The Decidability of the First-order Theory of Knuth-Bendix Order

Ting Zhang, Henny B. Sipma, Zohar Manna

Stanford University

{tingz,sipma,zm}@cs.stanford.edu

Introduction

MotivationOutline

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Introduction

Introduction

MotivationOutline

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Termination Proofs.

Introduction

MotivationOutline

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Termination Proofs.

Ordered Resolution.

Introduction

MotivationOutline

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Termination Proofs.

Ordered Resolution.

Ordered Rewriting.

Introduction	
 Motivation 	
 Outline 	

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Termination Proofs.

Ordered Resolution.

Ordered Rewriting.

How to decide satisfi ability of order constraints?

Introduction	
--------------	--

 Motivation
 Outline

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Related Work.

Introduction

MotivationOutline

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Related Work.

Term Algebras.

Introduction

Motivation

Outline

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Related Work.

Term Algebras.

Knuth Bendix Order.

Introduction	
 Motivation 	
Outline	

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Related Work.

Term Algebras.

Knuth Bendix Order.

Quantifi er Elimination.

Introduction	
 Motivation 	
● Outline	

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Related Work.

Term Algebras.

Knuth Bendix Order.

Quantifi er Elimination.

Quantifi er Elimination for Knuth-Bendix Order.

Introduction
 Motivation
 Outline

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Related Work.

Term Algebras.

Knuth Bendix Order.

Quantifi er Elimination.

Quantifi er Elimination for Knuth-Bendix Order.

Future Work.

Introduction

Related Work

• Related Work (1)

Related Work (2)

Related Work (3)

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Related Work

Introduction

Related Work

Related Work (1)Related Work (2)		Syntatic Nature RPO		Hybrid Natu
 Related Work (3) Term Algebras 				
Knuth-Bendix Order		MPO	LPO	KBO
Quantifier Elimination	syntactic			
Quantifier Elimination for Knuth-Bendix Order	precedence			
Future Work	multiset			
Thank You!	ordering			
Techinical Catches	lexicographical			
	ordering			
	numerical			
	ordering			

Introduction

Related Work Related Work (1) Related Work (2) Related Work (2)		Syntatic Nature		Hybrid Natu
 Related Work (3) Term Algebras 		RPO		KBO
Knuth-Bendix Order		MPO	LPO	
Quantifier Elimination	syntactic			
Quantifier Elimination for Knuth-Bendix Order	precedence	V		
Future Work	multiset			
Thank You!	ordering			
Techinical Catches	lexicographical			
	ordering			
	numerical			
	ordering			

Introduction

Related Work

Related Work (1)
----------------	----

Related Work (2)

• Related Work (3)

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

	Syntatic Nature		Hybrid Natu
	RPO		– KBO
	MPO	LPO	
syntactic	\checkmark		
precedence			
multiset	\checkmark		
ordering			
lexicographical			
ordering			
numerical			
ordering			

Introduction

Related Work

Related Work (2)

• Related Work (3)

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

	Syntatic Nature		Hybrid Natu
	RPO		– KBO
	MPO	LPO	
syntactic	\checkmark	\checkmark	
precedence			
multiset	\checkmark		
ordering			
lexicographical			
ordering			
numerical			
ordering			

Introduction

Related Work

Related Work (1)	
------------------	--

Related Work (2)

• Related Work (3)

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

	Syntatio	Hybrid Natu	
	RI	20	KBO
	MPO	LPO	
syntactic			
precedence	V	V	
multiset			
ordering	V		
lexicographical			
ordering		V	
numerical			
ordering			

Introduction

Related Work

Related Work (1))
------------------	---

Related Work (2)

• Related Work (3)

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

	Syntatic	Hybrid Natu	
	RP	0	- KBO
	MPO	LPO	
syntactic			
precedence	V	V	V
multiset			
ordering	V		
lexicographical			
ordering		V	
numerical			
ordering			

Introduction

Related Work

Related Work (1)

Related Work (2)

• Related Work (3)

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

	Syntatic	Hybrid Natu	
	RP	0	KBO
	MPO	LPO	
syntactic			
precedence	V	N N	V
multiset			
ordering	V		
lexicographical			
ordering		V	V
numerical			
ordering			

Introduction

Related Work

Related Work (1)

Related Work (2)

• Related Work (3)

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

	Syntatic	Hybrid Natu	
	RP	0	- KBO
	MPO	LPO	
syntactic			
precedence	V	V	V
multiset			
ordering	V		
lexicographical			
ordering		V	V
numerical			
ordering			V

Introduction

Related Work

• Related Work (1)

Related Work (2)Related Work (3)

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier E	limination	fo
Knuth-Bend	ix Order	

_

Future Work

Thank You!

Techinical Catches

Decidability Status (w.r.t. linear precedence):

	MPO	LPO	KBO
 QFT			
UQT			
 GQT			

QFT: Quantifi er-free Theory.

UQT: Unary Quantifi ed Theory.

Introduction

Related Work

Related Work (1)Related Work (2)

• Related Work (3)

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Decidability Status (w.r.t. linear precedence):

		MPO	LPO	KBO
	QFT	√ [JO91] [NRV99]		
r	UQT			
	GQT			

QFT: Quantifi er-free Theory.

UQT: Unary Quantifi ed Theory.

Related Work

Introduction

Related Work (1)

• Related Work (2)

• Related Work (3)

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Decidability Status (w.r.t. linear precedence):

		MPO	LPO	KBO
	QFT	√ [JO91] [NRV99]		
r	UQT	√ [NR00]		
	GQT			

QFT: Quantifi er-free Theory.

UQT: Unary Quantifi ed Theory.

Related Work

Introduction

Related Work (1)

• Related Work (2)

Related Work (3)

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Decidability Status (w.r.t. linear precedence):

		MPO	LPO	KBO
	QFT	√ [JO91] [NRV99]		
for	UQT	√ [NR00]		
	GQT	?		

QFT: Quantifi er-free Theory.

UQT: Unary Quantifi ed Theory.

Related Work

Introduction

Related Work (1)

Related Work (2)

Related Work (3)

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Decidability Status (w.r.t. linear precedence):

	MPO	LPO	KBO
QFT	√ [JO91] [NRV99]	√ [Com90] [Nie93]	
UQT	√ [NR00]		
GQT	?		
	UQT	QFT	QFT √ √ [JO91] [NRV99] [Com90] [Nie93] UQT √ [NR00]

QFT: Quantifi er-free Theory.

UQT: Unary Quantifi ed Theory.

Related Work

Introduction

• Related Work (1)

• Related Work (2)

Related Work (3)

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Decidability Status (w.r.t. linear precedence):

	MPO	LPO	KBO
 QFT	\checkmark	\checkmark	
	[JO91] [NRV99]	[Com90] [Nie93]	
 UQT	\checkmark	\checkmark	
	[NR00]	[NR00]	
 GQT	?		
	•		

QFT: Quantifi er-free Theory.

UQT: Unary Quantifi ed Theory.

Related Work

Introduction

• Related Work (1)

Related Work (2)

Related Work (3)

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Decidability Status (w.r.t. linear precedence):

		MPO	LPO	KBO
	OET	\checkmark	\checkmark	
	QFT	[JO91] [NRV99]	[Com90] [Nie93]	
<u>۱</u>	UQT	\checkmark	\checkmark	
n for		[NR00]	[NR00]	
	GQT	2	×	
	GQT	•	[Tre92, CT97]	

QFT: Quantifi er-free Theory.

UQT: Unary Quantifi ed Theory.

Related Work

Introduction

Related Work (1)

Related Work (2)

Related Work (3)

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Decidability Status (w.r.t. linear precedence):

		MPO	LPO	KBO
	OFT	\checkmark	\checkmark	\checkmark
	QFT	[JO91] [NRV99]	[Com90] [Nie93]	[KV00] [KV01]
for	UQT	√ [NR00]	√ [NR00]	
	GQT	?	× [Tre92, CT97]	

QFT: Quantifi er-free Theory.

UQT: Unary Quantifi ed Theory.

Related Work

Introduction

Related Work (1)

• Related Work (2)

Related Work (3)

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination fo Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Decidability Status (w.r.t. linear precedence):

		MPO	LPO	KBO
	QFT	\checkmark	\checkmark	\checkmark
		[JO91] [NRV99]	[Com90] [Nie93]	[KV00] [KV01]
for	UQT	\checkmark	\checkmark	\checkmark
		[NR00]	[NR00]	[KV02]
	GQT	2	×	
		•	[Tre92, CT97]	

QFT: Quantifi er-free Theory.

UQT: Unary Quantifi ed Theory.

Related Work

Introduction

Related Work (1)

• Related Work (2)

Related Work (3)

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination fo Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Decidability Status (w.r.t. linear precedence):

		MPO	LPO	KBO
	QFT	\checkmark	\checkmark	\checkmark
		[JO91] [NRV99]	[Com90] [Nie93]	[KV00] [KV01]
for	UQT	√ [NR00]	√ [NR00]	√ [KV02]
	GQT	?	× [Tre92, CT97]	?

QFT: Quantifi er-free Theory.

UQT: Unary Quantifi ed Theory.

Related Work

Introduction

Related Work (1)

Related Work (2)

Related Work (3)

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Decidability Status (w.r.t. linear precedence):

		MPO	LPO	KBO
	QFT	\checkmark	\checkmark	\checkmark
		[JO91] [NRV99]	[Com90] [Nie93]	[KV00] [KV01]
ör	UQT	√ [NR00]	√ [NR00]	√ [KV02]
	GQT	?	× [Tre92, CT97]	\checkmark
	L	1	1	

QFT: Quantifi er-free Theory.

UQT: Unary Quantifi ed Theory.

Introduction

Related Work

Related Work (1)

Related Work (2)Related Work (3)

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Our approach: $Th(KBO) \rightarrow Th(PA)$

Introduction

Related Work

Related Work (1)

Related Work (2)

Related Work (3)

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Our approach: $Th(KBO) \rightarrow Th(PA)$

Reduce term constraints to integer constraints. [ZSM04a]

Introduction
Related Work
Related Work (1)
Related Work (2)
 Related Work (3)

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Our approach: $Th(KBO) \rightarrow Th(PA)$

Reduce term constraints to integer constraints. [ZSM04a]

Reduce term quantifi ers to integer quantifi ers. ZSM04b]

Introduction
Related Work
Related Work (1)
 Related Work (2)
Related Work (3)
Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Our approach: $Th(KBO) \rightarrow Th(PA)$

- Reduce term constraints to integer constraints. [ZSM04a]
- Reduce term quantifi ers to integer quantifi ers. ZSM04b]

Integers rule!

Introduction

Related Work

Term Algebras

• Term Algebras

• Example: LISP lists

Notations

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Term Algebras

Introduction

Related Work

Term Algebras

• Term Algebras

• Example: LISP lists

Notations

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

A term algebra \mathfrak{A}_{TA} : $\langle TA; C, \mathcal{A}, \mathcal{S}, \mathcal{T} \rangle$ consists of

Introduction

Related Work

Term Algebras

• Term Algebras

• Example: LISP lists

Notations

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

A term algebra \mathfrak{A}_{TA} : $\langle TA; C, \mathcal{A}, \mathcal{S}, \mathcal{T} \rangle$ consists of

1. TA: The term domain.

	ļ	n	tr	0	dι	JC	tio	or	1
--	---	---	----	---	----	----	-----	----	---

Related Work

Term Algebras

Term Algebras

Example: LISP lists

Notations

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

A term algebra \mathfrak{A}_{TA} : $\langle TA; C, \mathcal{A}, \mathcal{S}, \mathcal{T} \rangle$ consists of

1. TA: The term domain.

2. *C*: A finite set of constructors: α , β , γ ,

Introduction	duction
--------------	---------

Related Work

Term Algebras

Term Algebras

• Example: LISP lists

Notations

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

A term algebra \mathfrak{A}_{TA} : $\langle TA; C, \mathcal{A}, \mathcal{S}, \mathcal{T} \rangle$ consists of

1. TA: The term domain.

2. *C*: A finite set of constructors: α , β , γ ,

3. \mathcal{A} : A finite set of constants: *a*, *b*, *c*, Require $\mathcal{A} \subseteq C$.

