
CHAPTER 6

Thermal Energy

Physical Science Vocabulary

Vocabulary for Chapter 6 – Thermal Energy

No.#	Term	Page #	Definition
1.	Degrees		
2.	Higher Specific Heat		
3.	Heat of Vaporization		
4.	Radiation		
5.	Temperature		
6.	Conduction		
7.	Boiling Point		
8.	100°C		
9.	Joules		
10.	Heat of Fusion		
11.	Expand		
12.	Heat		
13.	Convection		
14.	Melting Point		
15.	0° C		

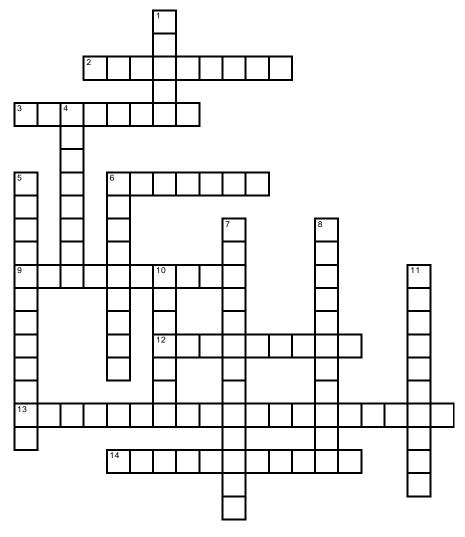
No.	Term	Page #	Definition
16.	Liquids or gases (Fluids) transfer heat by of vaporization		
17.	Flat Line (No slope) on a heating/cooling curve		
18.	High Cp (Specific Heat)		
19.	2 containers with the same temperature		
20.	Direction of Heat Flow		

Unscramble Energy Vocabulary Words

GYENER	
TINKCEI	
TOLTANIPE	
MCHIALEC	
AHET	
CNREULA	
CITRTCIELEY	
DAIRIOTAN	
LEJSU	
NOICUTCODN	
VOTNCOCNIE	
RO₩K	
Washington and American	

Broughton High School Note-Taking "Thermal Energy"

Heat Word Search

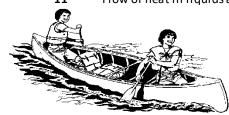


WORD BOX

Absolute Zero	Heat Engine	States of Matter
Change Of State	Insulation	Temperature
Conduction	Insulator	Thermal Energy
Conductor	Radiation	Thermal Expansion
Convection	Specific Heat Capacity	Thermal Pollution

Heat

Heat Crossword Puzzle


Across

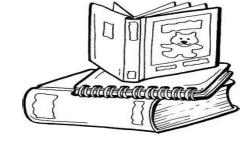
- 2 A material that doesn't conduct heat well. (9)
- 3 What electromagnetic rays that transfer heat are called. (8)
- 6 Temperature is usually measured in degrees ______.(7)
- 9 Flow of heat between two objects that are touching. (10)
- 12 Heat transfer across empty space. (9)
- 13 How well a material conducts heat? (7,12)
- 14 A measure of how hot or cold something is. (11)

Down

- 1 The unit that heat is measured in. (5)
- 4 Force that generates heat when two objects are rubbing. (8)
- The amount of heat energy a material required to change the temperature of a material. (4,8)
- 6 A material that does conduct heat well. (9)
- 7 Temperature is a measure of the average ______ of the particles in a material. (7,6)
- 8 A tool used to measure temperature. (11)
- **10** Another word for heat. (7)
- 11 Flow of heat in liquids and gases. (10)

