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5

Thermal properties of phonons

Ref. Chapter 5

Q1: Why do most solids become larger as we increase the temperature?
Q2: Why is foam a good thermal insulator?

Q3: Why is metal cold to touch?

I 5.1. Background

Here we review some basic ideas of quantum mechanics, thermodynamics and statistical physics, which will be used in this chapter.

5.1.1. What are phonons?
Quantum Mechanics tells us that waves are particles. Energy E = 7iw and momentum P = 71 k
So elastic waves (sound waves) are particles too, and these particles are called phonons.

= Theenergy of aphononE =7 w

= The momentum of aphone P =71 k.

5.1.2. What is temperature?

The rigorous definition of temperature requires knowledge on thermodynamics and thermal equilibrium (which are discussed in Physics 460).
Roughly speaking, the temperature (T) measures how widely the particles are moving in a system.

At higher T, atoms move more widely. At lower T, atoms don't want to move much.

For elastic waves, this means that at higher T, the amplitude of sound waves are larger (more phonons). At lower T, the amplitude is smaller (less
phonons).
= We have more phonons at high T and less phonons at low T.

I 5.2. Planck distribution: how many phonons do we have?

In a solid, there are many different sound waves (with different wavelength and frequencies). In this section, we pick one of these waves (with
fixed wavevector and frequency) and try to understand this single mode first. Then, in the next section, we will consider all different modes and
add their contributions together.

5.2.1. number of phonons (fixed frequency w)

The number of phonon is not a fixed value. If an atom start to oscillate, then we created some phonons. If the oscillation stops, the phonons
disappear. Although we cannot determine the number of phonons, at a fixed temperature we know the probably of having n phonons.

Let's consider a sound wave with a fixed wavevector k and a fixed frequency w and ask how many phonons we will have in this wave. The
probably of having n phonons hereis
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En
P(n) o exp(— k_] (5.1)

B

Here kg = 1.3806503x 10722 J/K is the Boltzmann constant (which is one fundamental physics constant) and T is absolute temperature. (
0K = -273C°). E, isthe energy carried by these n phonons. Because each phonon carries energy #w, En = n #i w. So,

b 1 nihw
(n) = — exp| — 5.2
L -

Here Z is the normalization factor (which is called the partition function).
This exp(ﬁ) is known as the Boltzmann factor, which is one fundamental assumption in statistical physics. Here, we will not try to prove this
B

probability. Instead, we will use it as granted (details can be found in Physics 460).
Q: What is this normalization factor Z?

A: Total probability is 1. We can use this conditionto fix Z.

. L1 nhwy 1 " nhwy 1 1
1=Z—o P(")zzm —exp[— )=_Zo exp(— ]z_ (5.3)
- - A kBT A - kBT Z 1_exp(_:_“_'r)
B
Hereweu%dthefactthatl+x+x2+x3+...=i
So we have
1
ls ——— (5.4)
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W= . (56)

Thisrelation is known as the Planck distribution or the Bose-Einstein distribution.
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At afixed temperature T, low frequency modes have much more phonons than high frequency modes. The phonons with w < kg T /7. the number
of phononmodesat w > kg T / A isvery low. So at very low temperature, we only need to consider acoustic phonons.
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For a fixed frequency, the number of phonons reduce as T goes down.
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5.2.2. Energy carried by phonons (fixed frequency w)
One phonon has energy 7w, so the average energy carried by these sound waves are

how
Ey=(Mhw=ho@n)=—— (5.9)

oli7) -1

5.2.3. History of the Planck distribution or the Bose-Einstein distribution.

This distribution was firstly discovered by Planck in the study of black-body radiation. There, Planck studies the energy carried by light, which is
another type of wave (electromagnetic waves) very similar to sound waves. At that time, before the quantum mechanics is established, people
consider light as classical waves. If one assumes that light is a classical wave, one find that the energy carried by these waves (light) is infinite at
any temperature, which is obviously wrong. This infinite energy problem is known as the ultraviolet catastrophe. Eventually, it is Planck who
pointed out that if we view light as particles (photons) with each particle carrying energy 7w, then all the problems are solve. This discovery, as
well as many other progresses, eventually led to the discovery of the quantum physics.

