
5
Thermal properties of phonons

Ref. Chapter 5

Q1: Why do most solids become larger as we increase the temperature?

Q2: Why is foam a good thermal insulator?

Q3: Why is metal cold to touch?

5.1. Background

Here we review some basic ideas of quantum mechanics, thermodynamics and statistical physics, which will be used in this chapter.

5.1.1. What are phonons?
Quantum Mechanics tells us that waves are particles. Energy E = ÑΩ and momentum P = Ñ k

So elastic waves (sound waves) are particles too, and these particles are called phonons.

� The energy of a phonon E = Ñ Ω  

� The momentum of a phone P = Ñ k.

5.1.2. What is temperature?
The  rigorous  definition  of  temperature  requires  knowledge  on  thermodynamics  and  thermal  equilibrium  (which  are  discussed  in  Physics  460).
Roughly speaking, the temperature HTL measures how widely the particles are moving in a system.

At higher T, atoms move more widely. At lower T, atoms don’t want to move  much.

For elastic waves, this means that at higher T, the amplitude of sound waves are larger (more phonons). At lower T, the amplitude is smaller (less
phonons).

� We have more phonons at high T and less phonons at low T.

5.2. Planck distribution: how many phonons do we have?

In a solid,  there are many different  sound waves (with different  wavelength and frequencies).  In  this  section,  we pick one of these waves (with
fixed wavevector and frequency) and try to understand this single mode first. Then, in the next section, we will consider all different modes and
add their contributions together. 

5.2.1. number of phonons (fixed frequency Ω)
The  number  of  phonon  is  not  a  fixed  value.  If  an  atom  start  to  oscillate,  then  we  created  some  phonons.  If  the  oscillation  stops,  the  phonons
disappear. Although we cannot determine the number of phonons, at a fixed temperature we know the probably of having n phonons. 

Let's  consider  a  sound  wave  with  a  fixed  wavevector  k  and  a  fixed  frequency  Ω  and  ask  how  many  phonons  we  will  have  in  this  wave.  The
probably of having n phonons here is
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(5.1)PHnL µ exp -
En

kB T

Here  kB = 1.3806503 ´ 10-23 J � K  is  the  Boltzmann  constant  (which  is  one  fundamental  physics  constant)  and  T  is  absolute  temperature.  (
0 K = -273 Co). En is the energy carried by these n phonons. Because each phonon carries energy ÑΩ, En = n Ñ Ω. So,

(5.2)PHnL =
1

Z
exp -

n Ñ Ω

kB T

Here Z is the normalization factor (which is called the partition function). 

This expJ E

kB T
N is known as the Boltzmann factor, which is one fundamental assumption in statistical physics. Here, we will  not try to prove this

probability. Instead, we will use it as granted (details can be found in Physics 460).

Q: What is this normalization factor Z?

A: Total probability is 1. We can use this condition to fix Z.
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Here we used the fact that 1 + x + x2 + x3 + … =
1

1-x

So we have
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Average number of phonons
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The average phonon number depends on temperature T, the frequency of the phonons Ω and some fundamental physics constants Ñ and kB.

(5.6)Xn\ =
1

expJ Ñ Ω

kB T
N - 1

This relation is known as the Planck distribution or the Bose-Einstein distribution.
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At a fixed temperature T, low frequency modes have much more phonons than high frequency modes. The phonons with Ω < kB T � Ñ. the number
of phonon modes at Ω > kB T � Ñ is very low. So at very low temperature, we only need to consider acoustic phonons.
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For a fixed frequency, the number of phonons reduce as T goes down. 

At high T,
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At low T,
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5.2.2. Energy carried by phonons (fixed frequency Ω)
One phonon has energy ÑΩ, so the average energy carried by these sound waves are

(5.9)XE\ = Xn \ Ñ Ω = Ñ Ω Xn\ =
Ñ Ω

expJ Ñ Ω

kB T
N - 1

5.2.3. History of the Planck distribution or the Bose-Einstein distribution.
This distribution was firstly discovered by Planck in the study of black-body radiation. There, Planck studies the energy carried by light, which is
another  type  of  wave  (electromagnetic  waves)  very  similar  to  sound  waves.  At  that  time,  before  the  quantum mechanics  is  established,  people
consider light as classical waves. If one assumes that light is a classical wave, one find that the energy carried by these waves (light) is infinite at
any  temperature,  which  is  obviously  wrong.  This  infinite  energy  problem  is  known  as  the  ultraviolet  catastrophe.  Eventually,  it  is  Planck  who
pointed out that if we view light as particles (photons) with each particle carrying energy ÑΩ, then all the problems are solve. This discovery, as
well as many other progresses, eventually led to the discovery of the quantum physics.

