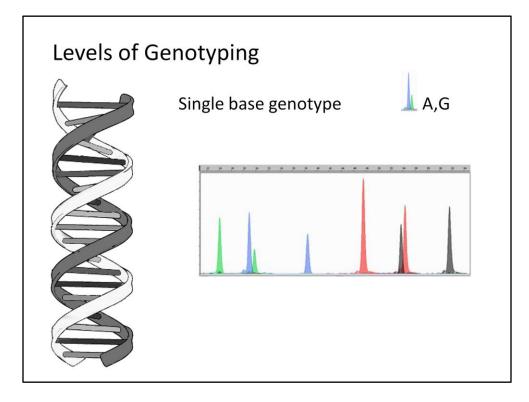
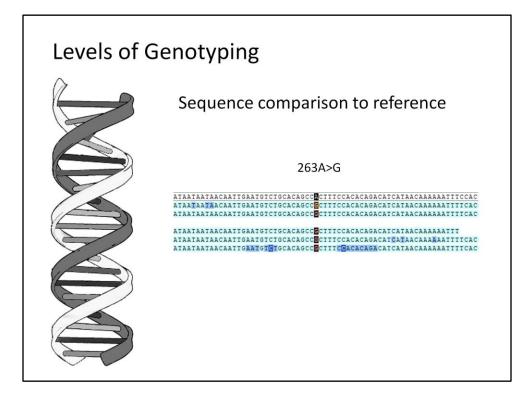
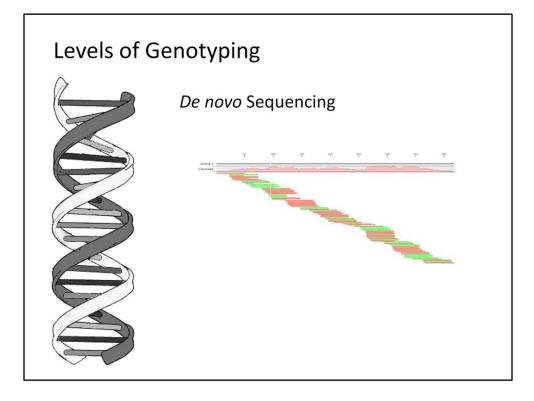

There are several different levels of genotyping that we will cover in this lecture, so this is a quick overview of these levels and the information obtained by each.

Current STR technology returns a number representing the length of a fragment.



A mass spec method that determines the mass of each fragment and genotypes by comparison to a reference.


At D5S818 we see two peaks for a 12 allele, which is expected because the forward and reverse strands have different masses due to the complimentary base compositions. But zooming in closer, we see each 12 is a doublet, and this is due to a SNP present in one copy of the individual's chromosomes and not in the other. So these two different versions of a 12 allele migrate slightly differently. We can't be sure where the SNP is but we know it exists.

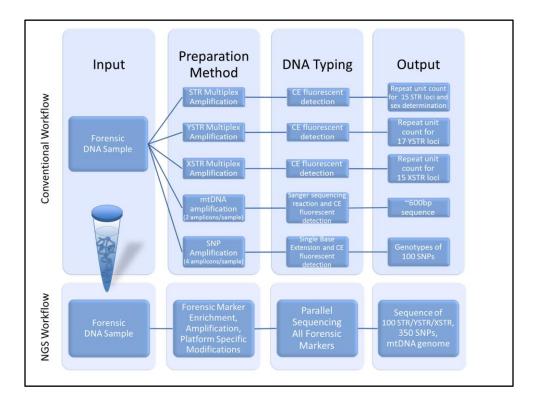

Array methods interrogate individual SNPs.

Snapshot methods also interrogate individual SNPs.

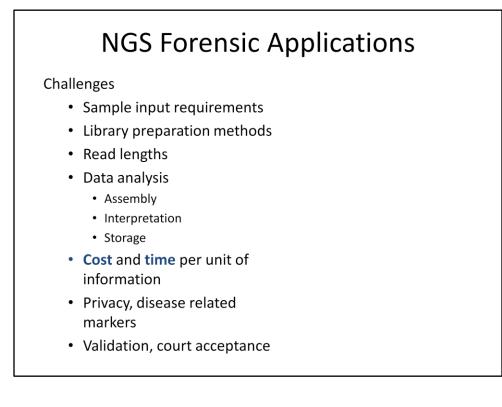
Sequence data can be compared to a reference, as in traditional Sanger sequencing of mtDNA shown here, where ideally both F and R strands are sequenced, and aligned/compared to a reference sequence.

De novo sequencing is how unknown genomes are sequenced, when no reference genome exists. Sequences are aligned based on their overlapping regions, and a consensus sequence is determined.

Which genotyping methods could be employed on NGS data?


0% 0% 0% A. B. C.

- 📈 A. Length-based binning
 - B. Base counts
- C. Single base genotype
- D. Sequencing comparison to a reference
- /E. De novo sequencing


Use of NGS for forensic applications

Highly-parallel/high-throughput direct sequencing of forensically relevant targets

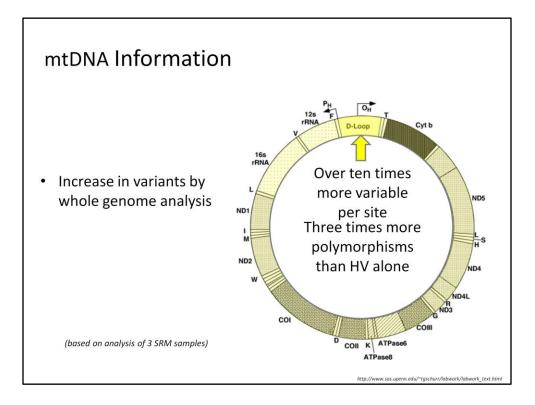
- Whole mitochondrial genome analysis
 - Potential for improved sensitivity, mixture detection, multiplex sequencing of full mitochondrial genomes
 - Detection of minor SNP variants heteroplasmy
- Forensically relevant SNPs
 - newer human identity applications
 - biogeographical ancestry, externally visible traits, complex kinship
 - degraded samples, mixtures, low template?
- Going in depth into STR loci and beyond
 - STRs are useful for legacy (databases)
 - SNPs within STRs identify 'sub-alleles'

Comparison of conventional (current) forensic DNA workflows and a possible (future) NGS workflow.

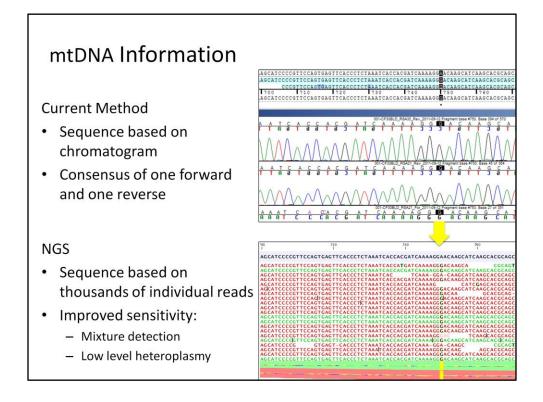
read length- primarily applies to repeat sequences

interpretation -- nomenclature

Assembly— errors, platform & bioinformatics based biases, barcoding– all need extensive validation

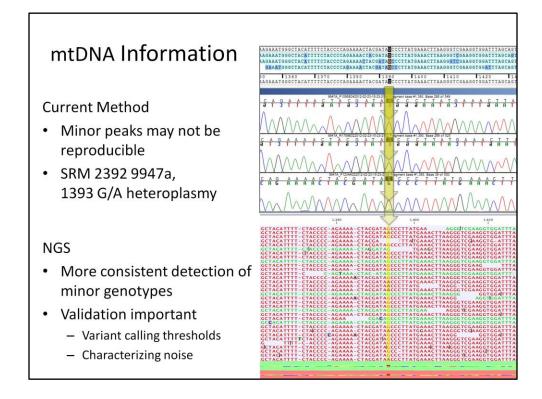

Validation – this is a rapidly changing technology, forensic validation would require choosing a platform

Court admissibility


Use of NGS for Forensic Applications

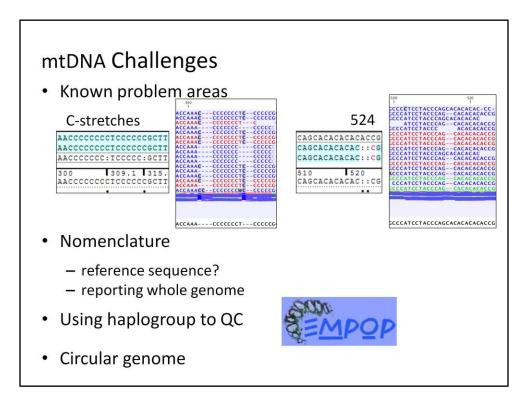
Highly-parallel/high-throughput direct sequencing of forensically relevant targets

- Whole mitochondrial genome analysis
 - Potential for improved sensitivity, mixture detection, multiplex sequencing of full mitochondrial genomes
 - Detection of minor SNP variants heteroplasmy
- Forensically relevant SNPs
 - newer human identity applications
 - biogeographical ancestry, externally visible traits, complex kinship
 - degraded samples, mixtures, low template?
- Going in depth into STR loci and beyond
 - STRs are useful for legacy (databases)
 - SNPs within STRs identify 'sub-alleles'


3X more polymorphisms does not mean 3X the discriminating power, but some of these additional polymorphisms may help resolve common haplotypes, or may provide the two polymorphisms needed to exclude an individual.

