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1.0  GENERAL INFORMATION 

 

Autonomous vehicles are currently being developed to improve roadway safety and optimize traffic flow. 

The Rochester Institute of Technology wishes to re-enter the field of autonomous driving by converting a 

low speed golf cart into an autonomous people mover. An autonomous people mover is a vehicle that 

transports people in a safe, fast, and comfortable way and requires no human interaction in normal 

operating circumstances. MSDII Team P16241 has just completed their work on a remote control, and 

autonomous golf cart with basic functionality. 

 

The scope of this project includes creating a computer controlled vehicle that can take input from a 

remote control and also make it a fully-autonomous vehicle capable of driving a course and avoiding 

basic obstacles. The safety of passengers and bystanders are the greatest concern, thus the vehicle has 

been programmed to drive conservatively, and has emergency stop features. 

 1.1 System Overview 

 

The autonomous people mover has a few major subsystems.  The first major subsystem is the control 

system.  The controls subsystem uses both mechanical and electrical components in order to make the 

golf cart move.  The subsystem has three main categories, braking, throttle, and steering.  Power is the 

next major subsystem.  There are two different batteries and voltage converters that are used in order to 

power all of the other systems on the golf cart.  The third major subsystem is the sensors.  The sensors are 

used to collect data to help determine the position of the golf cart, the location of objects, and more. The 

main sensors that are used for the golf cart are LIDAR, ultrasonic sensors, GPS, encoders, and an IMU.  

The next major subsystem is the software.  All of the golf carts decision making, and data acquisition is 

done using the Robot Operating System (ROS) and Arduinos.  The last major subsystem is the electrical 

modifications.  This includes the computer, PCB, Arduino shield, and the enclosure.   

 1.2 Organization of the Manual 

 

The user’s manual consists of eight sections:  General Information, Controls Summary, Safety Summary, 

Power Summary, Sensor Summary, Software Summary, Electrical Modification Summary, Getting 

Started, and Reporting. 

 

General Information section explains in general terms the system and the purpose for which it is intended.  

 

Controls summary section provides an overview of how each system works.  The documentation needed 

to understand both the hardware and software components used. 

 

Safety summary section provides an overview of the various safety systems that are in place or should be 

in place to ensure that the passenger is  always as safe as possible.    

 

Power summary section provides an overview of how all of the electronics on the golf cart are powered.  

This documentation is needed to understand what components are being used and how they are 

connected.  
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Sensors summary section provides an overview of why each sensor was chosen, where they are mounted, 

and how each sensor works.   

 

The software summary section provides an overview how the software (ROS and Arduino code) works 

and the overall flow of the program.   

 

The electrical modification summary section provides an overview for the electrical components inside 

the enclosure.   

 

Getting started explains how to run the APM.  This includes how the GUI and other inputs of the golf cart 

are intended to be used.  

 

The reporting section describes what information was collected throughout the project. 

 

 1.3 Project References 

 

Golf Cart Documentation 

https://www.yamahagolfcar.com/download/2005/golf_car/2005_-_Golf_Cars_-_GMAX_Electric.pdf 

 

P15242 Edge Site 

http://edge.rit.edu/edge/P15242/public/Home 

 

P16241 Edge Site 

http://edge.rit.edu/edge/P16241/public/Home 

 

GitLab Code Repository 

https://kgcoe-git.rit.edu/autonomous-golf-cart/golf-cart 

 

 

 1.4 Acronyms and Abbreviations 

 

PWM  Pulse Width Modulation 

APM  Autonomous People Mover 

ROS  Robot Operating System 

 

  

https://www.yamahagolfcar.com/download/2005/golf_car/2005_-_Golf_Cars_-_GMAX_Electric.pdf
https://www.yamahagolfcar.com/download/2005/golf_car/2005_-_Golf_Cars_-_GMAX_Electric.pdf
http://edge.rit.edu/edge/P15242/public/Home
http://edge.rit.edu/edge/P16241/public/Home
https://kgcoe-git.rit.edu/autonomous-golf-cart/golf-cart
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2.0 CONTROLS SUMMARY 

 

Controls summary section provides an overview of how each system works.  The documentation needed 

to understand both the hardware and software components used. 

 

 2.1 Subsystems Summary 

  

The system is comprised of three subsystems, braking, throttle and steering.  

 

 2.2 Remote Control 

 

In order to achieve remote control functionality, a wireless remote controller was used. The remote 

control system includes a remote control and a receiver. The receiver is mounted in the enclosure, and 

interfaces with one of the Arduino Dues. Signals for throttle, steering, brake, and emergency stop are 

received from the remote control.  

 

2.2.1 High Level Overview 

 

2.2.2 Hardware 

 The remote controller used on this project is the Spektrum DX6i.  This remote controller is meant 

for RC planes.  The user manual can be found here.  

 

https://www.horizonhobby.com/pdf/DX6i-Manual_EN.pdf
https://www.horizonhobby.com/pdf/DX6i-Manual_EN.pdf
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Spektrum DX6i 

The receiver used for this project is the Spektrum AR610.  The receiver gets 1ms to 2ms PWM signals 

from the controller.  The receiver is pictured below with a description of what each output does.  The 

output signals are 5V.  Only one 5V input and one ground need to be plugged into power the receiver.  

All of the other wires just need to be the signal wire to the microcontroller. 

 

 
THRO uses the left joystick and it controls the up/down motion 

AILE uses the right joystick and controls the left/right motion 

ELEV uses the right joystick and it controls the up/down motion 
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RUDD uses the left joystick and it controls the left/right motion 

GEAR uses the gear switch on the left side of controller and is an on/off switch 

AUX1 uses the flap/gyro switch near the left joystick and is an on/off switch 

 

Currently, GEAR is used for the E-Stop, AILE is used for steering, and ELEV is used for the 

throttle/brake. On the jumpers, brown is ground, red is power, and  yellow is signal. This information is 

critical when connecting the receiver to the PCB. 

2.2.3 Software 

 In order to interpret the PWM signal from the RC receiver, the corresponding Arduino pins were 

set to digital input, and interrupts were attached to each pin. Measuring the time between rising and 

falling edges allows for the respective duty cycle of the signal to be calculated. This duty cycle varies 

from 1ms to 2ms.   

  

 2.3 Braking 

 

To implement computer-controlled braking an actuator was used to pull a steel cable that was connected 

to the brake pedal.  Due to the size of the actuator it required a pulley to make a 90° turn before 

connecting to the brake pedal.  The actuator and the pulley were mounted to the golf cart frame.  This 

method allows for the passenger in the driver’s seat to still be able to hit the brake in an emergency 

situation. For feedback, the internal potentiometer of the actuator was used. The potentiometer gives 

feedback to the Arduino so that it can control the position of the actuator.  A Hall effect sensor was 

mounted to sense when the brake pedal was depressed and tells the APM to enter an emergency stop 

state, though it has since broken and has not been integrated into the braking system. 

