpora that 

are  annotated  with  the  relevant  information.  A  program  that  should  learn  to 

correct  spelling  mistakes  needs  a  training  corpus  of  real  text  whose  spelling 

errors are annotated with the corrected version; a PoS tagger, which should learn 

to automatically assign parts of speech to words, needs a training corpus whose 

words are annotated with PoS tags; and so on. Training on annotated corpora is 

called "supervised learning", and the task that the program has to learn is called a 

"classification task": the system classifies each input according to a predefined set 

of classes (categories).

In unsupervised learning, the system is confronted with unannotated data only. 

It then tries to group (to cluster) the data in such a way that the clusters are 

distinguished from each other by characteristic combinations of certain features. 

What are these features? Suppose, for instance, we want to learn PoS tagging by 

unsupervised learning.  That is,  we feed the system with unannotated text and 

expect it to somehow come up with clusters that (more or less) correspond to 

linguistic PoS categories. The basic idea is that the system can learn these classes 

simply by comparing distribution in texts (thus implementing Firth's much-cited 

slogan "You shall know a word by the company it keeps!", Firth 1957), since we 

know that parts of speech reflect/encode distributional similarity. For instance, all 

words of category "noun" show similar distribution and occur in similar contexts: 

contexts like "the ... is" or "a ... has" are characteristic of nouns. In this scenario, 



the features that the learning algorithm uses would be the word's neighboring 

words.  The  system  then  starts  by  assigning  random  probabilities  (instead  of 

probabilities  derived  from  annotated  corpora),  then  iteratively  adjusts  these 

values to maximize the overall probability of the entire text. It could thus learn, 

e.g., that "in" and "on" are members of the same cluster since they share many 

leftward and rightward neighbors. Of course, the system will not be able to guess 

the labels of the clusters (like "preposition" or "noun"), nor even the number of 

clusters that it is supposed to identify.

To sum up, supervised and unsupervised learning are two different approaches 

to  machine  learning:  a  system is  fed (trained)  with example data and derives 

generalizations from the data; after the training phase, the system can be applied 

to new, hitherto unseen data and classify (or cluster) this data according to the 

generalizations. To date unsupervised systems cannot in general learn highly fine-

grained tagsets, and do not yet achieve the performance levels of systems that 

have been trained on annotated data.

2.1.5. Sparse data 

The features that a system makes use of during training are obviously crucial to 

the success of the enterprise: there is probably no corpus so large that simple 

features  like  neighboring  words  would  provide  enough  evidence  for  learning 

algorithms.  In  fact,  there  are  no  corpora  so  large  that  all  possible  kinds  of 

phenomena would really occur in them, or that their frequencies would be high 

enough  for  learning  algorithms.  This  is  called  the  sparse-data  problem.  To 

overcome this problem, more abstract features have to be used, which generalize 

over relevant properties of the underlying words. For instance, in the clustering 

task above, the training features might consist of affixes of  n characters length 

rather  than  full  word  forms.  The  learning  algorithm  would  then  cluster  and 

generalize over strings like "-able" or "-ally". Another kind of generalization can 

be  provided  by  annotations.  No  generalization,  however,  can  compensate  the 

sparse-data problem completely.

Automatic  selection  of  suitable  training  features  is  an  important  topic:  the 

system  itself  aims  at  finding  the  optimal  subset  of  features  from  among  a 

predefined  set;  the  predefined  set  often  consists  of  linguistically-motivated 

features but also includes superficial features like word length or position (in the 

text).

Another method to cope with the sparse data problem is a technique called 

smoothing:  smoothing  decreases  the  probabilities  of  all  seen  data,  then 



redistributes  the  saved amount  (probability  mass)  among the  unseen data,  by 

assigning them very small probabilities of equal size.