A "normal" variant site with 100% frequency.

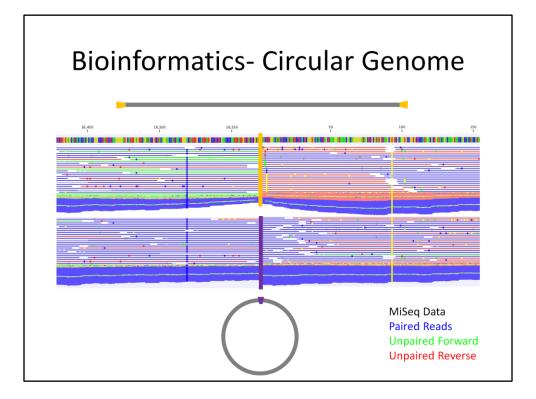
Sanger sequencing results in a chromatogram which shows total signal for that sequencing sample. The sample genotype is a consensus of generally one F & one R.


NGS data is like thousands of sequencing reactions overlapping at each site. Because NGS looks at base calls rather than fluorescence, we can "see" and quantify rare variants, potentially improving sensitivity. What court issues will this raise?

A low level heteroplasmy.

Sanger data will sometimes show a minor type, sometimes not. Makes it difficult to interpret heteroplasmies and mixtures.

NGS will more consistently detect minor types, even very low level ~1%, but must be able to distinguish from noise. Validation of variant calling thresholds will be important.



Problem areas for Sanger and NGS. The NGS bioinformatics don't use "forensic" conventions such as shifting indels to the 5' end of homopolymers or repeat regions. These examples show that insertions are placed at the 3' end. This would cause an apparent discrepancy between Sanger and NGS data for the same sample, but it is a matter of adapting the NGS bioinformatics to forensic conventions.

Difficulty "sequencing" indels is due to use of reference genome, because they only exist when assembled to a fixed genome.

Nomenclature- will we continue the convention of reporting differences to rCRS or simply report the whole genome sequence and do direct comparisons of samples?

With WGS of mtDNA, we'll be looking at polymorphisms in regions that are less familiar than HV regions, so could benefit from haplogroup based QC analysis. Resources such as EMPOP (EDNAP mt pop db, EDNAP=European DNA Profiling group) could help by using phylogenetic analysis of observed haplotypes to pinpoint possible technical errors. Currently EMPOP only allows evaluation of HV region haplotypes.

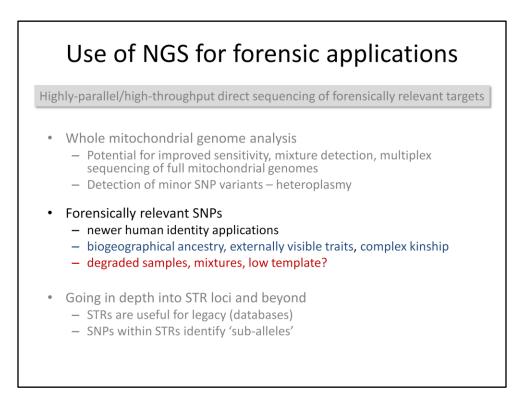
One of the bioinformatics packages we are using allows for setting the reference genome as a circular molecule. This is the same sample analyzed to a linear rCRS (top) versus a circularized rCRS (bottom). Notice the improved coverage across what we designate the "end" and "beginning" of the genome when the reference is circularized.

NGS Forensic Applications

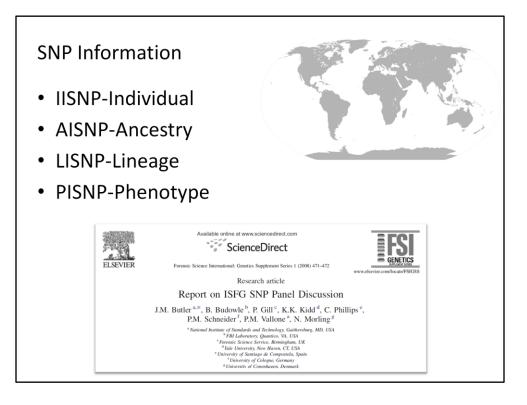
Whole Genome mtDNA sequencing

Sample type amenable to library preparation?

Sample type amenable to sequencing platforms?


Sample type amenable to bioinformatics?

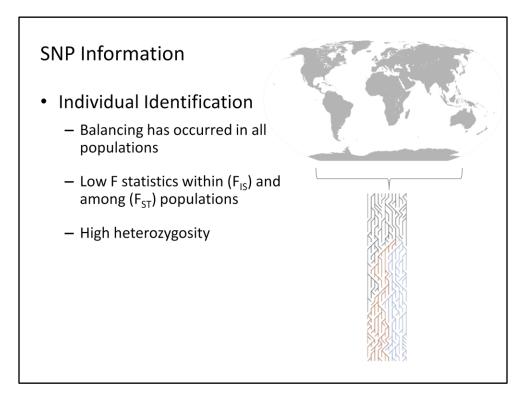
Improvement over current method?


Amenability to library preparation– degraded samples may not produce results for entire genome, but in those cases, a HV region amplification and sequencing approach could be used with NGS technology.

Amenability to bioinformatics– yes with tweaking and making the NGS bioinformatics consistent with forensic conventions.

Improvement over current method– yes, NGS will allow for multiplexing of many samples, and facilitate whole genome sequencing, which is very labor intensive with Sanger technology.

Snps are new, complimentary information to our current forensic markers.

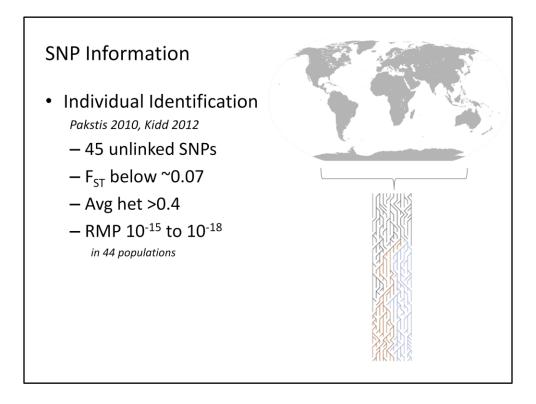

Categories first described by Kidd 2007, definitions found in Report on ISFG SNP Panel Discussion. IISNPs- Polymorphisms that collectively have very low probability of two individuals having the same multi-locus genotype (except for identical twins). Redundant to STRs but no core loci.

AISNPs- collectively can give a high probability of an individual's ancestry being from one part of the world. Good for investigative lead– resolution mainly at the continental level currently.

LISNPs- sets of tightly linked snps that function as multiallelic markers that can identify relatives with higher probabilities than biallelic snps

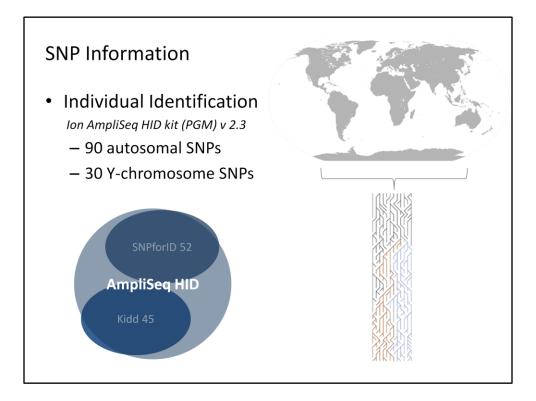
PISNPs- provide a high probability that the individual has particular phenotypes, such as a particular skin color, hair color, eye color, etc.

