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1. Introduction

Second law analysis in the design of thermal and chemical processes has received
considerable attention since 1970s. For example, Gaggioli and Petit (1977) reviewed the first
and second laws of thermodynamics as an introduction to an explanation of the thesis that
energy analyses of plants, components, and processes should be made by application of the
second law that deals with the availability of energy or the potential energy. They illustrated
their methodology suggested by applying it to an analysis of the Koppers-Totzek
gasification system. Optimization of heat exchangers based on second-law rather than first-
law considerations ensures that the most efficient use of available energy is being made.

Second-law analysis has affected the design methodology of different heat and mass transfer
systems to minimize the entropy generation rate, and so to maximize system available work.
Many researchers considered these processes in terms of one of two entities: exergy
(available energy) and irreversibility (entropy production). For instance, McClintock (1951)
described irreversibility analysis of heat exchangers, designed to transfer a specified amount
of heat between the fluid streams. He gave explicit equations for the local optimum design
of fluid passages for either side of a heat exchanger. To the knowledge of authors,
McClintock (1951) was the first researcher who employed the irreversibility concept for
estimating and minimizing the usable energy wasted in heat exchangers design. Bejan (1977)
introduced the concept of designing heat exchangers for specified irreversibility rather than
specified amount of heat transferred. Many authors used this technique in the field of
cryogenic engineering (Bejan and Smith (1974, 1976), Bejan (1975), and Hilal and Boom
(1976)).

One of the first examinations of entropy generation in convective heat transfer was
conducted by Bejan (1979) for a number of fundamental applications. Much of the early
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4 Heat Exchangers — Basics Design Applications

work is well documented in his books (Bejan, 1982a and 1996a). Since the publication of
(Bejan, 1996a), entropy generation in internal structure has been examined by numerous
researchers. In this section, we will examine these studies that include the optimization of
heat exchangers, and enhancement of internal flows. Also, we will proceed to develop some
of the basic principles and examine selected results from the published literature.

1.1 Optimization of heat exchangers

In the past thirty five years, much work relating to heat exchanger design based on the
second law of thermodynamics was presented by researchers (Bejan, 1988). Heat exchangers
have often been subjected to thermodynamic optimization (or entropy generation
minimization) in isolation, i.e.,, removed from the larger installation, which uses them.
Examples include the parallel flow, counterflow, crossflow, and phase-change heat
exchanger optimizations. We will talk in details about this in this section.

Bejan (1977) presented a heat exchanger design method for fixed or for minimum
irreversibility (number of entropy generation units, Ni). The researcher obtained the number
of entropy generation units (Ns) by dividing entropy generation rate by the smallest heat
capacity rate of the fluids. The value of N; can range between 0-co. The heat exchanger
would have a better performance if the entropy generation was at its minimum (Ns—0). This
dimensionless number can clearly express how a heat exchanger performance is close to an
ideal heat exchanger in terms of thermal losses. He showed that entropy generation in a heat
exchanger is due to heat transfer through temperature gradient and fluid friction. In contrast
with traditional design procedures, the amount of heat transferred between streams and the
pumping power for every side became outputs of the N; design approach. Also, he
proposed a methodology for designing heat exchangers based on entropy generation
minimization. To illustrate the use of his method, the paper developed the design of
regenerative heat exchangers with minimum heat transfer surface and with fixed
irreversibility Ns.

The thermal design of counterflow heat exchangers for gas-to-gas applications is based on
the thermodynamic irreversibility rate or useful power no longer available as a result of heat
exchanger frictional pressure drops and stream-to-stream temperature differences. The
irreversibility (entropy production) concept establishes a direct relationship between the
heat exchanger design parameters and the useful power wasted due to heat exchanger
nonideality.

Bejan (1978) demonstrated the use of irreversibility as a criterion for evaluation of the
efficiency of a heat exchanger. The researcher minimized the wasted energy using the
optimum design of fluid passages in a heat exchanger. He studied the interrelationship
between the losses caused by heat transfer across the stream-to-stream due to differences in
temperatures and losses caused by fluid friction. He obtained the following relation for the
entropy generation rate per unit length as follows:

dsgm_m(_dP}@AiT;m[_dP}ﬂLZo (1)
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Thermodynamic Optimization 5

The first term in expression (1) is the entropy production contribution due to fluid friction in
the fluid duct. The second term in expression (1) represents the contribution due to heat
transfer across the wall-fluid temperature difference. These two contributions were strongly
interrelated through the geometric characteristics of the heat exchanger. It should be noted
that the use of density (p) instead of the inverse of specific volume (v) in the first term on the
right hand side. Also, the denominator of the second term on the right hand side was
simplified by assuming that the local temperature difference (4T) was negligible compared
with the local absolute temperature (T). Heat transfer losses could be reduced by increasing
the heat transfer area, but in this case pressure drops in the channels increased. Both heat
transfer losses and frictional pressure drops in channels determined the irreversibility level
of heat exchanger.

A remarkable feature of Eq. (1) and of many like it for other simple devices is that a
proposed design change (for instance, making the passage narrower) induces changes of
opposite signs in the two terms of the expression. Then, an optimal trade-off exists between
the fluid friction irreversibility and the heat transfer irreversibility contributions, an optimal
design for which the overall measure of exergy destruction is minimum, while the system
continues to serve its specified function. In order to illustrate this trade-off, use the
definition of friction factor (f), Stanton number (St), mass flux (G), Reynolds number (Re),
and hydraulic diameter (dj,):

=1l —— 2
f 2G? ( dx @
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p

In Eq. (3), the quantity (dg/dx)/(pAT) is better known as the average heat transfer coefficient.
The entropy generation rate, Eq. (1) becomes

-]
dx dx

Where heat transfer rate per unit length and mass flow rate are fixed. The geometric
configuration of the exchanger passage has two degrees of freedom, the perimeter (p) and
the cross-sectional area (A), or any other pair of independent parameters, like (Re; dy) or (G;
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6 Heat Exchangers — Basics Design Applications

dp). If the passage is a straight pipe with circular cross-section, p and A are related through
the pipe inner diameter d that is the only degree of freedom left in the design process.
Writing

d,=d, A=nd*/4, and p=rd ©)
Equation (7) becomes
. ) 3
dflf:n - (%} ﬁT;lZNu i jzzpn;Tt{s ©)

Where Re = 411 /zud. The Nusselt number (Nu) definition, and the relation between Nu, St,
Re, and the Prandtl number (Pr = v/q)
huvdh

Nu=T=St.Re.Pr=St..Pe (10)

Introducing two classical correlations for fully developed turbulent pipe flow (Bejan, 1993),

Nu =0.023Re™*Pr’* (0.7 ( Pr ( 160:Re ) 10*) (11)

f=0046 Re®* (10*( Re ( 10°) (12)

and combining them with Eq. (9), yields an expression for exergy destruction, which
depends only on Re. Differentiating the exergy destruction with respect to the Reynolds
number (Re) and equaling the result with zero, we find that the entropy generation rate is
minimized when the Reynolds number (or pipe diameter) reaches the optimal value (Bejan,
1982a)

Reopt = 2.023Pr“o<071B0,358 (13)

Equation (13) shows how to select the optimal pipe size for minimal irreversibility.
Parameter B is a heat and fluid flow “duty” parameter that accounts for the constraints of
heat transfer rate per unit length, and mass flow rate:

[ dq 4
B=m| L 14
m[dleuwz(kT)uz (14)

Additional results may be obtained for non-circular ducts using the appropriate expressions
for the geometry A and p, and appropriate models for heat transfer and friction coefficients.

The Reynolds number (Re) effect on the exergy destruction can be expressed in relative
terms as

. -0.8 4.8
_ASgn/dx ) g5 [RRG J +0.144 [RRe ] (15)

(dSgen/ dX) i Copt Copt
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where the ratio on the left-hand side is known as the entropy generation number (Ns),
(Bejan, 1982a). In the denominator of the left hand side of Eq. (15), the minimum exergy
destruction is calculated at the optimum Reynolds number (Re:). Also, Re/Regp = dopi/d
because the mass flow rate is fixed. Using Eq. (15), it is clear that the rate of entropy
generation increases sharply on either side of the optimum. The left hand side of the
optimum represents the region in which the overall entropy generation rate is dominated by
heat transfer effects. The right hand side of the optimum represents the region in which the
overall entropy generation rate is dominated by fluid friction effects. The left hand side of
Eq. (15) is used to monitor the approach of any design relative to the best design that can be
conceived subject to the same constraints. Bejan (1982a, 1988) used this performance
criterion extensively in the engineering literature. Also, Mironova et al. (1994) recognized
this performance criterion in the physics literature.

Bejan (1978) also made a proposal to use the number of entropy production units (N;) as a
basic yardstick in describing the heat exchanger performance. This dimensionless number
was defined as the entropy production rate or irreversibility rate present in a heat exchanger
channel. When N; —0, this implied an almost ideal heat exchanger channel. According to his
study, it was enough to increase the effectiveness by using design criterions like the
minimization of difference wall temperature or maximization of the ratio of heat transfer
coefficient to fluid pumping power.

Bejan (1979) illustrated the second law aspects of heat transfer by forced convection in terms
of four fundamental flow configurations: pipe flow, boundary layer over flat plate, single
cylinder in cross-flow, and flow in the entrance region of a flat rectangular duct. The
researcher analyzed in detail the interplay between irreversibility due to heat transfer along
finite temperature gradients and, on the other hand, irreversibility due to viscous effects. He
presented the spatial distribution of irreversibility, entropy generation profiles or maps, and
those flow features acting as strong sources of irreversibility. He showed how the flow
geometric parameters might be selected to minimize the irreversibility associated with a
specific convective heat transfer process.

