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Summary

Although the phenomenon of creep in concrete has been known for
nearly 70 years, its study has only recently gained importance because of
new types of structures of higher creep sensitivity, such as nuclear
reactor vessels and containers or undersea shells. This article summar-
izes some of the basic knowledge in this field, with emphasis on recent
developments, and including some new results. _

Basic experimental facts relating to creep and shrinkage are summar-
ized first. In the simplest approximation, concrete may be regarded as an
aging viscoelastic material. This yields a creep law in the form of
hereditary integrals with nonconvolution kernels. Various simplified
expressions for the creep function, defining these kernels, have been
recommended by the engineering societies to aid the designers. To make
solution of large structural systems tractable, the creep law must be
converted to a rate-type form, i.e. a system of first-order differential
equations involving hidden stresses or strains, with time-dependent
coeflicients. This is particularly advantageous for numerical time integra-
tion in conjunction with the finite element method. Maxwell and Kelvin
chains with time-dependent coefficients are the two basic models.

A more realistic model requires inclusion of temperature and humidity
effects. Temperature rise accelerates creep, as well as the hydration
reactions that are responsible for the change of material properties
(aging). These effects are formulated in terms of activation energies. A
crucial role in creep, as well as shrinkage, is played by the large amount
of water that is contained in concrete in the form of adsorption layers that
are several molecules thick and are confined between solid cement gel
particles and layers. Thermodynamics of the diffusion that takes place
along such layers in response to stress and temperature changes and
changes in water content of the macro-pores is discussed. It is shown that
a nonlinear coupling between the flux of water molecules and the flux of
solid molecules explains the basic nonlinear effects in low-stress creep,
such as the drying creep effect. Further nonlinear behavior, due mainly to
gradual microcracking, appears in high-stress creep. The solution of the
creep and shrinkage of a concrete body depends on the solution of the
macroscopic water diffusion through the body (drying or wetting), but the
reverse coupling of these problems is negligible. The analysis of drying is
complicated by a sharply nonlinear dependence of diffusivity upon the
pore humidity, as well as upon the temperature and the degree of
hydration. A mathematical formulation of these phenomena is given.

In analyzing structural problems according to a viscoelasticity theory,
basic roles are played by the elastic-viscoelastic analogy and McHenry’s
analogy, the proofs of which are given. Various methods of numerical
step-by-step methods of time integration for both linear and nonlinear
stress—strain laws are also described. They may all be formulated as a
sequence of elasticity problems with inelastic strains, and the latter may
be replaced by equivalent applied loads. To ensure numerical stability,
special new algorithms are required for the rate-type creep laws based on
the Maxwell and Kelvin chains. For a number of ordinary design
problems, various simplified linear creep laws that allow simple solution
may be used. They are discussed in detail and one of them, serving as
basis for the recently developed age-adjusted effective modulus method,
is shown to yield accurate results.

The theoretical results are documented by experimental data.

1 INTRODUCTION

If concrete is subjected to sustained loads, it continues to deform
further with time. This phenomenon, discovered in 1907 by Hatt[1], is
now commonly referred to as creep. Concrete also exhibits stress-
independent deformations which, in- addition to thermal dilatation,
include shrinkage (or swelling), i.e. a volumetric deformation due to
changes in water content and long-time chemical processes. To distin-
guish these two types of time-dependent deformations, creep is usually
understood as the difference in deformation between a loaded specimen
and an equally old identical but unloaded companion specimen that has
suffered precisely the same history of environmental conditions. The
instantaneous elastic deformation produced upon stress application is
often also separated from the creep deformation.

Interest in creep and shrinkage has been rising as concrete structures
more susceptible toits effects have been appearing, and structural damages
or failures were being experienced. The first extensive research, which
came in the 1930s, was necessitated by the introduction of long-span
concrete arches and large dams. Improved understanding of the phenome-
non enabled the advent of prestressed concrete. Long-span prestressed
bridges, shells, and tall concrete buildings provided further stimuli. for
research. At present, the novel uses of concrete in prestressed concrete
pressure vessels for nuclear reactors réquire drastic improvement in the
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present knowledge. However, in spite of the literature explosion afflicting
this field, many important questions still remain unresolved, especially
with regard to the constitutive equation. This is undoubtedly due to the
- extraordinary complexity of the material. Aside from a number of
nonlinear effects, the material properties change as a result of internal
chemical reactions, and the deformation problem is coupled with
moisture diffusion through the material (as well as heat conduction).

Consequently, for time-variable environmental conditions, it is impossi--

ble to devise creep tests in which a concrete specimen would be in a
homogeneous state. This tremendously complicates the identification of
material properties from test data. Furthermore, accumulation of experi-
mental knowledge is hampered by the fact that, due to differences
between regional sources of aggregates and cement, a broad range of
different concretes is in use. _

The purpose of the present work is to summarize and review the basic
facts on the subject, with emphasis on recent developments, although
some novel results are also presented; see Subsections 3.4, 4.3-4.5, and
5.3. As is clear from the preceding remarks, the central position must be
allotted to the discussion of the constitutive equation. To. avoid
detachment from physical reality, a brief exposition of the basic
experimentally observed properties of concrete is given in Section 2. In
Section 3, a simplified, linearized formulation of the constitutive equation,
uncoupled with diffusion processes in the material, is outlined. The
nonlinear and coupled formulation then follows in Section 4. Methods of
structural analysis are discussed in Section 5. Here the numerical
methods are emphasized, because analytical solutions for realistic forms
of the constitutive equations are unavailable at present, and those that

exist are based on unacceptably oversimplified stress—strain relations. '

Practical problems in design are briefly examined in Section 6.

2 BASIC EXPERIMENTAL FACTS RELATING TO
CREEP AND SHRINKAGE

The time-dependent deformations of concrete originate chiefly in the
hardened portland cement paste[2). This is a strongly hydrophylic porous
material (of typical porosity 0.4-0.55) normally containing a large amount
of evaporable (not chemically bound) water[2]. The material is formed by
hydration of portland cement grains, which yields (aside from calcium
hydroxide) a very fine gel-type structure consisting mainly of calcium
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silicate hydrate (3CaO - 2SiO; - 2.5H,0)[2]. Due to this and similar
constituents, the material has an enormous internal surface (roughly
500 m?/cm’®). The hydration process, which continues at normal tempera-
tures for years and never becomes complete, causes a gradual change of
the properties of cement paste and concrete, which in the field of
mechanics is usually called aging. Furthermore, as the material has a low
degree of chemical stability, its microstructure interacts with water and
undergoes gradual changes in response to stress environmental condi-
tions. These facts are responsible for the extremely complex ther-
momechanical behavior of this material.

To realize the various degrees of simplification in the subsequent
discussions, it will be appropriate to begin with a concise (and by no
means exhaustive) listing of the typical experimentally observed
phenomena relevant for creep and shrinkage. Although some of the
-phenomena listed below will be considered in greater depth in the
subsequent sections, for detailed information on experimental results, the
reader would have to consult the references quoted, of which the book by
Neville and Dilger[3] is most comprehensive. .

1. Creep is smaller if the age at loading is higher[3-9]. This effect,
called aging (or maturing), is important even for the many-year-old
concrete [see Figs. 2, 3, 4, and 5(a)]. It is caused by gradual hydration of
cement. '

2. At constant water content w (sealed specimens) and temperature T,
creep is linearly dependent on stress up to about 0.4 of the strength and
obeys the principle of superposition, provided that large strain reversals
(not stress reversals) and, especially, cyclic strains are exchuded[3-5, 7,
10-16] [cf. also Figs. 1, 5(b), and 6].

3. Creep curves plotted in logarithm of the time from loading, ¢t —¢t',
have a significant slope over many orders of magnitude of ¢t —¢' (from
0.01 sec to several decades at least). This means that the ret_ardation
spectrum is very broad. There is no evidence of creep curves approaching
some final asymptotic value. [See Figs. 2 to 4, and 5(a).]

4. In contrast with polymers and metals, the deviatoric creep and
volumetric creep are about equally important[17; 3, p. 228]. At constant w
and T, the Poisson ratio due to creep strains is about constant and equals
its elastic value (v =~0.18)[18-20; 3, p. 236].

5. The tensile creep is about the same as the compressive creep (3, p.
220). :

6. After unloading, creep is partly irreversible. Creep recovery of
fully unloaded sealed specimens is less than that predicted when the
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Fig. 1 Creep at variable stress compared with the prediction by principle of superposition
(solid lines); cylinders 4§ X 12 in., of 28-day strength 6720 psi; water—cement-sand-gravel
ratio 0.375:1:1.6:2.8; drying at h, =0.93, 17°C; EMM and RCM are approximate predic-
tions based on effective modulus and rate-of-creep methods from Subsection 5.5. (Adapted
from Ross, A. D., “Creep of Concrete under Variable Stiess,”” Amer. Concrete Inst. J. 54
(1958) 739-1758, Figs. 9, 7, and 4.)

principle of superposition is applied (about § of this prediction)[3, p. 95).
This is a nonlinear effect.

7. Creep recovery is almost independent of age[21-23; 3, p. 199} and
is linearly dependent on the stress drop even if the previous stress has
been high (0.65 of the strength[24, 14]). Creep-recovery curves tend to
straight lines in the logarithmic time scale.

8. The additional creep[2$, 26] and elastic strain[27] due to a stress
increment after a long creep period are less than those for the same stress
increment on a virgin specimen of the same age. The creep properties for
such increments seem to be anisotropic.

9. At constant water content w (as well as temperature), the creep is
" less for smaller w[28-33]. From h =1.0 to h =0.5, the decrease is
probably much larger than that from 0.5 to 0.0 (h = pore humidity)[28].

10. The drop of elastic modulus due to incomplete drying is only
moderate[30, 31, 114] (not more than 10 percent from h = 1.0 to 0.1).
After complete drying, a hysteresis on rewetting[34]) occurs.

11. When concrete is drying simultaneously with creep, creep is
accelerated (drying creep effect)[3, 4, 7, 9, 29, 34, 36, 37). The acceleration
occurs not only in compression but also in shear[3, 17} and bending(3, 34].
This effect is also manifested in the dependence of creep on the size and
shape of specimen[3, 7, 38-40]. Furthermore, under simuitaneous drying,
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Fig. 2 Tests of D. Pirtz on creep at various ages at loading (see Ref. [26]). Cylinders
6% 26in., sealed, at 70°F; 28-day cyl. strength = 3230 psi; stress < | strength; water—cement

ratio 0.58; cement type IV; max. aggregate size 1.5 in. Solid lines show fits from Ref. [89] by

Maxwell chain model with 10°E,, = 577, 233, - 138, —260, 75, 62, 1120, 1520; 10°E,, =179,
230, 343, 469, 489, 319, —319, —378; 10°E,, = ~70, —97, — 160, —242, —258, —89, 270, 626;
and 10°E,, = 81, 118, 206, 323, 349, 87, 480, - 1040; E,, =0; for 7, =0.005, 0.0, ..., 5000,
o{wy=w;=0.1, w,=0), E, = E, +E, t""+E; t"+ E, ' + E, t"" in psi; ¢ is strain due to
load. (Reproduced from BaZant, Z. P., and Wu, S. T., “Dirichlet Series Creep FunctionTor
Aging Concrete,” J. Engrg. Mech. Div., Proc. Amer. Soc. of Civil Engineers, 99 (1973)
367-387.)

the nonlinearity of creep versus stress is more pronounced(7, 28, 41}, and
the additional creep due to drying is irrecoverable[36].

12. Creep is considerably accelerated by any rapid change in water
content, both negative and positive, and by its cycling[3, p. 156; 36].

13. In drying unsealed specimens, loading per se causes only a
negligible loss of water, i.e. less than 3 percent of that in a companion
unloaded specimen[3, p. 267; 42-44]. Also, the rise in pore humidity due
to loading of a sealed specimen is negligible[44].

14. Stationary permeation of water through concrete (at constant w)
does not affect creep appreclably [29].

15. When a dried specimen is rewetted (which produces swelling) and
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Fig. 3 Tests of crecp at various ages at loading for Ross Dam (see Refs. (5, 6]). Cylinders
6 16in., sealed, at 70°F; 28-day cyl. strength = 4970 psi; stress <} strength; water—cement
ratio 0.56, cement type II; max. aggregate size 1.5 in. Solid lines show fits from Ref. [89] by
Maxwell chain model with 10°E,, =115, 82, —-76, —152, —143, ~102, — 105, —112;
10°E,, = 196, 147, 153, 291, 273, 170, 112, 85; 10°E,, = —-T729, — 556, — 591, 1060, - 862, — 332
72, 281; and 10°E,, =229, 179, 190, 301, 153, —27, — 105, —136; E,, =0; for 7, =0.005,
0.05, .. ., 5000, (w, = w, = 0.2, w, = 0). Formula for E, appears in Fig. 2 caption. ¢ is strain
due to load. (Data reproduced from BaZant, Z. P., and Wu, S. T., “Dirichlet Series Creep
Function for Aging Concrete,” J. Engrg. Mech. Div., Proc. Amer. Soc. of Civil Engineers, 99
(1973) 367-387.) .

subsequently loaded in compression, the creep that follows may be
substantially larger than the previous swelling[45].

16. When concrete under load is drying, the Poisson ratio due to creep
strains is decreased (up to about » = 0.05)[3, p. 231; 18], and the lateral
creep in a uniaxial test is unaffected by drying[3, 18].

17. As compared with the prediction of the principle superposition,
pulsating loads considerably accelerate creep of concrete, even at
low-stress levels (cyclic creep)[3, p. 245; 12, 36, 46-51). When pulsation
occurs after a long period under constant load, cyclic creep is negligible as
compared with a virgin specimen[3, 36). Poisson ratio decreases with the
number of cycles(3, p. 248). In cement paste at low stress, cyclic creep is
not observed.

18. Aging (cement hydration) is decelerated by a drop in pore
humidity [S3-55] and accelerated by a rise in temperature[4].
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Fig. 4 L'Hermite and Mamillans tests of creep at various ages at loading. Prisms
7%7%28cm of 28-day strength 370 kgf/cm®; in water; at room temperature; concrete of
French type 400/800; 350 kg of cement per cubic meter of concrete; siress = § strength;
water-cement-sand-gravel ratio 0.49: 1:1.75:3.07; Seine gravel. Solid lines show fits from
Ref. [89) by Maxwell chain with 10°E,, = 562, 347, 224, 297, 331, 111, 26, 8; E,, = 117, 160,
170, 93, 59, 32, 56, 67; 10°E,, = —421,-461, — 385, — 14, 378, —31, — 438, — 626; 10°E,, =266,
285, 243, —24, —441,- -236, —170, 393; for 7, =0.005, 0.05,...,5000, o(w,=0.1,
w2 = w, = 0), giving E,. in psi. Formula for E,. appears in Fig. 2 caption. e is strain due to load.
(Data constructed from L'Hermite, R., Mamillan, M., and Lefévre, C., “Nouveaux résultats
de recherches sur la déformation et 1a rupture du béton,” Annales de I’ Institut Technique du
Badtiment et des Travaiix Publics 18 (1965) 325-360; see also Int. Conf. on the Structure of
Concrete, Cement and Concrete Assoc., London (1968) 423-433.) The measured J-values at
t —t' =~0.01 day, for ages ¢t' =7 to 730 days shown, were 200, 165, 158, 152, 130, 119 in
10°%psi*. °

19. Although aging is explicable only by cement hydration, the change
of creep properties is significant even in the many-years old concrete, in
which the amount of cement still undergoing hydration is negligible and
neither elastic modulus nor strength changes appreciably [2-9].

20. Creep rate grows with temperature[3, 44, 56-61].

21. A rapid heating as well as rapid cooling accelerates creep{3, p. 180;
61, 62].

22. First drying shrinkage from h = 1 to 0.5 is considerably larger than
that below 0.5, while on rewetting most swelling occurs between h =0
and h=0.5. A substantial part of shrinkage and swelling is



8 Zdenék P. Bazant
) "§ RELAXATION TESTS 3.
ROSS twss < 4 NG +tor ¢=0.000360 |
-7 4 NN (ot0.00n~
30| 7T swoomwma @ "’:ojt/ .,5 ~.F N K, x for €+0.000270
- "2 o ~. b {010.000%1800 pol
] Ve ~. ® ~
o e ,c' e AN + N\ ?o
% 27 - 1% . N _-elfective 4 2
o /o, ° - . 9 2 JT- ¢\ moadulus i
[ 20 s PO > N
=28 o - 8.~ s o] a superposition N
—~ [V s e N ~5
- o " - T $/ £ M S ~
3 - d L T b Y ~. 5
3 o’ Pid - g\‘o‘r‘ . 1. _/‘x" ™ ~9
-0 e v~ 3 rale-of-creep 8 :
20! a’ 8.7 1 \ fF\fo2
-7 - ., +
e POt de N\, %
Lt o - } . \‘
°‘l 4. 121 ll A 4L Lt il l'
10 100 - ] 0 100
t- ' in doys t-t in doys

(a) (b)

Fig. 8 Ross’ tests of creep and stress relaxation (see Ref. [11]) compared with prediction

(89] by principle of superposition (based on dashed smoothing of creep curves); same test
series as in Fig. 1.

irreversible [63-65). But after wetting from h = 0, substantial irreversibil-
ity on return to h =0 occurs only if peak h has exceeded 0.5(63-65).

23. An appreciable part of shrinkage, as well as creep acceleration due
to drying, seems to be delayed with regard to the change in pore
humidity [65, 129].

24. Specimens continuously immersed in water swell[4,7, 9 36}
Sealed specimens show autogeneous shrinkage (usually small) and also
gradual self-desiccation to about h =098 (cf. Ref. [67]) if the
water—cement ratio is low.

25. Shrinkage is not affected by deviatoric stress[36].

26. Thermal dilatation strongly depends on water content, the peak
occurring at about h = 0.7 (cf. Refs. [36, 68]).

27. Instantaneous thermal dilatation is followed by a delayed thermal
dilatation. The latter is negative (i.e. a recovery) at h = 1 (cf. Ref. [68D).

28. Under stresses exceeding about 0.4 of the strength, creep becomes
progressively nonlinear with stress[3,7, 14, 15, 24, 28,29, 37,41]. The
additional creep due to nonlinearity is largely irreversible and is caused
mainly by gradual microcracking. The apparent Poisson ratio in the
uniaxial test rises with the stress and exceeds 0.5 prior to failure, which
indicates incremental anisotropy|[4, 36, 50). Failure under a long-time load
exceeding about 0.8 strength occurs at a lower load than in short-time
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Fig.6 Stress relaxation tests for Ross Dam (Refs. (3, 6]). The solid line fit (from Ref. [89]) is
based on the same parameters as in Fig. 3; test specimens are also the same. (Reproduced from
BaZant,Z. P., and Wu, S. T., “Dirichlet Series Creep Function for Aging Concrete,” J. Engrg.
Mech. Div., Proc. Amer. Soc. of Civil Engineers, 99 (1973) 367-387.)

tests[69, 70]. This is also true of high-pulsating loads{[46, 47). Below 0.8,
long-time load strengthens concrete[69, 70], and so does a low-pulsating
load. Cracks heal when compressed([71].

29, Strength of concrete is higher after drying (ci. Refs. [54, 114]).

30. Water content w as a function of pore humidity h at constant T
(sorption—desorption isotherm) exhibits considerable hysteresis and
irreversibility [63-65). After a wetting—drying cycle reaching above
h = 0.5, the internal surface area of pores in cement paste is considerably
decreased (and the volume of solids correspondingly increased)[35, 63,
64].

31. Diffusivity of water in concrete drops about 20 times when passing
from h =0.85 to h =0.65[67] (cf. Fig. 16). In saturated concrete under
hydraulic overpressure, diffusivity is about 1000 times higher than that at
h = 0.999[67].

32. A 10 percent difference in pore humidity produces about the same
flux of water as the hydraulic head of 1400 m{[67].

33. Diffusivity rises with temperature and decreases with aging[67].

34. A number of further complex phenomena are.observed in creep of
frozen concrete, at high temperatures (over 100°C) and at very low
temperatures{3.4. 721.
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3 CONCRETE APPROXIMATED AS AN AGING
VISCOELASTIC MATERIAL

3.1 Integral-Type Creep Law

In the current design practice, the dependence of strains and stresses
upon the histories of water content and temperature, apparent from

effects 11, 12, 16, and 26 in Section 2, is disregarded. This is correct only.

for mass concrete at constant temperature, but is adopted in practical
design, as a crude simplification, for the average behavior of the cross
sections of massive beams and plates, in which the water content and
temperature cannot vary substantially or rapidly. Strain (or stress) is thus
considered as a functional of the previous stress (or strain) history alone.
As long as no abrupt changes in the microstructure occur, this functional
is logically assumed to be continuous and admitting Volterra-Fréchet
series expansion[73). Retaining only its linear term, a linear approxima-
tion results. It must be sufficiently good for sufficiently small stresses and
su(ﬁmently short-time histories. Experimentally, the linearity is found to
be applicable over a broad range (see Figs. 1, 5, and 6, for example, and
item 2, Section 2) and is used as the basic assumption in the current design
practice. However, it should be kept in mind that, of all effects listed in
Section 2, only items 1-5 can then be given proper consideration.

