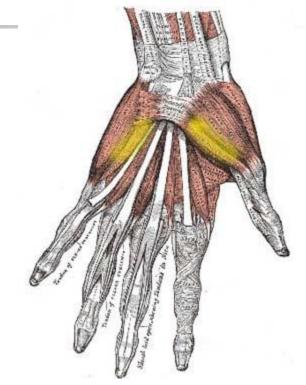
Therapeutic Exercise: An Evidenced Based Approach

Dr. Thomas Eberle PT, KTCC, FAAOMPT Dr. Eric Douglass PT, KTCC, OCS FAAOMPT Dr. Matt Waggoner PT, KTCC, FAAOMPT

History of Physical Therapy

 Nursing Profession Sub-specialty U.S. (1920s)


History of Physical Therapy

- Physical Therapy as its own Profession (1940s)
- Prerequisite:
 - Nursing
 - Physical Education

Physical Therapy Evaluation

James Cyriax M.D. (1904-1985)

Tissue Specific

Examination: Flow of Procedures

- •
- 1.Initial Observation

- 7. Palpation
 - 5 steps

- 2. History
- 3. Structural
 - Quick tests
 - Screenings
 - 3 Positions
 - (Neuro/Precautionary?)
- 4.AROM
- 5. PROM
- 6. Resisted ROM
 - 3 Positions

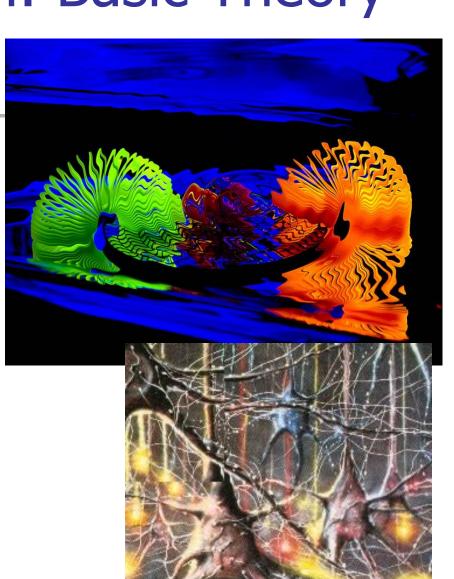
- 8. Neurology
 - Myo/Derm
 - Reflexes
- 9. Special Tests
- 10. Mobility/ Segmental Testing
- 11. Diagnostic Testing
- 12. Correlation/ Prognosis

(C) FIOMPT 2013

Orthopedic Assessment

(Guide to Physical Therapy Practice 2001)

- History
 - Demographics
 - MOI/MIV
- Symptoms:
 - Location
 - Type (Pain/Numb/Tingling/ weakness
 - Quality (Burning/Dull/etc)
 - Better/Worse

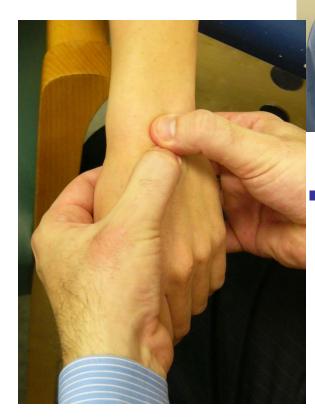

- Review of Systems
 - Red Flags
 - Yellow Flags
 - Blue Flags
- PMH/Meds
- Family Medical Hx
- Hobbies/ADLs

MAKE A TISSUE PATHOLOGY HYPOTHESIS!

(C) FIOMPT 2013

Examination: Basic Theory

- Continually ask yourself:
 - What is being Stretched?
 - What is being Compressed?
 - Which Muscles Contribute to this Motion?
 - What is the Segmental Innervation?



