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THEORY OF NONLOCAL ELASTICITY 

AND SOME APPLICATIONS 

A. Cemal Eringen 
PRINCETON UNIVERSITY 
Princeton, NJ 08544 

ABSTRACT 

Constitutive equations of finite nonlocal elasticity are 

obtained. Thermodynamic restriction are studied. The linear theory 

is given for anisotropic and isotropic solids. The physical and 

mathematical properties of the nonlocal elastic moduli are explored 

through lattice dynamics and dispersive wave propagations. The 

theory is applied to the problems of surface waves, screw dislocation 

and a crack.  Excellent agreements with the results known in atomic 

lattice dynamics and experiments display the power and potential of 

the theory. 



1,    INTRODUCTION 

All physical theories possess certain domain of applicability 

outside of which they fail to predict the physical phenomena with 

reasonable accuracy.  While the boundaries of these domains are not 

known precisely, often the failure of a given mathematical model is 

indicated by its predictions that deviate considerably from experimental 

results or dramatically displayed by mathematical singularities that it 

leads to. 

The domain of applicability of a theory is a function of some internal 

characteristic length and time scales of the media for which it is constructed. 

When these scales are sufficiently small as compared to the corresponding 

external scales, then the classical field theories give successful 

results.  Otherwise, they fail. 

Such is the situation with the classical elasticity theory 

which possesses no internal scales.  Yet all elastic materials possess 

inner structures in the molecular and atomic scales.  Consequently, 

when the external scales (such as wave length, period, the size of the 

area over which applied loads are continuous), becomes comparable with 

the inner scales (such as granular distance, relaxation time, lattice 

parameter), the theory fails to apply. 

In classical elasticity, this situation is demonstrated dramatically 

by the singular stress field predicted at a sharp crack tip and the phase 

velocities that do not depend on wave lengths of propagating waves. 

As a result of the former a perfectly sensible physical criterion of 

fracture, based on maximum stress hypothesis, was replaced by various 



ersatzs (e.g. Griffith energy,  J-integral, etc).  Clearly, the infinite 

stress is a sharp signal for the failure of the theory rather than the 

failure of the fracture criterion which must be based on the physical 

concept of cohesive stress.  Regarding the phase velocity, at all wave 

lengths from infinite to the atomic distances, we have ample experimental 

measurements of dispersion curves.  Only at the very large wave lengths 

is there an agreement with classically predicted constant phase velocity. 

Waves having short wave lengths have been observed to propagate with 

much smnaller phase velocities and in fact they cease to propagate near 

the boundaries of the Brillouin zone. 

The question arises:   "Should we altogether abandon classical 

field theories and appeal to atomic theories only?" The answer depends 

on the characteristic scale ratios.  Indeed if the motion of each atom 

in a body is essential for the description of a physical phenomenon, 

then the lattice dynamics is the only answer.  If, on the other hand, 

the collective behavior of large number of atoms is adequate for the 

description, then continuum theory offers much simpler and practical 

methodology.  Between these two extremes, there lies a large domain full 

of rich physical phenomena. 

Real materials possess a very complicated inner structure full of 

dislocations and impurities.  Moreover the force law among the substructure 

is not known.  Consequently, it is virtually impossible to carry out 

calculations on the basis of the atomic theories.  Even if it were possible 

to accomplish such voluminous and difficult computations,  results would 

be of no practical value.  All experimental probes possess some characteristic 

lengths so that they can only measure statistical averages.  Consequently 



we need to calculate theoretically certain statistical averages so that 

comparison can be made with experimental observations.  Hence we are 

back in the domain of continuum.  Thus, continuum theory makes sense 

on its own grounds, provided it is properly constructed to predict these 

averages with sufficient accuracy. 

Linear theory of nonlocal elasticity, which has been proposed independently 

by various authors [l]-[6], incorporates important features of lattice 

dynamics and yet it contains classical elasticity in the long wave length 

limit.  It is capable of addressing small as well as large scale phenomena. 

Large number of references on the topic may be found in [7]-[9].  Inter- 

ested readers may also consult [10], [11] for the nonlocal fluid dynamics 

and [12], [13]  for nonlocal electromagnetic continua. 

Here I present the theory of nonlocal nonlinear elasticity from 

a continuum point of view.  (See also [14]-[17]).  Constitutive equations 

are given in Section 3, where I employ the global entropy inequality 

rather than the local Clausius-Duhem inequality to place restrictions 

on the constitutive functionals.  In Section 4, I derive a special class 

of stress-strain law for the additive functionals.  Isotropie solids 

are studied in Section 5 and linear theory is presented in Section 6. 

In nonlocal elasticity, the stress at a point is regarded as a functional 

of the strain tensor.  For linear, homogeneous solids, this introduces 

material moduli which are functions of the distance.  Physical and mathe- 

matical properties of these moduli are studied in Section 7.  Section 8 

gives the field equations. 

Applications of the linear theory begins with Section 9 to wave 



propagation.  Dispersion curves are obtained for the plane harmonic 

waves in an infinite solid and for surface waves.  Results are in excellent 

agreement with the corresponding ones obtained by means of lattice dynamics. 

In Section 10, I determine the stress distribution due to a screw-dis- 

location.  Cohesive stress that holds the atomic bonds together in a perfect 

crystal is found to coincide with the so-called theoretical stress esti- 

mated on the basis of atomic theory or experiments.  The last section 

(Section 11) treats the crack tip problem for anti-plane case (Mode III). 

Contrary to the classical result, the crack tip stress vanishes at the tip 

and possesses a finite maximum near the tip.  The maximum stress hypothesis 

of fracture can now be restored.  This enables us to calculate the fracture 

toughness which is shown to agree well with experimental results on several 

materials. 

These few examples are sufficient to demonstrate the power and 

potential of the theory.  There exist several other solutions in the liter- 

ature, dealing with dislocations, cracks, wave propagations, defects, con- 

tinuous distribution of dislocations.  They also make successful pre- 

dictions. 

The purpose of this lecture is to share my enthusiasm with you and 

to draw your attention to the exploration of these new theories. 