AI & PISNPs- investigative leads to prioritize suspect processing, corroborate witness testimony, determine relevance of evidence



F statistics measure population differentiation, estimated by genetic data-

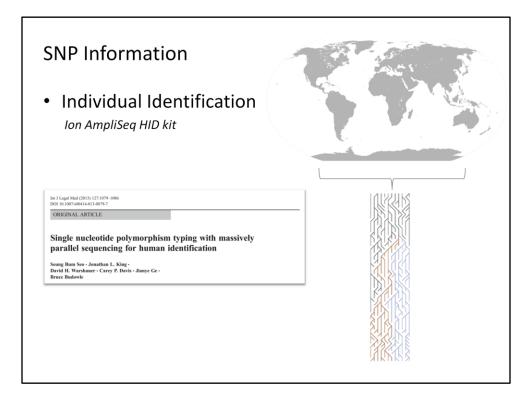
F IS measures the variance in allele frequencies among individuals compared to average variance in their subpopulation


F ST measures the variance in allele frequencies among subpopulations compared to the average variance in the total population

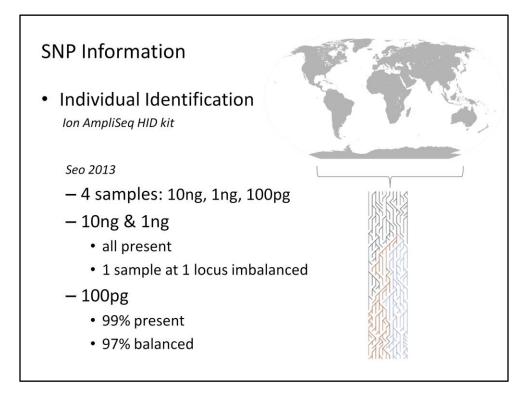
Ideal IISNPs are low Fis & Fst (zero), and high heterozygosity (highest possible =0.5, eg AA=0.25, AG=0.5, GG=0.25)

RMP is on the level of CODIS STR loci, and SNPs have a benefit of lower mutation rate, which can be helpful in kinship analysis.

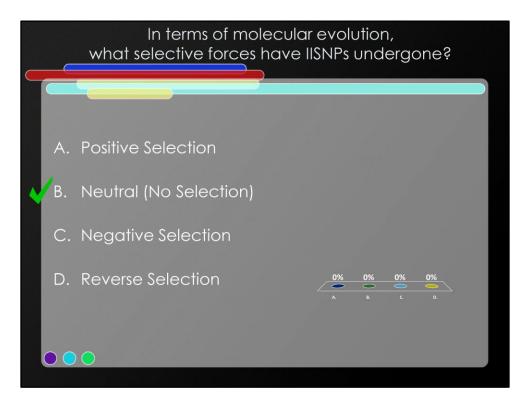
These references are NIJ funded work that has been ongoing for past decade, but haven't had a good way to genotype these SNPs. Now all that work begins to pan out when we can quickly genotype a large number of SNPs.



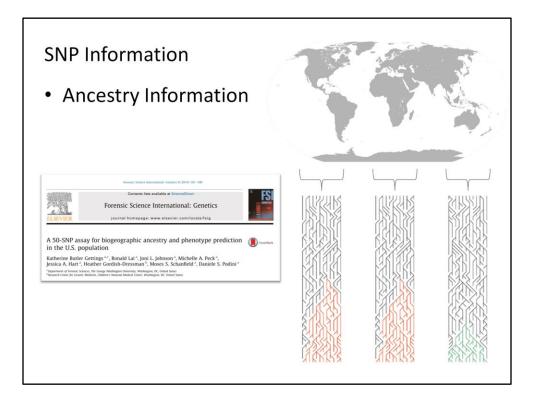
48 of SNPforID 52 37 of Kidd's 45 5 not in either panel


NIST staff recently ran a pre-release version of this kit on our SRM samples (N=14) and obtained around 1000-2000X coverage per sample per locus.

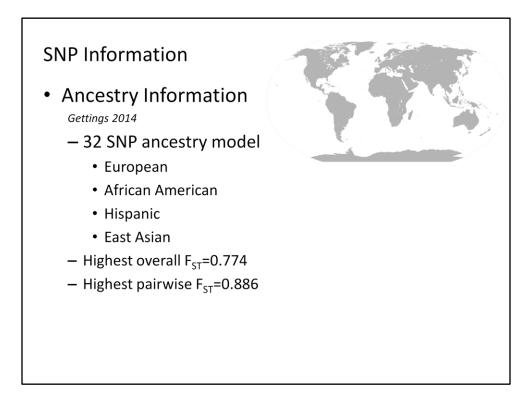
								The second second
l I	ndi	vid	ual	de	ntif	icati	on	
10	on A	mpli	Seg Hi	D kit	(PG	M) v 2.	3	
Gen	Ref	Variant	Var Fr	Qual	Cov	Ref Cov	Var Cov	
T/T	A	C,G,T	100.0%	100	395	0	395	
G/A	G	A,C,T	46.6%	100	399	213	186	γ
T/C	Т	A,C,G	50.3%	100	400	199	201	I ALYZA KS
T/T	Т	A,C,G	0.0%	100	399	399	0	
T/G	Т	A,C,G	50.3%	100	398	198	200	
T/T	т	A,C,G	0.0%	100	400	400	0	Salessi
C/G	С	A,G,T	47.8%	100	400	209	191	
T/A	Т	A,C,G	46.6%	100	399	213	186	
G/A	G	A,C,T	50.8%	100	400	197	203	
A/A	G	A,C,T	100.0%	100	399	0	399	
A/A	A	C,G,T	0.0%	100	400	400	0	
G/A	G	A,C,T	50.1%	100	399	199	200	
A/A	A	C,G,T	0.0%	100	398	398	0	
			49.0%	100	400	204	196	216212


There will be an analysis plug-in for the PGM server that returns the SNP genotypes. This is a view of some of the autosomal SNP data we recently generated (rs numbers not visible here but are present in actual report). First row is a homozygous SNP, differing from the reference. Heterozygotes appear balanced (near 50%).

This article from this past year presents results from an earlier version of this kit.



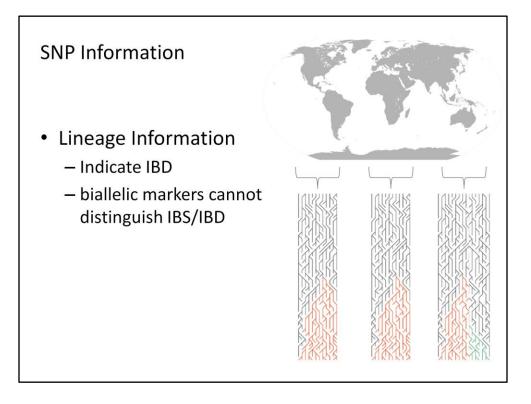
The authors show complete results down to 1ng and close to complete results even at 100pg of input DNA.



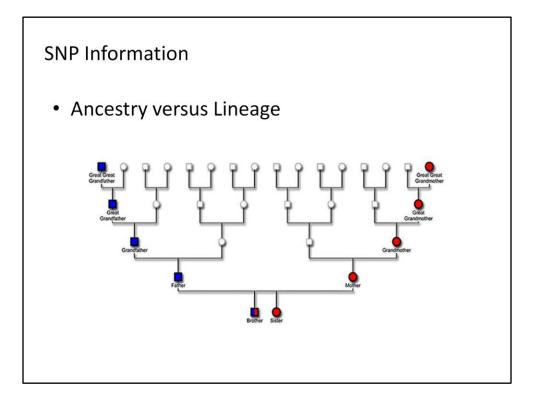
Fixation may be the result of negative "purifying" selection, eg malaria resistance snps in subsaharan africa

An article showing a panel of SNPs designed for BGA in the US population.

The model is designed to predict the four primary populations of interest in the US. Highest average Fst in alfred is 0.774 for rs2714758 Highest pairwise Fst from our training set is 0.886 for rs1426654 Asian compared to European

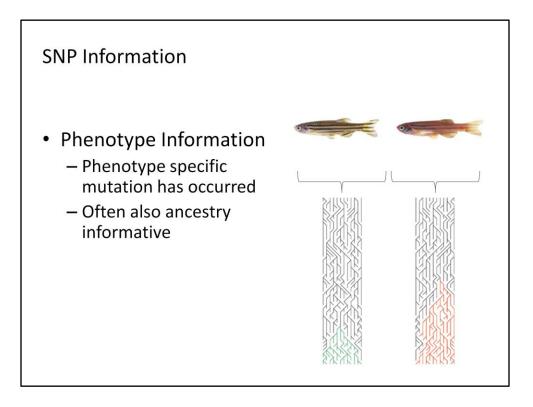

SNP Inf	forr	nat	ion				
Getting — R№	s 2014 1 P/L	₄ R pi	formation rediction				er
		raining Set .	Ancestry 32 SNP.xbx".				
CCGGGĞTT	GAAACTA	AGGAATTC	m population file and the following 32 SNI CCCTTTTTTTGGTTCTGTGAAACCAA PERCENTILE (percent of population samples with lo	GGCCTTGTCTTTAA	This profile is . more likely Eu	ropean than	
	-		a process carge detection of boltomore southers want to		mspuncy wat		
European		1.13%			2.7x10 ²⁶ times		
EastAsian		0.00%			European that	n African	
AfricanAA HisNatAmer	94.343492	1.28%			American, etc.		
This profile is 5, Therefore, the p			ropean than HisNatAmer, and 269,012,209,794,635.	345,794,408,960.0000 times more I	ikely European than AfricanAA.		

