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Characteristics of Wide Band-Gap Devices

• Increased device 
breakdown electric field

• High temperature operation 

• High switching frequency, 
low switching loss
• Reduced passive size

• E.g. inductor, capacitor

• Higher power density
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Requirements of Next-Generation Packaging

• Packaging strategies that support higher maximum 
junction temperature: 150 °C → 250 °C

• E.g. new material systems must be developed for bonding, 
substrate, encapsulation

• Thermal management techniques that enable higher 
power density (orders-of-magnitude)

• E.g. new approaches needed beyond conventional remote cooling 
techniques

• Careful consideration of package for low parasitic 
inductance and electromagnetic interference (EMI)
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Packaging Trends for Power Electronics

• Historical approaches in automotive:
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Toyota Prius 2004

* Ref.: Broughton, et al., 2018

Lexus LS 600h 2008

Toyota Prius 2010

Nissan Leaf 2012

Honda Accord 2014

Multiple layers and single-phase remote cooling dominate applications, but limit packaging breakthrough 

Chevrolet Volt 2016



Packaging Trends for Power Electronics

• Efforts towards higher levels of integration:
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* Ref.: Buttay, et al., 2018

High power density → embedding + integration → novel packaging and different process workflows

Substrate (e.g. PCB, DBC) Embedding

* Ref.: Marz, et al., 2010

New Form Factors & Motor Integration
* Ref.: Hose, et al., 2017

* Ref.: Wits, et al., 2010

Device Embedded Cooling

* Ref.: Vladimirova, 
et al., 2013



• Future transition to wide band-gap (WBG) devices; e.g., SiC or GaN
• Device breakdown voltage ↑

• Temperature tolerance ↑

• Switching speed ↑, passive size ↓, 
power control unit (PCU) size ↓

• Trend in device heat flux and cooling technology

Packaging Trends for Power Electronics
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Power density drives (conductive path) packaging approach and (convective path) cooling technology  

SiC MOSFET *, 100 kHz (<10-4 m)

Logic Circuit/Ambient PCB (10-1 m)

Power Circuit/Gate Drive IC (10-2 - 10-1 m)

1000 

W/cm2

10 W/cm2

0.01 W/cm2

Embedded Cooling

Liquid Cooling

Active Air Cooling

Natural Convection

100 W/cm2

Two-Phase Cooling

Si IGBT *, 20 kHz (<10-3 m)

SiC MOSFET *, 20 kHz (<10-4 m)

Remote

Near Junction

Plasma Torch

Radiative Heat Flux at Sun Surface

Nuclear Reactor Rod

Note: * 650 V, 50 A device

Si-based

SiC-based
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Near-Junction Cooling – Motivation 
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• Order-of-magnitude downsizing requires new packaging concepts

• Package conductive thermal resistance → driving factor

Si-based

SiC-based

1000 

W/cm2

10 W/cm2

0.01 W/cm2

Embedded Cooling

Liquid Cooling

Active Air Cooling

Natural Convection

100 W/cm2

Two-Phase Cooling

Near Junction

Conventional Power 
Card Structure

(h~30-150 kW/m2K)



Near-Junction Cooling – Concepts
• Three concepts for vertical current WBG devices
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Electrode

Electrode

WBG Device

Concept A
(μChannels Fabricated in Device)

Microchannel 
in Device

Concept B
(μChannels Fabricated in Electrode)

Concept C
(μChannels Fabricated in Cooling Chip)

Electrode

WBG Device

Electrode
Microchannel 

in Electrode
Current FlowFluid Flow

Electrode

WBG Device

Electrode 
+ TSV

TIM + Metallization

Si Cooling Chip
Microchannel 

in Cooling Chip

Concept A Concept B Concept C

Thermal
Performance ○ ○ △

Electrical
performance △ ○ ○

Fabrication
feasibility △ × ○

Qualitative Comparison of Concepts

Ref.: Michael.Forman - Own work, CC BY 3.0, 
https://commons.wikimedia.org/w/index.php
?curid=7155729

LIGA Microfabrication
(lithography, electroplating and molding)

SiC Etching SoA
Ref.: Dowling, et al., 2017.
DOI: 10.1109/JMEMS.2016.2621131

Leverage established MEMS microfabrication processes in silicon to explore Concept C cooling chip
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Near-Junction Cooling – 1st Prototype Fab
• Straight microchannel prototype fabrication using Bosch process 
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Microchannels
(38 μm x 313 μm – Qty 200)

Manifold Pocket

SEM Image of 1st Layer SEM Image of Bonded 
Assembly Cross-Section

2nd layer

1st layer

Bond Interface

Front side

40 mm

20 mm

1 mm

Electrode

Si Cooling Chip Prototype

Back side

Inlet

Outlet

LNF User Facility
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Near-Junction Cooling – 2nd Prototype Design
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TSV 
Unit Cell

(500 μm x 500 μm)

SEM Image of 1st Layer Microchannel Structure 
(Zoomed Isometric View)