Introduction		In	tr	0	d	u	С	ti	0	n	
--------------	--	----	----	---	---	---	---	----	---	---	--

Related Work

Term Algebras

Term Algebras

• Example: LISP lists

Notations

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

A term algebra \mathfrak{A}_{TA} : $\langle TA; C, \mathcal{A}, \mathcal{S}, \mathcal{T} \rangle$ consists of

1. TA: The term domain.

2. *C*: A finite set of constructors: α , β , γ ,

3. \mathcal{A} : A finite set of constants: *a*, *b*, *c*, Require $\mathcal{A} \subseteq C$.

4. S: A finite set of selectors. $\alpha = (s_1^{\alpha}, \dots, s_k^{\alpha})$.

	ļ	n	tr	00	du	ct	io	n	
--	---	---	----	----	----	----	----	---	--

Related Work

Term Algebras

• Term Algebras

• Example: LISP lists

Notations

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

A term algebra \mathfrak{A}_{TA} : $\langle TA; C, \mathcal{A}, \mathcal{S}, \mathcal{T} \rangle$ consists of

1. TA: The term domain.

2. *C*: A finite set of constructors: α , β , γ ,

3. \mathcal{A} : A finite set of constants: *a*, *b*, *c*, Require $\mathcal{A} \subseteq C$.

4. S: A finite set of selectors. $\alpha = (s_1^{\alpha}, \dots, s_k^{\alpha})$.

5. \mathcal{T} : A finite set of testers. Is_{*a*} for $\alpha \in C$.

|--|

Related Work

Term Algebras

• Term Algebras

• Example: LISP lists

Notations

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

A term algebra \mathfrak{A}_{TA} : $\langle TA; C, \mathcal{A}, \mathcal{S}, \mathcal{T} \rangle$ consists of

1. TA: The term domain.

2. *C*: A finite set of constructors: α , β , γ ,

3. \mathcal{A} : A finite set of constants: *a*, *b*, *c*, Require $\mathcal{A} \subseteq C$.

4. S: A finite set of selectors. $\alpha = (s_1^{\alpha}, \dots, s_k^{\alpha})$.

5. \mathcal{T} : A finite set of testers. Is_{*a*} for $\alpha \in C$.

rightarrow TA is generated exclusively using C.

1	nt	rod	uct	ion

```
Related Work
```

Term Algebras

• Term Algebras

• Example: LISP lists

Notations

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

A term algebra \mathfrak{A}_{TA} : $\langle TA; C, \mathcal{A}, \mathcal{S}, \mathcal{T} \rangle$ consists of

1. TA: The term domain.

2. *C*: A finite set of constructors: α , β , γ ,

3. \mathcal{A} : A finite set of constants: *a*, *b*, *c*, Require $\mathcal{A} \subseteq C$.

4. S: A finite set of selectors. $\alpha = (s_1^{\alpha}, \dots, s_k^{\alpha})$.

- 5. \mathcal{T} : A finite set of testers. Is_{*a*} for $\alpha \in C$.
- \sim TA is generated **exclusively** using C.
- Each element of TA is uniquely generated.

Example: LISP lists

Signature:

Introduction

Related Work

Term Algebras

Term Algebras

Example: LISP lists

Notations

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

 \langle list; {cons, nil}; {nil}; {car, cdr}; {ls_{nil}, ls_{cons}} \rangle

Example: LISP lists

Introduction

Related Work

Term Algebras

Term Algebras

● Example: LISP lists

Notations

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

 $\langle list; \{cons, nil\}; \{nil\}; \{car, cdr\}; \{ls_{nil}, ls_{cons}\} \rangle$

Axioms:

■ Signature:

$$\begin{split} \mathsf{Is}_{\mathsf{nil}}(x) &\leftrightarrow \neg \mathsf{Is}_{\mathsf{cons}}(x), \\ x &= \mathsf{car}(\mathsf{cons}(x, y)), \\ y &= \mathsf{cdr}(\mathsf{cons}(x, y)), \\ \mathsf{Is}_{\mathsf{nil}}(x) &\leftrightarrow \{\mathsf{car}, \mathsf{cdr}\}^+(x) = x, \\ \mathsf{Is}_{\mathsf{cons}}(x) &\leftrightarrow \mathsf{cons}(\mathsf{car}(x), \mathsf{cdr}(x)) = x. \end{split}$$

Introduction

Related Work

Term Algebras

Term Algebras

Example: LISP lists

Notations

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

We study KBO using selector language.

Introduction

Related Work

Term Algebras

• Term Algebras

Example: LISP lists

Notations

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

We study KBO using selector language.

• For $L = s_1, \ldots, s_n$, Lx stands for

 $S_1(\ldots(S_n(x)\ldots)).$

|L| is called the depth of x in Lx.

Introduction

Related Work

Term Algebras

• Term Algebras

• Example: LISP lists

Notations

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

We study KBO using selector language.

• For $L = s_1, \ldots, s_n$, Lx stands for

 $S_1(\ldots(S_n(x)\ldots)).$

|L| is called the depth of x in Lx.

```
• depth\varphi(x) : the maximum depth of x in \varphi.
```


Introduction

Related Work

Term Algebras

• Term Algebras

• Example: LISP lists

Notations

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

We study KBO using selector language.

• For $L = s_1, \ldots, s_n$, Lx stands for

 $S_1(\ldots(S_n(x)\ldots)).$

|L| is called the depth of x in Lx.

depth $\varphi(x)$: the maximum depth of x in φ .

Formulas are type-complete and selector terms are proper.
 For example,

 $car(x) \neq cdr(x)$

should be understood as

 $car(x) \neq cdr(x) \land Is_{cons}(x).$

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Knuth-Bendix Order (1)Knuth-Bendix Order (2)

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Knuth-Bendix Order

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

• Knuth-Bendix Order (1)

• Knuth-Bendix Order (2)

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

A Knuth-Bendix order (KBO) <^{kb} is parametrically defined with

Introduction Related Work Term Algebras Knuth-Bendix Order • Knuth-Bendix Order (1) • Knuth-Bendix Order (2) Quantifier Elimination Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

A Knuth-Bendix order (KBO) <^{kb} is parametrically defined with

• $W: TA \rightarrow \mathbb{N}: a \text{ weight function satisfying}$

$$W(\alpha(t_1,\ldots,t_k)) = W(\alpha) + \sum_{i=1}^k W(t_i).$$

Related Work

Introduction

Knuth-Bendix Order

Knuth-Bendix Order (1)

• Knuth-Bendix Order (2)

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

A Knuth-Bendix order (KBO) <^{kb} is parametrically defined with

• W : TA $\rightarrow \mathbb{N}$: a weight function satisfying

$$W(\alpha(t_1,\ldots,t_k)) = W(\alpha) + \sum_{i=1}^k W(t_i).$$

• $<^{\Sigma}$: a linear (precedence) order on *C* such that

$$\alpha_1 >^{\Sigma} \alpha_2 >^{\Sigma} \ldots >^{\Sigma} \alpha_{|C|}$$

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Knuth-Bendix Order (1)
Knuth-Bendix Order (2)

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

For $u, v \in TA$, $u <^{kb} v$ if one of the following holds:

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Knuth-Bendix Order (1)
Knuth-Bendix Order (2)

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

For $u, v \in TA$, $u <^{kb} v$ if one of the following holds:

• W(u) < W(v).

Introduction	
Related Work	
Term Algebras	
Knuth-Bendix Order	
Knuth-Bendix Order (1)	
● Knuth-Bendix Order (2)	
Quantifier Elimination	
Quantifier Elimination for	

Future Work

Thank You!

Techinical Catches

Knuth-Bendix Order

For $u, v \in TA$, $u <^{kb} v$ if one of the following holds:

$$\mathbf{W}(u) < \mathbf{W}(v).$$

• W(u) = W(v) and type $(u) <^{\Sigma} type(v)$.

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Knuth-Bendix Order (1)Knuth-Bendix Order (2)

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

For $u, v \in TA$, $u <^{kb} v$ if one of the following holds:

•
$$W(u) < W(v)$$
.

•
$$W(u) = W(v)$$
 and $type(u) <^{\Sigma} type(v)$.

•
$$W(u) = W(v), u \equiv \alpha(u_1, \dots, u_k), v \equiv \alpha(v_1, \dots, v_k)$$
, and

$$\exists i [1 \le i \le k \land u_i <^{\mathsf{kb}} v_i \land \forall j (1 \le j < i \to u_j = v_j)].$$

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

• QE Preliminary

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Quantifier Elimination

Quantifier Elimination

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

• QE Preliminary

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

■ Suffi ces to eliminate ∃-quantifi ers fromprimitive formulas

 $\exists \bar{x}(A_1(\bar{x}) \land \ldots \land A_n(\bar{x})),$

where $A_i(\bar{x})$ ($1 \le i \le n$) are literals.

Quantifier Elimination

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

● QE Preliminary

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Suffices to eliminate \exists -quantifiers from primitive formulas $\exists \bar{x}(A_1(\bar{x}) \land \ldots \land A_n(\bar{x})),$

where $A_i(\bar{x})$ $(1 \le i \le n)$ are literals.

Suffices to assume $A_i \neq x = t$ if $x \notin t$, because

 $\exists x(x=t \land \varphi(x, \bar{y})) \leftrightarrow \varphi(t, \bar{y}).$

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

Quantifier Elimination for Knuth-Bendix Order

Two Main Ideas

Solved Form.

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

Eliminating $\exists x \text{ from } (\exists x) \varphi(x, \bar{y}) \text{ is straightforward once}$

 $\varphi(x, \bar{y})$ is solved in *x*.

Two Main Ideas

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Two Main Ideas

- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

Eliminating $\exists x \text{ from } (\exists x) \varphi(x, \bar{y}) \text{ is straightforward once}$

 $\varphi(x, \bar{y})$ is solved in x.

Depth Reduction.

Solved Form.

Depth reduction is to obtain solve forms as

 $\varphi(x, \bar{y})$ is solved in x iff $depth_{\varphi}(x) = 0$.

Solved Form

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

Two Main Ideas

Solved Form

- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

• $\varphi(x, \bar{y})$ is solved in x if it is in the form

 $\bigwedge_{i\leq m} u_i \prec^{\mathsf{kb}} x \land \bigwedge_{j\leq n} x \prec^{\mathsf{kb}} v_j \land \varphi'(\bar{y}),$

where x does not appear in u_i , v_i and φ' .

Solved Form

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

Two Main Ideas

Solved Form

Depth Reduction (1)

- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

• $\varphi(x, \bar{y})$ is solved in x if it is in the form

$$\bigwedge_{\leq m} u_i \prec^{\mathsf{kb}} x \land \bigwedge_{j \leq n} x \prec^{\mathsf{kb}} v_j \land \varphi'(\bar{y}),$$

where x does not appear in u_i , v_i and φ' .

1

If $\varphi(x, \bar{y})$ is solved in *x*, then $(\exists x) \varphi(x, \bar{y})$ simplifies to

$$\bigwedge_{\leq m,j\leq n} u_i \prec_2^{\mathsf{kb}} v_j \land \varphi'(\bar{\boldsymbol{y}})$$

where $x \prec_n^{kb} y$, called gap order, states there is an increasing chain from x to y of length at least n.

Depth Reduction (1)

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

Two Main Ideas

Solved Form

Depth Reduction (1)

• Depth Reduction (2)

Extensions

- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

Case 1: All occurrences of *x* have depth greater than 0.

Depth Reduction (1)

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

Two Main Ideas

Solved Form

Depth Reduction (1)

Depth Reduction (2)

- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

Case 1: All occurrences of *x* have depth greater than 0. In this case, $\exists x \varphi(x, \bar{y})$ goes to $\exists x_1, \dots, \exists x_k \varphi'(x_1, \dots, x_k, \bar{y}),$

where

 $\varphi'(x_1,\ldots,x_k,\bar{y})\equiv\varphi(x,\bar{y})[x_i\leftarrow S_i^{\alpha}(x)].$

Depth Reduction (2)

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

Two Main Ideas

Solved Form

• Depth Reduction (1)

Depth Reduction (2)

Extensions

Extension

Extension

Extension

• Counting Constraints

Extension

• QE for KBO

Variable Selection

Decomposition

Simplification

Elimination

• Termination (1)

• Termination (2)

• Termination (3)

• Example (1)

• Example (2)

Case 2: Some *x* have depth 0 and some do not.