@LoopyLand * illustrationsOf.com/36384

Section 1: - Temperature and Heat

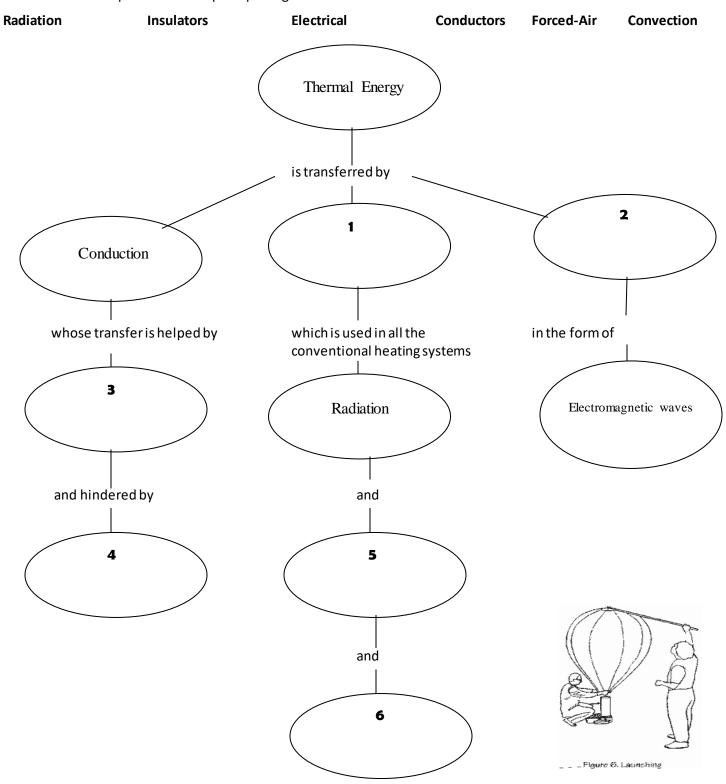

Α.		re	elated to the average kinetic energy of an object's atoms or molecules	S.
В.		the	e sum of the kinetic and potential energy of all the atoms in an object.	
	1.	Thermal energy	as temperature increases.	
	2.	At constant temperature, therma	lenergy increases ifincreases.	
C.	The	ermal energy that flows from some 	thing at a higher temperature to something at a lower temperature i	s called
			- amount of heat needed to raise the temperature of 1 kg of a mat	erial by 1
	de	gree C or K.		
			can be calculated as change in thermal energy times change in temperature times specific heat.	equals
1.	Wh	en heat flows into an object and it	s temperature rises, the change in temperature is	_
2.	Wh	en heat flows out of an ol	oject and its temperature decreases, the change in temper	ature is
3.	Α_		_ is used to measure specific heat.	
Sec	ctic	on 2: - Transferring Thern	nal Energy	
			transfer of thermal energy through matter by direct contact of p	oarticles.
	1.	Kinetic energy is transferred as pa	rticles	
	2.			
	В.	.The transfer of energy by the mo	tion of heated particles in a fluid is called	
	1.	Convection	transfer heat from warmer to cooler parts of a fluid.	
			and	ove
	C.		energy transfer by electromagnetic waves.	
			and some is	when i
	2.	Heat transfer by radiation is	in a gas than in a liquid or solid.	
			the flow of heat by using special features such	as fur
	E.		material that does not let heat flow through it easily.	
	1.		usually make better insulators than liquids or solid	S.
	2.		layer in a thermos is a good insulator because it contains a	

Section 3: - Temperature and Heat

Directions: Determine whether then italicized term makes the statement true of false. If the statement is true write **true** in the blank. If the statement is **false**, with the correct term on the line that makes the statement true.

1	Particles that make up matter are in <i>constant</i> motion.
2	The faster particles move the <i>less</i> kinetic energy they have.
3	<i>Temperature</i> is the measure of the average kinetic energy of the particles in an object.
4	When temperature <i>increases</i> , the kinetic energy of the particles decreases.
5	The thermal energy of an object is the <i>total</i> energy of the particles in a material.
6.	A 5kg chunk of aluminum and a 5-kg block of silver that are at the same temperature have <i>the same</i> thermal energy.
7	Heat flows from a <i>higher</i> temperature to a lower temperature.
8	Heat is measured in <i>newton's</i> .
9	Different materials need the same amounts of heat to have similar changes in
10	The amount of energy it takes to raise the temperature of 1kg of a material 1 Kelvin is the specific heat of the material.
11	Water has a relatively <i>low</i> specific heat.
12	Materials with a high specific heat can absorb lot of energy and show <i>little</i> change in temperature.

Section 4: - Temperature and Heat (Directed Reading)


Directions: Determine In each of the following statements, a term has been scrambled. Unscramble the term and write it on the line.

1.	 If the particles move <i>llsowy</i> the object's temperature falls.
2.	 Conduction can take place in solids, liquids, and sages.
3.	 Thermal energy includes both kinetic and ttnepoail energy.
4.	 Any material that can flow is <i>lufdi</i> .
5.	 Any material that allows heat to pass through it easily is a <i>roconcutd</i> .
6.	 Materials with a high specific heat can absorb heat without a large <i>hngcae</i> in temperature.

