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Our approach: Th(KBO) → Th(PA)

■ Reduce term constraints to integer constraints. [ZSM04a]

■ Reduce term quantifiers to integer quantifiers. [ZSM04b]

☞ Integers rule!
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Term Algebras

A term algebra ATA : 〈TA;C,A,S,T〉 consists of

1. TA: The term domain.

2. C: A finite set of constructors: α, β, γ, . . . .

3. A : A finite set of constants: a, b, c, . . .. RequireA ⊆ C.

4. S: A finite set of selectors. α = (sα1 , . . . , s
α
k ).

5. T : A finite set of testers. Isα for α ∈ C.

☞ TA is generated exclusively using C.

☞ Each element of TA is uniquely generated.
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3. A : A finite set of constants: a, b, c, . . .. RequireA ⊆ C.

4. S: A finite set of selectors. α = (sα1 , . . . , s
α
k ).

5. T : A finite set of testers. Isα for α ∈ C.

☞ TA is generated exclusively using C.

☞ Each element of TA is uniquely generated.
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Example: LISP lists

■ Signature:

〈list; {cons, nil}; {nil}; {car, cdr}; {Isnil, Iscons}〉

■ Axioms:

Isnil(x)↔ ¬Iscons(x),

x = car(cons(x, y)),

y = cdr(cons(x, y)),

Isnil(x)↔ {car, cdr}+(x) = x,
Iscons(x)↔ cons(car(x), cdr(x)) = x.
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Selector Language and Notations

We study KBO using selector language.

■ For L = s1, . . . , sn, Lx stands for

s1(. . . (sn(x) . . .)).

|L| is called the depth of x in Lx.

■ depthϕ(x) : the maximum depth of x in ϕ.
■ Formulas are type-complete and selector terms are proper.

For example,
car(x) , cdr(x)

should be understood as

car(x) , cdr(x) ∧ Iscons(x).
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Knuth-Bendix Order
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Knuth-Bendix Order (1)

A Knuth-Bendix order (KBO) ≺kb is parametrically defined with

■ W : TA→N : a weight function satisfying

W(α(t1, . . . , tk)) =W(α) +
k
∑

i=1

W(ti).

■ ≺Σ: a linear (precedence) order on C such that

α1 �Σ α2 �Σ . . . �Σ α|C|.
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Knuth-Bendix Order (2)

For u, v ∈ TA, u ≺kb v if one of the following holds:

■ W(u) <W(v).

■ W(u) =W(v) and type(u) ≺Σ type(v).

■ W(u) =W(v), u ≡ α(u1, . . . , uk), v ≡ α(v1, . . . , vk), and

∃i
[

1 ≤ i ≤ k ∧ ui ≺kb vi ∧ ∀ j(1 ≤ j < i→ u j = v j)
]

.
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Quantifier Elimination
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Quantifier Elimination

■ Suffices to eliminate ∃-quantifiers fromprimitive formulas

∃x̄(A1(x̄) ∧ . . . ∧ An(x̄)),

where Ai(x̄) (1 ≤ i ≤ n) are literals.

■ Suffices to assume Ai . x = t if x < t, because

∃x(x = t ∧ ϕ(x, ȳ))↔ ϕ(t, ȳ).
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Quantifier Elimination for Knuth-Bendix
Order
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Two Main Ideas

■ Solved Form.

Eliminating ∃x from (∃x)ϕ(x, ȳ) is straightforward once

ϕ(x, ȳ) is solved in x.

■ Depth Reduction.

Depth reduction is to obtain solve forms as

ϕ(x, ȳ) is solved in x iff depthϕ(x) = 0.

http://step-cs.stanford.edu/


Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

● Two Main Ideas

● Solved Form

● Depth Reduction (1)

● Depth Reduction (2)

● Extensions

● Extension

● Extension

● Extension

● Counting Constraints

● Extension

● QE for KBO

● Variable Selection

● Decomposition

● Simplification

● Elimination

● Termination (1)

● Termination (2)

● Termination (3)

● Example (1)

● Example (2)

● Example (3)

● Example (4)

● Example (5)

● Example (6)

● Example (7)

● Example (8)

● Example (9)

● Example (10)

● Example (11)

Future Work

Thank You!