 

 2.3.1 High Level Overview 

The high level overview gives a basic break down on how each signal is sent to all of the components of 

the braking system. 
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Braking System High Level Overview 

 2.3.2 Hardware 

 

The braking system was designed to allow the brakes to be used as originally designed without adding 

any additional risks of failure.  This was done by running a steel cable through a hole drilled in the steel 

pedal, through the plastic divider “firewall”, around a pulley and to a linear actuator mounted under the 

hood of the cart.  The pulley has a sheet metal cover to prevent the cable from coming off when there is 

slack in the cable.  Previous phases had attached a small piece of foam to the brake pedal which was 

intended to activate a switch when the brake was pressed manually.  It is unclear how this was intended to 

work and is not currently being used.  The E150 linear actuator user manual can be found here and is 

pictured below. 

 
E150 Linear Actuator 

 

https://edge.rit.edu/edge/P15241/public/Documentation/Braking/Electrak_150_Installation_Manual.pdf


 

14 

Actuator and Pulley  

 
Brake Pedal 

 

The braking system is controlled using a Sabertooth 2x12 R/C Regenerative Dual Channel Motor 

Controller. This system requires a 12V input as well as a 1ms to 2ms-pulse width input signal provided by 

the Arduino. A user manual for the Sabertooth R/C Regenerative Dual Channel Motor Controller can be 

found here. 

 

 
Sabertooth 2x12 R/C Regenerative Dual Channel Motor Controller 

 

The Sabertooth Motor controller receives all of the PWM signals from an Arduino Due.  Any information 

on the specification of an Arduino Due can be found here. An important note about the Arduino Dues is 

that they cannot output or receive 5V signals.  This is important for the braking system due to the fact that 

the Sabertooth uses a 5V PWM signal to control the braking actuator.  A level shifting circuit is being 

used in the main PCB board to account for this and it is noted above in the high level overview.  

 

https://www.dimensionengineering.com/datasheets/Sabertooth2x10RC.pdf
https://www.arduino.cc/en/Main/ArduinoBoardDue
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Arduino Due 

 

 2.3.3 Software 

 

The software for braking is implemented like all of the subsystems as a library which can be imported 

into a program requiring control of the braking. Examples of its use can be seen in any of the braking test 

programs, or ‘main_due1’. How it works is by sending a pulse-width signal to the Sabertooth 2x12RC 

between 1ms and 2ms, for extend and retract respectively. A 1.5ms pulse is used to do nothing. By taking 

input from the internal potentiometer in the brake actuator, the braking system decides to extend or retract 

the actuator to reach its desired position. To avoid over and undershoot causing oscillations, the 

subsystem introduces delay cycles as it gets closer to the desired values. 

 
PWM output to extent actuator 

 

 
PWM output to do nothing 
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PWM output to pull the actuator 

 

These signals are controlled in the Arduino code by using the built-in ‘servo’ object because the 50Hz 1-

2ms pulse is how a servo is driven. 

 

2.3.4 Mounting 

 

The brake actuator bracket and pulley were welded onto the frame of the APM.  Unfortunately, the linear 

actuator was larger than expected.  This created two issues with the current braking system.  The actuator 

does not have enough room to extend fully and will crash into the bracket for the pulley.  This is currently 

mitigated by limiting the range of travel of the actuator in software.  The other issue is that the front right 

tire comes into contact with the brake actuator mounting bracket when the wheels are turned fully to the 

right.  Again, this is mitigated by limiting the range of motion of the steering in software.  A long term 

solution to these problems would be to re-mount the actuator in a position or orientation with more space.   

 

 

 

 2.4  Throttle 

 

In stock configuration, the golf cart uses a potentiometer on the throttle pedal to generate a signal to the 

motor controller. The potentiometer varies from 0V (no throttle) to 3.3V (full throttle). In order to control 

this signal with software rather than the golf cart pedal, this signal was passed through the PCB. Two 23-

pin Ampseal receptacles were added to the PCB so that the stock connector would plug into the PCB, and 

the PCB would pass through most of the other signals, while substituting the throttle signal with the 

desired value determined in software. This output comes from one of the DACs on an Arduino Due. 

Additionally, a switch was added to the PCB so that the throttle could operate in stock mode as well as 

software controlled mode. This allows the cart to be driven in entirely stock mode with the flip of a 

switch.  
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2.4.1 High Level Overview 

 

The high level overview gives a basic breakdown on how each signal is sent to all of the components of 

the throttle system.  Functionality can be broken down into two main modes: stock mode, and software 

controlled mode. Stock mode simply passes the throttle signal through as if the PCB didn’t exist. In 

software mode, the throttle signal can come from one of many sources, depending on the mode that the 

cart is operating in. In manual mode, the Arduino reads in the encoded position of the throttle pedal, and 

outputs the correlated voltage on the throttle DAC. This allows the cart to be driven in manual mode 

without opening up the enclosure and flipping throttle source select switch. In remote mode, the throttle 

value is determined by relating the percentage of throttle stick displacement on the remote control to the 

desired throttle percentage. For example, when the remote control throttle stick is pushed 50% forwards, 

the Arduino outputs 50% of the throttle signal which is 1.65V. Finally, in autonomous mode, the desired 

throttle value is determined by the high level software in ROS and sent serially to the Arduino Due.  

 

 
 

Throttle System High Level Overview 

2.4.2 Hardware 

 

The golf cart motor is located in the back of the golf cart.  This is the stock motor that comes with the 

Yamaha G22E golf cart.  It is a JU2-H1890-10 Advanced D.C. Motors motor.  It works at 48 Volts DC 

and it is has a class H rating.  The motor has a rating of AU25000 3.5HP and a 2.6KWatt per 30 minutes. 

 
  

Golf Cart Motor 
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For the throttle subsystem, Arduino Dues are used in order to control the speed. The outputs used from 

the Dues are the DAC outputs. An issue with this setup is that the output of the Arduino Due DACs only 

range from 0.55V to 2.75V, and the stock system expects a signal from 0-3.3V. The following op-amp 

circuit was designed to scale the voltage from the DAC to the required range of the throttle system. It 

consists of a voltage divider and buffer, as well as differential configuration op-amp circuit. Please see the 

APM_voltage_shifting_overview.pdf document for a full explanation of this circuit including transfer 

equations. 
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Level Shifting Circuit for Throttle 

 

2.4.3 Software 

The software for throttle is implemented like all of the subsystems as a library which can be imported into 

a program requiring control of the braking. Examples of its use can be seen in any of the throttle test 

programs, or ‘main_due1’. How it works is by being given a value between 0 and 100 representing 0% 

throttle and 100% throttle. This then becomes an output from a DAC on due1 which gets shifted as 

described above. 