Depth Reduction (2)

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

- Knuth-Bendix Order
- Two Main Ideas
- Solved Form

• Depth Reduction (1)

Depth Reduction (2)

- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

Case 2: Some *x* have depth 0 and some do not.

- Decompose 0-depth occurrences of x in terms of
 - $\mathbf{s}_1^{\alpha}(x),\ldots,\mathbf{s}_k^{\alpha}(x).$

Depth Reduction (2)

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

Two Main Ideas

Solved Form

• Depth Reduction (1)

Depth Reduction (2)

Extensions

- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

Case 2: Some *x* have depth 0 and some do not.

Decompose 0-depth occurrences of x in terms of

 $\mathsf{S}_1^{\alpha}(x),\ldots,\mathsf{S}_k^{\alpha}(x).$

This amounts to expressing $x <_n^{kb} t$ and $t <_n^{kb} x$ using $s_1^{\alpha}(x), \dots, s_k^{\alpha}(x).$

Depth Reduction (2)

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

Two Main Ideas

Solved Form

• Depth Reduction (1)

Depth Reduction (2)

Extensions

- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

Case 2: Some *x* have depth 0 and some do not.

Decompose 0-depth occurrences of x in terms of

 $\mathbf{S}_1^{\alpha}(x),\ldots,\mathbf{S}_k^{\alpha}(x).$

This amounts to expressing $x <_n^{kb} t$ and $t <_n^{kb} x$ using $s_1^{\alpha}(x), \dots, s_k^{\alpha}(x)$.

Then apply the reduction as in Case 1!

Depth Reduction (2)

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

- Quantifier Elimination for
- Knuth-Bendix Order
- Two Main Ideas
- Solved Form
- Depth Reduction (1)

Depth Reduction (2)

- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

Case 2: Some *x* have depth 0 and some do not.

Decompose 0-depth occurrences of x in terms of

 $\mathbf{S}_1^{\alpha}(x),\ldots,\mathbf{S}_k^{\alpha}(x).$

This amounts to expressing $x <_n^{kb} t$ and $t <_n^{kb} x$ using $s_1^{\alpha}(x), \dots, s_k^{\alpha}(x)$.

Then apply the reduction as in Case 1!

In order to do that, we need to extend the language.

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

Two Main Ideas

Solved Form

• Depth Reduction (1)

• Depth Reduction (2)

Extensions

Extension

- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

1. Decompose $<^{kb}$ into three disjoint suborders $<^{w}$, $<^{p}$ and $<^{I}$.

Introduction Related Work Term Algebras . Knuth-Bendix Order Quantifier Elimination Quantifier Elimination for Knuth-Bendix Order Two Main Ideas Solved Form • Depth Reduction (1) • Depth Reduction (2) Extensions Extension Extension Extension

- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

1. Decompose $<^{kb}$ into three disjoint suborders $<^{w}$, $<^{p}$ and $<^{I}$.

2. Extend
$$\prec^w$$
, \prec^p and \prec^l to \prec^w_n , \prec^p_n and \prec^l_n , respectively.

Introduction Related Work Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order Two Main Ideas

Solved Form

Depth Reduction (1)

• Depth Reduction (2)

Extensions

Extension

- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

1. Decompose $<^{kb}$ into three disjoint suborders $<^{w}$, $<^{p}$ and $<^{I}$.

2. Extend $<^{w}$, $<^{p}$ and $<^{I}$ to $<^{w}_{n}$, $<^{p}_{n}$ and $<^{I}_{n}$, respectively.

3. Add Presburger arithmetic explicitly to represent weight.

Introduction
Related Work
Term Algebras
Knuth-Bendix Order
Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Two Main Ideas

Solved Form

Depth Reduction (1)

• Depth Reduction (2)

Extensions

- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

1. Decompose $<^{kb}$ into three disjoint suborders $<^{w}$, $<^{p}$ and $<^{I}$.

2. Extend \prec^w , \prec^p and \prec^l to \prec^w_n , \prec^p_n and \prec^l_n , respectively.

3. Add Presburger arithmetic explicitly to represent weight.

4. Definecounting constraints to count terms of certain weight.

Introduction
Related Work
Term Algebras
Knuth-Bendix Order
Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

• Two Main Ideas

Solved Form

Depth Reduction (1)

Depth Reduction (2)

Extensions

Extension

• Extension

Extension

Counting Constraints

Extension

QE for KBOVariable Selection

- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

1. Decompose $<^{kb}$ into three disjoint suborders $<^{w}$, $<^{p}$ and $<^{I}$.

2. Extend \prec^w , \prec^p and \prec^l to \prec^w_n , \prec^p_n and \prec^l_n , respectively.

3. Add Presburger arithmetic explicitly to represent weight.

- 4. Definecounting constraints to count terms of certain weight.
- 5. Defineboundary functions to delineate gap orders.

Introduction Related Work Term Algebras Knuth-Bendix Order Quantifier Elimination Quantifier Elimination for Knuth-Bendix Order

• Two Main Ideas

Solved Form

• Depth Reduction (1)

• Depth Reduction (2)

Extensions

Extension

ExtensionExtension

Counting Constraints

Extension

• QE for KBO

Variable Selection

Decomposition

- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

1. Decompose $<^{kb}$ into three disjoint suborders $<^{w}$, $<^{p}$ and $<^{I}$.

2. Extend \prec^w , \prec^p and \prec^l to \prec^w_n , \prec^p_n and \prec^l_n , respectively.

- 3. Add Presburger arithmetic explicitly to represent weight.
- 4. Definecounting constraints to count terms of certain weight.
- 5. Defi neboundary functions to delineate gap orders.
- 6. Extend all aforementioned notions to tuples of terms.

1. Weight Order <^w:

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)

• Depth Reduction (2)

Extensions

Extension

- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

$u \prec^{\mathsf{w}} v \Leftrightarrow \mathsf{W}(u) < \mathsf{W}(v).$

1. Weight Order <^w:

2.

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

- Knuth-Bendix Order
- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions

Extension

- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

 $u <^{\mathsf{w}} v \Leftrightarrow \mathsf{W}(u) < \mathsf{W}(v).$

 $u <^{\mathsf{p}} v \Leftrightarrow \mathsf{W}(u) = \mathsf{W}(s) \& \mathsf{type}(u) <^{\Sigma} \mathsf{type}(v).$

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

- Knuth-Bendix Order
- Two Main Ideas
- Solved Form

• Depth Reduction (1)

• Depth Reduction (2)

Extensions

Extension

Extension

Extension

Counting Constraints

- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

Weight Order <^w:

$$u \prec^{\mathsf{w}} v \Leftrightarrow \mathsf{W}(u) < \mathsf{W}(v).$$

2. Precedence Order <^p:

 $u <^{\mathsf{p}} v \Leftrightarrow \mathsf{W}(u) = \mathsf{W}(s) \& \mathsf{type}(u) <^{\Sigma} \mathsf{type}(v).$

3. Lexicographical Order <^I:

 $u \prec v \Leftrightarrow W(u) = W(v) \& type(u) = type(v) \& u \prec v.$

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

- Knuth-Bendix Order
- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions

Extension

- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

1. Weight Order <^w:

$$u \prec^{\mathsf{w}} v \Leftrightarrow \mathsf{W}(u) < \mathsf{W}(v).$$

2. Precedence Order <^p:

 $u <^{\mathsf{p}} v \Leftrightarrow \mathsf{W}(u) = \mathsf{W}(s) \& \mathsf{type}(u) <^{\Sigma} \mathsf{type}(v).$

3. Lexicographical Order <^I:

 $u \prec v \Leftrightarrow W(u) = W(v) \& type(u) = type(v) \& u \prec v.$

Abbreviations:

$$u <^{\mathsf{pl}} v \Leftrightarrow u <^{\mathsf{p}} v \lor u <^{\mathsf{l}} v,$$
$$u <^{\mathsf{kb}} v \Leftrightarrow u <^{\mathsf{w}} v \lor u <^{\mathsf{p}} v \lor u <^{\mathsf{l}} v.$$

• Gap Order \prec_n^{kb} :

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

Two Main Ideas

Solved Form

• Depth Reduction (1)

• Depth Reduction (2)

Extensions

Extension

Extension

Extension

• Counting Constraints

Extension

• QE for KBO

Variable Selection

Decomposition

Simplification

Elimination

• Termination (1)

Termination (2)

• Termination (3)

• Example (1)

• Example (2)

 $u <_n^{\mathsf{kb}} v \leftrightarrow (\exists u_1, \dots, \exists u_n) \Big[u <^{\mathsf{kb}} u_1 <^{\mathsf{kb}} \dots <^{\mathsf{kb}} u_n \leq^{\mathsf{kb}} v \Big].$

• Gap Order $<_n^{kb}$:

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions

Extension

Extension

- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

$$u <_n^{\mathsf{kb}} v \leftrightarrow (\exists u_1, \dots, \exists u_n) \Big[u <^{\mathsf{kb}} u_1 <^{\mathsf{kb}} \dots <^{\mathsf{kb}} u_n \leq^{\mathsf{kb}} v \Big]$$

• Weight Gap Order \prec_n^{w} :

$$u \prec^{\mathsf{w}}_{n} v \leftrightarrow u \prec^{\mathsf{kb}}_{n} v \land u \prec^{\mathsf{w}} v.$$

• Gap Order \prec_n^{kb} :

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions

Extension

Extension

- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

$$u <_n^{\mathsf{kb}} v \leftrightarrow (\exists u_1, \dots, \exists u_n) \Big[u <^{\mathsf{kb}} u_1 <^{\mathsf{kb}} \dots <^{\mathsf{kb}} u_n \leq^{\mathsf{kb}} v \Big].$$

• Weight Gap Order $<_n^{w}$:

$$u <^{\mathsf{w}}_{n} v \leftrightarrow u <^{\mathsf{kb}}_{n} v \land u <^{\mathsf{w}} v.$$

• Precedence Gap Order \prec_n^p :

$$u \prec^{\mathsf{p}}_{n} v \leftrightarrow u \prec^{\mathsf{kb}}_{n} v \land u \prec^{\mathsf{p}} v.$$

• Gap Order $<_n^{kb}$:

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions

Extension

Extension

- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

$$u \prec_n^{\mathsf{kb}} v \leftrightarrow (\exists u_1, \dots, \exists u_n) \Big[u \prec^{\mathsf{kb}} u_1 \prec^{\mathsf{kb}} \dots \prec^{\mathsf{kb}} u_n \preceq^{\mathsf{kb}} v \Big].$$

• Weight Gap Order $<_n^{W}$:

$$u <^{\mathsf{w}}_{n} v \leftrightarrow u <^{\mathsf{kb}}_{n} v \land u <^{\mathsf{w}} v.$$

• Precedence Gap Order $<_n^p$:

$$u \prec^{\mathsf{p}}_{n} v \leftrightarrow u \prec^{\mathsf{kb}}_{n} v \land u \prec^{\mathsf{p}} v.$$

• Lexicographical Gap Order \prec_n^{I} :

$$u \prec_n^{\mathsf{I}} v \leftrightarrow u \prec_n^{\mathsf{kb}} v \land u \prec^{\mathsf{I}} v.$$

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension

Extension

- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

 $0^w, 1^w : \mathbb{N} \to TA; 0^p, 1^p : \mathbb{N}^2 \to TA$ such that

• $0^{w}(n)$: the smallest term of weight *n*.

Introduction	
Related Work	

Term Algebras

Introduction

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension

Extension

- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

$0^w, 1^w : \mathbb{N} \to TA; 0^p, 1^p : \mathbb{N}^2 \to TA$ such that

- $0^{w}(n)$: the smallest term of weight *n*.
- $0^{p}(n,p)$: the smallest term of weight *n* and type α_{p} .

Introduction
Related Work
Term Algebras
ICITII Algobias

Introduction

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension

Extension

- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

$0^w, 1^w: \mathbb{N} \to TA; 0^p, 1^p: \mathbb{N}^2 \to TA$ such that

- $0^{w}(n)$: the smallest term of weight *n*.
- $0^{p}(n,p)$: the smallest term of weight *n* and type α_{p} .
- $1^{w}(n)$: the largest term of weight *n*.