In fact, the distribution Planck discovered is valid for any waves, not limited to light. For sound waves and phonons, the same physics law applies
and the number of phonons follow exactly the same distribution.

n=——"" (5.10)

Later, Bose and Einstein discovered that for any bosonic particles, the average number of particlesis

1
n=z—

where € is the energy of this particle and u is the chemical potential. The Planck distribution is a specia case of the Bose-Einstein distribution,
where u isO.

(Photons and phonons are both bosonic particles (bosons), so they obey the Bose-Einstein distribution.)

5.3. Total number of phonon modes, total energy and heat capacity

Inthe last section, we proved that for a sound mode with frequency w, the energy carried by this sound wave is

hw
(By) =

o) -1

Inasolid, there are many different sound modes (with different frequencies). What is the total energy carried by all these sound modes?

E=) . (E,) (5.12)

where Y; sums over al the different phonon modes. This sum can be rewrite interms of an integral over frequency w

5.3.1. Density of states (DOS)
The density of states (DOS) is a function of frequency w, which measure the number of sound modes per interval of frequency (or energy).

The number of states (modes) in the frequency range between w and w+dw is:

dN=Dw)dw (5.13)
where D(w) isthe DOS.
Total number of phonon modes:

N:fodN:fde(w)dw (5.14)
0 0

We can separate D(w) into the sum of Dp(w)
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D(w) = )’ Dp(w) = Dia(w) + Duv(w) + ... (5.15)

where p indicates different phonon branches (also known as polarizations).

5.3.2. Total number of phonon modes
Q: How many different phonon modes we have?

A: The total number of phonon modes in one branch (LA, LO, ...) coincides with the number of unit cells.

Why does the total number of phonons coincides with the number of unit cells?

Let's use a simple example to demonstrate this. Consider a 1D chain of atoms (assuming that there is one atom per unit cell). The atoms are
labeled by aninteger s=1, 2, 3... N.

Periodic boundary condition
Sound waves on this lattice can be written as
Us=Aexp(—iwt)exp(ikas) (5.16)
where us is the deformation of the site s, A is the amplitude, w is the frequency, k is the wavevector and a is the lattice constarnt.
Periodic boundary condition means us = Us, y
Us,n = Aexp(—iwt)explika(s+ N)] = Aexp(—i wt) exp(i kas) expi kaN) = usexp(i kaN) (5.17)

Therefore, exp(z kaN) =1, s0 kaN =27z nwherenisaninteger. So
ks ——=— (5.18)

were, aN = L isjust the length of the system.
Notice here that k and k + 2 7/ a gives exactly the same wave,
2r

exp[z? (k + —] as] = exp(ikas+i2nrs)=exp(ikas)exp(i2ns) = exp(i kas) (5.19)
a

So we will only need to consider —r/a<k < x/a.
Therefore, all the possible values of k are

2n A 61 N7
k=0, £+—, £+ —, +— ... — (5.20)
L L L L

There are N possible values of k, so we have N phonon modes. This number N is the number of unit cells.

Uncertainty relation and the thermal dynamic limit
Q: Inthe k-space, how far is the separation between two allowed phonon modes?

A:2n/L,sincek=2xn/L

This result can also be understood using the uncertainty relation. For a system with size L, phonons are confined in the real space, so we know the
position of the phonon with uncertainty L. Quantum mechanics tells us that if we know the position with uncertainty L, the uncertainty of momen-
tum AP shall be 27/ L. So each quantum state will occupy aregion of 2 7/ L in the momentum space. We also know that the momentum P and
the wave-vector k are the same quartity, up to a factor of #. So this means that in the k-space, each phonon mode shall occupy a region with size
27/L. In other words, two phonon modes will be separated by 2x/L.

In the thermal dynamic limit ( L — o), the spacing between two phonon modes 2 /L — 0, so we can treat the momentum k as a continuous
variable.

