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Summary 

Although the phenomenon of creep in concrete has been known for 
nearly 70 years, its study has only recently gained importance because of 
new types of structures of higher creep sensitivity, such as nuclear 
reactor vessels and containers or undersea shells. This article summar­
izes some of the basic knowledge in this field, with emphasis on recent 
developments, and including some new results. 

Basic experimental facts relating to creep and shrinkage are summar­
ized first. In the simplest approximation, concrete may be regarded as an 
aging viscoelastic material. This yields a creep law in the form of 
hereditary, integrals with .nonconvolution kernels. Various simplified 
expressions for the creep function, defining these kernels, have been 
recommended by the engineering societies to aid the designers. To make 
solution of large structural systems tractable, the creep law must be 
converted to a rate-type form, i.e. a system of first-order differential 
equations involving hidden stresses or strains, with time-dependent 
coefficients. This is particularly advantageous for numerical time integra­
tion in conjunction with the finite element method. Maxwell and Kelvin 
chains with time-dependent coefficients are the two basic models. 

A more realistic model requires inclusion of temperature and humidity 
effects. Temperature rise accelerates creep, as well as the hydration 
reactions that are responsible for the change of material properties 
(aging). These effects are formulated in terms of activation energies. A 
crucial role in creep, as well as shrinkage, is played by the large amount 
of water that is contained in concrete in the form of adsorption layers that 
are several molecules thick and are confined between solid cement gel 
particles and layers. Thermodynamics of the diffusion that takes place 
along such layers in response to stress and temperature changes and 
changes in water content of the macro-pores is discussed. It is shown that 
a nonlinear coupling between the fiux of water molecules and the fiux of 
solid molecules explains the basic nonlinear effects in low-stress creep, 
such as the drying creep effect. Further nonlinear behavior, due mainly to 
gradual microcracking, appears in high-stress creep. The solution of the 
creep and shrinkage of a concrete body depends on the solution of the 
macroscopic water diffusion through the body (drying or wetting), but the 
reverse coupling of these problems is negligible. The analysis of drying is 
complicated by a sharply nonlinear dependence of diffusivity' upon the 
pore humidity, as well as upon the temperature and the degree of 
hydration. A mathematical formulation of these phenomena is given. 

In analyzing structural problems according to a viscoelasticity theory, 
basic roles are played by the elastic-viscoelastic analogy and McHenry's 
analogy, the proofs of which are given. Various methods of numerical 
step-by-step methods of time integration for both linear and nonlinear 
stress-strain laws are also described. They imlY all be formulated as a 
sequence of elasticity problems. with inelastic strains, and the latter may 
be replaced by equivalent applied loads. To ensure numerical stability, 
special new algorithms are required for the rate-type creep laws based on 
the Maxwell and Kelvin chains. For a number of ordinary design 
problems, various simplified linear creep laws that allow simple solution 
may be used. They are discussed in detail and one of them, serving as 
basis for the recently developed age-adjusted effective modulus method, 
is shown to yield accurate results. 

The theoretical results are documented by experimental data. 

1 INTRODUCTION 

If concrete is subjected to sustained loads, it continues to deform 
further with time. This phenomenon, discovered in 1907 by Hatt[1], is 
now commonly referred to as creep. Concrete also exhibits stress­
independent deformations which. in· addition to thermal dilatation, 
include shrinkage (or swelling), i.e. a volumetric deformation due to 
changes in water content and long-time chemical processes. To distin­
guish these two types of time-dependent deformations, creep is usually 
understood as the difference in deformation between a loaded specimen 
and an equally old identical but unloaded companion specimen that has 
suffered precisely the same history of environmental conditions. The 
instantaneous elastic deformation produced upon stress application is 
often also separated from the creep deformation. 

Interest in creep and shrinkage has been rising as concrete structures 
more susceptible to its effects have been appearing, and structural damages 
or failures were being experienced. The first extensive research, which 
came in the 1930s, was necessitated by the introduction of long-span 
concrete arches and large dams. Improved understanding of the phenome­
non enabled the advent of prestressed concrete. Long-span prestressed 
bridges, sheDs, and tall concrete buildings provided further stimuli. for 
research. At present, the novel uses of concrete in prestressed concrete 
pressure vessels for nuclear reactors require drastic improvement in the 
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present knowledge. However, in spite of the literature explosion afflicting 
this field, many important questions still remain unresolved, especially 
with regard to the constitutive equation. This is undoubtedly due to the 
extraordinary complexity of the material. Aside from a number of 
nonlinear effects, the material properties change as a result of internal 
chemical reactions, and the deformation problem is coupled with 
moisture diffusion through the material (as well as heat conduction). 
Consequently, for time-variable environmental conditions, it is impossi­
ble to devise creep tests in which a concrete specimen would be in a 
homogeneous state. This tremendously complicates the identification of 
material properties from test data. Furthermore, accumulation of experi­
mental knowledge is hampered by the fact that, due to differences 
between regional sources of aggregates and cement, a broad range of 
different concretes is in use. 

The purpose of the present work is to summarize and revie~ the basic 
facts on the subject, with emphasis on recent developments, although 
some novel results are also presented; see Subsections 3.4, 4.3-4.5, and 
5.3. As is clear from the preceding remarks, the central position must be 
allotted to the discussion of the constitutive equation. To" avoid 
detachment from physical reality, a brief exposition of the basic 
experimentally observed properties of concrete is given in Section 2. In 
Section 3, a simplified,1inearized formulation of the constitutive equation, 
uncoupled with diffusion processes in the material, is outlined. The 
nonlinear and coupled formulation then follows in Section 4. Methods of 
structural analysis are discussed in Section S. Here the numerical 
methods are emphasized, because analytical solutions for realistic forms 
of the constitutive equations are unavailable at present, and those that 
exist are based on unacceptably oversimplified stress-strain relations. " 
Practical proble~s in design are briefly examined in Section 6. 

2 BASIC EXPERIMENTAL FACTS RELATING TO 
CREEP AND SHRINKAGE 

The time-dependent deformations of c~)Dcrete originate chiefly in the 
har~ened portland cement paste(2). This is a strongly hydrophylic potous 
material (of typical porosity 0.4-0.55) normally containing a large amount 
of evaporable (not chemically bound) water (2). The material is formed by 
hydration of portland cement grains, which yields (aside from calcium 
hydroxide) a very fine gel-type structure consisting mainly of calcium 
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silicate hydrate (3CaO· 2Si01 • 2.5HzO)[2). Due to this and similar 
constituents, the material has an enormous internal surface (roughly 
Soo m2/cm'). The hydration process, which continues at normal tempera­
tures for years and never becomes complete, causes a gradual change of 
the properties of cement paste and concrete, which in the field of 
mechanics is usually called aging. Furthermore, as the material has a low 
degree of chemical stability, its microstructure interacts with water and 
undergoes gradual changes in response to stress environmental condi­
tions. These facts are responsible for the extremely compl~x ther­
momechnnical behavior of this material. 

To realize the various degrees of simplification in the subsequent 
discussions, it will be appropriate to begin with a concise (and by no 
means exhaustive) listing of the typical experimentally observed 
phenomena relevant for creep and shrinkage. Although some of the 
"phenomena listed below will be considered in greater depth in the 
subsequent sections, for detailed information on experimental results, the 
reader would have to consult the references quoted, of which the book by 
Neville and Dilger(3) is most comprehensive. 

1. Creep is smaller if the age at loading is higher[3-9). This effect, 
called aging (or maturing), is important even for the many-year-old 
concrete [see Figs. 2, 3, 4, and 5(a»). It is caused by gradual hydration of 
cement. 

2. At constant water content w (sealed specimens) and temperature T, 
creep is linearly dependent on stress up to about 0.4 of the strength and 
obeys the principle of superposition, provided that large strain reversals 
(not s.tress reversals) and, especially, cyclic strains nre "exchJded[3-5, 7. 
10-16] [cf. also Figs. 1. 5(b), and 6). 

3. Creep curves plotted in logarithm of the time from loading. I - I', 
have a significant slope over many orders of magnitude of I - I' (from 
0.01 sec to several decades at least). This means that the retardation 
spectrum is very broad. There is no evidence of creep curves approaching 
some final asymptotic value. [See Figs. 2 to 4, and 5(a).) 

4. In contrast with polymers and metals, the deviat(,)ric creep and 
volumetric creep are about equally important[l7; 3, p. 228). At constant w 
and T, the Poisson ratio due to creep strains is about constant and equals 
its elastic value (., .... 0.18)[18-20; 3, p. 236). 

5. The tensile creep is about the same as the compressive creep [3. p. 
220). 

6. After unloading, creep is partly irreversible. Creep recovery of 
fully unloaded sealed specimens is less than that predicted when the 



4 Zden~k P. Batant 

a~ 
,---' I , 

& , I 
EMM,: I -~-' 

T (0' " •• 
Q I 
.G 4 

.5 
D .. 

Ui 

100 

10 •• 
\-~.~ , eM 
tEMM 

.... .£.- - ... 

I~ 
& 

2 , 
" ---, 

~MM 
I , 
"'-~--~ 

0 100 

Ave in Days 

& 

2 

0 

I 
I , , 

leI 

.... 

~MM 
\ 

. . 
ROSS,I958 

Fig. I Creep at variable slress compared with the prediction by principle of superposition 
(solid lines); cylinders 4~ x 12 in., of 28-day strength 6720 psi; water-cement-sand-gravel 
ratio 0.375: I : 1.6: 2.8; drying at II. = 0.93, I1"C; EMM and RCM are approximate predic­
tions based on effeclive modulus and rate-of-creep methods from Subsection 5.5. (Adapted 
from Ross, A. D., "Creep of Concrete under Variable Stress," Amer. COllcrele lnsl. 1. 54 
(1958) 739-758, Figs. 9, 7, and 4.) 

principle of superposition is applied (about J of this prediction)[3, p. 95). 
This is a nonlinear effect. 

7. Creep recovery is almost independent of age [21-23; 3, p. 199) and 
is linearly dependent' on the stress drop even if the previous stress has 
been high (0.65 of the strength [24, 14)). Creep-recovery curves tend to 
straight lines in the logarithmic time scale. 

8. The additional creep [25, 26] and elastic strain [27] due to a stress 
increment after a long creep period are less than those for the same stress 
increment on a virgin specimen of the same age. The creep properties for 
such increments seem to be anisotropic. 

9. Al constant water content w (as well as temperature), the creep is 
less for smaller w [28-33). From h = 1.0 to h = 0.5, the decrease is 
probably much larger than that from 0.5 to 0.0 (h = pore humidity)[28]. 

10. The drop of elastic modulus due to incomplete drying is only 
moderate [30, 31, 114] (not more than 10 percent from h = 1.0 to 0'.1). 
After complete drying, a hysteresis on rewetting[34] occurs. 

11 .. When concrete is drying simultaneously with creep, creep is 
accelerated (drying creep effect) [3, 4, 7, 9, 29, 34, 36, 37]. The acceleration 
occurs not only in compression but also in shear[3, 17] and bending [3, 34]. 
This effect is also manifested in the dependence of creep on the size and 
~hape of specimen [3, 7, 38-40]. Furthermore, under simultaneous drying, 
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Fla. 1 Tests of D. Pirtz on creep at various ages at loading (see Ref. (26]). Cylinders 
6 x 26 in., sealed, at 70°F; 28-day cyt. strength = 3230 psi; stress .. I strength; water-cement 
ratio 0.58; cement type IV: max. aggregate size 1.5 in. Solid lines show fits from Ref. (89) by 
MaxwelJ chain model with IO'E.~ = 5n, 233, -138, -260,75,62,1120, 1520: 10'E,~ = 179, 
230,343,469,489,319, -319, -378: 10·E.~ = -70, -97, -160, -242, -258, -89,270,626: 
and l("E,~ = 81,118,206,323,349,87, -480, -1040: Eo~ -0: for T .. =0.005,0.05, ... ,5000, 
co(w, = w. = 0.1, w, = 0), E .. = E8~ + E ,., ,II + E.~' ,,0 + E,~1"2 + Eo~,'/O in psi: Ii is slrain due 10 
load. (Reproduced from Bafanl, Z. P., and Wu, S. T., "Dirichlet Series Creep FunctionTor 
Aging Concrete,", 1. Eng'll. Mech. Div., Proc. Amer. Soc. of Civil Engineers, 99 (1973) 
367-387.) 

the nonlinearity of creep versus stress is more pronounced [7, 28, 41], and 
the additional creep due to drying is irrecoverable [36]. 

12. Creep is considerably accelerated by any rapid change in water 
content, both negative and positive, and by its cycling[3, p. 156; 36]. 

13. In drying unsealed specimens, loading per se causes only a 
negligible loss of water. i.e. less than 3 percent of that in a companion 
unloaded specimen[3. p. 267; 42-44]. Also, the rise in pore humidity due 
to loading of a sealed specimen is negligible[44]. 

14. Stationary permeation of water through concrete (at constant w) 
does not affect creep appreciably [29]. 

15. When a dried specimen is rewetted (which produces swelling) and 
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FIR· 3 Tests of creep at various ages at loading for Ross Dam (see Refs. (.5, 6D. Cylinders 
6 x 16 in., sealed, at 70°F: 28-day cyl. strength = 4970 psi: stress .. J strength; water-cement 
ratio 0 . .56, cemen.t type II: max. aggregate size 1..5 in. Solid lines show fits from Ref. (89) by 
M~xwell chain model wilh IO'B •• = -11.5, -82, -76, -1.52, -143, -102, -10.5, -112: 
10 E,. = 196,147, 1.53,291,273,170,112,8.5; 10'E2 = -729 -.5.56 -.591 1060 -862 -332 
72 281 •. ..' • • , , , 

, : and 10 E,. = 229, 179, 190, 301, 1.53. -27, -10.5, -136: B,. = 0: for T .. = 0.00.5, 
0.0.5 •... , .5000, ao( w, = W2 = 0.2. w, = 0). Formula for E .. appears in Fig. 2 caption .• is strain 
due to load. (Data reproduced from Balanl, Z. P .• and Wu, S. T., "Dirichlet Series Creep 
Function for Aging Concrete." I. Eng'll. Mech. Diu .• Proc. Amer. Soc. of Civil Engineers 99 
(1973) 367-387.) , 

subsequently loaded in compression, the creep that follows may be 
substantially larger than the previous 8welling(45). 

16. When concrete under load is drying, the Poisson ratio due to creep 
strains is decreased (up to about JI = 0.05)[3, p. 231; 18), and the lateral 
creep in a uniaxial test is unaffected by drying[3, 18). 

17 .. As compared with the prediction of the principle superposition, 
pulsatmg loads considerably accel~rate creep of concrete, even at 
low-stress levels (cyclic creep)[3, p. 245; 12,36,46-51]. When pUlsation 
occurs after a long period under constant load, cyclic creep is negligible as 
compared with a virgin specimen [3, 36]. Poisson ratio decreases with the 
number of. cycles [3, p. 248]. In cement paste at low stress, cyclic creep is 
not observed. . 

18. Aging (cement hydration) is decelerated by a drop in pore 
humiditY[53-55] and accelerated by a rise in temperature[4]. 
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FIR. 4 L'Hermite and Mamillan's tests of creep at various ages at loading. Prisms 
7 x 7 x 28 cm of 28-day strength 370 kgf/cm2

: in water: at room temperalure: concrele of 
French type 400/800: ~.50 kg of cement per cubic meter of concrete: stress = I strength: 
water-cement-sand-gravel ratio 0.49: I: 1.7.5:3.07; Seine gravel. Solid lines show fits from 
Ref. (89) by Maxwell chain with 100Bo• = .562,347,224,297,331, 111,26.8: E,. = 117, 160. 
170,93, .59, 32, .56,67: urE,. = -421;-461. -38.5. -14,378. -31, -438, -626: 10'E,. = 266. 
28.5, 243. -24, -441.' ..,.236, -170, 393; for T .. =0.00.5, 0.0.5 •...• 5000. ao(w,=O.I. 
W2 = W, = 0), giving E .. in psi. Formula for E .. appears in Fig. 2 caption .• is strain due to load. 
(Data constructed from L'Hermite, R .• Mamillan, M., and Lefevre. C., "Nouveaux r~sultats 
de recherches sur la d~formation et la rupture du ~ton," Annales de I'lnslitut Technique du 
Batlment et des TrauaUx Publics 18 (196.5) 32.5-360: sec also Int. Conf. on the Stmcture of 
Concrete. Cement and Concrete Assoc., London (1968) 423-433.) The measured I -values at 
t- I' -0.01 day. for ages t' = 7 to 730 days shown. were 200. 16.5, 1~8. 1.52. 130. 119 in 
10-' psi-'. . 

19. Although aging is explicable only by cement hydration, the change 
of creep properties is significant even in the many-years old concrete, in 
which the amount of cement still undergoing hydration is negligible and 
neither elastic modulus nor strength changes appreciably (2-9]. 

20. Creep rate grows with temperature [3, 44, 56-61]. 
21. 'A rapid heating as well as rapid cooling accelerates cteep[3, p. 180; 

61, 62]. 
22. First drying shrinkage from h = I to 0.5 is considerably I.arger than 

that below 0.5, while on rewetting most swelling occurs between h = 0 
and h = 0.5. A substantial part of shrinkage and swelling is 
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Fig. 5 Ross' lesls of creep and sires! relaxation (see Ref. (II)) compared wilh predictioll 
(89) by principle of superposilion (based on dashed smoolhing of creep curves): same lest 
series as in Fig. I. 

irreversible[63-65]. But after wetting from h = 0, substantial irreversibil­
ity on return to h = 0 occurs only if peak h has exceeded 0.5 [63-65]. 

23. An appreciable part of shrinkage, as well as creep acceleration due 
to drying, seems to be delayed with regard to the change in pore 
humidity (65, 129]. 

24. Specimens continuously immersed in water swell [4, 7, 9,36]. 
Sealed specimens show autogeneous shrinkage (usually small) and also 
gradual self-desiccation to about " = 0.98 (ct. Ref. [67]) if the 
water-cement ratio is low. 

25. Shrinkage is not affected by deviatoric stress[36]. 
26. Thermal dilatation strongly depends on water content, the peak 

occurring at about h = 0.7 (ct. Refs. (36, 68]). 
27. Instantaneous thermal dilatation is followed by a delayed thermal 

dilatation. The latter is negative (i.e. a recovery) at h = 1 (ct. Ref. [68]). 
28. Under stresses exceeding about 0.4 of the strength, creep becomes 

progressively nonlinear with stress [3, 7,14,15,24,28,29,37,41]. The 
additional creep due to nonlinearity is largely irreversible and is caused 
mainly by gradual microcracking. The apparent Poisson ratio in the 
uniaxial test rises with the stress and exceeds 0.5 prior to failure, which 
indicates incremental anisotropy[4, 36, 50]. Failure under a long-time load 
.exceeding about 0.8 strength occurs at a lower load than in short-time 
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Fla.' Stress relaxation tcsts for R~ss Dam (Refs. (!i,6)). The solid line fit (from Ref. (89)) is 
based on the same parameten as in Fig. 3; test specimens are also the same. (Reproduced from 
Balant, Z. P., and Wu, S. T., "Dirichlet Series Creep Function for Agina Concrete," I. Eng". 
Meclt. DI"., Proc. Arner. Soc. of Civil Engineers, 99 (1973) 367-387.) 

tests (69, 70]. This is also true of high-pulsating loads [46, 471. Below 0.8, 
long-time load strengthens concrete [69, 70], and so does a low-pUlsating 
load. Cracks heal when compressed[7J]. 

29. Strength of· concrete is higher after drying (el. Refs. (54,114)). 
30. Water content w as a function of pore humidity h at constant T 

(sorption-desorption isotherm) exhibits considerable hy.steresis and 
irreversibility (63-651. After a wetting-drying cycle reaching above 
h = 0.5, the internal surface area of pores in cement paste is considerably 
decreased (and the volume of solids correspondingly increased)(35, 63, 
64]. 

31. Diffusivity of water in concrete drops about 20 times when passing 
from h =0.85 to h =0.65[671 (ct. Fig. 16). In saturated concrete under 
hydraulic overpressure, diffusivity is about 1000 times higher than that at 
h = 0.999(67]. 

32. A 10 percent difference in pore humidity produces about the same 
fiux of water as the hydraulic head of 1400 m(67]. 

33. Diffusivity rises with temperature and decreases with aging[67]. 
34. A number of further complex phenomena are. observed hi creep of 

frozen concrete, at high temperatures (over 100°C) and at very low 
temoeraturesr3. 4. 721. 
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3 CONCRETE APPROXIMATED AS AN AGING 
VISCOELASTIC MATERIAL 

3.1 Integral-Type Creep Law 

In the current design practice, the dependence of strains and stresses 
upon the histories of water content and temperature, apparent from 
effects II, 12, 16, and 26 in Section 2, is disregarded. This is correct only. 
for mass concrete at constant temperature, but is adopted in practical 
design, as a crude simplification, for the average behavior of the cross 
sections of massive beams and plates, in which the water content and 
temperature cannot vary substantially or rapidly. Strain (or stress) is thus 
considered as a functional of the previous stress (or strain) historY alone. 
As long as no abrupt changes in the microstructure occur, this functional 
is logically assumed to be continuous and admitting Volterra-Frechet 
series expansion [13]. Retaining only its linear term, a linear approxima­
tion results. It must be sufficiently good for sufficiently small stresses and 
sufficiently short-time histories. Experimentally, the linearity is found to 
be applicable over a broad range (see Figs. 1, .5, and 6, for example, and 
item 2, Section 2) and is used as the basic assumption in the current design 
practice. However, it should be kept in mind that, of all effects listed in 
Section 2, only items 1-.5 can then be given proper consideration. 

The linearity implies validity of the principle of superposition, due to 
Volterra [13]. (For nonaging materials, it was enunciated already. by 
Boltzmann [14].) Its applicability to aging concrete was discovered by 
McHenry [1.5] and Maslov [16]. This principle states that the strain (or 
stress) response due to a sum of two stress (or strain) histories is the sum 
of the individual responses. Thus, summing the strain histories due to all 
small-stress increments before time I, one may write the creep law for 
uniaxial stress in the form 

E(I) - EO(I) = f ](1, I') dO' (I'), (3.1) 

where I = time measured from casting of concrete; 0' = linearized stress, 
E = linearized strain; EO = given stress-independent inelastic strain com­
prising shrinkage E.h and thermal dilatation; kernel ](1, ,') = creep 
function (or creep compliance) = strain at time I caused by a constant unit 
stress acting from time I' to time I, i.e. by Heaviside step function 
0'(1) = H(t - ,'). Note that 1/1(1, I) = 8(1) = Young's modulus. The 
hereditary integral (3.1) is written as Stieltjes integral in order to admit 
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discontinuous stress histories 0'(1). If 0'(1) is continuous, substitution 
dO' (I') = [dO' (1')/dl'] dl' yields the ordinary (Riemann) integral. All test 
data agree with the inequaliti~s iJ](I,I')/iJI~O, iJ2](I,I')/iJI2~O, 
iJ](I,I')/iJI'~O, iJ2](I,I')/iJI'2~0 for any I and I'. 