In fact, the distribution Planck discovered is valid for any waves, not limited to light. For sound waves and phonons, the same physics law applies
and the number of phonons follow exactly the same distribution.

(5.10)Xn\ =
1

expJ Ñ Ω

kB T
N - 1

Later, Bose and Einstein discovered that for any bosonic particles, the average number of particles is

(5.11)Xn\ =
1

expJ Ε- Μ

kB T
N - 1

where Ε  is  the energy of this  particle and Μ  is  the chemical  potential.  The Planck distribution is  a  special  case of  the Bose-Einstein distribution,
where Μ is 0.

(Photons and phonons are both bosonic particles (bosons), so they obey the Bose-Einstein distribution.)

5.3. Total number of phonon modes, total energy and heat capacity

In the last section, we proved that for a sound mode with frequency Ω, the energy carried by this sound wave is 

XEΩ\ =
Ñ Ω

expJ Ñ Ω

kB T
N - 1

In a solid, there are many different sound modes (with different frequencies). What is the total energy carried by all these sound modes?

(5.12)E = â
i

XEΩi
\

where Úi sums over all the different phonon modes. This sum can be rewrite in terms of an integral over frequency Ω

5.3.1. Density of states (DOS)
The density of states (DOS) is a function of frequency Ω, which measure the number of sound modes per interval of frequency (or energy).

The number of states (modes) in the frequency range between Ω and Ω+âΩ is:

(5.13)â N = DHΩL â Ω

where DHΩL is the DOS.

Total number of phonon modes:

(5.14)N = à
0

¥

â N = à
0

¥

â Ω DHΩL â Ω

We can separate DHΩL into the sum of DpHΩL
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(5.15)DHΩL = â
p

DpHΩL = DLAHΩL + DLTHΩL + …

where p indicates different phonon branches (also known as polarizations).

5.3.2. Total number of phonon modes
Q: How many different phonon modes we have?

A: The total number of phonon modes in one branch (LA, LO, ...) coincides with the number of unit cells.

Why does the total number of phonons coincides with the number of unit cells?
Let’s  use  a  simple  example  to  demonstrate  this.  Consider  a  1D chain  of  atoms  (assuming  that  there  is  one  atom per  unit  cell).  The  atoms  are
labeled by an integer s = 1, 2, 3 … N. 

Periodic boundary condition
Sound waves on this lattice can be written as

(5.16)us = A expH-ä Ω tL expHä k a sL
where us is the deformation of the site s, A is the amplitude, Ω is the frequency, k is the wavevector and a is the lattice constant.

Periodic boundary condition means us = us+N

(5.17)us+N = A expH-ä Ω tL exp@ä k a Hs + NLD = A expH-ä Ω tL expHä k a sL expHä k a NL = us expHä k a NL
Therefore, expHä k a NL = 1, so  k a N = 2 Π n where n is an integer. So

(5.18)k =
2 Π n

a N
=

2 Π n

L

were, a N = L is just the length of the system. 

Notice here that k and k + 2 Π � a gives exactly the same wave, 

(5.19)expBä k +
2 Π

a
a sF = expHä k a s + ä 2 Π sL = expHä k a sL expHä 2 Π sL = expHä k a sL

So we will only need to consider -Π � a < k £ Π � a.

Therefore, all the possible values of k are

(5.20)k = 0, ±
2 Π

L
, ±

4 Π

L
, ±

6 Π

L
…

N Π

L

There are N possible values of k, so we have N phonon modes. This number N is the number of unit cells.

Uncertainty relation and the thermal dynamic limit
Q: In the k-space, how far is the separation between two allowed phonon modes?

A: 2Π/L, since k = 2 Π n � L

This result can also be understood using the uncertainty relation. For a system with size L, phonons are confined in the real space, so we know the
position of the phonon with uncertainty L. Quantum mechanics tells us that if we know the position with uncertainty L, the uncertainty of momen-
tum DP shall be 2 Π Ñ � L. So each quantum state will occupy a region of 2 Π Ñ � L in the momentum space. We also know that the momentum P and
the wave-vector k  are the same quantity, up to a factor of Ñ. So this means that in the k-space, each phonon mode shall occupy a region with size
2Π/L. In other words, two phonon modes will be separated by 2Π/L.