 

 2.5 Steering 

 

In order to achieve computer controlled steering functionality, a power steering system was installed on 

the cart, and the electronics were modified to allow computer control. The standard configuration of the 

power steering system contains a motor to turn the steering column, a torque sensor to detect torque on 

the wheel (normally by the driver), and a controller to interpret the torque sensor signal and drive the 

motor in an assisting manner to the driver. This control loop was modified so that the torque sensor output 

was replaced with a computer controlled signal, allowing computer control of the power steering system. 

 

2.5.1 High Level Overview 

 

 The following figure shows the high level signal flow for the steering subsystem. The desired 

position for the steering system is determined in software, and is sent out by an Arduino DAC.  
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Steering Control Circuit 

 

The output of the torque sensor is also conditioned and sent to an Arduino. Currently, nothing is done 

with this signal. Eventually, it may be monitored to detect human interaction with the steering wheel. This 

could be a useful safety feature that would switch from autonomous to manual mode when a passenger 

interacts with the steering wheel. The following figure shows the signal flow for the torque sensor circuit. 

 
Torque Sensor Circuit 

 

2.5.2 Hardware 

The hardware used for this electric power steering setup comes from Wickedbuilt. Their UTV retrofit 

system utilizes 5V differential voltages to control motor torque and direction. Using the built in torque 

sensor and adding a chain driven potentiometer, steering shaft angle can be tracked at all times and torque 

can be managed via a PID feedback loop to achieve desired steering angles with appropriate amounts of 

smoothness. 

 

 

 

 
 

The following figure shows the bridged amplifier circuit used to convert the single ended output of the 

DAC to the differential signal required by the power steering controller. As the DAC varies from .55V to 

2.75V, the output of the amplifier varies from 5V,0V, to 0V,5V.  
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For the torque sensor circuit, a modified instrumentation amplifier style circuit was designed. This was 

required because during testing, it was noticed that the torque sensor circuit was sensitive to the 

impedance at the sensing end. The following figure shows this circuit.  
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Torque Sensor Circuit 

 

2.5.3 Software 

The software for steering is implemented like all of the subsystems as a library which can be imported 

into a program requiring control of the steering. Examples of its use can be seen in any of the steering test 

programs, or ‘main_due1’. How it works is by being given either a desired potentiometer value, desired 

steering angle, or desired steering percentage. Due to noise on the line in addition to the low-pass filter on 

the physical line there is a software-implemented averager on the potentiometer position.  

2.5.4 Mounting 

 

Mounting brackets for the power steering motor and potentiometer were welded onto the frame of the 

APM.  The motor control box was mounted directly to the frame.  The potentiometer is linked to the 

steering column with a small bicycle chain.   
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 2.6 Computer 

 

The golf cart contains a computer from the Computer Engineering department to function as a ROS host 

computer and provide processing power for autonomous functions.  

 

2.6.1 Hardware 
 

The computer has several components that are mounted on the cart, described below. Questions 

about hardware can be directed to the Computer Engineering Lab Manager, Rick Tolleson 

(rateec@rit.edu). 

 

● Motherboard - This is the main processing board on the computer, mounted in the upper 

left of the enclosure. It is powered from the Computer PSU using a 4-pin CPU power 

cord and a 24-pin ATX power cord. It has connections to the SSD, LCD monitor, 

Arduinos, RIT internet, internal LAN, Wi-Fi Adapter, and the power switch. 

● LCD Monitor - This is the screen for the computer, mounted in the dashboard. More 

information is detailed in the Dashboard section. It connects to the motherboard with 

HDMI and USB 

● Arduinos - The Arduinos connect to the motherboard through a USB hub on the back of 

the panel. 

● SSD - The computer’s storage drive is a solid state drive mounted on the side of the 

enclosure. It is powered with a SATA power cable from the computer PSU and 

communicated with a SATA data cable to the motherboard. 

● RIT Internet - The motherboard has an onboard Ethernet connection next to the 

headphone jacks that is configured to be connected to RIT’s internet exclusively. Inside 

Cube 2, there is one wall outlet with Ethernet jacks. It is configured to be plugged into 

the left jack on the wall. 

● Internal LAN - An additional network card is present on the computer for communicating 

with the LIDAR and cameras on an internal LAN through a switch. This cannot be 

connected to the RIT internet. 

● Ethernet Switch - Connects the motherboard, LIDAR, and eventually cameras together 

into one network so that they can communicate. The order in which Ethernet cables are 

connected to the switch is irrelevant. It is powered through a 12V supply 

● Computer PSU - This PWR-M4-ATX power supply is a 250W 12V DC power supply for 

the computer, which converts the 12V input to several 12V, 5V, and 3.3V rails for the 

computer. It is powered on through the motherboard. For testing purposes, the power 

supply can be turned on by unplugging the 24-pin ATX power supply and jumping the 

green wire to ground. It provides a USB diagnostics tool for the motherboard, which 

connects to one of the USB headers on the board. Details about implementation can be 

found on MiniBox’s website. 

● Power Button - The Computer Power button connects directly to the +PW- header pins 

on the motherboard. It provides the same wiring function as the power button on the front 

mailto:rateec@rit.edu
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of a standard computer case.  

● Wi-Fi - The Wi-Fi adapter is connected to the motherboard via USB headers, and is 

mounted on the left of the enclosure.  

 

2.6.2 Software 
 

The computer runs Ubuntu 14.04 for an operating system. As the computer is a KGCOE lab computer, 

the system is supported by the system administrators. Contact the Computer Engineering systems 

administrator, Emilio Del Plato (ehdeec@rit.edu) for software support. If there is an issue with the 

system, the solution will usually be to reformat the computer and start fresh. This can be done by the 

system administrators. In this case, the computer will need to be reconfigured for the purposes of the cart. 

In the git repository, the Computer/Config file describes the various configuration and installation steps, 

as well as several pitfalls.  

 

 

 2.7  Printed Circuit Board (PCB) 

 

A custom printed circuit board was designed and fabricated to accomplish all digital and analog signal 

conditioning, as well as providing the interface from hardware to software. Various voltage shifting and 

scaling circuits were required for steering, brake, throttle, remote control, ultrasonics, and safety systems. 

All circuits were first designed and simulated. Design considerations as well as simulation results can be 

found here: VoltageShiftingAndScaling.  

 

 

 

 

2.7.1 Hardware 
 

In order to interface with the stock golf cart, two 23-pin Ampseal receptacles were added to the PCB so 

that the stock connector would plug into the PCB, and the PCB would pass through most of the existing 

signals, tap onto the VTACH signal, and optionally replace the throttle signal. An additional 23-pin 

Ampseal connector was added to monitor and drive the remaining systems through the PCB. The 

following image is a top-side view of the finished PCB. 

 

mailto:ehdeec@rit.edu
https://edge.rit.edu/edge/P16241/public/Final%20Documentation/APM_voltage_shifting_overview%20%281%29.pdf?rev=0
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Printed Circuit Board 

 

Combination male/female header pins are used to mount the Arduino Due’s onto the bottom of the PCB. 