		Broughton High School
7	Radiati	on is the transfer of energy in the form of <i>vaews</i> .
8	When a	n object increases in temperature it <i>naigs</i> thermal energy.
9	Many c	onductors, such as silver and copper, are <i>lemtas</i> .
10	Energy	that travels by radiation is often called darinta greeny.
11	Insulate	ors, such as wood and air, are poor conductors of thea.
12	The tra atte	nsfer of thermal energy by convection and conduction both require ${\it erm}$.
Section 5: -	- Thermal Energy Equ	ation
	• .	ns about specific and thermal energy.
13. Chang	e in thermal energy can be ca	culated using the equation $Q=m\;x\;\Delta T\;x\;C_p$
a.		Q represent?
b.	What does m represent?	-
C.	What does ΔT represent?_	
d.	What does C represent?	-
e.	What does the symbol ∆ me	an?
f.	Why is the symbol ∆ used w	
14. What f	formula is used to calculate Δ٦	Γ?
Section 6:	- Overview Thermal E	nergy l
Directions:	Use the terms from the word	bank to complete the summary statements.
Collusions Cooler Faster	Heat Kinetic Energy The Potential Energy	- -
As the (1)		of an object increase, the particles in the object move (2)
		
		of the particles increases.
The sum of the the (5)	e kinetic energy and the (4)	of the particles in an object i
		comes in contact with a substance at a lower temperature, (6) between the particles in the two substances cause thermal energy
		object to the (8) object.
Thermal energ		ce in temperature is (9)

Section 7: - Overview Thermal Energy II

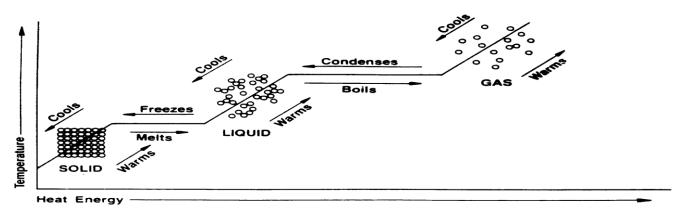
Directions: Complete the concept map using the terms listed below.

Specific Heat Equations I

Q	=	m	Ср	ΔΤ
		• • •		

	• • •	Up	— .
1	1 kg	388 j/kg*C zinc	1°C
2	2 kg	385 J/kg*C copper	1°C
3	12 kg	228 J/kg*C tin	6°C
4	80 kg	449 J/kg *C gold	21°C
5	1 kg	129 J/kg*C lead	0.5°C
6	2kg	4,186 J/kg*C water	0.5°C
7	43 kg	2,400 J/kg*C ethyl alcohol	11°C
8	1 kg	450 j/kg*C iron	3°C
9	10 kg	920 J/kg*C aluminum	61°C
10	2.9 kg	385 J/kg*C copper	50°C

11 A 2kg block of which metal from the Table above would require 898 J to raise its temperature by 1C $^{\circ}$?


12. Using the Cp values from above, how much heat is required to warm a 1 kg block of zinc from $10^{\circ} - 12^{\circ}$ C?

- 13. A metal block and a brick of the same mass are placed in the Sun. What is the property of matter that will make one hotter to the touch than the other?
- 14. Using the Cp values from the Table above, circle the substance in each pair that will heat up *fastest*.
 - a. Zincor Aluminum
 - b. Lead or Gold
 - c. Iron or Tin
 - d. Copper or Water
 - e. Water or ethyl Alcohol
 - f. Copper or Zinc
- 15. Circle the substance in each pair that will cool down *slowly*.
 - a. Water or Gold
 - b. Water or Ethyl Alcohol
 - c. Copper or Tin
 - d. Lead or Iron
- 16. Circle the substance in the pair that will hold its heat the longest when at a temperature of 100° C.
 - a. Copper or Iron
 - b. Gold or Lead
 - c. Water or Ethyl Alcohol
 - d. Aluminum or Tin
 - e. Zincor Iron
 - f. Tin or Lead

Directions: Circle the correct response

- 17. A High Specific Heat Capacity means the substance will:
 - Heat Up (quickly or slowly)
 - Cool down (quickly or slowly)
 - Will hold its heat for a (longer time or shorter time)