2.1.6. Corpus annotation 

As  we  have  seen,  annotated  corpora  are  a  vital  prerequisite  of  supervised 

learning, and, in view of the sparse data problem, of unsupervised learning as 

well: corpora provide suitable abstraction layers over the training data. Annotated 

corpora are similarly  important  for  theoretical  linguists,  and resources of  this 

kind are being successfully exploited by both camps (see article 17). Annotations 

encode diverse kinds of information, such as part of speech (article 25), lemma 

(article  26),  word  sense  (article  27),  syntax  trees  (article  17),  etc.  Applied 

computational  linguistics  is  also  interested  in  broader  regions  of  text,  like 

paragraphs or entire texts.  Annotations can thus also encode,  e.g.,  the logical 

document structure, by marking regions as "header" or "footnote", or the content 

structure of texts, by labeling regions as "introduction" or "conclusion". A further 

example is alignment of comparable regions from different (possibly multilingual) 

sources.

Such corpora are usually first annotated manually, and subsequently exploited 

for training. Further annotation can then be performed (semi-)automatically, by 

applying  the  system  that  has  been  trained  on  the  first  data.  An  example 

bootstrapping approach of this kind is the PoS tagger CLAWS, which is presented 

in Section 3.

Due  to  the  interest  in  annotated  corpora,  a  lot  of  work  in  computational 

linguistics has been devoted to the development of corpus tools, such as tools to 

assist the annotator in the annotation,  or search tools that support the use of 

linguistically-motivated search operators like "linear precedence" or "structural 

dominance", the basic relations of theoretical syntax. In this area, computational 

and corpus linguistics completely overlap in their interest in tools and methods.

2.1.7. Evaluation 

As with  linguistic  theories,  trained  systems can  be  evaluated  by  testing  their 

performance on new, unseen data, i.e., by evaluating whether the predictions of 

the theory or system fit the unseen data. Of course, computational linguistics aims 

at automatic evaluation, since systems nowadays deal with large amounts of data 

and are supposed to handle unrestricted texts. There are different methods of 

evaluation. Firstly, a supervised-learning system can be trained and evaluated on 

the same type of data. In this case, only part of the data (e.g., 90%) is used for 

training (and system development),  and the remaining data is used as test (= 



evaluation) data. It is crucial that neither the system nor the system's developer 

make any use of the test data other than for the very final evaluation, otherwise, 

the evaluation cannot be used as an indication of how well the system performs 

on genuinely new data. For testing, the trained system is run on the test data with 

the annotations stripped off. The output of the system is then compared with the 

original  annotation,  and  the  system's  performance  is  computed  in  terms  of 

measures  such  as  precision and  recall.  Precision  measures  how accurate  the 

system's predictions are; for instance, if a certain system assigns 10 NP chunks, 

and 8 of them are correct, then the system's precision equals 8/10 = 0.8. If the 

system should actually have marked 20 NP chunks but it found only 8 of them, 

then its recall equals 8/20 = 0.4. The measures thus encode both the fact that if 

this system marks an NP, it is usually correct, and the fact that it misses many of 

the  NPs.  A  measure  combining  precision  and  recall  is  F-score,  the  harmonic 

means of both; in our example: 2∗(0.8∗0.4)/(0.8+0.4) = 5.33.

If  the  performance  of  several  systems  is  to  be  compared,  a  gold  standard 

corpus  is  usually  used  as  the  test  corpus  (see  Section  1.3),  such  as  the 

PennTreebank  (Marcus/Santorini/Marcinkiewicz  1993).  A  disadvantage  of  this 

type of evaluation is that the outputs of the systems are often not easily mapped 

to the gold standard, for example due to theory-dependent discrepancies, with the 

result  that  the  performance  of  a  system  might  actually  be  better  than  the 

evaluation outcome suggests. With unsupervised-learning systems especially, the 

discrepancies between a linguistically-motivated gold standard and the clusters of 

a system can be enormous.

For certain tasks like Information Retrieval, Machine Translation (see article 

50) or Automatic Text Summarization (article 65), no gold standard is immediately 

available  for  evaluation,  and  with  these  tasks,  it  is  hard  to  define  "the  best 

solution". Depending on the user and the situation, a range of different document 

selections  might  count  as  optimal  for  a  specific  Information  Retrieval  task. 

Similarly, there are always many alternative ways of translating or summarizing a 

text, and a gold standard would have to account for all these alternatives. In these 

cases then, manual inspection of the system output is often deemed necessary, 

and (subjective) measures like "quality" or "informativeness" are used.