Under multiaxial stress, the linear behavior of concrete may be 
assumed as isotropic. The strain is always small. As is well known, the 
stress-strain relations may then be most conveniently written as separate 
equations for the volumetric components 0' v = Utt 13, E v = En 13 and the 
deviatoric components u~ = 0'" - 0' v &" E ~ = E" -' E v &, of stress and strain 
tensors 0'", E" (in Cartesian coordinates .x" i = 1,2,3; &, = Kronecker 
delta). Thus, ,in analogy with Eq. (3.1), 

3[E V (I)-EO(I)]= f ]v(I,I')d(yV(I') 

2E~(I) = f ]D(t, I') du~ (I'), 
(3.2) 

where ]V(I, I'), ]0(1, I') are the volumetric and deviatoric creep func; 
tions, defined as E v (I) and, for example, E fz{t), caused by unit stresses 0' 

and ug acting since time I'. Note that II]V (t, I) = K(t) = bulk modulus, 
1/]D(I, I) = 0(1) = shear modulus. The multiaxial behavior may also be 
characterized by the creep Poisson's ratio, which is defined as v(l, I') = 
- E»/EII for stress 0'" = t acting since time I'. Due to isotropy, 

](1, I') =']V (I, I') + I JD(I, ,'), 

vet, 1')](1, I') = 1]0 (I, I') _']V (I, I'), 
(3.3) 

which follow, e.g., from the fact that for the case of uniaxial stress 0'11 = I 
acting since time . I', Eqs. (3.1) and (3.2) give ](1, I') = Ell = 
0' v]v (t, 1')/3 + O'r.]D(I, 1')/2 and - v(I, 1')](1, I') = E22 = 0' V]v (1,1')/3 + 
ug]D(I, 1')/2, where 0' v = J, O'r. = j, and ug = -I-

In sealed concrete specimens, v is about constant, v ..." 0.18 (cf. item 4, 
Section 2). Solving Eqs. (3.3), one obtains 

]V(t, I') = 6(l- v)](t, I'), 

]D(t, I') = 2(1 + v)](I, I'), 
(3.4) 

and so creep is fuily characterized by ](1, I'). In view of this fact and the 
analogy of Eq. (3.2) with Eq. (3.1), further discussions of the stress-.st~ain 
relations will be restricted to the uniaxial case whenever the generaliza­
tion to multiaxial stress is self-evident. 

If strain history E(I) is prescribed, Eqs. (3.1) and (3.2) represent 
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nonhomogeneous Volterra's integral equations for the stress history. The 
general solution (resolvent) of Eq. (3.1) may be written as 

u(t) = f ER(t, t')[dE (I')- dEo(t')], (3.5) 

in which kernel ER(t, t'), called relaxation function (or relaxation 
~odulus), represents stress at time t caused by a unit constant strain 
mtrodu~ed at time t' Eit t, i.e. by step function E = H(I - I'). Note that 
ER(t, t) =: ~(t). Integral (3.5) follows ~Iso directly from the principle of 
~uperposltlon as a sum of the stress responses due to all previous strain 
!ncrements. ~hen u(t) is specified. Eq. (3.S) represents a Volterra's 
mtegral equation for E(I), and its general solution has the form of Eq. 
(3.1). ' 

Creep ~roperties are fully characterized either by J(t, I') or by ER(t. t'). 
The rel~tlo~ between these two functions may be obtained by considering 
the stram history to be a unit step function, i.e. E = 1 for t > to and ~ = 0 
for t ~ t~, in. which case the response is, by definition, u( t) = ER (I. to). 
Substitution mto Eq. (3.1) with EO = 0 then yields 

J(t, 'o)E(to) + I' J(I I') aERO, t') dt' = 1 
1&' at' . 

Similarly, by considering the stress history as a step function, 

ER(t, to) I' E (t t') aJ(t, t') d ' = 1 
E(to) ., ,R, at' t • 

.' 

(3.6) 

(3.7) 

Reg?rding the determination of ER(t. t') from J(t, t') or vice versa, no 
analytical expression for J(t, t') is known that would be sufficiently 
accur~te and allow, at the same time, the conversion to be accomplished 
analytically .. Therefore, a numerical method must be used (see Eqs. 
(~.8)-(~.12) m the sequel; a FORTRAN IV program for this purpose is 
listed m [1461 and a more efficient one in (170)). ' 

Stress-strain relations (3.1) are sometimes transformed by integration 
by parts, which gives 

(3.8) 

~ith L(t, t') = - aJ(t, t')/at'. Here L(t, t') = memory function = strain at 
time t caused by a unit stress impulse (Dirac function) applied at time 
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I' Eit t. Equation (3.5). which is based on relaxation function, may be 
transformed in a similar way, and the resulting'memory kernel may be 
shown to be related to L(t, t') by 'a Volterra integral equation similar to 
Eq. (3.6) or Eq. (3.7); see Ref. [,17]. . 

As a consequence of aging. the principle of fading memory [78], a 
fundamental postulate in classical linear viscoelasticity. is invalid for 
L(t. t'). This can be checked by evaluating the memory function L(I, t') 
in Eq. (3.8) from an expression for J(t. t') (Subsection 3.3) that fits some 
typical data, such as those in Figs. 2. 3, 4, and 5(a). It is found that L(t, t'), 
as function of t'. attains a minimum for a certain finite ", and so the 
memory fades only over a sufficiently close past. Thus, concrete is like a 
senile man who remembers the recent events and also the events from his 
young age better than those from his middle age [SO]. 

Stress relaxation data are much scarcer than creep test data because, 
for long testing periods, relaxation tests are less convenient. The most 
extensive data available are shown in Figs. S(b) and 6. and further data of 
more limited range of "-values may be found in the literature [3, 89]. The 
solid lines in Figs. S(b) and 6 represent the stress relaxation curves 
accurately computed [according to Eqs. (5.8) to (S.ll)] from the 
corresponding creep data in Figs. 3 and Sea). The fact that the fit is quite 
close provides confirmation of the linearity of creep (principle of 
superposition). In fact, the fit is even better than in the original 
papers[6, 11] in which the relaxation curves were computed by hand with 
a lesser accuracy. 

3.2 Creep Function In Contemporary Recommendations by 
Engineering Societies 

The creep function is often expressed as 

J( ') - 1 + pet, ,') _ 1 C(') 
t,' - E(") - E(t') + t,', (3.9) 

where function .(t, ,'). representing the ratio of the creep strain to the 
elastic (instantaneous) strain under constant stress, is called creep 
coefficient. and C(t, t') is called specific creep. However, characterization 
of creep by .(t. t') is frequently a source of confusion since all J(t, t') 
values are thus unnecessarily made dependent upon E(t'), which is 
usually taken not as the truly instantaneous (dynamic) modulus, but as the 
modulus corresponding to the strain in a short time interval after load 
application (nonstandardized, usually 1 min, but for many older data up to 
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several hours). An ACI (American Concrete Institute) Committee [79] has 
recently recommended the approximation 

«/I(f, t') = tf>,,(f')/(f - f'), (3.10) 
in which (Fig. 7) 

_ ,_ (f -f'}'" . 
I(t t) - 10+(t _ t,) •. 1t tf>,,(t') = 2.94(t,,-oO.lI·C, (3.11) 

f and I' being given in days; c is a parameter. Similar expressions of the 
form of Eq. (3.10) have been recommended by CEB (European Concrete 

0.11 

II • Z4 
t 1m. In da,. II. Inc .... 

'It· 7 Creep parameters in deslan recommendations. f, ... are ACI curves as Biven by Eqs. 
(3.11)[79): sh Is shrinkage curve (3.12): I-los" curve 0.113 In (I +t - ,'), exp:o 1_ .-.,. 
(ahown for comparison): c., c;, c" c; are correction factors as fUnctions of environmental 
humidity It. and minimum thickness" of spec:lmen(79); 300 or 1300 days are durations of 
creep.IData points after Hansen, T. C., and Mattock, A. H., "Innuence of Size and Shape of 
Member on the Shrinkage and Creep of Concrete," Am.r. Conc,,'.ln,t. 1. 63(1966)267-290.) 

Committee) (ct. Ref. [3]). ACI Committee [79] also lives an expression for 
shrinkage of concrete, . 

f-7 
Eoh(l) = O.OOO8c' 35 + t -7' (3.12) 

in which I is in days and drying is assumed to begin at t. = 7 days. 
Expressions of the type (3.10) and (3.12) have the merit of simplicity, 

but are capable of only a crude approximation of individual test data [e.g., 
Figs. 2, 3,4, and Sea)]. Equation (3.11) giving 1(00) == 1 implies bounded­
ness of creep, whereas the actual.creep curves in log (f - tt) scale do not 
approach any asymptote; but for f - f' EO 30 years, Eq. (3.11) is accept­
able. (Thus, the structural analyses in which ttie· existence of an 
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asymptotic value is assumed to allow the use of Tauberian theorems are 
of little relevance to concrete [SO. 81).) 

Parameters c in Eq. (3.11) and c..' in Eq. (3.12) are correction factors to 
be calculated as c = CIC2C,C"C,c, and c" = c:c~c~dc~c~. Correction 
factors c, to c. and c~ to c~ account for differences in composition of 
concrete, such as the cement content. water-cement ratio (of the fresh 
mix), percentage of fines in the aggregate, and the air content; see Ref. 
[79]. It is noted that the type of cement, admixtures, and especially the 
type of aggregate have also effect on creep[3], but corrections of «/I are 
not too important because the effect on elastic strain is roughly the same. 
Correction factors CI and C2 introduce the increase in creep caused by 
simultaneous drying (item II. Section 2). The recommended values shown 
in Fig. 7 express the fact that drying is faster at a lower environmental 
humidity It. and also in cross sections of smaller minimum thickness b. 
The effect of It. and b on shrinkage is introduced through correction 
factors c~ and c~ (Fig. 7). Effect of the seasonal changes of humidity can 
be approximately taken into account by replacing f with a certain reduced 
time[n.139,151). The recommendations of CEB are simil~, except that 
CEB also gives different shapes of creep curves (function I) for different 
b [3]. According to ACI expressions for the relation of E to strength and 
the dependence otstrength on age [4, 79], the elastic modulus, appearing 
in Eq .. (3.9). appro)timately is (in the case of drying concrete of a thickness 
from 10 to 30 cm) 

E(t') = E2I ~4+;.851' (3.13) 

where E. = E at age I == 28 days. For mass concrete, the increase of E 
from 28 days to 00 is much larger than Eq. (3.13) predicts; a possible 
expression is, e.g., &J(l + fJf -I';. 

Equation (3.11) has been determined as to fit the creep data from Fig. 21. 
Most other data are better approximated by the expression [5, 8] I( t - I'} = 
0.113 In (l + f - t'). However, most tests, especially the recent; more 
extensive ones, are best fitted by the expression 

l(t, t') = I + ~~')-. + C(I, I'), C(I, I') = F. (IT'" (I - I')" 

(3.14a) 

For example, the data in Fig. 2 are closely fitted with a = 0, m = 0.355, 
n = 0.056, CPI = 17.51, 10·/E. = 84.4/psi; data in Fig. 3 with a = 0, m == 0.46, 
n =: 0.13, CPI =: 2.80, 10'/Ea = 189/psi; data in Fig. 4 with a = 0, m = 0.21, 
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n = 0.094, <PI = 3.74, 109/Eo = 78.8/psi; and the low-stress curves from Fig. 
25 with a = 0, m = 0.352, n = 0.22, <PI = 2.76, 109/Eo= 18/psi~ for nonzero 
a and with p = I the optimum fits are not much different. The conventional 
values of E are obtained from Eq. (3.14a) by setting I - I' = 0.001 day. The 
material parameters in Eq. (3. 14a) can be determined from test data, such 
as those in Fig. 2, in the following manner. First one considers the function 
I = J(I, I') - a"-P /Eo and estimates the values of p and a/Eo. Noting that 
I=1/Eo+x"<p.JEo, where 10gx=log(t-t')-s, s=(m/n)logt', it is 
seen that after a horizontal shift by distance s all I-curves plotted in 
log (I - I') scale must fit one common basic curve. These shifts are carried 
out numerically by computer and by a linear regression of the shift 
distances, s, the value of In /n is found. Then the common basic curve 
obtained by shifting is fitted by the expression lIEo+x"<PI/Eo, using an 
optimization method (Marquardt's algorithm). This yields n, 1/Eo and 
<pI/Eo. Further improvement of fit is possible by simultaneously optimizihg 
for m, n, I/Eo, and <p.JEo. Finally, several other values of a and p may be 
tried and the best fit selected. 

For the shrinkage curves of test specimens (e.g., Fig. 16 in the sequel), 
the following formula has been verified: 

__ 0 E(7+45) { ( T. )-I} 
E.h - E.h E(lo + Tah) F(0.5) + [F(ll.) - F(0.5)] 1 + t - to ' (3. 14b) 

k 0.3 45 d k _ (k.4\ lk C .(7) 
T"" = II C.(7) ays, II - 15 J T C,(lo)" 

F(ll.) = 1-0.95h/ - 0.25h.1OO 

where d is the thickness or diameter in centimeters, k. = 1 for a cylinder 
(LI-prism,O.9-cube, 1.7-slab, 0.75-sphere); C, is water diffusivity 
from Eq. (4.41) in Section 4 (normally 0.3 cm1/day), h. is environmental 
humidity' (for sealed specimens, h. is self-desiccation humidity), E!.. is the 
reference ultimate shrinkage (0.0011 for data in Fig. 16), 10 is age in days 
at start of drying, (t - to) is time from this start, kT is temperature 
correction coefficient. The main value of expressions such as Eqs. (3.14a) 
and (3. 14b) is to be expected in statistical evaluations and in extrapolation 
of short-time data available for a given construction project. 

Many other expressions for functions f, t/J,., Eah, and the correction 
factors have also been used in the past[l6, 36, 79, 82-85]. In design 
practice, various forms of the creep law that are an even cruder 
simpli.fication than Eq. (3.10) have been widely used (rate-of-creep 
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method,· Arutyunian's law, etc.). These will be .discussed in Subsection 
5.5. 

3.3 Dirichlet Series Expansions of Creep and 
Relaxation Functions 

The fact that due to aging the creep function cannot be expressed as a 
function of a single variable, I - .', causes a major complication in 
structural analysis problems and makes the Laplace transform methods 
ineffective. Therefore, numerical methods must be used. As will be shown 
in Subsection 5.4, for efficient numerical solutions, the integral-type creep 
law (3.1) must be converted into a rate-type creep law. To do this, one 
must approximate J(t, t') [or BR(t, t')) by a degenerate kernel of the form 

L A .. (t')B .. (t). 
.. . 

As will be confirmed later, no loss in the generality of material 
representation is incurred if one restricts attention to the special case of a 
series of real exponentials 

called Dirichlet series [86]. It may be more conveniently written in the 

form 
J(t t,)=_I_+ ± _1_(l_e-u -")/T,.), 

, B(t') .. -. a .. (t') 
(3.15) 

where T,. are constants calle«:l retardation times and a,. are coefficients 
depending on t'. 

Identification of material parameters £ .. (t') or fitting of given data on 
J(t, I') at a given fixed I' by the Dirichlet series is a difficult mathemat~cal 
problem (which also arises, e.g., in connection with the numeflc~J 
inversion of Laplace transform). It is notorious for unstable dependen~e 
of the series coefficients (i.e., a .. , T .. upon the data[87]. Because of thls 
instab.ility, determination of retardation times T .. from the test data should 
not be attempted;'or else an ill-conditioned equation system would result 
for the solution of T .. is not unique and substantially different T .. -values 
give equally close data fits. One may intuitively anticipate this fact, 
realizing that the spectrum of relaxation times is actually continuous and 
that any "smooth" continuous function may be characterized equally well 
by sets of discrete values that correspond to widely different subdivisions 
of time. Hence, the values of T,. must be appropriately selected in advance. 
A suitable choice is T .. -values uniformly distributed in a logarithmic scale, 
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i.e. 1",. = Tla,.-I. Better accuracy is obtained for smaller a, but for 
expedience of structural analysis, the number of terms in Eq. (3.15) should 
be kept to a minimum. A practically sufficient accuracy is achieved with 
a = 10, i.e. 

"JL = 1,2, ... , n. (3.16) 

1"1 must not be chosen larger than either the point at which the creep curve 
in log (t - t')-scale begins to rise or the lower limit of the time range of 
interest, and Til must not be chosen smaller than either the point where the 
curve levels off or the upper limit of the range of interest. (With regard to 
the usually large scatter of creep data, a can be taken as large as 60, which 
gives about 1.5 times fewer 1",. for the given time range to be covered. But 
the creep curves given by Eq. (3.15) then look "bumpy"; see Fig. 19 in 
Ref. [89].) 

Denoting the given measured data points as i(tll, t'), fJ = 1,2,3, one 
obtains the fit of creep curve J(t, t') as function of t at chosen fixed t' by 
the method of least squares, i.e. by minimizing the expression 

<I» = L [J(III' t') - i(llI, t')t + <1»1 ,. . 
~I = L [wl(il;~1 - E,. -1)2 + W2(il;~2 - 2il;~1 + E,. -1)2 (3.17) ,. 

where <1»1 is a penalty term that forces ill' to be a smooth function of IL, 
which is a physically natural property to require. The presence of the 
penalty term is essential; without it, coefficients il,. would be unstable 
functions of creep data (i.e. different il,. would give equally close fits). 
Thus, if E,. (I') were determined for various ages I', the dependence of E,. 
upon t' would be unsmooth, randomly scattered, and it would be 
impossible to model aging. (In classical viscoelasticity, this need does not 
arise, of course.) Weights w .. W2, w) should be assigned minimum values 
that are necessary for smoothness, which can be assessed by computing 
experience. (The weights must be higher for smaller a, because of a 
stronger tendency toward instability in identification of t,..) 

Times til in which data points are specified should be distributed 
uniformly in log (t - t')-scale. Four (or three) values per decade, 
(I - 1')11 = 101/4(1 - I')II-It are an expedient choice. Usually, the measured 
values are not so spaced, and one must first interpolate to determine 
i(tll, t'). The minimization conditions are a <I»/a(E,. -I) = 0 (IL = 1,2, ... , n) 
and a<l»/a(E-') = O. They yield a 'system of (n + I) linear algebraic 
equations for E -I and E,. -I. In practical computation, the method was 
found to be satisfactory [88,89, 170]. It appears that realistic smooth creep 
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curves characterized by a bounded slope in log (I - t')-scale, can be fitted , . 

by the Dirichlet series (for small enough a) with any desired accuracy. 
For nonaging materials, alternpte (and in author's experience less 

efficient) methods, which lack the smoothing by penalty term in Eq. (3.t7), 
were presented by Cost[90] and Schapery[9l] (cf. also Ref. [92». Other 
approx~mate methods are used to obtain conti~uous. rela~ation spectra. of 
polymers [93]. Distefano [94, 95] studied the Identlfic~tlon of ~o~ag~ng 
Maxwell chain parameters from given data as a nonlmear optimization 
problem and applied the methods of dynamic programming. . 

With most creep data, one can take advantage of the fact that the creep 
curves in the log (I - t')-scale can be closely approximated by a 
horizontal line segment, expressing the elastic, strain, B-1

, followed by 
one or two inclined straight-line segments, with short curved transitions 
between the straight segments (Fig. 8). Assuming that times Td , 1"" shown 
in Fig. 8 are chosen so that 1""/1",, = 10'" where m is integer, the Dirichlet 
series approximation is [88]: 

I .. -I 
B-1 + }: k,,(1- e-U -I'l/.,,) + L k,,(J - e-(I-f'IIT,,) + 1.2k,,(t- e-(I-f')/T.), 

,.--," ,.-0 (3.18) 

where 1",. = (5.631",,) 10", k", k" slope tangents shown in Fig. 8. In the case of 
only one inclined straight segment, the first sum in Eq. (3.18) is left out or 
k" = m = 0; then, evaluating expression (3.18), it can be verified tha,t 
within the limits 0.221"0 E:; t - t' E:; 1.51" .. the error is less than ±0.03k", and 
only ± 0.018k" if the upper limit is reduced to 1" .. -1: .Utilizing ~xpression 
(3.18), approximate fitting of creep curves by Dirichlet senes can be 
accomplished by band calculations. 

Carrying out the fitting procedure, as just described, for various values 
of t' = t~ (a = 1,2,3-, •.. ), £,. and B at various ages t' are obtained. For 

Fig. 8 Idealized shape of creep curve in log-time scale, (After Ref. (60).) 
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their fitting, which is best carried out by the method of least squares, 
functions of the type a + b(tT" (where a, b, n are constants) were found 
to ~e best suited[88]. For example, it was found[88] that Eq. (3.18) fits 
satisfactorily the data points in Fig. 2 if E- I = 0.208+0.93,-0., -0.161-0.46, 
m = n = 3, k .. = 0.002 + 0.16(1')-0.46, Ie,. = 0.003 + 0.23(1,)-8·1S, T .. = 
5.63 x 10" days; for Fig. 3, E- I =O.19+t.63(1,)-8·7S, m=k .. =O, k,,= 
0.0025 + 0.25(1')-8·)), J(I, I') being given in 10-6/psi, and I, I' in days. 