Screening of Extremities

Shoulder

Elbow

Hand

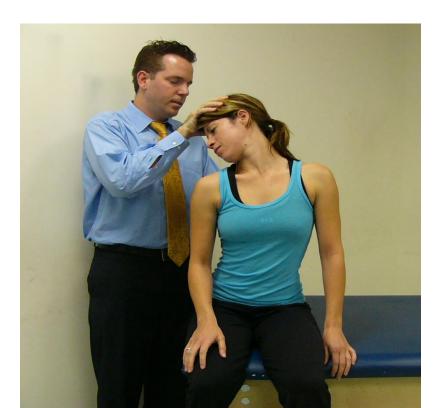
- Quick Tests
 - Apleys
 - Combined AROM
 - Resistive ROM
 - Indicated Special Tests

Screening of Extremities


Ankle

Knee

- Closed Chain **Testing**
 - Heel/Toe Walking
 - Squatting

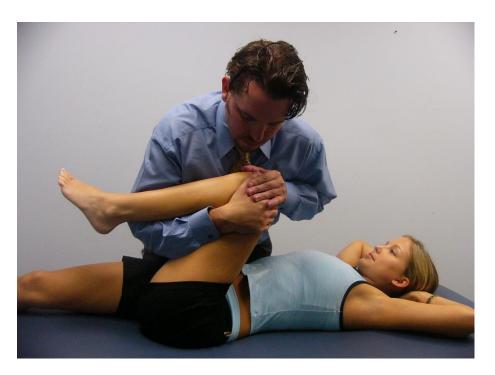


(C) FIOMPT 2013

Screening of the Cervical Spine

AROM

- Rotation and SB/Extension
- With over pressure (if necessary)

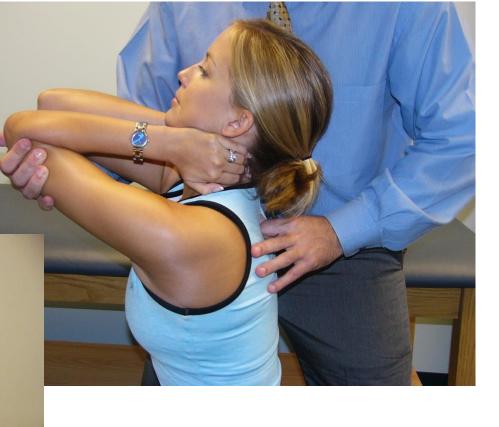

- Precautionary Testing
 - Applicable with trauma and neuro Signs/Sx

(C) FIOMPT 2013

Screening of Lumbar Spine

Disc/Ligament/Facet?

- Sx location
- Time of Day
- Positional



- Posterior Buttock
 - Lumbar
 - HIP
 - Sacraliliac

Screening of the Thoracic Spine

Thoracic

Assess with ANYC/S or L/S Pathology

Spinal Influence on the

Extremities

Cervical Spine

- Referred pain is pain perceived in a region separate from the location of the primary source of the pain (Bogduk 1982).
- Is it the Disc?
- HNP or DDD?

(C) FIOMPT 2013

HISTOLOGY OF COMMON TISSUES IN LESION

- Type 1 Collagen
 - Test and treat with tensile forces

- Type 2 Collagen
 - Test and treat with compression forces

- Found in Muscle Tendons, Ligaments and the Annulus of the Intervertebral Disc
- Optimal Stimulus For Regeneration:
 Modified **Tension** in the Line of Stress

- Found in Articular Cartilage, Nucleus of the Intervertebral Disc
- Optimal Stimulus For Regeneration:
 Compression and Decompression with Glide

- Type 1 and Type 2 Collagen with Mineralization
- Optimal Stimulus for Regeneration:
 Compression and Decompression