Bejan (1980) used the second law of thermodynamics as a basis for evaluating the
irreversibility (entropy generation) associated with simple heat transfer processes. In the
first part of his paper, he analyzed the irreversibility production from the local level, at one
point in a convective heat transfer arrangement. In the second part of his paper, he devoted
to a limited review of second law analysis applied to classic engineering components for
heat exchange. In this category, the paper included topics like heat transfer augmentation
techniques, heat exchanger design, and thermal insulation systems. The researcher
presented analytical methods for evaluating and minimizing the irreversibility associated
with textbook-type components of heat transfer equipment. Also, he obtained an expression
for the entropy generation rate in a balanced counterflow heat exchanger with zero pressure
drop irreversibility as follows:

1 +£NTU 1 +£NTU
T, T,

N,=In 5
(1+ NTU)
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8 Heat Exchangers — Basics Design Applications

Using Eq. (16), Ns = 0 at both £ =0 (or at NTU = 0) and &= 1 (or at NTU = ), and had its
maximum value at = 0.5 (or at NTU = 1). The maximum N; increases as soon as T3/T> goes
above or below 1:

N max =1n 14—1 £+2 17)
’ 2 4T, T,
Ns increases with the absolute temperature ratio T;/T;. When N; > 1, the irreversibility
decreases sharply as & — 1. On the left side of the maximum N; < 1, the irreversibility
decreases due to insufficient heat transfer across a temperature difference of order (T7-T>).

This maximum entropy paradox constitutes an excellent illustration of the importance of the
principle of thermodynamic isolation in the optimization of an engineering component.

Chowdhury and Sarangi (1980, 1983) used irreversibility analysis to predict the optimum
thermal conductivity of the separating wall in a concentric tube counterflow heat exchanger.
The researchers accounted for the entropy generation due to axial conduction in the wall,
along with that due to lateral heat transfer and fluid friction. The frictional entropy
generation was independent of the thermal conductivity of the wall and also did not affect
the thermal effectiveness of the heat exchanger. As a result, they treated it as constant
throughout this work. They assumed that the entropy generations due to lateral and axial
heat transfer were independent of each other.

Chowdhury and Sarangi (1982) studied the generation of entropy in a counterflow heat
exchanger. For nearly ideal heat exchanger with nearly balanced capacity rate, the
researchers obtained an expression for the number of entropy generation units, N;. They
compared the results of their expression with exact calculation and results of Bejan (1977).
They observed that their new expression gave a much closer approximation and also could
be easily incorporated into the new design procedure of Bejan.

Bejan (1982a) showed that the Entropy Generation Minimization (EGM) method was
dependent on the use of fluid mechanics, heat transfer, and thermodynamics in its
application. The difference between the exergy method and the entropy generation
minimization method is that exergy method uses only the first law, second law, and the
properties of the environment. On the other hand, EGM characteristics are system modeling,
development of the entropy generation rate as a function of the model parameters and the
ability to minimize the entropy generation rate.

The researcher applied the entropy generation balance or entropy imbalance equation to a
control volume of an open system. For gas-gas heat exchanger, he explained entropy
generation as the sum of the entropy generation caused by finite temperature difference
with frictional pressure drop.

Sgen = sgen,AT"‘ sgen,AP (18)

The first term on the right-hand side of Eq. (18) is the entropy generation rate accounting for
the heat transfer irreversibility, and the second term for the fluid friction irreversibility. He
expressed that entropy generation (Sg) = 0 corresponded to the highest quality while the
entropy generation (Sgen) > 0 represented poorer quality.
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Also, he described the relative importance of the two irreversibility mechanisms using the
irreversibility distribution ratio (¢#) that was defined as:

_ fluid - flow irreversibility  Sgon,ap

= = 19
heat transfer irreversibility Soon AT 1)
gen,

For example, the irreversibility distribution ratio (¢) varies along with the V-shaped curve of
entropy generation number (N), or relative entropy generation rate in a smooth pipe with
heat transfer (Bejan, 1980), increasing in the direction of large Reynolds numbers (small pipe
diameters because the mass flow rate is fixed) in which the overall entropy generation rate is
dominated by fluid friction effects. At the optimum (corresponding to N; = 1), the
irreversibility distribution ratio (¢) assumes the value @ = 0.168. This means that the
optimal trade-off between the irreversibility due to heat transfer effects and the
irreversibility due to fluid friction effects does not coincide with the design where the
irreversibility mechanisms are in perfect balance, even though setting ¢ =1 is a fairly good
way of locating the optimum.

Substituting Eq. (19) into Eq. (18) yields

Sgen = (1+§)Sgon,ar (20)

In addition, augmentation entropy generation number (N;,) was given by

N, = Ssema (21)

s,a

Sgen,o

This definition represents the ratio of the augmented to base channel entropy generation
rates. Under particular flow conditions and/or constraints, N, < 1 is desirable, as the
augmented system is thermodynamically improved over the basic system, because, in
addition to enhancing heat transfer, the irreversibility degree of the apparatus is reduced
assuming other factors like heat transfer duty, pressure drop, or pumping power remain
the same. If the function of the heat exchanger passage is fixed (i.e. mass flow rate and
heat flux are given), this dimensionless number can be written in the more explicit form
(Bejan, 1988)

1 )
N, = N+ N 22
s,a 1+ 4 s,AT 1+ s,AP ( )

In Eq. (22), ¢ represents the irreversibility distribution ratio of the reference design, whereas
N, 4r and N, 4p are the values of N, in the limits of pure heat transfer irreversibility and pure
fluid-flow irreversibility:

_ StOdh,a

- (23)
S tadh,O

s,AT
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2

_ fudh,OAO

s,AP — 2
deh,aAa

The geometric parameters (A, dj) before and after augmentation are linked through the
constant mass flow rate constraint that reads

(24)

Aﬂ

Re, Ay
d

=Re;—— (25)
ha o

Substituting Eq. (23) and Eq. (24) into Eq. (22) yields

_ 1 Stody . % fadh,OAg
Y144y Sty 1+4y fodh,aAf

(26)

Equation (26) shows that N, is, in general, a function of both the heat transfer coefficient
ratio (Sty/Sty) and the friction factor ratio (fi/fo). The numerical value of ¢ dictates the relative
importance of the friction factor ratio (f/fo). ¢ is known because the reference design is
known. It should be noted that ¢y describes the thermodynamic regime of operation of the
heat exchanger passage (AT losses versus AP losses), much in the way that Rey indicates the
fluid mechanics regime (laminar versus turbulent).

For the case of no change in hydraulic diameter and the cross-sectional appreciably (dj,. =
dn0, Aa =Ag), the augmentation entropy generation number (Ns,) has this simple form

h fu (27)
1+¢) fo

Bejan (1982b) summarized an important contemporary trend in the field of heat transfer and
thermal design. The researcher represented this trend using the infusion of the second law
of thermodynamics and its design-related concept of entropy generation minimization. This
new trend was important and, at the same time, necessary, if the heat transfer community
was to contribute to a viable engineering solution to the energy problem. The examples
considered in his article ranged from the irreversibility associated with some of the most
fundamental convective heat transfer processes, to the minimum irreversibility design of
one-dimensional insulations like the main counterflow heat exchanger of a helium
liquefaction plant.

__1 5
T 144, St,

+

Bejan (1983) discussed the irreversibility characteristics of the heat exchangers in which at
least one of the streams was a two-phase mixture.

Witte and Shamsundar (1983) defined a thermodynamic efficiency based on the second law
of thermodynamics for heat exchange devices. The efficiency could be simply written in
terms of the mean absolute temperatures of the two fluids exchanging heat, and the
appropriate environment temperature, Their expression was

T, Sgon (28)
Q

Mw-s =1~
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Q = ﬁ1/l (hin - hauf)h = mﬁ (hﬂllz‘ - hin )c (29)

mw.s = 1 represented the highest value and corresponded to the reversible process. The
examination of this efficiency indicated that 7.5 could be negative, and the full range of this
efficiency was —o < nmw.s < 1. Negative values of 7n.s characterized counterflow heat
exchangers working at cryogenic operational conditions. It should be noticed that this is a
conceptually inconvenient result ((Bejan, 1988), (Hesselgreaves, 2000)).

Also, Witte and Shamsundar (1983) showed that for a given ratio of hot to cold inlet
temperatures, the efficiency and effectiveness for particular heat exchange configurations
were related. They compared this efficiency to second-law efficiencies proposed by other
authors, and showed to be superior in its ability to predict the influence of heat exchanger
parameter changes upon the efficiency of energy use. They applied this concept to typical
heat exchange cases to demonstrate its usefulness and sensitivity.

London and Shah (1983) presented an operationally convenient methodology for relating
economic costs to entropy generation. This methodology, in the hands of the heat exchanger
designer, allowed an interaction with the system designer to gain insights into the trade-offs
allowed between the thermodynamic irreversibilities of flow friction, heat transfer, heat
leakage, and mixing. This methodology started with recognition of the appropriate
individual irreversibilities. Then, it related the individual costs to system rating and energy
penalties by thermodynamic arguments. The analysis loop was closed by considerations
related to reduction of the individual irreversibilities in a cost-effective way. On the other
hand, the usual energy or “exergy” analysis provided an answer for the overall costs of the
collective irreversibilities. This did not provide the engineer with the insight needed to
minimize the individual irreversibilities in a cost-effective manner.

Perez-Blanco (1984) discussed irreversibility in heat transfer enhancement. The researcher
developed the methods of calculating overall entropy generation rate in a single-flow heat
exchanger tube with uniform wall temperature.

Sekulic and Baclic (1984) considered the concept of enthalpy exchange irreversibility (EEI).
The researchers conducted the optimization of heat exchangers on the basis of entropy
generation number for counterflow and crossflow heat exchangers.

da Costa and Saboya (1985) discussed second law analysis for parallel flow and counterflow
heat exchangers. In a comparative study of the irreversibility due to heat transfer for
imbalanced (i.e. the thermal capacity rates for both fluids are not the same) counterflow and
parallel flow heat exchangers, the researchers found that the maximum occurs at
effectiveness (¢) = 1 in parallel flow heat exchangers.

Sekulic (1985-1986) presented a note on the thermodynamic approach to the analysis of
unequally sized passes in two-pass crossflow heat exchangers.