Conversion to a rate-type creep law is also possible if the relaxation 
function is expanded in Dirichlet series, which may be written as 

,.-1 

ER(t, I') = L E .. (I')e-(I-I·"t",.+ E ... (I'), 
.. -I 

(3.19) 

where T.. are constants, now called relaxation times, and E .. , E ... are 
coefficients depending on I'. Fitting of given data points ER (tIJ, I'), 
P = 1,2, ... ,by expression (3.19) as function of I at a chosen fixed I' may 
be performed in the same manner as for Kelvin chains, minimizing the 
sum-of-squares expression[89, 170]: 

4» = L [ER (,,,, I') - E(I", I'W + 4» .. ,. 
,,~ ,,~ 

4»1 = WI L (E .. +I - E,.)1+ W1 L (E"+2 - 2E"+1 + E,.)2 
,.-1 .. _I 

n-4 

+w) L (E,.+)-3E .. +z+3E,,+I-E .. )2, (3.20) 
.. -I 

where ER(t", I') are the given values of ER(I, I'). The smoothing term 4»1 
does not include E ... because no smooth transition from E.-I to E ... is to be 
expected. The reason is that E ... actually represents a sum of all E for 
which T,. is beyond the time range of interest. For the' ran;e 1 
day ~ I' ~ 10,000 days, the dependence upon I' may be approximated'by 
one of the functions 

, E, 
E,. = Eo,. + "\' ,. , , 

r-11 I 
+ 3 X 30" I, 

(3.21a) 

with p = (1,)"6 or p = log (l + 1'), (3.2Ib) 

in which Eo,., ... , E,,. are constants (p. = 1,2, ... , n). However, the best 
results have been achieved with the expression[l70] 

E .. = a, + alp. + alp + a .. p. 2 + a,p.p + a6P2 

+ '+ 1 2 , a7P. a.p. p + a9p.p + alop , p. < n (3.22) 
E ... = al,1 + al2p + aup2+ a14P', with p = Jog I', 
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in which not only the dependence upon t', 1)ut also that upon p., is 
smoothed analytically. To determine a ..... ,·a·I'" one substitutes Eqs .. 
(3.22) into Eq. (3.19) and Eq. (3.19) into Eqs. (3.20), in which 4»1 may be 
either ignored or taken as ~, w,a.: where w, are suitably chosen weights 
intended to reduce curvature and slope by reducing the higher-order 
terms in Eqs. (3.22). The conditions a4»/a, = 0 procure then a system of 14 
linear algebraic equations for a ..... , a14. A fuUUsting of FORTRAN IV 
programs based on Eqs. (3.20) and (3.22) is given in Ref. [170]. 

Among the relaxation data available at present [5,6, 11,89,96,97], there 
is none that would cover sufficiently broad ranges of both t - I' and I'. 
Therefore, relaxation data must be obtained from creep data, which can 
be accomplished (if the range of the latter is sufficient) ~umerically [see 
E'qs. (5.8) to (5.11) in Section 5]. The typical creep data shown in Figs.' 2, 3, 
and 4 were converted to relaxation data and fitted by Eq. (3.19) with Eq. 
(3.21) or Eqs. (3.22). For the data in Fig. 2, the distributions of E .. with 
log T .. (called relaxation spectra) are plotted in Fig. 9 for various I'. To 
check the accuracy of this fit, expression (3.19) obtained from ERU, I') was 
converted [by an algorithm given by Eqs. (5.11) to (5.16) in Section 5] to 
creep function l(t, I'), which is shown by solid lines in comparison with 
the data points in Figs. 2, 3, and 4. 
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Fig. 9 Relaxation spectra at various ages ror creep data in Fig. 2. (From Rer. (89].) 
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3.4 Rate-Type Creep Law ( b) u 

Upon insertion of Dirichlet series expansion (3.15), Eq. (3.1) may be 
written in the form . 

E(t).= f [E-1(t')+ ~~,.-I(t')] dO'(t')- t. E!(t)+EO(I), (3.23) 

in which the quantities ~u 

p. = 1,2, ... , n (3.24) 

may be vie~ed as hidden material variables (internal variables [98, 99]) 
that, according to Eq. (3.23), characterize the past history. They satisfy 
differential equations 

• • 
i! + !.e = : ' (3.25) 

1',. D,. 

and,conversely, integration of these equations may be shown to yield Eq. 
(3.23), so that Eqs. (3.23) and (3.25) are equivalent. The derivative of Eq. 
(3.23) may now be written in the form 

• • 0 u ~. 
E - E = E(I) + ~ E,., (3.26) 

in which 
. u-u,. 
E = 
,. ~,.(t)' 

(3.27) 

and u,. = ~,.(t)i!. Then, subtracting Eq. (3.27) from Eq. (3.25), one finds 
that i,. = E :/1',.. and 

u,. = fJ,.(I)I,., P. = 1,2, ... , n, (3.28) 

in which ..,,.(t) = ~,.(I)T,.. Equations (3.26) to' (3.28)(88] represent a 
rate-type creep law, which is equivalent to creep function (3.15). 

From Eqs. (3.26) to (3.28), it is readily recognized that they correspond 
t~ the well-known (generalized) 'Kelvin (or Kelvin-Voigt) chain model, 
Fig. 100a), whose spring moduli and viscosities are given by ~,. and fJ,., 
and are age dependent. 

It is noteworthy that Eq. (3.27) for ti.e springs is not equivalent to 
E,. = (0' - O',.)/~,.. The form of Eq. (3.27) is appropriate when the solid 
material is being added to the existing solid framework in an unstressed 
state [100], as is true of hydration. Furthermore, Eq. (3.28) for the 
dashpots differ from the usual form u,. = ..,,.i,.. For constant i,., this form 

FlI.10 (a) Kelvin chain model and (b) Maxwell chain model. 

gives u,. = 1j,.i,., while Eq. (3.28) yields u,. = O. However, if E,. 's are 
interpreted as microstrains of some physical meaning on the microstruc­
turallevel, then u,. > 0 must hold because the solid material being added 
by hydration to the existing one must increase the resistance to a given 
deformation rate. Therefore, Eq. (3.28) lacks physical justification [88]. 

In view of this result, it is worthwhile to examine whether some Kelvin 
chain with correct dash pot relations 0',. = fJ,.i,. can also be equivalent to 
creep function (3.15). It can be verified [88] that this occurs for 
..,,.' = T,.~,.(I), E,.. = ~,..(I)- T,..d~,.(I)/dl. The latter relation, however, 
gives negative E,. within some periods of time for any realistic creep 
function[88] (for n = I, see' Ref. [77]), which is physically inadmissible . 
Another Kelvin chain representation with 0',. = fJ,.i,. can be found if E,. in . 
Eq. (3.15) is taken as function of I rather than I'. But incorrect elastic 
relations 0',.(1) = E(I)E,.(I) then ensue. 

Still another possibmty is to assume a priori the physically correct 
relations [88] 

0',. = fJ,. (I )i,. with 1J,. (') = 'l: = constant 
E,. (I)" • 

(3.29) 

Then, the Kelvin chain is described by Eq. (3.26) in which fJ,.l,. + 
(E,. + 1j,.)i,. = U. Integration of this differential equation for the case of 
stress 0' = 1 acting since time t' ~ I and a substitution into Eq. (3.26) 
yield [88]: 

i(t) = L 1 e-(I-I')/Y", 

,. T,..E,. (I) 
for 0' = H(t - t'). (3.30) 

This is a Dirichlet series, whose coefficients, however, depend on t rather 
than I'. To identify E,. (I) from given creep data, one may, therefore, 
construct the curves of strain rate i as functions of (' - t') for various 
constant current times' (see Fig. 10 in [88]). Nevertheless, this approach 
has the drawback that the derivatives of a random function (i.e. i) exhibit 
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a much greater statistical dispersion than the function itself [i.e. E or 
Jet, t'l]. Accordingly, it is desirable to integrate E from Eq. (3.30). An 
explicit analytical expression for E can· be obtained only if E,.-' as 
function of t is also expanded in Dirichlet series, namely 

_1 __ 1 + ~ 1 -"T. 
B,.(t) -,. ~,." e , k=I,2, ... ,n,,; p.=1,2, •.• ,n (3.31) 

where I,. and ],.. are material constants; '1. = '1; 10.-1. Integration of Eq. 
(3.30) then provides 

](1, i/) = B:n + ~ ],.(1- e-U-")/T,,) + 

~ L ....!..eLe-··/T.{I-exp [- (.!.+'!')(t - I')]} (3.32) 
,. " 1 + '1,. '1,. '1. 

'Tt . 

This expression can be fitted to given data on Jet, t') by minimizing a sum­
of-squares expression that is similar to Eq. (3.17) but has a smoothing 
penalty term «1>1 in two dimensions (p. and k). (To avoid iII-co\lditioning of 
the resulting system of equations, all ],.. for which 1',. .., lO1't1p:nust be set 
equal to 0 because they have almost no effect on the value of'](t, t').) An 
alternative method, which was 'found to work well in practice, is to put 
],.. = a.1 + allp. + aun 2 + aup. " I,. = aOI + ... + a04p. " and determine a., 
directly from the conditions alP/aakl = o. 

It remains to decide whether all I,. and ],." are guaranteed to be 
nonnegative. To this end, it is necessary, according to Eq. (3.30), that the 
slope of the curve of i versus (t - t') at any constant I be always 
nonpositive, which is equivalent to the condition 

(l
2J(t, t') _ a 2J(I, t') _ aL (I, I').,;:: 

at a(1 - t') - - at aI' - at -= 0, (3.33) 

where L is defined below Eq. (3.8). Thus, the slope of creep recovery 
following a stress impUlse (as well as any loading of finite duration) must 
be nonpositive. This agrees with all known observations, and so E,. must 
always be nonnegative. Therefore, the Kelvin chain characterized by Eq. 
(3.29) is physically admissible. (A closer examination could reveal a 
connection of inequality Eq. (3.33) to the second law of thermodynamics. 
In Ref. (88), Eq. (3.29) was rejected because of cases of a positive slope of 
the curve of E versus I - I' at constant I, but now it appears that this must 
have been caused merely by statistical scatter.) 
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Attention will now be shifted to the Dirichlet series expansion of the 
relaxation function (3.19). Inserting it into Eq. (3.5), it is possible to write 

where 

u =.± u,., 
,. .. 1 

U,.(t) = e-·/T,. f B,.(t')e··/T"[dE (t') - dEo (t')), 

(3.34) 

(3.35) 

provided 1',. now equals 1'110,.-1 only for p. < n, whi~e.at 1'. = 00, B. =.B •. u,. 
are hidden stresses (internal variables) characterizing the past history. 
They satisfy (and follow from) the differential equations 

p. = 1,2, ... , n, (3.36) 

with the notation 
1J,.(I) = 1',.B,.(I). (3.37) 

It is now readily seen that Eqs. (3.34) and (3.36)[89] correspond to the 
(generalized) Maxwell chain model, Fig. 1O(b), whose spring moduli and 
viscosities are given by B,. and 1J,., and are age dependent. In contrast 
with some of the previous cases of Kelvin chains, Eq. (3.36) indicates the 
correct form of the equations for time-variable dash pots and springs, as 
mentioned before. Also, H,. and 1),. are, according'to Eq. (3.19), always 
nonnegative, because the relaxation -curves have always non positive 

slope. . ' . . 
In conclusion both the Maxwell cham and the KelVin chain (With a 

proportionate a~e dependence of 1J,. and B,.) can represent ~he material 
behavior as closely as desired. Thus, they are mutually equivalent, and 
they must also be equivalent to any other possibfe sprin~-das~pot ~odel, 
similarly as in classical viscoelasticity [93, 101]. The Identification of 
material parameters from test data is simpler for the Maxwell chain, and 
therefore this model will be used as the basis for the ramifica~ions in the, 
subsequent section, despite the fact that the use of Kelvin chain is 
conceptually more convenient for interpretation of creep tests. In the 
case of Kelvin chain, t1'!e identification is, unfortunately, simple only f~r 
such forms of spring and dash pot relations that cannot be brought In 
correspondence with the physical processes in the microstructure [88, 89]. 
However, such Kelvin chains are admissible only when water content and 
temperature are constant. 
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4 ENV,RONMENTAL FACTORS AND NONLINEAR EFFECTS 
IN CREEP AND SHRINKAGE 

4.1 Effect of Temperature and Humidity on Aging 

The rate of hydration or aging depends on temperature T and pore 
humidity h (relative vapor pressure). This effect may be expressed in 
terms of a change of the time scale, considering that all material 
parameters [e.g., E,. and "I,. from Eq. (3.36», rather than being functions 
of actual time t, are functions of the so-called equivalent hydration period 
t. defined as[61, 100, 115] 

t. = f P dt = J /hf3,. dt, (4.1) 

where pr is a coefficient depending on T, p .. is a coefficient depending on h, 
and P is the relative hydration rate. 

Since hydration is a thermally activated process, Ih may naturally be 
assumed to obey the Arrhenius equation[l02], i.e. 

(4.2) 

where U" is the activation energy of h)-dration, R = gas constant = 
1.986 caWK, T is absolute temperature, and To is the chosen reference 
value of T. Equation (4~2) is only approximate because, strictly speaking, 
hydration consists of several chemical reactions, each of which probably 
has a different activation energy. Nevertheless, Verbeck[l04] found that 
the rates at which the hydration heat is evolved at various temperatures' 
conform to the Arrhenius equation with U .. IR = 21000K between O°C and 
100°C and up to 90 days of age. This value has been assumed, with success, 
in fitting the data on creep at various temperatures [60] [including Fig. 12(a), 
(b), (c». 

An estimate of the dependence of p" upon h, based on the 
observation[S3] that hydration slows considerably below h = O.S and 
other data (54, 55], is shown in Fig, 11 and may be expressed[61, 115) as 
p .. =[1 +(3.5-3.5htr'. 

4.2 Creep Law of Mass Concrete at Variable Temperature 

Mass concrete (a term used for concrete inside massive structures) can 
never lose an appreciable amount of water and remains nearly saturated, 
and so the variability of water content need not be considered, i.e. 
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.... II Typical dependence of some material parameters on pore humidity h. wlc = w~ter 
ma~s per unit mass of ce~nt (after powers, T. C., and Brownyard, T. C., "Studies of PhysIcal 
P rlies of Hardened Portland Cemenl Paste," Amer. Concrete In.sf. I. 41 (1946». Data .,;r.:: on IC after Monfore's and Jensen's tests. (See Babnt, z. ~ ". "~ermodynamics ~eory 
of Concrete Deformation at Variable Temperature and Humidity, Report 69-11, Div. of 
Struct. Enn. and Struct. Mech., Uni. of Calif., Ber~eley: A~g. 1969.) Curve CIC. fro~ 
Babnl, Z. P., and Najjar, L. J., "Nonlinear Water Dlltuslon In Nonsaturated Concrete, 
Materials and Structure, (RILEM) 5 (1972) 3-20. 

h .... 1.0, fJ" = 1. The main difficulty in formulating a creep law of m~ss 
concrete at variable temperature is due t~ the fact that te~perature flse 
accelerates not only creep (effect 20, Section 2) but also agmg [effect IS, 
Eq. (4.1)]. Mukaddam and 'Bresler[l06~ have consi~ered both of these 
effects, replacing time t in Eq. (3.1) with reduced time 

t .... = r"'l(n."zu*) dt, 

in which .,,1 is the usual shift function as used for thermorheologicall! 
simple materials [1S] and proposed for concrete by Sackman [101], an~ ~ 
is the corrected age, defined for constant temperature T as t -
to + (t' - tole -A(T-T." where To and to are chosen reference temper?ture 
and reference age; A is a constant. A modified form of reduced time, 

t .... = f .",(T)"'l(t - t') dt, 

in which "'l(t - t') = d log (I + t - t')/dt, was later proposed by 
Rashid[lOS]. These approaches, however, do not allow the cr~ep law ?t 
variable temperature to be converted to a rate-type form. This form IS 
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unavoidable for creep analysis. of large structural systems and is also 
necessary to enable the use of the well-founded concept of activati~n 
energy o~ thermally activated processes [102, 103]. Witho~t attempting the 
formulation of a creep law that would reflect aging, the activation energy 
was used in the discussions of concrete creep by Polivka and Best (cf. 
Ref. [60]), Hansen [44], Ruetz[29], Wittmann [28, 51, 97], Marechal[59], 
and others (cf. Ref. [60]). 

<:~nsideri~g rate-type creep law (3.34), (3.36), one may regard vis­
cO~llIes 1)1' m Eq. (3.36) as characteristics of various sorts of thermally 
activated processes involved in creep deformation. Thus. in view of Eq. 
(3.16)[60,100J, . 

1 1 [U ( 1 1 )] 10'-1' [U ( 1 -=- exp ..:::.e --- = ex..:::.e 1 
1)1' 1).... R To.T EI' (t. hi P R. To - T) ]. (4.3), 

in which UI' are activation energies of creep deformation (IL = I, 2, ... , n). 
They need not be all equal, and then the simplest distribution is a linear 
one [60], 

UI' = U I + (IL -I)AU, 

where U I and A U are constants. Substitution in Eq. (4.2) gives 

1)1' = al'.-ITTEI' (t.), 

in which 

TT = TI exp [- U I (..! _1.)J, 
R To·T 

a = lOexp [- ~U (;0 -~) J. 

(4.4) 

(4.5) 

(4.6) 

~rom Eqs. (4.5) and (4.6), it may be easily deduced[60J that U
I 
causes a 

shift of the creep curve in the log time to the left and A U causes an 
increase in its slope if U I and A U are considered independently of aging. 
On the other hand, the acceleration of aging, considered independently of 
U I and A U, causes a decrease of the ordinates of the creep curve. 

The dependence of elastic modulus E, as well as EI" upon T is 
neglected because its change between 25°C and lOOOC is not too 
large [8, 60,109). Equations (4.1) to (4.6) do not apply above 80-IOO0C 
because the c~emical composition of cement is altered, and below 00C 
bec.ause freezmg of water changes the material, and probably also for 
rapl~ changes of temperature (effect 21, Section 2) because certain 
nonlinear terms are neglected; see Subsection 4.5. 
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Identification of the material parameters from given test data at various 
constant temperatures may be carried out combining the Dirichlet series 
expansions at reference temper~ture, as discussed previously,. with the 
determination of U I and AU by trials of various values accordmg to the 
regula falsi met~od [60]. Some of the fits of the best data available, as 
obtained in Ref. [60) for the creep law characterized by Eqs. (3.34), (3.36), 
and (4.4) to (4.6), are shown in Fig. 12(a), (b), (c). ([he average value for 
UI' is about 10,000 cal.) Unfortunately, it is found that the data presently 
available are insufficient in scope for unique determination of UI" In fact, 
equally good fits were obtained [60) with either constant or variable U. 
Close fits would also be possible with other (more general) dependence of 
'1)1' and t. upon T, and so the fits of the test data presently known may not 
be interpreted as a proof that creep is a thermally activated process. But 
if the activation energy concept were not imposed, the degree of 
arbitrariness in material identification would be even higher. Thus, the 
purpose of the activation energy concept, as introduced here and in Refs. 
[60,100), should be seen in the reduction of the number of unknown 
material parameters. 

4.3 Mlcrodlffuslon Mechanism of Creep and Its Thermodynamics 

At variable water content w (per unit volume of material), the strain 
history depends not only upon the stress history, but also upon the 
histories of water content wand temperature T (as is apparent from 
effects 9, 11, 12, 16, 17, 21-23, 26, 29, Section 2). As this functional 
dependence cannot be assumed to be linear, the number of unknown 
material parameters that would have to be intr?duc~ !n formulati~g. the 
constitutive equation becomes so large that, In addition to the hmlted 
creep and shrinkage data presently available, further in~orma~ion .on the 
constitutive equation must be. deduced from a matenal sCience type 
theory of the processes in the microstructure. . . 

The walls of the pores in cement paste restrict the motion of adjacent 
water molecules and retain them in a fixed position for a certain "lingering 
time" (from 10-11 sec up), forming thus absorbed water layers. The.ir 
maximum thickness reaches 5 molecules [43, 110), so that a pore In 

cement paste must be at least 10 molecules (or 26.3 A) thick to 
accommodate the complete adsorbed layers on two opposite walls. Such 
pores, called macropores, usually contain air with water vapor and, at a 
higher saturation, also capillary water if they are large enough to 
accommodate the capillary meniscus. Pores that are less than 10 
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fig. 11 (a) Hannant's tests of creep at various temperatures. CyHnders cured 5 months I~ 
water at 2O"C, then sealed by copperfoil; 28-day cyl. strenlth 7800 psi; water-cement ratic: 
0.47; Oldbury limestone agrelate, stress < 1 strength; E. is instantaneous strain; solid line! 
show fits from Ref'. (60) by Maxwell chain. (Data extracted from Hannant, D. J., "Strail1 
Behavior of Concrete up to 9S"C under Compressive Stresses," Con/. on Prestressed Con­
crtte Pres .• ure Vessels, GroupC, Paper 17, Institution of Civil Enafneers, London (1967) 
57-71.) (b) Arthanari and Yu's biaxial tests of creep at various temperatures. Specimen! 
!lealed by epoxy coats; raised to test temperature 1 day before loading; cube strengtll 
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molecules thick will be called micropores. From the enormous internal 
surface of hardened cement paste (Section 2),·it has been estimated that 
the solid particles of cement gel, believed to be essentially laminar in 
shape, are typically 30',\ thick and are separated by pores of average 
thickness 15 A[43], Hence micropores must constitute the major part of 
pore volume in cement gel. At a high enough degree of saturation by 
water, the micropores are completely filled by adsorbed water layers that 
cannot develop their full thickness, and are therefore called hindered 
adsorbed water layers. (These are assumed to include not only the 
physically adsorbed water[41,110], i.e. molecules bound by van der 
Waals forces, but also the chemically bound interlayer hydrate 
water [35, 64) not more than 2 molecules in thickness; see Fig. 13.) 
Molecules in adsorbed layers are not held permanently and can diffuse 
along the solid surface. Such surface diffusion processes, also involving 
diffusion of some components of the adsorbent solids (Ca ions), cause a 
change of mass and thickness of the hindered adsorbed layers and are 
now widely believed to be the dominant mechanism' of the time­
dependent deformations of concrete under moderate stress levels . 