Hypomobility vs. Hypermobility

Implications for treatment

Type IV Mechanoreceptors: Pain Receptors

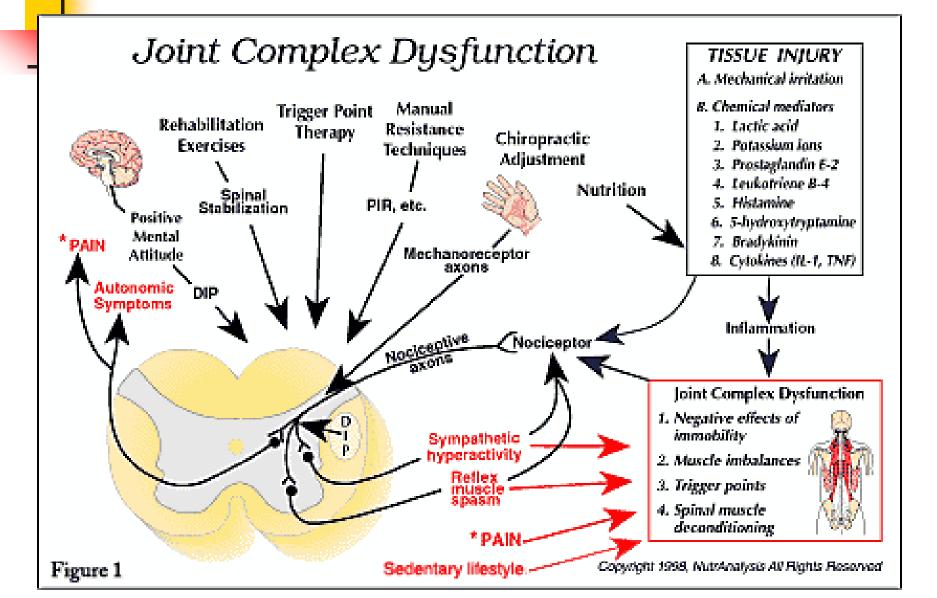
- C Fibers
 - Unmyelinated, slow speed of conduction
 - Heat travels along this path
 - Non adaptive- pain may continue after stimulus removed
- A Fibers
 - Myelinated, fast conducting
 - Cold travels along this path
- Location
 - Blood vessels, bone, type I collagen
 - Not found in muscles

Clinical Neurology: Mechanoreceptors

- Type I
 - Firing: Beginning and end range
 - Location: Fascia and Superficial Joint capsule
 - Recruit/Inhibit Type I Muscle Fibers
 - Decrease Pain
 - Slow adapting, activate with HOLD/STRETCH
- Type II

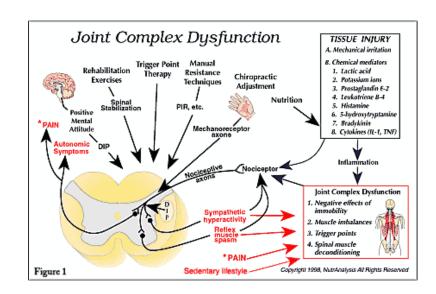
(C) FIOMPT 2013

- Firing: Beginning and mid range
- Location: Fascia and joint capsule
- Recruit/Inhibit Type II muscle fibers
- Decrease pain/Inc ROM
- Fast adapting, activate with mid range oscillation

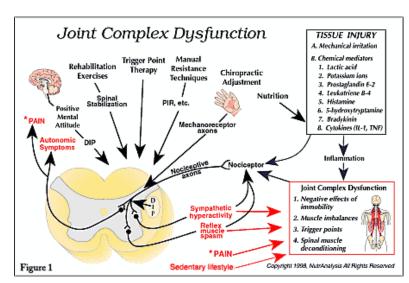

Clinical Neurology: Mechanoreceptors

- Type III
 - Firing: QUICK STRETCH in mid/end range (Thrust Manipulation)
 - Location: Fascia and joint capsule
 - SLOW adapting
 - Huge inhibitory affect over multiple spinal cord levels
 - Decrease pain/Inc ROM
 - Recruit OR inhibit mm.
 - Sympathetic Effects

Receptor type	Preferred location	Responsive to	Known results of stimulation
Golgi Type Ib	 Myotendinous junctions Attachment areas of aponeuroses Ligaments of peripheral joints Joint capsules 	 Golgi tendon organ: to muscular contraction. Other Golgi receptors: probably to strong stretch only 	Tonus decrease in related striated motor fibers
Pacini and Paciniform Type II	 Myotendinous junctions deep capsular layers spinal ligaments investing muscular tissues 	Rapid pressure changes and vibrations	Used as proprioceptive feedback for movement control (sense of kinesthesia)
Ruffini Type II	 Ligaments of peripheral joints, Dura mater outer capsular layers and other tissues associated with regular stretching. 	 Like Pacini, yet also to sustained pressure. Specially responsive to tangential forces (lateral stretch) 	Inhibition of sympathetic activity
Interstitial Type III and IV	 Most abundant receptor type. Found almost everywhere, even inside bones Highest density in periosteum. 	 Rapid as well as sustained pressure changes. 50% are high-threshold units, and 50% are low-threshold units 	 Changes in vasodilation plus apparently in plasma extra-vasation