Introduction
Related Work
Term Algebras

Introduction

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension

Extension

- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

$0^w, 1^w: \mathbb{N} \to TA; 0^p, 1^p: \mathbb{N}^2 \to TA$ such that

- $0^{w}(n)$: the smallest term of weight *n*.
- $0^{p}(n,p)$: the smallest term of weight *n* and type α_{p} .
- $1^{w}(n)$: the largest term of weight *n*.
- $1^{p}(n, p)$: the largest term of weight *n* and type α_{p} .

Introduction
Related Work
Term Algebras
Knuth-Bendix Order
Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension

Extension

- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

 $0^w, 1^w: \mathbb{N} \to TA; 0^p, 1^p: \mathbb{N}^2 \to TA$ such that

- $0^{w}(n)$: the smallest term of weight n.
- $0^{p}(n,p)$: the smallest term of weight *n* and type α_{p} .
- $1^{w}(n)$: the largest term of weight *n*.
- $1^{p}(n, p)$: the largest term of weight *n* and type α_{p} .

Example of Use:

$$u \prec_5^{\mathsf{w}} v \leftrightarrow \bigvee_{n_1+n_2+n_3=5} u \prec_{n_1}^{\mathsf{pl}} \mathbf{1}_{(u^{\mathsf{w}})}^{\mathsf{w}} \prec_{n_2}^{\mathsf{w}} \mathbf{0}_{(v^{\mathsf{w}})}^{\mathsf{w}} \prec_{n_3}^{\mathsf{pl}} v.$$

• $CNT_n(x)$ states that

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

- Knuth-Bendix Order
- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension

Extension

• Counting Constraints

- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

"there are at least n + 1 distinct TA-terms of weight x."

• $CNT_n(x)$ states that

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Two Main Ideas

- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

"there are at least n + 1 distinct TA-terms of weight x."

• $CNT_0(x)$ (or Tree(x)) states that

x is a legitimate weight of a term.

• $CNT_n(x)$ states that

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

• Two Main Ideas

Solved Form

• Depth Reduction (1)

• Depth Reduction (2)

Extensions

Extension

Extension

Extension

Counting Constraints

Extension

• QE for KBO

Variable Selection

Decomposition

Simplification

Elimination

Termination (1)

Termination (2)

Termination (3)

• Example (1)

• Example (2)

"there are at least n + 1 distinct TA-terms of weight x."

• $CNT_0(x)$ (or Tree(x)) states that

x is a legitimate weight of a term.

• $CNT_n(x)$ is expressible in Presburger arithmetic.

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Two Main Ideas

Solved Form

Depth Reduction (1)

• Depth Reduction (2)

Extensions

Extension

Extension

Extension

• Counting Constraints

Extension

• QE for KBO

Variable Selection

Decomposition

- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)

• Example (2)

"there are at least n + 1 distinct TA-terms of weight x."

• $CNT_0(x)$ (or Tree(x)) states that

x is a legitimate weight of a term.

• $CNT_n(x)$ is expressible in Presburger arithmetic.

Example of Use:

• $CNT_n(x)$ states that

 $0_{(x)}^{\mathsf{w}} \prec_n^{\mathsf{pl}} 1_{(x)}^{\mathsf{w}} \leftrightarrow \mathsf{CNT}_n(x).$

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

- Knuth-Bendix Order
- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints

Extension

- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

 $\begin{aligned} \mathfrak{A}_{\mathsf{k}\mathsf{b}^+}^{\mathbb{Z}} &= \langle & \mathfrak{A}_{\mathsf{T}\mathsf{A}}; \mathfrak{A}_{\mathbb{Z}}; (.)^{\mathsf{w}}; \\ & <_n^{\sharp}, \sharp \in \{\mathsf{k}\mathsf{b}, \mathsf{w}, \mathsf{p}, \mathsf{I}, \mathsf{p}\mathsf{I}\}, \end{aligned}$

Extended structure:

 $0^{*}(...), 1^{*}(...), * \in \{w, p\} >.$

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Two Main Ideas

- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints

Extension

- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

Extended structure:

$$\begin{split} \mathfrak{A}_{\mathsf{k}\mathsf{b}^+}^{\mathbb{Z}} &= \langle \quad \mathfrak{A}_{\mathsf{T}\mathsf{A}}; \mathfrak{A}_{\mathbb{Z}}; (.)^{\mathsf{w}}; \\ &\quad \langle_n^{\sharp}, \sharp \in \{\mathsf{k}\mathsf{b}, \mathsf{w}, \mathsf{p}, \mathsf{I}, \mathsf{p}\mathsf{I}\}, \\ &\quad \mathsf{0}^*(...), \mathsf{1}^*(...), * \in \{\mathsf{w}, \mathsf{p}\} \quad \rangle. \end{split}$$

• \mathfrak{A}_{TA} : Term algebras.

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Two Main Ideas

- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints

Extension

- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

$$\begin{split} \mathfrak{A}_{\mathsf{k}\mathsf{b}^+}^{\mathbb{Z}} &= \langle \quad \mathfrak{A}_{\mathsf{T}\mathsf{A}}; \mathfrak{A}_{\mathbb{Z}}; (.)^{\mathsf{w}}; \\ &\quad \langle_n^{\sharp}, \sharp \in \{\mathsf{k}\mathsf{b}, \mathsf{w}, \mathsf{p}, \mathsf{l}, \mathsf{p}\mathsf{l}\}, \\ &\quad \mathsf{0}^*(\ldots), \mathsf{1}^*(\ldots), * \in \{\mathsf{w}, \mathsf{p}\} \quad \rangle. \end{split}$$

- \mathfrak{A}_{TA} : Term algebras.
- $\mathfrak{A}_{\mathbb{Z}}$: Presburger arithmetic.

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints

Extension

- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

$$\begin{split} \mathfrak{A}_{\mathsf{k}\mathsf{b}^+}^{\mathbb{Z}} &= \langle \quad \mathfrak{A}_{\mathsf{T}\mathsf{A}}; \mathfrak{A}_{\mathbb{Z}}; (.)^{\mathsf{w}}; \\ &\quad \langle_n^{\sharp}, \sharp \in \{\mathsf{k}\mathsf{b}, \mathsf{w}, \mathsf{p}, \mathsf{l}, \mathsf{p}\mathsf{l}\}, \\ &\quad \mathsf{0}^*(\ldots), \mathsf{1}^*(\ldots), * \in \{\mathsf{w}, \mathsf{p}\} \quad \rangle. \end{split}$$

- \mathfrak{A}_{TA} : Term algebras.
- $\mathfrak{A}_{\mathbb{Z}}$: Presburger arithmetic.
- (.)^w : Weight function.

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints

Extension

- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

$$\begin{split} \mathfrak{A}_{\mathsf{k}\mathsf{b}^+}^{\mathbb{Z}} &= \langle \quad \mathfrak{A}_{\mathsf{T}\mathsf{A}}; \mathfrak{A}_{\mathbb{Z}}; (.)^{\mathsf{w}}; \\ &\quad \langle_n^{\sharp}, \sharp \in \{\mathsf{k}\mathsf{b}, \mathsf{w}, \mathsf{p}, \mathsf{l}, \mathsf{p}\mathsf{l}\}, \\ &\quad \mathsf{0}^*(\ldots), \mathsf{1}^*(\ldots), * \in \{\mathsf{w}, \mathsf{p}\} \quad \rangle. \end{split}$$

- $\mathfrak{A}_{\mathsf{TA}}$: Term algebras.
- $\mathfrak{A}_{\mathbb{Z}}$: Presburger arithmetic.
- (.)^w : Weight function.

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints

Extension

- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

$$\begin{split} \mathfrak{A}_{\mathsf{k}\mathsf{b}^+}^{\mathbb{Z}} &= \langle \quad \mathfrak{A}_{\mathsf{T}\mathsf{A}}; \mathfrak{A}_{\mathbb{Z}}; (.)^{\mathsf{w}}; \\ &\quad \langle_n^{\sharp}, \sharp \in \{\mathsf{k}\mathsf{b}, \mathsf{w}, \mathsf{p}, \mathsf{l}, \mathsf{p}\mathsf{l}\}, \\ &\quad \mathsf{0}^*(\ldots), \mathsf{1}^*(\ldots), * \in \{\mathsf{w}, \mathsf{p}\} \quad \rangle. \end{split}$$

- $\mathfrak{A}_{\mathsf{TA}}$: Term algebras.
- $\mathfrak{A}_{\mathbb{Z}}$: Presburger arithmetic.
- (.)^w : Weight function.
- $<_n^{\sharp}$: Gap orders.
- 0^{*}(...), 1^{*}(...) : Boundary terms.

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBOVariable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

$$\begin{split} \mathfrak{A}_{\mathsf{k}\mathsf{b}^+}^{\mathbb{Z}} &= \langle \quad \mathfrak{A}_{\mathsf{T}\mathsf{A}}; \mathfrak{A}_{\mathbb{Z}}; (.)^{\mathsf{w}}; \\ &\quad \langle_n^{\sharp}, \sharp \in \{\mathsf{k}\mathsf{b}, \mathsf{w}, \mathsf{p}, \mathsf{l}, \mathsf{p}\mathsf{l}\}, \\ &\quad \mathsf{0}^*(\ldots), \mathsf{1}^*(\ldots), * \in \{\mathsf{w}, \mathsf{p}\} \quad \rangle. \end{split}$$

- $\mathfrak{A}_{\mathsf{TA}}$: Term algebras.
- $\mathfrak{A}_{\mathbb{Z}}$: Presburger arithmetic.
- (.)^w : Weight function.
- $<_n^{\sharp}$: Gap orders.
- 0^{*}(...), 1^{*}(...) : Boundary terms.
- Example of Use:

$$(\exists x: \mathsf{TA}) \left[\mathsf{0}_{(x^{\mathsf{w}})}^{\mathsf{w}} \prec_{2}^{\mathsf{l}} x \prec_{3}^{\mathsf{l}} \mathsf{1}_{(x^{\mathsf{w}})}^{\mathsf{w}} \right]$$

Quantifier Elimination for Knuth-Bendix Orde

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

- Knuth-Bendix Order
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

Input: $(\exists \bar{x}) \varphi(\bar{x}, \bar{y}).$

<u>While</u> $\bar{x} \neq \emptyset$.

• While $(\forall x \in \bar{x}) depth_{\varphi}(x) > 0.$

Depth Reduction.

- ♦ VARIABLE SELECTION.
- DECOMPOSITION.
- SIMPLIFICATION.

Done.

- While $(\exists x \in \bar{x}) depth_{\varphi}(x) = 0.$
 - Elimination.

Done.

Done.

Variable Selection

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order Two Main Ideas

- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO

Variable Selection

Decomposition

- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

Select a variable $x \in \bar{x}$ such that $s_i^{\alpha}(x)$ appears in $\varphi(\bar{x}, \bar{y})$.

Variable Selection

Introduction		Ç
Related Work		
Term Algebras	(F	-
Knuth-Bendix Order		
Quantifier Elimination		
Quantifier Elimination for Knuth-Bendix Order		
Two Main Ideas		
Solved Form		
 Depth Reduction (1) 		
 Depth Reduction (2) 		
 Extensions 		
Extension		
Extension		
Extension		
 Counting Constraints 		
Extension		
• QE for KBO		
Variable Selection		
 Simplification 		
 Elimination 		
 Termination (1) 		
 Termination (2) 		
 Termination (3) 		
• Example (1)		
• Example (2)		

Select a variable $x \in \bar{x}$ such that $s_i^{\alpha}(x)$ appears in $\varphi(\bar{x}, \bar{y})$.

The variable selection is done in depth-fi rstmanner.

Variable Selection

Introduction	
Related Work	
Term Algebras	Ĵ,
	2
Knuth-Bendix Order	
Quantifier Elimination	
Quantifier Elimination for	
Knuth-Bendix Order	
Two Main Ideas	
 Solved Form 	
Depth Reduction (1)	
 Depth Reduction (2) 	
Extensions	
Extension	
Extension	
Extension	
Counting Constraints	
Extension	
• QE for KBO	
 Variable Selection 	
 Decomposition 	
 Simplification 	
 Elimination 	
 Termination (1) 	
• Termination (2)	
 Termination (3) 	
• Example (1)	

• Example (2)

Select a variable $x \in \bar{x}$ such that $s_i^{\alpha}(x)$ appears in $\varphi(\bar{x}, \bar{y})$.

The variable selection is done in depth-fi rstmanner.