Sekulic and Herman (1986) considered the minimum of enthalpy exchange irreversibility
(EEI) as a selective criterion in heat exchanger design. The researchers applied this concept
in the core sizing procedure of a compact crossflow heat exchanger for gas-to-gas
application. In the final analysis, the approach objective was the pressure drop choice in
such a way that from the total set of possible heat exchanger core dimensions the
thermodynamically optimal one was selected.
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Sekulic (1986) applied the entropy generation (irreversibility) concept founded on the
second law of thermodynamics in heat exchanger analysis. In this analysis, the quantity
termed enthalpy exchange irreversibility norm (EEIN) was the measure of the internal heat
exchanger irreversibilities. The researcher discussed the behavior of EEIN as a function of
the heat exchanger thermal size for an arbitrary flow arrangement and more precisely for
two characteristic limiting cases: cocurrent and countercurrent heat exchangers.

In the heat exchangers design, the enhancement of heat transfer surface area is effective to
reduce the loss due to the fluid-to-fluid temperature difference. On the other hand, this
leads to the increase of the pressure loss in the channel. The optimum working condition
must be determined by taking these conditions trade into account. As a result, Tsujikawa et
al. (1986) presented the design method of the regenerator of the gas turbine cycle applied
with the entropy generation from the viewpoint of the second law of thermodynamics. Their
study was mainly concerned with the optimization through the choice of the minimum
entropy production. For the fixed value of the pressure ratio of the compressor, the
researchers calculated the number of entropy generation units and determined the optimum
temperature efficiency of the generator that gave the minimum heat transfer surface area.

Krane (1987) applied second law analysis techniques based on the minimization of entropy
generation to the optimal design and operation of a sensible heat thermal energy storage
system in which the storage element was both heated and cooled by flowing streams of
gases. His results showed that (1) an entire operational cycle that consisted of a storage
process and a removal process must be considered (as opposed to the storage process alone)
to optimize the design and performance of such a system; and (2) a typical optimum system
destroyed approximately 70-90% of the entering availability and, therefore, had an
extremely low thermodynamic efficiency.

Zubair et al. (1987) presented a closed-form analytical method for the second-law-based
thermoeconomic optimization of two-phase heat exchangers used as condensers or
evaporators. Due to finite temperature difference heat transfer and pressure drops, the
researchers proposed the concept of “internal economy” as a means of estimating the
economic value of entropy generated, thus permitting the engineer to trade the cost of
entropy generation in the heat exchanger against its capital expenditure. They presented
results in terms of the optimum heat exchanger area as a function of the exit/inlet
temperature ratio of the coolant, unit cost of energy dissipated, and the optimum overall
heat transfer coefficient. The total heat transfer resistance represented by (U1 = C; + C; Re™)
in this analysis was patterned after Wilson (1915) that accommodated the complexities
associated with the determination of the two-phase heat transfer coefficient and the buildup
of surface scaling resistances. They presented the analysis of a water-cooled condenser and
an air-cooled evaporator with supporting numerical examples that were based on the
thermoeconomic optimization procedure of this study.

Bejan (1987) presented a review article to outline the most basic steps of the procedure of
entropy generation minimization (thermodynamic design) at the system-component level.
His current paper was a continuation of his earlier review work (Bejan, 1982a and 1982b). As
a result, a further objective was to review the fundamental work published in this area in the
1980s. The researcher focused on the fundamental mechanisms responsible for the
generation of entropy in heat and fluid flow and on the design tradeoff of balancing the heat
transfer irreversibility against the fluid flow irreversibility. He selected applications from
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the fields of heat exchanger design, thermal energy storage, and mass exchanger design.
This current article provided a comprehensive, up-to-date review of second-law analyses
published in the heat and mass transfer literature during the last decade.

Bejan (1988) summarized the structure of heat exchanger irreversibility as follows:

Ns =N +NS,AT +NS,AP (30)

s,imbalance
The first term on the right hand side represents the remanent (flow-imbalance)
irreversibility. The second term on the right hand side represents the heat transfer
irreversibility. The third term on the right hand side represents the fluid flow irreversibility.
The researcher suggested to calculate the remanent irreversibility (Ngimpaiance) first in the
thermodynamic optimization of any heat exchanger because it is not logic to invest heat
exchanger area and "engineering" into minimizing the sum (N sr + N; 4r) when this sum is
already negligible compared with the remanent irreversibility (Nsimpatance). Only in very
special case does the entropy generation rate of a heat exchanger break into a sum of these
three terms. One such case is the balanced counter flow heat exchanger in the nearly
balanced and nearly ideal limit (@ — 1, AT — 0, AP's — 0). This case was discussed in details
in Bejan (1977).

The remanent (flow-imbalance) irreversibility of two-stream parallel-flow heat exchangers
can be obtained by combining the equation of the entropy generation rate of the entire heat
exchanger with the perfect design conditions and the effectiveness relation for parallel flow
(Bejan (1993)) as follows:

. @ 1+w
S T T 0]
Ns,z‘mbalance = K o =In (TZ] |:1 + (Tl - 1} 1+ w:l (31)
(mcp)Z ! 2

In the limit of extreme imbalance (@ — «), Eq.(31) becomes

T T
N, imbatance = == —1-In=2 (32)
tmoaiance Tl Tl

In this limit, the side 1 stream is so large that its temperature remains equal to T; from inlet
to outlet. It behaves like a stream that condenses or evaporates at constant pressure.

On the other hand, the remanent (flow-imbalance) irreversibility of two-stream counter flow
heat exchangers can be obtained as follows:

. 1
S 1 T. T
Ns,z‘mbalance = K o =In |:1 - w(l - TZJ:‘ Til (33)
(mcp)Z ! 2

From Eq. (31) and Eq. (33), it is clear that the remanent (flow-imbalance) irreversibility in
parallel flow is greater than in counterflow. Also, both flow arrangement approach the value
indicated by Eq. (32) as the flow imbalanced ratio (@) increases.

Sekulic and Milosevic (1988) investigated entropy generation in heat exchanger networks
using the component balance approach.
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14 Heat Exchangers — Basics Design Applications

Witte (1988) used the second-law efficiency to develop a new technique for optimizing the
design of heat exchangers. His method related the operating costs of the exchanger to the
destruction of availability caused by the exchanger operation. The researcher related directly
the destruction of availability to the second-law efficiency of the exchanger. This allowed
one to find the NTU at which the benefits of reduced availability losses were offset by the
costs of added area; this was the optimal point. In order to determine the proper cost of
irreversibility to be used in the optimization process, he included the irreversibility cost in a
dimensionless parameter that represented the ratio of annual ownership costs to annual
operating costs that included irreversibility costs. In this way, every heat exchanger designer
could estimate the costs of irreversibilities for his particular system, and then used the
generalized method that was developed herein for determining the optimal heat exchanger
size. His method was applicable to any heat exchanger for which the & NTU-R relationships
were known.

Grazzini and Gori (1988) developed a general expression for entropy generation in counter-
current heat exchangers is. Their expression was applicable to incompressible liquids and
perfect gases. They defined two new entropy generation numbers, Ny and Np.

They investigated the relative position of both the maximum and minimum in the entropy
generation numbers. They applied their analysis to an air-air counter-current heat
exchanger. The three entropy generation numbers, N, Ny and Ng, had a different
variation with NTU at the different values of the capacity flow rate ratio employed in the
calculations.

Egrican (1989) investigated logarithmic mean temperature difference (LMTD) method based
on the first law of thermodynamics with effectiveness-transfer unit methods and entropy
generation units based on the second law of thermodynamics. To give an example, the
researcher applied this method to counter-flow shell and tube heat exchanger.

Poulikakos and Johnson (1989) obtained a general expression for the entropy generation for
combined convective heat and mass transfer in external flows. This expression took into
account irreversibilities due to the presence of heat transfer across a finite temperature
difference, mass transfer across a finite difference in the chemical potential of a species, and
flow friction. Minimizing the entropy generation in heat- and fluid-flow devices was a
valuable criterion for optimum design. The researchers showed that the same philosophy
could be used when in addition to heat transfer and fluid flow irreversibilities, mass transfer
irreversibilities existed in the thermal system of interest. They applied the general
expression for entropy generation to two fundamental problems of forced convection heat
and mass transfer, namely, laminar and turbulent boundary layer forced convection from a
flat plate and from a cylinder in crossflow. After minimizing the entropy generation, they
drew useful conclusions that were representative of the second law viewpoint for the
definition of the optimum operating conditions for the specified applications.

Paoletti et al. (1989) calculated the exergetic losses in compact heat exchanger passages. In
their approach, the researchers analyzed the heat exchangers on the basis of second-law and
used the entropy generation rate in a local sense. They associated the symbol Be as an
alternative irreversibility distribution parameter and defined as the ratio of heat transfer
irreversibility to total irreversibility due to heat transfer and fluid friction
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In addition, Benedetti and Sciubba (1993) called it the Bejan number (Be). Later, Natalini and
Sciubba (1999) introduced also Bejan number (Be) using Eq. (34). Natalini and Sciubba (1999)
solved first the full Navier-Stokes equations of motion for turbulent viscous flow, together
with the appropriate energy equation, via a standard finite-element code with a k-epsilon
closure, to obtain complete velocity and temperature fields. Then, the researchers used these
fields to compute the entropy generation rates corresponding to the viscous and thermal
dissipation.

It is clear from Eq. (34) that Be = 1 that occurs at ¢ = 0 corresponds to the case at which the
irreversibility is dominated by the heat transfer effects. On the other hand, Be = 0
corresponds to the case at which the irreversibility is dominated by the fluid friction effects.
Also, Be = 0.5 that occurs at ¢ = 1 corresponds to the case at which the heat transfer
irreversibility and the fluid friction irreversibility are equal.

It should be noted that the Be definition in Eq. (34) should not be confused with another
Bejan number (Be) used in convection. Petrescu (1994) defined the Bejan number (Be) as
follows:

_APL?
o

Be (35)
This was similar to the new dimensionless group developed by Bejan and Sciubba (1992) in
their study on the optimal spacing between plates cooled by forced convection. Also, the
same group appeared in the solutions to other electronic cooling problems involving forced
convection (Bejan, 1993). In addition, the group defined in Eq. (35) governed all the
phenomena of contact melting and lubrication, in both internal and external contact
configurations (Bejan, 1992).