"Snipper" from Chris Phillips' lab-- Interpretation with RMP/LR statistic, similar to statistics currently used for STR. Allows for the input of any SNP data set by which to compare an unknown sample, or user can choose to import a custom data set. A supplement to Gettings 2014 contains a data set with the four previously mentioned populations.


A likelihood approach such as this could be more transparent for investigators than a % prediction.

<section-header><text><text><text></text></text></text></section-header>	SNP Info	ormation	l		1		
<section-header></section-header>	• 10000	trulator	matia	-	Y.	-	121051
<section-header></section-header>	 Ances 	LIY IIIO	matio	11			A State
<section-header></section-header>		•					
<section-header></section-header>	Gettinas 2	2014					
<text></text>	5						
<text></text>						8	
<text></text>		7LK pred	iction				
Encode Sector Sector Sector Sector Horse Descence Sector Sector Horse Sector						and the second	
FROGE-L6 Forensite Cesource Cettor Data description Nome Data description Total description Nome Description Description Nome Description Description Nome Description Description Nome Description Description Nome De	 htt 	p://frog.med.vale.	edu/FrogKB/			100	
Duticity Point Duticit		1.11.1.0					
Process the values are written an order of magnated as are written an order of magnated as are written an order of magnated as are written as are of magnated as are written as are writ	About	SNP Set Populations Data Daniele Podini's list of 32 AISNPs BASED ON 25 SNPS View Sta	Entry Functionalities F Probability of Genotype in Ps Used		s Chinese (EastAs na (SouthAmerica IEPH (NorthAmeric	3.55-19 (a,124) 1.55-19 (100) 2.35-20 (a,50) 4.05-21	8.88+10 1.28+11 8.98+11 5.78+12
BisP Population (Regionsample) Probability of CRain (Regionsample) Intelline of Rain (Regionsample) Intel	File Upload				siz,84)	6.4E-22	3.6E+13
Image: Constraint of Constr	115115	 Indicates the values are with 			(NorthAmerica,10	6) 3.96-22	5.8E+13
Pathin Name (InvestMin) 0.16.4 17 Amount (InvestMin) Amount (Inves		(Region.Sample Size 2N)	in each Population	^e Likelihood Ratio	DP-CEPH (SouthA	The most l	ikely populations
Pails Outward diverse M4 0 18.4 2.3 Outward diverse M4 Outward div	AISNP			1.7			
Pipeline Massing (2012) (4.00) 9.117.0 (4.10) (4.00)		Kharty (Asix 500)					pean, the least
Search Priva damage (27): 0 = 17.4 deg 1.1 41; (27): African. Contact Us Biordit, 000C/079 (AstaM) 3.4-19 2.4 2.6 African. PROC-Ads suggestion damage (AstaM) 3.6-19 2.4 2.6 Adjust (AstaM) 3.6-19 2.6 PROC-Ads suggestion damage (AstaM) 3.6-19 2.6			0 1.02-8	2.2	EPH (Africa 14)	une un Lune	
Contact Us PROC4 bits suggested match.mcbi.CDPL/PUirkask01 54-01 24 24/201 21/201 PROC4 bits suggested match.mcbi.CDPL/PUirkask01 54-01 29 Appli - 14.50 276-20 PROC4 bits suggested match.mcbi.CDPL/PUirkask01 58-01 29 280 382.91 276-20 Values Appli - 14.504 28-01 280 287 282.01 282.01 Section1050-CDPL/Markel01 3.61.91 240 287 282.01 282.01 282.01 Section1050-CDPL/Markel01 3.61.91 240 287.01 384.01 242.02 Section1050-CDPL/Markel01 3.61.91 240 48.01 282.01 284.01 282.01 Section1050-CDPL/Markel01 3.61.91 240.01 282.01 284.01 282.01 284.01 282.01 Section1050-CDPL/Markel01 3.61.91 240.01 282.01 284.01 282.01 284.01 282.01 284.01 282.01 284.01 282.01 286.01 286.01 286.01 286.01 286.01 286.01	PISNP	Chuvesh (Europe,84)		2.2 4.0			lations are all
Contact Us Burshit, (005CPUT (kas M)) 54/-19 24 24/20 11/20 24/20 FROOV Als suggested parts (105 OUT (kas M)) 54/21 27 28 28 11/20 27/20 National limit of Putting parts (105 OUT (kas M)) 54/21 27 28 28/20 <th>PISNP</th> <td>Chuvash (Europe,84) Hazara_HGDP-CEPH (Asia,50)</td> <td>0 5.75-9</td> <td>2.2 4.0 6.1</td> <td></td> <td>likely popu</td> <td>lations are all</td>	PISNP	Chuvash (Europe,84) Hazara_HGDP-CEPH (Asia,50)	0 5.75-9	2.2 4.0 6.1		likely popu	lations are all
Contact Us Banks, (REG,2014; MaskB) 286-03 28 BBI 1.000 270-21 FPGOD, Mis supported Us Anamon formar Min 7.86-10 29 PR 336.97 7.86-20 Space 2010-DDN-BX: K3220 Anamon formar Min 7.86-10 29 2014 (Ahard, Min) 5.82-41 2.42-22 Bandware, 1000-62011; Surger AMI 5.82-10 44 Start Amage 5.82-41 2.42-22 Bandware, 1000-62011; Surger AMI 5.82-41 2.42-22 1.66-33 Bandware, 1000-62011; Surger AMI 5.82-41 2.42-52 1.66-33 Bandware, 10000-62011; Surger AMI	PISNP Pipeline	Churash (Europe.84) Hezara_HGDR-CEPH (Asia,50) Finns (Europe.72)	0 5 78-9 0 1 78-9	2.2 4.0 6.1 16	nca,80) 44)	likely popu	lations are all
FROG lds is supported by paired 2016-DN 803.VL236 Adspt://inscreteMitic 786-10 296 283.02 786-28 gauge 2016-DN 803.VL236 Saussey, througe Mill 7.86-10 264 266 267.02 7.86-28 gauge 2016-DN 803.VL236 Saussey, througe Mill 3.86-10 246 266-20 267.02	PISNP Pipeline Search	Churash (Europe.84) Hazara, HSDF-CEPH (Asia.50) Finna (Europe.72) Russians, Archangeta (Europe.68)	01750 01750 1458	2.2 4.0 6.1 16 24	rca.00) 44) a.90)	likely popu	lations are all
National Jonduse of Punice grant 2015-DN-BX-K2220 Reasons floware/Mit 7.86-10 201 2010 (Annu-Ab) 3.86-30 7.76-20 grant 2015-DN-BX-K2220 Bandrow, HIGD=CDM floware/Mit 5.82-10 44 2.02-10 2.02-10 Bandrow, HIGD=CDM floware/Mit 5.82-10 44 2.02-10 2.02-10 2.02-10 Bandrow, HIGD=CDM floware/Mit 5.82-10 44 2.02-10 2.02-10 2.02-10 Bandrow, HIGD=CDM floware/Mit 5.02-10 44 1.02-20 2.02-10 2.02-10 Bandrow, HIGD=CDM floware/Mit 5.02-10 1.02-20 2.02-10 2.02-10 2.02-10	PISNP Pipeline Search	Churash (Europe.84) Hazara, MGDP.CEPH (Asia.50) Finis (Europe.72) Russians, Archangefisi (Europe.58) Burustis, HOCP-CEPH (Asia.59)	© 5.75.9 © 3.76.9 1.45.9 9.45.10	2.2 4.0 6.1 16 24 26	rca.00) 44) a.90)	likely popu African.	
Bit (DNL-BX-K22)6 Salting into 0-520H (Jurge M) S 2210 44 K20H (Jurge M) S 52-1 2 4-52 Bit (DNL-BX) Bit (DNL-BX) 125-4 56-2 56-2 Bit (DNL-BX) 125-4 125-3 56-2 Variate (AFrac M) 127-45 125-3	PISNP Pipeline Search Contact Us	Chuvash (Sunpe 84) Hazara, HGDR-CEPH (Asa,50) Finns (Sunpe 72) Russiana, Archangefas (Sunpe 58) Buvulas, DAD-CEPH (Asa, 56) Brahu, HODR-CEPH (Asa,56)	© 575-8 © 175-9 1.45-8 9.45-10 8.95-10	2.2 4.0 6.1 16 24 26 29	rca,80) 44) a,90) 20P-CEPH (Africa a,80)	likely popu African.	2.15-28
No. No. <th>PISNP Pipeline Search Contact Us FROG-bb is supported by</th> <td>Chuvesh (Surge 84) Hazara, HGDR-CEPH (Asa, 80) Pinos (Surge, 72) Russiana, Archangefai, (Surge, 88) Burusha, HGDR-CEPH (Asa, 80) Brinki, GOR-CEPH (Asa, 50) Adygel (Surge, 198)</td> <td>0.575-9 0.376-9 9.46-10 8.96-10 7.96-10</td> <td>22 40 6.1 94 28 29 29</td> <td>rca.80) 44) 3.59) DDP-CEPH (Africa 8.50) .78)</td> <td>likely popu African.</td> <td>2.15-28 7.36-28</td>	PISNP Pipeline Search Contact Us FROG-bb is supported by	Chuvesh (Surge 84) Hazara, HGDR-CEPH (Asa, 80) Pinos (Surge, 72) Russiana, Archangefai, (Surge, 88) Burusha, HGDR-CEPH (Asa, 80) Brinki, GOR-CEPH (Asa, 50) Adygel (Surge, 198)	0.575-9 0.376-9 9.46-10 8.96-10 7.96-10	22 40 6.1 94 28 29 29	rca.80) 44) 3.59) DDP-CEPH (Africa 8.50) .78)	likely popu African.	2.15-28 7.36-28
Marcal Advanz 122-44 152-56 Variaba (Advanz 127-45 4.22-38	PISNP Pipeline Search Contact Us FROG-kb is supported by National Institute of Justice	Churash (Surge 84) Hazara, HOZH-CEM (Ass.50) Free (Surge 72) Burasha, HOZH-CEM (Ass.50) Burasha, HOZH-CEM (Ass.50) Braham, HOZH-CEM (Ass.50) Anger (Surge 34) Reason (Churge 56)	© 5.75.0 © 3.75.0 1.45.8 9.45.10 5.85.10 7.35.10 7.35.10	2.2 4.0 6.1 24 25 29 29 29 44	rca.80) 44) a.30) 50P-CEPH (Africa a.80) 78) 52PH (Africa.30)	likely popu African.	2.16-28 7.06-28 7.77-50
Youka (Afrox 594) 2.77-45 6.22-36	PISNP Pipeline Search Contact Us FROG-kb is supported by National Institute of Justice	Churash (Surge 84) Hazara, HOZH-CEM (Ass.50) Free (Surge 72) Burasha, HOZH-CEM (Ass.50) Burasha, HOZH-CEM (Ass.50) Braham, HOZH-CEM (Ass.50) Anger (Surge 34) Reason (Churge 56)	© 5.75.0 © 3.75.0 1.45.8 9.45.10 5.85.10 7.35.10 7.35.10	2.2 4.0 6.1 34 28 29 29 44	rca,80) 44) 3,90) 201-2291 (Africa 8,90) 28) 223 2291 (Africa,30) 7-2591 (Africa,30)	likely popu African. 115-36 238-37 306-39 585-41	216-28 7.76-28 7.76-90 2.46-92
	PISNP Pipeline Search Contact Us FROG-kb is supported by National Institute of Justice	Churash (Surge 84) Hazara, HOZH-CEM (Ass.50) Free (Surge 72) Burasha, HOZH-CEM (Ass.50) Burasha, HOZH-CEM (Ass.50) Braham, HOZH-CEM (Ass.50) Anger (Surge 34) Reason (Churge 56)	© 5.75.0 © 3.75.0 1.45.8 9.45.10 5.85.10 7.35.10 7.35.10	2.2 4.0 6.1 16 24 26 29 29 44	rca,80) 44; 3,90) 200-CEPH (Africa, 8,90) 78; 2EPH (Africa,30) 2EPH (Africa,30) 300 (Africa,30)	likely popu African. 195-36 326-37 3.06-39 9.525-41 4.11-42	2.11-48 7.24-48 7.71-56 2.41-52 8.61-53
	PISNP Pipeline Search Contact Us FROG-kb is supported by National Institute of Justice	Churash (Surge 84) Hazara, HOZH-CEM (Ass.50) Free (Surge 72) Burasha, HOZH-CEM (Ass.50) Burasha, HOZH-CEM (Ass.50) Braham, HOZH-CEM (Ass.50) Anger (Surge 34) Reason (Churge 56)	© 5.75.0 © 3.75.0 1.45.8 9.45.10 5.85.10 7.35.10 7.35.10	2.2 4.0 6.1 24 26 29 29 44	rca,80) 44) 509-CEPH (Africa, 8,80) 78) 229-CEPH (Africa,50 76) 2294 (Africa,50 76) 2004 (Africa,50 76) 2004 (Africa,50 2004 (Africa,50	likely popu African.	2.0%-20 7.9%-28 7.9%-8 2.4%-25 5.5%-22 1.5%-30