I.e., choose variables generated in the previous round.

Decomposition

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

- Knuth-Bendix Order
- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection

Decomposition

- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

Rewrite $(\exists \bar{x}) \varphi(\bar{x}, \bar{y})$ to

$$\exists x_1 \dots \exists x_k \exists \bar{x} \left[\mathsf{Is}_{\alpha}(x) \land \bigwedge_{1 \leq i \leq k} \mathsf{s}_i^{\alpha}(x) = x_i \land \varphi(\bar{x}, \bar{y}) \right].$$

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition

Simplification

- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

• Apply the following rules to each occurrence of x.

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition

Simplification

- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

- Apply the following rules to each occurrence of x.
 - 1. Replace $x <_{n}^{\sharp} t$ (or $t <_{n}^{\sharp} x$) by a quantifier-free formula $\varphi'(\mathbf{s}_{1}^{\alpha}(x), \dots, \mathbf{s}_{k}^{\alpha}(x), \mathbf{s}_{1}^{\alpha}(t), \dots, \mathbf{s}_{k}^{\alpha}(t)).$

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

• Two Main Ideas

Solved Form

Depth Reduction (1)

Depth Reduction (2)

Extensions

Extension

Extension

Extension

Counting Constraints

- Extension
- QE for KBO
- Variable Selection

Decomposition

• Simplification

- Elimination
- Termination (1)
- Termination (2)
- Termination (3)

• Example (1)

• Example (2)

Apply the following rules to each occurrence of *x*.

1. Replace $x <_{n}^{\sharp} t$ (or $t <_{n}^{\sharp} x$) by a quantifier-free formula $\varphi'(\mathbf{s}_{1}^{\alpha}(x), \dots, \mathbf{s}_{k}^{\alpha}(x), \mathbf{s}_{1}^{\alpha}(t), \dots, \mathbf{s}_{k}^{\alpha}(t)).$

2. Replace $\mathbf{s}_i^{\alpha}(x)$ in $\varphi(\bar{\mathbf{x}}, \bar{\mathbf{y}})$ by x_i $(1 \le i \le k)$.

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition

• Simplification

- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

- Apply the following rules to each occurrence of x.
 - 1. Replace $x <_{n}^{\sharp} t$ (or $t <_{n}^{\sharp} x$) by a quantifier-free formula $\varphi'(s_{1}^{\alpha}(x), \dots, s_{k}^{\alpha}(x), s_{1}^{\alpha}(t), \dots, s_{k}^{\alpha}(t)).$
 - 2. Replace $s_i^{\alpha}(x)$ in $\varphi(\bar{x}, \bar{y})$ by x_i $(1 \le i \le k)$.
- Denote the result of this simplifi cation as
 - $\exists x_1 \ldots \exists x_k \exists (\bar{x} \setminus x) \left[\varphi'(\bar{x} \setminus x, x_1, \ldots, x_k, \bar{y}) \right].$

Elimination

Now we must have

 $\exists x \Big[\bigwedge u_i <^{\mathsf{kb}} x \land \bigwedge x <^{\mathsf{kb}} v_j \land \varphi'(\bar{y}) \Big],$

 $i \le m$ $j \le n$

where x appears none of u_i , v_j and φ' .

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

• Two Main Ideas

Solved Form

Depth Reduction (1)

• Depth Reduction (2)

Extensions

Extension

Extension

Extension

Counting Constraints

Extension

• QE for KBO

Variable Selection

Decomposition

Simplification

Elimination

• Termination (1)

• Termination (2)

• Termination (3)

• Example (1)

• Example (2)

Elimination

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

Now we must have

 $\exists x \Big[\bigwedge u_i <^{\mathsf{kb}} x \land \bigwedge x <^{\mathsf{kb}} v_j \land \varphi'(\bar{y}) \Big],$ i≤n i<m

where x appears none of u_i , v_j and φ' .

Guess a gap order completion, we rewrite it to

 $u_{i'} \prec_2^{\mathsf{kb}} v_{j'} \land \varphi'(\bar{y})$

 \wedge " $u_{i'}$ is the greatest of $\{u_i | i \leq m\}$ "

 \wedge " $v_{j'}$ is the smallest of $\{v_j \mid j \leq n\}$ ".

Introduction	Termination is subtle as some complexity measures increase.
Related Work	
Term Algebras	
Knuth-Bendix Order	
Quantifier Elimination	
Quantifier Elimination for	
Knuth-Bendix Order	
● Two Main Ideas	
 Solved Form 	
 Depth Reduction (1) 	
 Depth Reduction (2) 	
 Extensions 	
Extension	
Extension	
Extension	
 Counting Constraints 	
Extension	
● QE for KBO	
 Variable Selection 	
 Decomposition 	
 Simplification 	
 Elimination 	
 Termination (1) 	
 Termination (2) 	
 Termination (3) 	
Example (1)	

• Example (2)

Introduction
Related Work
Term Algebras
Knuth-Bendix Order
Quantifier Elimination
Quantifier Elimination for Knuth-Bendix Order
Two Main Ideas
Solved Form
Depth Reduction (1)
Depth Reduction (2)
Extensions
Extension
Extension
Extension
Counting Constraints
Extension

- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination

Termination (1)

- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

Termination is subtle as some complexity measures increase.
■ Depth reduction increases the depth of other variables.
For example, *x* ≠ *t* becomes

$$\bigvee_{1\leq i\leq k} \mathbf{S}_i^{\alpha}(t) \neq x_i \vee \neg \mathbf{IS}_{\alpha}(t).$$

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

Termination is subtle as some complexity measures increase.

Depth reduction increases the depth of other variables.
For example, $x \neq t$ becomes

$$\bigvee_{1 \le i \le k} \mathbf{S}_i^{\alpha}(t) \neq x_i \lor \neg \mathbf{IS}_{\alpha}(t).$$

Depth reduction introduces more existential quantifiers.
For example, $(\exists \bar{x}) \varphi(\bar{x}, \bar{y})$ becomes

$$\exists x_1 \dots \exists x_k \exists \bar{x} \left[\mathsf{Is}_{\alpha}(x) \land \bigwedge_{1 \leq i \leq k} \mathsf{s}_i^{\alpha}(x) = x_i \land \varphi(\bar{x}, \bar{y}) \right].$$

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Two Main Ideas

- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)

Termination (2)

- Termination (3)
- Example (1)
- Example (2)

Depth reduction introduces more order literals.
 For example, u <^w₅ v becomes

$$\bigvee_{n_1+n_2+n_3=5} u \prec_{n_1}^{\mathsf{pl}} \mathbf{1}_{(u^{\mathsf{w}})}^{\mathsf{w}} \prec_{n_2}^{\mathsf{w}} \mathbf{0}_{(v^{\mathsf{w}})}^{\mathsf{w}} \prec_{n_3}^{\mathsf{pl}} v.$$

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)

Termination (2)

- Termination (3)
- Example (1)
- Example (2)

Depth reduction introduces more order literals. For example, $u <_{5}^{w} v$ becomes

$$\bigvee_{n_1+n_2+n_3=5} \mathcal{U} \prec_{n_1}^{\mathsf{pl}} \mathbf{1}_{(u^{\mathsf{w}})}^{\mathsf{w}} \prec_{n_2}^{\mathsf{w}} \mathbf{0}_{(v^{\mathsf{w}})}^{\mathsf{w}} \prec_{n_3}^{\mathsf{pl}} v.$$

Depth reduction introduces more equalities.
For example, $x <^{l} t$ could produce

 $\operatorname{car}(x) = \operatorname{car}(t) \wedge \operatorname{cdr}(x) <^{\mathsf{kb}} \operatorname{cdr}(t).$

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

Depth reduction introduces more order literals. For example, $u \prec_5^w v$ becomes

$$\bigvee_{n_1+n_2+n_3=5} \mathcal{U} \prec_{n_1}^{\mathsf{pl}} \mathbf{1}_{(\mathcal{U}^{\mathsf{w}})}^{\mathsf{w}} \prec_{n_2}^{\mathsf{w}} \mathbf{0}_{(\mathcal{v}^{\mathsf{w}})}^{\mathsf{w}} \prec_{n_3}^{\mathsf{pl}} \mathcal{v}.$$

Depth reduction introduces more equalities.
For example, x <^I t could produce

 $\operatorname{car}(x) = \operatorname{car}(t) \wedge \operatorname{cdr}(x) <^{\mathsf{kb}} \operatorname{cdr}(t).$

Does it terminate???

Introduction
Related Work
Term Algebras
Knuth-Bendix Order
Quantifier Elimination
Quantifier Elimination for
Knuth-Bendix Order
• Two Main Ideas
• Solved Form

- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)

• Termination (3)

- Example (1)
- Example (2)

Real measure: # of open gap order literals (OGOL).

OGOL: a gap order relation between ordinary terms.

Introduction	C-
Related Work	
Term Algebras	
Knuth-Bendix Order	
Quantifier Elimination	G
Quantifier Elimination for	
Knuth-Bendix Order	
Two Main Ideas	
 Solved Form 	
Depth Reduction (1)	
 Depth Reduction (2) 	
 Extensions 	
Extension	
Extension	
Extension	
 Counting Constraints 	
Extension	
• QE for KBO	
 Variable Selection 	
 Decomposition 	
 Simplification 	
 Elimination 	
 Termination (1) 	
 Termination (2) 	
 Termination (3) 	
• Example (1)	
• Example (2)	

Real measure: # of open gap order literals (OGOL).

OGOL: a gap order relation between ordinary terms.

No transformation generates new OGOLs.

Introduction	ŝ
Related Work	
Term Algebras	
Knuth-Bendix Order	
Quantifier Elimination	ŝ
Quantifier Elimination for	
Knuth-Bendix Order	
• Two Main Ideas	
Solved Form	C
Depth Reduction (1)	
• Depth Reduction (2)	
• Extensions	
Extension	
Extension	
Extension	
 Counting Constraints 	
Extension	
• QE for KBO	
 Variable Selection 	
 Decomposition 	
 Simplification 	
 Elimination 	
Termination (1)	
• Termination (2)	
 Termination (3) 	
• Example (1)	
• Example (2)	

Real measure: # of open gap order literals (OGOL).

OGOL: a gap order relation between ordinary terms.

No transformation generates new OGOLs.

The final elimination step removes at least one OGOL.

Introduction	
Related Work	
Term Algebras	
Knuth-Bendix Order	
Oursetifier Flincingtion	
Quantifier Elimination	
Quantifier Elimination for Knuth-Bendix Order	
• Two Main Ideas	
 Solved Form 	ŝ
 Depth Reduction (1) Depth Reduction (2) 	
 Depth Reduction (2) Extensions 	_
Extensions Extension	
Extension	
Extension	
Counting Constraints	
Extension	
• QE for KBO	
Variable Selection	
Simplification	
Elimination	
• Termination (1)	
 Termination (2) 	
● Termination (3)	
• Example (1)	
Example (2)	

Real measure: # of open gap order literals (OGOL).

OGOL: a gap order relation between ordinary terms.

No transformation generates new OGOLs.

The final elimination step removes at least one OGOL.

Without OGOLs, the depths of terms strictly decrease!

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

- Knuth-Bendix Order Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)

● Example (1)

• Example (2)

Consider the KBO on LISP list structure parameterized with

 $W(cons) = W(nil) = 1 \& nil <^{\Sigma} cons.$

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

• Two Main Ideas

Solved Form

Depth Reduction (1)

Depth Reduction (2)

Extensions

Extension

Extension

Extension

Counting Constraints

Extension

• QE for KBO

Variable Selection

Decomposition

Simplification

Elimination

Termination (1)

Termination (2)

Termination (3)

• Example (1)

• Example (2)

• Consider the KBO on LISP list structure parameterized with W(cons) = W(nil) = 1 & nil $<^{\Sigma}$ cons.

Consider the formula

 $(\exists x) \left[\operatorname{car}(x) \prec_2^{\mathsf{l}} \operatorname{cdr}(\operatorname{cdr}(x)) \land \operatorname{cdr}(\operatorname{cdr}(\operatorname{car}(x))) \prec_3^{\mathsf{l}} y \right],$ where depth(x) = 3.