The evaluation methods addressed so far are instances of intrinsic evaluation, 

because the performance of  the system is measured by evaluating the system 

itself. Another method is extrinsic evaluation, in which the system is embedded in 

another application and the overall  performance is  measured.  For instance,  in 

order to evaluate a summarization system, one first  asks people to assess the 

relevance  of  particular  documents  to  a  certain  topic,  or  to  answer document-



related  questions.  It  can  then  be  measured  whether  these  people  perform 

similarly  when  confronted  with  automatically-generated  summaries  of  the 

documents instead of the full text; if so, the summarization system does a good 

job.

Evaluation  nowadays  plays  an  important  role  in  applied  computational 

linguistics, and researchers who develop new methods or tools are expected to 

provide  the  results  of  standardized  evaluations  alongside  presentation  of  the 

system. A series of conferences focusing on evaluation issues has been initiated in 

the U.S., starting with MUC (Message Understanding Conference, since 1987; see 

also  article  28)  and  TREC  (Text  REtrieval  Conference,  since  1992).  These 

conferences in fact consist of competitions: each year, the conference organizers 

define  a  set  of  specific  tasks,  such as  "for  each open class  word in  the  text, 

determine its  sense according to the WordNet  (Fellbaum 1998) synsets".  They 

also  provide  researchers  with  relevant  training  data,  well  in  advance  of  the 

conference, so that the system developers can tune and adapt their systems to the 

task  and  data.  During  the  conference,  the  organizers  present  comparative 

evaluations of the systems that have been "submitted" to the conference.

To conclude this section, let us quickly review the deficiencies of handcrafted 

systems  identified  at  the  beginning  of  this  section  and  compare  them to  the 

outcomes of statistical methods.

(i) Scalability: usually, statistical methods scale up well; if the training data is 

too small and does not include (enough) instances of certain phenomena, then the 

training corpus has to be enlarged, but the overall training method can be kept 

unchanged. (ii) Robustness: input data that does not meet the expectations of the 

system can be handled  by smoothing,  which  assigns  very  low probabilities  to 

unseen (and, hence, unexpected) data. However, scalability as well as robustness 

of a system are often sensitive to the types and domains of text that the system is 

confronted with: if the system has been trained on a certain text type and domain, 

its performance usually suffers if it is fed with texts of other types and domains. 

(iii) Ambiguity: ambiguities such as "The man saw the woman with the telescope" 

actually require some sort of semantic, contextual or even world knowledge to 

resolve them. Useful approximations of such knowledge are however provided by 

statistical  methods  that  take  lexical,  collocational  information  into  account: 

certainly the lemma "telescope" co-occurs with the lemma "see" more often than 

with  "man";  similar  preferences  can  be  derived  from  (large)  treebanks.  (iv) 

Portability: usually the techniques applied in statistical approaches are language-

independent, so portability is not an issue, in principle; the features that are used 



in training must be carefully selected however;  e.g.,  it  makes no sense to use 

affix-like features in an isolating language like Chinese.

2.2 Statistical computational linguistics and corpora 

The previous sections have shown clearly that texts and annotated corpora play a 

predominant role in application-oriented and statistical computational linguistics. 

They are a sine-qua-non condition both in training and in evaluating statistical 

systems. Linguistic information in the form of annotation is usually part of the 

training data (other kinds of resources, such as WordNet (Fellbaum 1998), often 

provide additional information). Corpus annotation and corpus tools are thus a 

concern  of  both  corpus  and  computational  linguistics  and  annotation-related 

research and methods can often be attributed to both disciplines. Similarly, just as 

in corpus-based linguistic research, techniques in computational linguistics that 

make use of corpus frequencies are faced with the fact that corpora are finite 

samples and, to generalize from such samples, statistical inference is needed (see 

article 38), and methods like n-gram approximations and smoothing have to be 

applied.

As  already  mentioned,  at  opposite  extremes  of  computational  and  corpus 

linguistics, the ultimate goals of corpus exploitation do however diverge in that 

the  features  that  turn  out  to  be  useful  for  language  models  are  not  seen  as 

interesting per se by certain domains of corpus-driven computational linguistics. 