Techinical Catches

STeP Group, August 1, 2005 CADE 2005 - p. 19/55

Two Main Ideas

■ Solved Form.

Eliminating ∃x from (∃x)ϕ(x, ȳ) is straightforward once
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Solved Form

■ ϕ(x, ȳ) is solved in x if it is in the form
∧

i≤m

ui ≺kb x ∧
∧

j≤n

x ≺kb v j ∧ ϕ′(ȳ),

where x does not appear in ui, vi and ϕ′.

■ If ϕ(x, ȳ) is solved in x, then (∃x) ϕ(x, ȳ) simplifies to
∧

i≤m, j≤n

ui ≺kb
2 v j ∧ ϕ′(ȳ)

where x ≺kb
n y, called gap order, states there is an increasing

chain from x to y of length at least n.
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Depth Reduction (1)

Case 1: All occurrences of x have depth greater than 0.

In this case, ∃xϕ(x, ȳ) goes to

∃x1, . . . ,∃xkϕ
′(x1, . . . , xk, ȳ),

where

ϕ′(x1, . . . , xk, ȳ) ≡ ϕ(x, ȳ)[xi ← sαi (x)].
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Depth Reduction (1)

Case 1: All occurrences of x have depth greater than 0.

In this case, ∃xϕ(x, ȳ) goes to

∃x1, . . . ,∃xkϕ
′(x1, . . . , xk, ȳ),

where

ϕ′(x1, . . . , xk, ȳ) ≡ ϕ(x, ȳ)[xi ← sαi (x)].
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Depth Reduction (2)

Case 2: Some x have depth 0 and some do not.

■ Decompose 0-depth occurrences of x in terms of

sα1 (x), . . . , sαk (x).

■ This amounts to expressing x ≺kb
n t and t ≺kb

n x using

sα1 (x), . . . , sαk (x).

■ Then apply the reduction as in Case 1!

☞ In order to do that, we need to extend the language.

http://step-cs.stanford.edu/


Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

● Two Main Ideas

● Solved Form

● Depth Reduction (1)

● Depth Reduction (2)

● Extensions

● Extension

● Extension

● Extension

● Counting Constraints

● Extension

● QE for KBO

● Variable Selection

● Decomposition

● Simplification

● Elimination

● Termination (1)

● Termination (2)

● Termination (3)

● Example (1)

● Example (2)

● Example (3)

● Example (4)

● Example (5)

● Example (6)

● Example (7)

● Example (8)

● Example (9)

● Example (10)

● Example (11)

Future Work

Thank You!

Techinical Catches

STeP Group, August 1, 2005 CADE 2005 - p. 22/55

Depth Reduction (2)

Case 2: Some x have depth 0 and some do not.

■ Decompose 0-depth occurrences of x in terms of

sα1 (x), . . . , sαk (x).

■ This amounts to expressing x ≺kb
n t and t ≺kb

n x using

sα1 (x), . . . , sαk (x).

■ Then apply the reduction as in Case 1!

☞ In order to do that, we need to extend the language.

http://step-cs.stanford.edu/


Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

● Two Main Ideas

● Solved Form

● Depth Reduction (1)

● Depth Reduction (2)

● Extensions

● Extension

● Extension

● Extension

● Counting Constraints

● Extension

● QE for KBO

● Variable Selection

● Decomposition

● Simplification

● Elimination

● Termination (1)

● Termination (2)

● Termination (3)

● Example (1)

● Example (2)

● Example (3)

● Example (4)

● Example (5)

● Example (6)

● Example (7)

● Example (8)

● Example (9)

● Example (10)

● Example (11)

Future Work

Thank You!

Techinical Catches

STeP Group, August 1, 2005 CADE 2005 - p. 22/55

Depth Reduction (2)

Case 2: Some x have depth 0 and some do not.

■ Decompose 0-depth occurrences of x in terms of

sα1 (x), . . . , sαk (x).

■ This amounts to expressing x ≺kb
n t and t ≺kb

n x using

sα1 (x), . . . , sαk (x).