The researcher reported that the Bejan number (Be) was essential in at least four areas of
heat transfer: electronic cooling, scale analysis of forced convection, second law analysis of
heat exchangers, and contact melting and lubrication. The Be group defined by Eq. (35) was
the forced convection (Pr > 1) analog of the Rayleigh number (Ra) for natural convection in
Pr>1 fluids.

Sekulic (1990) presented the entropy generation (irreversibility) concept as a convenient
method for estimating the quality of the heat exchange process in heat exchanger analysis.
The researcher used the entropy generation caused by finite temperature differences, scaled
by the maximum possible entropy generation that could exist in an open system with two
fluids, as the quantitative measure of the quality of energy transformation (the heat
exchange process). This quality was defined as

Quality of energy transformation = 1 -(Entropy generation in the real process) %
x(Entropy generation in the most disadvantageous case)™ (36
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According to this concept, entropy generation = 0 (reversible process) corresponded to the
highest quality, and the quality of energy transformation decreased with increasing entropy
generation. Another point that should be considered was that the use of this concept
required the determination of the most disadvantageous case. Substituting the entropy
generation number (N;) and the maximum possible dimensionless entropy generation
(Nsmax) into Eq. (36) gives the following quantity termed as “Heat Exchange Reversibility
Norm” (HERN):

: (37)

s,max

HERN is a measure of the quality of energy transformation of heat exchangers. In his
analysis, it was assumed that the contribution of fluid friction to entropy generation was
negligible. If the pressure drop contribution to the total irreversibility was not negligible,
then, it must be taken into account. The quality of the heat transfer process in a heat
exchanger was dependent on the following three quantities for this special case: the ratio of
inlet temperatures, the ratio of heat capacity rates, and the effectiveness of the heat
exchanger.

Sekulic (1990) applied the HERN measure to a two-fluid heat exchanger of arbitrary flow
arrangement. He discussed the effect of various parameters (inlet temperature ratio, fluid
flow heat capacity rate ratio, flow arrangements) and the heat exchanger thermal size
(number of heat transfer units) on the quality of energy transformation for various types of
heat exchangers.

Rispoli and Sciubba (1990) investigated numerically the calculation of local irreversibilities
in compact heat exchangers. Their approach to analyze heat exchangers on the basis of
second law was to use the entropy generation rate in a local sense. They analyzed two
various geometries of compact heat exchanger passages on the basis of local entropy
generation rate. The evaluation of the entropy production in a local sense had the following
advantages:

i. it was possible to assess the effect of design changes both on the local and the global
irreversibility,

ii. direct and consistent comparisons between various design configurations, both from
the designer’s and from the user’s perspective, could be made,

iii. entropy productionmaps of different devices and/or components can be established,
and the overall system design rationalized.

The coupled momentum and energy equations should be solved to determine the local
entropy production rates. The corresponding entropy production was computed by using
the resulting velocity and temperature fields.

The researchers defined local Bejan number as the ratio of entropy generation due to
thermal effects to total entropy generation as:

Bo— Local entropy generation rate due to thermal effects St (38)
Total local entropy generation rate $45
t

v
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Bejan number (Be) = 1 for high Re flows, low Pr fluids, high logarithmic mean temperature
difference (LMTD) while Bejan number (Be) = 0 for low Re flows, high Pr fluids, low
logarithmic mean temperature difference (LMTD). Theoretically, Bejan number (Be) = 0 only
for totally isothermal flows.

Evans and von Spakovsky (1991) set forth two fundamental principles of differential Second
Law analysis for heat exchanger design. Their first principle defined a Second Law
temperature, while their second principle defined a Second Law temperature difference. The
researcher showed that the square of the ratio of the Second Law temperature difference to
the Second Law temperature was always to be equal to the negative of the partial derivative
of the rate of entropy generation (for heat transfer) with respect to the overall conductance
of the heat exchanger. For the basic design of elementary heat exchangers, every of these
two Second Law quantities was shown to take the form of a simple geometric average.

Sieniutycz and Shiner (1994) presented a review article on thermodynamics of irreversible
processes and its relation to chemical engineering: Second law analyses and finite time
thermodynamics. In spite of their focus was on chemical engineering applications, their
stated objective was to clarify the connections between the work of different groups in the
field.

Later, Bejan (1996c) presented notes on the history of the method of entropy generation
minimization (finite time thermodynamics). The researcher mentioned that Professors
Sieniutycz and Shiner deserved credit for conducting a review of this wide and active field.
Also, credit went to their calloborators, Professors Berry and Ratkje, who had clearly
contributed to their review article. In these notes, he wanted to complement Sieniutycz and
Shiner's list with a few additional references that shed a somewhat various light on the age
and origins of the method. In brief, the method was older than portrayed in Sieniutycz and
Shiner (1994) and its roots were in engineering, not in physics.

Bejan (1996b) presented a review article on entropy generation minimization: the new
thermodynamics of finite-size devices and finite-time processes. His review traced the
development and adoption of EGM method in many sectors of mainstream thermal
engineering and science: cryogenics, heat transfer, education, storage systems, solar power
plants, nuclear and fossil power plants, and refrigerators. The researcher placed emphasis
on the fundamental and technological importance of the optimization method and its
results, the pedagogical merits of the method, and the chronological development of the
field.

Xiong et al. (1996) discussed some conceptual problems in their paper. Firstly, according to
the physical meaning of effectiveness, the researchers developed a new expression of
effectiveness using an ideal heat exchanger model and temperature histogram method, in
which the non-uniform inlet temperature profile was considered. Secondly, they studied the
relation of entropy generation number (N;) to effectiveness (&). They pointed out that both of
them could express the perfect degree of a heat exchanger to the second thermodynamic
law. Finally, they presented a criterion named as comprehensive thermal performance
coefficient (CTPE) to describe both quantity and quality of heat transferred in a heat
exchanger.

Xu et al. (1996) demonstrated the difference between the entropy generation number
method proposed by Bejan and the method of entropy generation per unit amount of heat
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transferred in analyzing the thermodynamic performance of heat exchangers. The
researchers pointed out the reason for leading to the above difference. They proposed a
modified entropy generation number for evaluating the irreversibility of heat exchangers is
which was in consistent with the entropy generation per unit amount of heat transferred in
entropy generation analysis. Also, they investigated entropy generated by friction. Their
results showed that when the entropy generated by friction in heat exchangers was taken
into account, there was a minimum total entropy generation number while the NTU and the
ratio of heat capacity rates varied. The existence of this minimum was the prerequisite of
heat exchanger optimization.

Ogulata and Doba (1998) presented a cross-flow plate type heat exchanger that had been
studied and manufactured in the laboratory conditions because of its effective use in waste
heat recovery systems. The researchers tested this new heat exchanger with an applicable
experimental set up, considering temperatures, velocity of the air and the pressure losses
occurring in the system. They measured these variables and determined the efficiency of the
system. They took into consideration the irreversibility of the heat exchanger while they
performed the heat exchanger design so that the minimum entropy generation number had
analyzed with respect to second law of thermodynamics in the cross-flow heat exchanger.

Ogulata et al. (1999) studied and manufactured a cross-flow plate-type heat exchanger in
laboratory conditions because of its effective use in waste heat recovery systems. The
researcher tested this new heat exchanger with an applicable experimental setup,
considering temperatures, velocity of the air, and the pressure losses occurring in the
system. They measured these variables and determined the efficiency of the system. The
heat exchanger irreversibility was taken into consideration, while the heat exchanger design
was such that the minimum entropy generation number was analyzed with respect to the
second law of thermodynamics in the cross-flow heat exchanger. The minimum entropy
generation number was dependent on the parameters called the optimum flow path length
and dimensionless mass flux. They analyzed variations of the entropy generation number
with these parameters.

Nafey (2000) presented theoretical analysis of entropy generation and availability
destruction of NTU similar cocurrent or countercurrent heat exchangers connected in series.
The researcher developed a criterion for comparing the relative performance of any number
of in-series connected similar heat exchangers. He presented the effect of various influencing
parameters like the number of connected heat exchangers, the individual effectiveness of
every unit, the heat capacity rate ratio and flow arrangement on the quality of heat
exchange. He found that the maximum of availability destruction (maximum entropy
generation) for in-series-connected similar cocurrent heat exchangers was obtained at & =
(1+R)1. However, for counter-current heat exchangers connected in-series; &, = (Xn; = R¥7)-1.
This analysis might be useful for a proper choice of the number of heat exchangers to be
connected together and the choice for the best operating conditions.

Ordéiiez and Bejan (2000) determined the main architectural features of a counterflow heat
exchanger based on thermodynamic optimization subject to volume constraint. The
researchers assumed that the channels were formed by parallel plates, the two fluids were
ideal gases, and the flow was fully developed, laminar or turbulent. First, they showed that
the irreversibility of the heat exchanger core was minimized with respect to (1) the ratio of
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the two-channel spacings, and (2) the total heat transfer area between the two streams.
Second, the entropy generation rate also accounted for the irreversibility due to discharging
the spent hot stream into the ambient. They showed that the design could be optimized with
respect to (1), (2) and (3) the ratio of the capacity rates of the two streams. The optimized
features of the geometry were robust with respect to whether the external discharge
irreversibility was included in the entropy generation rate calculation.

Hesselgreaves (2000) reviewed the different approaches to second law analysis and
presented a rational method that satisfied the physical requirements. His intention was not
reviewing all previous work, but presenting an approach that resolved some perceived
inconsistencies and paradoxes. The researcher derived entropy generation numbers for
different types of two-fluid heat exchangers with zero pressure drop and finite pressure
drop. The types of heat exchangers were: heat exchangers with flow imbalance, unbalanced
counterflow, parallel flow, condensing on one side, and evaporation on one side. An
important result of this investigation was that the basic entropy generation relationship for
gas flows was controlled by the flow Mach number. This was consistent with an extension
of Shapiro (1953)'s classical one-dimensional flow analysis of a compressible gas with
friction and heat addition.