This allows for a solid connection to be maintained between the PCB and the Arduino, and enables easy 

probing of inputs and outputs. Currently the Arduino on the left is referred to as Due 1, and is used for 

throttle, steering, brake, and E-stop. The Due on the right is referred to as Due 2 and controls the 

ultrasonics and IMU. For further reference, and for the actual pinout, please see the PCB schematic in the 

KiCAD directory. This directory contains all documentation and design files used in the development of 

this board, including custom created KiCAD modules for several of the components. 

 

2.7.2 Software 
 

The PCB contains a single sounder, and four error LEDs. The sounder is connected to pin 23 of both 

Arduinos in a current sink configuration. So to enable the sounder, either Arduino can drive its pin 23 

low. Each Arduino then has two error LEDs driven by pins 25 and 27. This enables a quick feedback 

mechanism for indicating issues or for debugging Arduino code.  

 

 

 

 

 

https://edge.rit.edu/edge/P16241/public/Final%20Documentation/KiCAD/APM_PCB_v1/APM_PCB_v1.pdf
https://edge.rit.edu/edge/P16241/public/Final%20Documentation/KiCAD
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 3.0 SAFETY SUMMARY 

 

  3.1 Subsystems Summary 

The objective of the safety systems is to ensure the wellbeing of the passenger, APM and surrounding 

pedestrians. The current system includes an emergency stop, pedestrian notification and occupant 

monitoring. The emergency stop system provides the passenger a fail-safe method of stopping the vehicle. 

Pedestrian notification utilizes proximity information from the LiDAR to alert surrounding pedestrian 

using lights and a sounder. Occupant monitoring system utilizes dual ultrasonics to detect whether there 

are occupants in the vehicle. This system permits the APM to stop at the disappearance of a passenger and 

allow re-entry. 

 

3.2 Emergency Stop 

 

3.2.1 High Level Overview 

 

The Emergency Stop (E-stop) system provides to the passengers a fail-safe method of stopping the cart. 

The design of the system utilizes a push button to trigger three actions. The first action signifies to the 

system that an emergency stop has been activated. The second action causes a break in the “Main Switch 

Line” (Key) which disconnects power to the APM motor. The third action engages the brake actuator to 

stop the cart and prevent any further movement. These actions ensure that the APM and its passengers are 

in a safe state in the case of software error or hardware failure. The design of the E-Stop utilizes a 

hardware-only approach to engage each action. This approach minimizes reaction time and isolates the 

system such that failure in other components of the cart won’t affect the reliability of the E-Stop. 

3.2.2 Wiring Diagram 
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The above figure shows the a wiring diagram of the E-stop system. S1 is the emergency stop 

button(dashboard) which controls 3 mechanical relays. Two are normally closed while one is normally 

open. S2 is a switch which control power to the steering and brake actuator. This switch can be found in 

the rear panel. K1 is a power relay which switches control of the brake actuator from the Arduino Due to 

+12v resulting in the activation of the brakes. 

 

 

 

 

 

 

3.3 Pedestrian Notification System 

 

3.3.1 High Level Overview 

 

The Pedestrian Notification System was added to notify pedestrians of the APM’s presence when it is 

driving in autonomous mode. The system consists of a light and sounder to notify pedestrians when they 

are within a certain distance from the APM. Currently the light is being triggered whenever the APM is in 

autonomous mode. The sounder is being triggered whenever an object is within the stop field. Ideally the 

light or sounder would turn on once a pedestrian is detected close to the APM. Since there are not 

currently cameras on the cart, there is no way to differentiate a pedestrian from any other object detected. 

The flash pattern of the light can be changed by touching the blue wire to ground for a second. 

 

3.3.2 Wiring Diagram 
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The figure above shows the circuits used to control the light and sounder. Since both run off of 12V and 

the Arduinos cannot supply 12V, a MOSFET was used as a switch to turn on and off the light or sounder. 

The gates of the MOSFETs were driven by digital I/O pins on the Arduino. There was also a feedback 

circuit to determine if the light or sounder were turning on when they should. The resistors on the source 

side of each MOSFET were chosen so that the intensity of the light or sounder would not decrease too 

much, and would produce a large enough voltage for the input to the comparators. 

 

 

 3.4 Occupant Monitoring System 

 

 3.4.1 High Level Overview 

 

The ability to monitor the occupants in the APM allows for safe and efficient operation of the cart. This 

system provides feedback to the control system regarding whether there are passengers in the cart and 

allows the vehicle to halt when certain unexpected scenarios are encountered.  The scenarios can include 

passengers exiting while vehicle is in motion.  If this was to occur, the APM can briefly pause operation 

to allow re-entry or proceed to next task if re-entry doesn’t occur. The occupant monitoring system on the 

APM utilizes dual ultrasonics aimed at the seat of the vehicle. The ultrasonics are able to cover the entire 

span of the seats from the far left to the far right. The control system will periodically poll the ultrasonics 

to read the distance of objects from the sensors. The sensors are calibrated by obtaining readings when the 

seats are empty. A threshold value is included to ensure bags or boxes are not interpreted as a passenger. 

Statistical values including average and standard deviations are used in the interpretation algorithm. 

 

This system is currently incomplete and required further work. Some progress have been made towards 

the implementation. Two ultrasonic sensors (JSN-SR04T) have been selected and purchased for this 

purpose. Multiple mounting solutions have been tested. However, the readings from the sensor are 

inconsistent. Further testing is needed to determine the best mounting position for the sensors.  
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4.0 POWER SUMMARY 
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 4.0  POWER SUMMARY 

 

The power system provides 12 volt, 5 volt, and 3.3 volt power to the electrical components on the cart.  

This is done by the use of various voltage converters and two different battery setups. 

4.1  High Level Overview 

 

The cart is powered by a 48 Volt battery bank which is reduced to 12 Volt, 5 Volt, or 3.3 Volts as needed.  

Between the sensors and the desktop, 202 watts are required at 15 Volts, with the desktop requiring 145 

watts.  This works out to a current draw of 17.12 amps.  The CUI Inc. VFK600 Series 48 Volt to 12 Volt 

DC-DC converter provides 50 amps at 12 Volts, more than enough to run the existing equipment with 

room to expand in the future. Live wires have red insulation exclusively; ground wires have black 

insulation exclusively. The 12 volt battery is used to power the braking actuator and the steering.  There 

were no tests completed to test the life of the battery.  The APM was on for approximately 8 hours at 

Imagine RIT and the battery lasted the entire time without being recharged. 