Schleip 2002

Clinical Neurology


Clinical Neurology (cont)

- Tissue Injury
 - Type IV Mechano receptors
 - Input into Dorsal Horn of corresponding Spinal Cord level
- Inflammatory Cascade
 - in the tissue: perpetuates pain via thermal, mechanical, ph

Clinical Neurology (cont)

- Dorsal Horn to:
- I. Lateral Spinal Thalamic Track (LSTT)
 - to Sensory Humunculus of Cortex
- II. Anterior Horn Cells
 - Motor area
 - Reflexive mm. spasm
- III. Anterior-Lateral Area
 - Sympathetic Nervous System
 - Visceral/ Vascular/
 - Efferent System Only

The Manual Therapy Lesion

(Grimsby/Wyke)

- Receptor Damage
- Decrease Tonic Mm recruitment
- Tonic mm atrophy
- Weakness
- Movement around a non-physiological axis
- Joint Compression/abnormal loading
- Tissue damage (Cartilage/Capsule-Ligament)
- Pain
 (C) FIOMPT 2013
- Reflexogenic Mm guarding

Manual Orthopedic PT

Osteopathic Physicians- England (1950s)

- Kaltenbourn
 - Thrust Manipulation
 - Non Thrust Manipulation/ Mobilisation

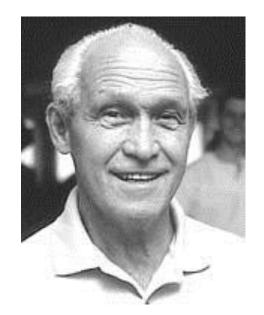
Norwegian Training

Manual OMPT US

- Original OMPT Programs (1980s)
 - St. Augustine/Paris
 - Maitland
 - Grimsby
- Formation of AAOMPT
 - 1991

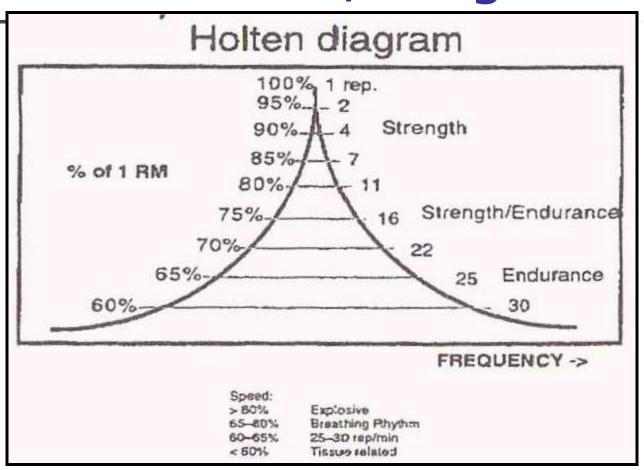
FIOMPT (2012)

Manual Treatment


- Education
 - HEP
 - Positioning
 - Posture
 - Nutrition

Medical Exercise
 Training (MET) and
 Scientific Therapeutic
 Exercise Progressions
 (STEP)

Development of M.E.T./S.T.E.P.


- Oddvar Holten (1960s)
 - MET

- Ola Grimsby Institute (1980spresent)
 - STEP

Holten's Curve/ Diagram

Holten Curve Key Indicators

- Power/Strength 90% 1 RM/5 reps
- Strength 80% 1 RM/10 reps
 - Isolated Phasic Muscles
- Str/Endurance 75% 1 RM/15 reps
- Coord/Endurance 60% 1RM/30 reps
 - Isolated Tonic Muscles

- Vascular/Tissue Healing 50% 1RM/30+
 - WITHOUT FATIGUE

Stages of Progression

Stage I

Stage II

Stage III

StageIV

Functional Qualities

- The number of repetitions dictates the functional quality influenced
 - Stage I 50% of 1 RM
 - Vascularity: 30+repetitions
 - Acute patient presentation
 - Mm. spasm and swelling
 - Without fatigue or provoking more swelling
 - Tissue Healing
 - Ligaments/Tendons/Cartilage
 - Coordination/Endurance (Low Level)