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

- Knuth-Bendix Order
- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)Example (2)

 $(\exists x) \left[\operatorname{car}(x) \prec_2^{\mathsf{I}} \operatorname{cdr}(\operatorname{cdr}(x)) \land \operatorname{cdr}(\operatorname{cdr}(\operatorname{car}(x))) \prec_3^{\mathsf{I}} y \right],$

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

• Two Main Ideas

Solved Form

• Depth Reduction (1)

Depth Reduction (2)

Extensions

Extension

Extension

Extension

Counting Constraints

Extension

• QE for KBO

Variable Selection

Decomposition

Simplification

Elimination

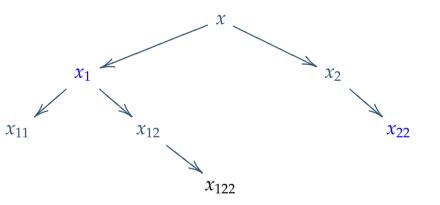
• Termination (1)

• Termination (2)

• Termination (3)

Example (1)Example (2)

 $(\exists x) \left[\operatorname{car}(x) \prec_2^{\mathsf{l}} \operatorname{cdr}(\operatorname{cdr}(x)) \land \operatorname{cdr}(\operatorname{cdr}(\operatorname{car}(x))) \prec_3^{\mathsf{l}} y \right],$



Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

Solved Form

• Depth Reduction (1)

Depth Reduction (2)

Extensions

Extension

Extension

Extension

Counting Constraints

Extension

• QE for KBO

Variable Selection

Decomposition

Simplification

Elimination

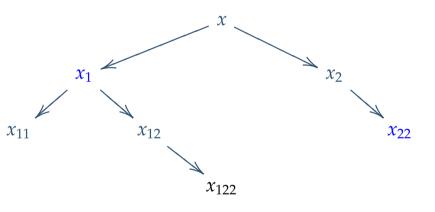
Termination (1)

Termination (2)

Termination (3)

Example (1)Example (2)

 $(\exists x) \left[\operatorname{car}(x) \prec_2^{\mathsf{I}} \operatorname{cdr}(\operatorname{cdr}(x)) \land \operatorname{cdr}(\operatorname{cdr}(\operatorname{car}(x))) \prec_3^{\mathsf{I}} y \right],$



 $x_1 : car(x),$ $x_2 : cdr(x),$ $x_{11} : car(car(x)),$ $x_{12} : cdr(car(x)),$ $x_{22} : cdr(cdr(x)),$ $x_{122} : cdr(cdr(car(x)))$

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

Solved Form

• Depth Reduction (1)

Depth Reduction (2)

Extensions

Extension

Extension

Extension

Counting Constraints

Extension

QE for KBO

Variable Selection

Decomposition

Simplification

Elimination

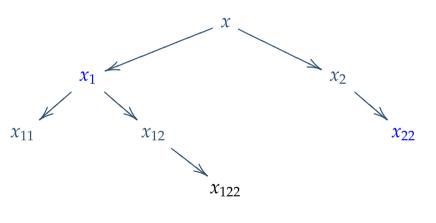
Termination (1)

Termination (2)

• Termination (3)

Example (1)Example (2)

 $(\exists x) \left[\operatorname{car}(x) \prec_2^{\mathsf{I}} \operatorname{cdr}(\operatorname{cdr}(x)) \land \operatorname{cdr}(\operatorname{cdr}(\operatorname{car}(x))) \prec_3^{\mathsf{I}} y \right],$



Solution: x = ?

 $x_1 : car(x),$ $x_2 : cdr(x),$ $x_{11} : car(car(x)),$ $x_{12} : cdr(car(x)),$ $x_{22} : cdr(cdr(x)),$ $x_{122} : cdr(cdr(car(x)))$

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

Solved Form

• Depth Reduction (1)

Depth Reduction (2)

Extensions

Extension

Extension

Extension

Counting Constraints

Extension

QE for KBO

Variable Selection

Decomposition

Simplification

Elimination

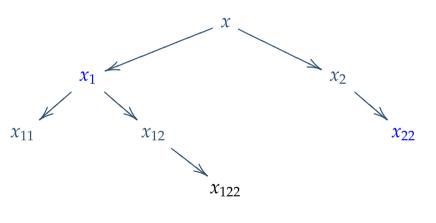
Termination (1)

Termination (2)

• Termination (3)

Example (1)Example (2)

 $(\exists x) \left[\operatorname{car}(x) \prec_2^{\mathsf{I}} \operatorname{cdr}(\operatorname{cdr}(x)) \land \operatorname{cdr}(\operatorname{cdr}(\operatorname{car}(x))) \prec_3^{\mathsf{I}} y \right],$



Solution: x = ?

 $x_1 : car(x),$ $x_2 : cdr(x),$ $x_{11} : car(car(x)),$ $x_{12} : cdr(car(x)),$ $x_{22} : cdr(cdr(x)),$ $x_{122} : cdr(cdr(car(x)))$

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

Select variable x.

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

- Knuth-Bendix Order
- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

Select variable x.

• Decompose x in terms of car(x) and cdr(x). We have

$$(\exists x \exists x_1 \exists x_2) \left[\operatorname{car}(x) = x_1 \land \operatorname{cdr}(x) = x_2 \\ \land \operatorname{car}(x) \prec_2^{\mathsf{l}} \operatorname{cdr}(\operatorname{cdr}(x)) \land \operatorname{cdr}(\operatorname{cdr}(\operatorname{car}(x))) \prec_3^{\mathsf{l}} y \right].$$

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

Select variable x.

• Decompose x in terms of car(x) and cdr(x). We have

$$\exists x \exists x_1 \exists x_2) \Big[\operatorname{car}(x) = x_1 \wedge \operatorname{cdr}(x) = x_2 \\ \wedge \operatorname{car}(x) \prec_2^{\mathsf{l}} \operatorname{cdr}(\operatorname{cdr}(x)) \wedge \operatorname{cdr}(\operatorname{cdr}(\operatorname{car}(x))) \prec_3^{\mathsf{l}} y \Big].$$

Simplifi cation.

 $(\exists x_1 \exists x_2) \Big[x_1 \prec_2^{\mathsf{I}} \mathsf{cdr}(x_2) \land \mathsf{cdr}(\mathsf{cdr}(x_1)) \prec_3^{\mathsf{I}} y \Big],$ where $depth(x_1) = 2$ and $depth(x_2) = 1,$

Continue with

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

- Knuth-Bendix Order
- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

 $(\exists x_1 \exists x_2) \left[x_1 \prec_2^{\mathsf{I}} \mathsf{cdr}(x_2) \land \mathsf{cdr}(\mathsf{cdr}(x_1)) \prec_3^{\mathsf{I}} y \right].$

Continue with

uction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

 $(\exists x_1 \exists x_2) \left[x_1 \prec_2^{\mathsf{I}} \mathsf{cdr}(x_2) \land \mathsf{cdr}(\mathsf{cdr}(x_1)) \prec_3^{\mathsf{I}} y \right].$

• Select variable x_1 .

Introd	luction
muou	ucuon

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

Continue with

```
(\exists x_1 \exists x_2) \Big[ x_1 \prec_2^{\mathsf{I}} \mathsf{cdr}(x_2) \land \mathsf{cdr}(\mathsf{cdr}(x_1)) \prec_3^{\mathsf{I}} y \Big].
```

• Select variable x_1 .

• Decompose x_1 . Replace $x_1 \prec_2^{\mathsf{I}} \mathsf{cdr}(x_2)$ by

 $\operatorname{car}(x_1) = \operatorname{car}(\operatorname{cdr}(x_2)) \wedge \operatorname{cdr}(x_1) \prec_2^{\mathsf{I}} \operatorname{cdr}(\operatorname{cdr}(x_2)).$

Continue with

Introd	luotion
IIIIIUU	luction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

 $(\exists x_1 \exists x_2) \Big[x_1 \prec_2^{\mathsf{I}} \mathsf{cdr}(x_2) \land \mathsf{cdr}(\mathsf{cdr}(x_1)) \prec_3^{\mathsf{I}} y \Big].$

■ Select variable *x*₁.

• Decompose x_1 . Replace $x_1 \prec_2^{\mathsf{I}} \mathsf{cdr}(x_2)$ by

 $\operatorname{car}(x_1) = \operatorname{car}(\operatorname{cdr}(x_2)) \land \operatorname{cdr}(x_1) \prec_2^{\mathsf{l}} \operatorname{cdr}(\operatorname{cdr}(x_2)).$

Simplifi cation.

$$(\exists x_2 \exists x_{11} \exists x_{12}) \left[x_{11} = \operatorname{car}(\operatorname{cdr}(x_2)) \land x_{12} \prec_2^{\mathsf{I}} \operatorname{cdr}(\operatorname{cdr}(x_2)) \land \operatorname{cdr}(x_{12}) \prec_3^{\mathsf{I}} y \right],$$

Continue with

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

 $(\exists x_2 \exists x_{11} \exists x_{12}) \left[\begin{array}{c} x_{11} = \operatorname{car}(\operatorname{cdr}(x_2)) \land x_{12} \prec_2^{\mathsf{l}} \operatorname{cdr}(\operatorname{cdr}(x_2)) \\ \land \operatorname{cdr}(x_{12}) \prec_3^{\mathsf{l}} y \end{array} \right],$

Continue with

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

• Two Main Ideas

- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

$(\exists x_2 \exists x_{11} \exists x_{12}) \left[\begin{array}{c} x_{11} = \mathsf{car}(\mathsf{cdr}(x_2)) \land x_{12} \prec_2^{\mathsf{I}} \mathsf{cdr}(\mathsf{cdr}(x_2)) \\ \land \ \mathsf{cdr}(x_{12}) \prec_3^{\mathsf{I}} y \end{array} \right],$

• Elimination. Since depth $(x_{11}) = 0$, we have

$$(\exists x_2 \exists x_{12}) \left[x_{12} \prec_2^{\mathsf{I}} \mathsf{cdr}(\mathsf{cdr}(x_2)) \land \mathsf{cdr}(x_{12}) \prec_3^{\mathsf{I}} y \right],$$

Continue with

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

- Knuth-Bendix Order
- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

 $(\exists x_2 \exists x_{12}) \left[x_{12} \prec_2^{\mathsf{I}} \mathsf{cdr}(\mathsf{cdr}(x_2)) \land \mathsf{cdr}(x_{12}) \prec_3^{\mathsf{I}} y \right].$

Continue with

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

 $(\exists x_2 \exists x_{12}) \left[x_{12} \prec_2^{\mathsf{I}} \mathsf{cdr}(\mathsf{cdr}(x_2)) \land \mathsf{cdr}(x_{12}) \prec_3^{\mathsf{I}} y \right].$

• Select variable x_{12} .

Continue with

Introd	luction
muou	ucuon

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

 $(\exists x_2 \exists x_{12}) \begin{bmatrix} x_{12} < \\ 2 \end{bmatrix} cdr(cdr(x_2))$

$$_{2})\left[x_{12} \prec_{2}^{\mathsf{I}} \mathsf{cdr}(\mathsf{cdr}(x_{2})) \land \mathsf{cdr}(x_{12}) \prec_{3}^{\mathsf{I}} y \right].$$

• Select variable x_{12} .

• Decompose x_{12} . Replace $x_{12} \prec_2^{\mathsf{I}} \mathsf{cdr}(\mathsf{cdr}(x_2))$ by

 $x_{121} = car(cdr(cdr(x_2))) \land x_{122} \prec_2^{\mathsf{I}} cdr(cdr(x_2)).$

Continue with

Introd	luction
muou	ucuon

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Two Main Ideas

- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

 $(\exists x_2 \exists x_{12}) \left[x_{12} \prec_2^{\mathsf{I}} \mathsf{cdr}(\mathsf{cdr}(x_2)) \land \mathsf{cdr}(x_{12}) \prec_3^{\mathsf{I}} y \right].$

• Select variable x_{12} .

• Decompose x_{12} . Replace $x_{12} \prec_2^{\mathsf{I}} \mathsf{cdr}(\mathsf{cdr}(x_2))$ by

 $x_{121} = car(cdr(cdr(x_2))) \land x_{122} \prec_2^{l} cdr(cdr(x_2)).$

Simplifi cation.