 

 

 

 
High Level Overview of Power System 

4.2  Hardware 
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Golf Cart Batteries 

 

 
 

 
http://www.digikey.com/product-detail/en/PYB20-Q24-S3-U/102-3246-ND/4477504 

 

http://www.digikey.com/product-detail/en/PYB20-Q24-S3-U/102-3246-ND/4477504
http://www.digikey.com/product-detail/en/PYB20-Q24-S3-U/102-3246-ND/4477504
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http://www.digikey.com/product-detail/en/PYB30-Q24-S5-U/102-3262-ND/4477520 

 

http://www.cui.com/product/resource/pyb20-u.pdf 

 

 
http://www.digikey.com/product-detail/en/VFK600-D48-S12/102-2463-ND/2770681 

 

 
Terminal blocks, 4 inputs, 16 outputs – 2 inputs go to the top 8 outputs, 2 inputs go to the bottom 8 

outputs. Top row is used for 12 volt, bottom row is used for ground. 

 

http://www.digikey.com/product-detail/en/PYB30-Q24-S5-U/102-3262-ND/4477520
http://www.digikey.com/product-detail/en/PYB30-Q24-S5-U/102-3262-ND/4477520
http://www.cui.com/product/resource/pyb20-u.pdf
http://www.cui.com/product/resource/pyb20-u.pdf
http://www.digikey.com/product-detail/en/VFK600-D48-S12/102-2463-ND/2770681
http://www.digikey.com/product-detail/en/VFK600-D48-S12/102-2463-ND/2770681
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4.3   Mounting 

 

The 12V battery is mounted under the seat of the golf cart. It is resting between the two main chassis rails 

on a piece of 1/8in aluminum sheet. Holes at the corners of the plate are used by four 3in pipe clamps. To 

remove the likelihood of longitudinal movement of the 12V Battery, four pieces of aluminum scrap were 

epoxied to the rails in front of and behind the two forward clamps. Combined with the mass of the 

battery, these enable the battery tray to remain fairly secure. 

 

4.4   Energy Monitoring 

 

It is recommended that the future team implements an energy monitoring system that is capable of 

measuring the battery capacity and estimating the time remaining for the batteries on the cart.  Two parts 

have been purchased by the phase III team that can be used to monitor the battery.  Notes on these 

methods can be found here.  The first part that could be used is the TI Impedance Track Standalone Fuel 

Gauge (BQ34Z100-G1).  This fuel gauge estimates the capacity of the battery using a patented algorithm 

that accounts for battery aging and self-discharge.  The device can be read from or written to using the 

Arduino DUE and also has many configurable parts which would allow for information on the battery 

capacity to be sent to the Arduino where the information can be processed.  The simplified hardware 

implementation for this device is shown in the figure below. 

 

 
 

Another energy monitoring part that was purchased was the TF01N.  This device is a coulometer that 

measures battery voltage, current and power.  The voltage and current measured have +/- 1% accuracy.  

The measured values are displayed on a small LCD screen.  The screen displays the remaining battery 

capacity, battery voltage, battery current and remaining time of charging/discharging.  This device also 

https://edge.rit.edu/edge/P16241/public/GAP%20Actions%20%289-Feb%29/Energy%20Monitoring%20System.docx
http://www.ti.com/product/BQ34Z100-G1/datasheet
http://www.ebay.com/itm/50A-Capacity-Tester-Indicator-coulometer-for-8-50V-48V-Lithium-Lead-acid-Battery-/181427862194
http://www.ebay.com/itm/50A-Capacity-Tester-Indicator-coulometer-for-8-50V-48V-Lithium-Lead-acid-Battery-/181427862194
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has an output pin so the information can be sent into an Arduino for additional monitoring. For more 

information info on the device go to: TF01N 

 

  

http://www.servovision.com/Battery%20fuel%20gauge%20battery%20monitor/Datasheet/SVEB1.pdf
http://www.servovision.com/Battery%20fuel%20gauge%20battery%20monitor/Datasheet/SVEB1.pdf
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5.0 SENSORS SUMMARY 
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5.0  SENSORS SUMMARY 

 

5.1   Subsystems Summary 

 

The sensors included in this project to date are the Velodyne VLP-16 ‘Puck’ LiDAR unit, the Hikvision 

IP Bullet cameras, and the MaxBotix outdoor waterproof ultrasonic sensors. These sensors have been 

tested independently of the APM control systems and have not yet been installed on the APM or 

integrated with the APM systems. 

5.2   LIDAR 

 

The LiDAR module used was the 16 channel VLP-16 module by Velodyne, referenced at: 

http://velodynelidar.com/vlp-16.html. 

5.2.1 High Level Overview 

 

The VLP-16 scans its surroundings and outputs a three dimensional pointcloud The resolution of the 

device allows for the ability to obtain visual odometry information and object information for both 

tracking cart movement and detecting obstacles in the environment. 

 

 5.2.2 Software 

 

The LiDAR raw data can be observed using the VeloView software that was provided with the module, 

independent from ROS. Additionally, a ROS package exists to capture the LiDAR output and feed it into 

ROS as a topic that publishes PointCloud2 data. The primary tool used to visualize the LiDAR point 

cloud data was the RVIZ visualizer in ROS. Using the ROS formatted PointCloud2 data, a number of 

packages exist to utilize the LiDAR data. The Velodyne ROS node is responsible for starting up the 

PointCloud2 topic in ROS. This topic is called “velodyne_points” and can be started using the cart.launch 

launch file located  in the repository.  

 

 

 

http://velodynelidar.com/vlp-16.html
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5.2.3 Wiring Diagram 

 

The LiDAR unit connects to its Velodyne interface box via Ethernet cable, and the interface box connects 

to the computer unit via another Ethernet cable. 

 
 

  



 

39 

 

5.2.4 Mounting 

 

The VLP-16 is mounted on the front of the APM approximately 38” above the ground and angled down 

(negative pitch) about 9°.  The angle is adjustable in 5° increments with 10° increments on the upper 

connection and a single 5° increment on the lower connection.  

  

5.3  Ultrasonic Sensors 

 

The ultrasonics acquired for the APM were MaxBotix MB7001and MB7363 long range weather resistant 

sensors.  Currently there are seven ultrasonics mounted on the front of the APM (six of the MB7363 and 

one of the MB7001).  

5.3.1 High Level Overview 

 

The ultrasonic sensors were acquired for this project as an additional fail-safe system to the LiDAR unit.  

All seven ultrasonics are triggered at the same time with a high signal from the Arduino.  Each ultrasonic 

sends out a sound wave to determine the distance of the nearest object.  This distance is calculated on the 

Arduino by measuring the length of the pulse width that is sent from pin 2 on each ultrasonic.  This 

distance is sent to a ROS node and is used to determine if there are objects within a predetermined 

distance in front of the cart.  The ultrasonics are used in a stop zone node.  This node looks for multiple 

ultrasonics to “see” an object within the given threshold.  Currently, the ultrasonics are functioning but 

are noisy.  Additional testing should be done to determine the cause of this noise and to determine the 

ideal positioning of the ultrasonics.  Once this is determined, the ultrasonic data should be added to the 

point cloud.  Due to the mounting of these devices, the wires connected to the ultrasonics are twisted 

which creates strain on them.  It is recommended that a future team purchases connectors that would 

prevent the wires from being forcefully twisted. 