Yilmaz et al. (2001) presented second-law based performance evaluation criteria to evaluate
the performance of heat exchangers. First, the researchers recalled and discussed the need
for the systematic design of heat exchangers using a second law-based procedure. Then,
they classified the evaluation techniques for heat exchangers based on the second law of
thermodynamics into two categories: the evaluation techniques using entropy as an
evaluation parameter, and the evaluation techniques using exergy as an evaluation
parameter. They presented and reviewed collectively both categories, and gave their
respective characteristics and constraints. It was shown how some of these criteria were
related to every other. Also, emphasis was placed on the importance of second law-based
thermoeconomic analysis of heat exchangers, and these methods were discussed briefly.

Vargas et al. (2001) studied the process of determining the internal geometric configuration
of a component by optimizing the global performance of the installation, which used the
component. The example chosen was the crossflow heat exchanger used in the
environmental control system of a modern aircraft. The researchers achieved the
optimization of global performance by minimizing the total entropy generation rate of the
installation. There were three degrees of freedom in the heat exchanger configuration (the
length-to-width and height-to-width aspect ratios, and the separator plate spacing ratio) that
was subjected to two global constraints: total component volume, and total wall material
volume (or weight/density) of wall material. Their numerical results showed how the
optimal configuration responded to changes in specified external parameters like volume,
weight, Mach number, diffuser inlet cross-sectional area, and the pressure at which the
cabin air was initially bled from the engine compressor. They showed that the optimal
configuration was robust and that major features like the ratios of channel spacings and
flow lengths were relatively insensitive to changes in some of the external parameters. Also,
they showed that the optimal heat exchanger geometry was insensitive to the
thermodynamic irreversibility caused by discharging the used ram air into the ambient.

Vargas and Bejan (2001) showed that the main geometric features of a flow component
could be deduced from the thermodynamic optimization of the global performance of the
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largest flow system that incorporated the component. Their approach represented a
departure from the usual approach, where a flow component was optimized in isolation.
The researchers chose the counterflow heat exchanger of the environmental control system
(ECS) used on modern aircraft as an example. They fitted the heat exchanger with a diffuser
and a nozzle for the ram air, and the ECS run on the boot strap air cycle, employing an
additional compressor and turbine. They considered two heat transfer surface types, finned
and smooth parallel plates. They reported numerical results for the external geometric
aspect ratios of the heat exchanger, and for the plate-to-plate spacing of the smooth-plates
model. They showed that the optimized geometry for the core with finned surfaces was
nearly the same as the optimized geometry for the core with smooth plates. Many optimized
geometric features were robust with respect to changes in external parameters that varied
from one application to the next. Their method illustrated in this work - the thermodynamic
(constructal) optimization of flow geometry - was applicable to any system that run on the
basis of a limited amount of fuel (exergy) installed onboard, e.g., automobiles, ships,
portable tools.

Bejan and Lorente (2001) reviewed recent developments in thermodynamic optimization by
focusing on the generation of optimal geometric form (shape, structure, topology) in flow
systems. The flow configuration was free to vary. The researchers drew examples of large
classes of applications from different sectors of mechanical and civil engineering: the
distribution of heat transfer area in power plants, optimal sizing and shaping of flow
channels and fins, optimal aspect ratios of heat exchanger core structures, aerodynamic and
hydrodynamic shapes, tree-shaped assemblies of convective fins, tree-shaped networks for
fluid flow and other currents, optimal configurations for streams that undergo bifurcation or
pairing, insulated pipe networks for the distribution of hot water and exergy over a fixed
territory, and distribution networks for virtually everything that moves in society (goods,
currency, information). The principle-based generation of flow geometry united the
thermodynamic optimization developments known in mechanical engineering with lesser
known applications in civil engineering and social organization. Their review article
extended thermodynamics, because it showed how thermodynamic principles of design
optimization took into account the development of optimal configurations in civil
engineering and social organization.

Bejan (2001) discussed the basis for the entropy generation minimization method, and a
series of key applications in power generation, refrigeration, and exergy conservation. The
researcher started with a review of the concept of irreversibility, entropy generation, or
exergy destruction. He used the proportionality between exergy destruction and entropy
generation in the search for improved thermodynamic performance subject to finite-size
constraints and specified environmental conditions. He gave examples from refrigeration,
energy storage systems for sensible heat and latent heat, solar energy, and the generation of
maximum power by using a stream of hot gas. He showed that the physical structure
(geometric configuration, topology) of the system springed out of the process of global
thermodynamic optimization subject to global constraints. This principle generated
structure not only in engineering but also in physics and biology (constructal theory).

Shiba and Bejan (2001) showed that the internal geometric configuration of a component
could be deduced by optimizing the global performance of the installation, which used the
component. The example chosen was the counterflow heat exchanger, which served as
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condenser in a vapor-compression-cycle refrigeration system for environmental control of
aircraft. The researcher achieved the optimization of global performance by minimizing the
total power requirement or the total entropy generation rate. There were three degrees of
freedom in the heat exchanger configuration that was subjected to two global constraints:
total volume, and total volume (or weight) of wall-material. Their numerical results showed
how the optimal configuration responded to changes in specified external parameters like
refrigeration load, fan efficiency, and volume and weight. In accordance with constructal
theory and design (Bejan, 2000), it was shown that the optimal configuration was robust:
major features like the ratio of diameters and the flow length were relatively insensitive to
changes in the external parameters.

Bejan (2002) discussed the fundamentals of the methods of exergy analysis and entropy
generation minimization (or thermodynamic optimization-the minimization of exergy
destruction). The researcher began with a review of the irreversibility concept, entropy
generation, or exergy destruction. Examples illustrated the accounting for exergy flows and
accumulation in closed systems, open systems, heat transfer processes, and power and
refrigeration plants. He gave examples from energy storage systems for sensible heat and
latent heat, solar energy, and the generation of maximum power in a power plant model
with finite heat transfer surface inventory.

Yuan and Kou (2001) investigated the entropy generation in a crossflow heat exchanger
including three gas streams and the influence of longitudinal wall conduction on the
entropy generation. Using the numerical method, the researchers calculated the exit mean
temperature of every stream, and then computed the number of entropy generation units.
Their results indicated that the entropy generation increased with the decrease of inlet
temperature of gas stream 3 and the decrease of inlet temperature ratio of gas streams 1 to 2.
Also, their results showed that the longitudinal wall conduction raised the entropy
generation and that this raising increased with increasing NTU when heat capacity rate ratio
of stream 1 was 0.5

Yuan and Kou (2003) investigated the entropy generation on a crossflow heat exchanger
including three gas streams with three various arrangements. Using the numerical method,
the researchers calculated individually the exit mean temperature of every gas stream in
various arrangements, and then computed the number of entropy-generation units of every
arrangement. Their results indicated that there was a maximum entropy generation for
every arrangement along with the increase in number of transfer units (NTU). Comparing
the three arrangements showed that the entropy generation of the third arrangement was
the lowest, because this arrangement transferred heat across a smaller temperature
difference. Also, this study examined the influence of longitudinal wall conduction on the
entropy generation in every arrangement. The largest influence on entropy generation was
found in the third arrangement.

Shah and Skiepko (2004) found that the concept of minimum irreversibility was not quite
applicable to the heat exchanger analysis although it was associated with the maximum
energy efficiency for energy conversion processes in thermal systems. The researchers
showed that the heat exchanger effectiveness could be maximum, having an intermediate
value or minimum at the maximum irreversibility operating point depending on the flow
arrangement of the two fluids. Similarly, the heat exchanger effectiveness could be
minimum or maximum at the minimum irreversibility operating point. They illustrated and
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discussed such heat exchanger performance and irreversibility trends by combining the
temperature difference irreversibility with the P-NTU results for complex flow
arrangements.

Strub et al. (2004) evaluated the contribution of second law analysis to the study of a phase
changing of ice slurries as secondary refrigerant in cooling systems. First, the researchers
calculated the enthalpies and the entropies. Then, they carried out an entropy/exergy
analysis of a heat exchanger. Their work attempted to provide a thermodynamic criterion to
choose the kind of fluid and the inflow conditions that were more suitable for a particular
application. They established the method and obtained the results for an ethyl alcohol-water
mixture.

Lerou et al. (2005) studied optimization of counterflow heat exchanger (CFHX) geometry
through minimization of entropy generation. In their study, the researchers applied another,
less familiar design strategy where different loss mechanisms such as pressure drop and
parasitic heat flows were all treated as a production of entropy. Thus, it was possible to
compare and sum them. In this way, they found that a CFHX configuration was optimal for
a certain application, producing a minimum of entropy and thus had minimum losses. For
instance, they gave the design steps of a CFHX for the micro cooling project at the
University of Twente. Also, they presented a generalization of micro CFHX dimensions for
cooling powers between 10 and 120 mW.

Mohamed (2006) realized analysis of heat transfer and fluid flow thermodynamic
irreversibilities on an example of a counter flow double pipe heat exchanger utilizing
turbulent air flow as a working fluid. During the process of mathematical model creation
and for various working and constructing limitations, the researcher studied total
thermodynamic irreversibility. His work proved that the irreversibility occurred due to
unequal capacity flow rates (flow imbalance irreversibility). He concluded that the heat
exchanger should be operated at effectiveness, ¢ > 0.5 and the well operating conditions
would be achieved when & ~ 1 where low irreversibility was expected. He adopted a new
equation to express the entropy generation numbers for imbalanced heat exchangers of
similar design with smallest deviation from the exact value. His new equation was yhe sum
of two terms: the first term was the contribution of the pressure terms and the second term
was the contribution of the temperature terms. He compared the results obtained from his
new equation with the exact values and with those obtained by Bejan (1988). Also, the guide
charts presented in his work could be used to determine the most wanted combination of
the effects of various parameters to obtain minimal irreversibility.