Another similar approach from the Kidd lab, using allele frequencies in 80+ world populations to determine the RMP of the unknown sample in each world population and then comparing the RMPs.



Tightly linked snps that can give information about familial relationships because when two individuals have the same multilocus genotype, this can indicate ibd whereas a single snp (with only three possible genotypes) cannot distinguish ibs vs ibd. mt & Y snps are great example

This illustrates the difference between information content for lineage markers, whether LISNPs on autosomes (such as microhaplotypes) or mt/Y data, compared to ancestry informative markers.

Using only mito and Y data, we only obtain information on 1/8th of a male's overall ancestry four generations prior, and for a female, mito only gives 1/16th of overall ancestry four generations prior.

SLC24A5 gene codes for a solute carrier protein, involved in cation exchange.

Nonsynonymous mutations in this gene disrupt melanogenesis & results in the golden phenotype in zebrafish.

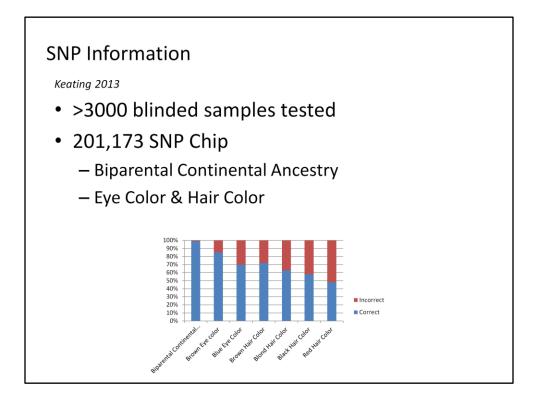
One polymorphism in this gene rs1426654 is fixed in the European population & appears to be a major factor in lighter skin pigmentation among Europeans– this is an example of positive (adaptive) selection.

Int J Legal Med (2013) 127:559–572 DOI 10.1007/s00414-012-0788-1			
ORIGINAL ARTICLE			
	Bansal • Susan Walsh • Jonathan Millman • 1 Kidd • Bruce Budowle • Arthur Eisenberg •		

This recent article shows a SNP array designed for forensic use.

SNP Information

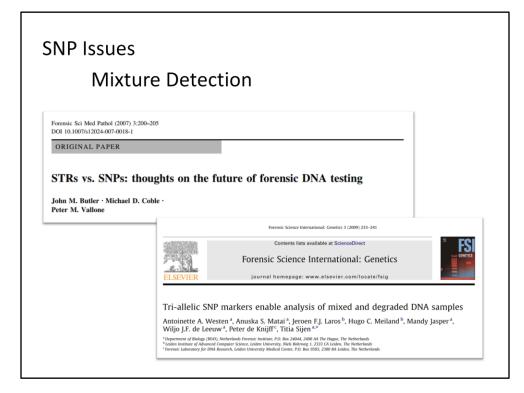
Keating 2013

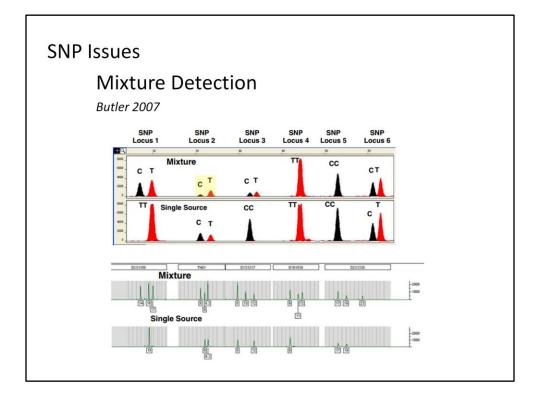

- >3000 blinded samples tested
- 201,173 SNP Chip
 - Autosomal (192,658)
 - X chromosome (5,075)
 - Y chromosome (3,012)
 - Mitochondrial (428)

This is a brute force method, using over 200K SNPs.