5.3.2 Software 

 

The distances each ultrasonic sensor is seeing is published to ROS from due 2. Due 2 reads pulse-width 

signals from each of the ultrasonic sensors and uses a conversion factor to publish distances to objects in 

meters as Float32 messages in ROS. 

5.3.3 Wiring Diagram 
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5.3.4 Mounting 

 

The ultrasonic sensors are mounted to the front of the cart using an adjustable and configurable PVC 

mount. The position, angle, and number of ultrasonics sensors can be changed easily with this design. The 
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PVC mounts to the frame via rubber-isolated clamps which are designed to be easy to remove for 

transport. 

 

5.4  Encoders 

 

5.4.1 High Level Overview 

 

The brake encoder is not operational. 

 

The Speed encoder signal enters the system on Pin 14 (NOT 16) of the 23-pin connector. It is a 5V 

square wave signal with 50% duty cycle. The frequency of the square wave is directly proportional to the 

frequency, with off being 0Hz and full throttle being around 210Hz. The sensor is directly connected to 

the wheel speed, presumably a Hall Effect Sensor.  

 

The steering encoder is a potentiometer connected to the steering column. The slider of the potentiometer 

is connected to the control PCB in the back of the cart. 

 

5.5 GPS 

 

There are currently two GPS modules installed in the cart. One module is a combined GPS/GLONASS, 

and the other is an Real Time Kinematic (RTK) capable GPS module. The goal here was to obtain both 

reliable and accurate GPS measurements. The GPS/GLONASS module is like a standard GPS receiver 

that provides a fix with normally <2.5m accuracy. And the RTK GPS is a unique module that with 

additional corrections and additional software, is able to generate a fix accurate to about 10cm.  

5.5.1 High Level Overview 

 

The GPS modules are not currently being used as a source of localization data.  

 

5.5.2 Hardware 
 

The GPS/GLONASS module is SkyTraq’s NavSpark-GL device. The product page can be found here at 

the NavSpark store: NavSpark-GL. The benefit of using a combined GPS/GLONASS receiver is that by 

receiving information from both the GPS and GLONASS constellations, satellite coverage is essentially 

doubled. This is a huge benefit when operating in urban areas where satellites at lower elevations can be 

obstructed by buildings. This in turn increases the chance that there will be adequate satellite coverage to 

achieve a fix, as well as increases the accuracy and reliability of that fix.  

 

http://navspark.mybigcommerce.com/navspark-gl-arduino-compatible-development-board-with-gps-glonass/
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NavSpark-GL GPS/GLONASS Module 

 

The Tallysman TW4320 antenna was purchased for this module due to its low noise figure as well as its 

support for both GPS and GLONASS signals. The antenna is an enclosed, magnetic mount, ceramic patch 

antenna. As per the datasheet, optimal results are obtained with the use of a 100mm ground plane. 

 
Tallysman TW4320 GPS/GLONASS Antenna 

 

 

The RTK capable GPS module is SkyTraq’s S1315F8-RAW. This module allows for carrier phase raw 

measurement output. With this data, and additional corrections from a base station, software such as 

RTKLIB is able to generate a 10cm accurate GPS fix. The output of the module is standard UART serial, 

so a UART-to-USB adapter is used to both power and communicate with the device. During 

development, this was the cheapest RTK capable GPS module on the market at $25 (for just the module).  

 

 

 
S1315F8-RAW RTK Capable GPS Module 

 

 



 

43 

 
 

The Tallysman TW4020 antenna was purchased for use with the S1315F8-RAW GPS module. Initially, a 

cheaper antenna was used, but it was found that the noise figure of the previous antenna was too high. 

This resulted in a poor signal to noise ratio, and did not allow for a fix to be obtained with RTKLIB. A 

ground plane of 100mm is also used with this antenna. 

 

 

5.5.3 Software 
 

As both GPS modules are made by SkyTraq, the SkyTraq GNSS Viewer software is used to configure 

them both. This program only runs on windows, but it allows configuration settings to be stored in 

FLASH memory so that they can be persistent through power cycling. Examples of settings set in this 

program would be power mode, output frequency, binary or NMEA output, elevation mask, etc.. The 

following image is a sample of the GNSS viewer software running. The software and user guide can also 

be found here: SkyTraq_Resources 

 
 

Once the desired settings are configured, the output can be set to NMEA (this is also the default setting). 

The GPS receiver then operates like any off-the-shelf GPS module, tracking satellites and sending out 

information in the form of NMEA messages.  

http://navspark.mybigcommerce.com/resources/
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To use this NMEA information in ROS, a node exists that is called nmea_serial_driver, which is part of 

the nmea_navsat_driver package. Documentation for this package can be found here: 

nmea_navsat_driver. The nmea_serial_driver node will take a port and baud rate for a GPS module as 

arguments, and then connect to that module, parse the incoming NMEA messages, and publish ROS 

sensor_msgs/NavSatFix messages. Example command line syntax is: 

 

$ rosrun  nmea_navsat_driver  nmea_serial_driver  port:=”dev/ttyUSB0”  baud:=”115200”  

 

With the future addition of an IMU, this NavSatFix message, combined with local odometry and IMU 

data, can be fused together by the navsat_transform_node in the robot_localization package. This 

localization solution could then be used as an input source to one of the navigation filters in the 

robot_localization package. The robot_localization documentation can be found here: robot_localization.  

A current configuration file for setting up an Extended Kalman Filter with the robot_localization package 

can be found in the repository directory catkin_ws/src/robot_localization/launch/odom_gps.launch. 

 

Alternatively, the S1315F8-RAW module can be configured for binary output and processed with 

RTKLIB. Currently, this has only been tested in windows. RTKLIB is open source and contains separate 

applications for use in windows and Linux. The navigation application is called rtknavi in windows and 

rtkrcv in Linux. Rtknavi provides a GUI interface whereas rtkrcv is command line based. RTKLIB 

software, documentation, and tutorials can be found at RTKLIB.  

 

RTKLIB requires raw carrier wave measurements from the ‘rover’ receiver on the golf cart, as well as 

measurements from a static base station. Currently, base station data is being streamed from a 

Continuously Operated Reference Station (CORS) in Pittsford, NY.  This data is provided as a free 

service. For instructions and to sign up, go to this site: NYSNet/CORS.  You will receive a confirmation 

of subscription as well as the IP address and port of the broadcaster. This information is then used in 

RTKLIB to configure the base station input stream. The following image shows an example of this setup.  