Without solids diffusion, the aforementioned micromechanism was first 
proposed and thermodynamically discussed in 1965 and 1966 by 
Powers[43, 110], I;llthough a nonthermQdynamic quantitative analysis had 
been made already in 1959 by Hrennikoff[1ll) and vague suggestions had 
been given by others in the 19308[112, 113). Partly different or even rival 
views of the creep and shrinkage mechanism were advanced by Feldman 
and Sereda[63, 64) and Wittmann[54, 114), without attempting to set up a 
constitutive equation (cf. also Ref. [116]). Powers' ideas were extended 
and translated into mathematical forms, which include solids diffusion, 
and the appropriate macroscopic constitutive equation was derived in 

6000 psi; water-cement ratio 0.564; max. agrelate size 1 in.; biaxial creep converted to 
uniaxial data usinl II = 0.2; E. is initial instantaneous strain; solid lines show IIts from Ref. 
(60) by Maxwell chain. (Data extracted from Arthanari, S., and Yu, C. W., "Creep of 
Concrete under Uniaxial and Biaxial Stresses at Elevated Temperature, Mag. Concrete Res. 
I' (1967) 149-156.) (c) Creep tests at various temperatures and stress levels by York, 
Kennedy, and Perry (data on tests F-33, B-39, 8-4, 8-7). Specimens cured 83 days, sealed by 
epoxy and copper jackets, at 73OP; then raised to test temperature and tested; 28-day cyl. 
strenlth 6000 psi; water-cement ratio 0.425, limestone agrelate of max. size J Inch; stress 
... 0.4 strenath; Eo is initial instantaneous strain; solid lines how fits from (60) by Maxwell 
chain. (Bxtracted from York, O. P., Kennedy, T. W., and Perry, B. S., "Bxperimentallnves­
tilation of Creep in Concrete Subjected to Mllitiaxial Compressive Stresses and Elevated 
Temperatures," Research Report 2864-2, University of Texas, Austin (1970).) 
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Fig. 13 1dealized microstructure of hardened Portland cement paste. d-physically ad­
sorbed water; h-interlayer hydrate water; a-free adsorbed water; c--capillary water; 
v-vapor; thickness-to-Iength ralio of particles is strongly exaggerated (after Ref. [116].) 

1968 (ct. Ref. (100]) and further refined in subsequent years[68, 115, 116). 
This formulation serves as the basis of the exposition in the sequel. For 
the sake of brevity, only a simplified and abridged sketch will be given; 
for a detailed treatment see Ref. (116). 

Alternative constitutive equations for porous materials with variable 
water content have also been studied in the spirit of modern continuum 
mechanics (but without quantitative relation to micromechanism of 
creep) by Creus and Onat[l17] and Stouffer and Wineman[118, 119]. 
Their equations, however, have been linear and capable of modeling only 
very few of the effects listed in Section 2. In a very general context, 
concrete belongs to the class of interacting continua or mixtures whose 
thermodynamics was discussed by Bowen[120] and others, without any 
reference to concrete. 

The usual formulation of surface thermodynamics(l2l, 122] due to 
Gibbs (dealing only with surface excess quantities) cannot be applied to 
hindered adsorbed layers (Fig. 14) because it implies zero thickness of the 
surface phase and prevents thus consideration of the changes in thickness 
21 .. of the layer. Whereas extension to finite thickness[l23] is useless for 
sorption studies concerned with pores that are not filled by adsorbed 
water (and is also dubious in view of the ambiguity in defining the 
thickness of the adsorbed layer), it is requisite(1l6] in the case of 
~dsorption between two solid surfaces (whose change in distance can be 
defined 'rigorously). 

Creep and Shrinkage in Concrete 33 

The total energy 0.. per unit mass of vyater i.~ .'he hindered ~dsorbed 
layer (fig. 14) is defined by th~ tot~l differential dO.! =: T dS .. + dW, 
where T d8", is heat supplied to t~e umt mass of water, S .. IS entropy per 
unit mass of water, dW == -1r~d(r w-

I
) + p", dl .. /r w == work Idone on the 

unit mass, ... is half-thickness of the layer (Fig. 14), r ",- is the ~rea 
covered by the unit mass of water, r... is surface mass co?centra~lon, 
. mass of water per unit area of layer and half-thickness, p .. 
~~e';ransversal pressure due to water (force per unit area of layer), 
called disjoining pressure; 1r!. is total spreading pressure, i.e., resultant 
(over half-thickness , .. ) of the compressive ~t~esses i~ wate~ along the 
layer. To deal with systems of variable mass, at IS expe~lent to In!~odu~e.a 
new potential that depends on T and 1r!. ins~ead o~ S.. a~d ~~ .. Thls IS 
achieved by Legendre transformation fLw == U",. - TS .. + _1r wf.", • Dlff~ren­
tiation and substitution of the previous expression for ~U .. Yields !he total 

d
'ff t' I d - S- dT + r -I d-' + p r .. -I dl .. ; If", IS called Gibbs free I eren la fL'" - - .. w" .. "'. • r • . • 

energy per unit mass of water, or chemical potential. Simalar relatlon~ ~an 
be written for solids in the layer,labeled by s instead of w. Thus, reahzlng 

SECTiON A-A 

(a) 

(b) 

~JI 

~~fld 
(d) 

• SOLIDS • WATER 

Fig. 14 Idealized hindered adsorbed water layers of various ~h~cknesses. :/., (b) ~a; 
saturation humidity; (c) at medium humidity; (d) at very low humidity. (Adapt rom e. 

[125].) 
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that chemical potential must' also depend on the relative surface 
concentration of solids, defined as E = r./(r. + r ... ), one may write 

dp. ... = -S .. dT + r .-1 d1r:'- p ... r .-1 dl .. +!!l!:!! dE 
aE 

dp.. = '- S. dT + r.- I d1r~- p.r.-I dl" + ~'i' dE. 
(4.7) 

However, the terms with dE will be omitted in the subsequent analysis 
because changes in E are unessential for explanation of the effects from 
Section 2 to be considered in this section. (The present formulation also 
neglects electric phenomena arising from the fact that the diffusing solids 
are probably mainly calcium ions.) 

Consider now a specified region Q of the layer (referred to by 
superscript a) to be in equilibrium with its surroundings. Imagine an 
infinitesimal deviation from equilibrium in which mass dN.: is transfer. 
red into region Q from some region 11, which may represent another 
region of the hindered layer or some phase of water in the adjacent 
macropore (water ads~rbed on its walls, capillary water or water vapor). 
The change of the GIbbs free energy of water in the regions Q and 11 
~ombined is dCfJ = p. ... dNw• + p..It(_ dN:) = (p..- - p..II) dN:. Accord-
109 to the s~~o~d law. of thermod~namics, dCfJ < 0 for any finite change 
toward equllibnum, and dCfJ = 0 for any equilibrium (i.e. reversible) 
change and for an infinitesimal deviation from equilibrium. Hence 
p. .. - - p. .. 11 = O. Thus, in equilibrium the chemical potential of one 
component (e.g .• water) must have the same value in all parts of the 
system that can exchange mass (a result well known in general from 
chemical thermodynamics [123]). (Rigorously. the chemical potential 
represents a tensor[l16. 120]. but for the present discussion this 
complication is unnecessary.) 

Thus. thermodynamic equilibrium is characterized by zero gradients of 
p... and p.. within the layer and. consequently •. the isothermic diffusion 
fluxes J .. ,~. of water and solids along the layer depend on these gradients. 
For sufficiently small gradients. the dependence must be linear. i.e. 

{J ... } [a_ a •• ]{"grad p..} 
J. = - a.. a.. grad p.. • 

(4.8) 

where aw ....... are diffusion coefficients. Their dependence on tempera­
ture ought. to obey the activation energy concept. i.e. be similar to Eq. 
(4.3). (By Onsager relations [124]. a .... = a ••. ) Conservation of mass 
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requires that 
ar... d' J 81=- IV ... , 

ar. ·d· J -=- IV • at • (4.9) 

The equation of state of the hindered adsorbed layer is analogous to 
Hooke's law and can be shown[116] to have (for dE =0) the form 

{
dPw }_[elw e .. ]{-dl .. ,I .. +a:'dT } (4.10) 
d1r:./I .. - e. ezo. dr .. /rw+a:dT· 

in which el •. ez .. , e .. can be regarded as elastic. moduli and a:'. a: as 
linear thermal dilatation coefficients. (They can all be expressed as second 
partial derivatives of Helmholtz free energy ft. per unit mass of water 
(ft .. = O. - TSw ) with respect to I .. , r .. and T[116].) A similar equation of 
state may be written for solids in the layer. 

In thermodynamic eqUilibrium. the thickness. I., of the (unhindered) 
adsorbed water layer on the walls of a macropore is larger. the higher is 
humidity h (relative vapor pressure) of the vapor in the macropore. 
(Thicknesses of I. 2. and 5 molecules occur, at 25°C. for ,. = O. 12, 0.5 I, 1.0, 
and I of monomolecular layer occurs at h =·0.03[43].) A pore of given 
thickness becomes filled by adsorbed water at a certain humidity h = hi 
for which I."" I .. (actually even earlier, because of the formation of 
surface meniscus). The corresponding transversal pressure p. = PI is 
probably small. PI .... O. But for h > h" when full thickness I. cannot be 
accommodated on both surfaces confining the layer, p. becomes very 
large. Imagine an eqUilibrium process in which h is gradually changed at 
constant T while I" is kept constant. The change of chemical potential of 
vapor in the macropore p.. may be expressed assuming the vapor to obey 
the ideal gas equation. P./p. = RTIM. where p. is vapor pressure. p. is its 
mass density. M = 18.02 g/mole == molecular weight of water, R = 
82.06 cm' atm (deg K x mole)-I = gas constant. Then. at constant T. 
dp.. == p.-I dp. = RM-1Tdp.lp. = RM-1Td(ln h). The equilibrium change 
of chemical potential in the layer must be the same. i.e; dp.. = dp. ... 
Integrating. one shows that the chemical potential of water in any phase 
that is in equilibrium with vapor of humidity h equals 

p.. == RM-1T In h + p. ... (T). (4.11) 

where p. ... is the value of p. ... at h = I. Furthermore, eliminating dr. from 
Eq. (4.10)[116]. one obtains 

and so 
d JI .. d ' po. =-;; 1r ... at dl .. = dT = O. (4.12) 

at dl .. = dT = O. (4.13) 
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in which v .. = Cw/C1w, pw = r~/I ... Equation (4.13) is valid fqr both 
completely and partially filled pores. If the pore is filled, Vw and pw ~re 
probably almost constant, and Eq. (4.13) can be integrated, furnishing the 
equilibrium value: 

Po. = pw(h, T) = vwp .. RM-'T In h + p,(T), (4.14) 

in which p,(T) = P/(h, T)- p .. (hl , T). For example, for a pore of two 
molecules in thickness (hi = 0.12), and with Pw =·1 g/cm\ v .. .... 0.6[125], 
and PI .... O, Eq. (4.8) yields p .. = 1720atm at 25°C and h = 1.0. This huge 
pressure is resisted by the solid framework in the material. It explains, in 
part, the small tensile strength and also the increase of strength due to 
drying (effect 28, Section 2), because p .. drops with h. 

For a hindered adsorbed layer of specified geometry, the time variation 
of thickness 'd due to a given history of th~ resultant of pressure pw at a 
given history of T and h can be solved from differential equations (4.8), 
(4.9), (4.7), and (4.10) with appropriate boundary conditions for p .. [see 
Eq. (4.14)]. Numerical studies of this initial boundary-value problem [125] 
confirm that several effects in creep due to variable humidity (effects 11, 
12, 16, 21, Section 2) can indeed be modeled, provided all and aw .. are 
considered to be dependent upon grad".w and grad".. (which makes the 
problem nonlinear). Two types of hindered layers are considered: a layer 
of uniform thickness. Id filled over the whole area and a layer of variable 
thickness between two spherical surfaces in which the filled region varies 
its area. It is found that for modeling the main phenomena in creep, the 
simpler model of a layer of uniform thickness is sufficient. (In the unfilled 
region, the dependence of Cw, C lw, CZw upon r w, derived in Ref. [125], is 
quite strong and adds to nonlinearity of the problem. A simplified 
statistical-mechanical theory is available for the equilibrium states in this 
case[116,126J.) 

4.4 Constitutive Equation at Variable Temperature and Humidity 

The creep mechanism outlined in the previous section is only a 
hypothesis. However, as later discussions will show, it allows for 
modeling and explanation of most of the effects listed in Section 2, which 
speaks strongly in its support. 

To relate the equations for the diffusion in the micropores to the 
macroscopic stress-strain relations, a hindered adsorbed layer of uniform 
thickness 2l" will now be treated in a rather simplified manner, using 
solely quantities averaged over the whole layer. Because the creep strains 
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observed are always small, the average change of Ie! must also be small. 
On this basis, the term with did may be neglected in Eq. (4.7)[116], and 
relation (4.7) may be utilized. {f',the layer is assumed to be initially in 
thermodynamic equilibrium (characterized by T = To, pw = p..,., ".W ::= p...., 
h = ho, etc.), then Eq. (4.7) with Eq. (4.12) yields, for a sufficiently small 
deviation from the initial state, 

".W - "...,. = - S .. (T - To) + '"vw -I(p .. - p...), 

".. -". .. = - S,(T - To) + r,-I,,,v.-I(P. - p..). 
(4.15) 

Within the adjacent macropore, migration of water molecules is relatively 
very fast, so that the water adsorbed on its walls, as well as the capillary 
water, may be assumed to remain in equilibrium with water vapor of 
humidity h at any time. Thus, according to Eq. (4.11), the values of.""""" 
at the boundary B between the hindered layer and the macropore are 

- S -(T ... RT h "... -"."'" = - w - J 0) + M In h
o
' 

".~~ - ". .. = - S.- (T - To), . 
(4.16) 

in which the transverse pressure in solids in the (unhindered) adsorbed 
layer is taken as p,- .... P .. - -0. The average mass fluxes into the layer are 
I.t wiLd and I .. t./t". where {. is the area of the layer, L. is length of its 
boundary with the macropore. Thus, in analogy with Eq. (4.8), 

{/dtw/L .. } _ [aww a.w]{("'w- - "...)/D} 
I"t,/Ld - aWl a.. ("..- -"..)/D ' 

(4.17) 

.. 
where D is a certain average distance of flow. From Eq. (4.10), 

tw_ Id+~_ - t r w - c .. ,.. C.. a.., (4.18) 

where cw = C.w/C .. , liw = a!+ cwa~. To correlate the microscopic quan­
tities with macroscopic (uniaxial) strain E and the macroscopic stresses, it 
will be assumed that 

-0'.' 
P -p -~ , .. - {d' 

w 
-0'. 

p .. -P"=f.' (4.19) 

where nd may be visualized as double the number of hindered adsorbed 
layers of a similar type intersectjng a unit length in the material and II. as 
the total area occupied by these layers per unit area of the material; u,.' 
and U,. w are macroscopic hidden stresses due to solids and water in layers 
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of a similar type; Es(h) and a.t are shrinkage strain and thermal 
dilatation due to solid particles between the hindered layers. Now, if Eqs. 
(4.19), (4.15), (4.16), and (4.18) with a similar relation for t, are substituted 
into Eq. (4.17), one obtains 

u'" + </I .. ,.u ... + </I ...... [a ..... - f .. (h, Tn = B .. '(E - Es(h)- (t,.'t), 
u .... + ~w, .. u, .. + ~ ...... [u .... - f .. ~", T)] = E .... (I - Es(h)- a .. wt), (4.20) 

where 

• _ IIdLdldii. + 
a .. - rJ, a .. c. d 

... _ ndLdldii ... + 
a,. - c r /. a .. 

w w'" 

/, (h It h. - 8 -.,. ,T) = u .. + Vd Id (S .. - S ... )(T - To), 

" fdRT (ho) u,. = v .. Id M In II . 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

The difference in entropies of solids, S.8 
- S .. has been considered here as 

negligible for lack of any evidence to the contrary. SUbscript ,... = 
I, 2, ... ,n is appended to all coefficients in order to distinguish between 
hindered adsorbed layers of various types (in area, thickness, for 
example) characterized by different rates of the diffusion processes. The 
condition of equilibrium of hidden stresses may be written as 

n 

L (a.,. +a .... )=q. ,.-. (4.25) 

In a more rigorous approach, Eqs. (4.20) can be derived from the 
principle of minimum entropy produ<;tion [98] introducing assumed 
distributions instead of averaged quantities (ct. Ref. [l15]). But expres-
sions (4.21) to (4.24) would then be more complicated. . 

For lack of experimental information on the microstructure, it should 
not be expected that the material parameters could be predicted from 
Eqs. (4.21) to (4.24). The merit of the foregoing considerations is to be 
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seen mainly in the fact that a rational form of the constitutive equation 
has been deduced. 

The temperature dependence of the diffusion coefficients a .. w, ••• in Eq. 
(4.8) m~y logically be assumed to obey the activation energy concept. 
Thus, in view of Eq. (4.22), 

t/J.w". = ... , 

with 

(4.26) 

where ~ : .... , ... are coefficients that depend on h, approximately in the 
form indicated in Fig. II, and also on the stress level. Equation (4.3), 
introduced previously for creep at variable T and constant water content, 
is thus a special case of the present formulation. 

Adding Eqs. (4.20), we see that the rate-type creep equation (3.3~) for 
constant hand T is a special case of Eqs. (4.20) if 4> .... + ~ ... = 
~ ... + ~ .... = E,.I" .. = I/T .. , E,.' + E .. w = E .. , q ... + u w .. = u ... Thus, Eqs. 
(4.20), alo~g with Eq. (4.25), may be viewed as a generalization of the 
creep law based on Maxwell chain, which was previously found to be a 
suitable model and may be visualized as is shown in Fig. 15, in which 
moduli E .. ', E ..... are interpreted by the springs, and the diffusion processes 
of various speeds, corresponding to rate coefficients ~ .... , ... , are 
depicted by the layer-shaped diffusion elements. In view of this result and 
the discussion of the data fitting by Dirichlet series in Section 3, it is no 
infringement on generality to assume that, at low-stress levels. 

" -..I." -El! ........ - 'f'w .... -
T,. 

for h ~ I, (4.27) 

FlI. 15 Idealized model of the interaction of water and solids with dilfusion elements of 
various relaxation times. (Generalization of Maxwell chain from Fig. 100a).) 
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where Coo is a function of IJ., and T,. is given by Eq. (3.16). Equality of' t/J!. 
and • ~w .. is also justified by the fact that significant coupling can exist 
only between diffusion processes of roughly equal rates. 

Equations (4.20) and (4.25) interpret creep alone when all stress­
independent terms are neglected, i.e. i ... 0 = iw.: = I,. = O. The mechanism 
of creep may be imagined as follows. As macroscopic compressive stress 
u is applied, transversal pressures p., pw and, according to Eq. (4.10) or 
Eq. (4.12), spreading pressures 1T~ and 1T:' are increased. This alters IJ., 
and IJ. ... (Eqs. (4.15) and (4.7)] and destroys thermodynamic equilibrium 
because IJ..

8
, it ... 8 

in the adjacent macropore is not affected. As a result 
sOli.ds a~d water be~in migrating out of the hindered adsorbed layers, and. 
their thickness I", IS thus decreased. If tension is applied, the reverse 
process is set off. 

D.rYing shrin~age (Fig. 16) is interpreted by Eqs. (4.20).and (4.25) as the 
strain at u = T = 0 that is due to Es(l.) and u,.". (Their approximate 
dependence on h is shown in Fig. 11.) Thermodynamic equilibrium 
between the hindered layer and the macropore is characterized by the 
condition u ..... = I,. (h, T). If pore humidity h drops down, IJ. .. 8 is decreased 
[Eq. (4.11) or Eq. (4.16)], and the initial thermodynamic equilibrium is 
destroyed. In Eq. (4.20) this is manifested by creation of a nonzero 
differ~nce u ... ,. -I,. (h, T). As a result, water molecules start Howing out of 
the hindered layers and drag some solids in the layer with them. The 
inherent gradual loss of solid mass per unit area of the layer causes a 
gradual decrease of the thickness. This type of shrinkage, reHected by 
terms u,. ", is always delayed with regard to the drop in h. (In contrast with 
creep, the delays probably do not exceed one month; effect 23, Section 2.) 
"!oteworthy is the fact that the delayed shrinkage is governed by the same 
hidden stresses as the creep. This conforms with the identity of their 
physical mechanisms. 

In addition, a drop in h also results in higher surface tension (or lower 
spreading pressure) on the walls of non saturated pores. To equilibrate the 
surface tension, compression stress is immediately generated within the 
solid particles, giving rise to elastic compression, manifested as shrink­
age. This type of shrinkage, reflected by the term Es(h), appears 
immediately with the drop in pore humidity. • 

Shrinkage stress is the stress induced by shrinkage when some 
deformation component is prevented, e.g., E = O. It is instructive to 
realize that, for the simplified c~se t/J ..... = t/J", ... = Es = 0, and for h(t) in the 
fo~m of a. step fu~ction ~ith step at 10 (which can occur only in infinitely 
thin specimens), integration of Eq. (4.20) leads to the Dirichlet series: 
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u(l) = ~ uw .. (I) = ~ u,."(I.)(I-.e hw
" "-"'1. (4.28) .. ,. 

This is only that part of shrinkagC!'8t..ess that is due to delayed shrinkage. 
and it is noteworthy that it varies monotonously in time because all u,." 
are of tbe same sign. Superimposed upon' it is tbe part due to instanta­
neous shrinkage Es(t), which may reach a maximum at a finite time (and 
so may the total shrinkage stress; cf. Fig. 21). 

If a phenomenological approach were taken, then the Dirichlet series 
expansion of the stress induced by delayed shrinkage wo~ld show, 
without reference to any physical model, that terms of the type of I,. 
should appear in Eq. (4.20). 

Thermal dilatations of concrete are known from experiments to be an 
extremely complicated phenomenon (cf. Ref. (68]). They depend strongly 
on water content and exhibit an aftereffect, i.e. continue after the 
temperature change has ceased. By physical source, three different 
components can be distinguished(68, 116]. 

1. Pure thermal dilatation, which is due to the thermal dilatation 
coefficients at.", a". w for solids and water. Because probably a".' > a,. ... 
warming creates disjoining pressure in water. which, in turn. induces a 
flow out of the hindered layer and leads to some recovery of thermal 
dilatation. This eff~t must be smaller, the lower the water content. 

2. Thermal shrinkage or swelling, which is i~troduced through the 
terms /,.(h. T) in Eqs. (4.20) and is caused by the ~fference in entropy 
densities, Sw· - S .... in Eqs. (4.24). Considering that SV = Sw· + Qw·,T. = 
S .. + Q .. ITo• where SV is the entropy per unit mass of vapor in the 
macropore, and Qw. S." Qw·, S ... are latent heats and entropies per unit 
mass of adsorbed water within the hindered layer and on its boundary. i.e. 
on the walls of the macropore, one obtains 

S-. _ Ii = Qw - Qw· 
w '>w . T. . (4.29) 

Here always Qw > Qw· and Sw· > 5w because the water molecules within 
the hindered layers must be held stronger than those at the walls of 
macropore (and must also exhibit less disorder). Thus. according to Eq. 
(4.1). warming destroys initial equilibrium ~ .. = p. ... and produces a 
difference".., -"..,. >0. setting off a ftow out of the hindered layers and 
causing some of the dilatation to recover with a certain delay. This effect 
also must be less at a smaller water content. 