Fixed boundary condition (see our textbook)

Total number of phonons in a d-dimensional crystal.

In a d-dimensional crystal with n atoms per cell, there will be d n phonon modes [d acoustic and d(n — 1) optical]. Each phonon branch have N
phonon modes. So the total number of phonon modesisd n N.

The total number of degrees of freedom is: dxnumber of atoms =d n N.
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the total number of degrees of freedom=the total number of phonon modes.

5.3.3. Total energy
Total energy is

hw
U:fde(w)(Ew)zfdw D(w) ——— 521
o 0 exp( 1) - 1 (521)

ks T

So the only thing we need to know here is the function of D(w) (the density of states).

5.3.4. Heat capacity
How many energy do we need to increase the temperature of the system by 1 degree?

. auU
v = ( pee ]V (5.22)

5.4. Einstein model (optical phonon modes)

5.4.1. Assumptions

For an optical branch, the phonon band is often very flat (w is amost a constant). So we can assume that
= all the phonon modes (for this optical branch) have the same energy wq

So the density of states

D(w) = N 6(w — wq) (5.23)

where §(X) is a delta function.

5.4.2. Total number of phonon modes

fde(w):fdw Nd(w — wg) =N (5.24)
o 0

Because total number of phonon mode in a phonon branch is the number of unit cells. The coefficient N inthe DOS is just the number of unit cells.

5.4.3. Total energy

hwo

U=N Tl (5.25)

exp(kBT)_
We can get the same results using
hw hw f wo

U:fodw D(w)izfqdw N d(w — wp) =N (5.26)

0 LIOR 0 LIRS o) )
exp(kBT 1 exp(kBT) 1 exp(kBT) L

5.4.4. Heat capacity

1 wo
ou d ha)o hwo hwo ha)o hwoz eXp(kB_T)
Cv{g) N VT zexp[ﬁ] T N"B[F] i) P 527
v on(iF)-1  [ew(iz)-af eT)ke o1/ [exnli2) 1]

5.4.5. Heat capacity at low temperatures (T - 0)

Atsmall T, exp(%) >>1,s0 exp(%) -1= exp(ZBiT‘))
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hw hw
exp(?—?) fl(,()o 2 exp(?—?) ha)o 2 fl(,()o 2 hwo
CvakBﬁ F szBﬁF :NKBF exp—F (5.28)
heo) _ B h o B B B
[eolic7) -1 [eol7)]
When T is reduced to zero, Cy decreases very fast to zero, as exp(— ZLT(’)
This result agrees with the third law of thermal dynamics: Cy =0at T =0.
5.4.6. Heat capacity at high temperature (T - o)
At high T, exp(:iT") ~1+ ZLTO Y
hw
P 2)  hwy? 1 (hw)?
e i lier) M T ler) TN 29
hao) _ B hawg B
[eoli7) -] o7l

This results agrees with the heat capacity of anideal gas, Cy = number of modesx kg.

5.5. Debye model (acoustic phonon modes)

5.5.1. Assumptions
m Linear dispersionw = vk
= The frequency of the phonons must satisfy 0 < w < wp, where the maximum frequency wp is called the Debye frequency.

5.5.2. Density of states
Q: How many modes do we have inside some region in the P-space?

A: We know that this number must be proportional to the size of the region (2:

Ng o f &P (5.30)
QO
Q: What is the coefficient here?

A: We know the uncertainty relation. If we know the size of the system (V), the uncertainty in momentum is (27 h)d/v. This means that one
quantum state will occupy a region of size (27 #)¢ / V inthe momentum space. So the number of modes

d®p d®k 4 k?dk k? dk
N:f :Vf :Vf :Vf (5.31)
@rh)3/V @2n)3 2n)3 272
If w= vk
k2 dk w?
szf =Vf dw (5.32)
272 2712\
Comparewith N = [D(w) d w. We find that
w2
D(w)=V (5.33)
2712\
And please also keep inyour mind that we assumed 0 < w < wp
Total number of modes
D D w2 (/JD?’
sz D(w)dw:Vf dw=V (5.34)
0 o 272\P 6712 \3

So
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1/3

N 1/3 6 7T2
wp=|622—| v=[—o1 v (5.35)
\% Ve

Here, V isthe volume of the system, N is the number of unit cellsand v is the sound velocity. V /N isjust he size of a unit cell Vc.