The linearity implies validity of the principle of superposition, due to
Volterra[73). (For nonaging materials, it was enunciated already by
Boltzmann[74).) Its applicability to aging concrete was discovered by
McHenry[75] and Maslov[76). This principle states that the strain (or
stress) response due to a sum of two stress (or strain) histories is the sum
of the individual responses. Thus, summing the strain histories due to all
small-stress increments before time ¢, one may write the creep law for
uniaxial stress in the form

et)—€'(t) = L' J(t, t') do (1), @a.n

where ¢t = time measured from casting of concrete; o = linearized stress,
€ = linearized strain; €° = given stress-independent inelastic strain com-
prising shrinkage €., and thermal dilatation; kernel J(¢,t')= creep
function (or creep compliance) = strain at time ¢ caused by a constant unit
stress acting from time t’ to time ¢, i.e. by Heaviside step function
o(t)=H(t —1t'). Note that 1/J(t,¢t) = E(t) = Young’s modulus. The
hereditary integral (3.1) is written as Sticltjes integral in order to admit

Creep and Shrinkage in Concrete 1]

discontinuous stress histories o (t). If o(t) is continuous, substitution
do (') = [do (¢)/dt') dt’ yields the ordinary (Riemann) integral. All test
data agree with the inequalities aJ (t,t')/at =0, 3°J (¢, t)/at* <0,
aJ (¢, t")at' <0, 3*J (t,t')/at'*=0 for any ¢t and ¢'.

Under multiaxial stress, the linear behavior of concrete may be
assumed as isotropic. The strain is always small. As is well known, the
stress—strain relations may then be most convemently wntten as separate
equations for the volumetric components oV = oul3, €¥ = /3 and the
deviatoric components of = oy — "8y, €y = €y — € V8, of stress and strain
tensors oy, € (in Cartesian coordinates x,i=1,2,3; & = = Kronecker
delta). Thus, in analogy with Eq. (3.1),

3[ev(t) -€e'()]= I. JV(t,t) do¥(t")
°, (.2
250 = [ 170, ¢) dof @,

where JV(t,¢"), J ”(t t') are the volumetric and deviatoric creep func-
tions, deﬁned as € " (t) and, for example, e (1), caused by unit stresses o ¥
and o2 acting since time t'. Note that 1/JV (¢, ¢) = K(t) = bulk modulus,
1/J°(t, t) = G(t) = shear modulus. The multiaxial behavior may also be
characterized by the creep Poisson’s ratio, which is defined as v(¢, t') =
— €xnfey, for stress oy, = 1 acting since time t’. Due to isotropy,

J(,t) =343V, 1) +47° (1, 1),

v(t, 1), ) =3It -3 TV (4, 1),

which follow, e.g., from the fact that for the case of uniaxial stress o = 1

acting since time ‘t', Egs. (3.1) and (3.2) give J v(tvt )=€u=

a'JY(t, Y3+ oI (8, t')l2 and - v(t, t')J(t tY=ex=0c"TV(t,t)3+
oI, 1"))2, where oV =4, 0P =1}, and o2 =—1.

In sealed concrete specimens, v is about constant, v ~0.18 (cf. item 4

Section 2). Solving Egs. (3.3), one obtains

IVt =6G—v)(,t'),
Jo@, tH)=2(1+ v)J(t t"),

and so creep is fully characterized by J(t, t'). In view of this fact and the
analogy of Eq. (3.2) with Eq. (3.1), further discussions of the stress—strain
relations will be restricted to the uniaxial case whenever the generaliza-
tion to multiaxial stress is self-evident.
If strain history e(t) is prescribed, Eqs. (3.1) and (3.2) represent

3.3)

(3.4)
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nonhomogen?ous Volterra's integral equations for the stress history. The
general solution (resolvent) of Eq. (3.1) may be written as

o(t)= ] Ex(t, t){de (1) — de°(t")], G.5)

in which kernel Eg(t,t'), called relaxation function (or relaxation
fnodulus), represents stress at time t caused by a unit constant strain
mtroduged at time ¢’ <, i.e. by step function € = H(t - t'). Note that
Er(t, ) = E(t). Integral (3.5) follows also directly from the principle of
§uperpos1tion as a sum of the stress responses due to all previous strain
!ncrements. When o(t) is specified, Eq. (3.5) represents a Volterra’s
;l;t::)gral equation for €(t), and its general solution has the form of Eq.

Creep properties are fully characterized either by J(¢, t') or by Ex (4, t°).
The relation between these two functions may be obtained by considering
the strain history to be a unit step function, i.e. e =1 for ¢t >t,and € =0
for t <t,, in which case the response is, by definition, o (t) = E (4, to).
Substitution into Eq. (3.1) with €° =0 then yields

I B+ [ 10,1y 2B gy G.6)

Similarly, by considering the stress history as a step function,

Ep(t,t0) n It .,
Sl [ Bt )28 g oy, 3.7

Regarding the determination of E.(t, t') from J (¢, t') or vice versa, no
analytical expression for J(1,¢') is known that would be sufficiently
accurate and allow, at the same time, the conversion to be accomplished
analytically. Therefore, a numerical method must be used (see Eqgs.
(.5.8)—(5.12) in the sequel; a FORTRAN IV program for this purpose is
listed in [146] and a more efficient one in {170)). -

Stress~strain relations (3.1) are sometimes transformed by integration
by parts, which gives

€(t)~ €°(t) = %1# ] "L, Yot e’ G8)

vyith L(t, t')=—aJ(t,t")at'. Here L(t, t') = memory function = strain at
time ¢ caused by a unit stress impulse (Dirac function) applied at time
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t' <t. Equation (3.5), which is based on relaxation function, may be
transformed in a similar way, and the resulting ' memory kernel may be
shown to be related to L(t,t') by a Volterra integral equation similar to
Eq. (3.6) or Eq. (3.7); see Ref. [77].

As a consequence of aging, the principle of fading memory[78], a
fundamental postulate in classical linear viscoelasticity, is invalid for
L (¢, t'). This can be checked by evaluating the memory function L(t,t’)
in Eq. (3.8) from an expression for J(¢, t') (Subsection 3.3) that fits some
typical data, such as those in Figs. 2, 3, 4, and 5(a). It is found that L(¢, ¢'),
as function of ¢t’, attains a minimum for a certain finite ¢’, and so the
memory fades only over a sufficiently close past. Thus, concrete is like a
senile man who remembers the recent events and also the events from his
young age better than those from his middle age[50].

Stress relaxation data are much scarcer than creep test data because,
for long testing periods, relaxation tests are less convenient. The most
extensive data available are shown in Figs. 5(b) and 6, and further data of
more limited range of ¢’-values may be found in the literature[3, 89). The
solid lines in Figs. 5(b) and 6 represent the stress relaxation curves
accurately computed [according to Egs. (5.8) to (5.11)] from the
corresponding creep data in Figs. 3 and 5(a). The fact that the fit is quite
close provides confirmation of the linearity of creep (principle of
superposition). In fact, the fit is even better than in the original
papers[6, 11} in which the relaxation curves were computed by hand with
a lesser accuracy.

3.2 Creep Function In Contemporary Recommendations by
Englneering Socleties

The creep function is often expressed as

n_l1to@t) 1 R
I(‘v t ) = E(‘p) - E(")+ C(‘r t )) (3-9)

where function ¢(t, t'), representing the ratio of the creep strain to the
elastic (instantaneous) strain under constant stress, is called creep
coefficient, and C(t, t') is called specific creep. However, characterization
of creep by ¢(t, t') is frequently a source of confusion since all J(¢,¢')
values are thus unnecessarily made dependent upon E(t’'), which is
usually taken not as the truly instantaneous (dynamic) modulus, but as the
modulus corresponding to the strain in a short time interval after load
application (nonstandardized, usually 1 min, but for many older data up to
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several hours). An ACI (American Concrete Institute) Committee [79] has
recently recommended the approximation '

(8 1) = u(t)f(t — 1), (.10)
in which (Fig. 7)

" (""'". ’ -0.118
-t =geeDom,  a@ =290, @

t and ¢’ being given in days; ¢ is a parameteér. Similar expressions of the
form of Eq. (3.10) have been recoinmended by CEB (European Concrete

10

oSk

":'unnl TR BRI BT w
] 0 o o o 2 8 24
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Fig.7 Creep parameters in design recommendations. £, ¢. are

(3.11){79); sh is shrinkage curve (3.12); f-log=curv£ :..IIJ InA((I:ic:. -r-v :;":::)V:“ Ib—y:'!'?";
(shown for comparison); c,, c/, €3, ¢ are correction factors as functions of environmental
humidity k, and minimum thickness b of specimen([79); 300 or 1300 days are durations of
creep. [Data points after Hansen, T. C., and Mattock, A. H., “Influence of Size and Shape of
Member on the Shrinkage and Creep of Concrete,” Amer. Concrete Inst. J. 63(1966) 267-290.}

Committee) (cf. Ref. [3]). ACI Committee [79] also gives an expression for
shrinkage of concrete,

_ , =17

€x(t) = 0.0008¢ B 3.12)

in which ¢ is in days and drying is assumed to begin at fo=7 days.
Expressions of the type (3.10) and (3.12) have the merit of simplicity,
but are capable of only a crude approximation of individual test data feg.,
Figs. 2, 3, 4, and 5(a)). Equation (3.11) giving f(®) = 1 implies bounded-
ness of creep, whereas the actual creep curves in log (t — t') scale do not
approach any asymptote; but for ¢t — ¢’ <30 years, Eq. (3.11) is accept-
able. (Thus, the structural analyses in which the - existence of an
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asymptotic value is assumed to allow the use of Tauberian theorems are
of little relevance to concrete([80, 81].)

Parameters c in Eq. (3.11) and ¢’ in Eq. (3.12) are correction factors to
be calculated as ¢ = c,c2¢s¢cacsce and ¢’ = ¢icicicicici. Correction
factors ¢, to cs and c} to cé account for differences in composition of
concrete, such as the cement content, water-cement ratio (of the fresh
mix), percentage of fines in the aggregate, and the air content; see Ref.
[79]. It is noted that the type of cement, admixtures, and especially the
type of aggregate have also effect on creep{3), but corrections of ¢ are
not too important because the effect on elastic strain is roughly the same.
Correction factors ¢, and c; introduce the increase in creep caused by
simultaneous drying (item 11, Section 2). The recommended values shown
in Fig. 7 express the fact that drying is faster at a lower environmental
humidity h, and also in cross sections of smaller minimum thickness b.
The effect of h. and b on shrinkage is introduced through correction
factors ¢, and ¢} (Fig. 7). Effect of the seasonal changes of humidity can
be approximately taken into account by replacing ¢ with a certain reduced
time[77, 139, 151). The recommendations of CEB are similar, except that
CEB also gives different shapes of creep curves (function f) for different
b [3]). According to ACI expressions for the relation of E to strength and
the dependence of strength on age{4, 79}, the elastic modulus, appearing
in Eq..(3.9), approximately is (in the case of drying concrete of a thickness

from 10 to 30cm)
E()=Ex om0 G-

where Ex= E at age t =28 days. For mass concrete, the increase of E
from 28 days to « is much larger than Eq. (3.13) predicts; a possible
expression is, e.g., Exnl/(1+pt™").

Equation (3.11) has been determined as to fit the creep data from Fig. 21.
Most other data are better approximated by the expression(5, 8] f(t —¢') =
0.113In(1 + ¢ — ¢'). However, most tests, especially the recent, more
extensive ones, are best fitted by the expression

1+a(t)”

J, t')= E.

+C(, 1), C(t,t)= {::; @)yt
(3.14a)

For example, the data in Fig. 2 are closely fitted with a =0, m = 0.355,
n =0.056, ¢, = 17.51, 10"/ E, = 84.4/psi; datain Fig. 3 witha =0, m = 0.46,
n =0.13, ¢, = 2.80, 10’/ E, = 189/psi; data in Fig. 4 with a =0, m =021,
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n =0.094, ¢, = 3.74, 10’/ E, = 78.8/psi; and the low-stress curves from Fig.
25 with @ =0, m = 0.352, n =0.22, ¢, = 2.76, 10’/ E, = 18/psi; for nonzero
« and with p =} the optimum fits are not much different. The conventional
values of E are obtained from Eq. (3.14a) by setting t — ¢’ = 0.001 day. The
material parameters in Eq. (3.14a) can be determined from test data, such
as those in Fig. 2, in the following manner. First one considers the function
J =J(t,t')— at’""|E, and estimates the values of p and a/E,. Noting that
J =1/Eo+ x"¢:/|Es, where logx =log(t —t')—s, s =(m/n)logt’, it is
seen that after a horizontal shift by distance s all J-curves plotted in
log (t — t') scale must fit one common basic curve. These shifts are carried
o!n numerically by computer and by a linear regression of the shift
distances, s, the value of m/n is found. Then the common basic curve
obtf\ined by shifting is fitted by the expression 1/E,+ x"¢./E,, using an
optimization method (Marquardt’s algorithm). This yields n, 1/E, and
@1/ Eo. Further improvement of fit is possible by simultaneously optimizing
for m, n, 1/E,, and ¢,/E,. Finally, several other values of « and p may be
tried and the best fit selected.
For the shrinkage curves of test specimens (e.g., Fig. 16 in the sequel)

the following formula has been verified: ’

e —e- [l+( T )0.9 -2
sh sh t "‘to ],

e _ o E(1+45 )"

. 03 kd\:. C(T)
= ke 45 = (%4) i,
m=kemdys K (1;1) kr Cty
F() = 1 - 0.95h ~ 0.25h.2

where d is the thickness or diameter in centimeters, k, = 1 for a cylinder
(1.1—prism, 0.9—cube, 1.7—slab, 0.75—sphere); C, is water diffusivity
from Eq. (4.41) in Section 4 (normally 0.3 cm?/day), h. is environmental
humidity (for sealed specimens, h, is self-desiccation humidity), €5, is the
reference ultimate shrinkage (0.0011 for data in Fig. 16), 1, is age in days
at start of drying, (t —t,) is time from this start, kr is temperature
correction coefficient. The main value of expressions such as Eqs. (3.14a)
and (3.14b) is to be expected in statistical evaluations and in extrapolation
of short-time data available for a given construction project.

Many other expressions for functions f, ¢., €., and the correction
facto.rs have also been used in the past[16,36,79, 82-85]. In design
p.racn.ce, various forms of the creep law that are an even cruder
simplification than Eq. (3.10) have been widely used (rate-of-creep
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method, Arutyunian’s law, etc.). These will be discussed in Subsection
5.5.

3.3 Dirichlet Series Expansions of Creep and
Relaxation Functions

The fact that due to aging the creep function cannot be expressed as a
function of a single variable, t —t', causes a major complication in
structural analysis problems and makes the Laplace transform methods
ineffective. Therefore, numerical methods must be used. As will be shown
in Subsection 5.4, for efficient numerical solutions, the integral-type creep
law (3.1) must be converted into a rate-type creep law. To do this, one
must approximate J(¢, t') [or Ex(t, t')] by a degenerate kernel of the form

S A@)B.).

As will be confirmed later, no loss in the generality of material
representation is incurred if one restricts attention to the special case of a

series of real exponentials
2 Au(te ",
"

called Dirichlet series[86]. It may be more conveniently written in the
form

l s l R (Rl L% 5
By 2RO @13
where 7, are constants called retardation times and E, are coefficients
depending on t'.

Identification of material parameters E,(t") or fitting of given data on
J(1, ') at a given fixed ¢’ by the Dirichlet series is a difficult mathematical
problem (which also arises, e.g., in connection with the numerical
inversion of Laplace transform). It is notorious for unstable dependence
of the series coefficients (i.e., E,, 7. upon the data[87]. Because of this
instability, determination of retardation times 7, from the test data should
not be attempted, or else an ill-conditioned equation system would result
for the solution of 7, is not unique and substantially different 7, -values
give equally close data fits. One may intuitively anticipate this fact,
realizing that the spectrum of relaxation times is actually continuous and
that any “smooth” continuous function may be characterized equally well
by sets of discrete values that correspond to widely different subdivisions
of time. Hence, the values of 7, must be appropriately selected in advance.
A suitable choice is 7,.-values uniformly distributed in a logarithmic scale,

Jt, ") =
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ie. 7. =ma""". Better accuracy is obtained for smaller a, but for
expedience of structural analysis, the number of terms in Eq. (3.15) should
be kept to a minimum. A practically suflicient accuracy is achieved with
a =10, ie. '

7. =710, p=012,...,n (3.16)

7, must not be chosen larger than either the point at which the creep curve
in log (t — t')-scale begins to rise or the lower limit of the time range of
interest, and 7, must not be chosen smaller than either the point where the
curve levels off or the upper limit of the range of interest. (With regard to
the usually large scatter of creep data, a can be taken as large as 60, which
gives about 1.5 times fewer 1, for the given time range to be covered. But
the creep curves given by Eq. (3.15) then look “bumpy”; see Fig. 19 in
Ref. [89].) ‘

Denoting the given measured data points as f(t,,, tY, B=12,3, one
obtains the fit of creep curve J(t, t') as function of t at chosen fixed ¢’ by
the method of least squares, i.e. by minimizing the expression

D=2 [J(te, 1)~ T (8, t)])' + P,

(l.)l = Z [‘V|(E;‘+l - Ep—‘)z + Wz(E._.Lz = ZE;!H + Eu—|)z (3'17)
" + W_a( ;!n - JE;I+2+ 3 ;|+I - Eu_')zly

where @, is a penalty term that forces E, to be a smooth function of p,
which is a physically natural property to require. The presence of the
penalty term is essential; without it, coefficients £, would be unstable
functions of creep data (i.e. different E, would give equally close fits).
Thus, if E, (t') were determined for various ages t’, the dependence of E,
upon t’' would be unsmooth, randomly scattered, and it would be
impossible to model aging. (In classical viscoelasticity, this need does not
arise, of course.) Weights w,, w,, w; should be assigned minimum values
that are necessary for smoothness, which can be assessed by computing
experience. (The weights must be higher for smaller a, because of a
stronger tendency toward instability in identification of E,.)

Times 1, in which data points are specified should be distributed
uniformly in log(t ~t’')-scale. Four (or three) values per decade,
(t —t")p = 10"(t — t')5_,, are an expedient choice. Usnally, the measured
values are not so spaced, and one must first interpolate to determine
J(t, t'). The minimization conditions are a®/3(E, ") =0(x = 1,2,...,n)
and d®/I(E™')=0. They yield a system of (n-+1) linear algebraic
equations for E™' and E,™. In practical computation, the method was
found to be satisfactory[88, 89, 170]. It appears that realistic smooth creep
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curves, characterized by a bounded slope in log (t — t')-scale, can be fitted
by the Dirichlet series (for small enough a) with any desired accuracy.

For nonaging materials, alternate (and in author’s experience less
efficient) methods, which lack the smoothing by penalty term in Eq. 3.17),
were presented by Cost[90] and Schapery[91] (cf. also Ref. [92]). Other
approximate methods are used to obtain continuous relaxation spectra.of
polymers[93]. Distefano[94, 95} studied the identification of .no.nag.mg
Maxwell chain parameters from given data as a nonlinear optimization
problem and applied the methods of dynamic programming. '

With most creep data, one can take advantage of the fact that the creep
curves in the log(t —¢t')-scale can be closely approximated by a
horizontal line segment, expressing the elastic strain, E -t followed by
one or two inclined straight-line segments, with short curved transitions
between the straight segments (Fig. 8). Assuming that times 7., 7, shown
in Fig. 8 are chosen so that 7, /7, = 10™ where m is integer, the Dirichlet
series approximation is [88):

- n—1
E™'+ EI: k(1= e )+ D k(1 — e + 1.2k, (1 - e Uy,
o "o ' (3.18)

where 7, = (5.637.)10", k., k, slope tangents shown in Fig. 8. Il.l the case of
only one inclined straight segment, the first sum in Eq. (3.18) is left out or
. =m =0; then, evaluating expression (3.18), it can be verified that
within the limits 0.2270< t — t' < 1.57, the error is less than +0.03k,, a}nd
only +0.018k, if the upper limit is reduced to 7.-. Utilizing .expressmn
(3.18), approximate fitting of creep curves by Dirichlet series can be
accomplished by hand calculations. _
Carrying out the fitting procedure, as just described, for vanosls values
oft'=t.(a=12,3,...), E, and E at various ages {’ are obtained. For

1 -
, 3 T loglt-t)
i ﬁg. 8 Idealized shape of creep curve in log-time scale. (After Ref. [60]).)
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their fitting, which is best carried out by the method of least ‘squares,
functions of the type a + b(t')™" (where a, b, n are constants) were found
to be best suited [88]. For example, it was found([88] that Eq. (3.18) fits
satisfactorily the data points in Fig. 2 if E™ = 0.208 + 0.93¢°*—0.16¢ %,
m=n=3, k. =0002+0.16(t')"*, k, =0.003+0.23(t')°", 1, =
5.63x 10" days; for Fig. 3, E™'=0.19+ 1.63(t')*”, m =k, =0, k, =
0.0025 +0.25(t")™*, J(t, t') being given in 10~/psi, and ¢, ¢’ in days.
Conversion to a rate-type creep law is also possible if the relaxation
function is expanded in Dirichlet series, which may be written as

Er(t, t) = }3 E.(tYe "Vt E.(t"), (3.19)

where 7, are constants, now called relaxation times, and E,, E. are
coefficients depending on t’. Fitting of given data points Ex(t,, t'),
B=1,2,...,byexpression (3.19) as function of ¢ at a chosen fixed ¢’ may
be performed in the same manner as for Kelvin chains, minimizing the
sum-of-squares expression[89, 170}:

@ =3 [Er(ts, t")— E(ts, t)) + @),

n—2 u-3
D =w, Z. (E..ui— EV +w, 2. (E..2—2E,.,+E,)
n= n-
n—4

+wy 3 (Eprs=3E,0a+3E,—E), (3.20)
n=1

where Ex(ts, t') are the given values of Ex(t, t’). The smoothing term &,
_ does not include E.. because no smooth transition from E._, to E. is to be
expected. The reason is that E. actually represents a sum of all E, for
which 7, is beyond the time range of interest. For the ‘range |
day < ' < 10,000 days, the dependence upon ¢’ may be approximated by
one of the functions

: 3 E,

E,. = Eo“ + |2|

B
135307

(3.21a)

3
E.=X E.p' - withp=()" or p=log(l1+t'), (3.21b)
=0
in which E,,, ..., E,, are constants (i = 1,2,..., n). However, the best
results have been achieved with the expression[170]

E, = a\t+a:p +asp + a,p’ + asup + agp?
+ap’+aspn’p + aspp®+ awp®, p<n (3.22)
E.=ay+anp +app’+aup’, with p=logt’,
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in which not only the dependence upon t’, but also that upon p, is

smoothed analytically. To determine a,,..., aii, one substitutes Egs.
(3.22) into Eq. (3.19) and Eq. (3.19) into. Egs. (3.20), in which ®, may be
either ignored or taken as 3, wia, where w, are suitably chosen weights
intended to reduce curvature and slope by reducing the higher-order
terms in Egs. (3.22). The conditions 3®/a, = 0 procure then a system of 14
linear algebraic equations for a,, ..., aw.. A full Iisti.ng of FORTRAN 1V
programs based on Egs. (3.20) and (3.22) is given in Ref. [170].