Specific Heat Equations II

$Q = mass \times \Delta T \times specific heat$

Hint: $\Delta T = (Final temperature - Initial temperature)$

1. How many joules of heat are required to raise the temperature of 25 kg of water from 10°C to 90°C? The specific heat of water is 4,184 J/kg°C

Formula	Set Up & Solve	Answer

2. How many joules of heat are necessary to raise the temperature of 42kg of ice from -5°C to 25°C of water?

Formula	Set Up & Solve	Answer

3. How much energy is needed to raise the temperature of 50 grams of ice at -70°C to vapors at 107°C?

Formula	Set Up & Solve	Answer

4. How many joules are necessary to cool 60 grams of water vapor at 210°C to water at 60°C?

Formula	Set Up & Solve	Answer

$Q = mass x \Delta T x specific heat$

Hint: $\Delta T = (Final temperature - Initial temperature)$

4. How many joules of heat are necessary to raise the temperature of 400 kg of vapor from 101°C to 131°C?

Formula	Set Up & Solve	Answer
5. How much energy must be trans temperature from 25°C to 37°C?	ferred as heat to 420 kg of water in a bat	thtub in order to raise the water's
Formula	Set Up & Solve	Answer
6. How much energy must a refrige drop from 35°C to 5°C?	erator absorb from 225 grams of water so	that the temperature of the water will
Formula	Set Up & Solve	Answer
Explain the specific heat difference between "Hot" & "Cold" objects?		A
	(a) Marte. See	
	Me & ECH	V.15
	· M MINED USE	2000

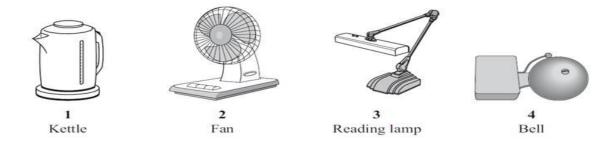
Physical Science Workbook


Chapter o - 1 nerma1 Energy 2016

Mr. Davis

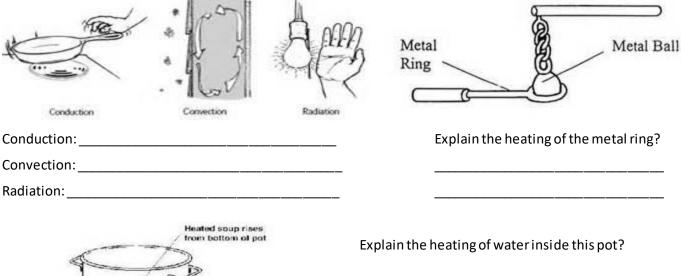
1	a measure of the averag	ge kinetic energy of each particle	within an c
2. T	Three temperatures scales:		
3	the total energ	gy of the particles that make up an	object.
4	thermal energy moves f	from an object at a higher temper	ature to ar
0	object at a lower temperature.		
5. H	Heat transfer occurs by:		·
6		transfers he	at well.
_	- The amount of heat ned		ubstance l
S	specific temperature. Matter can exist in three states of matte	er: solid, liquid, and gas.	
	Matter can undergo a change in of matter when	energy is	or
	When a substance is changing its state of matter, the tempera	ture remains	·
10. T	There are	ch	anges.
	n general, matter, when i when it is cooled.	t is heated and	
12	the physical change of m	natter from one state or (<i>phase</i>) to	o another.
	The change		
	The		
	The to		
	Vaporiza		
	Vaporization		
	The temp		
		The change from a gas to a	
estion			•
	Why is it true that a cup of boiling water contains less heat the	an a large i ceberg?	

23.	Which beaker of water (in the picture) has more thermal energy of heat?		
24.	Why does a beaker of water at 80°C feel hot while a beaker of water at 10°C feel cold?		
 25.	How do insulators slow the transfer of heat?		
 26.	In conduction, heat is transferred due to and it occurs best in		through
27.	This transfer of heat occurs untilcalled		d that is
28.	Convection is the transfer of heat through a using moving currents called		or a
29.	These currents are the cause of the and the		
30.	Radiation is the transfer of heat through and there is no	and it can required.	occur in
31.	Dark or dull objects than shiny of	bjects do.	
32.	The amount of heat energy required to raise the temperature of a material is called		
33.	Which sample pictured will take longer to heat to 100°C?		,
34.	This means that, will take longer to cool down.		
35.	Heat (Q) depends on 3 things:	, and	


Find your way out?