We can also define Debye wavevector kp as

N 1/3
kD =(.L)D/V=(67T2 V] (536)

5.5.3. Total energy

U= Sfde(w)
)1
kT

The factor 3 here is because there are three acoustic phonon branches (2 transverse and 1 longitudinal). In a real solid, these three modes have
different velocities, so their DOS and wp are different. But here, we assume these three modes are the same sound velocity for simplicity.

. hw hwp
inex=— Xp = —=.
define o and xp T

(5.37)

D a)2 hw 3Vh kBT 4 D )@
u=3vf0w dw . — =3 W[T] fdxil (5.38)
s exp(ﬁ) -1 Vs 0 exp(x) -

If we define Debye temperature,

ks ks

\%

hwp BV NY3
( 2 ] (5.39)

3V o x3 V/N - x3 T\ ot x3
U= 7(kBT)4‘r dx 7:9N(7 kB3T3]kBTf dx 7:9NkBT[—] f dx ———  (5.40)
212378 0 exp(x) — 1 672V 7e 0 exp(x) — 1 0) Jo exp(x) — 1

5.5.4. Heat capacity

ou D w? d fw
CV=—=3Vfwdw — =
0

2 i w
oT 272\ dT exp(:B_T)_l
5.41
D w? hw hw\ hw #? D w* 1 hw ( )
Vj“ dw " (k ] 2=3V zfchu 20 2exp(k—]
(0] 21 8T )kgT kg T< Jo 2r Do) g T
[ (kBT) 1] [eXp(kBT) 1]
inex= 1< _ oo
define x = o and xp = T
hz D U)4 1 fiw hz kBT 5 XD er
G, =3V zfdw 2.8 26Xp[—]=3vﬁ(—] f d/XX4 " 2=
kg T# Jo 2 [exp(i:—“;)—l] ke T 27w kg T h o (e¥-1)
(5.42)

kg kg T e T3 D er T\ /T e
3V [ ]f axxt _9Nk57f(dxx4 _9NkB[—]f axxt
2723 (e -1 g2 N (1v)® Jo (e* -1 ) Jo (e* - 1)?

v (i)

5.5.5. Heat capacity at low T
At low T, we can set the upper limit of the integral to oo

TV o 43 & TV¥ 4t 1274 (TP
CV:QNKB(—] f dxx“ ~9Nk5(—] Fdxx“ =9NkB[—] A NkB( ] (5.43)
6) Jo e* — 1)2 0) Jo (e* — 1)2 ) 15 5 0

At low temperature, the heat capacity is Cy ~ T3 (from acoustic phonons)
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This result agrees with the third law of thermal dynamics: Cy =0a T =0.

5.5.6. Heat capacity at high T
AthighT, xissmal, soe* ~ 1+ x

T o7 e T\ (o 1 T\ (o T3 1,763
CV:QNkB(—] f dxxt xQNKE{—] f d’xx4—:9NkB(—] f dxe:QNkB(—] —(—] =3Nkg (5.44)
0) Jo (e* — 1)? 9) Jo X2 6) Jo 0) 3\T

This results agrees with the heat capacity of anideal gas, Cy = number of modesx kg.

5.6. Total heat capacity (acoustic modes+optical modes)

56.1.Low T
At small T, acoustic phonons have

474 T3
Cy = kB[_) (5.45)
5 9

Optical phonons have

h wo 2 h wo
Cv©@=Nkg|—| exp|-—— (5.46)
ke T ke T
At small x (x<<1),
1 1
exp(—] << X" << x<< XM << — (5.47)
X Inx

So at small T, Cy™™ >> Cy(©, and therefore the total heat capacity is dominated by the acoustic modes and we can ignore the optical modes.
1274 T)3
Cy~Cy®»=——N kB(—] (5.48)
5 0
The Debye temperature 6 depends on the properties of the material, which is determined by fitting experimental data.