Functional Qualities

- Stage II-IV
- 60% 1RM
- 25-30 repetitions for endurance and co-ordination
- Tonic muscles
 - 1 set per minute

Functional Qualities

Stage II-IV

75% of 1 RM

 15 repetitions for strength/endurance (Breathing 1 set per minute and 1/2)

Functional Qualities

Stage III

■ 80% 1 RM

10 repetitions for strengthening

Functional Qualities

Stage IV

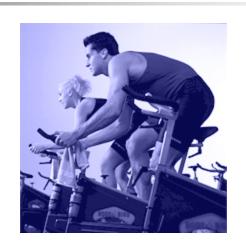
5 repetitions for power and strength

Explosive Training

Variables In Exercise Performance

- Specific Exercise/Start position
 - 2. Apparatus/Equipment
- 3. Resistance where in the Range
 - 4. Range Of Motion
- Type Of Contraction and Duration
 - Resistance Amount
 - Speed Of Motion
 - 8. Sets and Repetitions
 - 9. Work : Rest Ratio
 - 10. Exercise Frequency
 (C) FIOMPT 2013


1. Specific Exercise/ Start Position



- Exercise choice dependant on tissue in lesion
 - Specific tissue diagnosis essential
 - Optimal Stimulus of Repair
- Stage of Injury
 - Not necessarily from subjective Date Of Injury
 - Tissue/Pt. Tolerance

(C) FIOMPT 2013

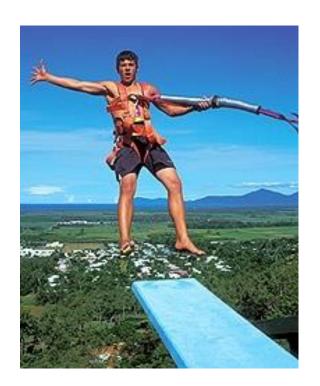
2. Apparatus/Equipment





3. Resistance in the ROM (Length Tension)

- Line of Pull 90 to Axis
- Parallel to mm. fibers (not acutely)
- Parallel to long axis of the limb (stabilisation)
- Lever arm 90 to the pull of gravity (strength)



Range Of Motion

Training effects are range specific.

 Applied resistance should match the muscles ability to produce force.

4. Range of Motion

I. Inner to Mid ROM

Vascularity

II. Middle ROM

- Stabilisation
- Coordination

III. / IV. Outer ROM

- Self Mobilisation
- End Range Holds
- Plyometrics
- Functional Patterns

(C) FIOMPT 2013



4./5. Range of Motion (I) Type of Contraction

- Begin with Vascular ther ex OPPOSITE the Pathological ROM (INNER ROM).
- May be AAROM, AROM, or Resistive
- Perform
 Concentrically
 without sx.
 exacerbation or
 more swelling

4./5. Range of Motion (II) Type of Contraction

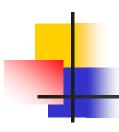
- Follow with Vascular and then Stabilisation ther ex TOWARDS the Pathological ROM (MID ROM).
- AROM against gravity or Resistive with an Apparatus.

MOMPT 2013

4./5. Range of Motion (III) Type of Contraction

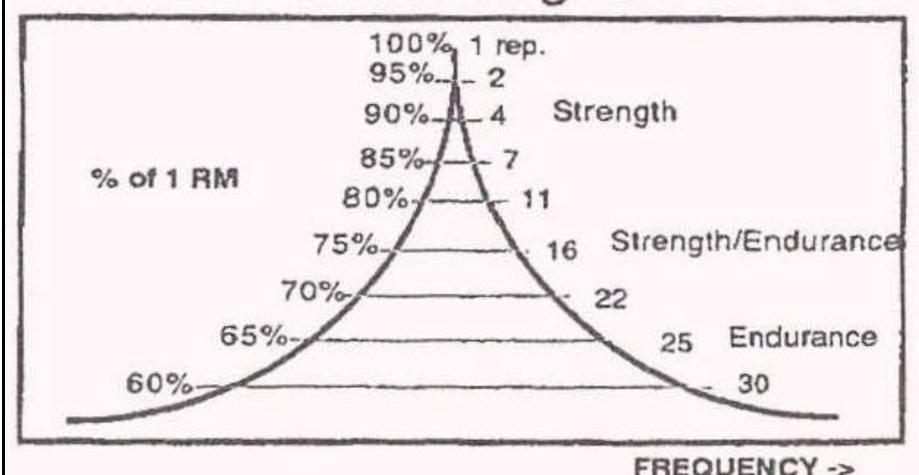
- Self Mobilisation
 Ther Ex TOWARDS
 Pathological ROM
 (OUTER ROM).
- Utilize Apparatus
 /Equipment to move
 Eccentrically;
 Progress with end
 range holds.