• Microchannel unit cell design optimized for conjugate heat transfer 

TSV 
Unit Cell

(500 μm x 500 μm)

2-D 
Design 
Result

Pareto Front of Multi-Objective Design 
Optimization in 3-D for Thermal-Fluid Problem

*Ref.: Dede, et 
al. (2014) 
Springer

 Laminar flow 
Minimize Mean 

Temperature
Minimize Fluid 

Power Dissipation 



Near-Junction Cooling – 2nd Prototype Fab
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2nd prototype cooling chip design is one-quarter footprint size of straight microchannel cooling chip

1st Layer 2nd Layer

Straight 
Microchannel Design

Optimized Unit Cell 
Design



Near-Junction Cooling – Experimental Results
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For same ∆𝑃 , UC microchannel design supports 3X higher flow rate → larger heat transfer coefficient
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𝑄𝑝 = ሶ𝑣 × ∆𝑃

തℎ =
1

𝐴𝑠𝑅𝑡ℎ𝑐𝑛𝑣

Toward Order-of-Magnitude Size Reduction

*Note: 300 ml/min 
coolant flow rate 
with Tin = 50 °C
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𝑄 =  ሶ  𝑝∆ 

Air Cooling – Technology Breakdown 
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Air is least 
effective

• Ultimate simplicity, but inherently poor coolant

• Key technologies for air cooling system

1) Efficient air movement
2) High performance heat sink
3) Extreme heat spreading

SiC

2) Heat spreader

3) Heat sink
1) Fan

* Ref.: Kim, et al., 1996

1000 

W/cm2

10 W/cm2

0.01 W/cm2

Embedded Cooling

Liquid Cooling

Active Air 

Cooling
(h~25-2000 W/m2K)

Natural Convection
(h~2-25 W/m2K)

100 W/cm2

Two-Phase Cooling

Remote

Near Junction



Air Cooling – High Performance Heat Sink
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• Optimization of basic 2-D finned element

• Application to 3-D heat sink design

*Ref. : https://en.wikipedia.org/wiki/Fin_(extended_surface)*Ref.: Dede, et al., 2015

3D Optimization 
Result

Quarter-Symmetry 
Point Cloud Data

Solid Model CAD 
Geometry

AlSi12 Rapid 
Prototype

https://en.wikipedia.org/wiki/Fin_(extended_surface)


Air Cooling – Extreme Heat Spreading
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• Efficient heat spreading required 
to utilize aggressive air cooling

Thermal Ground Plane (TGP) Concept

*Ref.: Bar-Cohen, et al., 2015

*Ref.: Dede, et al., 2016
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Air Cooling – Extreme Heat Spreading
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• Novel wick structures to enable high heat fluxes

Vapor Chamber & Wick Design

TGP Heat Flux vs. Thermal Resistance

*Ref.: Zhou, et al., 2018

Wick Heat Flux vs. Thermal Resistance

*Ref.: Sudhakar, et al., 2019

*Ref.: Sudhakar, et al., In press

At high heat flux, liquid menisci recede to 
separate liquid feed and vapor vent mechanism
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Transient Liquid Phase Bonding Overview

21E.M. Dede - APEC 2020 - Thermal Packaging Challenges for Next-Generation Power Electronics 

• Technology benefits

B, Low melting point
(solid)

A, High melting point
(solid)

A, High melting point
(solid)1

B, Low melting point
(liquid)

A, High melting point
(solid)

A, High melting point
(solid)2

B(liquid)

A(solid)

A (solid)

A-B alloy (solid)

A-B alloy (solid)
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4

*Ref.: Noguchi et al., 2016



Die Attach Challenges & Higher Compliance Concept
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Self-Healing Die Attach Concept

24E.M. Dede - APEC 2020 - Thermal Packaging Challenges for Next-Generation Power Electronics 

Copper, high CTE, ɑ=~17 ppm/K

Substrate shrinkage (intense)

Chip shrinkage (mild)

Copper Substrate Die-Attachment

Si, low CTE ɑ=~3 ppm/K
Thermal stress

Atomic layer deposition (ALD) fabrication of In-Pt core-shell capsule for material system proof-of-concept

(Sn0.7CuNiP; Tm=227 °C)
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Conclusions
• Higher power density requires consideration of embedding and integration 

• Remote cooling fundamentally limits order-of-magnitude size reduction

• New packaging strategies and process workflows required

• Near-junction cooling explored as ultra-compact packaging paradigm
• Straight channel and arrayed hierarchical unit cell flow structures explored 

• Unit cell design exhibits reduced pressure drop and higher heat transfer rates

• Packaging explored as next step → heterogeneous integration

• Air cooling is robust and simple but requires effective heat spreading for high 
power density application

• Heat sink optimization coupled with thermal ground plane technologies may be a 
solution

• High temperature operation bonding materials are critical
• Transient liquid phase bonding with increased compliance has potential

• Self-healing die attach may be disruptive technology to increase package reliability
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