5.6.2. High T

At high T, each acoustic phonon branch contributes N kg to Cy. Each optical phonon branch also contributes N kg to Cy (Debye model and
Einstein model give the same result).

Therefore, the total heat capacity is
Cv = (number of phononbranches) x N kg =d n N kg (5.49)

where d is the dimensiondlity, n is the number atom per unit cell, N is the number of unit cell. Notice that n N is the total number of atoms in the
system.

Cv = d kg x (total number of atoms) (5.50)

This result agrees with the heat capacity of anideal gas.

5.7. A real solid

Inareal solid, D(w) is a complicated function, which is not even a smooth function. But at small w, very typically, the DOS agrees with the Debye
model [D(w) « w?].

The heat capacity for most insulators is Cy ~ T3, in good agreement with Debye model. For conductors, the low temperature heat capacity is
dominated by electrons instead of phonons, so we will typically see Cy ~ T, instead of T2,
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5.8. Thermal expansion

In the discussions above (and in chapter 3 and 4), we assume that the atoms in a solid are connected by perfect springs with E = C AL2/2. But in
reality, the potential energy (as a function of the distance between two particles) is not a quadratic function.

When we study heat capact, phonon modes etc., this approximation is pretty good and can provide to us correct results. However, if we want to
study some other topics (e.g. thermal expansion, scattering between phonons), this approximation will not be able to provide the correct physics. It
misses two important physics:
= Phonon scatterings: for perfect AL? potertials, there is no interaction between phonons. Phonons never collide with each other. When they
collide, they just cross each other, asif there is no other phonon. Inareal solid, where the bond between two atoms are not perfect springs,
there are phonon scatterings.

m Thermal expansion: for perfect springs, the length of the spring (separation between neighboring atoms) never changes, whenwe rise or
reduce the temperature. But in areal solid, this length changes. Typically, it increases as T increases. In other words, very typically, the size
of asolid increaseswhenweraise T (for some solids, the volume reduces at higher T), thisis known as thermal expansion.

5.8.1. A cartoon picture
Consider the potential energy between two atoms U(r) where r is the separation. Here, the first figure shows the potential of a perfect spring and
the second figure shows the L ennard-Jones potential, which can be used to describe the interaction between two atoms in some solids.
m [f U(r —rg) = U(rg —r), asshowninthefirst figure below, oscillations with larger amplitudes (higher energy) have the same average
distance (r) = rq as oscillations with smaller amplitudes (lower energy).
m If U(r —rg) £ U(rg — 1), as shown in the second figure below, oscillations with larger amplitudes (higher energy) have larger average
separation {r).
We know that at higher T, the amplitudes of oscillations increase. So higher T means larger separation.
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5.8.2. Rigorous calculations
Consider apotential: U(x) =cx? — gx3 + f x*

The probability for the distance to be x is

. E
o eXp|l———
p( Ks T)
So,
1 U(x)
PO = = exp|-——]|
z ke T

Again, Z can be determined by the condition that total P is unity.

(5.51)

(5.52)
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oo 1 0 U
1=f dx P(x):—f clxexp[— ] (5.53)
oo Z J-w ke T
So
z fwar [ U(X)] (5.54)
= / X exp| ——— .

Average distance (x) is

U(x)]

. 1 o U(x) medxxexp[—kB—T
(x):f dxxP(x):—f clxxexp[— ]: o (5.55)
o ZJ-o ke T [. dxexp[—kB—T]
U cx2—gxe+ fx cx? gx3—fxt
ol 2 I o 2 =
ke T ke T ke T ke T
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o 1 o U
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oo Z J-x kBT
. cx? gx3-f x4 0o cx? gxi-fx® % (5.57)
I clxxexp[—kB—T](1+—kBT )_f_oo dxexp[—kB—T](x+—kBT )_ 4|<B(kB—T) T ) 3gks T
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3gks T 39
(Xy = ke T (5.58)

C42-3fkeT  4C
For a perfect spring, (x) = 0 at any temperature. So there is no thermal expansion.