Naphon (2006) presented the theoretical and experimental results of the second law analysis
on the heat transfer and flow of a horizontal concentric tube heat exchanger. The researcher
designed and constructed the experiments setup for the measured data. He used hot water
and cold water as working fluids. He did the test runs at hot and cold water mass flow rates
in the range of 0.02-0.20 kg/s. The inlet hot water and inlet cold water temperatures were
between 40 and 50 °C, and between 15 and 20 °C, respectively. He discussed the influences
of the inlet conditions of both working fluids flowing through the heat exchanger on the
heat transfer characteristics, entropy generation, and exergy loss. Based on the conservation
equations of energy, he developed his mathematical model and solved using the central
finite difference method to obtain temperature distribution, entropy generation, and exergy
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loss. The predicted results obtained from the model were validated by comparing with his
measured data. From this comparison, he found that there was reasonable agreement
between predicted results and those from the measured data.

Kurtbas et al. (2007) investigated the effects of propeller-type turbulators located in the inner
pipe of co-axial heat exchanger on entropy generation rate (N;) and exergy loss rate (E*).
Propeller-type turbulators with blade angles (0) = 10, 20° and 40, also at every angle the
propellers with blade diameter (dy) = 48 mm, 50 mm and 52 mm. The researchers mounted
these turbulators in the inner pipe using different distances (L;). According to the flow
observation experiments, they found maximum decaying distance of swirl flow as 30 cm.
They performed the experiments with various distances of turbulators. In this system, they
investigated heat transfer, entropy generation rate, and exergy loss rate. Then, they
investigated the influences of angle, diameter, and number of the blades on the heat
transfer, entropy generation rate, and exergy loss rate and compared with every other for
various values of the Reynolds number, from 104 to 3x 104, and Prandtl number equal to
0.71. They found that Nusselt number and exergy loss rate approximately increased from 95
to 354 and 0.04 to 0.2 depending on blade angle, interturbulator distance and propeller
diameter for 104 < Re < 3x104. The heat exchanger efficiency changed at between 0.17 to 0.72
levels.

Khan et al. (2007) were specifically interested in determining an optimal design of the tube
banks in cross flow using an entropy generation minimization method that was as a unique
measure to study the thermodynamic losses caused by heat transfer and pressure drop for a
fluid in cross flow with tube banks. The optimal design of tube banks was very important
because of extensive use of high performance compact heat exchangers that were found in
many applications like an automobile radiator, an oil cooler, a preheater, an air-cooled
steam condenser, a shell and tube type heat exchanger, and the evaporator of an air
conditioning system. Usually, tube banks were arranged in an inline or staggered manner,
where one fluid moved across the tubes, and the other fluid at a different temperature
passed through the tubes. In their study, both inline and staggered arrangements were
studied and their relative performance was compared for the same thermal and hydraulic
conditions. The researchers employed the crossflow correlations for the heat transfer and
pressure drop to calculate entropy generation rate. They obtained a general dimensionless
expression for the entropy generation rate by considering a control volume around a tube
bank and applying conservation equations for mass and energy with entropy balance.
Analytical/empirical correlations for heat transfer coefficients and friction factors were
used, where the characteristic length was used as the diameter of the tubes and reference
velocity used in Reynolds number and pressure drop was based on the minimum free area
available for the fluid flow. Also, they performed a parametric study to show the influences
of various design variables on the overall performance of tube banks. They showed that all
relevant design parameters for tube banks, including geometric parameters and flow
conditions, could be simultaneously optimized.

Gupta and Das (2007) carried out the second law analysis of crossflow heat exchangers in
the presence of non-uniformity of flow. The researchers modeled this non-uniformity with
the help of axial dispersion model and took into account the back mixing and flow
maldistribution. They evaluated an analytical model for exergy destruction for the cross-
flow configuration. They carried out a wide range of study of the operating parameters and
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non-uniform flow on exergetic behavior of crossflow heat exchangers. Their results clearly
brought out not only the reason behind the maximum entropy paradox in heat exchangers
but also the proper perspective of exergy destruction and the consequent optimization of
crossflow heat exchangers from the second law viewpoint.

Gupta et al. (2007) studied second law analysis of counter flow cryogenic heat exchangers in
presence of ambient heat-in-leak and longitudinal conduction through wall. The researchers
carried out this study because the performance of highly effective heat exchangers was
strongly dependent on these irreversibilities in low temperature applications. They observed
that the influence of ambient heat-in-leak was different for the balanced and imbalanced
counter flow high NTU heat exchangers. Also, their study made it possible to compare the
different irreversibilities for varying range of NTU and analyze the effect of external
irreversibilities on the performance of heat exchangers when either hot fluid or cold fluid
was minimum capacity fluid.

Pitchandi and Natarajan (2008) described the second law of thermodynamics analysis of a
regenerative heat exchanger. Their analysis was based on the fact that the dimensionless
parameters, known as the reduced periods and reduced length, were the characteristic
variables to describe the heat exchanger. The researcher discretized the solid matrix in the
heat exchanger passage using trapezoidal rule and took the elemental matrix as a
thermodynamic system. They applied the second law of thermodynamics to the system and
obtained the entropy generation equation using the dimensionless numbers Reduced period
(II) and Reduced length (A) in every element. They studied the variation of entropy
generation due to reduced length and reduced period. Also, the effect of the effectiveness of
the heat exchanger on entropy generation was highlighted.

He et al. (2009) applied second-law based thermodynamics analysis to a new heat exchanger
with helical baffles. The helical baffles were designed as quadrant ellipses and every baffle
occupied one quadrant of the cross-section of the shell side. The researchers carried out
experimental tests with cold water in the tube side with a constant flow rate, and hot o0il on
the shell side with flow rate range from 4-24 m3/h. They measured the temperatures and
pressures for the inlet and outlet of both sides. They investigated heat transfer, pressure
drop, entropy generation, and exergy loss of the new heat exchanger and compared with the
results for a conventional shell-and-tube heat exchanger with segmental baffles. The
computed results indicated that both the entropy generation number and exergy losses of
the new heat exchanger design were lower than those of the heat exchanger with segmental
baffles that meaned that the novel heat exchanger had a higher efficiency than the heat
exchanger with segmental baffles, from the second-law based thermodynamics viewpoint.

Fan and Luo (2009) presented the experimental results of second law analysis on the heat
transfer and hydraulic characteristics of a mini crossflow heat exchanger equipped with
constructal distributor/collector. In their experiments, the researchers used hot and cold
water as working fluids. They performed tests for different "distributor-heat-exchanger-
collector" configurations at channel Reynolds numbers in the heat exchanger between 800
and 3100. They discussed the integration of constructal component on the thermal
performance, entropy generation, exergy loss, and the second law effectiveness of the heat
exchanger. Also, they analyzed and discussed the relationship between heat-transfer
intensification and system-irreversibility production in this case.
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Guo et al. (2009) developed a new shell-and-tube heat exchanger optimization design
approach using entropy generation minimization and genetic algorithm. The researchers
employed the dimensionless entropy generation rate obtained by scaling the entropy
generation on the ratio of the heat transfer rate to the inlet temperature of cold fluid as the
objective function. They took some geometrical parameters of the shell-and-tube heat
exchanger as the design variables and applied the genetic algorithm to solve the associated
optimization problem. They showed that for the case that the heat duty was given, not only
could the optimization design increased the heat exchanger effectiveness significantly, but
also decreased the pumping power dramatically. In the case that the heat transfer area was
fixed, the benefit from the increase of the heat exchanger effectiveness was much more than
the increasing cost of the pumping power.

Exergy change rate in an ideal gas flow or an incompressible flow can be divided into two
types: a thermal exergy change rate and a mechanical exergy loss rate. San (2010)
generalized the mechanical exergy loss rates in the two flows using a pressure-drop factor
(Fp) because the consumed mechanical exergy is usually more valuable than the recovered
thermal exergy for heat exchangers using in waste heat recovery. The researcher proposed a
weighing factor to modify the pressure-drop factor. He defined an exergy recovery index
() and expressed it as a function of effectiveness (), ratio of modified heat capacity rates
(C), hot stream-to-dead-state temperature ratio (T3/T,), cold stream-to-dead-state
temperature ratio (T/T,) and modified overall pressure-drop factor (F"sp). This 7-& relation
could be used to find the 7y value of a heat exchanger with any flow arrangement. He
established the #;-NTU and #;-NTUj, relations of cross-flow heat exchanger with both fluids
unmixed respectively. The former provided a minimum NTU design principle and the latter
provided a minimum NTU}, design principle. A numerical example showed that, at a fixed

heat capacity rate of the hot stream, (m cp)n, the heat exchanger size yielded by the minimum
NTU, principle was smaller than that yielded by the minimum NTU principle.

Guo et al. (2010) presented a multi-objective optimization of heat exchanger thermal design
in the framework of the entropy generation minimization. Their objectives were to minimize
the dimensionless entropy generation rates related to the heat conduction under finite
temperature difference and fluid friction under finite pressure drop. The researchers
specified constraints using the admissible pressure drop and design standards. They
employed the genetic algorithm to search the Pareto optimal set of the multi-objective
optimization problem. They found that the solutions in the Pareto optimal set were trade-off
between the pumping power and heat exchanger effectiveness. The optimal solution in the
Pareto optimal set achieved the largest exchanger effectiveness by consuming the least
pumping power under the design requirements and standards. In comparison with the
single-objective optimization design, the multi-objective optimization design led to the
significant decrease in the pumping power for achieving the same heat exchanger
effectiveness and presented more flexibility in the design process.

Kotcioglu et al. (2010) studied a second law analysis of a cross-flow heat exchanger (HX) in
the presence of a balance between the entropy generation due to heat transfer and fluid
friction. The researchers investigated the entropy generation in a cross-flow HX with a new
winglet-type convergent-divergent longitudinal vortex generator (CDLVG). They presented
optimization of HX channel geometry and effect of design parameters regarding the overall
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system performance. Based on the entropy generation minimization (EGM), they developed
the optimization model for the HX flow lengths and CDLVGs. They found that increasing
the cross-flow fluid velocity enhanced the heat transfer rate and reduced the heat transfer
irreversibility. Their test results demonstrated that the CDLVGs were potential candidate
procedure to improve the disorderly mixing in channel flows of the cross-flow type HX for
large values of the Reynolds number.