 $(\exists x_2 \exists x_{121} \exists x_{122}) \left[x_{121} = \operatorname{car}(\operatorname{cdr}(\operatorname{cdr}(x_2))) \land x_{122} \prec_2^{\mathsf{I}} \operatorname{cdr}(\operatorname{cdr}(x_2)) \land x_{122} \prec_3^{\mathsf{I}} y \right],$

Continue with

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

$(\exists x_2 \exists x_{121} \exists x_{122}) \left[x_{121} = \operatorname{car}(\operatorname{cdr}(\operatorname{cdr}(x_2))) \land x_{122} \prec_2^{\mathsf{I}} \operatorname{cdr}(\operatorname{cdr}(x_2)) \land x_{122} \prec_3^{\mathsf{I}} y \right],$

Continue with

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

• Two Main Ideas

- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

$(\exists x_2 \exists x_{121} \exists x_{122}) \left[x_{121} = \operatorname{car}(\operatorname{cdr}(\operatorname{cdr}(x_2))) \land x_{122} \prec_2^{\mathsf{I}} \operatorname{cdr}(\operatorname{cdr}(x_2)) \land x_{122} \prec_3^{\mathsf{I}} y \right],$

Elimination. Since depth $(x_{121}) = 0$, we have

 $(\exists x_2 \exists x_{122}) \left[x_{122} \prec_2^{\mathsf{I}} \mathsf{cdr}(\mathsf{cdr}(x_2)) \land x_{122} \prec_3^{\mathsf{I}} y \right].$

Continue with

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

- Knuth-Bendix Order
- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

 $(\exists x_2 \exists x_{122}) \left[x_{122} \prec_2^{\mathsf{I}} \mathsf{cdr}(\mathsf{cdr}(x_2)) \land x_{122} \prec_3^{\mathsf{I}} y \right].$

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

Continue with

 $(\exists x_2 \exists x_{122}) \left[x_{122} \prec_2^{\mathsf{I}} \mathsf{cdr}(\mathsf{cdr}(x_2)) \land x_{122} \prec_3^{\mathsf{I}} y \right].$

Elimination.

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

Continue with

 $(\exists x_2 \exists x_{122}) \left[x_{122} \prec_2^{\mathsf{I}} \mathsf{cdr}(\mathsf{cdr}(x_2)) \land x_{122} \prec_3^{\mathsf{I}} y \right].$

Elimination.

Take a gap order completion

$$x_{122} \prec_2^{\mathsf{I}} \mathsf{cdr}(\mathsf{cdr}(x_2)) \prec_1^{\mathsf{I}} y$$

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

 $(\exists x_2 \exists x_{122}) \left[x_{122} \prec_2^{\mathsf{I}} \mathsf{cdr}(\mathsf{cdr}(x_2)) \land x_{122} \prec_3^{\mathsf{I}} y \right].$

Elimination.

Continue with

Take a gap order completion

$$x_{122} \prec_2^{\mathsf{I}} \mathsf{cdr}(\mathsf{cdr}(x_2)) \prec_1^{\mathsf{I}} y$$

We have

 $(\exists x_2 \exists x_{122}) \left[x_{122} \prec_2^{\mathsf{I}} \mathsf{cdr}(\mathsf{cdr}(x_2)) \prec_1^{\mathsf{I}} y \right],$

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

Continue with

$$(\exists x_2 \exists x_{122}) \left[x_{122} \prec_2^{\mathsf{I}} \mathsf{cdr}(\mathsf{cdr}(x_2)) \land x_{122} \prec_3^{\mathsf{I}} y \right].$$

Elimination.

Take a gap order completion

$$x_{122} \prec_2^{\mathsf{I}} \mathsf{cdr}(\mathsf{cdr}(x_2)) \prec_1^{\mathsf{I}} y$$

We have

$$(\exists x_2 \exists x_{122}) \left[x_{122} \prec_2^{\mathsf{I}} \mathsf{cdr}(\mathsf{cdr}(x_2)) \prec_1^{\mathsf{I}} y \right],$$

which simplifies to

$$(\exists x_2) \left[\mathsf{O}^{\mathsf{w}}_{((\mathsf{cdr}(\mathsf{cdr}(x_2)))^{\mathsf{w}})} \prec_2^{\mathsf{I}} \mathsf{cdr}(\mathsf{cdr}(x_2)) \prec_1^{\mathsf{I}} y \right]$$

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)Example (2)

Continue with

$$(\exists x_2 \exists x_{122}) \left[x_{122} \prec_2^{\mathsf{I}} \mathsf{cdr}(\mathsf{cdr}(x_2)) \land x_{122} \prec_3^{\mathsf{I}} y \right].$$

Elimination.

Take a gap order completion

$$x_{122} \prec_2^{\mathsf{I}} \mathsf{cdr}(\mathsf{cdr}(x_2)) \prec_1^{\mathsf{I}} y$$

We have

$$(\exists x_2 \exists x_{122}) \left[x_{122} \prec_2^{\mathsf{I}} \mathsf{cdr}(\mathsf{cdr}(x_2)) \prec_1^{\mathsf{I}} y \right],$$

which simplifies to

$$(\exists x_2) \left[\mathsf{O}^{\mathsf{w}}_{((\mathsf{cdr}(\mathsf{cdr}(x_2)))^{\mathsf{w}})} \prec_2^{\mathsf{l}} \mathsf{cdr}(\mathsf{cdr}(x_2)) \prec_1^{\mathsf{l}} y \right]$$

The number of OGOLs reduced to 1!

Continue with

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

- Knuth-Bendix Order
- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

 $(\exists x_2) \left[0^{\mathsf{w}}_{((\mathsf{cdr}(\mathsf{cdr}(x_2)))^{\mathsf{w}})} \prec_2^{\mathsf{l}} \mathsf{cdr}(\mathsf{cdr}(x_2)) \prec_1^{\mathsf{l}} y \right].$

Continue with

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

$(\exists x_2) \left[0^{\mathsf{w}}_{((\mathsf{cdr}(\mathsf{cdr}(x_2)))^{\mathsf{w}})} \prec_2^{\mathsf{l}} \mathsf{cdr}(\mathsf{cdr}(x_2)) \prec_1^{\mathsf{l}} y \right].$ Depth Reduction. Repeating twice the DEPTH-REDUCTION

subprocedure, we have

$$(\exists x_{222}) \left[0^{\mathsf{w}}_{(x^{\mathsf{w}}_{222})} \prec^{\mathsf{l}}_{2} x_{222} \prec^{\mathsf{l}}_{1} y \right].$$

Continue with

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

- Knuth-Bendix Order
- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

 $(\exists x_{222}) \left[0^{\mathsf{w}}_{(x^{\mathsf{w}}_{222})} \prec^{\mathsf{l}}_{2} x_{222} \prec^{\mathsf{l}}_{1} y \right].$

Continue with

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

 $(\exists x_{222}) \left[0^{\mathsf{w}}_{(x^{\mathsf{w}}_{222})} \prec_{2}^{\mathsf{l}} x_{222} \prec_{1}^{\mathsf{l}} y \right].$

Reduce term quantifi ers to integer quantifi ers.

$$(\exists z) \left[\mathsf{0}_{(z)}^{\mathsf{w}} \prec_{3}^{\mathsf{l}} y \land \mathsf{Tree}^{\mathsf{cons}}(z) \right].$$

Continue with

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

 $(\exists x_{222}) \left[\begin{array}{c} \mathbf{0}_{(x_{222}^{\mathsf{w}})}^{\mathsf{w}} \prec_{2}^{\mathsf{l}} x_{222} \prec_{1}^{\mathsf{l}} y \end{array} \right].$

Reduce term quantifi ers to integer quantifi ers.

$$(\exists z) \left[0_{(z)}^{\mathsf{w}} \prec_{3}^{\mathsf{l}} y \wedge \mathsf{Tree}^{\mathsf{cons}}(z) \right].$$

Eliminate integer quantifi ers.

 $0^{\mathsf{w}}_{(y^{\mathsf{w}})} \prec^{\mathsf{l}}_{3} y \wedge \operatorname{Tree}^{\operatorname{cons}}(y^{\mathsf{w}}).$

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

Continue with

$$(\exists x_{222}) \left[0^{\mathsf{w}}_{(x^{\mathsf{w}}_{222})} \prec^{\mathsf{l}}_{2} x_{222} \prec^{\mathsf{l}}_{1} y \right].$$

■ Reduce term quantifiers to integer quantifiers. $(\exists z) \left[0_{(z)}^{w} \prec_{3}^{l} y \land \text{Tree}^{\text{cons}}(z) \right].$

Eliminate integer quantifi ers.

$$0^{\mathsf{w}}_{(y^{\mathsf{w}})} \prec^{\mathsf{l}}_{3} y \wedge \mathsf{Tree}^{\mathsf{cons}}(y^{\mathsf{w}}).$$

• As
$$0_{(y^w)}^w \prec_3^l y$$
 implies Tree^{cons} (y^w) , we have

$$\mathsf{O}^{\mathsf{w}}_{(y^{\mathsf{w}})} \prec^{\mathsf{l}}_{3} y.$$

In summary,

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

Two Main Ideas

Solved Form

Depth Reduction (1)

• Depth Reduction (2)

Extensions

Extension

Extension

Extension

Counting Constraints

Extension

• QE for KBO

Variable Selection

Decomposition

Simplification

Elimination

• Termination (1)

Termination (2)

• Termination (3)

• Example (1)

• Example (2)

 $\begin{array}{l} \mathbf{0}_{(y^{w})}^{w} <_{3}^{\mathsf{l}} y \implies \\ (\exists x) \left[\operatorname{car}(x) <_{2}^{\mathsf{l}} \operatorname{cdr}(\operatorname{cdr}(x)) \land \operatorname{cdr}(\operatorname{cdr}(\operatorname{car}(x))) <_{3}^{\mathsf{l}} y \right], \end{array}$

In summary,

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

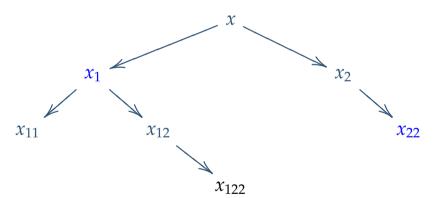
Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

- Two Main Ideas
- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

 $0^{\mathsf{w}}_{(y^{\mathsf{w}})} \prec^{\mathsf{l}}_{3} y \implies (\exists x) \left[\operatorname{car}(x) \prec^{\mathsf{l}}_{2} \operatorname{cdr}(\operatorname{cdr}(x)) \land \operatorname{cdr}(\operatorname{cdr}(\operatorname{car}(x))) \prec^{\mathsf{l}}_{3} y \right],$



In summary,

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

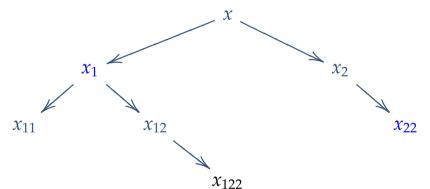
Quantifier Elimination for

Knuth-Bendix Order

Two Main Ideas

- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

 $0^{\mathsf{w}}_{(y^{\mathsf{w}})} \prec^{\mathsf{l}}_{3} y \implies (\exists x) \left[\operatorname{car}(x) \prec^{\mathsf{l}}_{2} \operatorname{cdr}(\operatorname{cdr}(x)) \land \operatorname{cdr}(\operatorname{cdr}(\operatorname{car}(x))) \prec^{\mathsf{l}}_{3} y \right],$



 $x_1 : car(x),$ $x_2 : cdr(x),$ $x_{11} : car(car(x)),$ $x_{12} : cdr(car(x)),$ $x_{22} : cdr(cdr(x)),$ $x_{122} : cdr(cdr(car(x)))$

In summary,

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

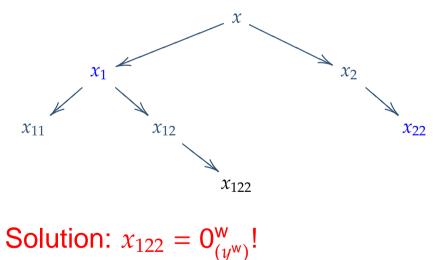
Quantifier Elimination for

Knuth-Bendix Order

Two Main Ideas

- Solved Form
- Depth Reduction (1)
- Depth Reduction (2)
- Extensions
- Extension
- Extension
- Extension
- Counting Constraints
- Extension
- QE for KBO
- Variable Selection
- Decomposition
- Simplification
- Elimination
- Termination (1)
- Termination (2)
- Termination (3)
- Example (1)
- Example (2)

 $0^{\mathsf{w}}_{(y^{\mathsf{w}})} \prec^{\mathsf{l}}_{3} y \implies (\exists x) \left[\operatorname{car}(x) \prec^{\mathsf{l}}_{2} \operatorname{cdr}(\operatorname{cdr}(x)) \land \operatorname{cdr}(\operatorname{cdr}(\operatorname{car}(x))) \prec^{\mathsf{l}}_{3} y \right],$



 $x_1 : car(x),$ $x_2 : cdr(x),$ $x_{11} : car(car(x)),$ $x_{12} : cdr(car(x)),$ $x_{22} : cdr(cdr(x)),$ $x_{122} : cdr(cdr(x)))$

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Future Work

Thank You!