Inreality, there are additional terms in the potential energy beyond just X2, so (x) = % kg T increases as alinear functionof T at low T (at high T,
it is more complicated).

Notice that the expansionis controlled by g, which is the coefficient of the x3 term. Infact, if there is no x2"+! term, there is no thermal expansion.
This is because these terms breaks the symmetry of x - —x. Without these terms, U(x) is symmetric under x - —x. As shown in the previous
section, there is no thermal expansion.

5.9. Thermal conductivity

5.9.1. Definitions

Assumes that we have a solid bar. We heat up one of the end, so the two ends will have different temperature. We know the heat (energy) will
flow from the “hot” end to the “cold” end.

= Heat current (jy): the energy transmitted across unit area per unit time. jy = %

m Temperature gradient ‘;T—X: the change of temperature per unit length.
Heat current is proportional to the temperature gradient, and the coefficient is known as the thermal conductivity K:
dT

ju=-K— (5.59)
dx

5.9.2. Thermal conductivity
We can consider a solid as a dilute gas of phonons.
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n: density of phonons

7: average time between two collisions
v: velocity of phonons (sound velocity)
Vy: the x-component of the velocity

For a particle with velocity v, it will move vy T along the x axis between two collisions. Its starting position x has temperature T(x), its ending point
has temperature T(X + vx 7). This particle shall carry some energy from x to x + vy 7. How much energy?

C
= —[T(X) - T(X+ V)] (5.60)
Np
Here C is the heat capacity contributed by all phonons and N, is the total number of phonons. For N, phonons, we need energy C AT to increase
CAT

the temperature of all phonons by AT. Therefore, so for 1 phonon, we need energy - o increase its temperature by AT.

ATIST(X) — T(X+ Vx 7). If T issmall,

dT
AT=TX) - T(X+VT) x ——— W T (5.61)
dx
So
C C dT
= — [T - TX+ WD) =—— — W1 (5.62)
N, N, dx

How many phonons will cross unit area per unit time? n vy, where n the density of phononsn = Np/V
Total energy cross unit area per unit time;

_ C dT CdT Ne , CdT
ju=- __VxTan>:___T_<V><>:___T<V><> (5.63)
Np dx Np dx V V dx

Here(...) means average value.
What is (v?) ? Wekorw that (v2) = (2) + (vy?) + (v;?). For anisotropic system, (v,)? = (vy)2 = (Vx)2. S0, (V2) = 3(V,?)
CdT () 1CdT 1C dT
[ A R S Y (5.64)
V dx 3 3V dx 3V dx
Inthe last step, we defined the mean-free pass | = v r, which is the average distance a phonon travel between two collisions. So
1C

K== —vl (5.65)
3V

5.9.3. Thermal insulation
Inmany cases, we warnt some good thermal insulating material in order to keep something cool or warm. For example
= Thermos
= Hot water pipes or chilly water pipes
m Keep the heat inside a house during the winter.
» Inthermal dynamic experiments, we try to minimize the contribution from the environment.
The insulating capability of amaterial is measured K. Smaller K means better insulating capability.

If we want a good thermal insulating material, we want to minimize K.

How to minimize K?

1C
K== —vl (5.66)
3V

We shall choose those materials with small C, vand I.
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. % o« w = % = p. So we wart the material to have small density.

mv=_[(B+ %G)/p and vt = 4/ G/p . So we wart soft materials (with smaller elastic constarts)

= More impurities will result in smaller |. So we want materials with lots of impuritiesin it. Random solids have more impurities than good
crystals. So we want random solids.
Soft material with many impurities and low density: like rubber and foam.

Another option: We can use gas or vacuum.
m Gas (air) has much smaller C and v than solids.

m Vacuumisevenbetter C=0andv = 0.

5.9.4. Why is metal cold to touch?
This is because metals have very large K. In addition to phonons, the electron in a metal can move, which can also carry heat and energy. The
motions of electronwill give additional contributions to K, making it very large.