Indeed, many researchers think it would be most desirable to let the algorithms 

specify (define) the features fully automatically -- and some of these researchers 

only care about the performance of the system rather than the features used by 

the  system.  Unfortunately  for  them,  corpus  data  is  too  restricted  to  provide 

enough evidence for  all  sorts of  conceivable  features that an algorithm might 

come  up  with  (and,  probably,  computer  capacities  also  set  limits  to  such  an 

enterprise). Therefore, a set of features has to be predefined that the algorithms 

can  choose  from.  These  sets  often  contain  both  linguistic  and  non-linguistic 

features and, very often, simple non-linguistic features like the average word or 

sentence length, the standard deviation of word/sentence length, the number of 

periods, question marks, commas, parentheses, etc., are successfully exploited by 

learning  algorithms.  These  features  are  certainly  reflections  of  interesting 

linguistic  phenomena,  e.g.,  the  number  of  commas  can  give  hints  about  the 

syntactic  complexity  of  the  sentences.  However,  the  connection  between  the 

features  and  the  linguistic  properties  is  rather  loose,  so  that  corpus  linguists 

would be not interested so much in such features. They usually very carefully 

select the features that they are interested in.



In contrast to theory-driven computational linguistics, corpora are mainly used 

quantitatively. The knowledge encoded in annotations thus becomes part of any 

language model derived on the basis of the data. However, the development of 

statistical models can also involve qualitative analysis: for example, during the 

development  phase,  researchers  will  quite  carefully  inspect  the  data  (and  its 

annotation) in order to identify an optimal set of discriminative features for use in 

training. Similarly, evaluations are usually accompanied by more or less detailed 

error  analyses,  to  facilitate  better  understanding  of  the  weaknesses  and 

shortcomings of the system; for this, researchers will scrutinize that part of the 

test data that most often causes the system to fail.

We now proceed to Section 3, which presents a short historical overview of the 

origins  and early  development  of  computational  linguistics,  focussing on early 

machine translation and the evolution of part-of-speech tagging. This area neatly 

illustrates the application of hand-crafted rules in the first  generations of PoS 

taggers,  which were later  supplemented and finally  replaced by corpus-driven 

techniques.

3. Computational linguistics: a brief history 

3.1. The emergence of computational linguistics: first steps in machine 

translation

The origins of computational linguistics can be traced back (cf., e.g., Hutchins 

1997,  1999)  to  the  American  mathematician  Warren  Weaver,  director  of  the 

Natural Sciences Division of the Rockefeller Foundation, who during World War II, 

became acquainted with the development of electronic calculating machines and 

the application of statistical techniques in cryptography. In July 1949, he wrote his 

famous memorandum, "Translation", suggesting that automatic translation might 

be feasible (Weaver 1949, see Section 2.1.3). At that time, early experiments in 

machine translation had already been conducted on the basis of word-by-word 

translation of scientific abstracts. The results of these translations were of course 

far  from  satisfactory  --  as  will  be  obvious  to  anyone  with  basic  linguistic 

knowledge.

In his memorandum, Weaver made four proposals as to how to overcome the 

problems of word-by-word translation, two of which we address here because they 

refer to information that can be extracted from raw texts. (The other proposals 

relate  to  the  "logical  character"  of  language  and  the  existence  of  language 

universals.)  Weaver's  first  proposal  concerned  the  disambiguation  of  word 

meaning:



"If one examines the words in a book, one at a time through an opaque 

mask with a hole  in it  one word wide,  then it  is  obviously  impossible  to 

determine, one at a time, the meaning of words. "Fast" may mean "rapid"; or 

it may mean "motionless"; and there is no way of telling which. But, if one 

lengthens the slit in the opaque mask, until one can see not only the central 

word in question but also say N words on either side,  then, if  N is large 

enough one can unambiguously decide the meaning."

The  second  proposal  concerned  the  application  of  cryptographic  methods 

(Shannon 1948), based on "frequencies of letters, letter combinations, intervals 

between letters and letter combinations, letter patterns, etc. ...".

In both proposals, information is gained from texts and contexts: in the first 

proposal,  a word can be disambiguated by examining its  current context.  The 

second proposal suggests that such tasks might also be achieved by examining 

the usual context of a word, i.e., the contexts in which the word commonly (most 

frequently)  occurs.  The  n-gram  example  in  Section  2.1.3,  disambiguating 

"big/pig", implements these proposals.