Wang et al. (2010) studied experimentally flow and heat transfer characteristics of the shell-
and-tube heat exchanger (STHXs) with continuous helical baffles (CH-STHX) and segmental
baffles (SG-STHX). In their experiments, these STHXs shared the same tube bundle, shell
geometrical structures, different baffle arrangement, and number of heat exchange tubes.
Their experimental results suggested that the CH-STHX could increase the heat transfer rate
by 7-12% than the SG-STHX for the same mass flow rate although its effective heat transfer
area had 4% decrease. Also, the heat transfer coefficient and pressure drop of the CH-STHX
had 43-53% and 64-72% increase than those of the SG-STHX, respectively. Based on second-
law thermodynamic comparisons in which the quality of energy were evaluated by the
entropy generation number and exergy losses, the CH-STHX decreased the entropy
generation number and exergy losses by 30% and 68% on average than the SG-STHX for the
same Reynolds number. Also, the analysis from nondimensional correlations for Nusselt
number and friction factor revealed that if the maximal velocity ratio R > 2.4, the heat
transfer coefficient of CH-STHX was higher than that of SG-STHX, and the corresponding
friction factor ratio kept at constant f, cr/ fo,sc = 0.28.

Assad (2010) presented a theoretical analysis of a heat exchanger with a negligible fluid flow
pressure drop to determine whether it was better to operate the heat exchanger with the
minimum or maximum heat capacity rate of the hot fluid from entropy generation point of
view. The researcher derived entropy generation numbers (Ns) for both cases, and his results
showed that they were identical, when the heat exchanger was running at a heat capacity
ratio (R) = 0.5 with heat exchanger effectiveness (&) = 1. He defined an entropy generation
number ratio (S*) by dividing the entropy generation number for minimum heat capacity
rate on the hot fluid side to the entropy generation number for maximum heat capacity rate
on the hot fluid side. S"had a maximum value at & = (1+R)-! for any inlet temperature ratio
(T)) and R values. This result could be obtained by taking the derivative of S* with respect to
gand equating it to zero. When R = 0.1, 0.5 and 0.9, the entropy generation number ratio (S%)
received a maximum value at an effectiveness (&) = 0.91, 0.67 and 0.526, respectively. When
R = 0.9, the entropy generation number ratio (5°) was the same for all inlet temperature
ratios (T;) at €= 0.8. However, when ¢ < 0.8, S" increased as T, decreased, and when ¢ > 0.8,
S* increased as T, increased. His results showed that the entropy generation number ratio
(5% was far from 1 depending on the inlet temperature ratio (T,) of the cold and hot fluid.
When S* <1, it was better to run the heat exchanger with minimum heat capacity rate on the
hot fluid side, whereas when S* > 1, it was better to run the heat exchanger with maximum
heat capacity rate on the hot fluid side. These results could be used to determine the wanted
combination of the effects of various parameters (R, T, and &) to obtain lower irreversibility.
Also, these results were valid for parallel-flow and counterflow heat exchangers.

Fakheri (2010) further explored the topic of an ideal heat exchanger that was still an open
question. It was shown that the minimization of entropy production or exergy destruction
should not be an objective in heat exchanger design. It was further proven that heat
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exchanger effectiveness did not correlate with irreversibility. Therefore, the researcher
introduced a new performance measure to characterize the performance of heat exchangers,
entropy flux (/), which was allowing the comparison of different heat exchangers under
varying operating conditions by applying the second law. The entropy flux (/) could be
defined as

S

A (39)

As shown in Eq. (39), entropy flux (/) incorporated three main features of heat exchangers,

namely, entropy generated (S ) that so far was only a result of heat transfer, overall heat
transfer coefficient (U) and the heat exchanger area (A). In heat exchanger design, the goal is
to increase the heat transfer while reducing the size so that higher values of entropy flux are
desirable. For a given effectiveness, a single stream heat exchanger had the absolute
maximum entropy flux, and for capacity ratios (C,) greater than zero, counterflow had the
highest entropy flux, parallel flow the lowest, and the shell and tube heat exchangers were
somewhere in between.

On the basis of the first and second laws of thermodynamics, Ruan et al. (2011) derived the
general expression of the number of entropy generation units of three-fluid heat exchangers
with three thermal communications. The researchers discussed thoroughly the effect of
several non-dimensional design parameters on the number of entropy generation units of
three-fluid heat exchangers. Furthermore, they gave the detailed comparisons of results for
the arrangement of the parallel flow and the counter flow. They showed that the variation
tendencies of the number of entropy generation units with the ratio of the thermal
resistances, ratio of the thermal capacities, and number of heat transfer units for the parallel-
flow arrangement were different from those of the counter-flow arrangement. There was an
extremum of the number of entropy generation units for the counter-flow arrangement.
Also, the entropy generation for the counter flow was mostly smaller than that of the
parallel flow under the same conditions

Arivazhagan and Lokeswaran (2011) investigated the entropy generation rate in shell and
tube heat exchanger with porous medium inserted inside the tubes. The researchers used
three various waste metal chips made of copper, aluminum, and mild steel as porous
medium. There was a trade-off between the pressure drop and heat transfer in the design of
enhanced heat exchangers. If Reynolds number increased, the rate of heat transfer would
also increase at the expense of reasonable pressure drop In porous flow. Because of
turbulent energy dissipation at high Reynolds number, this pressure drop would increase
further, resulting in high entropy generation. They developed and used the empirical
correlations for the entropy generation minimization of the actual heat exchanger. They
derived their conclusions on the basis of the behavior of the entropy generation number (N)
as a function of the Reynolds number (Re). On the basis of the entropy generation
minimization, they found the upper limit of Reynolds number to be 1450, beyond which
irreversibility increased.

1.2 Optimization of internal enhancements

In many heat transfer applications, internal enhancements are utilized to promote or
enhance heat transfer. However, any enhancement of a primary surface gives rise to an
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increase in pressure drop for a given mass flow rate. Using thermodynamic optimization,
we may also assess the penalties of improving thermal contact in terms of entropy
generation. Since thermal enhancement leads to higher heat transfer rates, a lower mass
flow is permissable in most applications. Therefore, in a given application with fixed duty
(Q), the temperature difference will be reduced for the same mass flow rate. This tradeoff,
potentially allows for the overall entropy generation rate to be reduced below that for the
primary surface at the desired duty condition. In this section, we will examine the impact of
thermal enhancement devices such as strip fins and ribs on entropy generation.

Bejan and Pfister (1980) used entropy generation as a measure of the relative merit of heat
transfer augmentation techniques relative to each other and to the heat exchange apparatus
in which they might be incorporated. In this way, heat transfer augmentation techniques
were viewed as design changes capable of reducing the irreversible destruction of useful
energy (exergy) in heat exchange equipment. The entropy generation rate took into account
simultaneously the heat transfer and fluid friction changes associated with implementing a
heat transfer augmentation technique. The researchers proposed that the merit of a given
heat transfer augmentation technique might be evaluated by comparing the rate of entropy
generation of the heat exchange apparatus before and after the implementation of the
augmentation technique. Using in-tube roughness as an instance, they showed what specific
operating conditions must be met before the destruction of exergy could be reduced via heat
transfer augmentation.

Benedetti and Sciubba (1993) presented a novel method that could be helpful in assessing
the 'optimal' configuration of finned-tube heat exchangers. Their method was based on the
determination on a local basis of the two components of the entropy generation rate: the one
caused by viscous dissipations and the one due to thermal irreversibilities. Depending on
the engineering purpose for which a technical device was designed, it could be argued that
the 'optimal' configuration would be that in which either one (or both) of these two entropy
generation rates was minimized. For a heat exchanging device, it was important to minimize
thermal irreversibilities, but more important was to minimize the mechanical power lost in
achieving a prescribed heat-exchange performance: to this purpose, one could form a
'relative irreversibility index' (named 'Bejan number (Be)' here and use it to assess the merit
of a given configuration. In the procedure developed here, the researchers considered a
circular, single-tube, finned heat exchanger configuration. They computed the velocity and
temperature fields via a standard finite-element package (FIDAP) for a realistic value of the
Reynolds number and for a variety of geometric configurations (different fin external
diameters and fin spacing). Then, they calculated the entropy generation rate from the flow
field, and examined both at a local level, to detect possible 'bad' design spots (i.e., locations
that corresponded to abnormally high entropy generation rates that could be cured by
design improvements), and at an 'overall' (integral) level, to assess the 'entropic'
performance of the heat exchanger. They given 'Optimal' curves, and determined the
'optimal' spacing of fins using alternatively the entropy generation rate and the total heat
transfer rate as objective functions: different optima arise, and the differences as well as the
similarities were discussed in detail.

Another widely used thermal enhancement device used in heat transfer applications is the
offset strip fin. Manglik and Fang (1994) applied the second law of thermodynamics to
evaluate the heat transfer enhancement of offset strip fin core relative to plain plate fin
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compact heat exchangers. The researchers considered single-phase air flow in both laminar
and turbulent regimes. examined entropy generation rates using the procedure proposed by
Bejan and Pfister (1980). They presented the thermal-hydraulic performance in terms of area
goodness factor (j/f) and the entropy generation number (N,). Due to the irreversibility
reduction was a trade-off between the heat transfer enhancement and the corresponding
pressure drop penalty, they introduced a new parameter, entropy generation distribution
factor (y) as

_ SAT,o - SAT,a
N (40)

SAP,a_SAP,o

This new parameter represents the ratio of entropy generation reduction due to heat transfer
enhancement and the increase in entropy generation due to the consequent increase in fluid
friction. Thermodynamics benefits would be obtained only if y > 1. The magnitude of y was
such that a better resolution was obtained for the entropy generation change due to the
variations in operating conditions. They reported entropy generation numbers for three
types of flow: constant mass flow rate, constant pressure drop, and constant pumping
power. They delineated the relative effect of the aspect ratio, fin density, and fin thickness to
offset length ratio of the offset strip fins on heat transfer enhancement and entropy
generation minimization.