 

http://wiki.ros.org/nmea_navsat_driver
http://wiki.ros.org/robot_localization
http://www.rtklib.com/
https://www.dot.ny.gov/divisions/engineering/design/design-services/land-survey/repository/FAQ.htm
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RTKLIB Windows Configuration 

 

A configuration file currently exists that should set up the environment appropriately. It is called 

rtknavi_windows.config and is located in the repo at golf-cart/Old/Documentation/.  This file can be 

loaded into RTKNAVI via Options…> Load > rtknavi_windows.config.  These settings however, are not 

ideal. Significant improvements could be achieved by further tuning the software parameters. For 

example, modifying the elevation mask and signal to noise ratio mask so that only ‘good’ satellites are 

tracked, at the cost of not maintaining enough satellites for a fix or, adjusting the minimum ratio to fix 

ambiguity so that less false positive fixes are seen. With the current configuration, to achieve a fix there 

must be at least 7 common satellites between the rover and base station, all above 30dBHz SNR. Also, 

satellites below about 25 SNR should be blacklisted manually. To do this, you would first start up the 

process, wait for a fix, and record any satellites below 25 SNR. Then you would stop the process, go to 

Options…> Setting1 and add these satellites to the list of excluded satellites, and restart the process. The 

following image shows a test scenario with the physical position of the GPS antenna as well as the 

reported position by RTKLIB.  
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RTKLIB Test Setup and Results 

  



 

47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.0 SOFTWARE SUMMARY 
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6.0  SOFTWARE SUMMARY 

 

The software system on the APM utilizes a ROS communication system to implement controls and data 

processing.  

6.1   Robot Operating System 

 

Robot Operating System (ROS) was used to implement the data processing for the sensors in addition to 

the controls on the Arduino microcontrollers. ROS nodes executed operations based on changes in the 

data in the ROS topics. ROS Topics serve as communication channels upon which messages can be sent. 

Messages can either be standard scalar values (Integers, Floats, Bools, Empty messages, etc.), or custom 

messages which contain multiple types. 

 

6.2  Localization / Odometry 

6.2.1 High Level Overview 

The area of the cart that serves to have the most room for improvement is localization. Localization is 

what tells the cart where it is, and the odometry data is an integral part of that. Without good odometry 

and localization the cart is lost. Currently, the only working odometry for the cart is so called ‘cart 

odometry’ which is a model that was developed to take in the wheel speed and steering angle of the cart 

and outputs an estimated change in position. Previously an IMU was used to supplement this data, but 

high levels of noise made it less than useful. However, the ROS package robot_localization, given good 

data including covariance matrices, will be able to fuse the cart odometry, IMU data, GPS data, visual 

odometry, and whatever else can be leveraged to be combined in an extend Kalman filter and used to 

output a combination of the them all as filtered odometry. 

6.2.2 Software 

The cart odometry listens to the speed and steering angle topics and uses known parameters of the cart to 

plug into a three degree of freedom model which will output an estimated change in position. This is 

started by running the ‘odom_gen’ node in the ‘odom’ package. 

6.3  Controls 

 

Controls in ROS were implemented on Arduino microcontrollers which required some additions to the 

Arduino code and additional steps in the setup of the ROS system. A tutorial for setting up the system can 

be found at http://wiki.ros.org/rosserial_arduino/Tutorials/Arduino%20IDE%20Setup.   

 

6.3.1 High Level Overview 

 

http://wiki.ros.org/rosserial_arduino/Tutorials/Arduino%20IDE%20Setup


 

49 

While there is an existing library, called rosserial, which provides a serial interface between 

microcontrollers and ROS, as of the writing of this manual there are specific issues with the Arduino 

DUE microcontroller, and while it can be made to work for short periods of time (less than 10 min or so), 

it is unreliable. To get around this a new serial communication framework was developed by P16241 

called rosdue, which allows for the creation of publishers and subscribers in the Arduino code and 

communicates with a node running on the computer over serial. Examples of use of this library can be 

seen in test_rosdue.ino as well as both the main programs for the dues, and the public repo for rosdue: 

http://github.com/codysmithd/rosdue. 

 

Given this connection to the computer, the two Arduino dues have differently. Due 1 is tasked with 

controlling the throttle, steering, and brake, as well as taking in the remote control input. Due 1 subscribes 

to the control_mode topic from the ROS system to decide if it should operate the controls in manual, 

remote, or autonomous mode. Due 2 also listens to the control mode topic, and publishes data from the 

IMU, Ultrasonic sensors, and controls the on-board light and sounder. 

6.3.2 Software 

 

The main programs that are loaded onto due 1 and due 2 for use are ‘main_due1.ino’ and 

‘main_due2.ino’. These programs leverage all of the previously discussed libraries and operate in the 

manner described above. 

 

  

http://github.com/codysmithd/rosdue
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7.0 ELECTRICAL MODIFICATIONS SUMMARY 
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7.0  ELECTRICAL MODIFICATIONS SUMMARY 

7.1   Ampseal Connectors 

 

Wires for pins 14 and 16 were reversed in the ‘To Cart’ and ‘To Controller’ Ampseal connectors so that 

the VTACH signal could be monitored properly. This was due to the original PCB schematic from Phase 

I switching these wires, and this error being carried over to the new design.  

7.2  PCB 

 

While debugging the VTACH signal mix-up, a trace on the PCB was burnt out, requiring a jumper on the 

rear side of the PCB to connect VTACH input and VTACH output.   

 

7.3  Enclosure 

 

The enclosure is located on the back of the cart.  To take the panel off, the fans need to be removed.  To 

remove the fans make sure that the power to both fans is disconnected (wires TB03+ and TB03- and 

wires labeled R Fan) from the panel, the hard drive, HDMI, USB, LED lights, Wi-Fi adapter, wires 

labeled TB01+ and TB01- need to be disconnected.  After these are all disconnected remove the four nuts 

and washers holding the PCB panel in place.  Then carefully pull the PCB panel straight out a little way 

until just off the bolts.  Once the PCB panel is off the bolts, tilt the top of the PCB panel toward yourself.  

There are wires with quick connects on the bottom backside of the panel that need to be disconnected.  

After all these wires are disconnected, the panel can be carefully removed from the enclosure.  All wires 

and connections to and from the cart come into the enclosure through the larger hole at the bottom right of 

the enclosure. 

 

To remove the enclosure from the cart, all connections coming from the cart into the panel, must be 

disconnected.  Then all the mounting bolts must be removed. 
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The three mounting bolts can be seen above as 1, 2, and 3. The upper bolts (1, 2) go through the inside 

holes of the two tabs. 
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Top down view: How to place washers and nuts on bolts. 

7.3.1 High Level Overview 

The enclosure contains the majority of the hardware needed to make the APM autonomous.   

 

7.3.2 Wiring Diagram 

 

 
 

7.3.3 Mounting 

The primary mounting elements for the enclosure are the two full thread ¼ in bolts through the flanges at 

the top of the enclosure and the enclosure base at the bottom. The upper bolts should be used with a lock 

washer and standard washers on the front face. Bolts should be torqued to ~8lb-ft.  
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The enclosure base is secured with two full thread 5/16 in bolts. The upper bolt is secured from the top 

with a lock nut, goes through the lower plate of the enclosure, and threads into the upper section of the 

enclosure base. The lower bolt is secured from the bottom with a lock nut, goes through the lower frame 

rail of the golf cart, and threads into the bottom of the enclosure base.  