■ Then apply the reduction as in Case 1!

☞ In order to do that, we need to extend the language.

http://step-cs.stanford.edu/


Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

● Two Main Ideas

● Solved Form

● Depth Reduction (1)

● Depth Reduction (2)

● Extensions

● Extension

● Extension

● Extension

● Counting Constraints

● Extension

● QE for KBO

● Variable Selection

● Decomposition

● Simplification

● Elimination

● Termination (1)

● Termination (2)

● Termination (3)

● Example (1)

● Example (2)

● Example (3)

● Example (4)

● Example (5)

● Example (6)

● Example (7)

● Example (8)

● Example (9)

● Example (10)

● Example (11)

Future Work

Thank You!

Techinical Catches

STeP Group, August 1, 2005 CADE 2005 - p. 22/55

Depth Reduction (2)

Case 2: Some x have depth 0 and some do not.

■ Decompose 0-depth occurrences of x in terms of

sα1 (x), . . . , sαk (x).

■ This amounts to expressing x ≺kb
n t and t ≺kb

n x using

sα1 (x), . . . , sαk (x).

■ Then apply the reduction as in Case 1!

☞ In order to do that, we need to extend the language.

http://step-cs.stanford.edu/


Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

● Two Main Ideas

● Solved Form

● Depth Reduction (1)

● Depth Reduction (2)

● Extensions

● Extension

● Extension

● Extension

● Counting Constraints

● Extension

● QE for KBO

● Variable Selection

● Decomposition

● Simplification

● Elimination

● Termination (1)

● Termination (2)

● Termination (3)

● Example (1)

● Example (2)

● Example (3)

● Example (4)

● Example (5)

● Example (6)

● Example (7)

● Example (8)

● Example (9)

● Example (10)

● Example (11)

Future Work

Thank You!

Techinical Catches

STeP Group, August 1, 2005 CADE 2005 - p. 22/55

Depth Reduction (2)

Case 2: Some x have depth 0 and some do not.

■ Decompose 0-depth occurrences of x in terms of

sα1 (x), . . . , sαk (x).

■ This amounts to expressing x ≺kb
n t and t ≺kb

n x using

sα1 (x), . . . , sαk (x).

■ Then apply the reduction as in Case 1!

☞ In order to do that, we need to extend the language.

http://step-cs.stanford.edu/


Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

● Two Main Ideas

● Solved Form

● Depth Reduction (1)

● Depth Reduction (2)

● Extensions

● Extension

● Extension

● Extension

● Counting Constraints

● Extension

● QE for KBO

● Variable Selection

● Decomposition

● Simplification

● Elimination

● Termination (1)

● Termination (2)

● Termination (3)

● Example (1)

● Example (2)

● Example (3)

● Example (4)

● Example (5)

● Example (6)

● Example (7)

● Example (8)

● Example (9)

● Example (10)

● Example (11)

Future Work

Thank You!

Techinical Catches

STeP Group, August 1, 2005 CADE 2005 - p. 23/55

Extensions

1. Decompose ≺kb into three disjoint suborders ≺w, ≺p and ≺l.

2. Extend ≺w, ≺p and ≺l to ≺w
n , ≺p

n and ≺l
n, respectively.

3. Add Presburger arithmetic explicitly to represent weight.

4. Definecounting constraints to count terms of certain weight.

5. Defineboundary functions to delineate gap orders.

6. Extend all aforementioned notions to tuples of terms.
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Three Suborders

1. Weight Order ≺w:

u ≺w v⇔W(u) <W(v).

2. Precedence Order ≺p:

u ≺p v⇔W(u) =W(s) & type(u) ≺Σ type(v).

3. Lexicographical Order ≺l:

u ≺l v⇔W(u) =W(v) & type(u) = type(v) & u ≺kb v.

☞ Abbreviations:

u ≺pl v⇔ u ≺p v ∨ u ≺l v,

u ≺kb v⇔ u ≺w v ∨ u ≺p v ∨ u ≺l v.
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Gap Suborders

■ Gap Order ≺kb
n :

u ≺kb
n v↔ (∃u1, . . . ,∃un)

[

u ≺kb u1 ≺kb . . . ≺kb un �kb v
]

.