2.    BALANCE LAWS 

Just as in classical field theories, the motion of a material point 

X in a body B with volume V ,  enclosed by its surface 3V ,  is 

described by the mapping 

(2.1) x = x(X,t) (2.1) 

where    x ,      at time    t ,      is the spatial  image of    X , in the deformed 

configuration    B    having volume    f    enclosed within its  surface 31/  .     We 

employ rectangular coordinates    X„    and    x,     to denote the position of 

X    and    x    respectively,   and assume  that 

(2.2) J    =    det(3xk/3XK) > 0 

throughout    B ,      so that the inverse of  (2.1) 

(2.3) X    =    X(x,t)       , XeB 

exists and is unique. 

Under some mild assumptions, local balance laws of continuum mechanics 

are valid for the nonlocal theory. Thus, we assume that the body is made up 

of single nonpolar species and it is inert. Moreover, nonlocal gravita- 

tional effects can be neglected» Under these assumptions, the nonlocal 

residuals may be dropped and we have the usual balance laws 



(2.4) p  + pvk  k    =     0 , 

(2.5) tkM  ♦  p(f£ -  v£)     =     0 , 

<2-6) \i  -   HM 

V-^ -P£+  Vl.k + qk,k + ph    =     ° 

and corresponding jump conditions which we do not list here (cf. Eringen 

[7], [15], [17]). Here, P,\, \i>fi>z> % ^d h are» respectively, 

the mass density, velocity vector, stress tensor, body force density, 

internal energy density, heat vector and the energy source density. The 

usual summation convention is valid on repeated indices and a superposed 

dot (•) denotes the material time rate and an index following a comma 

partial   derivative,   e.g. 

v 
3\ 
   +   V         V 
3t         l,m m ' 

V£,k 3xk 

H 
3XK *k,K 

In contrast to classical (local) field theories, the entropy 

inequality is a global statement covering the entire body.  It is expressed 

as 

r 
(2.8) [pn - (qk/0)jk - (Ph/6)1 dv > 0 

•1/ 

where n is the entropy density and 6 > 0 is the absolute temperature. 



By eliminating h between (2.7) and (2.8), we have 

(2.9) |[- P(**ne) * V£)kaqke(k] dv> o 

where we also introduced the Helmholtz' free energy 

(2.10) i> =   e - 6n 

For some purpose, it is convenient to introduce the material tensors 

TKL = J WK.A.I '      QK = J qk XK,k ' 
(2.11) 

CKL    Xk,KXk,L' J = PQ/P 

which enables us to write Eq. (2.9) in the form 

(2.12) £[- Pn(^ + ne) 4LL4Q„e„] dv > o 2  KL KL  6 XKU,K- 

This is the material form of the global entropy inequality which is valid 

for the nonlocal field theories. Clearly, the Clausius-Duhem inequality 

which constitute the integrands of (2.9) and (2.12) are much too restricted. 

For example, it is not valid for the phase  transformation  where cer- 

tain thermodynamic quantities exhibit discontinuities and/or singularities. 



3,    CONSTITUTIVE EQUATIONS 

According to the axiom of causality, [6,18] all physical processes are 

the result of motions (deformations) of all material points of the body 

in the past up to and including the present time.  For thermomechanical 

phenomena, the independent variables are therefore 

(3.1) Y'  = {x» , 6' , 8' } 

where a prime is used to denote the values of these functions at  (X',t-T'), 

e.g. 

x'  = x(X',t-T') ,       6' = 9(X',t-T») , 

(3.2) 
X'E B , 0 < T1 < « 

Constitutive equations  express the functional  dependence of the set 

(3.3) Z    =    {iii, n ,  TKL,  QK) 

at     (X,t)     on the set   (3.1),  e.g., 

(3.4) ^(x,t)   =   F[x',e',e» ] 

For inhomogeneous materials,    ^    also depends on    X'     explicitly. 

Response functionals,    such as    F ,   must be form-invariant under 



arbitrary spatial translations and rotations.       This  implies that    \fj    will 

depend on    x'     and    x    only through     |x'-x|  .      Since the distance can be 

expressed as a functional of    C      ,     it proves  to be convenient to replace 
l\i-f 

X«     in   (3.4)   by    C^ =  CKL(X',t-T') ,      i.e. 

(3.5) ^(x,t)   =   Fic^ese'^x«] 

This functional  equation constitutes  a fundamental  source  from which con- 

stitutive equations of large classes of nonlocal memory-dependent thermo- 

mechanical materials   (solids and fluids)   can be derived  (cf.   [6]). 

Here we consider nonlocal  elastic solids.     In this  case,     8'     is uniform 

throughout     B    and the memory-dependence  is not present.     Consequently, 

(3.6) KX,t)     =     4'[C„I(X'),X';6] KL/~ 

where in  C^T(X')  denotes C T(X',t) ,  i.e.,  t is suppressed for 

brevity. 

We assume that CL.fX1)  is continuously differentiable and it belongs 
KL   *» 

to a Hubert space with an inner product defined by 

t 

(3.7) t£l*£2)H H(X'-X)   tr(C'C')   dV 

V 

where the influence function H is a positive decreasing function of its 

argument such that the integral in (3.7) exists and 

(3.8) H(0)  =  1 
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In this  case,  the space of functions    C'     is a Hubert space    H    with a 

finite norm defined by 

(3.9) ||C» ||    -     (C',C')H 

In a Hubert space,   any continuous,   linear,   real-valued function    f(F) 

has the unique Riez-Frechet representation 

(3.10) f(F)     =     (F,C')H 

There exists a great variety of influence functions. As an example, 

we mention 

(3.11) H(X) = exp(- a |X| ) ,       a > 0 

It is now possible to calculate l|> .  Let 

(3.12) P^ = F 

then 

(3.13)     P0^ = «FCCJL|6JL.X»3 * || e 

where    <$F    is the Frechet derivative of    F    with the norm defined by  (3.9) 

It is  linear in    C', .      Consequently,   it  can be expressed in the form 

r 

(3.14) <5F    = 

V 

6F —— C     dV 
6  CKL  KL 
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where the operator 6( )/6( )  represents Frechet partial derivative, 