Forms of Heat Energy

QUESTION ONE


These devices transform electrical energy into other useful forms of energy.

Match the useful forms of energy, A, B, C and D, with the devices numbered 1-4.

- A heat (thermal energy)
- B light
- C movement (kinetic energy)
- D sound

Explain the different forms of Energy.

explain the heating of water inside this pot?						
	_					

Section 12: Study Guide

SPECIFIC HEAT QUESTIONS

Directions: Use the reference data below to answer the following

Water	•= 4.19 J/g°C	Aluminum = 0.92 J	/g°C 1	iron = 0.45 J/g°C	Copper = $0.38 \text{ J/g}^{\circ}\text{C}$
1.	At 100 degrees Cels	ius, which will cool faster;	waterorir	on	·
2.	If 100 g of iron, cop the most heat?	per, and aluminum were a	II heated to	the same temperat	ure, which of the three will contain
3.	Which requires the	most heat to change its te	mperature	one degree?	
Direction	ons: Check which one	e will require more heat			
4.	25 g of ire	on from 20 to 50°C		_ 55 g of iron from 2	0 to 50°C
5.	15 g of ire	on from 45 to 75°C		_ 15 g of aluminum f	rom 45 to 75°C
6.	10 g of ire	on from 10 to 50°C		10 g of iron from 3	0 to 50°C

- 7. Which of the metals in the table would experience the largest temperature increase for a given amount of heat input?
- a. Copper
- b. Gold c. Lead
- d. Zinc

Material	Specific Heat [J/(kg °C)]
Copper	385
Gold	449
Lead	129
Tin	228
Zinc	388

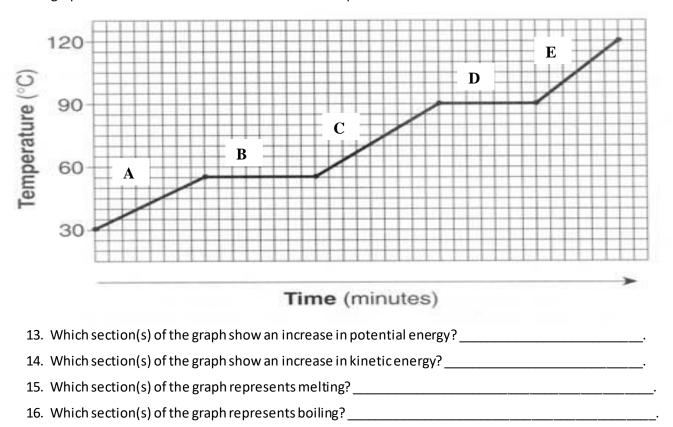
- 8. Using the table, how much heat would be required to raise the temperature of 4.0 kg of copper by 2.0°C?
- a. 190 J
- b. 380 J
- c. 3100 J
- d. 790 J

Material	Specific Heat [J/(kg °C)]
Copper	385
Gold	449
Lead	129
Tin	228
Zinc	388

Section 12: Study Guide

Broughton High School

9.	What is the difference between heat and temperature?	MARRIE


HIGHER TEMPERATURE

Directions: check which has the higher temperature

- 10. _____ your body temperature _____ comfortable classroom temperature
- 11. _____ boiling water ____ hot tap water
- 12. _____ a cellar in the summer ____ an attic in the summer

INTERPRETING GRAPHICS

Use the graph below to choose the best answer for each question.

- 18. A student sitting near you says that the substance represented on the graph is water. You do not think so because:

- 19. Which section(s) of the graph show constant temperature?______.
- 20. Which section(s) of the graph show an increase in temperature? ______.

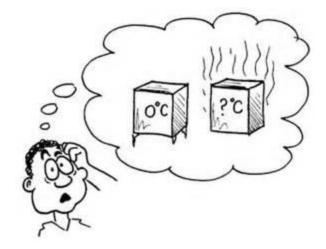
Specific Heat Problems

Heat or energy can be measured in units of calories of joules. When there is a temperature change (ΔT), heat (Q) can be calculated using the formula:

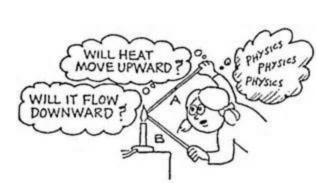
Formula: $Q = mass \times \Delta T \times specific heat - Hint: \Delta T = (Final temperature - Initial temperature)$

1. How many joules of heat are required to raise the temperature of 215 kg of water from 10 $^{\circ}$ C to 90 $^{\circ}$ C? The specific heat of water is 4,184 J/kg $^{\circ}$ C.