>90% call rate = passing platform QC

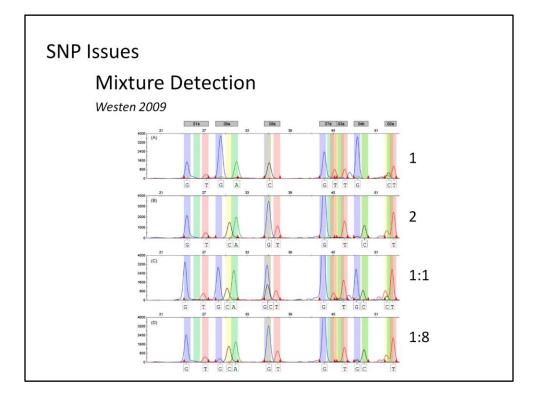
SNPs with overlapping information, and the prediction models are adaptable to the SNPs that produce data.

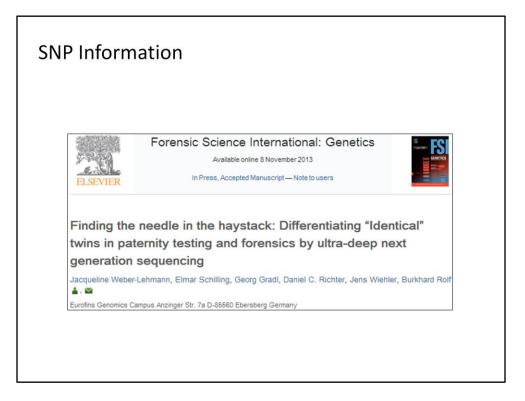

Sensitivity around 10ng input required, less for only BGA prediction.



Graph is based on paper, not from paper. BCA was determined with PCA from 80K+ autosomal SNPs, 484 Y SNPs, and 280 mtDNA SNPs. Eye color based on Irisplex 6 SNPs, slightly lower success than the original publication, authors attribute to the samples being self-reported phenotypes. Hair color, particularly red hair is low likely due to the array missing 4 of the Hirisplex 22 SNPs, all from the MC1R gene, which is largely responsible for the red hair phenotype.

SAMPLE QUAL		
s	99.7%	
check (QC)	Pass	Samples that pass QC are highly informativ
SEX		
terozygosity	Low	
notypes	Detected	
ANCESTRY	1	
ancestry (%)	1%	
an ancestry (%)	95%	
ian ancestry (%)	1%	
sian ancestry (%)	2%	
merican ancestry (%)	2%	
HAPLOGROU	IPS	
ogroup	HV0	Western Eurasia
plogroup	R1b-P310	Europe
EYE COLOF	R	
n eyes (%)	1%	Blue or intermediate color eyes are inferred
or intermediate color eyes (%)	99%	
HAIR COLO	R	
n or black hair (%)	94%	Brown or black hair is inferred
le or red hair (%)	6%	
	or intermediate color eyes (%) HAIR COLO n or black hair (%) de or red hair (%)	or intermediate color eyes (%) 99% HAIR COLOR n or black hair (%) 94%

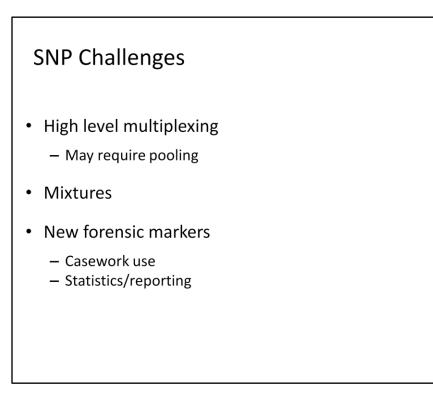

An example report from Identitas, showing more generalized categories to improve phenotype predictions.



CE based SNP typing data- mixture might be detectable at SNP locus 2, but peak imbalance is common even in single source

CE based STR typing data — mixture is detectable at all loci shown

CE based SNP typing data with triallelic SNPs. Two individuals run singly and in 1:1 and 1:8 mixtures. 7 tri-allelic loci were run– at 5 loci we cannot detect a mixture.


This article is an interesting application of NGS to distinguish identical twins, which is not possible with current STR technology.

SNP Inforr	ldentical Twin #1	ldentical Twin #2						
 Criminal paternity example Comparison of twin's sperm DNA genomes 								
Adapted from manuscript Table 1	Chromosome 04 snp188267982	Chromosome 06 snp41885722	Chromosome 11 snp68781324	Chromosome 14 snp103545720	Chromosome 15 cnp57884799			
Twin #1 sperm	C/T (80/20)	G/A (70/30)	C/T (80/20)	A/G (50/50)	C/T (50/50)			
Twin #1 buccal mucosa	C/T (80/20)	G/A (75/25)	C/C	A/G (60/40)	C/T (50/50)			
Twin #1 blood	C/C	A/A	C/C	G/G	C/T (80/20)			
Twin #2 sperm	C/C	A/A	C/C	G/G	C/C			
Twin #2 buccal mucosa Twin #2 blood	C/C C/C	A/A A/A	C/C C/C	G/G G/G	C/C C/C			
Rare mutations occur early after the human blastocyst has split into two, the origin of twins, and that such mutations will be carried on into somatic tissue								

In this mock case, the two twins samples (sperm, buccal & blood) were whole genome sequenced and compared. The hypothesis was that mutations present in one twin's sperm and not the other's might have carried into the germline and thus be present in any offspring. The SNPs shown are present in one twin's sperm and to varying degrees in his buccal and blood, but they are absent from all of the other twin's samples.

 SNP Information Identical Twin #1 Identical Twin #2 Criminal paternity example Comparison of twin's sperm DNA genomes 							
Adapted from manuscript Table 1	Chromosome 04	Chromosome 06	Chromosome 11	Chromosome 14	Chromosome 15		
	snp188267982	snp41885722	snp68781324	snp103545720	cnp57884799		
Twin #1 sperm	C/T (80/20)	G/A (70/30)	C/T (80/20)	A/G (50/50)	C/T (50/50)		
Twin #1 buccal mucosa	C/T (80/20)	G/A (75/25)	C/C	A/G (60/40)	C/T (50/50)		
Twin #1 blood	C/C	A/A	C/C	G/G	C/T (80/20)		
Child blood	C/T (50/50)	G/A (50/50)	C/T (50/50)	A/G (50/50)	C/T (50/50)		
Twin #2 sperm	C/C	A/A	C/C	G/G	C/C		
Twin #2 buccal mucosa	C/C	A/A	C/C	G/G	C/C		
Twin #2 blood	C/C	A/A	C/C	G/G	C/C		
Rare mutations or twins, and that su					-		

The child shares all these SNPs with one of the twins, thus this twin is expected to be the father.

Do we adopt core loci or incorporate SNPs with overlapping roles/purposes to allow for failures?

Do we validate the same way as other markers if we are only using for investigative leads?

Do we validate lab processing/genotyping in a way that allows for failures?

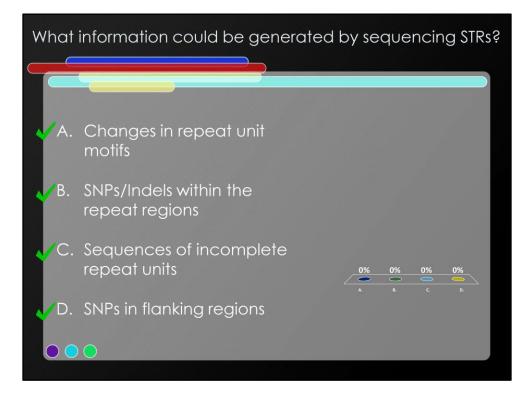
The prediction models are evolving and predictions are often lower than we expect from forensic statistics

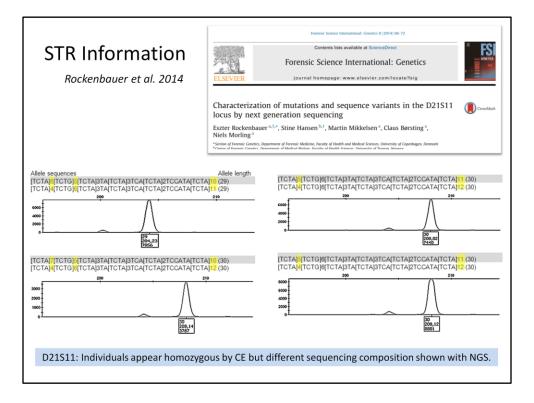
NGS Forensic Applications

SNP Genotyping

Sample type amenable to library preparation?