■ Weight Gap Order ≺w
n :

u ≺w
n v↔ u ≺kb

n v ∧ u ≺w v.

■ Precedence Gap Order ≺p
n:

u ≺p
n v↔ u ≺kb

n v ∧ u ≺p v.

■ Lexicographical Gap Order ≺l
n:

u ≺l
n v↔ u ≺kb

n v ∧ u ≺l v.
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Boundary Functions

0w, 1w :N→ TA; 0p, 1p :N2 → TA such that

■ 0w(n) : the smallest term of weight n.

■ 0p(n, p) : the smallest term of weight n and type αp.

■ 1w(n) : the largest term of weight n.

■ 1p(n, p) : the largest term of weight n and type αp.

☞ Example of Use:

u ≺w
5 v ↔

∨

n1+n2+n3=5

u ≺pl
n1

1w
(uw) ≺

w
n2

0w
(vw) ≺

pl
n3

v.
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Counting Constraints

■ CNTn(x) states that

“there are at least n + 1 distinct TA-terms of weight x.”

■ CNT0(x) (or Tree(x)) states that

x is a legitimate weight of a term.

■ CNTn(x) is expressible in Presburger arithmetic.

☞ Example of Use:

0w
(x) ≺

pl
n 1w

(x) ↔ CNTn(x).
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Knuth-Bendix Order with Presburger Arithmetic

Extended structure:

A
Z

kb+ = 〈 ATA;AZ; (.)w;

≺]n, ] ∈ {kb,w, p, l, pl},
0∗(...), 1∗(...), ∗ ∈ {w, p} 〉.

■ ATA : Term algebras.
■ AZ : Presburger arithmetic.
■ (.)w : Weight function.

■ ≺]n: Gap orders.
■ 0∗(...), 1∗(...) : Boundary terms.

☞ Example of Use:

(∃x :TA)
[

0w
(xw) ≺

l
2 x ≺l

3 1w
(xw)

]
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Quantifier Elimination for Knuth-Bendix Order

Input: (∃x̄) ϕ(x̄, ȳ).

While x̄ , ∅.
■ While (∀x ∈ x̄) depthϕ(x) > 0.

Depth Reduction.

◆ VARIABLE SELECTION.

◆ DECOMPOSITION.

◆ SIMPLIFICATION.

Done.
■ While (∃x ∈ x̄) depthϕ(x) = 0.

Elimination.

Done.

Done.
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Variable Selection

■ Select a variable x ∈ x̄ such that sαi (x) appears in ϕ(x̄, ȳ).

☞ The variable selection is done in depth-firstmanner.

☞ I.e., choose variables generated in the previous round.
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☞ The variable selection is done in depth-firstmanner.

☞ I.e., choose variables generated in the previous round.

http://step-cs.stanford.edu/


Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

● Two Main Ideas

● Solved Form

● Depth Reduction (1)

● Depth Reduction (2)

● Extensions

● Extension

● Extension

● Extension

● Counting Constraints

● Extension

● QE for KBO

● Variable Selection

● Decomposition

● Simplification

● Elimination

● Termination (1)

● Termination (2)

● Termination (3)

● Example (1)

● Example (2)

● Example (3)

● Example (4)

● Example (5)

● Example (6)

● Example (7)

● Example (8)

● Example (9)

● Example (10)

● Example (11)

Future Work

Thank You!

Techinical Catches

STeP Group, August 1, 2005 CADE 2005 - p. 31/55

Decomposition

Rewrite (∃x̄) ϕ(x̄, ȳ) to

∃x1 . . .∃xk∃x̄
[

Isα(x) ∧
∧

1≤i≤k

sαi (x) = xi ∧ ϕ(x̄, ȳ)
]

.

http://step-cs.stanford.edu/


Introduction

Related Work

Term Algebras

Knuth-Bendix Order

Quantifier Elimination

Quantifier Elimination for

Knuth-Bendix Order

● Two Main Ideas

● Solved Form

● Depth Reduction (1)

● Depth Reduction (2)

● Extensions

● Extension

● Extension

● Extension

● Counting Constraints

● Extension

● QE for KBO

● Variable Selection

● Decomposition

● Simplification

● Elimination

● Termination (1)

● Termination (2)

● Termination (3)

● Example (1)

● Example (2)

● Example (3)

● Example (4)

● Example (5)

● Example (6)

● Example (7)

● Example (8)

● Example (9)

● Example (10)

● Example (11)

Future Work

Thank You!