Formula	Set Up & Solve	Answer
2. How many joules of heat are	lenecessary to raise the temperature of 4	2kg of ice from -15°C to 25°C of
Formula	Set Up & Solve	Answer
	3335	7111700-01
	d to raise the temperature of 50 grams of	
Formula	Set Up & Solve	Answer
4. How many joules are neces	l sary to cool 60 grams of water vapor at 22	10°C to water at 60°C?
Formula	Set Up & Solve	Answer
	700000000	- HII 44 01
	e necessary to raise the temperature of 4	
Formula	Set Up & Solve	Answer
		_
What is the only year is the space	e shuttle	
take ice cream in space?		


Specific Heat Problems

6. How much energy must be transferred as heat to 420 kg of water in a bathtub in order to raise the water's temperature from 25°C to 37°C?


Set Up & Solve	Answer
	Set Up & Solve

7. How much energy must a refrigerator absorb from 225 grams of water so that the temperature of the water will drop from 35°C to 5°C?

Formula	Set Up & Solve	Answer

Chapter 6: Thermal Energy - Study Guide

	1.	When you measure the temperature of an object, you are measuring
0	A)	the average chemical energy of its particles
O	B)	the sum of its kinetic and potential energies
C	C)	the average kinetic energy of its particles
0	D)	the specific heat of the object
	2.	Which of the following substances has the highest specific heat?
O	A)	glass
O	B)	iron
O	C)	water
O	D)	carbon
	3.	Which of the metals in the table would experience the largest temperature increase for a given amount of heat

input?		
Material	Specific Heat [J/(kg °C)]	
Copper	385	
Gold	449	
Lead	129	
Tin	228	

388

0	A)	copper
0	B)	gold
0	C)	lead
0	D)	zinc

Zinc

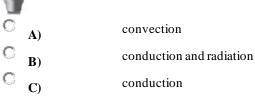
4. Using the table, how much heat would be required to raise the temperature of 4.0 kg of copper by 2.0°C?

Material	Specific Heat [J/(kg °C)]
Copper	385
Gold	449
Lead	129
Tin	228
Zinc	388

0	A)	190 J
0	B)	380 J
0	C)	3100 J
0	D)	790 J

Chapter 6: Thermal Energy - Study Guide

5. A 10.0 kg block of lead is heated in the Sun from 25.0°C to 30.0°C. Use the table to help calculate the change in the block's thermal energy?


Material	Specific Heat [J/(kg °C)]
Copper	385
Gold	449
Lead	129
Tin	228
Zinc	388

0	A)	900 J
0	B)	1300 J
0	C)	6400 J
0	D)	3900 J

6. Energy is transferred from the sun to the Earth by _____.

- C A) conduction
 C B) convection
 C C) radiation
 C D) conduction and radiation
 - 8. Which of these substances is likely to be the best insulator?
- C A) ice
 C B) steel
 C C) oxygen
 C D) water
 - 9. A heat source is located under one end of a solid material. What process, represented in the illustration, carries heat to the other end of the block?

radiation

D)

Chapter 6: Thermal Energy – Study Guide

	10.	According the first law of thermodynamics, the increase in thermal energy of a system is equal to	
O	A)	work done on the system minus heat added to the system	
0	B)	heat added to the systemminus work done on the system	
O	C)	work done on the system plus heat added to the system	
O	D)	the heat added to the system	
	,	Which of the following is most likely to conduct heat most efficiently?	
O	A)	air	
O	B)	wood	
0	C)	metal	
O	D)	fiberglass	
	12.	Find the change in thermal energy of a 20-kg wooden chair that warms from 15° to 30° if the specific heat of wood is 700 J/(kg°).	
O	A)	140,000 J	
0	B)	210,000 Ј	
O	C)	490,000 J	
O	D)	1,090,800 J	
	ĺ	Find the change in thermal energy of a 20-kg wooden chair that warms from 20° to 55° if the specific heat of wood is 700 J/(kg°).	
0	A)	140,000 J	
0	B)	210,000 J	
O	C)	490,000 J	
O	D)	1,090,800 J	
	14.	Find the change in thermal energy of a 20-kg wooden chair that warms from 15° to 20° if the specific heat of wood is $700 \text{ J/(kg}^{\circ})$.	
O	A)	28,000 J	
0	B)	210,000 J	
O	C)	140,000 J	
0	D)	490,000 J	
	15.	Find the change in thermal energy of a 20-kg wooden chair that warms from 25° to 35° if the specific heat of wood is 700 J/(kg°).	
0	A)	140,000 J	
O	B)	210,000 J	
0	C)	363,600 J	
0	D)	490.000 J	