3. Hygrothermic dilatation, which is introduced through the terms I,. 
and u,.·. It is due to the rise in h that is produced by a rise ~n T at constant 
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FlI. 16 (a) Hansen and Mattock's data on the effect of size on shrinkage and creep of 
specimens drying at II. = o.so. Cylinders sealed at ends: 28-day cyl. strenglh == (.000 psi: 
Elgin gravel (92 percent calcite, 8 percent quartz) max. size I in., SOO Ib of ASTM type III 
cement per cubic yard of concrete: cured 2 days in mold and 6 days in fog at 70"F: tested at 
70°F: loaded and ellposed to drying at 8 days of age: stress -1 of 8-day strength: Young's 
modulus at loading ... 3.7 x 10' psi; h-values in the figure Indicate measured h in the allis of 
cylinder. The solid lines are the IIts[l66] obtained for I~ = SOO psi, S. = 260 psi, S. = 0.001 I, 
C. = 0.032 in.'/day, and B = 0, according to Eqs. (4.340) to (4.34c). (Data for 1777 psi are out 
of range of the theory and are not IItted.) (Data points constructed after Hansen, T. C., and 
Mattock, A. H., "lnOuence of Size and Shape of Member on the Shrinkage and Creep of 
Concrete," Amer. Concrete lnst. 1. 63 (1966) 267-290.) (b) Weil's data on the effect of size 
on shrinkage and creep of specimens drying at II. = 0.65. Cylinders, 4 diameters long; 
concrete of 246 kgf/cm' cyl. strength and 306 kgf/cm' cube strength, 28-day eI. modulus at 
10th loading 269,000 kgf/cm': water-cement-aggregate ratio 0 . .52: I : .5.4: Rhine sand and 
gravel (mostly quartz): 7 days of moist curing, then ellposed to drying (t. = 7); loading at 
t' = 28 days; 2O"C; shrinkage or creep time shown is measured from inslant I. or ,', 
respectively; creep stmin does not include Instantaneous strain: measured on the middle 
half-length, on the surface. (Data adapted from Weil, 0., "Inftuence des Dimensions el des 
Tensions sur Ie Retralt et Ie Fluagede B~ton," RILBM Bull., No.3 (1959) 4-14, Flgs . .5, 6.) 

wand is characterized by the hygrothermic coefficient K = (ah I aT) .. ;;3!0 0 
[ct. Eq. (4.38) below]. This causes an increase of p. .. 8 and generates flow 
of water into the hindered layers, which causes them to expand. This 
dilatation is also delayed. It represents continued dilatation rather than 
recovery. It is zero at h = 0 and reaches maximum at h =0.7, as is 
indicated by the diagram of K in Fig. It. At ,. = I, it is negligible (except at 
temperatures above lOO"C, at which it can be large. because the high 
pressure of the steam in the macropores is no longer negligible as a 

. loading of the material). 
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As a result of this complex picture. thermal dilatation depends on hand 
on time, as is qualitatively indicated in Fig: 17[68]. Existing test data (ct. 
Ref. [68]) support this qualitative picture. but are probably insufficient to 
formulate the phenomenon quantitatively. 

l~: 

Fig. 17 Typical delayed thermal dilatations al various humidilies h (afler Ref. [68)). 

Imposing the condition of isotropy. one can generalize Eqs. (4.20) and 
(4.2S) to multiaxial stress as follows: 

Us .. v + ",:' .. u'" v + 4>:... .. (u .... v -I,. v (h. T)) = 3 K,.' (i v - is(h) - a,.'T). 
. v + ..I. v v ..I. v [ v J. V(h ) ~ w. V • h ... (4.30) u w.. "" ..... u ... + "" ...... u .. ,. -,. ,T ]-3K,. (E -Es( )-a,. n. 

L (u'" v + u .... V) = U v. ,. 
L (u,,,P + u .... 

p
) = up. ,. ,... = t. 2 •...• n. 

(4.31) 

(4.32) 

where superscripts V and D distinguish between the volumetric and the 
deviatoric components of stress and strain tensors u = (u,,] and E = (E,,] 
and label the corresponding coefficients. Note that. because of isotropy, 
no stress-independent terms analogous to I,. and Es can appear in Eqs. 
(4.31). (Actually. the incremental creep properties at high stress seem to 
be distinctly anisotropic. but experimental information is insufficient for a 
realistic generalization of Eqs. (4.30) to (4.32).] 
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Recalling the discussion that justified Eq. (4.21). one may assume that. 
at h = 1 and low-stress levels. "'~ .. = '" !!... "'!w ... = '" e..... etc. 

According to the present modC?l, the deviatoiic creep is not mainly 
controlled by a slip but by diffusion from compressed layers normal to 
one principal direction of stress deviator into expanding layers normal to 
another principal direction[100. 11S]. while the volumetric creep corres­
ponds to equal compression of layers of all directions and diffusion into 
'the macropores. A slip may also be involved in creep deformation. but 
seems not to be the rate-controlling process. since otherwise. for one 
reason. it would be hard to explain that'-in contrast with metals. polymers • 
. and (highly porous) clays. the volumetric creep is equally pronounced as 
the deviatoric creep (effect 4. Section 2). (Furthermore. slip could not 
account for the similarities between shrinkage and creep. apparent from 
effects 11. t4. and 16. Section 2). 

The fact that at constant pore humidity h the creep rate is greater. the 
higher is h (effect 9. Section 2) (Fig. 18) [28-33] may be explained by 
considering that hindered adsorbed layers of different thicknesses and 
areas .(Fig. 14) contribute to creep. The mobility of solids must be 
contingent upon the presence of water since in a perfectly dry state the 
creep is very small[28-33]. Thus. as thicker and thicker layers become 
filled at increasing h. more and more solids become mobile. and the creep 
rate must grow. the main increase should occur at higher humidities 
(effect 9. Section 2). at which the thicker pores with weaker held and 
potentially more mobile solids [Fig. 14(b). (c)) become filled. 

Extending the original Powers' ideas on adsorbed water (43 •. 110]. the 
diffusion of solids including dissolution of solids from the solid surfaces 
and their reprecipitation at different locations has been proposed a.s an 
essential part of the creep mechanism[100. liS, 116]. This mechanism. 
which has not been previously included in the mathematical formulation. 
should be reg~ded as a hypothesis. Though it has not been experimentally 
confirmed (and could hardly be. because of the,Fxtremely small amounts of 
solids that need be involved to account for the small creep strains), it is 
plausible because hydration. as any chemical reaction. may be reversed 
when the sign of the free energy difference is altered due to a change in u or 
h and because the solid microstructure is rather mobile •. as is evidenced by . . . 
the fact that cracks heal under compression(71] and hydrated cement 
powder can be compacted into a solid body by pressure at room 
temperature [63]. The hypothesis of solids diffusion is inevitable if one 
should explain phenomena t to 7 listed below. 

l. . If there were no solids connecting the opposite surfaces in the 
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Fig: 18 Wittmann's tests of creep at various constant water contenlll. Solid cement paste 
cylinders I~ x 60 mm; water-cement ratio 0.4; cured sealed for 28 days at 20·C; then dried in 
oven at 105 C for 2 days, resaturated for 3 months at various constant humidities" shown 
at ?O·C. Then tested for creep in the same environment under stress 150 kgf/cm" equal 0.2 of 
!allure stress before test; E ... 210,000 kgf/cm' for I min loading; strain at 1 hour under load 
IS subtracted from values !!hown. The solid lines are fits (I 66) for S == 240 psi S = 0 0004 
CO· '/ I ,n., 

n = .025 tn. day, ~nd B = 0.4, obtained according to Eqs. (4.34a) to (4.34c). (Data points 
constructed after Willmann, F., "Einftuss des Feuchtigkeitsgehaltes auf das Kriechen des 
Zementsteines," R/leol. Acta 9 (1970) 282-287, Fig. I.) 

hin~ered I~~er, either the surfaces would collapse together on complete 
drymg, which would yield a large shrinkage strain (of the order of O. I), or 
a sharp elastic modulus drop would occur, none of which is true (effect 10). 

2. If the solid particles confining the hindered layer actually came to 
contact on full drying, the cre~p that follows rewetting could not be 
greater than the previous swelling, which contradicts effect 16, Section 2. 
On the other hand, creep must be vnbounded if so1ids can dissolve from 
the surfaces confining the layer, diffuse out, and precipitate near the 
entrance of the layer [2 in Fig. 19(b»). 

3. The substantial decrease of the internal surface area (accessible to 
water), ~hich is caused by wetting-drying cycles (effect 30, Section 2) can 
be explained only by assuming that the diffusing water molecules knock 
out s.orne of the solid molecules over their activation energy barriers, 
exerting thus a drag on the solids and driving some of them toward the 
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Fig. 19 Various hypothetical stages in relative displacement of two solid adsorbent parti­
cles of cement past~ at swelling followed by crecp; crosses = solids, dots == water (after Ref. 
[ 125)). 

entrances to the micropores, where they precipitate and block the acc·ess 
into the pore [9 in Fig. 14(a)] or create inaccessible enclaves [8 in Fig. 
14(a)]. This effect should be again more pronounced when the 
wetting-drying cycle reaches into higher h (as observed in Ref. [63]) 
because thicker pores with more mobile solids become involved. The 
changes of pore structure due to diffusion of solids also explain the 
significant hysteresis of ~esorption-sorption isotherms (effect 30, Section 
2) and other irreversibility (effects 22, 10, Section 2). 

4. Blocking of the micropores by the diffusing a!,d reprecipitating 
solids (Fig. 14) can be caused by only a minute amount of solids. This can 
explain why creep properties continue changing with age long after the 
growth of elastic modulus with age has ceased (effect 19, Section 2). 

S. The aforementioned blocking, together with an increase in area and 
transverse stiffness of the hindered layer due to solids reprecipitating near 
its boundary [Fig. 14(d)), can explain why. after a long period of creep, the 
elastic and creep compliances for subsequent load increments decrease 
(effect 8, Section 2), and probably also gain anisotropic form. 

6. On reaching full saturation, creep does not drop, even though water 
transfer to macropores becomes hindered; see p. 49. . 

7. Finally. it appeared impossible to model the drying creep effect (item 
I I, Section 2) (Figs. 20 and 21) without diffusion of solids[l25, 166]. 

The smallness of the drop in elastic modulus on drying (effect 10, 
Section 2) implies that the stiffness of solids across the layers must be 
much higher than that of water, or E,: ~ E,.'" (roughly E,.w =O.lE,.~). This 
is further supported by the fact that the volume compressibility of water 
is much bigher than that of concrete [100). Thus, the applied load is 
carried across the layer essentially by solids; i.e. water is not important as 
a load-bearing component, contrary to a previous hypothesis[43, 1101. 
However, by means of the disjoining pressure caused by a change in h 
[Eq. (4.14)], water can introduce into the microstructure large forces. 
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Fig: 20 Ruetz's data on creep of dryi,ng and predried specimens. Solid cement paste 
cylinders 17 x 60 mm, 28 days old; moist cured; water-cement ratio 0.5; stress a = 
100 kfg/cm

2
, at 20°C; E, E, = 6-day creep strain at evaporable water content w. and at 

saturation value w. = Wo; Eo! = instantaneous (clastic) strain on loading; approximately 
w.1 Wo ... h ; drying specimens were exposed from the moment of loading to air of h yielding 
equilibrium water content w.; predried specimens were deprived of evaporable water before 
the test in oven at losee and then saturated to equilibrium at w. prior to loading. (From 
Ruetz, W., "An Hypothesis for the Creep of Hardened Cement Paste and the Inftuence of 
Simullaneous Shrinkage," Int. Con/. on the Structure 0/ Concrete, held in London, 1965, 
Cement and Concrete Assoc. (1968) 365-387.) 

In view of the smallness of creep strains, the amount of water expelled 
during creep from the micropores into the macropores (or vice versa) 
must also be small, probably much less than 0.1 percent of the volume of 
concrete (since typically creep strains do not exceed 0.001, and even this 
is not due entirely to water but also to expelled solids). From 
sorption-desorption isotherms (Fig. 11), it is evident that a small change 
in water content of unsaturated concrete cannot cause a large change in 
pore humidity h. Consequently, assuming the same to be true for the 
water content of the macropores taken separately, one concludes that 
pore humidity h is not seriously affected by loading. Comparisons in 
measured h between loaded and unloaded sealed specimens[44], as well 
as in the water loss between loaded and unloaded unsealed speci­
mens[3,42-44] (item 13, Section 2), confirm this conclusion. Further­
more, no effect of load upon the macroscopic diffusivity of water [e in 
Eq. (4.40)) has been observed. 

Thus, fortunately, the problem of macroscopic water diffusion in 
concrete (the drying problem), discussed in Subsection 4.6, may be 
considered as independent of the stress and strain problem. But the 
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FII. 21 Troxell, Raphael, and Davis' data on creep and shrinkage at various humidities. 
Tests of longest duration known; 28-day cyl. strength - 2SOO psi; stress = I strength; 70"F~ 
cement type I; water-cement-aggreaate ratio 0.59: 1 :5.67; granite aggregate; 1.5 In. max. 
size; 4 x 14 in. cylinders, unsealed. The solid lines are 6ts(l66) for I~ = 400 psi, S, = 300 psi, 
So ... 0.0008, C. = 0.025 in. 2/day, and B = 0.4, obtained according to Bqs. (4.34a) to (4.34c). 
(From Troxell, O. B., Raphael, J. M., and Davis, R. W., "Long Time Creep and Shrinkage 
Tests of Plain and Reinforced Concrete," Proc. ASTM 58 (1958) 1101-1120.) 

reverse is not true at all, and so the drying problem must be solved prior to 
analyzing stresses and strains. 

A fully saturated concrete containing no water vapor (which can occur, 
in view of self-desiccation, only under hydraulic overpressure) does not 
seem to creep less than concrete at h = 0.99, despite the fact that at 
saturation the transfer of water from micropores to macropores requires 
volume compression of liquid water rather than vapor. This may be 
explained in part by t!le fact that the volume compressibility of cement 
paste particles is probably an order of magnitude less than that of 
capillary water. But more important, perhaps, this is explained by the fact 
that creep is mainly due to diffusion of solids (and so the fact that the 
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transfer of water is much less extensive in case of a filled macropOre is 
inessential). 

4.5 Nonlinear Effects In Creep and Shrinkage 

First,. attention will be given to nonlinear effects at moderate stress 
levels. Of these, the most important one is the drying creep effect (item 
11, Section 2; Figs. 20 to 22), also called "Pickett effect," after its 

• , 
Q 4 

.!: 

l'HERMITE, MAMIllAN,I965 
SHRINKAGE I. CREEP 

'00 1000 .0 '00 1000 

t- to in doys I - I' in CloyS 

'.0 E 

0.5 

E ' 

" z 

Fig. II Tests of creep and shrinkage at various humidities by L'Hermite and Mamillan. 
Same test series as in Fig. 4. The solid lines are 8ts(l66) for I: = 600 psi, S. = 260 psi, 
S. = 0.0003, C. = 0.025 in. 2/day, and B = 0.4, obtained according to Eqs. (4.34a) to (4.l4c). 
(Data adapted from L'Hermite, R., Mamlllan, M., and Lcfbre, C., "Nouveaux resultats de 
recherches sur la d~rormation et la rupture du beton," Annalel de I'lnstilu, Technique du 
BaIlment et del TralJaux PubliCI II (l965) 325-360.) 

discoverer [34]. He has linked it to the shrinkage stresses assuming them 
to be superimposed on the stresses due to applied load and thus cause the 
total stress to reach into the nonlinear range, in which the specific creep 
rate is higher. However, some later obtained experimental results are at 
variance with this explanation [12S]. Within the framework of the theory 
expounded in previous .paragraphs, modeling of the drying creep effect 
requires a nonlinear dependence of the mass fluxes upon the gradients in 
Eq. (4.8) to be introduced[l25]. Thus, 
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a = ... w.. , a = ... .t'" , (4.33) 

or 
.t..h =... .t.. h = ... 
." w .. ,.. ,." .w" ' 

in which a.o, "'.,.0, a .... , . .. are functions of h. (Note that the gradient vector 
appears only in the fdrm of its invariant.) The dependence of aw .. , "' .... ,., 

a...., ",,".,., etc., upon the gradients is probably inessential since creep is 
mainly due to the diffusion of solids. In absence ()f drying, grad p, .. and 
(0' .. ,. -/,.) are very small, and a: ~ a .... or "': ~ "'." must hold because 
creep is nearly linear with stress, while at simultaneous drying creep is 
distinctly nonlinear with stress [7, 41 J. 

In a physical sense, coefficient a." or "'.,. W represents a nonlinear 
coupling between the two diffusions of solids and water, whereas 
coefficient a... or "' ... ,. from Eq. (4.8) or Eq. (4.20) represents a linear 
coupling. Coefficient a... reflects a drag of the diffusing water molecules 
upon the molecules (ions) of solids; water molecules when hit by the·solid 
molecules are knocked from their equilibrium positions over their 
activation energy barriers. Obviously, this must occur in the direction of 
grad p,... On the other hand, a." reflects an excitation (increase in 
mobility) of solids rather than a drag; the impinging water molecules do 
not knock out the 'solid molecules, but merely impart them energy, which 
makes their later escapes over the activation energy barriers more 
probable, i.e. more frequent. In contrast with the case of a drag, these 
escapes are actually caused by thermal fluctuations in energies and occur 
therefore in random directions, so that the subsequent movement of 
solids can be influenced only by grad p,.. and not by grad p,... The 
frequency of these escapes must grow nonlinearly with the imparted 
energy, or with flux J .. (as can be shown from Maxwell-Boltzmann's 
distribution law of thermal energies [103]). This again justifies that "grad" 
appears in Eq. (4.33) in square. Since excitation and thermal escape 
require less imparted energy than direct knocking out the molecule, and is 
thus more frequent, coefflcient a... or "' ... ,. is probably of much lesser 
significance than a .... or "'.,.". . 

This conclusion is supported by the experimental facts that accelera­
tion of compression creep occurs not only at drying, but also at wetting or 
humidity cycJing[3, p. 156; 36], i.e. for either sign of humidity change (or 
either sign of grad); and that drying accelerates not only creep in 
compression, but also in shear[3, 17] and in bending [3, 34]. In the case of 
compression creep at wetting, the flux of solids due to . creep, J. in Eq. 
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(4.8), is opposite to the ftux of water, J ... , induced by the change in Pore 
humidity. In the cases of shear a~d bending at drying or wetting, opposite 
ftuxes occur for half of all layers. If the drag (coefficients a ... , "'.w .. ) were 
decisive, either deceleration of creep (in the former case) or no change in 
rate (in the latter cases) would have to occur, which is at variance with 
experiments (effects 11, 12, Section 2). By contrast, if the excitation and 
thermal escapes prevail (coefficients a,", """ .. ), the signs of ftuxes J .. , J, 
are immaterial, and acceleration must always occur, as is actually 
observed. Thus, probably, a • .,"" aw, .... ", ..... ==- "'w'" ==- 0 can be ,\ssumed. 

(The drying creep has already been discussed as a nonlinear effect by 
Pickett [34] and by Wittmann [37]. They assume that a certain stress u" 
due to shrinkage superimposes its effect upon stress u due to load,. and 
results, because of the nonlinear dependence of creep rate upon u, in a 
higher creep per unit stress. However, this hypothesis would predict 
deceleration of creep on wetting, while the opposite seems to be true. 
Also, it would not predict any change for creep due to shear or bending.) 

Identification of the material parameters in constitutive law (4.20) from 
the given test data represents an inverse (nonlinear initial boundary­
value) problem, because coefficients of differential equations have to be 
determined from prescribed solutions. This is a mathematical problem of 
great complexity, compounded by the fact that all test data for variable 
water content refer to specimens that were not in a homogeneous state. 
Using step-by-step time integration combined with finite elements over 
the specimen (Subsection 5.3), the identification can be accomplished by 
an optimization algorithm[105, 166] based on quasi-linearization and a 
least-square criterion[l66J. Howe.ver, this succeeds only if a sufficiently 
good guess of the starting values of the material parameters is made, for 
which the thermodynamic theory outlined before is indispensable. Also, 
the data set analyzed must be sufficiently extensive to permit unambigu­
ous identification of the material parameters. For this reason, it is 
necessary to fit the creep and shrinkage data obtained ~n different 
laboratories on different concretes simultaneously, and assume that, 
whereas the parameters for reference (constant humidity) conditions are 
different, those that modify them for humidity effects are nearly the same. 
It has been found(I66] that the known test data for variable humidity 
conditions (at T = To) are sufficiently well fitted· by the following 
expressions (the fits by these expressions appear as the solid curves in Figs. 
16, 18, 21, 22, 25): 

v 1 v v ", .... = - ",,. J/!,. p,. , 
1',. 

v 1 v 
", "' ..... = - f/>,. J/!,. 

1',. 
".=I, ... ,n (n=7) 
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° 1 .... f. ° ° ", .... = 1',. .".,..,.,. p,. , ° 1 ... • f. ° .ww,. = - 'f',..~,..., .. 1',. =; 0.05 X 10"-' days 
1',. 

... v _ ... v _ ... 0 _ ... 0 .... n -

." aw,.. - ." •• ,. - ." .w,. - ~ .8,. , (4.34a) 

in which (see also the graphs in Fig. 11) 

",,. = 10--" vr-Ji, "',. v = 1 + U
w

• - u,. , 
(

V ")Z 
uv .. 

V'')" ",,.0 = 1 + (u... - u,. 
uo .. 

(4.34b) 

a,. = 3.6 - 0.095(". - l)z, ue = 6 psi 

b,.o = 0.3 x 10·... b,. v = 1.2b,.0. B,. = 1.4 + B(". - I) 

u. =u_ =(1.1+0.2 ... )u.; u.=lpsi .... r-

and Jz(u ... ) is second invariant of the deviatoric tensor u, .. o. The terms 
causing shrinkage [and the (tangent) elastic moduli] are (cf. Fig. 2): 

Es = S.(I- 0.9Sh' - 0.2Sh~. 

• " 1's Es 
U,. = S. + S. 1's 1',. • 

1's = 20 days, 
(4.34c) 

K ... =0.9K,., K .... = 0.lh(2- h)K,.. 