3.2. The emergence of symbolic methods in computational linguistics 

Returning to the evolution of machine translation, the next major event after the 

Weaver memorandum was the publiction of the ALPAC report in 1966. At this 

time, most US funding for computational  linguistics  had gone into projects on 

machine  translation.  In  1964,  a  committee  of  experts  were  asked  to  judge 

whether this funding was justified, and in their final report (ALPAC 1966) they 

came to the devastating conclusion that none of the applications developed so far 

were  satisfactory,  and that  employing  human translators  would  not  only  yield 

better results but would also be cheaper. The report suggested abandoning the 

funding of scientific research on machine translation, but, instead, encouraged 

the support of fundamental research in computational linguistics in general. In 

particular, the ALPAC report recommended:

"(1)  basic  developmental  research  in  computer  methods  for  handling 

languages,  as  tools  to  help  the linguistic  scientist  discover  and state  his 

generalizations, and as tools to help check proposed generalizations against 

data;  and  (2)  developmental  research  in  methods  to  allow  linguistic 

scientists to use computers to state in detail the complex kinds of theories 

(for example, grammars and theories of meaning) they produce; so that the 

theories can be checked in detail. " (ALPAC 1966, vi)



Clearly, the main role of computational linguistics was seen as assisting linguists 

in the formalization and assessment of linguistic theories, very much as described 

in  Section  1.  The  ALPAC  report  had  a  tremendous  impact  on  the  course  of 

computational linguistics research in the following years, causing a major change 

in  the focus of  research:  a  shift  from mainly  statistical  methods to  rationalist 

approaches,  using  symbolic,  linguistic  features,  rather  than  numerical  values, 

such as probabilities. More emphasis was put on the analysis of the nature of the 

underlying categories that constitute natural language, and on their interaction, 

introducing different levels of categories and structures, such as simple part-of-

speech (PoS) tags or complex syntactic structures.

In our presentation here, we focus on PoS tagging. We will see that the very 

first automatic PoS taggers implemented versions of Weaver's first proposal, in 

the form of context rules. These rules were created manually, but later taggers 

derived  them  from  annotated  corpora,  thus  implementing  Weaver's  second 

proposal (applying his proposal to annotations rather than words). We will further 

see  that  people  then  started  to  use  annotated  corpora  to  evaluate  the 

performance of their system.

3.2.1. The TDAP parser 

Probably the first automatic PoS tagger was implemented by Zellig S. Harris in 

1958/59  (cf.  Jurafsky/Martin  2000,  317).  The  tagger  was  designed  as  a 

preprocessing  component  of  the  TDAP parser  ("Transformation  and  Discourse 

Analysis  Project",  Harris  1962;  reimplemented  as  "Uniparse"  by  Joshi/Hopely 

1998).  In this  architecture,  the tagger first  assigns to each word a set of  tag 

candidates,  which are looked up in a lexicon.  Next,  a series  of  rules are run, 

eliminating tags that are incompatible with the local context, thus implementing 

Weaver's first proposal. For instance, the tag "V" (verb) is deleted from the set of 

candicates  if  the  word  is  followed  by  the  preposition  "of",  although  a  set  of 

designated verbs, such as "think, consist", are exempted from this rule. All in all, 

the system comprised 14 hand-written rules for PoS disambiguation, which were 

run in cycles until no further disambiguation was possible.

On top of  these  PoS-disambiguation  rules,  another  series  of  cascaded rules 

were applied to the previously-identified PoS tags, to parse the sentence. Thus, 

the tagger functioned as a preprocessor for the parser, by introducing a first layer 

of  abstract  linguistic  categories  (parts  of  speech)  to  encode  syntax-relevant 

information in the text. The parser could recognize basic, non-recursive syntactic 

constituents, such as base NPs and PPs. The parser rule for NPs, for instance, 

which was applied from right to left, recognized tag sequences of the form "N A* 



(T)", using a longest-match strategy. That is, it first allocated the head noun (N), 

next, arbitrarily many adjectives (A*) preceding that head noun, and, finally, an 

optional  determiner  (T).  An example  TDAP parse  is  shown in  (1)  (taken from 

Bangalore 1997, 21); [ ] indicate NPs, { } verb sequences, and ( ) adjuncts.