Substituting (3.13) into (2.12), we organize it into 

(3.15) I C" * H>; dV + j [IT Le   KL 
-  2 m-C&H* dV'] cKLdv 

6'   '■cC 

V 
KL 

r    r 

iV/v + 
V    V 

[7%)*6-^%^dV'dVi° 
where a superposed asterisk (*) indicates interchange of X and X' ,e.g., 

A(X',X) = A(X,X') 

It  should be observed that the kernel of the last double integral  in (3,15) is 

skew-symmetric in    X    and    X1 ,     Hence it vanishes»    Moreover,  this  in- 

equality is linear in   6 ,  C        and     6 „ ,     For arbitrary and independent 
Kij , K 

variations of these quantities throughout V , this inequality cannot be 

maintained unless 

(3.16). 
9F 

n = "36 

(3.17) KL 
6F 
(——1 V6C dV 

KL 

(3.18) QK = 0 

Note also that we set 6' =6 since 0 is assumed to be uniform throughout 

V.  The spatial forms of the constitutive equations follow from (2.11) 

which gives for the stress tensor 

(3.19) 
"k£ Pn *k,KX£,L TKL 
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t\,   ADDITIVE FUNCTIONALS 

For additive functions, in the sense of Friedman and Katz [19], a 

representation theorem exists, according to which 

(4.1) PQ* - F - G(CKL» CKL' *'» 19   dV' 

Since the integral of F over the volume V must be symmetric in X'  and 

X ,  we set 

(4.2) G 

Consequently, 

(4.3) 

* 
G 

KL dLKL dCKL 

and the Cauchy's stress, tensor is  given by  (3.19). 

Crystalline    materials possess  certain symmetry regulations.     All 

thirty-two classes of perfect  crystals can be characterized by a subgroup 

{S.,.}    of the full  group of orthogonal transformations  and translations 

{B„}    of the material  frame of reference, namely 

(4.4) XK     =     SKLXL  +  \ 

SS s s    =    i , det S = + 1 
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In the case of amorphous materials,      SKL    and    BK    may be different for 

different species.    Here we consider that    {S^}    and    {BK>    are constant 

i>    is invariant under the transformations   (4.4)   and therefore: 

(4.5) G    =    G , 

for all members of    iS .}    and    {B } ,     where 

(4.6) G = G(SC»ST,    SCST ,   SX'   +  B ,    SX + B) 

For a given symmetry group,  these expressions restricts the functional  forms 

of the constitutive equations. 

In the case of homogeneous materials,    G    will not depend on    B , so 

that 

(4.7) G    =    G(C«,  C,  X'-X) 

For   isotropic  materials, {S}  is the full  group of orthogonal transfor- 

mations. 



14 

5.    IsoTROPic SOLIDS 

For isotropic solids,  {S} is the full group of orthogonal 

transformations and Eq. (4.5) states that G is a function of the in- 

variants of C , C  and R = X'-X , i.e. 

(5-D       G = G(Ia, Ia; Iß) a=l,2,...,6 

3=7,8,...,10 

and a function of   6  ,     where 

(5.2) 

lx ■ tr C , I2 = tr C2 , I    = tr C3 , 

I.  =  tr C2C, Ic =  R«CR , I,  =  R«C2R , 

I- = tr CC , I. = tr(C2C'2) , L = RCC'R 

Z10= 5*5 

From (4.2),  it follows that 

(5.3) G(Ia,   Iaj   Iß)     =     G(Ia,   Ia;   Iß)     E    G 

since    Ig  = Ig . 

Substituting  (5.1)   into   (4.3), we obtain 
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r 

W TKL = 2 J [|f- 6KL + 2 |f- CKL ♦ 3 §- CKMCML 

+ llT (CKMCML + CKMCML^ + Il7 RKRL 4 5 

+ If <VuAl + VW4.5 + Hi CKL 
b / 

+   rr r» c + c c c l 
31  LLKM MN NL   LM MN NKJ 

8 

+ % <WM
+ "iW dV' 

The spatial expression of the stress tensor follows from (3.19)„ 

The exact constitutive equations (5.4) may be useful in dealing 

with finite deformation problems„ In general, they are too complicated 

for practical applications. However, for certain simple geometries and 

loading and in those problems where the nonlinear region is localized 

(e.g., the crack tip), the solution may be tractable.  Of course, there 

exists some important problems where the nonlinearity is the rule rather 

than the exception, e.g. phase transition, rubber elasticity. 
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6,    LINEAR THEORY 

For linear theory,   it is  useful to employ the  linear strain measure 

^ EKL    -    I <CKL "  &
K0 ~-  7 <UK,L +  UL,K> 

where    U,     is the displacement vector in    B .     A second degree polynomial 

for    G    satisfying Eq.   (4.2)  has  the form 

(6.2) G    =    E1  ♦ IJLE    + Ö.E«     ♦yZjIMMEI.TE' KL KL      KL KL      2  "KLMN KL MN 

1*1 12 1  *2 — T F1   F       +  — T F     F        + — r F'   F1 

2  ^KLMN  KL MN       2  LKLMN  KL MN 2  LKJMrKLT4N 

1 *2 
where constitutive coefficients      2     ....Z„fU.,      are functions  of    X'-X 

and    9    and they have the symmetry regulations 

(6.3) 

ZKL = ZLK ' ZKLMN = ZLKMN  =  ZKLNM 

2 2 2 2 
SKLMN =     ZLKMN  = ZKLNM = ZMNKL 

Substituting  (6.2)   into   (4.3), we obtain 

f 

'KL "KL      *KLMN"MN C6-4) TKI,     "     ZKI.  +  Z
KLMNV   

+ 

where 

''KLMN MN 
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(6.5) 1° = ] 
V 

f    EKL dV'   ■ 

1° 
KLMN 

= 

V 

EKLMNdV' ■ 

ZKLMN 
= 1 

2 
1           *1 

(ZKLMN +IMNKL-) 

from which and (6.3), we deduce the symmetry regulations 

(6.6) 

Z°    - E° 1°        =Z°        - 1°        = 1° KL LK  '       KLMN LKMN KLNM        MNKL ' 

ZKLMN  = ELKMN      ZKLNM = ZMNKL 

Constitutive moduli    EVT  ,   EvtlJIV    are  functions  of    X    and 6    ,     but KL        KLMN 

Ei»»«,    are functions of    X'-X    and   0  . 
KLMN ~     ~ 

From Eq.   (6.4),  it is  clear that the nonlocal effects are 

represented by the volume integral,  i.e.  when      I'       =0      we obtain 

the classical Hookes  law of elasticity. 