In  the  thermal  dynamic  limit  (  L ® ¥),  the  spacing  between  two  phonon  modes  2 Π � L ® 0,  so  we  can  treat  the  momentum k  as  a  continuous
variable.

Fixed boundary condition (see our textbook)

Total number of phonons in a d-dimensional crystal.
In a d-dimensional crystal with n atoms per cell, there will be d n  phonon modes @d  acoustic and dHn - 1L  optical]. Each phonon branch have N
phonon modes. So the total number of phonon modes is d n N.

The total number of degrees of freedom is: d×number of atoms = d n N.
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the total number of degrees of freedom=the total number of phonon modes.

5.3.3. Total energy
Total energy is

(5.21)U = à
0

¥

â Ω DHΩL XEΩ\ = à
0

¥

â Ω DHΩL Ñ Ω

expJ Ñ Ω

kB T
N - 1

So the only thing we need to know here is the function of DHΩL (the density of states). 

5.3.4. Heat capacity
How many energy do we need to increase the temperature of the system by 1 degree?

(5.22)CV =
¶U

¶T V

5.4. Einstein model (optical phonon modes)

5.4.1. Assumptions
For an optical branch, the phonon band is often very flat (Ω is almost a constant). So we can assume that

� all the phonon modes (for this optical branch) have the same energy Ω0

So the density of states

(5.23)DHΩL = N ∆HΩ - Ω0L
where ∆HxL is a delta function.

5.4.2. Total number of phonon modes

(5.24)à
0

¥

â Ω DHΩL = à
0

¥

â Ω N ∆HΩ - Ω0L = N

Because total number of phonon mode in a phonon branch is the number of unit cells. The coefficient N in the DOS is just the number of unit cells.

5.4.3. Total energy

(5.25)U = N
Ñ Ω0

expJ Ñ Ω0

kB T
N - 1

We can get the same results using

(5.26)U = à
0

¥

â Ω DHΩL Ñ Ω

expJ Ñ Ω

kB T
N - 1

= à
0

¥

â Ω N ∆HΩ - Ω0L Ñ Ω

expJ Ñ Ω

kB T
N - 1

= N
Ñ Ω0

expJ Ñ Ω0

kB T
N - 1

5.4.4. Heat capacity

(5.27)CV =
¶U

¶T V

= N
â

â T

Ñ Ω0

expJ Ñ Ω0

kB T
N - 1

= N
Ñ Ω0

BexpJ Ñ Ω0

kB T
N - 1F2

exp
Ñ Ω0

kB T

Ñ Ω0

kB T2
= N kB

Ñ Ω0

kB T

2 expJ Ñ Ω0

kB T
N

BexpJ Ñ Ω0

kB T
N - 1F2

5.4.5. Heat capacity at low temperatures (T ® 0)

At small T, expJ Ñ Ω0

kB T
N >> 1, so expJ Ñ Ω0

kB T
N - 1 » expJ Ñ Ω0

kB T
N.
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(5.28)CV = N kB

expJ Ñ Ω0

kB T
N

BexpJ Ñ Ω0

kB T
N - 1F2

Ñ Ω0

kB T

2

» N kB

expJ Ñ Ω0

kB T
N

BexpJ Ñ Ω0

kB T
NF2

Ñ Ω0

kB T

2

= N kB

Ñ Ω0

kB T

2

exp -
Ñ Ω0

kB T

When T is reduced to zero, CV  decreases very fast to zero, as expJ-
Ñ Ω0

kB T
N.

This result agrees with the third law of thermal dynamics: CV = 0 at T = 0.

5.4.6. Heat capacity at high temperature (T ® ¥)

At high T, expJ Ñ Ω0

kB T
N » 1 +

Ñ Ω0

kB T
, so

(5.29)CV = N kB

expJ Ñ Ω0

kB T
N

BexpJ Ñ Ω0

kB T
N - 1F2

Ñ Ω0

kB T

2

» N kB

1

B Ñ Ω0

kB T
F2

Ñ Ω0

kB T

2

= N kB

This results agrees with the heat capacity of an ideal gas, CV = number of modes ´kB.

5.5. Debye model (acoustic phonon modes)

5.5.1. Assumptions
� Linear dispersion Ω = v k

� The frequency of the phonons must satisfy 0 £ Ω £ ΩD, where the maximum frequency ΩD is called the Debye frequency.

5.5.2. Density of states
Q: How many modes do we have inside some region in the P-space?

A: We know that this number must be proportional to the size of the region W: 

(5.30)NW µ à
W

â
3 P

Q: What is the coefficient here?