Techinical Catches

STeP Group, August 1, 2005 CADE 2005 - p. 32/55

Simplification

■ Apply the following rules to each occurrence of x.

1. Replace x ≺]n t (or t ≺]n x) by a quantifier-free formula

ϕ′(sα1 (x), . . . , sαk (x), sα1 (t), . . . , sαk (t)).

2. Replace sαi (x) in ϕ(x̄, ȳ) by xi (1 ≤ i ≤ k).

■ Denote the result of this simplification as

∃x1 . . .∃xk∃(x̄ \ x)
[

ϕ′(x̄ \ x, x1, . . . , xk, ȳ)
]

.
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Elimination

■ Now we must have

∃x
[
∧

i≤m

ui ≺kb x ∧
∧

j≤n

x ≺kb v j ∧ ϕ′(ȳ)
]

,

where x appears none of ui, v j and ϕ′.

■ Guess a gap order completion, we rewrite it to

ui′ ≺kb
2 v j′ ∧ ϕ′(ȳ)

∧ “ui′ is the greatest of {ui | i ≤ m}”

∧ “v j′ is the smallest of {v j | j ≤ n}”.
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Termination (1)

Termination is subtle as some complexity measures increase.

■ Depth reduction increases the depth of other variables.

For example, x , t becomes
∨

1≤i≤k

sαi (t) , xi ∨ ¬Isα(t).

■ Depth reduction introduces more existential quantifiers.

For example, (∃x̄) ϕ(x̄, ȳ) becomes

∃x1 . . .∃xk∃x̄
[

Isα(x) ∧
∧

1≤i≤k

sαi (x) = xi ∧ ϕ(x̄, ȳ)
]

.
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Termination (2)

■ Depth reduction introduces more order literals.

For example, u ≺w
5 v becomes
∨

n1+n2+n3=5

u ≺pl
n1

1w
(uw) ≺w

n2
0w

(vw) ≺
pl
n3

v.

■ Depth reduction introduces more equalities.

For example, x ≺l t could produce

car(x) = car(t) ∧ cdr(x) ≺kb cdr(t).

☞ Does it terminate???
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Termination (3)

☞ Real measure: ] of open gap order literals (OGOL).

OGOL: a gap order relation between ordinary terms.

☞ No transformation generates new OGOLs.

☞ The final elimination step removes at least one OGOL.

☞ Without OGOLs, the depths of terms strictly decrease!
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Termination (3)

☞ Real measure: ] of open gap order literals (OGOL).

OGOL: a gap order relation between ordinary terms.

☞ No transformation generates new OGOLs.

☞ The final elimination step removes at least one OGOL.

☞ Without OGOLs, the depths of terms strictly decrease!
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Example (1)

■ Consider the KBO on LISP list structure parameterized with

W(cons) =W(nil) = 1 & nil ≺Σ cons.

■ Consider the formula

(∃x)
[

car(x) ≺l
2 cdr(cdr(x)) ∧ cdr(cdr(car(x))) ≺l

3 y
]

,

where depth(x) = 3.
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Example (2)

(∃x)
[

car(x) ≺l
2 cdr(cdr(x)) ∧ cdr(cdr(car(x))) ≺l

3 y
]

,

x

uulllllllll

''OOOOOOO

x1

}}{{
{{

!!
CC

CC
x2

!!
CC

CC

x11 x12

##
FF

FF
x22

x122

Solution: x =?

x1 : car(x),

x2 : cdr(x),

x11 : car(car(x)),

x12 : cdr(car(x)),

x22 : cdr(cdr(x)),

x122 : cdr(cdr(car(x)))
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Example (3)

■ Select variable x.