One may be tempted    to incorporate    Znm    into the nonlocal 

moduli    Zj^LMN    by writing 

(6'7) ZKLMN  " ZKLMN *&-*>   + ZKLMN 

where    6(X'-X)       is the three-dimensional Dirac-delta measure»       With this, 

Eq.   (6.4)  becomes 

<6-8> TKL    =4L 
+ hu^'-l'V   EANCX')   dV(X') 
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In this form, the continuity requirement imposed on the stress functional 

is violated.  As we shall see, this form is useful for mathematical treat- 

ment, but in some instances (for compact operators), it leads to unbounded 

inverses which may or may not be acceptable on physical grounds. 

.0 
'KL In Eq.   (6.8),    Z T     represents the initial stress present in the 

reference state,   in the absence of which we set    Z„. = 0  . 

The material symmetry group    {S„.}    place restrictions on    !.,_,. 

These are of the form 

<6'9) 2KLMN^>6>     "    SKPSLQSMRSNT ZPQRT(^6) 

where    R = X' - X . 

The spatial  form of the stress tensor is  obtained by carrying   (6.8) 

into   (3.19)   and using 

EKL eU Xk,KX£,L ' RKL    =     rk£  ^.K^L 

(6.10) 

Xk,K    =     (6MK +  EMK +  W6Mk» P^O*1 e 
rr 

where    IL..     and    r,f    are the material  and spatial  rotation    tensors,   re- 

spectively.    &  ,      is the Kronecker delta when the spatial and material 

coordinates are coincident.     In terms    material  and spatial  displacement 

vectors    U,     and    u,   ,     we have 

(6.11) KL 2       K'L L'K 

TU    -    I  (uk,£  -  Uil,k3   ' 6k£     =    I  (uk,£  +  u£,k^ 



With these,  Eq.   (3.19)   gives 
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(6.12) 

*kt    =     (1  • err}   6ok£ + aom£(ekm + rkm3   + öokm  (e*m + r£m} 

aUmV-**V V(x»)  dv(x') 

where 

(6.13) aoU     =    2OKL6Kk6L£ ^ ak£mn    =    =KU«N6KköuVNn 

For homogeneous and isotropic materials, we can show that,     [7 ], [13], 

(6.14) 

okfi, 

k&mn 

Go6k£  ' 

k£ mn      M   v km £n        kn &nr 

+ X,   r    (r r 6. .  + r, r.5    ) 1 v m n k£        k A iror 

+ X- r    (r, r 6.    + r,r 6.    + r„r 6.     + r„r 6,   ) 
2 ^ k m to        k n £,m        £ m kn £ n km7 

+ X, r~    r, r.  r r 3 k £    m n 

where 

(6.15) r    = rkrk r,   = x,1  - x, k        k        k 

and    aQ    is a function of    x    and    6    but     X', V1     and    XQ    are functions of 

r=|x' -x|     and 8  ,  i.e. 

(6.16) a0(x,6) , A'  = X'(|x'-x|,6) , u'  = y'(|x'-x|,6) 

X    =  X     |x'-x|, 6) , a =  1'2'3 
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The appearance of X in (6.14) indicates that the nonlocal effects can 

cause directional dependence, even in isotropic solids. These terms are 

expected to be small as compared to A1  and  U1 because of the strong 

attenuation of the intermolecular forces with the distance.  Henceforth, 

we shall drop these terms and alse assume that the reference state is 

stress free, so that 

r 
(6'17)    \i a,„  (x'-x,9) e (x') dv(x') k£mn ~ «,' J    mn ~ *       K~  J 

valid for linear anisotropic solids, but for isotropic solids 

(6-18>   <W " X«C|x'-x|,6) *u*m  ♦ M« (|x'-x| ,6) (6 8  ♦ S^J 
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7,    NONLOCAL ELASTIC MODULI 

The nonlocal elastic moduli a .  (x'-x,6)  are required to possess 

certain physically acceptable properties: 

(i) From (6.17), it is clear that 

3 
(7.1)     Dimension (o. .  ) = stress/(length) 

This indicates that elastic properties of materials depend on some 

internal characteristic lengths (in general, three), a property which 

is lacking from the classical (local) theory.  If e(8)  denotes this 

internal characteristic length for isotropic solids, then we can put 

(7.2) X' - X(6) a.(|x»-x|/e) ,     u' = u(9) a,(|x»-x|/e) 

where X and u are the classical Lame constants, and a and Cl- 

are the attenuation functions. 

The internal characteristic length c can be taken to be proportional 

to the lattice parameter, average granular distance, or some other 

internal length, depending on the inner structure of the material and 

the accuracy desired. We may put 

(7.3) 6 = eQ(6)a 

where    a    is the  internal  characteristic  length and    en(8)     is  a 

non-dimensional  material  function. 
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In the limit as e ■*0 , nonlocal theory should convert to classical 

(local) theory. Hence 

(7.4) lim (a1,a2)  = 6(x»-x) 
€->■ 0 

It is also clear that a and a_ should assume their maxima at x'=x . 

Similar limits are valid for the anisotropic moduli o   (x'-x,6) 

(ii)  The nonlocal moduli must be continuous and bounded.  This is the 

case,at least for e ^0 ,  because of the function space to which 

they belong. One may also be tempted to consider compact operators 

since they transform bounded sequences to sequences that have con- 

vergent subsequences.  This however leads to unbounded inverse in 

an infinite dimensional space.  In some physical situation, this 

could be acceptable (e.g. crack tip, where the strain may be in- 

finite). Contrary to c, .  ,   in the original   Eq. (6»4) 

I' j^ , and the corresponding spatial moduli may define a compact 

operator. 