A:  We know the  uncertainty  relation.  If  we  know the  size  of  the  system HV L,  the  uncertainty  in  momentum is  H2 Π ÑLd �V .  This  means  that  one

quantum state will occupy a region of size H2 Π ÑLd �V  in the momentum space. So the number of modes

(5.31)N = à â3 p

H2 Π ÑL3 � V
= V à â3 k

H2 ΠL3
= V à 4 Π k2 â k

H2 ΠL3
= V à k2 â k

2 Π2

If Ω = v k

(5.32)N = V à k2 â k

2 Π2
= V à Ω2

2 Π2 v3
â Ω

Compare with N = Ù DHΩL â Ω. We find that

(5.33)DHΩL = V
Ω2

2 Π2 v3

And please also keep in your mind that we assumed 0 £ Ω £ ΩD

Total number of modes

(5.34)N = à
0

ΩD

DHΩL â Ω = V à
0

ΩD Ω2

2 Π2 v3
â Ω = V

ΩD
3

6 Π2 v3

So
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(5.35)ΩD = 6 Π
2

N

V

1�3
v =

6 Π2

VC

1�3
v

Here, V is the volume of the system, N is the number of unit cells and v is the sound velocity. V � N is just he size of a unit cell VC.

We can also define Debye wavevector kD as

(5.36)kD = ΩD � v = 6 Π
2

N

V

1�3

5.5.3. Total energy

(5.37)U = 3 à
0

ΩD

â Ω DHΩL Ñ Ω

expJ Ñ Ω

kB T
N - 1

The factor 3 here is  because there are three acoustic phonon branches (2 transverse and 1 longitudinal).  In a real  solid,  these three modes have
different velocities, so their DOS and ΩD are different. But here, we assume these three modes are the same sound velocity for simplicity.

define x =
Ñ Ω

kB T
 and xD =

Ñ ΩD

kB T
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â Ω
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Ñ Ω
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If we define Debye temperature,

(5.39)Θ =
ÑΩD
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=
Ñ v
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2

N

V

1�3
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2 Π2 v3
Ñ

3
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5.5.4. Heat capacity

(5.41)

Cv =
¶U

¶T
= 3 V à

0

ΩD

â Ω
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kB T
 and xD =
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kB T
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(5.42)
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5.5.5. Heat capacity at low T

At low T, we can set the upper limit of the integral to ¥

(5.43)Cv = 9 N kB

T

Θ

3

à
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â x x4

ex
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» 9 N kB

T

Θ
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T

Θ

3 4 Π4

15
=

12 Π4

5
N kB

T

Θ

3

At low temperature, the heat capacity is CV ~T3 (from acoustic phonons)
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This result agrees with the third law of thermal dynamics: CV = 0 at T = 0.

5.5.6. Heat capacity at high T

At high T, x is small, so ex » 1 + x

(5.44)Cv = 9 N kB

T

Θ

3

à
0

Θ�T
â x x4

ex

Hãx - 1L2
» 9 N kB

T

Θ

3

à
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Θ�T
â x x4

1

x2
= 9 N kB

T

Θ

3

à
0

Θ�T
â x x2
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T

Θ

3 1

3

Θ

T

3

= 3 N kB

This results agrees with the heat capacity of an ideal gas, CV = number of modes ´kB.

5.6. Total heat capacity (acoustic modes+optical modes)

5.6.1. Low T
At small T, acoustic phonons have

(5.45)CV
H AL

=
4 Π4

5
N kB

T

Θ

3

Optical phonons have

(5.46)CV
HOL

= N kB

Ñ Ω0

kB T

2

exp -
Ñ Ω0

kB T

At small x (x<<1),

(5.47)exp
1

x
<< xn

<< x << x1�n
<<

1

ln x

So at small T, CV
H AL >> CV

HOL, and therefore the total heat capacity is dominated by the acoustic modes and we can ignore the optical modes.

(5.48)CV » CV
H AL

=
12 Π4

5
N kB

T

Θ

3

The Debye temperature Θ depends on the properties of the material, which is determined by fitting experimental data.

5.6.2. High T
At  high  T,  each  acoustic  phonon  branch  contributes  N kB  to  CV .  Each  optical  phonon  branch  also  contributes  N kB  to  CV  (Debye  model  and
Einstein model give the same result).

Therefore, the total heat capacity is

(5.49)CV = Hnumber of phonon branchesL ´ N kB = d n N kB

where d  is the dimensionality, n is the number atom per unit cell, N  is the number of unit cell. Notice that n N  is the total number of atoms in the
system. 