■ Decompose x in terms of car(x) and cdr(x). We have

(∃x∃x1∃x2)
[

car(x) = x1 ∧ cdr(x) = x2

∧ car(x) ≺l
2 cdr(cdr(x)) ∧ cdr(cdr(car(x))) ≺l

3 y
]

.

■ Simplification.

(∃x1∃x2)
[

x1 ≺l
2 cdr(x2) ∧ cdr(cdr(x1)) ≺l

3 y
]

,

where depth(x1) = 2 and depth(x2) = 1,
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Example (4)

Continue with

(∃x1∃x2)
[

x1 ≺l
2 cdr(x2) ∧ cdr(cdr(x1)) ≺l

3 y
]

.

■ Select variable x1.
■ Decompose x1. Replace x1 ≺l

2 cdr(x2) by

car(x1) = car(cdr(x2)) ∧ cdr(x1) ≺l
2 cdr(cdr(x2)).

■ Simplification.

(∃x2∃x11∃x12)
[

x11 = car(cdr(x2)) ∧ x12 ≺l
2 cdr(cdr(x2))

∧ cdr(x12) ≺l
3 y
]

,
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Example (5)

Continue with

(∃x2∃x11∃x12)
[

x11 = car(cdr(x2)) ∧ x12 ≺l
2 cdr(cdr(x2))

∧ cdr(x12) ≺l
3 y
]

,

■ Elimination. Since depth(x11) = 0, we have

(∃x2∃x12)
[

x12 ≺l
2 cdr(cdr(x2)) ∧ cdr(x12) ≺l

3 y
]

,
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2 cdr(cdr(x2)) ∧ cdr(x12) ≺l

3 y
]

,
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Example (6)

Continue with

(∃x2∃x12)
[

x12 ≺l
2 cdr(cdr(x2)) ∧ cdr(x12) ≺l

3 y
]

.

■ Select variable x12.
■ Decompose x12. Replace x12 ≺l

2 cdr(cdr(x2)) by

x121 = car(cdr(cdr(x2))) ∧ x122 ≺l
2 cdr(cdr(x2)).

■ Simplification.

(∃x2∃x121∃x122)
[

x121 = car(cdr(cdr(x2))) ∧ x122 ≺l
2 cdr(cdr(x2))

∧ x122 ≺l
3 y
]

,
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Example (6)

Continue with

(∃x2∃x12)
[

x12 ≺l
2 cdr(cdr(x2)) ∧ cdr(x12) ≺l

3 y
]

.

■ Select variable x12.

■ Decompose x12. Replace x12 ≺l
2 cdr(cdr(x2)) by

x121 = car(cdr(cdr(x2))) ∧ x122 ≺l
2 cdr(cdr(x2)).

■ Simplification.

(∃x2∃x121∃x122)
[
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Example (6)

Continue with

(∃x2∃x12)
[

x12 ≺l
2 cdr(cdr(x2)) ∧ cdr(x12) ≺l

3 y
]

.

■ Select variable x12.
■ Decompose x12. Replace x12 ≺l

2 cdr(cdr(x2)) by

x121 = car(cdr(cdr(x2))) ∧ x122 ≺l
2 cdr(cdr(x2)).

■ Simplification.

(∃x2∃x121∃x122)
[
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Example (6)

Continue with

(∃x2∃x12)
[

x12 ≺l
2 cdr(cdr(x2)) ∧ cdr(x12) ≺l

3 y
]

.

■ Select variable x12.
■ Decompose x12. Replace x12 ≺l

2 cdr(cdr(x2)) by

x121 = car(cdr(cdr(x2))) ∧ x122 ≺l
2 cdr(cdr(x2)).