 

When installing the enclosure base start by loosening the two upper bolts. Always secure the bottom bolt 

first making sure the lock nut is threaded all the way to the head of the bolt. To make fitment of the upper 

bolt easiest, torque the bottom bolt to ~12lb-ft to ensure the base is flush against the rear tray. Once 

torqued,  swing the bottom of the enclosure forward carefully to align the top of the enclosure base and 

the hole in the bottom of the enclosure. Once aligned thread the lock nut all the way to the head of the 

bolt, insert the upper bolt, and torque to ~12lb-ft. (Specs: 1/2in thick threaded aluminum plate at each 

end, 2.7in long 1x1in aluminum square stock center section) 

 
         (Upper)         (Lower) 

 

7.4  Dashboard 

 

 

7.4.1 High Level Overview 

 

The Dashboard consists of wiring and switches/buttons required for the operator to interact with the 

control systems. The switches included in the dashboard are: a 10.1” LCD Touchscreen, an emergency-

stop switch, a Forward/Reverse switch, the golf cart power key, and the accelerator stop toggle switch. 

The operation of the components is detailed below: 

 

● LCD Touchscreen - This touchscreen communicates with the processing computer via HDMI and 

USB, with HDMI providing video signal to the monitor and USB providing touch inputs to the 

computer. The LCD has a status LED which changes color based on the status: Red when the 

monitor is powered off, Orange when it is powered on but there is no video input, and Green 

when it has video input. The LCD is powered by a 12V power supply, which is fed from the 48V 

converter in the rear of the cart.  

● Emergency Stop Switch - The design of the emergency stop system utilizes a push button to 

trigger three actions. The first action signifies to the  system that an emergency stop has been 

activated. The second action causes a break in the “Main Switch Line”(Key) which  disconnects 

power to the motor of the APM. The third action engages the brake actuator to stop the cart and 

prevent any further movement. These actions are necessary to ensure that the golf cart and 

passengers are in a safe state in the case of software error or hardware failure. 
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○ When the E-Stop button is pressed, the following should occur: 

■ A zero throttle signal is sent to motor. 

■ Brakes are fully engaged. 

■ Power is disconnected from the drive-motors. 

○ When the E-Stop button is released, the following should occur: 

■ Throttle control is returned to the Arduino Due. 

■ Brake control is returned to the Arduino Due. 

■ Power to drive-motor remains disconnected until the Throttle-Safety button is 

pressed. 

 

● Forward/Reverse switch - This is a switch that switches the direction the cart is moving. This is a 

stock switch included on the standard golf cart. 

● Key - This turns on the cart, which must be done for the throttle to drive. It does not switch the 

48V input to the enclosure, nor does it switch the 12V power for the brake and steering systems. 

● Accelerator Stop Toggle Switch - This toggle switch replaces the switch inside the accelerator 

pedal. On the stock golf cart, a switch is present in the accelerator pedal to prevent the cart from 

moving unless the pedal is physically pressed, and to ensure that the cart does not move if the 

pedal is pressed while the key is turned on. This button replaces this switch to enable driving 

autonomously without pressing the pedal. The button must be deactivated (out) when the cart is 

turned on, and then must be pressed in order to drive. A click and a humming should be heard 

when the cart is successfully activated. 

 

The dashboard is not waterproof, and thus the golf cart should not be driven outside in the rain. In order 

for the dashboard to be waterproof, a new mounting solution will be required to prevent the LCD from 

getting wet and to protect the electronics inside. 

7.4.2 Wiring Diagram 
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8.0 GETTING STARTED 

8.1  Starting the Golf Cart 

 

To start the cart make sure the switch under the seat, on passenger side of the cart (the ‘tow’ switch) is in 

Run (down position).  Make sure that the cart key is in the ignition, and the green button is out/‘off’. Turn 

the key to on, and press the green button so it is in the pressed position. At this point you should hear a 

solenoid click.  In the enclosure, turn the 48V disconnect on the panel to the on position to get power to 

the panel. Flip the Brake/Steering Power switch to send power to the steering Wicked system, brake 

actuator and panel when ready. We don’t recommend flipping this switch until you have connected DUE 

1 to the computer with ROS and rqt running. 

 

8.2  Starting the Computer 

  

To start the computer, after the 48V enclosure power is turned on, press the computer power button. At 

this point, the computer specific fans will start, and the computer should boot into Ubuntu 14.04. The user 

account is ‘apm’, and the password is ‘gamma’, the name for the account (for some GUI viewing 

purposes only) is ‘admin’. Assuming you want to get the cart running autonomously, the following 

commands entered into the terminal are required. These can either be launched in separate terminal tabs, 

one per command, or backgrounded by appending an ‘&’ character to the end of each command, viewed 

by running ‘jobs’ and brought back to the foreground by running ‘fg [process number]’. Please note that 

the ‘~/.bashrc’ automatically runs ‘source /devel/setup.bash’ for the catkin workspace.  

 

First launch roscore: 

 

roscore & 

 

Then open the GUI for debugging and controlling the mode of the cart: 

 

rqt & 

 

Once rqt is open, you may need to go to plugins -> apm -> apm mode control to get the GUI for selecting 

the control mode 

 

Then, to be able to visualize what is going on the with the cart, open up rviz 

 

rviz & 

 

Open rosdue connections to DUE 1 and DUE 2 

 

rosrun rosdue serial_due.py /dev/ttyACM0 & 

rosrun rosdue serial_due.py /dev/ttyACM1 & 

 

Run the launch files for the LIDAR’s pointcloud publisher and the pointcloud to laserscan. 
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roslaunch velodyne_pointcloud VLP16.launch & 

roslaunch pointcloud_to_laserscan p2l.launch & 

 

Launch the node that initializes the cart odom, it is suggested to run this in a new terminal tab so that is 

can be restarted easily. 

 

rosrun odom odom_gen 

 

Launch the autonomous node that converts cmd_vector to the cmd_throttle, cmd_steering, and cmd_brake 

for DUE 1. 

 

rosrun apm_autonomous vector_to_command & 

 

The artificial potential field is the layer of autonomous driving which prevents the APM from driving into 

anything. We developed new type of APF for the project called Modified Path-Weighted Artificial 

Potential Field (MPWAPF). Without this running, the desired vector will not get converted to the 

cmd_vector. 

 

rosrun apm_autonomous artificial_potential_field & 

 

The last step is to generate the desired vector from the waypoint path. At this point, autonomous mode is 

ready to use. It is suggested to run this in a new terminal tab - not backgrounded so that it can be stopped 

and restarted when the cart is being reset. 

 

rosrun apm_autonomous local_driver_node <waypoint_file.txt> 

 

 

 