(iii) The group symmetry of o, . (x'-x,6) is identical to (6.9) as is 

clear from (6.13). For isotropic solids, it is expected that the 

attenuation of intermolecular attractions are the same in all di- 

rections. Consequently, we may also take 

(7.5) a = a2=a(|x'-x|/e) , 

subject to 

(7.6) Ci(0) = max a,      lima = ö(x'-x) 
£-0     ~ " 
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(iv)    All materials,   at some internal   length scale,  must be considered 

discrete.     This characteristic  of solids can be introduced by 

means of a cut-off length either through the so-called quasi- 

continuum approach   [1],[4],  or equivalently using a finite support 

for the Fourier transform of the nonlocal moduli a, 0      and a , [4],[13]. 

The idea is the same one that is used in  lattice dynamics  and 

information theory:     Let f (n)  be  a   scalar or tensor valued function of 

a vector    n    which takes  discrete values  at  lattice points  through 

k k all  displacements of the origin by vectors    n=n e,      (n      and    k 

are integers e, :(e.,e_,e,)).     Let    e      be the reciprocal triad to L.C I 

^k ' 

(7.7)                                 ek-e£    = 

Define a sampling function 

r 

(7.8)              6B(x)     =   (2TT)"
3 ex exp(ik'x)   dv(k) 

where the domain of integration B is a parallelepiped B{- TT<_ k. <^ft} . 

Suppose that the Fourier transform f (k) of a continuous function f (x) 

can be represented by a Fourier series 

(7.9) f(k)     =    v0 I f(n)   exp(in»k) , keB 
n 

where vQ is the volume of the cell B ,  and   f(k) =0 outside 

of B . 
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From the inversion theorem, it follows that 

(7.10) f(x)  = v0 I  f(n) 6BU-n) 
n 

Since, according to (7.8), 6R(0) = vQ and 5o(n) =0 for a11 other 

points, the continuous function f(x) takes the discrete values f(n) 

at lattice points. This representation can be shown to be unique. Of 

course, between the lattice points f(x) can be quite arbitrary. Thus, 

by means of the sampling function 6_ , we can replace a function with 

discrete values by a continuous function.  6  plays the role of the 
D 

Dirac-delta distribution.     The  following nonlocal elastic moduli 

(7-U) ak£mn^-^     =     °Ln^   W-5> 

satisfies  all the invariance reauirements.   in addition to being a con- 

tinuous  function. 

Sampling functions  for several crystals  are known.   For example,   for 

a cubic crystal,  it has the form 

-3     3 -1 
(7.12) 6

B(x'-x)     =    TT °    n     (x!-x.)   i sin[>(x!-x.)/a] 
j = l    "^ **J  "*■' 

where a    is  the lattice constant0     For hexagonal,  body and face-centered 

cubic lattices,  see Kotowski [201.   For the so-called Debye continuum 

where the Brillouin  zone is  considered to be spherical,     £D    was  calcu- 

lated by Kunin and coworkers [21], [22], 

(7.13) SK(T)     =     «^(^H-COSKT), 

r    5     Ix'-xl  , K = ir/a 
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where    a    is the lattice parameter.     For the two-dimensional case,     5 

has the form 

(7.14) 6   (x'-x)     =     (K/2 7Tr)  J^icr) , K = Ti/a 

where    J..     is the Bessel's function. 

We note that    6      and    6      given above, have no singularity for 
D ts 

finite    a ,     but they go into Dirac-delta distribution when    a ■* 0 , 

as they should. 

The Fourier transform of    6D = 1    in    B ,   and vanishes outside. 
o 

Consequently,  we have 

(7.15) tu(10    =    ök£(k) when kj e B 

=    0 when k. t B 

where 

From this,  by inversion, we have 

(7.17) ik£(k)     =     sk£mn(k) tm(k) 

where   s]cg,mn     is the Fourier transform of  the compliance subject to 

(7-18) 5kümn ^rs =    6
kAs 
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i.e., it is the inverse matrix to ö^     . For isotropic materials, it is 

given by 

(7.19) s, 0 =    — (6,   6.     + 6,   6a   )     6V06 K        ' k£mn .-   v km £n        kn £nr       ,-,,*•  -,--,       k£ mn 4y 2y(3A+2y) 

For the case  (7.5),  it reads 

(7-2u> 5
kAm - skVe) *« 

where s .   has the form (7.19) with X and y replaced by Lame 

constants A and y , and 

(7.21) 8(k)  = l/ä(k) 

(v) In calculations, the moduli ö(k)  or s(k)  in their full generality, 

cause major mathematical complexities. Often approximate expressions 

replacing them by power series in k are used. We give here two ex- 

amples involving second degree expansions in k for isotropic solids 

(7-22) 5(10 = 1 - e2k2 

(7.23) B(k) = 1 * e2k2 

2 
where k =k*k and e given by (7.3)     is independent of k .  We 

note that the linear term in k is missing because of the isotropy and 

center of symmetry. 
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In physical space,   these approximations  are equivalent to constitutive 

equations of the forms 

C7.24) tM    -    Cl^V)au 

for  (7.22)   and 

(7.25) 0        -     d-e2V2)tk£ 

for  (7.23),  where    a,,    is the Hookean  (local)  stress tensor 

C7'26) ak£    =    X err6k* +  2» %ü 

2 2 Applying the operator    (1-e V )     to the exact constitutive equation 

f 

(7.27) tk£    = a(x'-x,e) ak£(x')  dv(x') 

we obtain   (7.25)  if 

(7.28) (1  - e2V2)ct    =    5(x'-x) 

This indicates that in this approximation,    a    is a Green's function 

for this operator.    This approach was used extensively by Eringen and his 

coworkers   (cf.   [23]-[25]). 
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2„2 
Similary, the application of the operator 1 + E V  to 

(7.29) k£ 
ß(x'-x,6) t,0(x') dv(x') Mv~ 

gives (7.24) i£ 

(7.30) (1 + e2V2)ß = 6(x'-x) 

Even though ä and ß are given approximately by (7.22) and (7.23). 