(1) [Those papers] {may have been published} (in [a hurry]). 

The TDAP parser could not handle unknown words. One of the reasons was 

certainly the limited computational capacities available at that time, both in terms 

of storage size and processing speed. Implementations could at that time be fed 

by small amounts of data only, so there was no need to process large amounts of 

free text, featuring unknown words.

3.2.2. The CGC tagger 

The next step in the evolution of PoS tagging was made by Klein/Simmons (1963), 

who developed a tagger in the context of a natural language question-answering 

system. The tagger, called "CGC" (computational grammar coder), assigned PoS 

tags based on suffixes rather than words. The algorithm first looked up each word 

in  dictionaries  of  approximately  400  function  words  (articles,  prepositions, 

pronouns,  ...)  and  1,500  irregular  forms  (nouns,  verbs,  adjectives).  For  the 

remaining words, tag candidates were assigned according to the suffix of each 

word. For instance, the test "Suffix Test 1" handled English inflection: it marked, 

e.g., words ending in "-ies", such as "nationalities", as NOUN/VERB (plural noun 

or 3rd person singular verb).  The algorithm would then replace the presumed 

suffix "-ies" by "y" ("nationality") and perform another test, "Suffix Test 2", on the 

new form. "Suffix Test 2" included information about derivational suffixes, so that 

the  newly-created  word  ending  in  "-ity"  would  be  recognized  as  NOUN.  After 

running a  series  of  such tests,  the  individual  results  were  intersected;  in  our 

example,  "Suffix  Test  1"  (NOUN/VERB) and "Suffix  Test  2"  (NOUN) would  be 

resolved to NOUN as the final tag. For remaining ambiguities, or words that had 

not yet been assigned some tag, the "Context Frame Test" could delete, or add, 

tag  candidates,  based  on  a  hand-crafted  list  of  about  500  permissible  tag 

sequences.  As  with  the  above  disambiguation  rules,  the  Context  Frame  Test 

implements Weaver's first proposal.

Besides  the  fact  that  the  CGC tagger  needed  small  lexica  only,  it  had  the 

enormous advantage of being robust: regardless of the input, the tagger always 

came up with some analysis. Since it was the first system that was actually able to 

deal with unrestricted text, it now made sense to evaluate the CGC tagger, by 

tagging  previously-unknown  text.  Klein/Simmons  (1963,  344)  report  that  they 



tagged "several pages" of a children's encyclopedia, and the tagger "correctly and 

unambiguously  tagged  slightly  over  90  per  cent  of  the  words".  This  is  a 

surprisingly good result; however, it is not fully clear from their paper whether 

they or not had used the evaluation data in the development of the system. If so, 

this would mean that their system was optimized for this data and could not be 

expected to yield similarly good results for unseen texts. Moreover, since all of the 

knowledge resources of the system (dictionaries, suffix tests, context frame test) 

were hand-crafted, it is not obvious whether the system would scale up, i.e., be 

extensible to large-scale texts.

3.2.3. TAGGIT 

Continuing the work of Klein/Simmons, TAGGIT (Greene/Rubin 1971) was the first 

tagger that was actually applied to large-scale texts, namely the Brown Corpus 

(Kucera/Francis  1967;  see  article  22).  Like  the  CGC  tagger,  TAGGIT  used  a 

dictionary, with about 3,000 entries, then applied a suffix list of about 450 strings, 

followed by a filtering through 3,300 context frame rules (which play the role of 

the Context Frame Test of the CCG tagger). In comparison to the CGC tagger, 

TAGGIT used a more fine-grained tagset (82 tags, as opposed to 30 CGC tags), 

and  the  suffix  list  was  derived  from  lexico-statistics  of  the  Brown  Corpus. 