■ Simplification.
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[
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Example (7)

Continue with

(∃x2∃x121∃x122)
[

x121 = car(cdr(cdr(x2))) ∧ x122 ≺l
2 cdr(cdr(x2))

∧ x122 ≺l
3 y
]

,

■ Elimination. Since depth(x121) = 0, we have

(∃x2∃x122)
[

x122 ≺l
2 cdr(cdr(x2)) ∧ x122 ≺l

3 y
]

.
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Example (7)

Continue with

(∃x2∃x121∃x122)
[

x121 = car(cdr(cdr(x2))) ∧ x122 ≺l
2 cdr(cdr(x2))

∧ x122 ≺l
3 y
]

,

■ Elimination. Since depth(x121) = 0, we have

(∃x2∃x122)
[

x122 ≺l
2 cdr(cdr(x2)) ∧ x122 ≺l

3 y
]

.
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Example (8)

Continue with

(∃x2∃x122)
[

x122 ≺l
2 cdr(cdr(x2)) ∧ x122 ≺l

3 y
]

.

■ Elimination.
◆ Take a gap order completion

x122 ≺l
2 cdr(cdr(x2)) ≺l

1 y.

◆ We have

(∃x2∃x122)
[

x122 ≺l
2 cdr(cdr(x2)) ≺l

1 y
]

,

◆ which simplifies to

(∃x2)
[

0w
((cdr(cdr(x2)))w) ≺

l
2 cdr(cdr(x2)) ≺l

1 y
]

.

☞ The number of OGOLs reduced to 1!
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Example (8)

Continue with

(∃x2∃x122)
[

x122 ≺l
2 cdr(cdr(x2)) ∧ x122 ≺l

3 y
]

.

■ Elimination.

◆ Take a gap order completion

x122 ≺l
2 cdr(cdr(x2)) ≺l

1 y.

◆ We have

(∃x2∃x122)
[

x122 ≺l
2 cdr(cdr(x2)) ≺l

1 y
]

,

◆ which simplifies to

(∃x2)
[

0w
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l
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1 y
]

.
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Example (8)

Continue with

(∃x2∃x122)
[

x122 ≺l
2 cdr(cdr(x2)) ∧ x122 ≺l

3 y
]

.

■ Elimination.
◆ Take a gap order completion

x122 ≺l
2 cdr(cdr(x2)) ≺l

1 y.

◆ We have

(∃x2∃x122)
[

x122 ≺l
2 cdr(cdr(x2)) ≺l

1 y
]

,

◆ which simplifies to
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[
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Example (8)

Continue with

(∃x2∃x122)
[

x122 ≺l
2 cdr(cdr(x2)) ∧ x122 ≺l

3 y
]

.

■ Elimination.
◆ Take a gap order completion

x122 ≺l
2 cdr(cdr(x2)) ≺l

1 y.

◆ We have

(∃x2∃x122)
[

x122 ≺l
2 cdr(cdr(x2)) ≺l

1 y
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,

◆ which simplifies to
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[
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Example (8)

Continue with

(∃x2∃x122)
[

x122 ≺l
2 cdr(cdr(x2)) ∧ x122 ≺l

3 y
]

.

■ Elimination.
◆ Take a gap order completion

x122 ≺l
2 cdr(cdr(x2)) ≺l

1 y.

◆ We have

(∃x2∃x122)
[

x122 ≺l
2 cdr(cdr(x2)) ≺l

1 y
]

,

◆ which simplifies to

(∃x2)
[

0w
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l
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1 y
]

.
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Example (8)

Continue with

(∃x2∃x122)
[

x122 ≺l
2 cdr(cdr(x2)) ∧ x122 ≺l

3 y
]

.

■ Elimination.
◆ Take a gap order completion

x122 ≺l
2 cdr(cdr(x2)) ≺l

1 y.

◆ We have

(∃x2∃x122)
[

x122 ≺l
2 cdr(cdr(x2)) ≺l

1 y
]

,

◆ which simplifies to

(∃x2)
[

0w
((cdr(cdr(x2)))w) ≺

l
2 cdr(cdr(x2)) ≺l

1 y
]

.

☞ The number of OGOLs reduced to 1!
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Example (9)

Continue with

(∃x2)
[

0w
((cdr(cdr(x2)))w) ≺l

2 cdr(cdr(x2)) ≺l
1 y
]

.