(5.50)CV = d kB ´ Htotal number of atomsL
This result agrees with the heat capacity of an ideal gas.

5.7. A real solid

In a real solid, DHΩL is a complicated function, which is not even a smooth function. But at small Ω, very typically, the DOS agrees with the Debye
model [DHΩL µ Ω2].

The  heat  capacity  for  most  insulators  is  CV ~T3,  in  good  agreement  with  Debye  model.  For  conductors,  the  low  temperature  heat  capacity  is
dominated by electrons instead of phonons, so we will typically see CV ~T, instead of T3.
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5.8. Thermal expansion

In the discussions above (and in chapter 3 and 4), we assume that the atoms in a solid are connected by perfect springs with E = C DL2 � 2. But in
reality, the potential energy (as a function of the distance between two particles) is not a quadratic function.

When we study heat capact, phonon modes etc., this approximation is pretty good and can provide to us correct results. However, if we want to
study some other topics (e.g. thermal expansion, scattering between phonons), this approximation will not be able to provide the correct physics. It
misses two important physics:

� Phonon scatterings: for perfect DL2 potentials, there is no interaction between phonons. Phonons never collide with each other. When they 
collide, they just cross each other, as if there is no other phonon. In a real solid, where the bond between two atoms are not perfect springs, 
there are phonon scatterings.

� Thermal expansion: for perfect springs, the length of the spring (separation between neighboring atoms) never changes, when we rise or 
reduce the temperature. But in a real solid, this length changes. Typically, it increases as T increases. In other words, very typically, the size 
of a solid increases when we raise T (for some solids, the volume reduces at higher T), this is known as thermal expansion. 

5.8.1. A cartoon picture

Consider the potential energy between two atoms UHrL where r is the separation. Here, the first figure shows the potential of a perfect spring and
the second figure shows the Lennard-Jones potential, which can be used to describe the interaction between two atoms in some solids.

� If UHr - r0L = UHr0 - rL, as shown in the first figure below, oscillations with larger amplitudes (higher energy) have the same average 
distance Xr\ = r0 as oscillations with smaller amplitudes (lower energy).

� If UHr - r0L ¹ UHr0 - rL, as shown in the second figure below, oscillations with larger amplitudes (higher energy) have larger average 
separation Xr\.

We know that at higher T, the amplitudes of oscillations increase. So higher T means larger separation.
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5.8.2. Rigorous calculations
Consider a potential: UHxL = c x2 - g x3 + f x4

The probability for the distance to be x is

(5.51)P µ exp -
E

kB T

So,

(5.52)PHxL =
1

Z
expB-

UHxL
kB T

F
Again, Z can be determined by the condition that total P is unity.
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(5.53)1 = à
-¥

¥

â x PHxL =
1

Z
à

-¥

¥

â x expB-
UHxL
kB T

F
So

(5.54)Z = à
-¥

¥

â x expB-
UHxL
kB T

F
Average distance Xx\ is

(5.55)Xx\ = à
-¥

¥

â x x PHxL =
1

Z
à

-¥

¥

â x x expB-
UHxL
kB T

F =

Ù-¥

¥
â x x expB-

U HxL
kB T

F
Ù-¥

¥
â x expB-

U HxL
kB T

F

(5.56)expB-
UHxL
kB T

F = expB-
c x2 - g x3 + f x4

kB T
F = expB-

c x2

kB T
F expB g x3 - f x4

kB T
F

At low T, we know that x will be small, so expB g x3- f x4

kB T
F » 1 +

g x3- f x4

kB T

(5.57)

Xx\ = à
-¥

¥

â x x PHxL =
1

Z
à

-¥

¥

â x x expB-
UHxL
kB T

F =

Ù-¥

¥
â x x expB-

c x2

kB T
F J1 +

g x3- f x4

kB T
N

Ù-¥

¥
â x expB-

c x2

kB T
F J1 +

g x3- f x4

kB T
N

=

Ù-¥

¥
â x expB-

c x2

kB T
F Jx +

g x4- f x5

kB T
N

Ù-¥

¥
â x expB-

c x2

kB T
F J1 +

g x3- f x4

kB T
N

=

3 g Π

4 kB J c

kB T
N5�2

T

Π I4 c2-3 f kB TM
4 c kB J c

kB T
N3�2

T

=
3 g kB T

4 c2 - 3 f kB T

At low T, 

(5.58)Xx\ =
3 g kB T

4 c2 - 3 f kB T
»

3 g

4 c2
kB T

For a perfect spring, Xx\ = 0 at any temperature. So there is no thermal expansion.