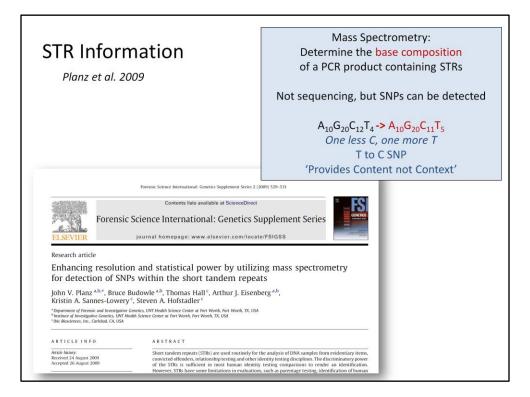
Sample type amenable to sequencing platforms?


Sample type amenable to bioinformatics?


Improvement over current method?

SNPs are completely amenable to NGS typing and bioinformatics. No one method has been adopted by the community for forensic SNP typing– these markers are not yet in common use, so there is no "current method" for comparison.

Legacy- new NGS technology needs to be back compatible for databases



DNA sequences and CE results in four unrelated individuals reported as homozygous by CE, but with different sequence composition as shown with NGS.

STR Information							
D21S11							
[TCTA] ₄₋₁₃	[TCTG] ₃₋₁₁	${[TCTA]_3 TA [TCTA]_3 TCA [TCTA]_2 TCCATA}$	[TCTA] ₆₋₁₅				
[TCTA] ₄₋₆	[TCTG] ₅₋₆	${[TCTA]_{2-3}}TA [TCTA]_3 TCA [TCTA]_2 TCCATA}$	[TCTA] ₈₋₁₆	TA	[TCTA]		
[TCTA] ₅₋₁₁	[TCTG] ₆₋₁₄	{[] [TCTA] ₃ TCA [TCTA] ₂ TCCATA}	[TCTA] ₉₋₁₃				
[TCTA] ₅₋₆	[TCTG] ₅₋₆	{[TCTA] ₃ TA [TCTA] ₃ TCA [TCTA] ₂ TCCATA}	[TCTA] ₅₋₁₀	TCA	[TCTA] ₂₋₆ NNN		

D21S11 has significant variation of repeat units throughout the complex repeat motif.

Both are 46 bases long, but differ in base content – they will also have unique masses

STR Information

Planz et al. 2009

	Population	STR or	nly analysis on	IBIS T5000	STR-SN	IP analysis on I	BIS T5000
		n	Alleles detected	DP	n	Alleles detected	DP
D13S317	Caucasian	182	7	0.9213	181	12	0.9705
	African Am.	214	7	0.8607	213	12	0.9528
	Hispanic	193	7	0.9445	193	13	0.9751
D21S11	Caucasian	182	14	0.9540	181	23	0.9780
	African Am.	214	20	0.9589	213	33	0.9708
	Hispanic	193	14	0.9521	193	25	0.9752
D3S1358	Caucasian	182	8	0.9226	181	18	0.9671
	African Am.	214	8	0.8923	213	18	0.9775
	Hispanic	193	8	0.8939	193	18	0.9455
D5S818	Caucasian	182	9	0.8432	181	15	0.9260
	African Am.	214	9	0.8932	213	17	0.9102
	Hispanic	193	9	0.8679	193	13	0.9554
D7S820	Caucasian	182	8	0.9349	181	15	0.9600
	African Am.	214	8	0.7	213	12	0.9376
	Hispanic	193	9	0.7358	193	14	0.9482
D8S1179	Caucasian	182	10	0.9324	181	14	0.9627
	African Am.	214	10	0.9239	213	19	0.9489
	Hispanic	193	9	0.9303	193	16	0.9639
vWA	Caucasian	182	10	0.9388	181	22	0.9580
	African Am.	214	11	0.9403	213	26	0.9766
	Hispanic	193	7	0.9108	193	16	0.9305

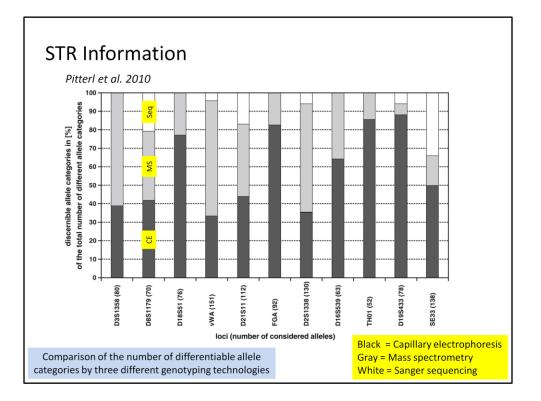
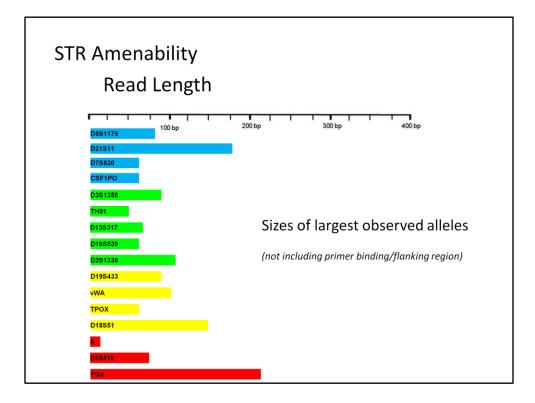
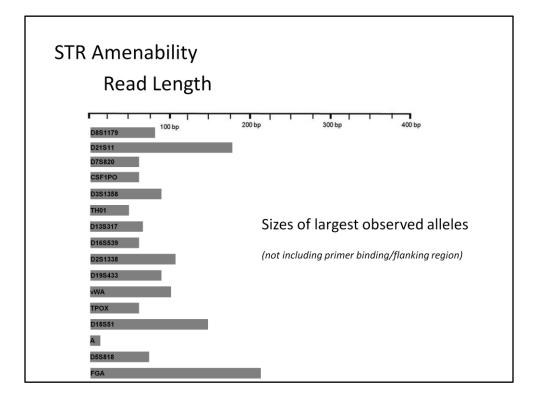


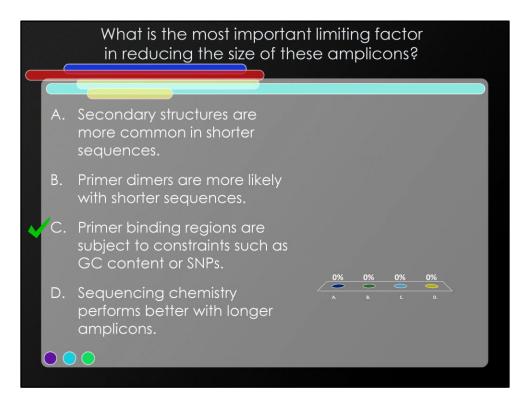
Fig. 1 Comparison of the number of differentiable allele categories by three different genotyping technologies. For each locus, a representative number of alleles (numbers in

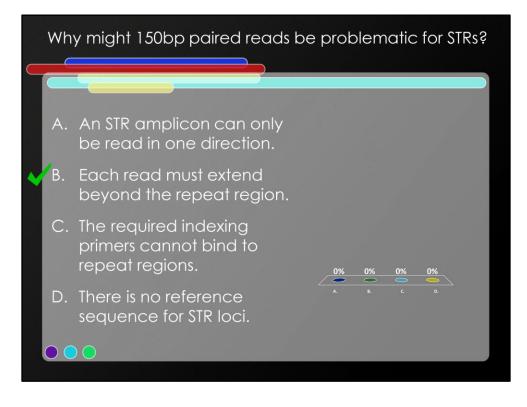

parentheses) were analyzed by electrophoresis, ICEMS, and Sanger sequencing.