Among the relaxation data available at present[5, 6, 11, 89, 96, 97], there
is none that would cover sufficiently broad ranges of both ¢ —¢’ and ¢’.
Therefore, relaxation data must be obtained from creep data, which can
be accomplished (if the range of the latter is sufficient) .numt.:ricglly'[see
Egs. (5.8) to (5.11) in Section 5]. The typical creep data shown in Flg.s. 2,3,
and 4 were converted to relaxation data and fitted by. Eq.. (3.19) with l?.q.
(3.21) or Egs. (3.22). For the data in Fig. 2, t!le distnbutnons ?f E. 'wuh
log 7. (called relaxation spectra) are plotted in Fig. 9 for various ¢'. To
check the accuracy of this fit, expression (3.19) obtained from Ex (t_. t')was
converted [by an algorithm given by Egs. (5.11) to (5..16) in Sec?lon Sl‘to
creep function J(t, t'), which is shown by solid lines in comparison with
the data points in Figs. 2, 3, and 4. :

DWORSHAK DAM , 1968 / Y

Ea in 10* psi

LT ln days

Fig. 9 Relaxation spectra at various ages for creep data in Fig. 2. (From Ref. [89].)



22 Zdenék P. Bazant

3.4 Rate-Type Creep Law

Upon insertion of Dirichlet series expansion (3.15), Eq. (3.1) may be
written in the form ,

0= [ [Eer+ 3 80| dotr-F etor+ e, 0.2
in which the quantities

eX)= e”"'~L e'""B,\(t') do (1), p=02,....n (3.29)
may be viewed as hidden material variables (internal variables[98, 99])

that, according to Eq. (3.23), characterize the past history. They satisfy
differential equations

\ e* 7y
e:+:==El, (3.25)
" {3

and,‘conversely, integration of these equations may be shown to yield Eq.
(3.23), so that Egs. (3.23) and (3.25) are equivalent. The derivative of Eq.
(3.23) may now be written in the form

é —e°=ﬁ+§ é, (3.26)
in which ,
. _ 00, .
“TEw ©-27

and 6, = E,(t)é*. Then, subtracting Eq. (3.27) from Eq. (3.25), one finds
that é. = €%/7. and

G, = N.(1)E,, p=L1L2,...,n, (3.28)

in which 7,.(t)= E,(t)r,. Equations (3.26) to (3.28)[88] represent a
rate-type creep law, which is equivalent to creep function (3.15).

From Egs. (3.26) to (3.28), it is readily recognized that they correspond
to the well-known (generalized) Kelvin (or Kelvin-Voigt) chain model,
Fig. 10(a), whose spring moduli and viscosities are given by E. and 9,
and are age dependent.

It is noteworthy that Eq. (3.27) for the springs is not equivalent to
€. = (o — 0,)/E.. The form of Eq. (3.27) is appropriate when the solid
material is being added to the existing solid framework in an unstressed
state[100], as is true of hydration. Furthermore, Eq. (3.28) for the
dashpots differ from the usual form o,, = n,.é,. For constant é,., this form
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(a) 40

P
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R

4
Fig. 10 (a) Kelvin chain model and (b) Maxwell chain model.

gives d,. = 1.é,, while Eq. (3.28) yields ¢, =0. However, if €,’s are
interpreted as microstrains of some physical meaning on the microstruc-
tural level, then g,. >0 must hold because the solid material being added
by hydration to the existing one must increase the resistance to a given
deformation rate. Therefore, Eq. (3.28) lacks physical justification[38].

In view of this result, it is worthwhile to examine whether some Kelvin
chain with correct dashpot relations o, = 7.é. can also be equivalent to
creep function (3.15). It can be verified[88] that this occurs for
= 1.E.(t), E. = E,(t)— 7.dE.(t)/dt. The latter relation, however,
gives negative E, within some periods of time for any realistic creep
function[88] (for n = 1, see Ref. [77]), which is physically inadmissible.
Another Kelvin chain representation with o,. = 3,.é. can be found if E,, in -
Eq. (3.15) is taken as function of t rather than t'. But incorrect elastic
relations o0, (t) = E(t)e.(t) then ensue.

Still another possibility is to assume a priori the physically correct
relations [88)

. . (¢
o, = N.(t)é, | with E,.(( ‘; = 1, = constant. (3.29

Then, the Kelvin chain is described by Eq. (3.26) in which 7,.€. +
(E, + M.)é. = o. Integration of this differential equation for the case of
stress o = 1 acting since time t’' <t and a substitution into Eq. (3.26)
yield [88]:

cren 1 —t-¥s, = —¢

e(t)—-z TE0° , for o=H{-t'). (3.30)
This is a Dirichlet series, whose coeflicients, however, depend on t rather
than t'. To identify E,(t) from given creep data, one may, therefore,
construct the curves of strain rate é as functions of (t —t') for various

constant current times t (see Fig. 10 in {88]). Nevertheless, this approach
has the drawback that the derivatives of a random function (i.e. é) exhibit
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a much greater statistical dispersion than the function itself [i.e. & or
J(t, t')). Accordingly, it is desirable to integrate ¢ from Eq. (3.30). An
explicit analytical expression for € can be obtained only if E,”' as
function of t is also expanded in Dirichlet series, namely -

1 o
—-—E“(‘)=J“+Z-,p&e ‘ll’ k=l,2,...,n.; “,=l’2,._.,n (3.31)

where J, and J,. are material constants; r{ = 7,10*"', Integration of E
(3.30) then provides ' ¢ &

I8 = s+ S - e

> Hu_ e”""[l —exp [— (—l—-+—l7)(t - t')]] (.32
P W
Tk \

This expression can be fitted to given dataon J(t, t') b)" minimizing a sum-
of-squares expression that is similar to Eq. (3.17) but has a smoothing
penalty term @, in two dimensions (i and k). (To avoid ill-copditioning of
the resulting system of equations, all J.. for which 7, = 107}'must be set
equal to 0 because they have almost no effect on the value of 'J(¢, ¢').) An
alternative method, which was found to work well in practice, is to put
Jur = G+ Guap + aop’ + awp’, Jo = ao + - - - + aop®, and determine ay
directly from the conditions a®/day = 0. ‘

It remains to decide whether all J. and J,. are guaranteed to be
nonnegative. To this end, it is necessary, according to Eq. (3.30), that the
slope of the curve of é versus (t —¢') at any constant t be always
nonpositive, which is equivalent to the condition

Xy, ¢y 3%y, t') 8L (1, t')
ot —1)-  atat - a0 (.33)

where.L is defined below Eq. (3.8). Thus, the slope of creep recovery
following a stress impulse (as well as any loading of finite duration) must
- be nonpositive. This agrees with all known observations, and so E, must
always be nonnegative. Therefore, the Kelvin chain characterized by Eq.
(3.29) is physically admissible. (A closer examination could reveal a
connection of inequality Eq. (3.33) to the second law of thermodynamics.
In Ref. [88], Eq. (3.29) was rejected because of cases of a positive slope of
the curve of é versus t ~ ¢’ at constant ¢, but now it appears that this must
have been caused merely by statistical scatter.)
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Attention will now be shifted to the Dirichlet series expansion of the
relaxation function (3.19). Inserting it into Eq. (3.5), it is possible to write

o= 2 G,y (3.39

=l
where

g (t)=e""" L ‘ E.(t")e' " {de (¢')— de” (¢")], (3.35)

provided 7,. now equals 7, 10*~ only for p < n, while at 7. = =, E.=E..o,
are hidden stresses (internal variables) characterizing the past history.
They satisfy (and follow from) the differential equations

g, o,
£ + =._'“’ il P SRR (M 3'3
Em am ¢ p=bEoon (336)

with the notation
7. (t) = T.E. (1) 3.37)

1t is now readily seen that Eqs. (3.34) and (3.36)[89] correspond to the
(generalized) Maxwell chain model, Fig. 10(b), whose spring moduli and
viscosities are given by E, and 7, and are age dependent. In contrast
with some of the previous cases of Kelvin chains, Eq. (3.36) indicates the
correct form of the equations for time-variable dashpots and springs, as
mentioned before. Also, E, and 7, are, according to Eq. (3.19), always
nonnegative, because the relaxation curves have always nonpositive
slope.

In conclusion, both the Maxwell chain and the Kelvin chain (with a
proportionate age dependence of 7, and E,) can represent the material
behavior as closely as desired. Thus, they are mutually equivalent, and
they must also be equivalent to any other possible spring-dashpot model,
similarly as in classical viscoelasticity([93, 101). The identification of
material parameters from test data is simpler for the Maxwell chain, and
therefore this model will be used as the basis for the ramifications in the -
subsequent section, despite the fact that the use of Kelvin chain is
conceptually more convenient for interpretation of creep tests. In the
case of Kelvin chain, the identification is, unfortunately, simple only for
such forms of spring and dashpot relations that cannot be brought in
correspondence with the physical processes in the microstructure (88, 89].
However, such Kelvin chains are admissible only when water content and
temperature are constant. '
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4 ENVIRONMENTAL FACTORS AND NONLINEAR EFFECTS
IN CREEP AND SHRINKAGE

4.1 Effect of Temperature and Humldity on Aging

The rate of hydration or aging depends on temperature T and pore
humidity h (relative vapor pressure). This effect may be expressed in
terms of a change of the time scale, considering that all material
parameters [e.g., E, and 7, from Eq. (3.36)), rather than being functions
of actual time ¢, are functions of the so-called equivalent hydration period
t. defined as[67, 100, 115]

t. =Iﬁdt =]prp, dt, @.1)

where B is a coefficient depending on T, B. is a coefficient depending on h,
and g is the relative hydration rate.

Since hydration is a thermally activated process, g+ may naturally be
assumed to obey the Arrhenius equation[102], i.e.

Br =exp [% (_’I!‘.-, - -%)], “4.2)

where U, is the activation energy of hydration, R = gas constant =
1.986 cal/°K, T is absolute temperature, and T, is the chosen reference
value of T. Equation (4.2) is only approximate because, strictly speaking,
hydration consists of several chemical reactions, each of which probably
has a different activation energy. Nevertheless, Verbeck[104] found that
the rates at which the hydration heat is evolved at various temperatures'
conform to the Arrhenius equation with U,/R = 2700°K between 0°C and
100°C and up to 90 days of age. This value has been assumed, with success,
in fitting the data on creep at various temperatures [60] [including Fig. 12(a),
(b), (). '

An estimate of the dependence of B. upon h, based on the
observation[53) that hydration slows considerably below h =0.8 and
other data[54, 55}, is shown in Fig. 11 and may be expressed[67, 115] as
B =~[1+(3.5-3.50)1".

4.2 Creep Law of Mass Concrete at Varlable Temperature

Mass concrete (a term used for concrete inside massive structures) can
never lose an appreciable amount of water and remains nearly saturated,
and so the variability of water content need not be considered, i.e.

Creep and Shrinkage in Concrete 27

N [
"i'o »X {“-
a8 b=
-~ > 1 - hed 4
2}o? at vt

h: | Y

2 3\‘4
& St 3 o
b ™~ =2
el x
o co N o 2 ‘ 30 22 nofsl AL . Oo 05
h h h

.11 Typical dependence of some material parameters on pore hum::iuty h wlc = wa?lcr
:::ss per u:i': mass ol;ccemenl (after Powers, T.C.,and Brownyard, T.C., Smdms| of :hygcrl
Properties of Hardened Portland Cement Paste,” Amer. Concrete Inst. J. 42 ( 94 )). Data
points on « after Monfore's and Jensen's tests. (See BaZant, Z. P. "'l"l'lermodynamu':s '!.‘Il.leot);
of Concrete Deformation at Variable Temperature and Humidity,” Report 69-1 'c : o
Struct. Engrg. and Struct. Mech., Uni. of Calif., Berkeley.. Al.lg. 1969.) Curve CIC, roT
BaZant, Z. P., and Najjar, L. J., “Nonlincar Water Diffusion in Nonsaturated Concrete,

Materials and Structures (RILEM) 5 (1972) 3-20.

h=10, g =1. The main difficulty in formulating a creep law of mass
concrete at variable temperature is due to the fact that len3perature rise
accelerates not only creep (effect 20, Section 2) but .also aging [effect 18,
Eq. (4.1)). Mukaddam and ‘Bresler[106] have consn'iered both of these
effects, replacing time ¢t in Eq. (3.1) with reduced time

toa = [T d

in which ¢, is the usual shift function as used for lhermorheologic:llz
simple materials[78] and proposed for concrete by Sackman[107], an *L
is the corrected age, defined for constant temperature T as t*=
to+(t' — to)e~A"~™, where T and to are chosen reference temperature
and reference age; A is a constant. A modified form of reduced time,

tred = I l’h(T)dl:(‘ - ") d‘,

in which ¢t —t)=dlog(1+t—- t')/dt, was later proposed by
Rashid[108]. These approaches, however, do not allow the creep law ?t
variable temperature to be converted to a rate-type form. This form is
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unavoidable for creep analysis:of large structural systems and is also
necessary to enable th.e use of the well-founded concept of activation
:::rgugi (:f Otherfmally activated processes[102, 103}. Without attempting the
mutation of a creep law that would reflect agi ivati
. _ ging, the activation e

was used in the discussions of concrete i o
creep by Polivka and Best (cf.

Ref. [60]), Hansen[44], Ruetz[29}, Wittmann (28, 51, 97] Maréchal[§9]
and others (cf. Ref. {60)). ’ ’
C.o'nmderl.ng rate-type creep law (3.34), (3.36), one may regard vis-
cosities 7, in Eq. (3.36) as characteristics of various sorts of thermally

activated processes involved in creep d ; .
(3.16)[60, 100}, p deformation. Thus, in view of Eq.

1 1 [U ( 1 1 Iol-—ll
— = — ex —_ey 1 = Uu l 1
M Moo P R \T, T)] E,.(t.)7, exp [—E (71_1; - T‘)], “4.3),

inwhich U, are activation energies of creep deformation (=12

They need not b i istributi A
onelcor not be all equal, and then the simplest distribution is a linear
U.=U+(p-DAU, “4.4)
where U, and AU are constants. Substitution in Eq. (4.2) gives
1"" = a“:'TTEu('t)r (4'5)
in which
_ U/l 1
m=rexpl_ (1L _1
TTh ‘”‘p[ R (T., - T)]
(4.6)

a = 10 exp [*A—l—](-l——l)]
R \T, T/))

From Egs. (4.5) and (4.6), it may be easily deduced[60] that U, causes
§h|ft of t.he. creep curve in the log time to the left and AU c;ause's a:
l(r)lcrease in its slope if U, and AU are considered independently of aging

n the other hand, the acceleration of aging, considered independently of.
U, and AU, causes a decrease of the ordinates of the creep curve

The dependence of elastic modulus E, as well as E,, upon T i
lneglected because its change between 25°C and l()0°é’ is not to:
I;'lrge[s, 60, 109}]. E.quations (4.1) to (4.6) do not apply above 80-100°C

ecause the c!lemlcal composition of cement is altered, and below 0°C
because freezing of water changes the material, and p;obably also for

rapid changes of temperature (eff i
] ect 21, Section 2) becaus i
nonlinear terms are neglected; see Subsection 4.5 ) © certain
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Identification of the material parameters from given test data at various
constant temperatures may be carried out combining the Dirichlet series
expansions at reference temperature, as discussed previously, with the
determination of U, and AU by trials of various values according to the
regula falsi method[60]. Some of the fits of the best data available, as
obtained in Ref. [60] for the creep law characterized by Egs. (3.34), (3.36),
and (4.4) to (4.6), are shown in Fig. 12(a), (b), (¢). (The average value for
U, is about 10,000 cal.) Unfortunately, it is found that the data presently
available are insufficient in scope for unique determination of U... In fact,
equally good fits were obtained [60] with either constant or variable U.
Close fits would also be possible with other (more general) dependence of
7. and ¢, upon T, and so the fits of the test data presently known may not
be interpreted as a proof that creep is a thermally activated process. But
if the activation energy concept were not imposed, the degree of
arbitrariness in material identification would be even higher. Thus, the
purpose of the activation energy concept, as introduced here and in Refs.
[60, 100), should be seen in the reduction of the number of unknown

material parameters.

4.3 Microdiffusion Mechanism of Creep and its Thermodynamics

At variable water content w (per unit volume of material), the strain
history depends not only upon the stress history, but also upon the
histories of water content w and temperature T (as is apparent from
effects 9, 11, 12, 16, 17, 21-23, 26, 29, Section 2). As this functional
dependence cannot be assumed to be linear, the number of unknown
material parameters that would have to be introduced in formulating the
constitutive equation becomes so large that, in addition to the limited
creep and shrinkage data presently available, further information on the
constitutive equation must be deduced from a material science type
theory of the processes in the microstructure. '

The walls of the pores in cement paste restrict the motion of adjacent
water molecules and retain them in a fixed position for a certain “lingering
time” (from 107" sec up), forming thus absorbed water layers. Their
maximum thickness reaches 5 molecules[43, 110}, so that a pore in
cement paste must be at least 10 molecules (or 263 A) thick to
accommodate the complete adsorbed layers on two opposite walls. Such
pores, called macropores, usually contain air with water vapor and, at a
higher saturation, also capillary water if they are large enough to
accommodate the capillary meniscus. Pores that are less than 10
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Fig. 12 (a) Hannant's tests of creep at various temperatures. Cylinders cured S months ir
waler at 20°C, then sealed by copperfoil; 28-day cyl. strength 7800 psi; water-cement ratic
0.47; Oldbury limestone aggregate, stress <} strength; &, is instantaneous strain; solid lines
show !its from Ref. {60] by Maxwell chain. (Data cxtracted from Hannant, D. J., “Strain
Behavior of Concrete up to 95°C under Compressive Stresses,” Conf. on Prestressed Con-
crete Pressure Vessels, Group C, Paper 17, Institution of Civil Engineers, London (1967)
57-71.) (b) Arthanari and Yu's biaxial tests of creep at various temperatures. Specimens
sealed by epoxy coats; raised to test temperature 1 day before loading; cube strength
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molecules thick will be called micropores. From the enormous internal
surface of hardened cement paste (Section 2), it has been estimated that
the solid particles of cement gel, believed to be essentially laminar in
shape, are typically 30'A thick and are separated by pores of average
thickness 15 £[43]. Hence micropores must constitute the major part of
pore volume in cement gel. At a high enough degree of saturation by
water, the micropores are completely filled by adsorbed water layers that
cannot develop their full thickness, and are therefore called hindered
adsorbed water layers. (These are assumed to include not only the
physically adsorbed water[41, 110}, i.e. molecules bound by van der
Waals forces, but also the chemically bound interlayer hydrate
water[35,64] not more than 2 molecules in thickness; see Fig. 13.)
Molecules in adsorbed layers are not held permanently and can diffuse
along the solid surface. Such surface diffusion processes, also involving
diffusion of some comiponents of the adsorbent solids (Ca ions), cause a
change of mass and thickness of the hindered adsorbed layers and are
now widely belicved to be the dominant mechanism of the time-
dependent deformations of concrete under moderate stress levels.
Without solids diffusion, the aforementioned micromechanism was first
proposed and thermodynamically discussed in 1965 and 1966 by
Powers[43, 110], although a nonthermodynamic quantitative analysis had
been made already in 1959 by Hrennikoff [111] and vague suggestions had
been given by others in the 1930s{112, 113]. Partly different or even rival
views of the creep and shrinkage mechanism were advanced by Feldman
and Sereda[63, 64) and Wittmann[54, 114], without attempting to set up a
constitutive equation (cf. also Ref. [116]). Powers’ ideas were extended
and translated into mathematical forms, which include solids diffusion,
and the appropriate macroscopic constitutive equation was derived in

6000 psi; water-cement ratio 0.564; max. aggregate size in.; biaxial creep converted to
uniaxial data using » = 0.2; ¢, is initial instantaneous strain; solid lines show fits from Ref.
(60) by Maxwell chain. (Data extracted from Arthanari, S., and Yu, C. W,, “Creep of
Concrete under Uniaxial and Biaxial Stresses at Elevated Temperature, Mag. Concrete Res.
19 (1967) 149-156.) (c) Creep ftests at various temperatures and stress Jevels by York,
Kennedy, and Perry (data on tests F-33, E-39, B-4, B-7). Specimens cured 83 days, sealed by
epoxy and copper jackets, at 73°F; then raised to test temperature and tested; 28-day cyl.
strength 6000 psi; water—cement ratio 0.425, limestone aggregate of max. size § inch; stress
< 0.4 strength; ¢, is initial instantaneous strain; solid fines how fits from [60] by Maxwell
chain. (Extracted from York, Q. P., Kennedy, T. W., and Perry, E. S, “Experimental Inves-
tigation of Creep in Concrete Subjected to Multiaxial Compressive Stresses and Elevated
Temperatures,” Research Report 2864-2, University of Texas, Austin (1970).)