■ Depth Reduction. Repeating twice the -
subprocedure, we have

(∃x222)
[

0w
(xw

222) ≺
l
2 x222 ≺l

1 y
]

.
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Example (9)

Continue with

(∃x2)
[

0w
((cdr(cdr(x2)))w) ≺l

2 cdr(cdr(x2)) ≺l
1 y
]

.

■ Depth Reduction. Repeating twice the -
subprocedure, we have

(∃x222)
[

0w
(xw

222) ≺
l
2 x222 ≺l

1 y
]

.
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Example (10)

Continue with

(∃x222)
[

0w
(xw

222) ≺
l
2 x222 ≺l

1 y
]

.

■ Reduce term quantifiers to integer quantifiers.

(∃z)
[

0w
(z) ≺l

3 y ∧ Treecons(z)
]

.

■ Eliminate integer quantifiers.

0w
(yw) ≺

l
3 y ∧ Treecons(yw).

■ As 0w
(yw) ≺

l
3 y implies Treecons(yw), we have

0w
(yw) ≺

l
3 y.
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Example (10)

Continue with

(∃x222)
[

0w
(xw
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1 y
]

.

■ Reduce term quantifiers to integer quantifiers.

(∃z)
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0w
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]

.

■ Eliminate integer quantifiers.

0w
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Example (10)

Continue with

(∃x222)
[

0w
(xw

222) ≺
l
2 x222 ≺l

1 y
]

.

■ Reduce term quantifiers to integer quantifiers.

(∃z)
[

0w
(z) ≺l

3 y ∧ Treecons(z)
]

.

■ Eliminate integer quantifiers.

0w
(yw) ≺

l
3 y ∧ Treecons(yw).

■ As 0w
(yw) ≺

l
3 y implies Treecons(yw), we have

0w
(yw) ≺

l
3 y.
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Example (11)

In summary,

0w
(yw) ≺

l
3 y =⇒

(∃x)
[

car(x) ≺l
2 cdr(cdr(x)) ∧ cdr(cdr(car(x))) ≺l

3 y
]

,

x

uulllllllll

''OOOOOOO

x1

}}{{
{{

!!
CC

CC
x2

!!
CC

CC

x11 x12

##
FF

FF
x22

x122

Solution: x122 = 0w
(yw)!

x1 : car(x),

x2 : cdr(x),

x11 : car(car(x)),

x12 : cdr(car(x)),

x22 : cdr(cdr(x)),

x122 : cdr(cdr(car(x)))
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Future Work

■ Smallest extensions for quantifier elimination.

More expressive power induces higher complexity.

■ Block-wise quantifier elimination.

Small quantifier alternations in real life.

■ Decidability of KBO on term domain with variables.
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Techinical Catches

■ Elimination of Equalities.

∃x
[

x = 0w
((car(x))w) ∧ car(x) ≺p

4 cdr(x)
]

.

■ Simplification of Selector Terms.

car(0w
((car(x))w)).

■ Elimination of Negations.

¬
(

car(x) ≺w
3 cdr(x)

)

.
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Elimination of Equalities

Continue with

∃x
[

x = 0w
((car(x))w) ∧ car(x) ≺p

4 cdr(x)
]

.

■ Substitution.

∃x
[

x = 0w
((car(x))w) ∧ car(0w

((car(x))w)) ≺
p
4 cdr(0w

((car(x))w))
]

.

■ Reduction to Integer Quantifiers.

∃(car(x))w
[

Tree((car(x))w) ∧ car(0w
((car(x))w)) ≺

p
4 cdr(0w

((car(x))w))
]

.

■ Renaming.

∃z
[

Tree(z) ∧ car(0w
(z)) ≺

p
4 cdr(0w

(z))
]

.
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Simplification of Selector Terms

car(0w
((car(x))w))

simplifies to

0w
fcar((car(x))w),

where

fcar(·)

is an integer function from Presburger arithmetic.
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Elimination of Negations

¬
(

car(x) ≺w
3 cdr(x)

)

.

simplifies to

cdr(x) ≺w car(x) ∨ (cdr(x))w
= (car(x))w ∨

car(x) �w
1 cdr(x) ∨ car(x) �w

2 cdr(x).
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