We may employ either (7.28) or (7.30) for the determination of the 

attenuation function.  For example, when a is determined from solving 

(7.28), we can then use (7.21) to determine ß(x) exactly instead of solving 

(7.30) which is an approximate equation satisfied by ß .  In this sense, 

(7.27), with ex given by (7.28), represents an exact nonlocality. How- 

ever, a    being limited to a special class of function represented by 

Equation (7.22), is a limited or "short" nonlocality. Nevertheless, with 

this comppromise, we have achieved a major gain in that the integro- 

partial differential equations for the displacement field are now reduced 

to singular partial differential equations through the use of (7.24) or 

(7.25). 

Below, we give solutions of (7.28) for solids of infinite extents. 

For these and other types of moduli, see [5], [17] and [25]. 

(i) One Dimension: 

(7.31) a(|x'-x|) = (2s:)"1 exp(-|x'-xj/e) 
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ii) Two Dimensions 

(7.32)        a(l?'-?D  = (2TT e2)"1 K0(|x'-x|/e) 

iii)  Three Dimensions 

(7.33)      a(l?'-x|) =  (4TT E2|X'-X|)
_1
 exp(- |x»-x|/e) 

Excluding (7.31), these functions possess singularity at x'=x and 

they go over the Dirac delta distribution when e ■*• 0 . From (7.31) 

we have 

(7.34) ä    = (1 + e2k2)" exp(ikx') 

and since    p=1/a ,     we have formally, 

(7.35) $    = 6(x'-x)   - e2 6"(x'-x) 

which upon substitution into (7.29), gives (7.25). Thus verifying our 

expectation. 

Singular kernels such as (7.32) and (7.33) may lead singular a,. 

(hence singular strain) fields.  For t, „ may be a continuous function 

2 
but V t, „ may be singular at some point. The question arises whether 

this is allowable in a continuum theory.  Recall that in the atomic 

scale there exists repulsive forces between ions when they are close 
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enough together. These forces become infinite when x'=x .  Even in 

macroscopic levels at a sharp crack tip, classical elasticity leads 

to infinite strains«  On these physical grounds, it seems that we are 

justified to employ such singular kernels.  While these kernels do 

not possess an oscillatory character observed in crystal physics, it 

is possible to achieve such oscillations by adding a fourth degree term 

to the expansions (7.22) or (7.23), e.g. 

(7.36) 5=1- e2k2 + b k4 

where b is an appropriate constant. 

In Section 9, we shall see that these kernels for the plane harmonic 

waves, lead to dispersion relations, which are nearly coincident to 

those obtained in lattice dynamics, in the entire Brillouin zone» Also, 

cohesive bond stresses in perfect crystals calculated by means of the 

nonlocal theory are in good agreement with those known in solid state 

physics (Section 10 and 11). 



51 

8,    FIELD EQUATIONS 

Upon substituting (7.27) into (2.5) we obtain 

f 
(8.1) 

where 

(8.2) 

a,k 0k&(*'3 dv^') + P^f£ - V = ° » 

o 0 
k£   k£mn mn   k£mn m,n 

which assumes a single attenuation function for anisotropic solids. We put 

3a 
OY„(x') = dx^   kJr£ 

9a 
9x£ °k£ 

3^    90k£ 
+ 

9x.' 
k H 

in (8.1) and convert the first term to a surface integral by means of 

the Green—Gauss theorem. 

r 
(8.3) 

r 
a(x'-x) ak£ k (x

1) dv(x') - a GU dak + p(££ " V -    ° 
91/ 

Using (8.2) this gives the field equation of the nonlocal elasticity 

for the displacement field 

( 

(8.4) 
0 

r 
a(x'-x)  a. u      . Cx')    dv(x')  - 

~    ~       k£mn        m,nk ~ 
91/ 

0 
a(x'-x)  a. .      u      (x1)   da,(x') ~    ~      kx-mn    m,nv^ ■*       k ~ 

+ ^h - V = ° 
Here, the surface integral represents the contributions of the surface stresses 

(e.g.  surface tension).    Consequently,  nonZoccut tktotiy accouyvti,  ^OK thz i>uJii<xc.Q, 

pky-6<La> cu> uiztt. 

For the isotropic solids we replace ac, {  = a. .      by (6.17) 

leading to 

(8.6) [(A' + 2u') W'u* - u'YxVxu'jdv' + P(f - «)  = ° 

J 



52 

without the surface terms.  If we assume (7.5), this gives 

r 
(8.7) a(Ix'-x|) [(A + 2u)W«u' - uVxVxu'jdv' + p(f - Ü)  = 0 

where A and u are the classical Lame constraints. 

For a    we may choose various proposals made in section 7. 

If we employ the approximation leading to (7.25) we will have 

(8'8)      °k£,k + (1 " ^Mpf^ " P"V  = ° 

or in terms of the displacement field 

(8.9)   (A + 2u) VV«u -yVxV*u+ (1 - £2V2) (pf - pü)  =  0 

Here we see the advantage gained with the particular choice of a 

satisfying (7.28). 

The field equations obtained above must be solved to determine 

the displacement field u(x,t) under appropriate boundary and initial 

conditions.  Boundary and initial conditions involving the displacement 

and velocity fields are identical to those of the classical theory. 

Boundary condition on tractions is based on the stress field t,  > not 

<8-10> ^"k = w 

where t     are the prescribed boundary fractions. 
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9.    PROPAGATION WAVES 

1.     Infinite Media 

Using classical decomposition 

(9.1) u = V<£ + V x ty y.jh = o 

Eq.   (8.9)  with    f = 0    is satisfied if 

(9.2) c2   V2<j>   -    (1   -   eV)$     ■      0 , 

(9.3) c2   V2^   -    (1   -   £2V2)^     =      0 , 

where 

% c     _    ,,./--»% (9.4) c2   =   [(X   +   2y)/p]2     , c2   =    (y/p) 

are the classical phase velocities of irrotational and equivoluminal 

waves.  For plane harmonic waves, Eq. (9.2) leads to the dispersion 

relations 

(9.5) u/c k = (1 ♦ eV)"* 

For    e=0.39 a ,     where    a    is the lattice parameter,  the plot of   wa/c 

versus    ka    is  shown in Fig. 1,   where the dispersion curve for the Born- 

Karraan model of lattice dynamics  is also plotted    for which 

(9.6) ua/c.      =      2   sin(W2) 
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The maximum deviation of this curve from the nonlocal result is less 

than 6%in the entire Brillouin zone.  It should be remarked that Eq„ 

(9.6) obeys the two natural conditions 

(9.7)      doo/dk =  c. , dto/dk 
k = 0 

= 0 
k = TT/a 

but the nonlocal result (9.5) obeys only the first one of these. Accord- 

ingly, the group velocity does not vanish at the end of the Brillouin 

zone. However, this situation can be remedied easily by taking 

(9.8) 5(k)  =  1 - e2k2 + b k4 

instead of (7.22) where b is a constant (cf. Kunin [8,11], p. 38). 