32 Zdenék P. Bazant

Fig. 13 1dealized microstructure of hardened Portland cement paste. d—physically ad-
sorbed water; h—interlayer hydrate water; a—free adsorbed water; c—capillary water;
v—vapor; thickness-to-length ratio of particles is strongly exaggerated (after Ref. [116].)

1968 (cf. Ref. [100]) and further refined in subsequent years[68, 115, 116].
This formulation serves as the basis of the exposition in the sequel. For
the sake of brevity, only a simplified and abridged sketch will be given;
for a detailed treatment see Ref. [116]. '

Alternative constitutive equations for porous materials with variable
water content have also been studied in the spirit of modern continuum
mechanics (but without quantitative relation to micromechanism of
creep) by Creus and Onat{117] and Stouffer and Wineman{118, 119].
Their equations, however, have been linear and capable of modeling only
very few of the effects listed in Section 2. In a very general context,
concrete belongs to the class of interacting continua or mixtures whose
thermodynamics was discussed by Bowen[120] and others, without any
reference to concrete.

The usual formulation of surface thermodynamics[121, 122] due to
Gibbs (dealing only with surface excess quantities) cannot be applied to
hindered adsorbed layers (Fig. 14) because it implies zero thickness of the
surface phase and prevents thus consideration of the changes in thickness
21, of the layer. Whereas extension to finite thickness[123] is useless for
sorption studies concerned with pores that are not filled by adsorbed
water (and is also dubious in view of the ambiguity in defining the

thickness of the adsorbed layer), it is requisite[116] in the case of

adsorption between two solid surfaces (whose change in distance can be
defined rigorously).
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The total energy U. per unit mass of vy.ate( in .thg hindered Eds:r‘t;&(,i
layer (Fig. 14) is defined by the total differential dﬂ:, = TdS. g
where T dS. is heat supplied to the unit mass of water, S. is entropy p:r
unit mass of water, dW =— wld@T. N+ p. dlal!‘., = w0rk_|d.one on the
unit mass, I is half-thickness of the layer (Fig. 14), [ is the a}rea
covered by the unit mass of water, T, is surface mass cm.\centraflon,
i.c., mass of water per unit area of layer and lfalf-thlckness, pw
is transversal pressure due to water (t‘orce: per unit area of Ia{ter);
called disjoining pressure; ., is total sp.readmg pres§ure, ie., rlesu :1;‘1
(over half-thickness l4) of the compressive .st.resses in watel: a or(;g e
layer. To deal with systems of variable mass, it is expe_«_ilent to m_tlroT:f:e'a
new potential that depends on T and . ms_tead of S. al'ld I_‘;. ]5'{{ is “i
achieved by Legendre transformation p. = U...- TS. + Jr..,l".. |(i ;1 c‘atretnl
tiation and substitution of the previous expres_)?lon for c_lU., yie é:) be f0 ac
differential dp, = — 8. dT +T.” dm., +p. I, dl; po is c.:alled ibbs ren
energy per unit mass of water, or chemical po!ennal. Similar relauon:: ca
be written for solids in the layer, labeled by s instead of w. Thus, realizing
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/SE N B-
IR LI ey

Wobesqbees /{(l‘-(':[-/:{-".'
T on oot
| e 2 T P
o TEOARE il )
33 | Y TR I L 'Li-_ (@
UYL
() 1 SOLIDS - WATER

i i thicknesses. (a), (b) near
14 ldealized hindered adsorbed water layers of various thi . .
::furétion humidity; (c) at medium humidity; (d) at very low humidity. (Adapted from Ref

[1251)



34 Zdendk P. Bazant

that chem.ical potential must ‘also depend on the relative surface
concentration of solids, defined as ¢ =T, /(T", + I'.), one may write

dﬂvw-—- _gw dT+r.—' d,"."'_p”l"'—l dI‘ +.Qa%d§

dp. = =S, dT +T,” du’~ p,I," dl, +%’? d.

However, the terms with d¢ will be omitted in the subsequent analysis
beca}lse changes in ¢ are unessential for explanation of the effects from
Section 2 to be considered in this section. (The present formulation also
neglects electric phenomena arising from the fact that the diffusing solids
are probably mainly calcium ions.)

Consiqer now a specified region a of the layer (referred to by
:ﬁzupe.rscnpt «) to be in equilibrium with its surroundings. Imagine an
mﬁn!tesimal deviation from equilibrium in which mass dN,” is transfer-
red. into region a from some region B, which may represent another
region of the hindered layer or some phase of water in the adjacent
macropore (water adsorbed on its walls, capillary water or water vapor)
The c.hange of the Gibbs free energy of water in the regions « and ﬂ
f:ombmed is d9=p."dN." + p.*(— dN,”) = (n." — i) dN,°. Accord-
ing to the second law of thermodynamics, d9 <0 for any finite change
toward equilibrium, and d9 =0 for any equilibrium (j.e. reversible)
ch?nge gnd for an infinitesimal deviation from equilibrium. Hence
pw" = pw” =0. Thus, in equilibrium the chemical potential of one
component (e.g., water) must have the same value in all parts of the
systel.n that can exchange mass (a result well known in general from
chemical thermodynamics[123]). (Rigorously, the chemical potential
repress:nts a tensor[116, 120], but for the present discussion this
complication is unnecessary.)

Thus, thermodynamic equilibrium is characterized by zero gradients of
t and p, within the layer and, consequently,, the isothermic diffusion
fluxes J., J, of water and solids along the layer depend on these gradients
For sufficiently small gradients, the dependence must be linear, i.c. .

0 S Pllid Cirfag “9
J, a,. a, jlgradp,J’
where a.., ...are diffusion coefficients. Their dependence on tempera-

ture ought. to obey the activation energy concept, i.e. be similar to Eq.
(4.3). (By Onsager relations(124), a., = a...) Conservation of mass

“4.7)
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requires that T T )

TR div J,», i div J,. “4.9)

The equation of state of the hindered adsorbed layer is analogous to
Hooke’s law and can be shown[116] to have (for df = 0) the form

{dpw ]= [Ch. Cw ]{—' d’d”‘ + a.'. dT (4 10)
dullls C. GCull dI' T, +aldT) :

in which C;., Cz., C. can be regarded as elastic moduli and a., al as
linear thermal dilatation coeflicients. (They can all be expressed as second
partial derivatives of Helmholtz free energy F. per unit mass of water
(F, = U, — T§,)) with respect to l,, 'y and T[116).) A similar equation of
state may be written for solids in the layer.

In thermodynamic equilibrium, the thickness, L., of the (unhindered)
adsorbed water layer on the walls of a macropore is larger, the higher is
humidity h (relative vapor pressure) of the vapor in the macropore.
(Thicknesses of 1, 2, and 5 molecules occur, at 25°C, for h =0.12,0.51, 1.0,
and } of monomolecular layer occurs at h =0.03[{43].) A pore of given
thickness becomes filled by adsorbed water at a certain humidity h = h;,
for which I, =1I, (actually even earlier, because of the formation of
surface meniscus). The corresponding transversal pressure p, = p, is
probably small, p, =0. But for h > h;, when full thickness [, cannot be
accommodated on both surfaces confining the layer, p. becomes very
large. Imagine an equilibrium process in which h is gradually changed at
constant T while I, is kept constant. The change of chemical potential of
vapor in the macropore u, may be expressed assuming the vapor to obey
the ideal gas equation, p./p. = RT/M, where p, is vapor pressure, p, is its
mass density, M = 18.02 g/mole = molecular weight of water, R =
82.06 cm’ atm (deg K X mole)™' =gas constant. Then, at constant T,
dp, = p,”' dp, = RM'Tdp.|p. = RM~'T d(In h). The equilibrium change
of chemical potential in the layer must be the same, i.e. dp. = dp..
Integrating, one shows that the chemical potential of water in any phase
that is in equilibrium with vapor of humidity h equals

pe =RM'Tinh+pulT), - @.11)

where p... is the value of p. at h = 1. Furthermore, eliminating dT"., from
Eq. (4.10)[116], one obtains

dp. = %’ dw),  atdl,=dT =0, 4.12)

and so
dp. = v.p.RM'Td(In h), at dly =dT =0, 4.13)
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in which ». = C.,/Csw, p« =T./li Equation (4.13) is valid for both
completely and partially filled pores. If the pore is filled, ». and p. are
probably almost constant, and Eq. (4.13) can be integrated, furnishing the
equilibrium value:

pw = pw(h, T) = prwRM-.T ln h + p|(T), (4-14)

in which py(T)=p,(h, T)— p.(h, T). For example, for a pore of two
molecules in thickness (h, = 0.12), and with p, =1g/cm’, ». =0.6(125],
and p, =0, Eq. (4.8) yields p. = 1720 atm at 25°C and h = 1.0. This huge
pressure is resisted by the solid framework in the material. It explains, in
part, the small tensile strength and also the increase of strength due to
drying (effect 28, Section 2), becatse p. drops with h.

For a hindered adsorbed layer of specified geometry, the time variation
of thickness I, due to a given history of the resultant of pressure p. at a
given history of T and h can be solved from differential equations (4.8),
(4.9), (4.7), and (4.10) with appropriate boundary conditions for p., [see
Eq. (4.14)). Numerical studies of this initial boundary-value problem[125}
confirm that several effects in creep due to variable humidity (effects 11,
12, 16, 21, Section 2) can indeed be modeled, provided a,, and a.. are
considered to be dependent upon grad u. and grad u, (which makes the
problem nonlinear). Two types of hindered layers are considered: a layer
of uniform thickness l, filled over the whole area and a layer of variable
thickness between two spherical surfaces in which the filled region varies
its area. It is found that for modeling the main phenomena in creep, the
simpler model of a layer of uniform thickness is sufficient. (In the unfilled
region, the dependence of C., Ci., C,. upon I'., derived in Ref. [125}, is
quite strong and adds to nonlinearity of the problem. A simplified
statistical-mechanical theory is available for the equilibrium states in this
case[116, 126}.)

4.4 Constitutive Equation at Varlable Temperature and Humidity

The creep mechanism outlined in the previous section is only a
hypothesis. However, as later discussions will show, it allows for
modeling and explanation of most of the effects listed in Section 2, which
speaks strongly in its support. '

To relate the equations for the diffusion in the micropores to the
macroscopic stress—strain relations, a hindered adsorbed layer of uniform
thickness 2l; will now be treated in a rather simplified manner, using
solely quantities averaged over the whole layer. Because the creep strains
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observed are always small, the average change of I, must also be small.
On this basis, the term with dl; may be neglected in Eq. (4.7)[116), and
relation (4.7) may be utilized. If -the layer is assumed to be initially in
thermodynamic equilibrium (characterized by T = To, pv = Puss B = flun,
h = h,, etc.), then Eq. (4.7) with Eq. (4.12) yields, for a sufficiently small
deviation from the initial state,

fo = pom = = 8 (T = T) + L' (Pu = P,
s = flag = — s-l(T - To) + I‘.‘_lldl’.-'(p. - pt)'

Within the adjacent macropore, migration of water molecules is relatively
very fast, so that the water adsorbed on its walls, as well as the capillary
water, may be assumed to remain in equilibrium with water vapor of
humidity h at any time. Thus, according to Eq. (4.11), the values of p., p.
at the boundary B between the hindered layer and the macropore are

RT h
M T hy

4.15)

P’ = P =— S (T— To)+
Fq-. T e =T SHT-To),.

in which the transverse pressure in solids in the (unhindered) adsorbed
layer is taken as p,” =~ p,,” =0. The average mass fluxes into the layer are
ful'w /L4 and £, /L., where fi is the area of the layer, L. is length of its
boundary with the macropore. Thus, in analogy with Eq. (4.8),

riviod B i oot SR

4.16)

, whére D is a certain average distance (;f fiow. From Eq. (4.10),

g-'!=c,:—"+1é!—&,1~, 4.18)
w d w

where ¢. = Cin/C., @ = a’+ c.al. To correlate the microscopic quan-
tities with macroscopic (uniaxial) strain e and the macroscopic stresses, it
will be assumed that

L, =é_:‘§£'("%—'211‘1 P.—P..,=:‘;'fe‘, p-v"'pm:':}(fe—’ “4.19)

where n, may be visualized as double the number of hindered adsorbed
layers of a similar type intersecting a unit length in the material and f, as
the total area occupied by these layers per unit area of the material; o,
and ¢, are macroscopic hidden stresses due to solids and water in layers
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of a s:»imilar type; es(h) and a,T are shrinkage strain and thermal
dlla{ahon due to solid particles between the hindered layers. Now, if Eqs.
(4.19), (4.15), (4.16), and (4.18) with a similar relation for I', are substituted
into Eq. (4.17), one obtains

G, + du 0y, + o, (0w, — fu(h, T)} = E,’ (€ — és(h) - o' T),
a"“’u + ¢"~'p0'» + ¢W"'p [0'..,‘_ - fu (h’ T)] = Enw (é —~és (h) - a“wT)’

where

(4.20)

E . _ fdzcl F;Cg

w ? WFWCW
E, =&c—-—, 4.21)

naLJl; ° . naLJl,
s, = gv'—‘l;’_ . ”%1‘;&" 4.22)
o, = St G, = St
o = % @ = "—c‘f‘—l‘:% a, 4.23)

fu(h, T)=0,* + v..,{ﬂ(sw" _S.XT-T),
4.29)

Oy = v".l:-i'f_ F .
The difference in entropies of solids, S,° — S,, has been considered here as
negligible for lack of any evidence to the contrary. Subscript p =
l,' 2,...,n is appended to all coeflicients in order to distinguish between
hindered adsorbed layers of various types (in area, thickness, for
example) characterized by different rates of the diffusion processes. The
condition of equilibrium of hidden stresses may be written as

w_ Ja RTln (ho)

2 (o to)=0. (4.25)

.In a more rigorous approach, Eqgs. (4.20) can be derived from the
pf‘m(flple of minimum entropy production[98] introducing assumed
d.lstnbulions instead of averaged quantities (cf. Ref. [115]). But expres-
stons (4.21) to (4.24) would then be more complicated. .

For lack of experimental information on the microstructure, it should
not be expected that the material parameters could be predicted from
Eqgs. (4.21) to (4.24). The merit of the foregoing considerations is to be
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seen mainly in the fact that a rational form of the constitutive equation
has, been deduced. -

The temperature dependence of the diffusion coeflicients a.., . .. in Eq.
(4.8) may logically be assumed to obey the activation energy concept.
Thus, in view of Eq. (4.22),

Pov, = lnbr, b = Phbr, b=,
with

-3 )

where ¢*,,...are coefficients that depend on h, approximately in the
form indicated in Fig. 11, and also on the stress level. Equation (4.3),
introduced previously for creep at variable T and constant water content,
is thus a special case of the present formulation.

Adding Egs. (4.20), we see that the rate-type creep equation (3.36) for
constant h and T is a special case of Eqs. (4.20) if ¢, + Pu,, =
¢sw, + G, = E /0 = 17, ES+E.S =E,, o, t0u, =0, Thus, Egs.
(4.20), along with Eq. (4.25), may be viewed as a generalization of the
creep law based on Maxwell chain, which was previously found fo be a
suitable model and may be visualized as is shown in Fig. 15, in which
moduli E.’, E,” are interpreted by the springs, and the diffusion processes
of various speeds, corresponding to rate coefficients ¢..,,..., are
depicted by the layer-shaped diffusion elements. In view of this result and
the discussion of the data fitting by Dirichlet series in Section 3, it is no
infringement on generality to assume that, at low-stress levels,

oho=gt =L gh=¢h.=% for h=1, (427
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Fig. 15 Idealized model of the interaction of water and solids with diffusion clements of
various relaxation times. (Generalization of Maxwell chain from Fig. 10(a).) ’
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where c,. is a function of u, and =, is given by Eq. (3.16). Equality of ¢%,,
and ¢.., is also justified by the fact that significant coupling can exist
only between diffusion processes of roughly equal rates.

Equations (4.20) and (4.25) interpret creep alone when all stress-
independent terms are neglected, i.e. ¢,°= ¢, °= £, =0. The mechanism
of creep may be imagined as follows. As macroscopic compressive stress
o is applied, transversal pressures P, p. and, according to Eq. (4.10) or
Eq. (4.12), spreading pressures #’ and 7', are increased, This alters p,
and u. [Eqgs. (4.15) and (4.7)] and destroys thermodynamic equilibrium
because w.” ju.” in the adjacent macropore is not affected. As a result,

solids and water begin migrating out of the hindered adsorbed layers, and-

their thickness l. is thus decreased. If tension is applied, the reverse
process is set off.

Drying shrinkage (Fig. 16) is interpreted by Eqgs. (4.20) and (4.25) as the
strain at o = T =0 that is due to es(h) and o, (Their approximate
dependence on h is shown in Fig. 11.) Thermodynamic equilibrium
between the hindered layer and the macropore is characterized by the
condition o, = f, (h, T). If pore humidity h drops down, p..® is decreased
[Eq. (4.11) or Eq. (4.16)), and the initial thermodynamic equilibrium is
destroyed. In Eq. (4.20) this is manifested by creation of a nonzero
difference a., — f.(h, T). As a result, water molecules start flowing out of
the hindered layers and drag some solids in the layer with them. The
inherent gradual loss of solid mass per unit area of the layer causes a
gradual decrease of the thickness. This type of shrinkage, reflected by
terms 0., is always delayed with regard to the drop in h. (In contrast with
creep, the delays probably do not exceed one month; effect 23, Section 2.)
Noteworthy is the fact that the delayed shrinkage is governed by the same
hidden stresses as the creep. This conforms with the identity of their
physical mechanisms.

In addition, a drop in h also results in higher surface tension (or lower
spreading pressure) on the walls of nonsaturated pores. To equilibrate the
surface tension, compression stress is immediately generated within the
solid particles, giving rise to elastic compression, manifested as shrink-
age. This type of shrinkage, reflected by the term es(h), appears
immediately with the drop in pore humidity. :

Shrinkage stress is the stress induced by shrinkage when some
deformation component is prevented, e.g., € =0. It is instructive to
realize that, for the simplified case ¢.., = .., = & =0, and for h(t) in the
form of a step function with step at t, (which can occur only in infinitely
thin specimens), integration of Eq. (4.20) leads to the Dirichlet series:
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()=, o, ()=, o, (to)(1 —*"¥). 4.28)

This is only that part of shrinkage stress that is du? to.dclayed shrinkage;
and it is noteworthy that it varies monotonously in time because all o,
are of the same sign. Superimposed upon'it is the part due. to ?nstanta—
neous shrinkage €s(t), which may reach a maximum at a finite time (and
so may the total shrinkage stress; cf. Fig. 27). - .

If a phenomenological approach were taken, thl.l the Dirichlet series
expansion of the stress induced by delayed shrinkage would show,
without reference to any physical model, that terms of the type of f.

ould appear in Eq. (4.20). : '
Sh'l“lll::rm[;ﬁiilatatioﬂs of concrete are known from experiments to be an
extremely complicated phenomenon (cf. Ref. [68]?. They d.epend strongly
on water content and exhibit an a[tereﬁ?ct, i.e. continue af!er the
temperature change has cea:cc‘l’.[(;l;yl Ip6I;ys1cal source, three different

ts can be distinguishe . X . )
CO;'TP;::: thermal dilatation, which is due to the thermal dl!atntlor
coefficients «,’, a,.” for solids and water. Bccau§e pn:obably a, >a,”,
warming creates disjoining pressure in water, which, in turn, induces a;
flow out of the hindered layer and leads to some recovery of therma
dilatation. This effect must be smaller, the lower the water content.