0 ... = 0.90,.. 0 .... = 0.1 h (2 - h )0,., 

where K,.. 0,. are determined from E,.(t.) using II = 0.18. In the above 
expressions. functions ",,. account for the fact that concrete with constan 
h creeps less for lower h. Functions "',. v. "'0 v override this dependencI 
when sufficiently strong simultaneous drying occurs. Coefficient 1.2 in Eq 
(4.34b) causes the acceleration of creep by drying to be more intense in 
volumetric than in deviatoric deformations. (This accounts for the drop of 
the apparent creep Poisson's ratio with the duration of th~ drying creep 
test. and could be explained by the plausible hypothesis that the increase of 
diffusion rate due to drying in layers of one orientation should not affect 
much the rate in layers of another orientation.) All of these functions 
depend on ". because the intensity of humidity inftuences varies with creep 
duration. (Note that u,.". introducing delayed shrinkage. becomes negligible 
for 1',. > 20 days.) Term h zoo in (4.34c) is needed to model swelling at h = 1 
and. at the same time. autogeneous shrinkage of mass concrete 
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self-desiccating to h = 0.98. The age dependence of shrinkage is obtained 
through that of E,. [and of C, in Eq. (4.41)]. Coefficients 0.1 and 0.9 in 
(4.34b) correspond to the fact that solids probably are relatively much less 
compressible than water and give only a mild decrease of elastic moduli 
with h. Functions PI' V and p,.D express the nonlinear dependence of creep 
upon stress, and are taken in a form that assumes the incremental 
properties to remain isotropic. (This is certainly a simplification.) The 
nonlinear diffusion or rate coefficients [Eq. (4.33)], other effects (item 8, 
cracking) has been considered [166] by replacing all E,. with E,./(1 + 
6Ui/f~1), where f~ is the uniaxial tensile failure stress, and u is the maximum 
principal stress. 

While the foregoing nonlinear effects are all explicable in· terms of 
nonlinear diffusion or rate coefficients [Eq. (4.33)], other effects (item 8, 
Section 2, or item 3, Subsection 4.4) require a formulation that 
characterizes the change of solid structure due to diffusion. For example, 
the solids diffused under uniaxial compression from the hindered layers 
perpendicular to u probably precipitate near the boundary of the layer. 
extending thus its area (Fig. 14) and increasing the stiffness across the 
layer. In the simplest approach, this may be modeled by relations of the 
type dE ... = - k,.t/> .... u ... dt [115]. But existing test data are insufficient to 
develop such relations quantitatively; 

Attention will now be turned to nonlinear effects characteristic of the 
high-stress range (stress exceeding about 0.4 strength). Because stress is a 
tensor, it can be logically expected to affect the material properties in a 
nonisotropic fashion, except when t~e stress itself is isotropic (i.e. 
hydrostatic). Therefore, if a nonlinear dependence of creep upon stress is 
considered, stress-induced anisotropy of incremental properties inter­
venes and should be taken into account in both the short-time ·and the 
time-dependent deformations. The incremental anisotropy must, of 
course, be formulated in a special form that satisfies the condition of 
isotropy with regard to the initial (unstressed) state. Stress-strain laws of 
this type are studied in nonlinear viscoelasticity, and their special case is 
Truesdell's theory of hypoelasticity, which has already been applied to 
. short-time deformations of concrete[l68]. However. material identifica­
tion methods have not yet advanced enough to yield formulations relevant 
to concrete; they will have to be if a nonlinear structural analysis for 
concrete in multiaxial stress (even for short-time deformations) should 
ever be made realistic. (A recent formulation of nonlinear behavior, 
developed in viscoplasticitY[169, 171], might be applicable to concrete; it 
promises a simplification of the identification problem because the 
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stress-induced incremental anisotropy is modeled indireclJy, by postulat­
ing that the deformation increments depend on a .certain scalar meas\~re of 
deformation, or "intrinsic time," which is an isotropic fUnction of stram.) 

By contrast, the nonlinear effects in drying creep and shrinkag~ are du.e 
mainly to pore humidity which is a scalar, and so incremental amstropy IS 
probably inessential. Nevertheless, some anisotropy ~ust ~ert~inly result 
from the differences in solid rearrangements due to diffUSIOn m layers of 
various orientations. In Eqs. (4.30) to (4.32). incremental anisotropy has 
been neglected. and accordingly the material parameters [in E~. (4.~4b), for 
example1 have been considered dependent only upon !he IOvar.l8nts of 
tensors a.,., a..,,., and a. To introduce incremental aOlso~ropy 10 th~se 
equation~, one could perhaps use some sort of a flow rule With a no~mahty 
structure because the rate of state variables (J., for example) IS here 
assumed ~o depend only upon its associated thermodynamic forc.e.(grad p.., 
for example) and no other variables (p., for example)-condltlons that 
were shown to suffice, in general [99]. . 

The existenee of a very strong incremental anisotropy is evidenced by 
the facts that in uniaxial compression, the apparent Poisson's ratio grows 
to and beyond 0.5 prior to failure [128), and that the vel~city of soun.d in !he 
transverse direction becomes much less than that m the longltudmal 
direction. Physically. the incremental anisotropy is explained by the fact 
that, in the high-stress range, the nonline~r dependence of creep ~as well as 
instantaneous deformation [36, 128]; Fig. 24) upon s~ress IS. cau~ed 
predominantly by microcracking, w~ich. follows a prefer.red oflen~atl?n 
determined by the principal stress dlfcctlons[36, 128]. (Mlcrocrackmg IS, 
of course, gradual in the case of creep.) This nonlinearity due to 
microcracking is important beyond roughly 0.4 strength. (For low-strength 
concrete, the fraction is less, and the effect is more pronounced.) 
Microcracks occur chiefly in the interface between the aggreg~te. and the 
cement mortar or cement paste (bond cracks) (cf. Ref. [1281 With f.urther 
reference). Accordingly, the neat cement paste (when free of shrm~age 
stress) exhibits no no~linearity due to microcracking ~nd behaves 10 a 
perfectly linear viscoelastic manner almost ,up to failure ~exc~pt for 
deformations affected by humidity), and even perfectly reverSibly m case 
of short-time deformations in a perfectly dry state[l29]. . . 

At moderately high stress lev~ls (around 0.5 strength): the melas!lc 
strain due to microcracking is significant only unde~ cyclic ~r pulsatl~g 
loads and is called cyclic creep [3, 12, 36.46-52]. This effect IS .absent m 
neat cement paste (because microcracking is absent) and is espeCially I~r~e 
in low-strength concrete (and in reinforced structures because It IS 
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augmented by the slip in bond, reinforcement). Consider cyclic stress 
u = Uo + u. sin CJ)', where Uo, u., CJ) are constants. Acc~rding to a line~r 
creep law (or principle of superposition), the cyclic creep strain Ec after 
~any ~ycles should roughly equal creep due to constant stress u = Uo. But 
In reahty, the creep strain is usually larger than static creep under stress 
u max = Uo + u. for the same period of time (Fig. 23). Most data indicate that 
Ec is little dependent on Uml. = Uo - u. and on frequency CJ) and is 
proportional to. u n•a" in the moderate-stress range [46]. Thus, E,,(N) .... 
~NU maxiE, provided number N of cycles is large, CJ) > I cyclelhr and 
0: mill. < 0.85 U mall; ~N is the cyclic creep coefficient, which depends on N 
Slmtla:ly as ~ depends on , (Section 3). According to Ref. [49], ~c for 
2 x 10 cycles roughly equals ~ for 20-year load duration. Oaede's data [46] 
can be acceptably fitted assuming that ~N equals creep coefficient (Section 
3) ~('" t') for 'F = " + (N If)(t + /120,000), where / is the number of cycles 
per day. [Thus, cyclic creep can be introduced through the rate coefficients 
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FI~. 23 Cyclic creep t~sts by Mehmel and Kern. After 20 slow cycles (compleled wilhin 
mmules afler first loadmg), slress IT was pulsaling as shown at 380 cycles/min; cylinders 
IS x 60 cm; waler-cemenl-aggregale ralio 0.44: I : 4.5; cube slrenglh 498 kgf/cm2; drying in 
laboratory atmosphere. Dashed lines-prediction by principle of superposilion' r. = 
strenglh o~ specimen at loading. (Da'a extracted from Mehmel, A., and Kern, E., "Ela;li~be 

. und Plasl.sche Stauchungen von Beton infolge Druckschwell- und Standbelaslung" 
Deu'schl'jr Ausschuss /iir S'ahlbe'on Heft 153, Berlin (1962), Figs. 25, 28, 31.) , 
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~ .... , ... in (4.30) to (4.32).) However, data i~ Fig. 23 indicate tha! at 
ow stress levels, only the short-time creep i.s··accelerated by pulsallon, 
while the long-time creep is unpffected. (Then among coefficients ~"" 
:,... = 1,2, ... , n) only those for small,... would be increased by pulsation.] 

Attempts have been made to generalize the uniaxial integral-type creep 
,a\\';.;nto the high-stress range, replacing L(t, t') in Eq. (3.8) with a function 
L(i; t') + L.(t, t')/.[u(t'»)[24, 130, 131), which has been compared with 
lest data in Ref. [24]. 

For the sake of simplification, all nonlinear creep is frequently 
~onsidered as irrecoverable (similarly as in rate-~f-creep method, 
Subsection 5.5), which is somewhat closer to reality than in the linear 
range[83, 132]. Then the stress-strain law has the form 

E - EO = ; + $(t)F(u, t), (4.35) 

which can be interpreted as a nonlinear age-dependent Maxwell type creep 
law; ~(t) is a given function of one variable which is taken so as to 
describe correctly the shape of the creep curve at low ~tress and a chosen 
reference age to at loading, i.e. ~(t) = ~(t, '0)' In accordance with the rate 
process theory[l02, 103], F as a function of u may be considered as 
E-· sinh (ulu.), ~here u. is a constailt[29,37, 115.]; E may be taken as 
the instantaneous elastic modulus at low stress. 

Equation (4.35) is a special case of the rate-of-creep me~bpd; and it 
similarly (see Subsection 5.5) underestimates creep due to later stress 
changes. This may be avoided if Eq. (4.35) is, alternatively, regarded as a 
derivative of the relation E(t) = /(u(t), t}, in which case /(u, t) is a 
function describing, at constant u, th~ creep isochrones (Fig. 24). Then, in 
Eq. (4.35), liE = af(u, t)/au and ,J(t)F(u, t) = af(u, ')/at. These rela­
tions correspond, in fact, to the methods used in [133-135]. They somewhat 
overestimate creep due to later stress changes and include the recoverable 
creep component, as is clear from the fact that for low stress, they coincide 
with the effective modulus method (Subsection 5.5) . 

. However, Eq. (4.35), as well as the preceding integral formulation with 
L .(t, t '), has an inherent limitation in that it cannot fit data involving a broad 
range of response delays. As is well known from Volterra-Fr~chet series 
expansion of a functional[73,78], the creep law for a broad range must 
include multiple integrals of the type 

f J: L(t, T, 8)u(T)u(8) dTd9, 

but the identification of material parameters would then be hardly 
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60 cm with widened ends; water-cement-aggregate ratio 0.55: 1 :4.9; Rhine gravel 
(mostly quartz); 28-day cube strength 350 kgf/cmz; moist cured for 7 days at 20'e the 
d~Ying at.", = 0.65 and ~O"e. Load applied at a strain rate 0.003/20 min; u, is failure lltr~ss o~ 
t e speCimen. Data. pOints are interpolated and smoothed. Note thaI creep isochrones ( 
versus u .~t consta~t t) are constructed from creep data at constant E. (Adapted from Rasch: 
H., et al. Festigkell und Verformung von unbewehrtem Beton unter konstanter Dauerlast .. 
Deutscl.er Ausschuss far S'llhlheton Heft 198, W. Ernst, Berlin (1968).) , 

tra~tabl~. Thus, d.evelopment of a nonlinear rate-type creep law seems to ' 
be inevitable again. 

The incompl~te re~overy at and after unloading is certainly due in part to 
chan~es ~f sohd microstructure mentioned before, and also to micro­
crackln~, In th~ case of high stress. However, the fact that the unloading 
b~anch Immediately after first short-time loading of a virgin concrete has a 
htgher sl?pe than the first loading branch, even if both are nearly linear, can 
be explam~d only by closing of voids (similar to "locking materials") and 
b~ formation of new bonds Upon the first loading, combined with 
mlcro-crack~ng. M~thematical formulation of these phenomena will proba­
bly be pOSSible with the help of endochronic theory and deformation 
measure of the type proposed for metals by Valanis[l69]. 

4.6 Drying and Wetting of Concrete 

As~uming grad T to be negligible and grad IL ... to be sufficiently small in 
magmtude, one can write 
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J = - c grad IL ... , (4.36) 

where grad is the macroscopic gradient and J is the macroscopic mass flux ' 
of water. If possible differences ih solute concentrations (i.e. osmotic 
pressures) are neglected, substitution of expression (4.11) for water in the 
macropores of non saturated concrete yields 

J= -c grad h 'h ~(R)T Wit c = c M It' (4.37) 

where c is the permeability. Because exchange of molecules between 
various states of water within each macropore is much faster than drying of 
the specimen, thermodynamic equilibrium may be assumed to exist within 
each macropore. Then pore humidity I. can depend only on temperature T, 
water content w (the mass of water per unit volume of material, including 
both the evaporable water w. and the chemically combined nonevaporable 
water wn ), and the size and shape of pores as affected by the degree of 
hydration or t •. Thus, 

dh = k dw + K dT + dh. (4.38) 

in which k = (ah/awh, •• is the cotangent of slope of the desorption or 
sorption isotherm·(Fig. 11); dl,. = h.<t.+dt.)-h.(I.), where h.(I.)=h 
at constant wand T at progressing hydration; K = (ah 'aT) .... ,. = 
hygrothermic coefficient (K ~ 0). It depends strongly on h (Fig. 11), which 
may be approximately predicted from the Brunauer-Emmett-Teller 
theory, a statistical-mechanical theory of multilayer adsorption, as applied 
to the walls of macropores; see Refs. [67, 100). The sorption isotherms 
exhibit a pronounced irreversibility (hysteresis, Fig. 11 [63-65, 136)). This 
is attributable to changes in pore structure due to solid diffusion (ct. 
preceding item 3 in Subsection 4.4), and in the range h ~ 0.7, in which a 
significant part of w is capillary water, also to the fact that in pores of a 
given geometry, more than one equilibrium shape of capillnry menisci 
exists[lOO, 136). Function 1,,(1.) represents the so-called self-desiccation 
of sealed specimens, a gradual drop in h approaching an asymptotic value 
in a few months (ct. Ref. [67]). It is weaker for higher water-cement ratios 
and is caused by consumption of evaporable water for hydration, whose 
el(ect on h is, however, mostly offset by the decrease in pore volume, so 
that the drop in h. is relatively feeble. (For water-cement ratio 0.5, 
h.(oo) ... O.97.) Thus, dh. may approximately be neglected. (Anyhow, if 
drying causes h to drop below 0.5, dh. = 0 because Ph = 0.) 

Recalling the condition of conservation of mass, iJw/iJt = - div J, we 
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ng. 15 (a) L'Hermite and Mamillan's tests of creep al various slress levels, ages, and 
humidities. Same lest series as in FiB. 4. The solid lines are fits(l66] for the same malerial 
parameters as in fiB. 22. (Data extracted from a private communication and from 
L'Hermite, R., Mamillan, M., and Lefevre, C., "Nouveaux r~sultats de recherches sur la 
d~formation et la rupture du ~ton," Annale.r de l'In.r';'u' Techn)que dll Ba';men' e' des 
TrQooux Publics 18 (1965) 325-360.) The measured J-values at t - t' ... 0.01 day, for aBes 
" = 7 to 730 days shown, were 248, 196, 190, 172, 144 in 10-'/psi. (b) Mamillan's tests. of 
saturated and drying specimens at various stress levels. Prisms 7 x 7 x 28 cm; short-time 
failure stress 250-300 kaf/cm!, 28 days old when loaded; cured 2 days in mold, 5 days in water, 
then drying in air of It. = 0.50 al 20"C; other factors probably same as in Fig. 4. (After 
Mamillan, M., and Lelan, M., "Le Fluage de B~ton," Annales de "Ins';'u' Technique du 
Batiment et des Tra"aux Publics (Suppl~ment) 23 (1970) and (1968), Figs. 13, 14.) 

note that from Eqs.(4.37) and (4.38) 

ah k d· ( d h) ah. aT at = IV C gra +Tt+ Kat· (4.39) 

Here k may approximately ~ taken as constant (especially for desorption 
from h = I to h = 0.3 and for low water-cement ratios). Then k can be 
combined with c, setting kc = C = diffusivity. Fitting of extensive data on 
drying and water permeation, some of which is shown in Fig. 26, has 
revealed [67] that C drops about 20 times when passing from h = 0.85 to 
h = 0.65 (Fig. 11). Approximately, 

{ 
I-ao } 

C=kc=C.(T,t.) aO+I+(ll~~r ' (4.40) 
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Fig: 26 "a.nson's data on cc:nter-point humidity and humidity distributions of dryin 
cyhnders. Diameter 6 in., environment of h. = 0.50, 7JOF; water-cement-sand-gravel rati. 
0.657: t : 3.26: 3.69; Elgin g~avel; 7 days old specimen at the start of drying; solid lines sho\! 
fits f~om Ref .. (67) ~or 00 = ~. h., = 0.792, II = 6, C, = 0.239 cm2/day. Dashed lines are the bes 
rosslble fit With a hnear theory. (For fits of many other data see Ref (67]) (After" J 
A "Elf' ' . " anson, 

., ects of Cunng and Drying Environments on Splitting Tensile Strength" Amer 
Concrete Insl. J. 6S (1968) 535-543.) , 

where ao=0.05, n = 10, 'I. =0.75. Dependence of Cion temperature '] 
ma~ b~ deduced from the assumption that c in Eq·. (4.36) obeys the 
actlv~tlon energy concept. Thus, taking Eq. (4.37) into account and 
denotmg the chosen reference temperature by To, one obtains 

C,(T, tel = Co(0.3 + 3.6t.ln) Lexp (.R._R) 
. To RTo RT' (4.41) 

where Co = constant = C for T = To, 298°K, t. = 28 days and h = l' 
Q = 9300 cal according to the test data analyzed in Ref. [67]. Th~ 
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dependence on age t. was deduced by fitting Wierig's data (cf. Ref. [166]) 
on the drop of permeability c with curing period; Charts for prediction of 
drying of simple bodies are given' in Ref. [67]. 

The boundary condition of moisture transfer at the surface relates the 
normal flux n . J to the difference in /L ... between the concrete surface and 
the ambient atmosphere (n is the unit outward normal of the surface). Then, 
because of Eq. (4.11), n . J = B(ln h -In h.), where , •• is the environmen­
tal humidity and B is the surface emissivity depending on l' and the 
circulation of air. Thus, expressing J from Eq. (4.36), 

c " n . grad ,. = -In -. 
B , ••. 

(4.42) 

As a very crude estimate, c I B "'"' I mm in room environment. For bodies 
thicker than about 5 cm, the drying is so slow that B "" 0 may be assumed, 
so that h "" he. on the surface. The boundary condition of perfectly sealed 
surface is obtained for B -+ 00. 

The strong dependence of C upon h makes the diffusion problem highly 
nonlinear. This complicates analysis, and it is best to use numerical 
methods. Solutions shown by solid lines in Fig. 26 have been obtained by 
the finite-difference method. 

The dependence of C upon h has implications for the mechanism of the 
macroscopic diffusion. If water transport occurred mainly in the form of 
vapor, C would have to be essentially independent of h. On the other hand, 
migration of molecules along the layers adsorbed at the walls of 
macropores must be slower, the thinner the layer. Consequently, the latter 
must- be the dominant mechanism. [This conclusion has also been made [43] 
realizing that the mean free path of water molecules in vapor (about 800 A. 
at 25°C) is many times greater than the probable minimum cross section 
encountered along the continuous passages through the cement paste, so 
that the probability of a vaporized molecule passing through is extremely 
low.] The sharp drop in C (Fig. II; item 31, Section 2) probably 
corresponds to transition of the flow from the third to the second molecular 
layer adsorbed on macropore walls. 

Diffusion of water through saturated concrete under hydraulic overpres­
sure p' leads to the differential equation aplat = C.RIV1p. It has been 
deduced from plausible physical hypotheses [67] that CORI"" IOOOC, where 
C corresponds to h =0.999 [Eq. (4.41); item 31, Section 2]. For a 
continuous mass flux, the gradients normal to the interface between a 
saturated and a nonsaturated zone are related as [67] grad. p = k I grad. h, 
wherek, = 1360 atm (T/298°K). Thus, at 25°C, a difference 0.1 in h 
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produces about the same flux as the hydraulic head of 1400 m (item 32, 
Section 2). This is confirmed [67] by Carlson's observation that a wall of 
thickness L exposed on one side to an atmosphere of h. = 0.5 and on the 
other side to water of 70.3 m hydraulic head is not, in a stationary state, 
saturated deeper than 0.04L from the wet face. The initial speeds of 
propagation of a front of hydraulic pressure and a front of drying at h = 1 
can be shown to be about in the ratio 30: 1 [67]. 

5 METHODS OF STRUCTURAL ANALYSIS 

5.1 Elastic-Viscoelastic Analogy for Aging Materials 

The linear stress-strain relations studied in Section 3, e.g.. the 
integral-type creep laws (3.1), (3.2), (3.5). and (3.8), can be written in the 
operator form. 

or 0'= E(E -E~ uniaxial stress, (5.1) 

3(EV-E~=IC'o.v or O'V=3K(EV-E~1 
2 D G- I D po 2 po E" = 0'" or O' • . = G E •• · . 

'J 'J 

multiaxial stress, (5.2) 

where E-', K-' , G~I are uniaxial. volumetric, and deviatoric creep 
operators, E, K, G are corresponding inverse operators (relaxation 
operators). They all represent linear Volterra's integral operators and obey 
the same rules as linear algebra, except that a product is not commutative. 
Thus, any of the equations of elasticity in which only linear combinations 
of elastic constants appear may be generalized to creep by replacing them 
with the corresponding operators. This correspondence is called 
elastic-viscoelastic analogy. It was stated in the operator form (for aging 
materials) first by Mandel[137], although for the special case of 
homogeneous structures, an equivalent analogy given in Subsection 5.2 
was discovered earlier. (Caution is needed when a product of elastic 
constants appears; it is necessary to go over the derivation of the equation 
in elasticity to determine what ~he order of operators in the product is.) 