Chapter 6: Thermal Energy — Study Guide

	16.	Find the change in thermal energy of a 20-kg wooden chair that warms from 30° to 45° if the specific heat of wood is $700 \text{ J/(kg}^{\circ})$.
0	A)	140,000 J
0	B)	210,000 J
0	C)	490,000 J
0	D)	1,090,800 J
	17.	The air in a living room has a mass of 72 kg and a specific heat of $1010 \text{ J/(kg}^{\circ})$. What is the change in thermal energy of the air when it warms from 15° to 30°?
0	A)	140,000 J
0	B)	210,000 J
0	C)	490,000 J
0	D)	1,090,800 J
	18.	The air in a living room has a mass of 72 kg and a specific heat of $1010 \text{ J/(kg}^{\circ})$. What is the change in thermal energy of the air when it warms from 20° to 55° ?
0	A)	210,000 J
0	B)	490,000 J
0	C)	1,090,800 J
0	D)	2,545,200 J
	19.	The air in a living room has a mass of 72 kg and a specific heat of $1010 \text{ J/(kg}^{\circ})$. What is the change in thermal energy of the air when it warms from 15° to 20° ?
0	A)	140,000 J
0	B)	210,000 J
0	C)	363,600 J
O	D)	1,090,800 J
	20.	Thermal energy is the of the particles in a material.
0	A)	total energy
0	B)	temperature
0	C)	potential energy
0	D)	average kinetic energy
	21.	Which of the following conducts heat most effectively?
O	A)	gas
0	B)	solid
0	C)	plasma
O	D)	liquid

Cho	ıpte	6: Thermal Energy — Study Guide	
	22.		
0	A)	Radiation	
0	B)	Temperature	
O	C)	Density	
0	D)	Conduction	
	23.	Refrigerators use the process of to remove heat from the interiors.	Refrigerators
O	A)	evaporation	
0	B)	compression	
0	C)	sublimation	
0	D)	combustion	
	,	The transfer of energy through matter by the direct contact of particles is called	The transfer
O	A)	radiation	
O	B)	confluence	
O	C)	conduction	
O	D)	convection	
		Which of the following has an external combustion engine?	Which of the
0	A)	air conditioner	
0	B)	modern steam engine in a power station	
O	C)	gasoline engine in a car	
O	D)	early steam locomotive	
	26.	Any material that flows is a	Any material
O	A)	liquid	
0	B)	gas	
O	C)	fluid	
O	D)	current	
	27.	A(n) is something that absorbs radiant energy from the Sun.	A(n)
O	A)	radiator	
O	B)	combustion engine	
O	C)	solar collector	
0	D)	heating coil	

Cn		er 6: Inermal Energy – Study Guide is the transfer of energy in the form of electromagnetic waves.
0	A)	Conduction
O	B)	Radiation
O	C)	Refraction
O	D)	Convection
	29.	Which of the following heating systems utilizes fuel to heat a mass of surrounding air that is blown through a series of ducts?
0	A)	forced air
0	B)	electrical
0	C)	solar
O	D)	radiator
	30.	Heat engines convert energy into energy.
0	A)	potential, kinetic
0	B)	mechanical, thermal
0	C)	kinetic, potential
O	D)	thermal, mechanical
	31.	A(n) is a material that does not allow heat to move through it easily.
0	A)	insulator
0	B)	fluid
0	C)	current
0	D)	conductor
	32.	Which of the following would be the best material to use for making tea kettles?
0	A)	aluminum, specific heat 920
0	B)	graphite, specific heat 710
0	C)	copper, specific heat 380
0	D)	iron, specific heat 450
	33.	The opposite of evaporation is
0	A)	condensation
0	B)	conduction
0	C)	radiation
0	D)	convection