2. Thermal shrinkage or swelling, which is intrqduccd th.rough the
terms f,(h, T) in Egs. (4.20) and is caused.by the q.lgerenc.e in egtrop_)_r
densities, 5.° — S., in Eqgs. (4.24). Considering t!lat SV=82+Q,°IT.=
S. +Q.ITo, where S is the entropy per unit mass of vapor in thie
macropore, and Q., S., Q.", 5.” are latent heats and entropies per un t
mass of adsorbed water within the hindered layer and on its boundary, i.c.
on the walls of the macropore, one obtains

3 _Qv:_Q_-: 4.29
SP-8, =: T 4.29)

Here always Q. > Q.” and §.” > S. because the water molecules withir;
the hindered layers must be held stronger than those at lhe. walls o
macropore (and must also exhibit less di.sorder). 'I'huz, according to Eq.
(4.7), warming destroys initial equilibrium p. = p. ] and produces :
difference p. — u." >0, setting off a flow out of the !nndcred Ia){ers ‘:n ,
causing some of the dilatation to recover \‘mllt\ a certain delay. This effec
less at a smaller water content.
a_IS:: 'l'*‘l‘;'sgtr:t‘:lermic dilatation, which is introduced th.rou_gh the lermts f,;
and o,*. It is due to the rise in h that is produced by arise in T at constan
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Fig. 16 (a) Hansen and Mattock’s data on the effect of size on shrinkage and creep of
specimens drying at h, = 0.50. Cylinders sealed at ends; 28-day cyl. strength = 6000 psi;
Elgin gravel (92 percent calcite, 8 percent quartz) max. size § in., 500 Ib of ASTM type 111
cement per cubic yard of concrete; cured 2 days in mold and 6 days in fog at 70°F; tested at
70°F; loaded and exposed to drying at 8 days of age; stress =~} of 8-day strength; Young's
modulus at loading = 3.7 x 10° psi; h-values in the figure indicate measured k in the axis of
cylinder. The solid lines are the fits[166) obtained for £} = 500 psi, S, = 260 psi, S, = 0.0011,
C. =0.032in.’/day, and B =0, according to Eqs. (4.34a) to (4.34c). (Data for 1777 psi are out
of range of the thcory and are not fitted.) (Data points constructed after Hansen, T. C., and
Mattock, A. H., “Influence of Size and Shape of Member on the Shrinkage and Creep of
Concrete,” Amer. Concrete Inst. J. 63 (1966) 267-290.) (b) Weil’s data on the effect of size
on shrinkage and creep of specimens drying at h, =0.65. Cylinders, 4 diameters long;
concrete of 246 kgf/cm® cyl. strength and 306 kgf/cm’ cube strength, 28-day el. modulus at
10th loading 269,000 kgf/cm®; water—cement-aggregate ratio 0.52:1:5.4; Rhine sand and
gravel (mostly quartz); 7 days of moist curing, then exposed to drying (t. = 7); loading at
t' =28 days; 20°C; shrinkage or creep time shown is measured from instant ¢, or (',
respectively; creep strain does not include instantancous strain; measured on the middle
half-length, on the surface. (Data adapted from Weil, G., “Influence des Dimensions et des
Tensions sur le Retrait et le Fluage de Béton,” RILEM Bull., No. 3(1959) 4-14, Figs. 5,6.)

w and is characterized by the hygrothermic coefficient x = (3h/3T). =0
[cf. Eq. (4.38) below]. This causes an increase of u.” and generates flow
of water into the hindered layers, which causes them to expand. This
dilatation is also delayed. It represents continued dilatation rather than
recovery. It is zero at h =0 and reaches maximum at h =0.7, as is
indicated by the diagram of « in Fig. 11. At h = 1, it is negligible (except at
temperatures above 100°C, at which it can be large because the high

_pressure of the steam in the macropores is no longer negligible as a

loading of the material).
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As a resuit of this complex picture, thermal dilatation depends on h and
on time, as is qualitatively indicated in Fig. 17[68]. Existing test data (cf.
Ref. [68]) support this qualitative picture, but are probably insufficient to
formulate the phenomenon quantitatively.

Fig. 17 Typical delayed thermal dilatations at various humidities h (after Ref. [68]).

Imposing the condition of isotropy, one can generalize Egs. (4.20) and
(4.25) to multiaxial stress as follows:

6." + 450" + bl LV DI=3K € - &) -a'T),
d.“’ﬂv +'¢x’»0’uv + ¢:"u[a“’nv - f#v(h’ T)] —;' 3K»'(év - éS(h) - au'T)l( ) )
6. +¢n0."+¢0.0.°=2G'¢°
- D D D D D _ weD (4-31)

a“’» + ¢Wlual,. + ¢ww”aw, - ZG,‘ € ,

> (@, +0.")=0",

" 4.32)
> (o, +0.”)=0" p=012...,n '

where superscripts V and D distinguish between the volumetric and the
deviatoric components of stress and strain tensors o = [0y] and € = [¢]
and label the corresponding coefficients. Note that, because of isotropy,
no stress-independent terms analogous to f, and es can appear in Egs.
(4.31). [Actually, the incremental creep properties at high stress seem to
be distinctly anisotropic, but experimental information is insufficient for a
realistic generalization of Egs. (4.30) to (4.32).)
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Recalling the discussion that justified Eq. (4.27), one may assume that,
at h =1 and low-stress levels, ¢} = ¢0., ¢, = duw,, etc.

According to the present model, the deviatoric creep is not mainly
controlled by a slip but by diffusion from compressed layers normal to
one principal direction of stress deviator into expanding layers normal to
another principal direction[100, 115), while the volumetric creep corres-

ponds to equal compression of layers of all directions and diffusion into

the macropores. A slip may also be involved in creep deformation, but
seems not to be the rate-controlling process, since otherwise, for one
reason, it would be hard to explain that, in contrast with metals, polymers,

‘and (highly porous) clays, the volumetric creep is equally pronounced as

the deviatoric creep (effect 4, Section 2). (Furthermore, slip could not
account for the similarities between shrinkage and creep, apparent from
effects 11, 14, and 16, Section 2).

The fact that at constant pore humidity h the creep rate is greater, the
higher is h (effect 9, Section 2) (Fig. 18) [28-33] may be explained by
considering that hindered adsorbed layers of different thicknesses and
areas (Fig. 14) contribute to creep. The mobility of solids must be
contingent upon the presence of water since in a perfectly dry state the
creep is very small{28-33]. Thus, as thicker and thicker layers become
filled at increasing h, more and more solids become mobile, and the creep
rate must grow. The main increase should occur at higher humidities
(effect 9, Section 2), at which the thicker pores with weaker held and
potentially more mobile solids [Fig. 14(b), (c)] become filled.

Extending the original Powers’ ideas on adsorbed water[43,.110}, the
diffusion of solids including dissolution of solids from the solid surfaces
and their reprecipitation at different locations has been proposed as an
essential part of the creep mechanism[100, 115, 116]. This mechanism,
which has not been previously included in the mathematical formulation,
should be regarded as a hypothesis. Though it has not been experimentally
confirmed (and could hardly be, because of the extremely small amounts of
solids that need be involved to account for the small creep strains), it is
plausible because hydration, as any chemical reaction, may be reversed
when the sign of the free energy difference is altered due to a change ino or
h, and because the solid microstructure is rather mobile, as is evidenced by
the fact that cracks heal under compression[71}] and hydrated cement
powder can be compacted into a solid body by pressure at room
temperature[63). The hypothesis of solids diffusion is inevitable if one
should explain phenomena 1 to 7 listed below. »

1. If there were no solids connecting the opposite surfaces in the
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FI?.. lds Wittmann's tests of creep at various constant water contents. Solid cement paste
cylinders ltix 60 mm; water-cement ratio 0.4; cured sealed for 28 days at 20°C; then dried in
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hm(.iered lzfyer, either the surfaces would collapse together on complete
drying, which would yield a large shrinkage strain (of the order of 0.1), or
asharp elastic modulus drop would occur, none of which is true (effect 16)

2. If the solid particles confining the hindered layer actually came t.o
contact on full drying, the creep that follows rewetting could not be
greater than the previous swelling, which contradicts effect 16 Section 2
On the other hand, creep must be unbounded if solids can dis’solve from.
the surfaces confining the layer, diffuse out, and precipitate near the
entrance of the layer [2 in Fig. 19(b)].

3. The s.ubstantial decrease of the internal surface area (accessible to
water), w'hlch is caused by wetting-drying cycles (effect 30, Section 2) can
be explained only by assuming that the diffusing water molecules knock
out some of the solid molecules over their activation energy barriers
exerting thus a drag on the solids and driving some of them toward the’
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Fig. 19 Various hypothetical stages in relative displacement of two solid adsorbent parti-
cles of cement paste at swelling followed by crecp; crosses = solids, dots = water (after Ref.

[12sp.

entrances to the micropores, where they precipitate and block the access
into the pore [9 in Fig. 14(a)] or create inaccessible enclaves [8 in Fig.
14(a)). This effect should be again more pronounced when the
wetting-drying cycle reaches into higher h (as observed in Ref. [63)
because thicker pores with more mobile solids become involved. The
changes of pore structure due to diffusion of solids also explain the
significant hysteresis of desorption-sorption isotherms (effect 30, Section
2) and other irreversibility (effects 22, 10, Section 2).

4. Blocking of the micropores by the diffusing and reprecipitating
solids (Fig. 14) can be caused by only a minute amount of solids. This can
explain why creep properties continue changing with age long after the
growth of elastic modulus with age has ceased (effect 19, Section 2).

5. The aforementioned blocking, together with an increase in area and
transverse stiffness of the hindered layer due to solids reprecipitating near
its boundary [Fig. 14(d)}, can explain why, after a long period of creep, the
elastic and creep compliances for subsequent load increments decrease
(effect 8, Section 2), and probably also gain anisotropic form.

6. On reaching full saturation, creep does not drop, even though water
transfer to macropores becomes hindered; see p. 49.

7. Finally, it appeared impossible to model the drying creep effect (item
11, Section 2) (Figs. 20 and 21) without diffusion of solids[125, 166].

The smallness of the drop in elastic modulus on drying (effect 10,
Section 2) implies that the stiffness of solids across the layers must be
much higher than that of water, or E,* > E,” (roughly E,” =0.1E,’). This
is further supported by the fact that the volume compressibility of water
is much higher than that of concrete[100]. Thus, the applied load is
carried across the layer essentially by solids; i.e. water is not important as
a load-bearing component, contrary to a previous hypothesis[43, 110].
However, by means of the disjoining pressure caused by a change inh
[Eq. (4.14)}, water can introduce into the microstructure large forces.
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Fig. 20 Ruetz’s data on creep of drying and predried specimens. Solid cement paste
cylinders 17x 60 mm, 28 days old; moist cured; water—cement ratio 0.5; stress o =
100 kfg/cm®, at 20°C; ¢, €, =6-day creep strain at evaporable water content w, and at
saturation value w, = w,; €, = instantaneous (elastic) strain on loading; approximately
w,/w, =~ h; drying specimens were exposed from the moment of loading to air of h yielding
equilibrium water content w, ; predried specimens were deprived of evaporable water before
the test in oven at 105°C and then saturated to equilibrium at w, prior to loading. (From
Ruetz, W., “An Hypothesis for the Creep of Hardened Cement Paste and the Influence of
Simultaneous Shrinkage,” Int. Conf. on the Structure of Concrete, held in London, 1965,
Cement and Concrete Assoc. (1968) 365-387.)

In view of the smallness of creep strains, the amount of water expelled
during creep from the micropores into the macropores (or vice versa)
must also be small, probably much less than 0.1 percent of the volume of
concrete (since typically creep strains do not exceed 0.001, and even this
is not due entirely to water but also to expelled solids). From
sorption-desorption isotherms (Fig. 11), it is evident that a small change
in water content of unsaturated concrete cannot cause a large change in
pore humidity h. Consequently, assuming the same to be true for the
water content of the macropores taken separately, one concludes that
pore humidity h is not seriously affected by loading. Comparisons in
measured h between loaded and unloaded sealed specimens[44], as well
as in the water loss between loaded and unloaded unsealed speci-
mens|3, 42-44] (item 13, Section 2), confirm this conclusion. Further-
more, no effect of load upon the macroscopic diffusivity of water [C in
Eq. (4.40)] has been observed.

Thus, fortunately, the problem of macroscopic water diffusion in
concrete (the drying problem), discussed in Subsection 4.6, may be
considered as independent of the stress and strain problem. But the
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Fig. 21 ‘Troxell, Raphael, and Davis' data on creep and shrinkage at various humidities.
Tests of longest duration known; 28-day cyl. strength ~2500psi§ stress = | strength; 10°F;
cement type I; water-cement-aggregate ratio 0.59:1:3.67; granite aggregnt?; 1.5in. max.
size; 4 x 14 in. cylinders, unsealed. The solid lines are fits[166) for £, = 400 psi, S, = 300 psi,
S.=0.0008, C, = 0.025 in.}/day, and B = 0.4, obtained according to Egs. (4.34a) to (4.34c).
(From Troxell, G. E., Raphael, J. M., and Davis, R. W., “Long Time Creep and Shrinkage
Tests of Plain and Reinforced Concrete,” Proc. ASTM 58 (1958) 1101-1120.)

reverse is not true at all, and so the drying problem must be solved prior to
analyzing stresses and strains. )

A fully saturated concrete containing no water vapor (which can occur,
in view of self-desiccation, only under hydraulic overpressure) does not
seem to creep less than concrete at h = 0.99, despite the fact thaf at
saturation the transfer of water from micropores to macropores requires
volume compression of liquid water rather than vapor. :l'his may be
explained in part by the fact that the volume compressibility of cement
paste particles is probably an order of magnitude Ies:s than that of
capillary water. But more important, perhaps, this is explained by the fact
that creep is mainly due to diffusion of solids (and so the fact that the
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transfer of water is much less extensive in case of a filled macropore is
inessential).

4.5 Nonlinear Effects in Creep and Shrinkage

First, attention will be given to nonlinear effects at moderate stress
levels. Qf these, the most important one is the drying creep effect (item
11, Section 2; Figs. 20 to 22), also called “Pickett effect,” after its
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Fig. 22 Tcsts. of creep a-nd shrinkage at various humidities by L'Hermite and Mamillan.
Same test series as m.Flg. 4. The solid lines are fits{166} for £ =600 psi, S, =260 psi,
S. = 0.0003, C, = 0.025in.’/day, and B = 0.4, obtained according to Eqs. (4.34a) to (4.34c).
(Data adapted from L’Hermite, R., Mamillan, M., and Lefévre, C., “Nouveaux résultats de

recherches sur la déformation et la rupture du béton,” Annales de I' Institut Technique du
Batiment et des Travaux Publics 18 (1965) 325-360.)

discoverer[34]. He has linked it to the shrinkage stresses assuming them
to be superimposed on the stresses due to applied load and thus cause the
total stress to reach into the nonlinear range, in which the specific creep
rattE is higher. However, some later obtained experimental results are at
variance with this explanation[125]. Within the framework of the theory
expo'unded in previous paragraphs, modeling of the drying creep effect
requires a nonlinear dependence of the mass fluxes upon the gradients in
Eq. (4.8) to be introduced[125). Thus,
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Ay = a:0+ al- 'grad "‘w |2+ asl Igl’ad "’! '2’ Quw = ] A =", (4'33)

or
¢:’u= ¢-',.o+ ¢"(U'p —fl‘)z'" 1;’;'0';:, ¢:'Wp= T ¢:‘W,.= STty

in which a.°, ¢..°, a.”, . . . are functions of h. (Note that the gradient vector
appears only in the form of its invariant.) The dependence of aww, ¢uw,,
Gvsy Pus,, €lC., upon the gradients is probably inessential since creep is
mainly due to the diffusion of solids. In absence of drying, grad p.. and
(0w, —f.) are very small, and a," <a,” or ¢.' <¢,” must hold because
creep is nearly linear with stress, while at simultaneous drying creep is
distinctly nonlinear with stress[7, 41].

In a physical sense, coefficient a,” or ¢, represents a nonlinear
coupling between the two diffusions of solids and water, whereas
coefficient a,. or ¢.., from Eq. (4.8) or Eq. (4.20) represents a linear
coupling. Coefficient a,. reflects a drag of the diffusing water molecules
upon the molecules (ions) of solids; water molecules when hit by the-solid
molecules are knocked from their equilibrium positions over their
activation energy barriers. Obviously, this must occur in the direction of
grad p.. On the other hand, a.” reflects an excitation (increase in
mobility) of solids rather than a drag; the impinging water molecules do
not knock out the solid molecules, but merely impart them energy, which
makes their later escapes over the activation energy barriers more
probable, i.e. more frequent. In contrast with the case of a drag, these
escapes are actually caused by thermal fluctuations in energies and occur
therefore in random directions, so that the subsequent movement of
solids can be influenced only by grad pu,, and not by grad p.. The
frequency of these escapes must grow nonlinearly with the imparted
energy, or with flux J. (as can be shown from Maxwell-Boltzmann’s
distribution law of thermal energies[103]). This again justifies that “grad™
appears in Eq. (4.33) in square. Since excitation and thermal escape
require less imparted energy than direct knocking out the molecule, and is
thus more frequent, coefficient a.. or ¢.., is probably of much lesser
significance than a,” or ¢..”. .

This conclusion is supported by the experimental facts that accelera-
tion of compression creep occurs not only at drying, but also at wetting or
humidity cycling[3, p. 156; 36}, i.e. for either sign of humidity change (or
either sign of grad), and that drying accelerates not only creep in
compression, but also in shear[3, 17] and in bending(3, 34]. In the case of
compression creep at wetting, the flux of solids due to creep, J. in Eq.
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(4.8), is opposite to the flux of water, J., induced by the change in pore
humidity. In the cases of shear and bending at drying or wetting, opposite
fluxes occur for half of all layers. If the drag (coefficients a.,., ¢. v, ) Were
decisive, either deceleration of creep (in the former case) or no change in
rate (in the latter cases) would have to occur, which is at variance with
experiments (effects 11, 12, Section 2). By contrast, if the excitation and
thermal escapes prevail (coefficients a,”, ¢,.*), the signs of fluxes J., J,
are immaterial, and acceleration must always occur, as is actually
observed. Thus, probably, a,. = a., = ¢.., = ¢.., =0 can be assumed.

(The drying creep has already been discussed as a nonlinear effect by
Pickett[34] and by Wittmann [37]. They assume that a certain stress o"
due to shrinkage superimposes its effect upon stress o due to load, and
results, because of the nonlinear dependence of creep rate upon o, in a
higher creep per unit stress. However, this hypothesis would predict
deceleration of creep on wetting, while the opposite seems to be true.
Also, it would not predict any change for creep due to shear or bending.)

Identification of the material parameters in constitutive law (4.20) from
the given test data represents an inverse (nonlinear initial boundary-
value) problem, because coefficients of differential equations have to be
determined from prescribed solutions. This is a mathematical problem of
great complexity, compounded by the fact that all test data for variable
water content refer to specimens that were not in a homogeneous state.
Using step-by-step time integration combined with finite elements over
the specimen (Subsection 5.3), the identification can be accomplished by
an optimization algorithm[105, 166} based on quasi-linearization and a
least-square criterion[166). However, this succeeds only if a sufficiently
good guess of the starting values of the material parameters is made, for
which the thermodynamic theory outlined before is indispensable. Also,
the data set analyzed must be sufficiently extensive to permit unambigu-
ous identification of the material parameters. For this reason, it is
necessary to fit the creep and shrinkage data obtained in different
laboratories on different concretes simultaneously, and assume that,
whereas the parameters for reference (constant humidity) conditions are
different, those that modify them for humidity effects are nearly the same.
It has been found[166] that the known test data for variable humidity
conditions (at T =T,) are sufficiently well fitted -by the following
expressions (the fits by these expressions appear as the solid curves in Figs.
16, 18, 21, 22 25):

4’".. = (bn'l’»vpuvv ¢x'v. = :" ¢u"’uv p=L....,n (n=7)

Creep and Shrinkage in Concrete 53

1 .-
du.= ¢..¢ ", ¢':.,=—T:¢,.¢,.", -3, = 0.05x 10"~ days

do, = ¢.., =dr.=r, = 0,'“ (4.34a)
in which (see also the graphs in Fig. 11)
v 2 v 2
— 1n-= Vi-k v __ Tw, — O, D _ Oy, — O, )
=107 g =i (T )y, N
d J{o.”)
p»v=PnD=l+(o,. ) —!(_‘i‘—
av. = 107" oo = ‘o—b-"(l—lo')’ oc (4.34b)

a,=3.6-0.095(n — 1), oc = 6psi
b."=0.3x 10", b.Y =1.2b.", B.=14+B(u-—-1)
., =(1.1+0.2p)0s; os = 1 psi

and Jx@,, ) is second invariant of the deviatoric tensor @, 'I.’he terms
causing shrinkage [and the (tangent) elastic moduli] are (cf. Fig. 2):

€s = So(1 —0.95h> — 0.25h>),

Oy, =

ALY R =20 days,
a’“ Sl 'l"s + Tp Sﬂ, Ts y (4'34(:)

K. =09K,, K., =0.1h(2— h)K,,

()

G..=09G,, G. =0.1h2-h)G,,

()

where K., G, are determined from E,.(t.) using » = 0.18. In the above
expressions, functions ¢, account for the fact that concrete with constan

h creeps less for lower h. Functions .., ¢»" override this dependenc:

when sufficiently strong simultaneous drying occurs. Coefficient 1.2 in Bfl

(4.34b) causes the acceleration of creep by drying to be more intense in
volumetric than in deviatoric deformations. (This accounts for the drop of
the apparent creep Poisson’s ratio with the duration of the drying creep
test, and could be explained by the plausible hypothesis that the increase of
diffusion rate due to drying in layers of one orientation should not affect
much the rate in layers of another orientation.) All of these functions
depend on p because the intensity of humidity influences varies with creep
duration. (Note that o,, introducing delayed shrinkage, becomes negligible
for 7, > 20 days.) Term h>” in (4.34c) is needed to model swellingat h = 1
and, at the same time, autogeneous shrinkage of mass concrete
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self-desiccating to h = 0.98. The age dependence of shrinkage is obtained

through that of E, [and of C, in Eq. (4.41)]). Coeflicients 0.1 and 0.9 in
(4.34b) correspond to the fact that solids probably are relatively much less
cqmpressible than water and give only a mild decrease of elastic moduli
with h. Functions p,* and p,” express the nonlinear dependence of creep
upon sfress, and are taken in a form that assumes the incremental
prop.ertles to remain isotropic. (This is certainly a simplification.) The
nonhr.lear diffusion or rate coeflicients [Eq. (4.33)], other effects (item 8
cra;:kmg) has been considered [166] by replacing all E, with E, /(1 +’
60*/f?), where f! is the uniaxial tensile failure stress, and o is the max';mum
principal stress.