Techinical Catches

Future Work

Future Work

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Future Work

Thank You!

Techinical Catches

Smallest extensions for quantifi er elimination.

More expressive power induces higher complexity.

Future Work

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Future Work

Thank You!

Techinical Catches

Smallest extensions for quantifi er elimination.

More expressive power induces higher complexity.

Block-wise quantifi er elimination.

Small quantifi er alternations in real life.

Future Work

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Future Work

Thank You!

Techinical Catches

Smallest extensions for quantifi er elimination.

More expressive power induces higher complexity.

Block-wise quantifi er elimination.

Small quantifi er alternations in real life.

Decidability of KBO on term domain with variables.

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Thank You!

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

- Techinical Catches
- Elimination of Equalities
- Simplification of Selector Terms
- Elimination of Negations

Techinical Catches

Techinical Catches

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Techinical Catches

- Elimination of Equalities
- Simplification of Selector Terms
- Elimination of Negations

Elimination of Equalities.

 $\exists x \left[x = \mathbf{0}_{((\operatorname{car}(x))^{w})}^{\mathsf{w}} \land \operatorname{car}(x) \prec_{4}^{\mathsf{p}} \operatorname{cdr}(x) \right].$

Techinical Catches

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Techinical Catches

Elimination of Equalities

 Simplification of Selector Terms

• Elimination of Negations

Elimination of Equalities.

$$\exists x \left[x = \mathbf{0}_{((\operatorname{car}(x))^{w})}^{\mathsf{w}} \land \operatorname{car}(x) \prec_{4}^{\mathsf{p}} \operatorname{cdr}(x) \right].$$

Simplifi cation of Selector Terms.

 $\operatorname{car}(0^{\mathsf{w}}_{((\operatorname{car}(x))^{\mathsf{w}})}).$

Techinical Catches

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Techinical Catches

- Elimination of Equalities
- Simplification of Selector Terms
- Elimination of Negations

Elimination of Equalities.

$$\exists x \left[x = \mathbf{0}_{((\operatorname{car}(x))^{w})}^{\mathsf{w}} \land \operatorname{car}(x) \prec_{4}^{\mathsf{p}} \operatorname{cdr}(x) \right].$$

Simplifi cation of Selector Terms.

 $\operatorname{car}(0^{\mathsf{w}}_{((\operatorname{car}(x))^{\mathsf{w}})}).$

Elimination of Negations.

$$\neg (\operatorname{car}(x) \prec^{\mathsf{w}}_{3} \operatorname{cdr}(x)).$$

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Techinical Catches

Elimination of Equalities

 Simplification of Selector Terms

• Elimination of Negations

Continue with

$$\exists x \left[x = \mathbf{0}_{((\operatorname{car}(x))^{w})}^{w} \land \operatorname{car}(x) \prec_{4}^{\mathsf{p}} \operatorname{cdr}(x) \right].$$

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Techinical Catches

Elimination of Equalities

 Simplification of Selector Terms

• Elimination of Negations

Continue with

$$\exists x \left[x = \mathbf{0}_{((\operatorname{car}(x))^{\mathsf{w}})}^{\mathsf{w}} \land \operatorname{car}(x) \prec_{4}^{\mathsf{p}} \operatorname{cdr}(x) \right].$$

Substitution.

$$\exists x \left[x = \mathsf{O}^{\mathsf{w}}_{((\operatorname{car}(x))^{\mathsf{w}})} \land \operatorname{car}(\mathsf{O}^{\mathsf{w}}_{((\operatorname{car}(x))^{\mathsf{w}})}) \prec_{4}^{\mathsf{p}} \operatorname{cdr}(\mathsf{O}^{\mathsf{w}}_{((\operatorname{car}(x))^{\mathsf{w}})}) \right].$$

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Techinical Catches

Elimination of Equalities

 Simplification of Selector Terms

• Elimination of Negations

Continue with

$$\exists x \left[x = \mathbf{0}_{((\operatorname{car}(x))^{w})}^{w} \land \operatorname{car}(x) \prec_{4}^{\mathsf{p}} \operatorname{cdr}(x) \right].$$

Substitution.

$$\exists x \left[x = \mathsf{O}^{\mathsf{w}}_{((\mathsf{car}(x))^{\mathsf{w}})} \land \mathsf{car}(\mathsf{O}^{\mathsf{w}}_{((\mathsf{car}(x))^{\mathsf{w}})}) \prec_{4}^{\mathsf{p}} \mathsf{cdr}(\mathsf{O}^{\mathsf{w}}_{((\mathsf{car}(x))^{\mathsf{w}})}) \right].$$

Reduction to Integer Quantifi ers.

 $\exists (\operatorname{car}(x))^{\mathsf{w}} \Big[\operatorname{Tree}((\operatorname{car}(x))^{\mathsf{w}}) \land \operatorname{car}(\mathsf{O}^{\mathsf{w}}_{((\operatorname{car}(x))^{\mathsf{w}})}) \prec_{4}^{\mathsf{p}} \operatorname{cdr}(\mathsf{O}^{\mathsf{w}}_{((\operatorname{car}(x))^{\mathsf{w}})}) \Big].$

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Techinical Catches

Elimination of Equalities

 Simplification of Selector Terms

• Elimination of Negations

Continue with

$$\exists x \left[x = \mathbf{0}_{((\operatorname{car}(x))^{\mathsf{w}})}^{\mathsf{w}} \land \operatorname{car}(x) \prec_{4}^{\mathsf{p}} \operatorname{cdr}(x) \right].$$

Substitution.

$$\exists x \left[x = \mathsf{O}^{\mathsf{w}}_{((\mathsf{car}(x))^{\mathsf{w}})} \land \mathsf{car}(\mathsf{O}^{\mathsf{w}}_{((\mathsf{car}(x))^{\mathsf{w}})}) \prec_{4}^{\mathsf{p}} \mathsf{cdr}(\mathsf{O}^{\mathsf{w}}_{((\mathsf{car}(x))^{\mathsf{w}})}) \right].$$

Reduction to Integer Quantifiers.

 $\exists (\operatorname{car}(x))^{\mathsf{w}} \Big[\operatorname{Tree}((\operatorname{car}(x))^{\mathsf{w}}) \land \operatorname{car}(\mathsf{0}^{\mathsf{w}}_{((\operatorname{car}(x))^{\mathsf{w}})}) \prec_{4}^{\mathsf{p}} \operatorname{cdr}(\mathsf{0}^{\mathsf{w}}_{((\operatorname{car}(x))^{\mathsf{w}})}) \Big].$

Renaming.

 $\exists z \left[\operatorname{Tree}(z) \land \operatorname{car}(0^{\mathsf{w}}_{(z)}) \prec^{\mathsf{p}}_{4} \operatorname{cdr}(0^{\mathsf{w}}_{(z)}) \right].$

Simplification of Selector Terms

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Techinical Catches

Elimination of Equalities

Simplification of Selector

Terms

Elimination of Negations

 $car(0^{w}_{((car(x))^{w})})$

Simplification of Selector Terms

	0			

Related Work

Term Algebras

Knuth-Bendix Order

simplifi es to

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Techinical Catches

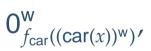
Elimination of Equalities

 Simplification of Selector Terms

Ier

Elimination of Negations

 $car(0^{w}_{((car(x))^{w})})$



Simplification of Selector Terms

Introduction	
Related Work	
Term Algebras	
Knuth-Bendix Order	

simplifi es to

where

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Techinical Catches

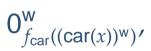
Elimination of Equalities

Simplification of Selector

Terms

Elimination of Negations

 $car(0_{((car(x))^w)}^w)$



 $f_{car}(\cdot)$

is an integer function from Presburger arithmetic.

Elimination of Negations

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Techinical Catches

• Elimination of Equalities

Simplification of Selector

Terms ● Elimination of Negations

 $\neg (\operatorname{car}(x) \prec_3^{\mathsf{w}} \operatorname{cdr}(x)).$

Elimination of Negations

Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for Knuth-Bendix Order

Future Work

Thank You!

Techinical Catches

Techinical Catches

Elimination of Equalities

 Simplification of Selector Terms

Elimination of Negations

$$\neg (\operatorname{car}(x) \prec_3^{\mathsf{w}} \operatorname{cdr}(x)).$$

 $\operatorname{cdr}(x) <^{\mathsf{w}} \operatorname{car}(x) \lor (\operatorname{cdr}(x))^{\mathsf{w}} = (\operatorname{car}(x))^{\mathsf{w}} \lor$ $\operatorname{car}(x) \leq_{1}^{\mathsf{w}} \operatorname{cdr}(x) \lor \operatorname{car}(x) \leq_{2}^{\mathsf{w}} \operatorname{cdr}(x).$

- [Com90] Hubert Comon. Solving symbolic ordering constraints. *International Journal of Fundations of Computer Science*, 1(4):387– 411, 1990.
- [CT97] Hubert Comon and Ralf Treinen. The first-order theory of lexicographic paht orderings is undecidable. *Theoretical Computer Science*, 176(1-2):67–87, 1997.
- [JO91] Jean-Pierre Jouannaud and Mitsuhiro Okada. Satisfiability of systems of ordinal notation with the subterm property is decidable. In *18th International Colloquium on Automata, Languages and Programming,* volume 510 of *LNCS*, pages 455–468. Springer-Verlag, 1991.
- [KV00] Konstantin Korovin and Andrei Voronkov. A decision procedure for the existential theory of term algebras with the Knuth-Bendix ordering. In *Proc. 15th IEEE Symp. Logic in Comp. Sci.*, pages 291 – 302, 2000.
- [KV01] Konstantin Korovin and Andrei Voronkov. Knuth-Bendix constraint

solving is NP-complete. In *Proceedings of 28th International Colloquium on Automata, Languages and Programming (ICALP),* volume 2076 of *Lecture Notes in Computer Science,* pages 979–992. Springer-Verlag, 2001.

- [KV02] Konstantin Korovin and Andrei Voronkov. The decidability of the first-order theory of the Knuth-Bendix order in the case of unary signatures. In In Proceedings of the 22th Conference on Foundations of Software Technology and Theoretical Computer Science, (FSTTCS'02), volume 2556 of Lecture Notes in Computer Science, pages 230–240. Springer-Verlag, 2002.
- [Nie93] Robert Nieuwenhuis. Simple lpo constraint solving methods. *Information Processing Letters*, 47(2):65–69, 1993.
- [NR00] Paliath Narendran and Michael Rusinowitch. The theory of total unary rpo is decdidable. In *CL 2000*, volume 1861

of *Lecture Notes in Artificial Intelligence*, pages 660–672. Springer-Verlag, 2000.

- [NRV99] Paliath Narendran, Michael Rusinowitch, and Rakesh M. Verma. Rpo constraint solving is in np. In Proceedings of the 12th International Workshop on Computer Science Logic (CSL 98), volume 1584 of LNCS, pages 385 – 398. Springer-Verlag, 1999.
- [Tre92] Ralf Treinen. A new method for undecidability proofs of first order theories. *Journal of Symbolic Computation*, 14:437– 457, 1992.
- [ZSM04a] Ting Zhang, Henny Sipma, and Zohar Manna. Decision procedures for recursive data structures with integer constraints, 2004. To appear in the Proceedings of the 2nd International Joint Conference on Automated Reasoning.
- [ZSM04b] Ting Zhang, Henny Sipma, and Zohar Manna. Term algebras with length function and bounded quantifier alternation,

2004. To appear in the Proceedings of the 17th International Conference on Theorem Proving in Higher Order Logics.