Crucially, and in contrast to the previous approaches, the TAGGIT context rules 

were acquired semi-automatically: the tagger (without context frame rules) was 

run on a subset of 900 sentences from the Brown Corpus, and for all ambiguous 

cases  the  correct  tag  was  determined  manually;  a  program was  then  run  to 

produce and order all of the context frame rules that would have been needed for 

the disambiguation. According to Kucera/Francis (1982), TAGGIT correctly tagged 

approximately  77% of  the  Brown  Corpus.  In  the  1970s,  TAGGIT  was  used  to 

annotate the entire Brown Corpus; any words that did not receive a unique tag 

from TAGGIT were manually disambiguated. The Brown Corpus is therefore not 

only the first large-scale  electronic corpus, and the first  annotated corpus, but 

also the first corpus which was ever annotated by an automatic tagger.

3.2.4. ... and back to statistics: CLAWS 

The  Brown  Corpus,  which  consists  of  texts  of  American  English,  was  soon 

complemented  by  a  corresponding  corpus  of  British  English,  the  LOB corpus 

(Leech/Garside/Atwell 1983). Similarly to the Brown Corpus, the LOB corpus was 

intended  to  be  enriched  by  PoS  tags.  For  this  task,  Leech  and  colleagues 

benefitted  from the  annotated  Brown Corpus  and  the  TAGGIT  program itself. 

TAGGIT had an accuracy of 77%; this means that, assuming an average sentence 



length of 19 words, every sentence would contain, on average, 4 ambiguous tags, 

which had to be manually post-edited. This heavy load of human intervention was 

obviously  a serious problem for further large-scale annotation.  To improve the 

performance  of  TAGGIT,  the  LOB  group  developed  a  program  that  applied 

statistical  methods,  known  as  the  "tagging  suite",  later  called  "CLAWS" 

("Constituent-Likelihood  Automatic  Word-Tagging  System",  Marshall  1983, 

Leech/Garside/Atwell 1983). CLAWS inherited much from TAGGIT: it comprised a 

lexicon of 7,000 entries, derived from the tagged Brown Corpus, plus a list of 700 

suffixes, and rules for certain words. The important innovative aspect of CLAWS 

was  the  implementation  of  the  context  frame  rules,  by  means  of  a  statistical 

program called the Tag Selection Program (Marshall  1983).  The program used 

PoS-bigram frequencies computed from the Brown Corpus. Given a sequence of 

ambiguous tags, which had been assigned in previous steps, the program first 

enumerated  all  possible  disambiguated  tag  sequences.  Next,  it  computed  the 

probability  of  the  entire  sequence  as  the  normalized  product  of  all  of  the 

individual  bigram  frequencies  occurring  in  the  sequence.  Finally,  the  tag 

sequence that maximized the probability was chosen.

To give an example: suppose lexicon lookup and suffix  rules resulted in the 

following ambiguous tag sequence (example from Marshall 1983):

(2) Henry NP 

likes NNS VBZ 

stews NNS VBZ

. .

This sequence compiles into four disambiguated tag sequences: 

(3) a. NP NNS NNS .

b. NP NNS VBZ .

c. NP VBZ NNS .

d. NP VBZ VBZ .

The frequency for each tag bigram ("NP NNS", "NNS NNS", "NNS VBZ", etc.) is 

computed from the Brown Corpus; e.g., freq(NP NNS) = 17, freq(NNS NNS) = 5, 

freq(NNS .) = 135, etc. The probability of the complete sequence "NP NNS NNS 

." (3a) is then computed as the product of the individual bigrams, i.e., 17∗5∗135 = 

11,475,  divided by the  sum of  the  values  for  all  possible  sequences  (38,564), 

resulting in the probability P("NP NNS NNS .") = 0.3.

Marshall  observed  that,  in  general,  bigram frequencies  yielded  satisfactory 

results. In certain cases, however, bigrams could not encode enough information: 



for instance, in sequences of the form "verb adverb verb" (as in "has recently 

visited"), the second verb was often incorrectly analyzed as past tense ("VBD") 

instead of  the  correct  past  participle  ("VBN").  To extend  the  context  window, 

selected tag triples (or trigrams) were added to the program to avoid such errors. 

For  certain  cases,  it  proved  useful  to  exploit  the  probability  of  a  word-tag 

assignment,  derived  from  the  Brown  corpus,  as  an  alternative  method  of 

calculating the most probable tag. CLAWS has been used to tag the entire LOB 

Corpus and achieved an overall success rate of between 96% and 97% (which is 

very close to the performance of today's taggers).