To give an example, the equation for bending of a homogeneous beam in 
presence of creep is readily obtained in the form 

I k(t) = E-'M(t) = f J(t, t') dM(t' ), 

'Y~ere k is bending curvature, M is bending moment, and I is monient of 
inertia of the cross section. 
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The linear rate-type creep laws can also be written in the form of Eq. (5.1) 
or Eq. (5.2). Then, if all hidden variables are eliminated, operators E, E-', 
G, .. , represent quotients of two linear differential operators with 
time-dependent coefficients. For this formulation, the elastic-viscoelastic 
analogy was stated in Refs. [77, 138. 139]. In the case when hidden stresses 
or strains are used, a set of hidden variables must first be associ~ted with 
each force or displacement variable before the analogy can be applied. To 
give an example, associate M with a system of hidden bending moments 
M ... p. = 1 •... , n. Creep law (3.34). (3.36) is then immediately generalized 
for bending of a homogeneous beam as 

M=L M,., ,. M .. /E,. + M,./.",. = kl. 

For the linear creep problem, uniqueness of solution can be 
proved[l40-142] in an analogous manner as in elasticity, and similar 
variational principles can also be stated [l38. 139, 140. 141 •. 172]. 

5.2 ttomogeneous Structures and McHenry's Analogy 

McHENRY'S ANALOOY. Consider a structure (body) which has the 
/ollowlng properties: 

(I) ho,,\pgeneit~, i.e. creep properties are the same in all points, which 
requires the differences in age, water content or temperature, and the 
presence 0/ reinforcement to be neglected; 

(ii) constancy 0/ creep Poisson raiio II (Section 2); 
(iii) absence 0/ de/ormable supports; 
(iv) linearity 0/ tile associated elasticity problem, which implies small 

displacements. 
Dellote further by O':(t), u i'(t) the stresses and displacements (with t as a 

parameter) lor an elastic structure 0/ time-constant modulus E = Eo. 
caused by sUrface loads p,(I), volume forces f,(t) (i = 1,2,3), prescribed 
boundary displacements ",o(t) and inelastic strains EO(t) as given/unctions 
0/ time. Then, i/ EO = U,O = 0, 

O',,(t) = 0':(1). 

1/, instead, p, = f, = 0, then 

O'II(t) = Eo-'EO':(t), 

(5.3) 

u,(t) = u~(t). (5.4) 

Proof. Regard Eqs. (5.3) and (5.4) as chosen substitutions without 
specifying the meaning of 0': and ur.lnsert Eq. (5.3) or Eq. (5.4) in Eq. (5.2) 
and,' in accordance with condition (ii), put K = KoE / Eo, G = GoE / Eo. 
Furthermore, substitute Eq. (5.3) or Eq. (5.4) for 0'" and u, into the 
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linearized strain definition, the equilibrium conditions and the boundary 
conditions, i.e. into 

E" = ~(u", + u",), 0'"., + 1.=0 
0',,11, = p, on f .. u,= u,o 

in 'Y, 

on fl' 

(5.5) 

(5.6) 

in which 'Y is the domain of the structure, f. is part of the surface on which 
s~rface 10,ads p, are prescribed, fl is patt of the surface on which 
displacements u,o are enforced, II, is unit outward normal at the surface 
and subscripts following a comma denote partial derivatives. After thi~ 
substitution, Eqs. (5.5), (5.6), and (5.2) are recognized to represent 
fo~mulation of,the Jinear elasticity problem for 0':, ur. Since its solution is 
umque and u~, u, could not be the elastic solutions if Eq. (5.3) or Eq. 
(5.4) were inequalities, the proof is completed. 

Equivalently, it may be stated that u,,(t) and ",(t) equal the elasti~ 
solut~on due to the fictitious loads EoE-'p,(t), EoE-'f,(t), plus the elastic 
solutIOn due the fictitious prescribed displacements E -'Eu (t) and . I' . • 0 0 , 
me astlc strams Eo- EE (t). In this form, the analogy was discovered in 
1943 by. McHenry [75], although for the special case of statically' 
inde~ermlnate framed structures (in which constancy of v need not be 
reqUired due to neglect of shear strains), the essence of the analogy was 
deduced already in 1937 by Dischinger [l43]. A rigorous mathematical 
proof, thou~h much lengthier than the present one, was first given in 1951 
by Arutyuman[l44]. 
. Equations (5.3) and (5.4) i~dicate that, under the conditions spec,ified, all 

~Isplacements and stresses In the structure vary in the same proportion as 
In a homogene'ously stressed specimen. 

With the aid of the principle of superposition, McHenry's analogy also 
enables ~nalysis of the practically important cases (el. Section 6)"in which 
the ~t~tlcal syst~m of ~ loaded and creeping structure (satisfying the 
condltl~ns mentioned) IS changed at time t, by introducing a new 
constramt, capable of providing new reaction force X. Assume that 
X(t.) = 0 and denote by to the time of application of the constant loads 
to ~ t.. Further, denote by 0':, Eft, and ":' the stresses strains and 
displac~~ents obtained for modulus E(to) according t~ the theory 
of elastiCity for the new system of constraints (statical system) existing 
after time t., and by u~, E~, and u,' similar values for th~ original 
system of constraints, existing prior to time t •. Let "x denote the 
displacement in the direction of X; obviously, "~ = 0, but ux' ¥= O. 
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According to Eq. (5.3), 0'" = 0':, and u, = u,'[1 + tp(t, to)) for any t < t •• If no 
new constraints were introduced, displacement increments Aux = 
ux' Atp (t), where Arp (t) = tp(t, to)- rp(t, t.) would arise after time t •• To 
cancel Aux, it may be imagined that enforced displacements - ux' Atp (t) or 
(u~- ux') Arp (t) in the direction of X are superimposed. By virtue of Eq. 
(5.4), this produces additional strains Atp (t )(0':: - 0':,)/ E(t~). Thus, tile total 
strains at t ;;a. t. are 

E (t)= ,1+f(t,to)+( ,,_ ')f(t, to)-f(t" to) 
" 0'" E(to) 0'" 0'" E(to) . (5.7) 

Knowing the strain history, one can easily compute (cf. Subsectioli 5.3) the 
stress changes 0'" (t) - u~, which are affected solely by the second term in 
Eq. (5.7). An approximate formula for these changes (which is exact for 
t, = to) follows from Eqs. (5.28) to (5.32) in the sequel. 

If a constraint of a structure that creeps at constant stress state (e.g., a 
temporary construction support) is removed, load (- X) is in fact 
superimposed in the sense of the previous reaction X. Thus, according to 

. Eq. (5.3), merely an elastic change of stress (without any delayed response) 
occurs. 

5.3 Numerical Step-by-Step Methods 

The realistic forms of creep law of concrete do not admit analytical 
solutions of creep problems, and so numerical techniques must be 
employed. Of these, the step-by-step integration schemes, in which time t 
is subdivided by discrete times t., (r = 0, 1,2, ... ) in time steps At, = 
t, - t ,_,~ are most convenient. Time to coincides with the time the first 
stress is introduced into the structure. If the loading is steady, the rate of 
change of all variables decays with time [approximately as (t - tor']. 
Therefore, times to, tit •.• are best chosen in the form of a geometric pro­
gression, i.e. the time steps appear as constant in the log (t - to)-scale. A 
high accuracy is usually achieved with At. = 0.01 day and 
(t, - Io)/(t ,-,- to) = 10'11

, although even quotient 10'12 is sufficient for 
practical purposes. 

Consider that an instantaneous stress change Au, occurs immediately 
after time to,. while subsequently u(t) varies smoothly at a decaying rate. 
Then the Stieltjes integral in Eq. (3.1) may be approximated, with an error 
of the order of At', by the sum 

, 
E, - E,o = L J (t" t q -(1m) Au q 

q-' 
for r;;a. I, (5.8) 
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where E, :::: E(I,), Au., = u(I.,) -,u(I.,_I), etc., and 

',,-(ln1 = 10 + V(I.,_I- '°)(,., - '0) for q > I, 
'I-(Im = '0 for q = l. (5.9) 

~his is justified b~ the fact that, under steady load, u varies within each 
!Ime ste~ about Imearly with log (I - '0) and '''-(lm is the middle of the 
mterval 10 the log (t - 'o)-scale. Replacing r by r - I, Eq. (5.8) becomes 

,-1 

E,_I - E~_I = L J(I'-h I.,-(lm) Au., .,-1 for r;;;:= 2. 

Subtracting Eq. (5.10) from Eq. (5.8), one obtains 

A _Au'+A" 
E, - E~ E" 

where 

E~= 1 
J(I"I,-(lm) for r;;;:=1 
,-1 

AE~ = L AJ, . ., Au., + AE,o for r> I, .,-1 
AET= AE,o for r=1 

AJ, . ., = J(I,. '.,-(lm) - J(t '-10 I.,-(lm) for r> I, q ;;;:= 1. 

(5.10) 

(5.11) 

(5.12) 

Th." above equations also hold for an instantaneous change of load at time 
I" I.e. I, = 1,_1; however, in such a case, the subsequent time interval must 
~e so sm~1I that J(I ,+10 I,) very nearly equals J(I" I,). (This is practically 
InCOnVe~lent, so that the effect of the response to an instantaneous load 
change .. S better compu!ed separately and is then superimposed.) 
AlternatIVely, J(I,.I.,-M) In the expressions for AE~ and AJ, . ., may be 
replaced by I[J(I" I.,) + J(I" 1 .. - 1)], maintaining the same order of accu­
racy. an~ the intermediate times I .. -(1/2) may be dispensed with. . 

Equation (5.8) has the form of an elastic stress-strain relation with 
modul~s E~ and inelastic strain AE~. Their values are fully deter~ined by 
stres~ Increments prior to time step AI, under consideration. and so the 
~olutlo.n of ~E, and Au, in any time step is an elasticity problem with 
inelastiC strams. Analogous results may be obtained for the multiaxial 
stress st~tes and for creep law (3.5) based on the relaxation function [145]. 

Eq~atlons (5.8) to (5.11) were first introduced in Ref. (146], in which 
practical convergence was also studied. Similar expressions based on 
evalu~ting the integral in Eq. (3.1) or Eq. (3.8) with a rectangle rule were 
used In [108, 147, ISS]. A general solution in terms of a series of elasticity 
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problems seems to have been first formulated in Ref. (145] using Eq. (3.8) 
rather than Eq. (3.1). But for this form of creep law, it is impossible to 
increase the time step beyond a certain small value without causing 
numerical instability(l3l, 148, 149]. The method can be easily extended to 
nonlinear creep law analogous to Eq. (3.8)[131]. For simplilled creep laws 
(Subsection 5.4), this type of method was used in Refs. [138, ISO, 151]. 

Equations (5.8) to (5.11) are also very efficient for conversion of creep 
function J(t, I') into the relaxation function ER (" t') and vice versa [146]. 

As is clear from Eq. (5.11), the values of stress (or strain) increments in 
all previous time steps must be stored, and long sums of the type (5.10) 
must be evaluated in each time step. Considering that about 100 time steps 
are needed in a typical problem, the storage requirements become about 
lOO-fold of those. in the corresponding elastic problem, which presents 
formidable difficulties in case of large finite-element systems. This may be 
avoided by using some of the rate-type creep laws. Here another difficulty 
arises, however, when the standard step-by-step algorithms, e.g., the 
Euler and Runge-Kutta methods or predictor-corrector methods, are 
applied. Namely, numerical instability occurs if the time step exceeds a 

. certain value roughly equal to the shortest relaxation or retardation time, 
so that an overwhelming number of steps would be required to reach 
the long-term solution. Fortunately, it was found that the time step can be 
arbitrarily increased if u, or E, are determined from U,-h E,_I according to 
the exact integral of the creep law under the assumption that all material 
parameters (i.e. E,., fJ,.) and all rates of prescribed inelastic strains are 
constant during the time step. 

The exact integral of Eq. (3.36) based on Maxwell chain is already given 
by Eq. (3.35). Simplifying it for constant E,., fJ,., E, EO, one obtains the 
following recurrent formula for the hidden stress(89]: 

p. = 1,2, ... , n, (5.13) 

where 

.\ = (1- e-A'/f,.)~ 
~ A" , - -..!let:run T,. - E . 

~-(l{2) 

(5.14) 

Expressing Au,., from Eq. (5.13) and writing Au, = 1:, Au,." one arrives at 
the pseudoelastic stress-strain law (5.11) in which[89] 

" E~ = L .\,.E"'_(lI2I' ,.-1 
(5.15) 

" . E~ AE~ = L (1- e-A',/f .. )U~_I + E~ AE,o. 
,.-1 
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The exact integral of rate-type:creep law (3.26), (3.27), (3.28) corres­
pondin~ to the Dirichl.et seri~s creep function (3.15) is composed of 
ex~resslons (3.24) for hidden variables E:, from which it can be similarly 
denved [88, 152] that 

A,.,~u,., 
E* = A + E* e-IU,H .. 

fAr nlJ.r-fll2) ""r-I Il. = 1, 2, ... , n, (5.16) 

where '\~" -r,. are given again by expressions of the form of Eq. (5.15). 
Exp~esslng ~E:, from Eq. (5.16) and ~E from Eq. (3.23), one again 
obtatns the pseudoelastic stress-strain law (5.8), in which [88, 15i] 

_I =_1_+ ± I -A,., 
E~ E'-(lm ,.-1 Ii ' "'-um 

" 
~E~ = L (I - e-Af,H .. )E!_f + ~E,o. 

,.-1 
(5.17) 

Di~erential equations (4.20) expressing the nonlinear constitutive 
equation based on microdiffusion mechanism can also be integrated 
exactly under the assumption that all coefficients as well as prescribed 
rates are constant within the step. This involves solution of two 
simultaneous linear differential equations with constant coefficients. After 
some tedious manipulations, it is found that the hidden stresses in solids 
and water obey the recurrent relations 

with 
u .. ,. = g,. + g ~(6.E - ~E~, , (5.18) 

I,. = A,(y, + </J ...... )e Y1Af,- A2</J ... ,.e Y.,Af" 

I~ = S - B,(y, + </J .... ,.)ey,Af,+ B2</J ... ,.e y,A\ 

g,. = I,. - A 1</J ... ,.ey,Af, + A 2(Y2+ </J .. ,.)ey,Af" (5.19) 

g~ = W + B,</J ... ,.ey,Af,- B2(Y2+ </J •• ,.)ey,Af" 
in which 

A _ U''''_"( Y2 + </J .... ) + (U ..... '_" -I,. )</J ..... 
1- D' , 

B - S('Y2 + </J .. ,.) + W</J ..... 
1- D' , 

A _ U'",_"</J ..... -(u .. ,.,_, - i,.)('Y' + </J ....... ) 
2- D' , 

(5.20a) 

B - S</J ... ,. + W( 'YI + </J ..... ,.) 
2- D' , 
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YI = - </Jo + v' </Jo2 - D, 

Y2 = - </Jo - v' </Jo2 
- D, 

</Jo = I( </J .... + </J .. .; .. ), 

D' = (Y I + </J ...... )( Y2 + </J .... ) - </J ... ,. </J ...... , 

S = </J ...... E,: - </J ... "E,." 
D ~t, , 

W = </J .. E .... - </J ..... E,.· 
DM, . 

(5.20b) 

Expressing ~u = l:,. (~u'" + ~u .. ,.) from Eq. (5.19), one again finds the 
pseudoelastic stress-strain law (5.8) with 

E~= L(f~+g~), ,. 
E~6.E" = L (U,,,,_" + u .... 

H 
- I,. - g,.). ,. 

(5.21) 

Equations (5. I 9) to (5.2 I) are valid for D:;f; 0 or YI :;f; Y2; otherwise, they 
must be modified. For </J ... ,. = </J ... ,. = 0 (probably a typical case; Section 
4.5), the two simultaneous differential equations (4.20) split in two 
independent equations, and formulas (5.19) to (5.21) considerably 
simplify; see Ref. [166]. Coefficients </J .. ,., ••• , </J ..... , I,. in Eqs. (5.19) and 
(5.20) should all be evaluated for the mid-step, "-IIfl)' The generalization 
of Eqs. (5.13) to (5.21) to multiaxial stress is straightforward[152]. 

The algorithm given by Eqs. (5.16) to (5.17) was first presented in. Refs. 
[88, 152] and algorithm (5.13) to (5.15) in Ref. [89]. A similar algorithm for 
Kelvin chain was given in Ref. [116]. Special cases of these algorithms for 
nonaging thermorheologically simple materials were developed by Taylor 
et al.[153] and Zienkiewicz et al.[I54], respectively. A partly simi,lar 
algorithm for aging concrete, which also eliminates storage of stress 
history but does not allow an arbitrary increase of time step, was given in 
[13 I, 155]. Numerical stability for cases of prescribed stress or strain 
history was proved in [88,89, 152], and excellent convergence was· 
demonstrated by an example in Ref. [152]. 

In each time step M" the analysis proceeds in the following sequence. 
(I)' Elastic moduli E~ (or analogous bulk and shear moduli) and inelastic 
strains ~E~ are evaluated (for all elements of the structure). (2) Then, 
solving an elasticity problem (by finite-element method, for example), 
displacement increments ~UI and increments 6.u, 6.E (for all elements) are 
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determined. (3) Finally, the valu~s of hidden stresses or strains at the end 
t. of the time step are computed from Eq. (5.13), Eq. (5.16), or Eq. (5.lS), 
and their values at t.- I may be discarded from computer memory. 

If the constitutive law is nonlinear, as is the case for Eqs. (5.19) to 
(5.21), E~ and AE~ in step (I) above are first evaluated for u = U.-I. Then, 
after solving the elasticity problem, step (2), and the hidden variables, 
step (3), one returns to step (I) to compute improved values of E~ and AE~ 
on the basis of the average values of stresses and hidden variables in the 
time step, as obtained previously (i.e. u = U.-I + jAu, etc.). Steps (2) arid 
(3) are then iterated to get improved values of Au, AE, Au., Au,., etc. More 
than two iterations are usually not .appropriate, because a decrease of At. 
is for improvement of accuracy more efficient than further iterations. 

Structural analysis for any other nonlinear creep law may also be 
converted to a series of linear elasticity problems[l31]. As an example, 
consider the nonlinear Maxwell type law (4.35). First, it must be linearized 
within each time step considered, which is achieved by F(u, t) = 
[F).-I + (u - u.-I)/E, where liE = (aF/au).-Cln,' The best integration 
formula is obtained when u is solved exactly from the differential 
equation (4.35) under the assumption that dE/d~, dE·/d~, and E are 
constant during the step. After rearrangement, this leads to the 
pseudoelastic law (5.8), in which 

AE~ = A~. F(u.-h t.- I ) + AE:, 
(5.22) 

and A"'~ = A~.E,-(lm/E. Because of nonlinearity, the analysis of each 
step should be iterated; in the first run, all coefficients depending on u are 
evaluated for u = U.-It and in the repeated run, they are evaluated for 
(T = U.-I + I Au., where Au~ is taken according to the first run. The high 
accuracy of formula (5.22) is due to the fact that in the linear case with 
constant E (which coincides with the rate of creep method; Subsection 
5.4), Eq. (5.22) gives the exact expressions for both the creep at constant 
u and the stress relaxation at constant E. 

5.4 Conversion of Inelastic Strains to Applied Loads 

As has been shown, the solution of a linear elasticity problem with 
general inelastic strains (or, equivalently. inelastic stresses) is the basis 
for integration of the creep problem in space coordinates. The handling of 
general inelastic strains is easily incorporated into the finite-element 
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method .. This can be expediently implemented, in the most general 
. formulation, according to the following theoreali, also applicable for the 
finite-difference or other methods: 

THEOREM. Consider the general (allisotropic) elastic s(ress-straill 

relations 
(5.23) 

where C.,.. is elastic moduli, Etc! Is lillearized strain tellsor, and dl Is 
prescribed inelastic strain tensor. Define lurther 

• r.... i" . tV' 
U" = ~!E ll, II = - U"J 10 r, (5.24) 
- • r -T T(·+ .-) r* PI = n,u" on h p = n u" - u.. on, 

where u; is inelastic stress tensor. J, and PI, pT are (fictitious) volume and 
sur/ace loads equilibrating u;, f* is sur/ace with unit nonnal n T across 
which u; changes discontinuously Irom ur to u; +. Then the stresses, 
strains, . and displacements caused by E; are 

u" = if .. - u; , E,f = ill, ", = ai, (5.25) 

where if", ill' and Ii, are the sol~(ions corresponding to loads J,'l" pT. with 
no Inelastic strains. and to given boundary displacements'" (II any). 

Proof. Assuming uniqueness of solutions, it needs to be shown that 

if., = CI/l.E.,. 
i .. = H~ + aI-I), 

if"J + J, = 0 in 'Y, (5.26) 
iiJif., = p, on r h 

Ii, = ",0 on rz, 
nT(ifa - ifjj) = pT on r*. 

That this is indeed true is seen by substituting Eq. (5.25) into Eq. (5.23) and 
Eqs. (5.5) to (5.6) with f, = p, = 0. and into the continuity condition 
n t(ua - uii) = O. (Summation over repeated indices is implied.) 

The special case of this theorem for isotropic E; is known in 
thermoelasticity as body force analogy[156] due to Duhamel (1838) and 
Neumann. For deviatoric plastic strains, it was derived in 1931 by 
Reissner and, in different contexts, by Eschelby (cf. Ref. [156]) and 
others[138, 145, ISO]. To creep of concrete it was first applied in 1964 (cf. 
Refs. lt38. ISO)), and simultaneously to creep of metals(156). For the 
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replacement of inelastic strains by transverse loads in nonlinear creep of 
plates, reinforced plates, and composite beams, see Refs. [131,138, 
145,148-150]. 

5.5 ApprOXimate Solutions Based on Simplified Linear 
Creep Laws 

For many design purposes, even the solutions based on viscoelasticity 
of aging materials are too complex. Therefore, simplified methods, 
embodied in the formulas of current code recommendations, are 
invariably used in the design of ordinary-type structures in which design 
experience can be partly substituted for accuracy. These methods either 
consist of a single elastic analysis or are based on a simplified creep 
function J(t, t'). Normally, they apply only for loads and enforced 
displacements that are either steady or vary at a rate decaying roughly as 
1/(t - to), to being the instant of introducing the first load or enforced 
deformation into the structure. Sudden load increments at various times to 
must be considered separately and the results then superimposed. 