While the foregoing nonlinear effects are all explicable in terms of
nonlinear diffusion or rate coefficients [Eq. (4.33)], other effects (item 8,
Section 2, or item 3, Subsection 4.4) require a formulation that
characterizes the change of solid structure due to diffusion. For example
the solids diffused under uniaxial compression from the hindered Iayers:
perpendicular to o probably precipitate near the boundary of the layer
extending thus its area (Fig. 14) and increasing the stiffness across the’
layer. In the simplest approach, this may be modeled by relations of the
type dE,, = — k.¢., 0., dt [115]). But existing test data are insufficient to
develop such relations quantitatively. '

. Attention will now be turned to nonlinear effects characteristic of the
high-stress range (stress exceeding about 0.4 strength). Because stress is a
tens.or, it can be logically expected to affect the material properties in a
nonisotropic fashion, except when the stress itself is isotropic (i.e.
hydrostatic). Therefore, if a nonlinear dependence of creep upon stress is
considered, stress-induced anisotropy of incremental properties inter-
venes and should be taken into account in both the short-time and the
time-dependent deformations. The incremental anisotropy must, of
course, be formulated in a special form that satisfies the condition of
is?tropy with regard to the initial (unstressed) state. Stress-strain laws of
this type are studied in nonlinear viscoelasticity, and their special case is
Truesdell’s theory of hypoelasticity, which has already been applied to
,s.hort-timé deformations of concrete[168). However, material identifica-
tion methods have not yet advanced enough to yield formulations relevant
to concrete; they will have to be if a nonlinear structural analysis for
concrete in multiaxial stress (even for short-time deformations) should
ever be made realistic. (A recent formulation of nonlinear behavior,
devel?ped in viscoplasticity[169, 171], might be applicable to concrete; it
promises a simplification of the identification problem because the
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stress-induced incremental anisotropy is modeled indirectly, by postulat-
ing that the deformation increments depend on a certain scalar measure of
deformation, or “‘intrinsic time,” whichisan isotropic function of strain.)

By contrast, the nonlinear effects in drying creep and shrinkage are due
mainly to pore humidity which is a scalar, and so incremental anistropy is
probably inessential. Nevertheless, some anisotropy must certainly result
from the differences in solid rearrangements due to diffusion in layers of
various orientations. In Egs. (4.30) to (4.32), incremental anisotropy has
been neglected, and accordingly the material parameters [in Eq. (4.34b), for
example] have been considered dependent only upon the invariants of
tensors o,,, @.,, and a. To introduce incremental anisotropy in these
equations, one could perhaps use some sort of a flow rule with a normality
structure, because the rate of state variables (J,, for example) is here
assumed to depend only upon its associated thermodynamic force (grad p,,
for example) and no other variables (p., for example)—conditions that
were shown to suffice, in general[99]. ,

The existence of a very strong incremental anisotropy is evidenced by
the facts that in uniaxial compression, the apparent Poisson’s ratio grows
to and beyond 0.5 prior to failure [128], and that the velocity of sound in the
transverse direction becomes much less than that in the longitudinal
direction. Physically, the incremental anisotropy is explained by the fact
that, in the high-stress range, the nonlinear dependence of créep (as well as
instantaneous deformation[36, 128]; Fig. 24) upon stress is caused
predominantly by microcracking, which follows a preferred orientation
determined by the principal stress directions|36, 128). (Microcracking is,
of course, gradual in the case of creep.) This nonlinearity due to
microcracking is important beyond roughly 0.4 strength. (For low-strength
concrete, the fraction is less, and the effect is more pronounced.)
Microcracks occur chiefly in the interface between the aggregate and the
cement mortar or cement paste (bond cracks) (cf. Ref. {128] with further
reference). Accordingly, the neat cement paste (when free of shrinkage
stress) exhibits no nonlinearity due to microcracking and behaves in a
perfectly linear viscoelastic manner almost up to failure (except for
deformations affected by humidity), and even perfectly reversibly in case
of short-time deformations in a perfectly dry state[129].

At moderately high stress levels (around 0.5 strength), the inelastic
strain due to microcracking is significant only under cyclic or pulsating
loads and is called cyclic creep(3, 12, 36, 46-52]. This effect is absent in
peat cement paste (because microcracking is absent) and is especially large
in low-strength concrete (and in reinforced structures because it is
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augmented b‘y the slip in bond reinforcement). Consider cyclic stress
o = oot 0y sin wt, where o,, 0,, ® are constants. According to a linear
creep law (or principle of superposition), the cyclic creép strain €. after
many <.:ycles should roughly equal creep due to constant stress o = :7 But
in reality, the creep strain is usually larger than static creep under ;;ress
Tomaz = 0o + o, for the same period of time (Fig. 23). Most data indicate that
€ is Il'ttle dependent on 0. = go— 0o, and on frequency w and is
proportional to. O in the moderate-stress range[46). Thus €(N)=
$nowslE, provided number N of cycles is large, 0 >1 cyc’lelhr and
¢r....;...< 0.850mx; ¢ is the cyclic creep coefficient, which depends on N
snmlla:ly as ¢ depends on t (Section 3). According to Ref. [49], ¢. for
2 X 10° cycles roughly equals ¢ for 20-year load duration. Gaede’s c'lat; [46)
can be ac:ceptably fitted assuming that ¢, equals creep coefficient (Section
3) (L, t")fort, = ' +(NIf)(1 + £120,000), where f is the number of cycles
per day. [Thus, cyclic creep can be introduced through the rate coefficients

o] ARV A AV VAV
=%Omax t

12 - T

MEHMEL, KERN, 1962 /

* Strain of Cinax » in 107¢

Time in Days

Fl!;. 23 Cyclic creep tests by Mehmel and Kern. After 20 slow cycles (completed within
III;II:I;(C)S af.ler first loading), stress o was pulsating as shown at 380 cycles/min; cylinders
e (()::Iyl, ;?‘:zrs—pc:;fn(l—):gsir::a:? ratio 0‘.;4: 1:4.5; cube strength 498 kgf/cm’; drying in
2 ines—prediction b inci ition; f.=
strength ot. specimen at loading. (Data exir:cled from M‘;hl:lnle':f:::'.e m:i‘ l(s;';erémftg‘l::lisfh;
'und Plastische Stauchungen von Beton infolge Druckschwell- und S'tar;:ibelaslu ”*
Deutscher Ausschuss fiir Stahlbeton Heft 153, Berlin (1962), Figs. 25, 28, 31.) e
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Bus,s - - - in (4.30) to (4.32).] However, data in Fig. 23 indicate that at
ow stress levels, only the short-time creep is-accelerated by pulsation,
wvhile the long-time creep is unaffected. [Then among coeficients ¢.,,
‘u=1,2,...,n)only those for smali p would be increased by pulsation.]

Attempts have been made to generalize the uniaxial integral-type creep
aw.jnto the high-stress range, replacing L(t, t') in Eq. (3.8) with a function
L(t, t')+ Li(t, t)fi[ao(t)])[24, 130, 131}, which has been compared with
lest data in Ref. [24].

For the sake of simplification, all nonlinear creep is frequently
sonsidered as irrecoverable (similarly as in rate-of-creep method,
Subsection 5.5), which is somewhat closer to reality than in the linear
range[83, 132]. Then the stress-strain law has the form

i—é= g—+ $(1)F(a, 1), 4.35)

which can be interpreted as a nonlinear age-dependent Maxwell type creep
law; ¢(t) is a given function of one variable which is taken so as to
describe correctly the shape of the creep curve at low stress and a chosen
reference age f, at loading, i.e. (1) = ¢(t, to). In accordance with the rate
process theory{102,103], F as a function of o may be considered as
E~'sinh (¢/a)), where o, is a constant[29,37, 115); E may be taken as
the instantaneous elastic modulus at low stress.

Equation (4.35) is a special case of the rate-of-creep method; and it
similarly (see Subsection 5.5) underestimates creep due to later stress
changes. This may be avoided if Eq. (4.35) is, alternatively, regarded as a
derivative of the relation e(t)=f{o(t),t}, in which case f(o,t) is a
function describing, at constant o, the creep isochrones (Fig. 24). Then, in
Eq. (4.35), I/E = af(a, t)l3c and $(1)F(o, t) = of(o, 1)lat. These rela-
tions correspond, in fact, to the methods used in [133-135]. They somewhat
overestimate creep due to later stress changes and include the recoverable
creep component, as is clear from the fact that for low stress, they coincide
with the effective modulus method (Subsection 5.5).

However, Eq. (4.35), as well as the preceding integral formulation with
L.(8, t'), has an inherent limitation in that it cannot fit data involving abroad
range of response delays. As is well known from Volterra-Fréchet series
expansion of a functional[73, 78], the creep law for a broad range must
include multiple integrals of the type

r Jﬂ L(¢, 7, 0)o (7)o (0) dr do,

but the identification of material parameters would then be hardly
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RUSCH o). al, 1968 and 1960
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t-1" in days Strain in 107*
:“(I,g).( 12; Tests of creep and long-time strength at high stress by Rilsch et al. Prisms
X 60 cm with widened ends; water-cement-aggregate ratio 0.55:1:4.9; Rhine gravel
f‘m(;slly quartz); 28-day cube strength 350 kgf/cm®; moist cured for 7 d.a);S ,at 2()°CZ lhe‘:l
( ':y ng al. h, =0.65 and ?0"C. Loz.ad applied at a strain rate 0.003/20 min; o, is failure Slr;ss of
e specimen. Data'pomts are interpolated and smoothed. Note that creep isochrones
;'{ersus o .?t constalj( t) are constructed from creep data at constant e. (Adapted from Rilscl(le
D.. et al. “Festigkeit unq Verformung von unbewehrtem Beton unter konstanter Dauerlast "
eutscher Ausschuss filr Stahlbeton Heft 198, W. Ernst, Berlin (1968).) '

tractable. Thus, development of a nonlinear rate-type creep law seems to'

be inevitable again.

The incomplete recovery at and after unloading is certainly due in part to
chang.es o.f solid microstructure mentioned before, and also to micro-
crackm_g, in the case of high stress. However, the fact that the unloading
b.ranch immediately after first short-time loading of a virgin concrete has a
higher slf)pe than the first loading branch, even if both are nearly linear, can
be explame.d only by closing of voids (similar to “locking materials“)’and
b){ formathn of new bonds upon the first loading, combined with
mlcro—crackl.ng. Mathematical formulation of these phenomena will proba-
bly be possible with the help of endochronic theory and deformation
measure of the type proposed for metals by Valanis[169].

4.6 Drying and Wetting of Concrete

Assuming grad T to be negligi
. gligible and grad p., to be suffici i
magnitude, one can write g clently smallin
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J=~¢ grad p.,, (4.36)

where grad is the macroscopic gradient and J is the macroscopic mass flux '
of water. If possible differences in solute concentrations (i.e. osmotic
pressures) are neglected, substitution of expression (4.11) for water in the
macropores of nonsaturated concrete yields

T

4 (4.37)

J=—cgradh  withe =¢&(3y)

where ¢ is the permeability. Because exchange of molecules between
various states of water within each macropore is much faster than drying of
the specimen, thermodynamic equilibrium may be assumed to exist within
each macropore. Then pore humidity h can depend only on temperature T,
water content w (the mass of water per unit volume of material, including
both the evaporable water w, and the chemically combined nonevaporable
water w,), and the size and shape of pores as affected by the degree of
hydration or t.. Thus,

dh = kdw + « dT + dh, (4.38)

in which k = (ah/3w)r,, is the cotangent of slope of the desorption or
sorption isotherm ‘(Fig. 11); dh, = h,(t. + dt.)— h.(t.), where h,(t.)=h
at constant w and T at progressing hydration; x =(3h/3T)w,, =
hygrothermic coefficient (x = 0). It depends strongly on h (Fig. 11), which
may be approximately predicted from the Brunauer-Emmett-Teller
theory, a statistical-mechanical theory of multilayer adsorption, as applied
to the walls of macropores; see Refs. [67, 100]. The sorption isotherms
exhibit a pronounced irreversibility (hysteresis, Fig. 11[63-65, 136]). This
is attributable to changes in pore structure due to solid diffusion (cf.
preceding item 3 in Subsection 4.4), and in the range h =0.7, in which a
significant part of w is capillary water, also to the fact that in pores of a
given geometry, more than one equilibrium shape of capillary menisci
exists[100, 136). Function h,(t.) represents the so-called self-desiccation
of sealed specimens, a gradual drop in h approaching an asymptotic value
in a few months (cf. Ref. [67]). It is weaker for higher water~cement ratios
and is caused by consumption of evaporable water for hydration, whose
effect on h is, however, mostly offset by the decrease in pore volume, so
that the drop in h, is relatively feeble. (For water-cement ratio 0.5,
h,(®) ~0.97.) Thus, dh, may approximately be neglected. (Anyhow, if
drying causes h to drop below 0.5, dh, ~0 because B =(.)

Recalling the condition of conservation of mass, dw/lot = —div ], we
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Fig. 25 (a) L'Hermite and Mamillan’s tests of creep at various stress levels, ages, and
humidities. Same test series as in Fig. 4. The solid lines are fits{166] for the same material
parameters as in Fig. 22. (Data extracted from a privale communication and from
L’Hermite, R., Mamillan, M., and Lefévre, C., “*Nouveaux résultats de recherches sur la
déformation et la rupture du béton,” Annales de I'Institut Technique du Bdtiment et des
Travaux Publics 18 (1965) 325--360.) The measured J-values at ¢ — t’ = 0.01 day, for ages

=7 to 730 days shown, were 248, 196, 190, 172, 144 in 107°/psi. (b) Mamillan’s tests of
saturated and drying specimens at various stress levels. Prisms 7 X 7 % 28 cm; short-time
failure stress 250300 kgf/cm’, 28 days old when loaded; cured 2 days in mold, § days in water,
then drying in air of h, =0.50 at 20°C; other faclors probably same as in Fig. 4. (After
Manmillan, M., and Lelan, M., “Le Fluage de Béton,” Annales de I’Institut Technique du
Baétiment et des Travaux Publics (Supplément) 23 (1970) and (1968), Figs. 13, 14.)

note that from Egs. .(4.37) and (4.38)

aT

e di oh,
— =k div(c grad h)+ TR

4.39)
Here k may approximately be taken as constant (especially for desorption
from h =1 to h = 0.3 and for low water-cement ratios). Thén k can be
combined with c, setting kc = C = diffusivity. Fitting of extensive data on
drying and water permeation, some of which is shown in Fig. 26, has
revealed [67] that C drops about 20 times when passing from h = 0.85 to
h =0.65 (Fig. 11). Approximately,
l — (o

o+

C=kc=C(T,t.) (4.40)
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Flg.. 26 Hanson’s data on center-point humidity and humidity distributions of dryin
cylinders. Diameter 6 in., environment of h, =0.50, 73°F; water-cement-sand-gravel ra(i;
0.657:1:3.26:3.69; Elgin gravel; 7 days old specimen at the start of drying; solid lines shov
fits ffom Ref.[67)for a, =&, h. =0.792, n = 6, C, = 0.239 cm®/day. Dashed lines are the bes
possible fit with a linear theory. (For fits of many other data, see Ref. [67).) (After Hanson, J

A., “Effects of Curing and Drying Environments on Splitting Tensile Strength,” Amer
Concrete Inst. J. 65 (1968) 535-543)

where a,=0.05, n ~ 10, h, ~0.75. Dependence of C, on temperature 1
may b‘_’ deduced from the assumption that ¢ in Eq. (4.36) obeys the
actlva'hon energy concept. Thus, taking Eq. (4.37) into account and
denoting the chosen reference temperature by T,, one obtains

CUT, 1) = Cul0.3+3.61.") "TTT: exp (FQ'E. - Ifo) " @41

where Co=constant=C for T = To, 298°K, t, =28 days and h = 1;
Q =9300cal according to the test data analyzed in Ref. [67]. The

Creep and Shrinkage in Concrete 63

dependence on age t, was deduced by fitting Wierig’s data (cf. Ref. [166})
on the drop of permeability ¢ with curing period. Charts for prediction of
drying of simple bodies are given-in Ref. [67].

The boundary condition of moisture transfer at the surface relates the
normal flux n - J to the difference in p.. between the concrete surface and
the ambient atmosphere (n is the unit outward normal of the surface). Then,
because of Eq. (4.11),n-J= B(In h —In h.), where h, is the environmen-
tal humidity and B is the surface emissivily depending on 7T and the
circulation of air. Thus, expressing J from Eq. (4.36),

n-grad h = _lcf In i?: (4.42)
As a very crude estimate, c¢/B =~ | mm in room environment. For bodies
thicker than about 5 cm, the drying is so slow that B = 0 may be assumed,
so that h = h.. on the surface. The boundary condition of perfectly sealed
surface is obtained for B — oo,

The strong dependence of C upon h makes the diffusion problem highly
nonlinear. This complicates analysis, and it is best to use numerical
methods. Solutions shown by solid lines in Fig. 26 have been obtained by
the finite-difference method.

The dependence of C upon h has implications for the mechanism of the
macroscopic diffusion. If water transport occurred mainly in the form of
vapor, C would have to be essentially independent of h. On the other hand,
migration of molecules along the layers adsorbed at the walls of
macropores must be slower, the thinner the layer. Consequently, the latter
must be the dominant mechanism. [This conclusion has also been rnade [43]
realizing that the mean free path of water molecules in vapor (about 800 A
at 25°C) is many times greater than the probable minimum cross section
encountered along the continuous passages through the cement paste, so
that the probability of a vaporized molecule passing through is extremely
low.] The sharp drop in C (Fig. 11; item 31, Section 2) probably
corresponds to transition of the flow from the third to the second molecular
layer adsorbed on macropore walls.

Diffusion of water through saturated concrete under hydraulic overpres-
sure p leads to the differential equation ap/at = C..V’p. It has been
deduced from plausible physical hypotheses{67] that C,., = 1000C, where
C corresponds to h =0.999 [Eq. (4.41); item 31, Section 2}. For a
continuous mass flux, the gradients normal to the interface between a
saturated and a nonsaturated zone are related as{67} grad, p = k, grad, h,
where .k, = 1360 atm (T/298°K). Thus, at 25°C, a difference 0.1 in h
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produces about the same flux as the hydraulic head of 1400 m (item 32,
Section 2). This is confirmed [67] by Carlson’s observation that a wall of
thickness L exposed on one side to an atmosphere of h, = 0.5 and on the
other side to water of 70.3 m hydraulic head is not, in a stationary state,
saturated deeper than 0.04L from the wet face. The initial speeds of
propagation of a front of hydraulic pressure and a front of dryingat h =1
can be shown to be about in the ratio 30: 1[67].