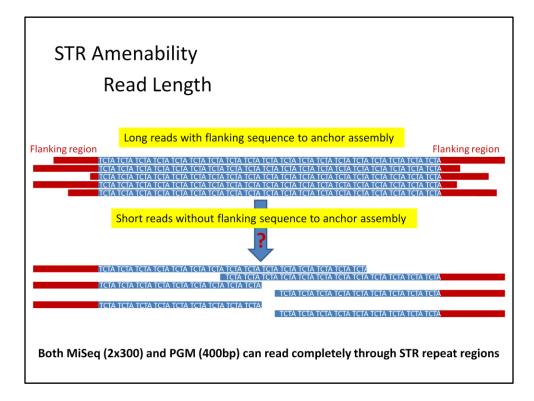
The number of allele categories discernible via electrophoresis (black) and ICEMS (gray) is compared to


the number of differentiable allele classes by sequence analysis and expressed in percent. Sequence analysis (white) corresponds to 100% of discernible allele categories

STR Amenability Read Length	
100 bp 200 bp 300 bp 400 bp	
D851179 D21511 D75820 CSF1PO	
D3S1358 TH01 D13S317 D16S539 D2S1338	
D19S433 VWA TPOX D18S51	
A D5S818 FGA	


Example from identifiler




The STR loci no longer need to be separated based on size, as was the case with CE genotyping.

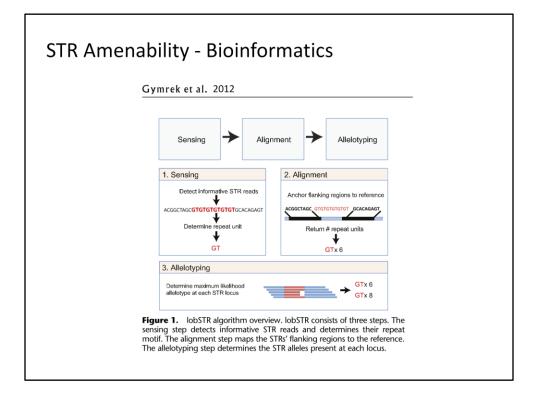
They also no longer need to be fluorescently labeled.

STR Amenability - Bioinformatics

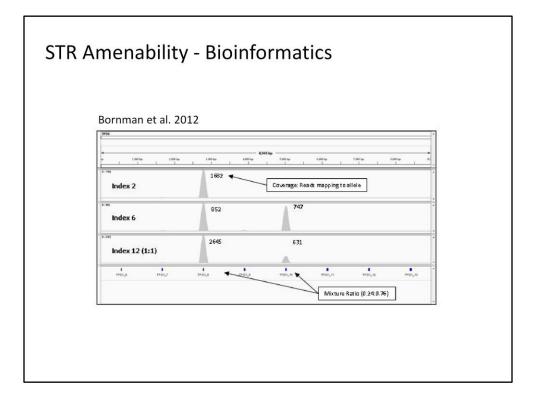
Method=

lobSTR: A short tandem repeat profiler for personal genomes

Melissa Gymrek, 1,2 David Golan, 2,3 Saharon Rosset, 3 and Yaniv Erlich 2,4 Weitssa Gymru Davison of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; ²Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA; ³Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv 69978, Israel

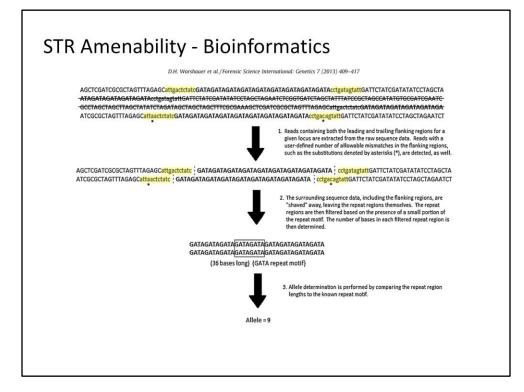

Short-read, high-throughput sequencing technology for STR genotyping

Daniel M. Bormman', Mark E. Hester', Jared M. Schuerter', Manjula D. Kasoji', Angela Minard-Smith', Curt A. Barden', Scott C. Nelson', Gene D. Godbold', Christine H. Baker', Boyu Yang', Jacquelyn E. Walther', Ivan E. Tornes', Pearlly S. Yan', Benjamin Rodriguez', Ralf Bundschuh', Michael L. Dickens', Brian A. Young', and Seth A. Faith' A. Faith' 'Battelle Memorial Institute, Columbus, OH, USA, 'Battelle Memorial Institute, Charlotteville, VA, USA, 'Human Cancer Genetics Program, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA, "Human epartment of Physics and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH, USA,


STRait Razor: A length-based forensic STR allele-calling tool for use with second generation sequencing data

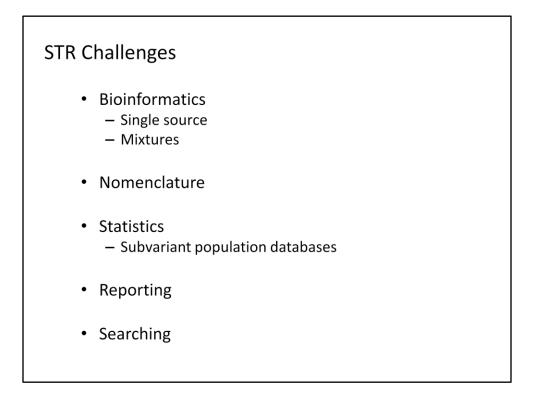
David H. Warshauer^a, David Lin^b, Kumar Hari^b, Ravi Jain^b, Carey Davis^a, Bobby LaRue^a, Jonathan L. King^a, Bruce Budowle^{a,c,*}

^a Institute of Applied Genetics, Department of Forensic and Investigative Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, IX 76107, USA ^b elik, Inc., 3786 Abraham Street, Fremont, CA 94536, USA ^c Center of Excellence in Genomic Medicine (CECMR), King Abdulaziz University, Jeddah, Saudi Arabia


This method first detects the repeat motif and then anchors to a reference.

By aligning the data to an silico reference sequence, the genotype can be determined, and known sequence variants can also be detected. New repeat motifs (not included in the reference sequence) may not be detected.

This method looks for flanking regions (lower case highlighted), and only uses sequences where both 5' and 3' end flanking regions are present.

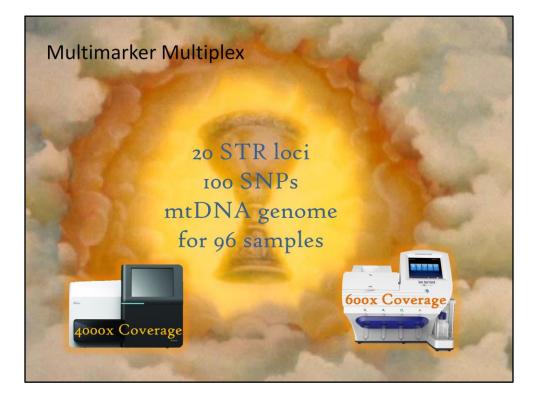


STR Amenability - Bioinformatics							
Bioinformatics are key to identifying sub-alleles							
[TCTA] ₄₋₁₃	[TCTG] ₃₋₁₁	{[TCTA]₃ TA [TCTA]₃ TCA [TCTA]₂ TCCATA}	[TCTA] ₆₋₁₅				
[TCTA] ₄₋₆	[TCTG] ₅₋₆	${[TCTA]_{2-3}}$ TA ${[TCTA]_3}$ TCA ${[TCTA]_2}$ TCCATA ${}$	[TCTA] ₈₋₁₆	TA	[TCTA]		
[TCTA] ₅₋₁₁	[TCTG] ₆₋₁₄	{[] [TCTA] ₃ TCA [TCTA] ₂ TCCATA}	[TCTA] ₉₋₁₃				
[TCTA] ₅₋₆	[TCTG] ₅₋₆	${[TCTA]_3 TA [TCTA]_3 TCA [TCTA]_2 TCCATA}$	[TCTA] ₅₋₁₀	ТСА	[TCTA] ₂₋₆ NNN		

lobSTR and STRaight Razor methods give length based genotype.

In silico reference can give known sub alleles.

Ideal method wouldn't be constrained to a ladder and would return sequence variants & changes in repeat motif.


The bioinformatics are challenging even for single source samples.

Nomenclature – develop a new system for denoting sub alleles? Use entire string for database searching? These are questions the community would need to address prior to routinely generating sequencing data from STRs.

In order to use the sequence variant data in forensic statistics, we need population databases with sequencing data.

NGS Forensic Applications STR Sequencing Sample type amenable to library preparation? Sample type amenable to sequencing platforms? Sample type amenable to bioinformatics? Improvement over current method?

The library prep and read length are amenable to STRs at this point. The bioinformatics need improvement. As existing CE-based STR processing is so streamlined, NGS would not currently be an improvement.

This is what a multimarker multiplex could look like, and the rough estimate of theoretical coverage with the current technology (2x300 v3 on the MiSeq and 318 chip on the PGM).