A. Effective Modulus Method. This is an old method (cf. Ref. [157]) 
consisting in a single elastic solution bllsed on the effective modulus 
Eo" = 1/J(t, to) = E(to)/[1 + ",(t, to)]. Accuracy is usually excellent when 
aging is negligible as in very old concrete (see comments after Eq. (5.33); 
for nonaging viscoelasticity this fact was noted and examined in Ref. 
(158). In this case, .J(t, t') is a function of only (t - t'l, i.e. creep curves 
for all t ' are' identical but mutually horizontally translated. This 
overestimates creep due to stress changes after to and incorrectly implies, 
in case of finite J(oo,l'), all creep to be perfectly recoverable after 
unloading. 

B. Age-Adjusted Effective Modulus Method. This method was origi­
nated in 1967 by Trost[l59], and its rigorous, extended, and general 
formulation was first given in Ref. [160], on the basis of the following 
theorem. 

THEOREM [l60) . • Assume that 

E(I)- EO(t) == Eo+ £I",(t, to) (5.27) 

for t ~ to and u = 0 for t < to, where Eo and £ I are arbitrary constants (such 
that strain is small). T',en 

L\u(t) == E"(t, to)[L\E(t)- L\E"(t)), (5.28) 
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where 

L\u(1) = u(t) - u(to), (5.29) 

L\E"(t) = ;~~:~ ",(t, to) + EO(t) - EO(lo), (5.30) 

E(to)-ER(t,to)_ E(to) 
En(t, to) = ",(t, to) - 1 + X(t, to)",(t, til)' 

~5.31) 

1 1 
X(t, to) = 1- ER(t, to)/E(to) - ",(t, to)" 

(5.32) 

Proof. Equation (5.32) follows from Eq. (5.31). Assume Eqs. (5.28) to 
(5.31) to be true. Substitution of Eq. (5.31) with Eqs. (5.27), (5.29), and 
(5.30) [with u(to)/E(to) = Eo] into Eq. (5.28) yields u(l) = 
u(to) + [E(to) - ER(t, to)1(E, - Eo) for t ~ to. Insertion of this retation with 
Eq. (5.27) into Eq. (3.1) furnishes 

(Eo - E,) J.: J(t, t') 8ER!:> to) dt ' = Eo + EI[E(to)J(t, to) - 1] - J(t, to)u(to) 

= Eo - EI - (Eo - EI)E(to)J(t, to). (5.33) 

If Eo = Eh this eq~ation is identically satisfied, and if Eo ¥= EI, division by 
(Eo - E,) yields identity (3.6). Finatty, if Eqs. (5.28) to (5.31) were not true, 
Eq. (3.6) would be contradicted. 

Coefficient X is called aging coefficient and E" age-adjusted effective 
modulus because X adjusts the effective modulus Eo" primarily for the 
aging effect. In absence of aging, X """ 1 and En""" Eo", Tables of X for 
some typical creep functions were given in Ref. [160]; always X < I and 
almost always X > 0.5; X grows with t as well as to. 

Importance of the foregoing theorem, by ,,:hich the.calculati~n of the 
changes from to to t is reduced to a single elastiC analYSIS accordmg to Eq. 
(5.28), lies in the fact that X and En are independent of Eo and E" and that· 
strain history (5.27), linear in ",(t, to), closely approximates the ~xact 
strain variation corresponding to a linear creep taw in most cases. While all 
other methods give exact solutions only when u is constant, this method 
gives an exact solution in infinitely many special cas.es, in particular the 
cases of constant u, constant E (stress relaxation), and the case E = 
E,,,,(t, to) typical of buckling problems or shrinkage-induced stresses. 

C. Rate-of-Creep Method. This method ("Dischinger's" method in 
German, "theory of aging" in Russian), due to GlanviJIe (cf. Ref. (1571) 
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and first widely applied by Dischinger [J 43], admits simple analytical 
solutions of many problems (cf. Refs. [83,84,138,151], for example), 
assuming the creep law in the form 

dE I du U dE o 
--::-=----::-+--+--::-
d~ E(t) d~ E(to) d~' 

(5.34) 
or 

J(t t') = _1_ + +(0 - +(t') 
, E(t') E(to) , (5.35) 

where ~(t)::::: ~(t, to). Equation (5.34) corresponds to an age-dependent 
Maxwell solid [n), and Eq. (5.35) expresses the Whitney's assumption (d. 
Ref. [157]) that the creep curves (E versus t) for various t' are identical in 
shape but mutually translated parallel to the E-axis. Thus, no -delayed 
creep recovery is predicted, and for old concrete negligible creep is 
obtained, which is false. In relaxation-type problems, prediction of this 
method represents an upper bound on the stress change from to to t, while 
the effective modulus method gives a lower bound. 

D. Rate-oJ-Flow Metllod. This method is based on the creep function 

J(t t,)=_1 +P/(t)-",,(t') 
, Ed E(t') , (5.36) 

proposed by Prokopo'lich and Ulickii[161, p. 37] and independently (with 
a more detailed justification) by England and IIIston[21-23]. Coefficient 
~/(t), analogous to ~ in Eq. (5.35), expresses irrecoverable creep or flow, 
and ~d is a coefficient for delayed elastic (or recoverable) strain which is 
taken as independent of age t' and (in accordance with item 7, Section 2) 
depends only on (t - t'). Furthermore, Nielsen(l62] and Rusch, and 
Jungwirth and Hilsdorf (ct. Refs. [157, 167]) proposed to treat the delayed 
elastic component in terms of the effective modulus, taking ~d as constant 
(~~ =0.4 for long-range response). Thus, Eq. (5.36) becomes formally 
identical to Eq. (5.35), and all formulas based on the rate-of-creep method 
can be directly applied, replacing E with Ed and ~ with </1/. The method is 
a hybrid of the rate-of-creep and effective modulus methods. Its 
predictions usually lie between the latter two and are thus clolier to the 
exact solution. 

E. ArutyulI;all's Method alld Le~l's Method. Arutyunian's creep 
function[l44) corresponds to a single term (n ::::: 1) of the Dirichlet series 
creep function (3.15). Relaxation-type problems then lead to first-order 
differential equations with variable coefficients for internal force rates or 
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displacement rates[J44, 161], and ~ similar equa.tion relates strain rates 
~nd stresses[n, 138]. In most problems with one unkriown, integration is 
possible in terms of the incomple'te gamma function, provided -E is a 
constant and E,. ::::: A + B/t' [144:161] or A + Be-I'Y [163], where A, B, 
and T are constants. Applicati~ns of this method have flourished 
(particularly in eastern Europe) because, in contrast to the effective 
modulus and rate-of-creep methods, the proper ratio between the creep of 
young aging and old nonaging concrete can be introduced. But the 
exponential shape of the creep curves is far from reality [see Fig. 7(a)). 
Also, the calculations are more complex than with any other simplified 
method in use. Levi's method (d. Ref. [157]) is a counterpart of 
Arutyunian's, corresponding to a single term of the Dirichlet series 
relaxation function (in a certain transformed time variable). It also leads 
to first-order differential equations and allows analytical integration in 
simple ~ases. 

I - I. day. 

Fla. 27 Development of shrinkage stress at e = o. CompUted for ACI expressions (3.10) to 
(3.12); solid lines are exact numerical solutions; BMM, AEMM are approximale solutions by 
effective modulus and age-adjusted effective modulus method; RCM, RFM are by 
rate-of-c::reep and rate-of-Row methods; LM, AM are by Levi's and Arutyunian's methods 
(Subsection S.S). Top figure shows creep curve 1(' - ,') from Bq. (3.11) and shrinkage curve 
e .. /e .. (ot» from Eq. (3.12). (After Balant, Z. P., and Najjar, L. J., "Comparison of 
Approximate Unear Methods for Concrete Creep," 1. S"ucl. Dlv., Proc. Amer. Soc. of Civil 
Engineers, " (1973) 18SI-1874.) 
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Extensive numerical studies of1ypical practical problems [1.57] (such as 
stress relaxation, shrinkage stress, creep buckling deflections, prestress 
loss in prestressed beams, straining by differential creep due to unequal 
age, stress redistributions in composite beams, and cracked reinforced 
beams; Figs. 27-29) indicated that, in comparison with the exact solutions 
for given J(t, t'), the age-adjusted effective modulus method was superior 
to any other method. Second best was the rate-of-flow method. 
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Fig. 28 Creep buckling denections of a typical slender reinforced concrete column under 
working loads. Computed for ACt expressions (3.10) to (3.11); same labels as in Fig. 27. For 
the values of assumed column pa.-.meters, see Ref. (157). (Added in proof: Due to an error, 
mUltiply curves exact (const. E) and EMM by r.,(l- r. + r) where r = ordinates as shown, 
r. = ,/" just after loading, ,,= ordinate before loading, column shape being sinusoidal.) 
(After Baiant, Z. P., and Najjar, L. J., "Comparison of Approximate Linear Methods lor 
Concrete Creep," 1. Stmct. DiIl.,Proc. Amer. Soc. of Civil Engineers, 99(1973) 1851-1874.) 

In favor of the latter, it is sometimes argued that the recovery after 
sudden complete unloading is fitted bettc!r than by superposition of creep 
curves at constant u, i.e. J(t, t'). This is true, but a complete unloading is 
rare in practice, and for small or gradual decreases of stress, as in' 
relaxation-type problems, this argument is invalid. Also, it is not desirable 
to make J(t, t') fit the recovery after complete unloading because the 
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10' 

lime from Jolnln9 In days 
Fig. 29 Shear force X, generated by creep in the midspan connection of two concrete 
cantilevers of different age. Computed for ACt expressions (3.10) to (3.12); same lahels as in 
Fig. 27. For assumed properties of structure, cr. Ref. (157); X,"'s elastic reaction due to unit 
displacement. (After Balant, Z. P., and Najjar, L. J., "Comparison of Approximate Uncar 
Methods for Concrete Creep," 1. Stmct. VI.,., Proc. Amer. Soc. of Civil Engineers, 99 (1973) 
1851-1874.) 

prediction of creep of old concrete is then inevitably sacrificed (1.57]. 
Anyhow, it should be remembered that any deviation from the principle 
of superposition is a nonlinear effect, so that the frequ,ent efforts to 
correct the deviation by a linear creep law corresponding to a distorted 
creep function are based on misconception. 
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6 PRACTICAL PROBLEM$ IN DESIGN AND CONCLUSION 

Applying the methods of analysis outlined in Section 5, one can analyze 
~ost problems encountered in engineering practice. An abundant 
literature on this subject exists[3, 79,82,84, 138, 157, for example]. Here 
only a brief review of the practical problems will be made. 

The most obvious effect of creep to be considered in design is the 
growth of d?ftections, which is of concern, e.g., in large-span prestressed 
concrete bndges. Cases of deflections over one foot in excess of the 
pr~di~ted values have been experienced in some early long-span bridges 
built In Europe (by segmental cantilevering, with hinges at midspan). This, 
of c~urse, very ~dversely ~ffects the serviceability of the structure and may 
reqUire expensive countermeasures. 

In cone.rete colu~ns, co~pressed walls, and thin shells, creep magnifies 
the buckling deflectIOns (Fig. 28) and internal forces due to unavoidable 
i~perfections, and leads to long-time instability' under a load several 
!lmes .Iess than the short-time stability limit. Most building codes, 
including ACI Code 1971, take creep buckling into account in the form of 
an approximate effective modulus 'and distinguish between various ratios 
of short-time to load-time loads on columns. Similarly,"creep buckling is 
of concern for concrete arches and shells. 

In many structures, creep causes extensive redis~ributions of internal 
forces and, to~ethe~'with stresses induced by shrinkage (see Ref. [166]) 
and thermal dilatations, may produce severe cracking and overload of 
some struct~ral parts (or at I~ast a reduction in the safety against collapse 
under supenmposed short-time load). These redistributions are absent 
?nly if !he structure is statically determinate or if it is statically 
Indete.rmlnate .and homogeneous, that is, the ratio of creep to stress is the 
same In all pomts of the structure (cf. Subsection 5.2). This is, of course, 
not the. case if th~ nonlineari!y. of creep or the differences in creep 
properties due to different humidity and temperature in various points of 
t~e struct~re are considered. Even under the assumption of a linear aging 
viscoelastic material (Section 3), stress redistributions occur due to the 
presence of steel reinforcement, which does not creep, the interaction of 
concrete and steel structural members (as in cable-stayed concrete 
~irders), or the diJfere.ntial creep of parts of significantly different age, as 
10 many structur~s budt wi.th a repeated use of one formwork. In general, 
creep. transfers Internal forces from parts creeping more into parts 
cree~lng less. A typical example is a bridge span whose halves are cast by 
cantilever method with the same slip form, one after the other; the 
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younger half tends to deflect more but, because of the connection at 
, midspan, produces a shear force (Fig. 29)' relieving its bending moments 
and augmenting them in the older half. Another important example is the 
differences in creep and shrinkage shortening of the columns and the 
shear-wall core in a tall building, resulting from the differences in cross 
section sizes and reinforcement ratios, and from the differences in 
environmental conditions between the interior and the exterior of the 
building. Over a great height, large differences in vertical displacement 
can accumulate; this strains severely the floor slabs and requires special 
J,lartition walls that can adapt to the relative movements. 

Stress redistributions also occur within all nonhomogeneous cross 
sections of beams or slabs. In columns, the normal force carried by 
concrete is gradually transferred upon the steel reinforcement, and its 
normal stress is further increased by shrinkage of. concrete. Similar 
redistributions of normal forces and bending moments occur 'within the 
cross section of steel-concrete composite girders and composite girders 
consisting of prefabricated prestressed beams covered by a slab cast in 
situ whose concrete is younger and creeps more. Due to creep shortening 
of the prestressed beam, the prestressing force is partly transferred from 
the beam on the attached slab, and a camber is produced in the beam. A 
serious camber may also result .from differential creep in composite cross 
sections, from nonsymmetric shrinkage, and from shrinkage in nonsym­
metrically reinforced cross sections or nonsymmetrically drying cross 
sections. In statically indeterminate structures, free camber is not 
Possible, and secondary internal forces are developed by the camber. 

In all prestressed structures, creep and shrinkage cause, of course, a 
significant loss of prestressing force. 

In statically indeterminate structures, creep is beneficial in reducing the 
forces induced by shrinkage (Fig. 27), or the internal forces due to 
displacements imposed during the construction by jacks in order to 
rectify previous undesirable deftections or internal forces in the structure, 
or the forces due to differential settlements of structure. This reduction is 
offset when the settlement is gradual rather than instant, as in the 
case of consolidating clay foundations[l64]. 

When the stati£Bi system is changed during construction, e.g., when 
additional supports or connections are introduced in the structure 
(Subsection 5.2), creep causes that the internal forces gradually approach 
those that would exist if the structure were originally built in the new 
system. A typical example is the construction of a continuous girder from 
prefabricated simply supported beams by rigidly connecting the beams 
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above the !Jupports, either with aR'added top reinforced concrete slab cast 
Ins~tu or wit~ post-tensioned reinforcement running across the support 
sectIOn. In this case, the end cross sections of the girders meeting above 
the support tend to rotate in opposite directions due to creep of girders, 
but are prevented to do so by the rigid connection so that a negative 
bending moment gradually develops above the sup~rt. 

The aforementioned problems are tackled by the designers by means of 
some of the simplified formulations outlined in Subsections 3.2 and 05.05. 
Such ~nalyses give a crude" though usually sufficient, picture of the 
deflections and the stress resultants within cross sections of beams or 
slabs. The values of the resultants then yield, probably with an acceptable 
error, the necessary amounts of reinforcement and overall cross section 
dimensions. 

However, there should be no illusion that the stresses in concrete 
computed from the cross section resultants are a good indication of the 
actual values. To obtain a realistic information on stress distributions 
within cross sections, it would be necessary to account for the 
nonuniform drying, shrinkage, and drying creep within the cross section 
(see Ref. [166]), as well as the nonlinear effects discussed in Section 4, and 
eventually also temperature history with hydration heat effects. 

Such analyses are awaiting successful identification of the material 
parameters in Section 4 from test data. They probably are of lillie interest 
for ordinary building and bridge structures, in which fine cracking of 
concrete is not of much concern or ample prestress is provided. The 
situation is, however, different with prestressed concrete pressure vessels 
for nuclear reactors and secondary reactor containers (and also undersea 
shells), where cracking is a dominant consideration for serviceability and 
safety of the structure. Improvement in the prediction of stresses induced 
by transient and nonuniform temperature fields, and the migration of 
~ater within the massive walls of such structures, would undoubtedly 
Improve economy and safety and, what is perhaps even more important, 
enable exposure of concrete to higher temperatures than the present 
cautiousness, dictated by ignorance, allows. Therefore, considerable 
effort is being devoted to these questions at present. 

Furthermore, solution to the above questions will be useful for the 
design. of massive, blocks of concrete dams, severely stressed by 
hy.dratlo? heat. effects, a~d for predicting deflections of slender long-span 
bndges, In which the senous miscalculations experienced in the past are 
explicable mostly by asymmetric drying and temperature distributions 
within the cross sections of the bridge girder. 
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Although the long-time applied loads that primarily cause creep exhibit 
arrower statistical distributions than the shorl-time loads, the environ­
tental conditions, playing an important role in creep and shrinkage, are 
onsiderably random. The random nature of material properties is 
ertainly also important. So far, the statistical studies in creep of concrete 
ave been rare[16.5J. Perhaps, however, the time is not yet ripe for this 
pproach. Before the probabilistic aspects are tackled, the deterministic 
lodel of the constitutive equati~n ought to be reasonably understood, or 
~e statistical parameters would have to account in a large part for 
Jnorance of the deterministic (or average) components in the material 
ehavior. 
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8 LIST OF BASIC NOTATIONS 

a ...... , a ..... a .... , au 
C, Co, C I 

D 
E, Eo, E 

ER(t,t') 
"£,., E,., Eoo. E,.·, E,. ... 

Eo,., ...• E.,. 
f(t - I') 

f" 

f,. 
h, h .. h. 

J(I, t'). JV (t. t'). JD(t, t') 

J ... ,J. 
AJr ... 

k 
ka, k .. 
K, K,.·. K,. ... 

,,,, L" 

L(t, t') 
M 

P, 
p ... ,p. 

R 

8 ... ,8. 

= diffusion coefficients in Eq. (4.8); 
= diffusivity of water in concrete. Eq. (4.40), its 

reference value and value at h = 1; 
= average distance of ftow in Eq. (4.17); 
= Young's modulus [Eq. (3.13)). its reference 

value at time to. and operator in Eq. (5.1); 
= incremental elastic modulus for time step Atr 

in Eq. (5.11); 
= relaxation modulus [Eq. (3.5)]; 
= moduli for hidden variables in Eqs. (3.15). 

(3.19), (3.36), and (4.20); 
= parameters in Eqs. (3.2Ia) .and (3.21b); 
== shape of creep curve in Eq. (3.10); 
= area factor for hindered adsorbed layers [Eqt 

(4.17) and (4.19)]; 
= hidd~n stress equilibrium values, Eq. (4.20); 
= relative humidity of water vapor in pores of 

concrete, environmental humidity, and self­
dessication humidity in Eq. (4.38); 

= uniaxial. volumetric, and deviatoric creep 
functions [Eqs. (3.1) and (3.2)); 

= ftuxes of water and solids in Eq. (4.8); 
= expression (5.12); 
= ahlaw =:= coefficient in Eq. (4.38); 
= slopes of creep curve in Eq. (3.18); 
= bulk moCiulus and the corresponding modul 

for hidden stresses in Eq. (4.30); 
= half-thickness of hindered adsorbed laye 

[Fig. 14(d)] and its boundary length; 
= memory function in Eq. (3.8); 
= bending moment or molecular weight of wate 

(18.02 g/mole); 
= distributed surface loads of a structure; , 
= pressures in water and solids across th. 

hindered adsorbed layer; 
= gas constant = 1.986 catrK = 82.06 em' x atn 

eK x mole)-I; 
= entropy densities in water and solids in Eq 

(4.7); 

ti t' 
'tr(r = 1,2, ... ) 
to. te 

T. To 
U •• U,., U.,AU 

, " • w a .. , a ... a,. • a,. 

p,p.,.,p. 
E. EO, E", E 

E,., E: 
Es. AEr. AE~ 

K 

,.,. ... , ,.,.. 

II, II( t.t') 
11' .. , 11'. 

u,u",u 
• u,., u.,.. u ...... u,. 
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= time. measured fro~ casting of concrete; 
= discrete times for' step-by-step analysis; 
= instant of first load application and equivalent 

hydration period in Eq. (4.1); 
= displacement of material points and enforced 

displacements. Eqs. (5.6) and (5.26); 
= absolute temperature and its reference value; 
= activation energies for hydration and creep in 

Eqs. (4.2) to (4.4) and (4.26); 
= thermal dilatation coefficients in Eqs. (4.10) 

and (4.20); 
= relative hydration rates in Eq. (4.1); 
= normal strain, stress-independent inelastic 

strain and strain tensor (linearized); 
= hidden strains in Eqs. (3.24). (3.26) (Figs. 10); 
= instantaneous shrinkage strain in Eqs. (4.19) 

and (4.20). and strain increments in Eq. (5.11); 
= viscosities associated with hidden variables 

in .Eq. (3.28), (3.29), and (3.36); 
= ahlaT = hygrothermic coefficient, Eq. (4.38); 
= chemical potentials of water and solids [Eq. 

(4.7)]; 
= Poisson's ratio in Eq. (3.3); 
= spreading pressures in water and solids in Eq. 

(4.7); 
= relaxation or retardation times [Eq. (3.16)); 
= normal stress and stress tensor; 
= hidden stresses in Eqs. (3.28), (3.29), (3.35). 

(4.20), and their equilibrium value in Eq. 
(4.24); . 

v D V v I u • u • u.,. • u.,. ,... = vo umetric and deviatoric components of 
stress and hidden stress tensors, Eq. (4.30); 

.(t, t'), .,,(t') = creep coefficient (Eq. (3.9)] and its conven-
tional "ultimate" value in Eq. (3.10); 

!U,., ...•• :a ... • !! .... ~ ••• .,. = rate parameters in Eqs. (4.~0). (4.32). (4:26); 
.(t) = .(t. to) (Eqs. (4.35) and (5.34»); . 
X(t. to) = aging coefficient in Eq. (5.32); 