Similarly, the dispersion relations of the equivoluminal waves 

are obtained by means of (9.3). 

(ii)  Surface Waves 

In the plane    x, = 0 ,     ty =   4)i_    has a single  component     ^(x.,x2,t) 

so that 

(-y'yj ul 3xj_      3x2    ' u2 9x2      3x 

The general  solution of  (9.2)   and  (9.3)   relevant to surface waves 

are of the form 

<j>    =    A exp[-kv,x_  + ik(x    -  ct)] , 
(9.10) 

\p    =    B expf-kv.x^  + ik(x-  -  ct)] 
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provided v  is given by 

(9.11) \    = 1 - (c/ca)  [1 - e k2(c/ca) ]" 

Using (9.9) and (7.27), the stress field can be calculated.  If we set 

t 2 =t ^  =0 on the surface x_ = 0 ,  we obtain the dispersion relations 

[25]: 

(9.12) [(cx/c2)
2 (v2 - 1) ♦ 2](1 + v2) - 4 VjV2 = 0 

This can be arranged into a quartic equation 

(9.13) YtajY3 + a2y
2 + a3Y + a4)  ■ 0 

where 

Y    =     (c/c2) 

(9.4) 

al    =   I? + T Cm+1D Cek)2 + j (l+4m - 3m2)(ek)4 +m(l-m)(ek)     , 

a2 = ■ i+ i (2m2 "m" 3)(ek)2 ■ (1+m ■ 2n>2)(ck)4. 

3 2    2 a3 = 2"-m+(2_m-m) (£k) 

l-2v 
a4 - 1 - m ,     m - j^^- 

A root of this equation for £ =0.39 a  and v =0,3 is plotted ■ 

against ka in Fig. 2 where the result of lattice dynamic calculations of 

Wallis and Gazs [26] for KCÜ are also shown.  If we note that no free 

constant is available for matching, the agreement is beyond our expectations, 

The nonlocal theory also gives new types of waves which are not 

present in local theory. However, these waves disappear in the long wave 

length regions (cf. Kaliski and Rymarz [27]). 
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It is important to note that the nonlocal moduli    a(|x'-x|)      is 

appropriate only to homogeneous and isotropic  solids.      Half-space ceases 

to be homogeneous in the vicinity of the surface    x2 = 0,  where in a boundary 

layer of a few atomic distances,  the material is inhomogeneous and therefore 

a perturbation is necessary in    a(|x'-x|).      The present results are 

however valid so long as the wave length is much larger than this 

boundary layer thickness. 
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10.    SCREW DISLOCATION 

Consider a screw dislocation located at x,=0 of rectangular 

coordinates x,  (Fig. 3). The displacement field has only single component 

u, = w(x,,x_)  which satisfies the equation 

(10.1) V2w = 0 

whose solution relevant to our problem may be written in plane polar 

coordinates  (r,6) as 

(10.2) „ = JL 
2TT 

where    b    is the Burger's vector.     The non-zero components of    a, „     are 

given by 

3w 
a,,    =    u ~—   =    - *—   sin ö , 31 3x. 2iTr ' 

o      1 

(10.3) 

8w ^b 

a32     =    VJT    -    ^C0SQ 

o      2 

We now carry these into 

(10.4) (1  - £V)tk£    =    ok£ 

and determine    t,„    by imposing the conditions that as    r+oo    +   = Q      and 

at    r=0    (crack tip surface)   t     =0 .       This leads to    [25 ] (see also  [28]). 
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0  r,  r 
flO 51       t„a = *— [1 - - K. (r/e)]  ,      t  = 0 U^.DJ       z6    2iTr L   z    1   'J '      zr 

where K,  is the Bessel's function.  The plot of 

(10.6)     Tz6 = 2TT etz6/n0b = p_1[l - p Kj (p) ] ,     p = r/e 

versus p is shown in Fig. 4, where is also plotted classical elasticity 

solution. We see that the stress at the center p = 0 is singular for the 

classical solution, but zero for the nonlocal solution.  The maximum stress 

occurs at p =1.1  and is given by 

(10.7)       t   . = 0.3995 unb/2TT ena v   '       z6 max H0 '   0 

If we equate this to the yield stress (theoretical) t  and write h = 

en a/0.3995 , this agrees with the estimate of Frenkel, based on an atomic 

model.  For en = 0.39,  b/a = 1//2 ,  we obtain t /u = 0.12 ,  which com- 

pares with the known value 0.11 for   A£(fcc) , W , ct-Fe(bcc)  and 0.12 

for NaC£ , MgO  (cf. [29], p. 160). 

The strain energy per unit length L in x,-direction is given by 

,R      f2u 

P0^/L = Z/L = j r dr he eze de 

o 

substituting from (10.5) and e « = b/2iTr , we obtain 

(10.8)      Z/L =  (ub2/8-)[£n(R/2c) + Kn(R/E)] o u 
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where R is the outer radius of the solid. Again we see that for finite R 

the strain energy is finite. Eq. (10.8) shows how the energy grows with 

size. 

The same problem can be treated by means of the nonlocal theory 

of continuous dislocations [ 30 ]. For the screw dislocations for a given 

Burger's vector b , we have 

(10.9) '*51    b 
9x1    3x-    2 

The equilibrium equations reduce to 

3t31  St32 (10-10> 3xf **xf -   ° 

For the stress tensor    t,.     and    t,2 ,   we have the constitutive equations 

(lo.ii)       {t31,t32} = M(lx'-x|){e31,e32} da' 

where the anti-plane strains are given by 

,-,*  ,„■« 3w 3w 

C10-12) e31     "     9x7   ' &Z2    =    ^1 

We introduce the stress potential     <J>   by 

<10-13) '31    =    * 3x7   ' '32    =    ^7 

by means of which Eq. (10.10)is satisfied. The Fourier transforms of (10.9), 
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(10.11) to (10.13) may be combined to give 

(10.14) $ = y b/k2 

where k = (k.k.)2  is the magnitude of the wave vector. 