In reality, there are additional terms in the potential energy beyond just x2, so Xx\ =
3 g

4 c2 kB T increases as a linear function of T at low T (at high T,

it is more complicated).

Notice that the expansion is controlled by g, which is the coefficient of the x3 term. In fact, if there is no x2 n+1 term, there is no thermal expansion.
This  is  because  these  terms  breaks  the  symmetry  of  x ® -x.  Without  these  terms,  UHxL  is  symmetric  under  x ® -x.  As  shown in  the  previous
section, there is no thermal expansion.

5.9. Thermal conductivity

5.9.1. Definitions
Assumes that we have a solid bar. We heat up one of the end, so the two ends will have different temperature. We know the heat (energy) will
flow from the “hot” end to the “cold” end.

� Heat current ( jU ): the energy transmitted across unit area per unit time. jU =
U

A t

� Temperature gradient 
âT

âx
: the change of temperature per unit length.

Heat current is proportional to the temperature gradient, and the coefficient is known as the thermal conductivity K:

(5.59)jU = -K
â T

â x

5.9.2.  Thermal conductivity
We can consider a solid as a dilute gas of phonons.
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n: density of phonons

Τ: average time between two collisions

v: velocity of phonons (sound velocity)

vx: the x-component of the velocity

For a particle with velocity v, it will move vx Τ along the x axis between two collisions. Its starting position x has temperature THxL, its ending point
has temperature THx + vx ΤL. This particle shall carry some energy from x to x + vx Τ. How much energy?

(5.60)U =
C

Np

@THxL - THx + vx ΤLD

Here C is the heat capacity contributed by all phonons and Np  is the total number of phonons. For Np  phonons, we need energy C DT to increase

the temperature of all phonons by DT. Therefore, so for 1 phonon, we need energy 
C DT

N
 to increase its temperature by DT.

DT is THxL - THx + vx ΤL. If Τ is small, 

(5.61)DT = THxL - THx + vx ΤL » -
â T

â x
vx Τ

So

(5.62)U =
C

Np

@THxL - THx + vx ΤLD = -
C

Np

â T

â x
vx Τ

How many phonons will cross unit area per unit time?  n vx where n the density of phonons n = Np �V

Total energy cross unit area per unit time;

(5.63)jU = -[ C

Np

â T

â x
vx Τ n vx_ = -

C

Np

â T

â x
Τ

NP

V
Yvx

2] = -
C

V

â T

â x
Τ Yvx

2]

Here X...\ means average value. 

What is Xvx
2\ ? We konw that Xv2\ = Xvx

2\ + Yvy
2] + Xvz

2\. For an isotropic system, Xvx\2 = Yvy]2
= Xvz\2. So, Xv2\ = 3 Xvx

2\
(5.64)jU = -

C

V

â T

â x
Τ

Xv2\
3

= -
1

3

C

V

â T

â x
Τ v2

= -
1

3

C

V
v l

â T

â x

In the last step, we defined the mean-free pass l = v Τ, which is the average distance a phonon travel between two collisions. So

(5.65)K =
1

3

C

V
v l

5.9.3.  Thermal insulation
In many cases, we want some good thermal insulating material in order to keep something cool or warm. For example

� Thermos

� Hot water pipes or chilly water pipes

� Keep the heat inside a house during the winter.

� In thermal dynamic experiments, we try to minimize the contribution from the environment.

The insulating capability of a material is measured K. Smaller K means better insulating capability.

If we want a good thermal insulating material, we want to minimize K. 

How to minimize K? 

(5.66)K =
1

3

C

V
v l

We shall choose those materials with small C, v and l.
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�
C

V
µ

Number of atoms

V
=

M

V
= Ρ. So we want the material to have small density.

� vl = IB +
4

3
GM � Ρ  and vT = G � Ρ . So we want soft materials (with smaller elastic constants)

� More impurities will result in smaller l. So we want materials with lots of impurities in it. Random solids have more impurities than good 
crystals. So we want random solids.

Soft material with many impurities and low density: like rubber and foam.

Another option: We can use gas or vacuum.
� Gas (air) has much smaller C and v than solids.

� Vacuum is even better C = 0 and v = 0.

5.9.4. Why is metal cold to touch?

This is  because metals have very large K.  In  addition to phonons,  the electron in a metal  can move,  which can also carry heat  and energy. The
motions of electron will give additional contributions to K, making it very large.
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