§ METHODS OF STRUCTURAL ANALYSIS

5.1 Elastic-Viscoelastic Analogy for Aging Materials

The linear stress-strain relations studied in Section 3, e.g., the
integral-type creep laws (3.1), (3.2), (3.5), and (3.8), can be written in the
operator form,

e—€"=E'c or o=E(e—¢Y uniaxial stress, ;.1

He"-€Y)=K'0" or oV=3K(e' ¢
2ey=G'of] or a®=2G % -
lJ \J
where E™', K™, G™' are uniaxial, volumetric, and deviatoric creep
operators, E, K, G are corresponding inverse operators (relaxation
operators). They all represent linear Volterra's integral operators and obey
the same rules as linear algebra, except that a product is not commutative.
Thus, any of the equations of elasticity in which only linear combinations
of elastic constants appear may be generalized to creep by replacing them
with the corresponding operators. This correspondence is called
elastic-viscoelastic analogy. It was stated in the operator form (for aging
materials) first by Mandel[137], although for the special case of
homogeneous structures, an equivalent analogy given in Subsection 5.2
was discovered earlier. (Caution is needed when a product of elastic
constants appears; it is necessary to go over the derivation of the equation
in elasticity to determine what the order of operators in the productis.)
To give an example, the equation for bending of a homogeneous beam in
presence of creep is readily obtained in the form

multiaxial stress, (5.2)

Tk = E"M) = [ 1,00 ama,

where k is bending curvature, M is bending moment, and I is monient of
inértia of the cross section.
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The linear rate-type creep laws can also be written in the form of Eq. (5.1)
or Eq. (5.2). Then, if all hidden variables are eliminated, operators E, E™",
G, ... represent quotients of two linear differential operators with
time-dependent coefficients. For this formulation, the elastic-viscoelastic
analogy was stated in Refs. [77, 138, 139]. In the case when hidden stresses
or strains are used, a set of hidden variables must first be associated with
each force or displacement variable before the analogy can be applied. To
give an example, associate M with a system of hidden bending moments
M,, p =1,..., n. Creep law (3.34), (3.36) is then immediately generalized
for bending of a homogeneous beam as

M=2” M,, M»,En"'Mu,nu:’EI-

For the linear creep problem, uniqueness of solution can be
proved[140-142] in an analogous manner as in elasticity, and similar
variational principles can also be stated[138, 139, 140, 141, 172).

§.2 Homogeneous Structures and McHenry's Analogy

McCHENRY’s ANALoaY. Consider a structure (body) which has the
following properties :

(i) homggeneity, i.e. creep properties are the same in all points, which
requires the differences in age, water content or temperature, and the
presence of reinforcement to be neglected ;

(i) constancy of creep Poisson ratio v (Section 2);

(lii) absence of deformable supports ;

(iv) linearity of the associated elasticity problem, which implies small
displacements.

Denote further by aii(t), ui'(t) the stresses and displacements (with t as a
parameter) for an elastic structure of time-constant modulus E = E,,
caused by surface loads p,(t), volume forces f,(t) (i = 1,2, 3), prescribed
boundary displacements u’(t) and inelastic strains €°(t) as given functions
of time. Then, if €*=u’=0, '

o) =ai(t), w(t)=EE 'uil(t). 5.3)
If, instead, p, = f, =0, then
oy(t)= E'Eoi(t),  w(t)=ui(1). (5.4)

Proof. Regard Egs. (5.3) and (5.4) as chosen substitutions without
specifying the meaning of ojj and u{'. Insert Eq. (5.3) or Eq. (5.4)in Eq. (5.2)
and, in accordance with condition (ii), put K = K.E/E., G = G.E|E,.
Furthermore, substitute Eq. (5.3) or Eq. (5.4) for oy and i into the
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linearized strain definition, the equilibrium conditions and the boundary
conditions, i.e. into

& = 3(uy + u,), out+f=0 in ¥, 5.5
oy = p, onT,, w=u’ on I, (5.6)

in which ¥ is the domain of the structure, I, is part of the surface on which
surface loads p, are prescribed, I'; is part of the surface on which
displacements u” are enforced, ny is unit outward normal at the surface,
and subscripts following a comma denote partial derivatives. After this
substitution, Egs. (5.5), (5.6), and (5.2) are recognized to represent
formulation of the linear elasticity problem for o'§l, u{". Since its solution is
unique and o, ui' could not be the elastic solutions if Eq. (5.3) or Eq.
(5.4) were inequalities, the proof is completed.

Equivalently, it may be stated that o,(t) and u(t) equal the elastic
solution due to the fictitious loads EoE™'pi(t), E.E™'f(¢), plus the elastic
solution due the fictitious prescribed displacements E,'Eu,(t) and

inelastic strains E,"'Ee®(t). In this form, the analogy was discovered in_

1943 by McHenry[75], although for the special case of statically
indeterminate framed structures (in which constancy of v need not be
required due to neglect of shear strains), the essence of the analogy was
deduced already in 1937 by Dischinger[143). A rigorous mathematical
proof, though much lengthier than the present one, was first given in 1951
by Arutyunian[144].

Equations (5.3) and (5.4) indicate that, under the conditions specified, all
displacements and stresses in the structure vary in the same proportion as
in a homogeneously stressed specimen.

With the aid of the principle of superposition, McHenry’s analogy also
enables analysis of the practically important cases (cf. Section 6),.in which
the statical system of a loaded and creeping structure (satisfying the
conditions mentioned) is changed at time ¢, by introducing a new
constraint, capable of providing new reaction force X. Assume that
X(t)) =0 and denote by t, the time of application of the constant loads,
to<t.. Further, denote by oy, €}, and u!' the stresses, strains, and
displacements obtained for modulus E(t)) according to the theory
of elasticity for the new system of constraints (statical system), existing
after time t,, and by o}, €}, and ' similar values for the original
system of constraints, existing prior to time f,. Let ux denote the
displacement in the direction of X; obviously, u%=0, but u,'s0.
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According to Eq. (5.3), 0y = oyand i, = u'[1 + @(t, to)l forany t <t,.1f no
new constraints were introduced, displacement increments Aux =
ux' Ag (), where Agp () = (1, to) — @(t, t,) would arise after t'ime t,.. To
cancel Auy, it may be imagined that enforced displacements — ux’ Ag (¢) or
(u5%— ux') Ap (¢) in the direction of X are superimposed. By virtue of Eq.
(5.4), this produces additional strains Ap (¢)(o}f — o §)/ E(ts). Thus, the total
strains at t = ¢, are
en(t) = m':‘—%%ﬂ + (ol - op 2l ( :‘f)(t" O R
Knowing the strain history, one can easily compute (cf. Subsection 5.3) ll'le
stress changes o, (t) — o}, which are affected solely by the second term in
Eq. (5.7). An approximate formula for these changes (which is exact for
t, = to) follows from Eqgs. (5.28) to (5.32) in the sequel.
If a constraint of a structure that creeps at constant stress state (e.g., a
temporary construction support) is removed, load (— X) is. in. fact
superimposed in the sense of the previous reaction X. Thus, according to

Eq. (5.3), merely an elastic change of stress (without any delayed response)

occurs.

5.3 Numerical Step-by-Step Methods

The realistic forms of creep law of concrete do not admit analytical
solutions of creep problems, and so numerical techniques .mus.t be
employed. Of these, the step-by-step integration schemes,' in which time ¢t
is subdivided by discrete times ¢, (r=0,1,2,...) in time steps At, =
t, —- t,-,, are most convenient. Time t, coincides with the time the first
stress is introduced into the structure. If the loading is steady, the rate_(l)f
change of all variables decays with time {approximately as (¢ "'"‘o) 1.
Therefore, times f,, t,, . . . are best chosen in the form of a geometric pro-
gression, i.e. the time steps appear as constant in the log (¢ — to)-scale. A
high accuracy is usually achieved with A".: 9.01 dzfy and
(t, — to)/(t,-1— to) = 10'®, although even quotient 10'* is sufficient for
practical purposes. . '

Consider that an instantaneous stress change Ao, occurs |mm.ed|alely
after time t,, while subsequently o(t) varies smoothly at a dec:aymg rate.
Then the Stieltjes integral in Eq. (3.1) may be approximated, with an error
of the order of At®, by the sum

€—¢€ = J(t, team) Ao, for r=1, G-8)
q=1
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where €, = ¢(t,), A, = o(t,) — o(t,-), etc., and

ta-amy = bo+ V(-1 —t)ts — 1)  for q>1,

b-am = to for q=1. 5-9)

’I.‘his is justified by the fact that, under steady load, o varies within each
.tlme step about linearly with log (1 — to) and t,_qs is the middle of the
interval in the log (¢ - t,)-scale. Replacing r by r - 1, Eq. (5.8) becomes

r—=1
€1~ €l = ,,Z., J(-r, to-s) Ao,  for r=2. (5.10)
Subtracting Eq. (5.10) from Eq. (5.8), one obtains
A, .
Ae, =E—,:+Ae,, a.11)
where
1
El=— o
J(t, t_am) for r=1
r—1
Ae" = .2. AJ., Ao, + A€’ for r>1, G.12)
A€l = Ae,” for r=1

Adua=J(t, ta-a) ~J(t ety te-a)  for r> 1,q=1.

Th.e above equations also hold for an instantaneous change of load at time
Ir1.e. L, =t,.,; however, in such a case, the subsequent time interval must
!)e so smz.nll that J(t,.., t,) very nearly equals J(¢, t,). (This is practically
mconven.lent, so that the effect of the response to an instantaneous load
change is better computed separately and is then superimposed.)
Alternatively, J(t,, t,_u) in the expressions for Ae” and AJ,, may be
replaced by i{J(t, t,)+ J(1,, to-1)], maintaining the same orde; of accu-
racy, and the intermediate times tq-am may be dispensed with.
Equation (5.8) has the form of an elastic stress-strain relation with
moduh.Js E? and inelastic strain Ae”. Their values are fully determined by
stres§ Increments prior to time step At, under consideration, and so the
.soluuo.n of Ae, and Ao, in any time step is an elasticity problem with
inelastic strains. Analogous results may be obtained for the multiaxial
stress stz.ltes and for creep law (3.5) based on the relaxation function[145].
Eq!mtnons (5.8) to (5.11) were first introduced in. Ref. [146], in which
practical convergence was also studied. Similar expressions based on
cvalu.ating the integral in Eq. (3.1) or Eq. (3.8) with a rectangle rule were
used in [108, 147, 155]. A general solution in terms of a series of elasticity
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problems seems to have been first formulated in Ref. [145] using Eq. (3.8)
rather than Eq. (3.1). But for this form of creep law, it is impossible to
increase the time step beyond a certain small value without causing
numerical instability [131, 148, 149]. The method can be easily extended to
nonlinear creep law analogous to Eq. (3.8)[131]. For simplified creep laws
(Subsection 5.4), this type of method was used in Refs. [138, 150, 151].
Equations (5.8) to (5.11) are also very efficient for conversion of creep
function J(¢, t') into the relaxation function Ex (8, t') and vice versa[146}.
As is clear from Eq. (5.11), the values of stress (or strain) increments in
all previous time steps must be stored, and long sums of the type (5.10)
must be evaluated in each time step. Considering that about 100 time steps
are needed in a typical problem, the storage requirements become about
100-fold of those. in the corresponding elastic problem, which presents
formidable difficulties in case of large finite-element systems. This may be
avoided by using some of the rate-type creep laws. Here another difficulty
arises, however, when the standard step-by-step algorithms, e.g., the
Euler and Runge-Kutta methods or predictor-corrector methods, are
applied. Namely, numerical instability occurs if the time step exceeds a

. certain value roughly equal to the shortest relaxation or retardation time,

so that an overwhelming number of steps would be required to reach
the long-term solution. Fortunately, it was found that the time step can be
arbitrarily increased if o, or ¢, are determined from o,-,, €, according to
the exact integral of the creep law under the assumption that all material
parameters (i.e. E,, ,) and all rates of prescribed inelastic strains are
constant during the time step.

The exact integral of Eq. (3.36) based on Maxwell chain is already given
by Eq. (3.35). Simplifying it for constant E,, ,, ¢ é° one obtains the
following recurrent formula for the hidden stress[89):

0., =0, e " + A\ E, .(Ae—A¢”) p=12,...,n (513)
where
A,., = (‘ - e—At,I’..)_Af:_’ T, = ﬂuz;um (5.|4)

EH-(IR)

Expressing Ao,., from Eq. (5.13) and writing Ao, = 2, Ao,,, one arrives at
the pseudoelastic stress-strain law (5.11) in which[89]

E?= E_| AnEm—um'
" (5.15)

EtAet= (1-e*")a,,_, + E" Ae’.
n=1l
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Thf: exact integral of rate-type-creep law (3.26), (3.27), (3.28) corres-
pondmg. to the Dirichlet series creep function (3.15) is composed of
expressions (3.24) for hidden variables €*, from which it can be similarly
derived (88, 152] that

Al‘r A a-l‘-r
— —as, It

eX=Tp  tel e p=12,...,n, (5.16)

Br—(1/1)

where )«.,.,, 7. are given again by expressions of the form of Eq. (5.15).
Expr.cssmg A€}, from Eq. (5.16) and Ae from Eq. (3.23), one again
obtains the pseudoelastic stress-strain law (5.8), in which [88, 152)

| 1 - 1—A,,

— + ’
E"' Er—(ll?) p=1 Bu,-"m

Ael= (1-e™")ek  +Ae’.

n=1

6.17)

Differential equations (4.20) expressing the nonlinear constitutive
equation based on microdiffusion mechanism can also be integrated
exactly under the assumption that all coefficients as well as prescribed
rates are constant within the step. This involves solution of two
simultaneous linear differential equations with constant coefficients. After
some tedious manipulations, it is found that the hidden stresses in solids
and water obey the recurrent relations

with
fi =An+ duwv,)e At A, ,w_e”"",
fl,l = S - Bl('Yl + ¢"’"“ )e Y'A"+ Bl¢sw,.e T,A";
g =f — A|¢m,,e"“'+ Ay + b, Ye 2, 5.19
8u= W+ Bipu..e"*" — Bi(y: + ¢, )e ™,
in which
' UJ“'_|('YI + ¢:.v,.) + (Gw,, Y !p )¢:w,,
A| — r—§
D' bl
S('Yl + ¢"“‘) + w¢xw
B| = ad
b’ ’ 5.20
G, B — (@ — )i+ Gun) >-202)
A= i D’ ’

B _ S¢WS,. + w(yl + ¢ww..)
=
D' L

a,, = f,, +f,'.(AE - AGO), O, = gu +8L(A€ _Aeo), (5.18)
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Y= "¢o+ \% ¢oz_ D-
Y2 = “4’0— V 4’0 ‘D,
¢o= ;(d’n,. + 4’»-?.. ),
D= ¢, bun, = rmubuns
D' =71+ b X2 + bes) = v s,
- 4’"wa». - ¢m,. Euw

(5.20b)

S DAL
_ ¢"E,.'" - d’w:,.Eu,
W="pa, -

Expressing Ao =3, (Ao, +Ao0.,) from Eq. (5.19), one again finds the
pseudoelastic stress—strain law (5.8) with

E'= 2 fu+gl),

21
E'Ae" = E ((-T.,'_' + Ow,_, —f—8) 20
m

Equations (5.19) to (5.21) are valid for D 0 or y, # v.; otherwise, they
must be modified. For ¢.., = ¢.., = 0 (probably a typical case; Section
4.5), the two simuitaneous differential equations (4.20) split in two
independent equations, and formulas (5.19) to (5.21) considerably
simplify; see Ref. [166). Coeflicients ¢.,,, ..., Pu,, f. in Egs. (5.19) and
(5.20) should all be evaluated for the mid-step, t._u/»- The generalization
of Egs. (5.13) to (5.21) to multiaxial stress is straightforward[152].

The algorithm given by Egs. (5.16) to (5.17) was first presented in Refs.
(88, 152] and algorithm (5.13) to (5.15) in Ref. {89]). A similar algorithm for
Kelvin chain was given in Ref. {116). Special cases of these algorithms for
nonaging thermorheologically simple materials were developed by Taylor
et al.[153) and Zienkiewicz et al.[154], respectively. A partly similar
algorithm for aging concrete, which also eliminates storage of stress
history but does not allow an arbitrary increase of time step, was given in
[131, 155]. Numerical stability for cases of prescribed stress or strain
history was proved in [88,89, 152], and excellent convergence was
demonstrated by an example in Ref. [152].

In each time step At,, the analysis proceeds in the following sequence.
(1) Elastic moduli E” (or analogous bulk and shear moduli) and inelastic
strains Ae” are evaluated (for all elements of the structure). (2) Then,
solving an elasticity problem (by finite-element method, for example),
displacement increments Au, and increments Ao, Ae (for all elements) are



72 Zdenék P. Bazant

determined. (3) Finally, the values of hidden stresses or strains at the end
t, of the time step are computed from Eq. (5.13), Eq. (5.16), or Eq. (5.18),
and their values at t,_, may be discarded from computer memory.

If the constitutive law is nonlinear, as is the case for Egs. (5.19) to
(5.21), E7 and A€ in step (1) above are first evaluated for o = o,-,. Then,
after solving the elasticity problem, step (2), and the hidden variables,
step (3), one returns to step (1) to compute improved values of E” and Ae”
on the basis of the average values of stresses and hidden variables in the
time step, as obtained previously (i.e. o = a,-, +1Aa, etc.). Steps (2) and
(3) are then iterated to get improved values of Ao, Ae, Au, Ao, etc. More
than two iterations are usually not appropriate, because a decrease of Af,
is for improvement of accuracy more efficient than further iterations.

Structural analysis for any other nonlinear creep law may also be
converted to a series of linear elasticity problems([131]). As an example,
consider the nonlinear Maxwell type law (4.35). First, it must be linearized
within each time step considered, which is achieved by F(o,t)=
{Fl,-i+(o — 0, )IE, where 1/E =[8F/30),-un. The best integration
formula is obtained when o is solved exactly from the differential
equation (4.35) under the assumption that de/d, de®/dp, and E are
constant during the step. After rearrangement, this leads to the
pseudoelastic law (5.8), in which

~Ae?%

. » __ l'—e
E; = E'_"’”—ATP_?-—

AG: = A$’ F(O’,—l, ‘r-|) + AG,O,

and A¢* = A, E._un/E. Because of nonlinearity, the analysis of each
step should be iterated; in the first run, all coefficients depending on o are
evaluated for o = 0,-,, and in the repeated run, they are evaluated for
o = g,,+}Aa,, where Ao, is taken according to the first run. The high
accuracy of formula (5.22) is due to the fact that in the linear case with
constant E (which coincides with the rate of creep method; Subsection
5.4), Eq. (5.22) gives the exact expressions for both the creep at constant
o and the stress relaxation at constant e.

(5.22)

5.4 Conversion of inelastic Strains to Applied Loads

As has been shown, the solution of a linear elasticity problem with
general inelastic strains (or, equivalently, inelastic stresses) is the basis
for integration of the creep problem in space coordinates. The handling of
general inelastic strains is easily incorporated into the finite-element

Creep and Shrinkage in Concrete 73

method. This can be expediently implemented, in the most general

‘formulation, according to the following theorem, also applicable for the

finite-difference or other methods,

Tueorem. Consider the general (anisotropic) elastic stress—strain
relations
oy = Cyu(eu — €kr), 5.23)
where Cys is elastic moduli, eu is linearized strain tensor, and €% is
prescribed inelastic strain tensor. Define further
oq = Ca€ly fi=— ous in?,

p = no, onl,, pt=nt(oy —oy onl®,

where o is inelastic stress tensor, f, and p,, p* are (fictitious) volume and
surface loads equilibrating oy, T* is surface with u"n*it normal n¥t across
which oy changes discontinuously from o, to o, ". Then the stresses,

strains, and displacements caused by €, are

(5.24)

oy = &q - 0’:", €y = Eu, w= ﬁu, (5.25)

where Gy, &, and @ are the solutions corresponding to loads ﬁ,ﬁﬁ., P, with
no inelastic strains, and to given boundary displacements u’ (if any).

Proof. Assuming uniqueness of solutions, it needs to be shown that
6’,; = Cuugu,
&= i(ﬂu + fiy),
Gut+f=0 in v,
oy = p onTl,,
a=u on Iy,
nY(Gi—6y)=pPY on I'*.

(5.26)

That this is indeed true is seen by substituting Eq. (5.25) in.to !Zq. (5.23). afnd
Egs. (5.5) to (5.6) with f,=p, =0, and into the contmul!y condition
n }(o} — oy ) = 0. (Summation over repeated indices is implied.)

The special case of this theorem for isotropic e, is known in
thermoelasticity as body force analogy[156] due to Duhamel (1838) and
Neumann. For deviatoric plastic strains, it was derived in 1931 by
Reissner and, in different contexts, by Eschelby (cf. Ref. .[156]) and
others[138, 145, 150}. To creep of concrete it was first applied in 1964 (cf.
Refs. [138, 150]), and simultaneously to creep of metals[156]). For the
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replacement of inelastic strains by transverse loads in nonlinear creep of
plates, reinforced plates, and composite beams, see Refs. [131, 138,
145, 148-150].

5.5 Approximate Solutions Based on Simplified Linear
Creep Laws

For many design purposes, even the solutions based on viscoelasticity
of aging materials are too complex. Therefore, simplified methods,
embodied in the formulas of current code recommendations, are
invariably used in the design of ordinary-type structures in which design
experience can be partly substituted for accuracy. These methods either
consist of a single elastic analysis or are based on a simplified creep
function J(¢,t'). Normally, they apply only for loads and enforced
displaceménts that are either steady or vary at a rate decaying roughly as
1/(t — to), to being the instant of introducing the first load or enforced
deformation into the structure. Sudden load increments at various times ¢,
must be considered separately and the results then superimposed.