(C) FIOMPT 2013



4./5. Range of Motion (IV) Type of Contraction

- Coordination or Strengthening Ther Ex TOWARDS the Pathological ROM
- Utilize Apparatus/Equipment to move concentrically (OUTER ROM)
- Progress with Outer ROM holds & Plyometrics



6. Resistance Amount

- Inversely related to each other.
- 1 Repetition Maximum (1RM) or 1 Maximal Voluntary Contraction (1MVC) is the maximum resistance that can be overcome once in a movement.

Holten diagram

FREQUENCY ->

Speed: > 80% Explosive 65-80% Breathing Phythm 60-65% 25-30 rep/min < 50% (C) FIOMPT 2013

6./8. Resistance Amount Sets and Repetitions

- The number of repetitions dictates the functional quality influenced.
 - 30+ repetitions for vascularity (I)
 - Mm. spasm and swelling
 - Without fatigue or more swelling
 - 25-30 repetitions for co-ordination(II-IV)
 - Tonic muscles; 1 set per minute
 - 15 repetitions for strength/endurance (III-IV)
 - Breathing (1 set per minute)
 - 4-12 repetitions for strengthening (IV)
 - Explosive Training_{(C) FIOMPT 2013}

7. Speed of Movement

- Training effects are speed specific.
- Concentrically, slow speeds can produce more force.
- Eccentrically, high speeds produce more force.
- High speeds place more demands upon central nervous system processing to maintain stability.

8. Sets and Repetitions

- 5 x 30-45 for mobilisation
- 2-3 sets for vascular (30+), coordination (20-30), endurance (15), and strength ther ex (4-12)
- Mix 1 set of isometrics for 5-10 sec holds for strength in a specific ROM

9. Work: Rest Ratio

- >80% 1RM: Explosive speed
- 60-80%: Respiratory Rate (1 set/min)
- <60%: 30 reps per minute (1 set/min)</p>

- Rest period for >80% work: 3-5 minutes per set.
- Rest period for 60% work: 30-60 seconds.


10. Frequency of Treatment

- Dictated by aim of treatment and restitution rate.
- Matwejew 1976.
- <60% several times per day</p>
- 60% 1RM 6-10 hours for full restitution.
- >80% takes 48-72hrs.

Example of Exercise Progression Hypermobility (Early Phase).

- Target Functional Quality = Co-ordination.
- Resistance Dose = 60% 1RM or less.
- Repetitions = 25-30 reps or more.
- Range Of Motion = Middle to Inner.
- Type Of Contraction = Concentric Eccentric.
- Speed Of Movement = Slow.
- Frequency Of Treatment = 2 or more times daily.
- Can begin with contrary motion (C) FIOMPT 2013

Progression Of Hypermobility (Late Phase)

- Increase Range Of Motion to match physiological available range.
- Increase Speed.
- Add isometric holds throughout available range (1 set).
- Increase resistance to approximately 80% 1RM (if phasic).
- Increase Reactive (Peturbation)
 Component and Phyometrics

Example of Exercise Progression Hypomobility (Early Phase).

- Target Functional Quality = Mobilisation.
- Resistance Dose = <60% 1RM or less.</p>
- Repetitions = 30+ reps.
- Range Of Motion = Outer.
- Type Of Contraction = Concentric Eccentric.
- Speed Of Movement = Slow.
- Frequency Of Treatment = 2 or more times daily.

Progression Of Hypermobility (Late Phase)

- Increase Speed.
- Add isometric holds at end ROM (1 set).
- Increase resistance to 60% to 80% 1RM.
- Increase Reactive (Peturbation)Component and Plyometrics

Case Studies