The  development  we  have  traced,  by  looking  at  part-of-speech  tagging 

algorithms,  clearly  shows  how  theory-driven  methods  were  applied  to  make 

explicit  the  information  contained  in  a  corpus,  through  analysis  of  linguistic 

expressions in terms of more abstract linguistic categories and structures. This 

information was exploited again, to train statistical methods, but on the basis of 

yet more abstract linguistic structures than the original surface-oriented methods. 

At  the  same  time,  the  annotated  corpus  was  also  used  to  evaluate  the 

performance of the automatic systems.

4. Conclusion 

In  summary  then,  the  history  of  computational  linguistics  started  out  with  a 

strong focus on statistics, which were computed on raw, unanalyzed texts, then 

moved  on  to  research  on  theoretical  frameworks  and  theory-driven,  more 

linguistically-informed  methods  (by  introducing  linguistic  categories  like  PoS 

tags),  and,  finally,  came  back  again  to  use  of  statistics  on  annotated  texts. 

Needless to say not all research in computational linguistics fits exactly into this 

picture.

As  we  have  seen,  computational  linguistics  started  out  as  an  application-

focused task, namely automatic translation, and from there evolved into a broad 

research area, comprising different research methodologies (corpus- and theory-

driven),  fundamental  and application-oriented research,  and involving different 

linguistic disciplines. Interestingly, the methods that were judged to be useless in 

the  beginning  were  later  successfully  revived,  but  combined  with  more 

substantial, linguistically-informed, formal models of language. Today, statistical 

approaches are prevalent  in many areas of computational  linguistics;  e.g.,  the 

majority  of  approaches  presented  at  the  most  important  conferences  of 

computational linguistics -- most prominently, the conferences of the Association 



for Computational Linguistics (ACL, EACL, NAACL), or COLING, the International 

Conference  on  Computational  Linguistics  --  are  oriented  towards  statistical 

language  modeling.  Why  are  statistical  methods  nowadays  so  successful,  in 

contrast  to earlier  attempts in machine translation,  and in  contrast to  purely-

symbolic approaches? Here are some possible reasons: firstly statistics can these 

days draw information from annotated texts, which means that the input provides 

relevant information in a focused, condensed way. Secondly, the amount of data 

available  for  training  has  increased  immensely.  Thirdly,  and  in  contrast  to 

symbolic  approaches,  statistical  methods  are  robust  and  can  easily  deal  with 

defective input. Martin Kay, one of the pioneers of computational linguistics, adds 

another reason (e.g., Kay 2004): what was missing from the early approaches, and 

is  indeed  still  missing  today,  is  world  knowledge.  For  successful  language 

understanding,  we  need  knowledge  about  objects  in  the  world,  about  their 

relations to other objects, about the knowledge of the speaker and hearer about 

these objects, about their mutual beliefs, etc. Such knowledge is in part encoded 

in resources like WordNet, however, these resources are rather small and confine 

themselves to relations that are linguistic in nature, such as lexical relations of 

synonymy  or  hypernymy.  They  do  not  encode  world  knowledge,  such  as  "in 

restaurants, meals are served by waiters". The representation of world knowledge 

is  the domain of  Artificial  Intelligence.  The modeling  of  world knowledge and 

commonsense reasoning is however a difficult and complex task, and as of today 

there  are  no  large-scale  implementations  that  would  allow  for  practical 

applications  in  computational  linguistics.  Statistical  methods  can  derive  world 

knowledge from corpora to a certain extent. For instance, words like "restaurants, 

meals, waiters" will often co-occur in narrow contexts, if enough data is available 

that  contain  these  words,  and  thus  statistics  can  be  used  as  a  "poor  man's" 

substitute for underlying world knowledge.  Similarly,  ambiguities such as "The 

man  saw  the  woman  with  the  telescope"  can  be  resolved  by  collocational 

information derived from corpora: certainly the lemma "telescope" co-occurs with 

the lemma "see" more often than with "man".

These days then, we see an increasing tendency to rely on a mixture of both 

linguistic  knowledge  --  whether  explicitly  encoded  in  the  form  of  rules  (e.g., 

tagger or grammar rules) or implicitly encoded in the form of annotated corpora -- 

and statistical methods.
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