A. Effective Modulus Method. This is an old method (cf. Ref. [157])
consisting in a single elastic solution based on the effective modulus
E.x = 11I(t, to) = E(to)/{1 + ¢ (¢, to)]. Accuracy is usually excellent when
aging is negligible as in very old concrete (see comments after Eq. (5.33);
for nonaging viscoelasticity this fact was noted and examined in Ref.
[158). In this case, J(¢, t’) is a function of only (¢ — 1), i.e. creep curves
for all ¢’ are identical but mutually horizontally translated. This
overestimates creep due to stress changes after ¢, and incorrectly implies,
in case of finite J(x, t'), all creep to be perfectly recoverable after
unloading. '

B. Age-Adjusted Effective Modulus Method. This method was origi-
nated in 1967 by Trost[159], and its rigorous, extended, and general
formulation was first given in Ref. {160], on the basis of the following
theorem.

THEOREM[160]). Assume that _
€(t)— €°(t) = e+ €1P(t, to) (5.27)

fort =toand o =0 fort < to, where €, and €, are arbitrary constants (such
that strain is small). Then

Aa(t) = E"(t, t)[Ae(t) — Ae"(t)], (5.28)
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where
Ae(t) = €(t) — €(to), Ac(t)=o(t)—- a(t), (5.29)
Ae"(t) = gg;’, S (t, 1)+ €°(t) — €°(to), (5.30)
v« E(td—Ex(tts____ E(t) _
E't)="""000) 14 x( tyd(t ) 3D
- 1 -1 5.3
X0 =T tE() 0, to) (5-32)

Proof. Equation (5.32) follows from Eq. (5.31). Assume Egs. (5.28) to
(5.31) to be true. Substitution of Eq. (5.31) with Egs. (5.27), (5.29), and
(5.30) [with o(t)/E(t) =€] into Eq. (5.28) yields . a(t).=
o (1) + [E(to) — Er(t, to)l(€1 — €0) for t = t,. Insertion of this relation with
Eq. (5.27) into Eq. 3.1) furnishes

(€0—€1) L' J(t, t") ______8E,.;::, o) dt’ = €0+ € [E(t)J (1, to) — 11— J (8, to)a (to)

= €, — €, — (€a— €)E(ta)J (¢, to). (5.33)

If € = €, this equation is identically satisfied, and if €, # €,, division by
(&0 — €,) yields identity (3.6). Finally, if Eqs. (5.28) to (5.31) were not true,
Eq. (3.6) would be contradicted. :

Coeflicient x is called aging coefficient and E" age-adjusted effective
modulus because x adjusts the effective modulus E.« primarily for the
aging effect. In absence of aging, x =1 and E" = E.s. Tables of x for
some typical creep functions were given in Ref. [160]; always x <1 ‘and
almost always x >0.5; x grows with t as well as f,. .

Importance of the foregoing theorem, by which the calculatl.on of the
changes from t, to ¢ is reduced to a single elastic analysis according to Eq.
(5.28), lies in the fact that x and E" are independent of €, and ¢, and that-
strain history (5.27), linear in $(t, to), closely approximates the t.:xact
strain variation corresponding to a linear creep law in most cases. While all
other methods give exact solutions only when o is constant, thi.s method
gives an exact solution in infinitely many special cases, in particular the
cases of constant o, constant € (stress relaxation), and the case € =
€1d (1, to) typical of buckling problems or shrinkage-induced stresses.

C. Rate-of-Creep Method. This method (“Dischinger’s” method in
German, “theory of aging™ in Russian), due to Glanville (cf. Ref. [157])
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and first widely applied by Dischinger[143], admits simple analytical
solutions of many problems (cf. Refs. [83, 84, 138, 151], for example),
assuming the creep law in the form

de 1 do +_9 de’

= = +—, (5.34)
dp E()dd E(t) dd

Nt @) (')

TGO~ Y™ Bay

where ¢(t) = ¢(t, to). Equation (5.34) corresponds to an age-dependent

Maxwell solid[77], and Eq. (5.35) expresses the Whitney’s assumption (cf.

Ref. [157]) that the creep curves (e versus t) for various ¢’ are identical in

shape but mutually translated parallel to the e-axis. Thus, no delayed

creep recovery is predicted, and for old concrete negligible creep is

obtained, which is false. In relaxation-type problems, prediction of this

method represents an upper bound on the stress change from ¢, to t, while
the effective modulus method gives a lower bound.

or

(5.35)

D. Rate-of-Flow Method. This methodisbased on the creep function

no 1 t)— (1) d__1 . ¢

TCO~E* 5wy ETBEOTEGH
proposed by Prokopovich and Ulickii[161, p. 37} and independently (with
a more detailed justification) by England and Illston [21-23]. Coeflicient
¢(1), analogous to ¢ in Eq. (5.35), expresses irrecoverable creep or flow,
and ¢, is a coeflicient for delayed elastic (or recoverable) strain which is
taken as independent of age ¢’ and (in accordance with item 7, Section 2)
depends only on (1 —1'). Furthermore, Nielsen[162] and Riisch, and
Jungwirth and Hilsdorf (cf. Refs. [ 157, 167)) proposed to treat the delayed
elastic component in terms of the effective modulus, taking ¢, as constant
(¢4 =~ 0.4 for long-range response). Thus, Eq. (5.36) becomes formally
identical to Eq. (5.35), and all formulas based on the rate-of-creep method
can be directly applied, replacing E with E, and ¢ with ¢,. The method is
a hybrid of the rate-of-creep and effective modulus methods. Its
predictions usually lie between the latter two and are thus closer to the
exact solution.

(5.36)

E. Arutyunian’s Method and Levi's Method. Arutyunian’s creep
function[144] corresponds to a single term (n = 1) of the Dirichlet series
creep function (3.15). Relaxation-type problems then lead to first-order
differential equations with variable coefficients for internal force rates or
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displacement rates[144, 161], and a similar equation relates. strain .ratcfs
and stresses {77, 138]. In most problém_s with one unknown, u.ltegrauo'n is
possible in terms of the incomplete gamma function, provided E is a
constant and E, = A + B/t'[144, 161} or A + Be™*" [163], where ,.4, B,
and r are constants. Applications of this method have ﬂounsh.cd
(particularly in eastern Europe) because, in contrast to the effective
modulus and rate-of-creep methods, the proper ratio between the creep of
young aging and old nonaging concrete can be intfoduced. .But the
exponential shape of the creep curves is far from reality [see F.lg. 7.(a)].
Also, the calculations are more complex than with any other simplified
method in use. Levi's method (cf. Ref. [157)) is a cs)t'mterpart .of
Arutyunian's, corresponding to a single term of the Dirichlet series
relaxation function (in a certain transformed time variable). It also. leac.ls
to first-order differential equations and allows analytical integration in
simple cases.

ol1) in 107 psi
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t- 1, days

Fig. 27 Development of shrinkage stress at € = 0. Computed for ACl ex!)rcssions (?.IO) to
(3.12); solid lines are exact numerical solutions; EMM, AEMM are approximate solutions by
effective modulus and age-adjusted effective modulus m?(hod; RCM, RF‘M arc by
rate-of-creep and rate-of-flow methods; LM, AM are by Levi’s and Arutyumzfn s methods
(Subscction 5.5). Top figure shows creep curve f(t —t') from Eq a.1) and"shtgnkag‘e curv‘;
€ulen(®) from Eq. (3.12). (After BaZant, Z. P., and Najjar, L. J., “Comparison o
Approximate Linear Methods for Concrete Creep,” J. Struct. Div., Proc. Amer. Soc. of Civil
Engineers, 99 (1973) 1851-1874.)
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Extensive numerical studies of typical practical problems[157] (such as
stress relaxation, shrinkage stress, creep buckling deflections, prestress
loss in prestressed beams, straining by differential creep due to unequal
age, stress redistributions in composite beams, and cracked reinforced
beams; Figs. 27-29) indicated that, in comparison with the exact solutions
for given J(t, t'), the age-adjusted effective modulus method was superior
to any other method. Second best was the rate-of-flow method.
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Fig. 28 Creep buckling deflections of a typical slender reinforced concrete column under
working loads. Computed for ACI expressions (3.10) to (3.11); same labels as in Fig. 27. For
the values of assumed column parameters, see Ref. [157). (Added in proof: Due to an error,
multiply curves exact (const. E) and EMM by ri(1 - r, + r) where r = ordinales as shown,
ro = yly: just after foading, y, = ordinate before loading, column shape being sinusoidal.)
(After BaZant, Z. P., and Najjar, L. J., “Comparison of Approximate Linear Methods for
Concrete Creep,” J. Struct. Div., Proc. Amer. Soc. of Civil Engineers, 99(1973) 185 1-1874.)

In favor of the latter, it is sometimes argued that the recovery after
sudden complete unloading is fitted bettér than by superposition of creep
curves at constant o, i.e. J(t, t'). This is true, but a complete unloading is‘
rare in practice, and for small or gradual decreases of stress, as in
relaxation-type problems, this argument is invalid. Also, it is not desirable
to make J(t,t') fit the recovery after complete unloading because the
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Fig. 29 Shear force X, generated by creep in the midspan connection of two concrete
cantilevers of different age. Computed for ACI expressions (3.10) to (3.12); same labels as i.n
Fig. 27. For assumed properties of structure, cf. Ref. [157]; X, is elastic reaction due lq unit
displacement. (After BaZant, Z. P., and Najjar, L. J., “Comparison of Approximate Linear
Methods for Concrete Creep,” J. Struct. Div., Proc. Amer. Soc. of Civit Engineers, 99 (1973)
1851-1874.)

prediction of creep of old concrete is then inevitably sacrificed[157].
Anyhow, it should be remembered that any deviation from the principle
of superposition is a nonlinear effect, so that the frequent efforts to
correct the deviation by a linear creep law corresponding to a distorted
creep function are based on misconception.
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6 PRACTICAL PROBLEMS IN DESIGN AND CONCLUSION

Applying the methods of analysis outlined in Section 5, one can analyze
most problems encountered in engineering practice. An abundant
literature on this subject exists (3,79, 82, 84, 138, 157, for example]. Here
only a brief review of the practical problems will be made.

The most obvious effect of creep to be considered in design is the
growth of deflections, which is of concern, e.g., in large-span prestressed
concrete bridges. Cases of deflections over one foot in excess of the
predicted values have been experienced in some early long-span bridges
built in Europe (by segmental cantilevering, with hinges at midspan). This,
of course, very adversely affects the serviceability of the structure and may
require expensive countermeasures.

In concrete columns, compressed walls, and thin shells, creep magnifies
the buckling deflections (Fig. 28) and internal forces due to unavoidable
imperfections, and leads to long-time instability under a load several
times less than the short-time stability limit. Most building codes,
including ACI Code 1971, take creep buckling into account in the form of
an approximate effective modulus‘and distinguish between various ratios
of short-time to load-time loads on columns. Similarly, creep buckling is
of concern for concrete arches and shells.

In many structures, creep causes extensive redistributions of internal
forces and, together with stresses induced by shrinkage (see Ref. [166])
and thermal dilatations, may produce severe cracking and overload of
some structural parts (or at least a reduction in the safety against collapse
under superimposed short-time- load). These redistributions are absent

only if the structure is statically determinate or if it is statically
indeterminate and homogeneous, that is, the ratio of creep to stress is the
same in all points of the structure (cf. Subsection 5.2). This is, of course,
not the case if the nonlinearity of creep or the differences in creep
properties due to different humidity and temperature in various points of
the structure are considered. Even under the assumption of a linear aging
viscoelastic material (Section 3), stress redistributions occur, due to the
presence of steel reinforcement, which does not creep, the interaction of
concrete and steel structural members (as in cable-stayed concrete
girders), or the differential creep of parts of significantly different age, as
in many structures built with a repeated use of one formwork. In general,
creep transfers internal forces from parts creeping more into parts
creeping less. A typical example is a bridge span whose halves are cast by
cantilever method with the same slip form, one after the other; the
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younger half tends to deflect more but, because of the connection at

" midspan, produces a shear force (Fig. 29) relieving its bending moments

and augmenting them in the older half. Another important example is the
differences in creep and shrinkage shortening of the' columns fmd the
shear-wall core in a tall building, resulting from the d_|lfere|.1¢es in cross
section sizes and reinforcement ratios, and _t'rom the dlﬁe.rcnces in
environmental conditions between the interior .and th.e ex(?rlor of the
building. Over a great height, large differences in vertical dl‘splaceme.nt
can accumulate; this strains severely the floor slabs and requires special
partition walls that can adapt to the relative movements.

Stress redistributions also occur within all nonhomogeneous. Cross
sections of beams or slabs. In columns, the nom.lal force carried !)y
concrete is gradually transferred upon the steel reinforcement, apd.us
normal stress is further increased by shrinkage of _concrete. S!mllar
redistributions of normal forces and bending moments occur fmthl'n the
cross section of steel-concrete composite givrders and composite gnrdel:s
consisting of prefabricated prestressed beams covered by a slab cast. in
situ whose concrete is younger and creeps more. Due to creep shortening
of the prestressed beam, the prestressing forcf: is partly trgnsferred from
the beam on the attached slab, and a camber is produtfed in the Peam. A
serious camber may also result from differential creep in composite cross
sections, from nonsymmetric shrinkage, and from shl:lnkage in nonsym-
metrically reinforced cross sections or nonsymmetrically drylng. Cross
sections. In statically indeterminate structures, free camber is not
possible, and secondary internal forces are d?veloped by the camber.

In all prestressed structures, creep and shrinkage cause, of course, a

ignificant loss of prestressing force. . ]
s.glr::‘::atically inde:)erminate structures, creep is b?neﬁcial in reducing the
forces induced by shrinkage (Fig. 27), or tl.le mten'lal for.ces due to
displacements imposed during the const.ructlon by jac.ks in order to
rectify previous undesirable deflections or internal forces m'the strucftur?,
or the forces due to differential settiements of stmctur?. This reduc.tlon is
offset when the settlement is gradual rather than instant, as in the
case of consolidating clay foundations[164]. .

When the statical system is changed during COIIS(I'U?(IOII, e.g., when
additional supports or connections are introduced in the structure
(Subsection 5.2), creep causes that the internal forf:es gradu.ally approach
those that would exist if the structure were orignnall)! built in the new
system. A typical example is the construction ?f a contmuo.us girder from
prefabricated simply supported beams by rigidly connecting lhg beams
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above the supports, cither with an'added top reinforced concrete slab cast
in situ or with post-tensioned reinforcement running across the support
section. In this case, the end cross sections of the girders meeting above
the support tend to rotate in opposite directions due to creep of girders,
but are prevented to do so by the rigid connection, so that a negative
bending moment gradually develops above the support.

The aforementioned problems are tackled by the designers by means of
some of the simplified formulations outlined in Subsections 3.2 and 5.5.
Such analyses give a crude, though usually sufficient, picture of the
deflections and the stress resultants within cross sections of beams or
slabs. The values of the resultants then yield, probably with an acceptable

error, the necessary amounts of reinforcement and overall cross section

dimensions.
However, there should be no illusion that the stresses in concrete
computed from the cross section resultants are a good indication of the

actual values. To obtain a realistic information on stress distributions

within cross sections, it would be necessary to account for the
nonuniform drying, shrinkage, and drying creep within the cross section
(see Ref. [166]), as well as the nonlinear effects discussed in Section 4, and
eventually also temperature history with hydration heat effects.

Such analyses are awaiting successful identification of the material
parameters in Section 4 from test data. They probably are of little interest
for ordinary building and bridge structures, in which fine cracking of
concrete is not of much concern or ample prestress is provided. The
situation is, however, different with prestressed concrete pressure vessels
- for nuclear reactors and secondary reactor containers (and also undersea
shells), where cracking is a dominant consideration for serviceability and
safety of the structure. Improvement in the prediction of stresses induced
by transient and nonuniform temperature fields, and the migration of
water within the massive walls of such structures, would undoubtedly-
improve economy and safety and, what is perhaps even more important,
enable exposure of concrete to higher temperatures than the present
cautiousness, dictated by ignorance, allows. Therefore, considerable
effort is being devoted to these questions at present.

Furthermore, solution to the above questions will be useful for the
design of massive blocks of concreté dams, severely stressed by
hydration heat effects, and for predicting deflections of slender long-span
bridges, in which the serious miscalculations experienced in the past are
explicable mostly by asymmetric drying and temperature distributions
within the cross sections of the bridge girder.
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Although the long-time applied loads that primarily cause creep exhibit
arrower statistical distributions than the short-time loads, the environ-
iental conditions, playing an important role in creep and shrinkage, are
onsiderably random. The random nature of material properties is
ertainly also important. So far, the statistical studies in creep of concrete
ave been rare[165). Perhaps, however, the time is not yet ripe fcar .th!s
pproach. Before the probabilistic aspects are tackled, the determmlsu‘c
10del of the constitutive equation ought to be reasonably understood, or

he

statistical parameters would have to account in a large part for

gnorance of the deterministic (or average) components in the material
ehavior.
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8 LIST OF BASIC NOTATIONS

Ay Qusy Oy, sy = diffusion coefficients in Eq. (4.8);

CCoC, . = diffusivity of water in concrete, Eq. (4.40), its

' reference value and value at h = 1;

D = average distance of flow in Eq. (4.17);

E,E., E = Young’s modulus [Eq. (3.13)}, its reference
value at time ¢,, and operator in Eq. (5.1);

EY = incremental elastic modulus for time step At,
in Eq. (5.11);

Er(t, t') = relaxation modulus [Eq. (3.5)];

E. E.E.E’E." =moduli for hidden variables in Eqs. (3.15),

(3.19), (3.36), and (4.20);

E.,,...,Es, = parameters in Eqs. (3.21a) and (3.21b);

fa-t) = shape of creep curve in Eq. (3.10);

fa = area factor for hindered adsorbed layers [Eqs
(4.17) and (4.19)]; '

[ = hidden stress equilibrium values, Eq. (4.20);

h, h., h, = relative humidity of water vapor in pores of

concrete, environmental humidity, and self-
dessication humidity in Eq. (4.38);

J(4,¢°),7Y(t,¢), J°(t, t') = uniaxial, volumetric, and deviatoric creep
functions [Eqgs. (3.1) and (3.2)];

J., J. = fluxes of water and solids in Eq. (4.8);

Al, = expression (5.12);

k = 9h/dw = coeflicient in Eq. (4.38);

ko, ke = slopes of creep curve in Eq. (3.18);

K, K. K., =bulk modulus and the corresponding modul

' for hidden stresses in Eq. (4.30);

L, L, = half-thickness of hindered adsorbed laye
[Fig. 14(d)] and its boundary length;

L(tt') = memory function in Eq. (3.8);

M = bending moment or molecular weight of wate
(18.02 g/mole);

P = distributed surface loads of a structure; *

Pws Ps = pressures in water and solids across the
hindered adsorbed layer;

R =gas constant = 1.986 cal/°’K = 82.06 cm’ X atn
(°K X mole)™";

S..S. = entropy densities in water and solids in Eq

“.n;
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Lt = time, measured from casting of concrete;

Lr=12,..) = discrete times for step-by-step analysis;

to, L. = instant of first load application and equivalent
hydration period in Eq. (4.1);

w, u’ = displacement of material points and enforced
displacements, Eqgs. (5.6) and (5.26);

T, To = absolute temperature and its reference value;

U, U, U,AU = activation energies for hydration and creep in

Eqgs. (4.2) to (4.4) and (4.26);

alalat o = thermal dilatation coefficients in Eqs. (4.10)
and (4.20);

B. Br, Bs = relative hydration rates in Eq. (4.1);

€€’ €€ =normal strain, stress-independent inelastic
strain and strain tensor (linearized);

€, €2 = hidden strains in Egs. (3.24), (3.26) (Figs. 10);

€s, A€, A€’} = instantaneous shrinkage strain in Eqs. (4.19)
and (4.20), and strain increments in Eq. (5.11);

N = viscosities associated with hidden variables
in Eq. (3.28), (3.29), and (3.36);

x = 8h/aT = hygrothermic coefficient, Eq. (4.38);

[T = chemical potentials of water and solids [Eq.
@.ny

v, v(t, t') = Poisson’s ratio in Eq. (3.3);

s Ts = spreading pressures in water and solids in Eq.
@.7;

Ta = relaxation or retardation times {Eq. (3.16)];

o, 00 = normal stress and stress tensor;

Ops oy O,y O, = hidden stresses in Eqgs. (3.28), (3.29), (3.35),
(4.20), and their equilibrium value in Eq.
(4.24); '

e, 0%0.%0a,,... = volumetric and deviatoric components of

' stress and hidden stress tensors, Eq. (4.30);
1), du(t) = creep coefficient [Eq. (3.9)] and its conven-

tional “ultimate” value in Eq. (3.10); N
Gusr - -+ 2 P D5 B0, Jr = rate parameters in Egs. (4.20), (4.32), (4.26);
&) = ¢(t, to) [Eqs. (4.35) and (5.34)};
x(1, 1) = aging coefficient in Eq. (5.32);