Following Kunin [8,11],  if we employ the Debye Model, then the inverse 

of (10.14) is found to be 

I 
(10.15) <D = G(lx'-xl) b(x') da(x') 

where the integration is over the area in    (x^x^ -plane and 

(10.16) 
G(r)     -    £[ 

[0   J, CT)  - 1 
dx -  £n(<R)]   , 

P = <r , < = TT/a 

For a single screw at the origin r=0 ,  this gives 

(10.17) 
ub < x2    JQ(P) - 1 

'31 2TT 

yb K x      J   (p) - 1 
z32 2TT 2 

Alternatively, 

(10.18) Te = 2Vj!Kb = ^-VPWP t =o 
zr 

t fl       vanishes   at   the   origin     r = 0.     It has slightly oscillatory 

behavior for    r>0     (Fig.   5)   and it acquires its  first maximum at    p-2.76 

with an  amplitude 

(10.19) 
^emax^0'423    VK/2U 

This value is nearly identical to (10.7) where an entirely different 

(singular) kernel was used„ Note however that the location of the maximum 

differ considerably. 
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11,    CRACK TIP PROBLEM 

An infinite plate with a line crack of length 2c subjected to 

loads at infinity is known as the Griffith crack.  It is well-known that 

the classical elasticity solution of this problem gives stress singularity 

at the crack tip.  Because of this, no fracture criterion based on maximum 

stress hypothesis could be employed. Various alternative criteria (Griffith 

energy criterion, J-integral, etc.) had to be established to circumvent this 

difficulty. With the development of nonlocal theory, this problem has been 

resolved by Eringen and his coworkers [ 31 - 34].   Here I discuss only 

the so-called Mode III problem, i.e. line crack subject to anti-plane shear 

load (Fig. 6). 

The classical elasticity solution for a line crack in a plate under 

anti-plane loading at infinity is well known [35] 

(11.1)        a    =    a23 - i a , = aQ z(z - c )~2 

where    an    is the applied shear,    2c    is the crack length and    z = x1+ix2, 

z = x, - i x. . 

Employing  (11.1)   in   (7.25), we determine the nonlocal  stress  field 

.     -r /e i6 /2 -i91/2 
^)2e (Cj e +C2 (11.2) t,t ■ i t., ■   (ire/2r.;r e    l       (C,   e    l      + C9  e      *    )  + c 

where    (r.,8 )     are the polar coordinates with the origin  at the right-hand 

crack tip(Fig.   6).    The boundary condition at the crack tip is  calculated 

by   considering the tip as  a small  circular cylinder of radius    r,     so that 
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in the limit    t        vanishes as    r. ■*■ 0 .      i.e. rz 1 

(11.3) lim    t       =  0 
rf 0     rz 

This gives    C2 = 0    and    C, = -   (C/TC) 
2    aQ    and we have  [ 34 ] 

-ie 
(11.4) tzQ ~ i \r 

=   (t32  " i Si3   e 

^ rr-,2,   . ■»%  .     r.   .    „      e2. = o0(c/2r1)^ {(2r /cr2)
2 exp[i   (-9+   —)]  - exp(- r^e)} exp(-i61/2) 

(r_,62)     are the plane polar coordinates  attached to the left crack tip 

and     (r,8)     have the origin    x, = x2 ■ 0 . 

Along the x,-axis     (6 = 6   =   62 = 0) ,      t fl    acquires  its maximum 

near to the crack tip.    From  (11.4), we have 

Is. U 
(11.5) Te(p)    -r    tze/a0=  (Tre)2    t^/1^ 

=     (2p)"%     [d  ♦ YP)d * ^)'k - e"P] 

where 

\ (11.6) p = rj/e   , Y = e/c  , Kin =   (i;c)z a( 

It is clear that    t  fl    vanishes at the crack tip    p = 0    and acquires a 

maximum at    p = p   =1.2565      since        Y << 1   (Y < 10" ) . 

<"'7> Semax   ' Ve/c>   2  U2P^ +  <2PC>   '] 
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Tfi(P)  given by (11.5) is plotted against p in Fig. 7.  From this it 

is clear that 

(a) The stress field vanishes at the crack tip instead of being 
singular as predicted by classical elasticity. 

(b)  Fracture begins when t fl 

yield stress.        zömax 
t ,  where t  is the cohesive 
y *      y 

From (11.7), we have 

(11.8) K /t  =  3.9278 £: 
c' y 

where K = (TTC) 
2  a    is the critical fracture toughness.  For en = 0.39, oc 0 

K /t  is shown in Table 1 along with its values based on the classical 
c y 6 

fracture criterion, namely K = (4u y  )z  where y      is the surface energy. 

This table also displays some experimental results.  The present results are 

again in good agreement with experimental observations of Ohr and Chang [36], 

even though further considerations are necessary for the inhomogeneity of 

the material at the core region. 

McUZAMlt Q.lna>i,ical VflZAWlt ExpznJjmzYVt 

A£  (fee) 1.11 0,49 0.3 

Cu  (fee) 3.86 0.47 0.66 

Fe   (bec) 1.04 0,42 0.23 
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(c) The maximum stress acts at p = p  not at the tip of the 

crack p = 0.  Although p  is very small, this implies 

that fracture initiates ahead of the crack joining the tip. 

If the inhomogeneity and the presence of dislocations near 

the crack tip is taken into account, we expect p  to be- 

come larger than atomic dimensions. 

Interactions of dislocations with crack was treated by Eringen 

[34]. For the solution of the crack tip problems for modes I and II, see 

[32], [33] and for crack curving, see [24],  Point defects and elastic in- 

teractions were explored in the works of Gairola [37] and Kunin [8], 
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