Sciubba (1996) presented a novel method that could be helpful in assessing the optimal
configuration of finned-tube heat exchangers. His method was an extension of the local
irreversibilities method, and it was based on the determination on a local basis of the two
components of the entropy generation rate: the one caused by viscous dissipations and the
one due to thermal irreversibilities. Depending on the engineering purpose for which a
technical device was designed, it could be argued that the optimal configuration would be
that in which either one (or both) of these two entropy generation rates was minimized. For
a heat exchanging device, it was important to minimize thermal irreversibilities, but more
important was to minimize the mechanical power lost in achieving a prescribed heat-
exchange performance: to this purpose, one could form a relative irreversibility index
(named Bejan number (Be) here), and use it to assess the merit of a given configuration.
Average or global Bejan number (Be,) could be found by integration of Eq. (38) as:

s

Be,wz%:1 5 (41)
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2
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Average Bejan number (Be;,) — 0 in the limit of vanishing average thermal gradient AT, and
Bew — 1 in the limit of vanishing mean velocity gradient.

In the procedure presented here, the researcher considered a circular, single-tube, finned
heat exchanger configuration. He computed the velocity and temperature fields (via a
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standard finite-element package, FIDAP) for a realistic value of the Reynolds number and
for different geometric configurations (different fin external diameters and fin spacing).
Then, he calculated the entropy generation rate from the flowfield, and examined both at a
local level, to detect possible bad design spots (i.e.,, locations that corresponded to
abnormally high entropy generation rates that could be cured by design improvements),
and at an overall (integral) level, to assess the entropic performance of the heat exchanger.
He gave optimal curves and determined the optimal spacing of fins using alternatively the
entropy generation rate and the total heat transfer rate as objective functions: different
optima arise, and the differences as well as the similarities were discussed in detail.

Tagliafico and Tanda (1996) presented a thermodynamic method for the comparison of plate
fin heat exchanger performance. The researchers evaluated and scaled the entropy
production of a given heat transfer surface geometry using that of corresponding reference
configuration (a parallel-plate channel) with the same frontal area, volume, heat transfer
duty, and mass flow rate to relate the relative merit of the surface geometry to
corresponding irreversibility level. They applied their method to a number of plate-fin
compact heat exchanger surfaces whose performance data were taken from Kays and
London (1984). They examined six types of heat exchanger enhancements: the plain fin,
louvered fin, strip fin, wavy fin, pin fin, and perforated fin. From this analysis, they found
that the thermodynamic performance of the most suitable surfaces, among those considered
in this study, turned out to be strongly related to the operating conditions (both heat
transfer duty and mass flow rate). Also, they found that the strip fin was the
thermodynamically most efficient augmentation device.

Muley and Maglik (1999) investigated performance optimization of plate heat exchangers
with chevron plates. In this study, the researchers repeated Manglik and Fang’s (1994)
analysis but for corrugated rib surfaces used in plate heat exchangers. These devices also
know as chevron ribs are widely used in process heat exchangers due there ease of
construction and cleaning for fouling applications. They showed results for constant mass
flow, constant pumping power, and constant pressure drop. They found that corrugated
ribs at the fixed pumping power and fixed pressure drop constraints, led to a
thermodynamically more efficient system.

Su et al. (1999) found a new way of fin design to minimize the irreversibilities due to heat
transfer and fluid friction and maximize the available work of the working fluid. First, the
researchers derived the general entropy generation formulas for fins according to the first
and second law of thermodynamics. Then, they made a theoretical analysis on cylindrical
pin fins and rectangular straight fins using the above formulas. They obtained the minimum
entropy generation formulas for these two types of fins and proposed a principle for fin
optimization, where the minimum entropy generation was chosen to be the objective
function to be studied. They discussed in detail the influence of various parameters on fin
entropy generation in forced convection heat transfer.

2. External structure

The ability of a designer to minimize the thermal resistance between the source of heat
dissipation and the thermal sink is essential in controlling maximum operating
temperatures. While the convective heat transfer coefficient could potentially be enhanced
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with an increase in the approach velocity, the dependence of heat transfer coefficient on the
square root of the velocity in laminar flow results in diminished returns as velocity is
increased. The second option for reducing film resistance is achieved by increasing the
effective surface area for convective heat transfer. This is typically achieved through the use
of heat sinks in single fluid heat exchangers and extended surfaces in two fluid heat
exchangers. Heat sinks offer a low cost, convenient method for lowering the film resistance
and in turn maintaining junction operating temperatures at a safe level in electronic
components. Unfortunately, the selection of the most appropriate heat sink for a particular
application can be very difficult given the many design options available. Thermal analysis
tools, ranging from simple empirically derived correlations to powerful numerical
simulation tools, can be used to analyze the thermal performance of heat sinks for a given
set of design conditions. Regardless of which procedure is used, analysis tools only provide
a performance assessment for a prescribed design where all design conditions are specified
a priori. Following an exhaustive parametric analysis, design options can be assessed with
respect to their influence on thermal performance, however, there is no guarantee that an
“optimized” solution is obtained since the parametric analysis only provides a ranking of a
limited set of test cases. The method of entropy generation minimization, pioneered by
Bejan, provides a procedure for simultaneously assessing the parametric relevance of system
parameters as they relate to not only thermal performance but also viscous effects.

2.1 Fin shape

Heat exchanger fins are often used in heat exchange devices to increase the heat transfer rate
between the heat-exchange surface and the surrounding fluid. Extended surfaces (fins)
enhance heat transfer rate by increasing surface area and by inducing turbulent mixing of
flow. They can be found in many engineering applications such as the cooling of turbine
blades in gas turbine engines, the cooling of electronic components, and different other heat
exchange devices used in aerospace, aircraft, chemical processing plants, ..., etc. There are
different kinds of heat exchanger fins, ranging from relatively simple shapes, like
rectangular, cylindrical, annular, tapered or pin fins, to a combination of various geometries.
These fins may protrude from either a cylindrical or rectangular base.

Numerous analysis tools are available for determining the thermal performance of heat
sinks given a well defined set of design conditions. Convective optimizations are available,
such as those presented in Kraus and Bar-Cohen (1995), however, these models assumes a
prescribed heat transfer coefficient over the length of the fins which is constant, while in
most heat sink applications, hydrodynamic and thermal entrance effects introduce a
variable heat transfer coefficient, at least over a portion of the heat sink. The assumption of a
constant value of heat transfer coefficient can no longer be prescribed, since the value will
depend upon fin spacing and length in the direction of flow. Optimization routines that lead
to changes in fin spacing, fin height or fin length also result in changes in the mean heat
transfer coefficient and head loss in such a way that iterative procedures are required. While
in some instances parametric studies can be undertaken to obtain a relationship between
thermal performance and design parameters, a comprehensive design tool should also take
into consideration the effect of viscous dissipation and its relationship on thermal
performance. The entropy generation associated with heat transfer and frictional effects
serve as a direct measure of lost potential for work or in the case of a heat sinks and other
finned systems. A modeling approach that establishes a relationship between entropy
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generation and a fin design parameters, can be used in such a manner that all relevant
design conditions combine to produce the best possible thermal sink for the given
constraints.

Poulikakos and Bejan (1982) established a theoretical framework for the minimization of
entropy generation in forced convection for the design of extended surfaces by the use of the
first and second laws of thermodynamics. First, the researchers derived the entropy
generation rate formula for a general fin. The entropy generation rate for extended surfaces
in external flow with conductive resistance was defined by the following relationship:

: 00, FJ;
S gen = T_cf + T (43)

The temperature excess of the fin or heat sink (&) might be related to the overall system
thermal resistance:

Hb = Q R fin (44)

Based on this general result, they developed analytical methods and graphic results for
selecting the optimum dimensions of pin fins, rectangular plate fins, plate fins with
trapezoidal cross section, and triangular plate fins with rectangular cross section.

Lee and Lin (1995) examined the performance and the entropy generation rate of a fractal-
like fin under crossflow. This fin type was defined as a fin with subfins repeatedly
extending in a fixed way.

Khan et al. (2006) examined the role of cross-sectional shape on entropy generation for
several widely used fin cross-sections. The cross-sections examined were circular, elliptical,
square, and rectangular. The researchers obtained a general dimensionless expression for
the entropy generation rate by considering a control volume around the pin fin including
base plate and applying the conservations equations for mass and energy with the entropy
balance. They developed the formulation for the dimensionless entropy generation rate in
terms of dimensionless variables, including the aspect ratio, Reynolds number, Nusselt
number, and the drag coefficient. They examined selected fin geometries for the heat
transfer, fluid friction, and the minimum entropy generation rate corresponding to various
parameters including axis ratio, aspect ratio, and Reynolds number. Their results clearly
indicated that the preferred fin profile was very dependent on these parameters. As the fin
became more slender two effects contribute to the reduction in entropy generation number,
namely increased surface area that reduced the temperature excess, and a reduction in
profile drag which in turn reduced the viscous losses.

2.2 Plate fin arrays

It is well known that in plate fin type heat exchangers the backmixing and other deviations
from plug flow contribute significantly to the inefficiency of the heat exchanger that is
important to heat exchangers working in the cryogenic regime.

Culham and Muzychka (2001) presented a procedure that allowed the simultaneous
optimization of heat sink design parameters for electronic applications based on a
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minimization of the entropy generation associated with heat transfer and fluid friction. All
relevant design parameters for plate fin heat sinks, including geometric parameters, heat
dissipation, material properties and flow conditions could be simultaneously optimized to
characterize a heat sink that minimized entropy generation and in turn results in a
minimum operating temperature. The researchers modified Eq. (43) to account for the
overall sink resistance rather than the resistance of a single fin using a simple control
volume analysis as follows:

2
Q Rsin de
= k o f (45)
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Using Eq. (45), along with the appropriate expressions for the fin resistance, convective heat
transfer coefficient, and frictional/drag losses, a model for the entropy generation rate was
developed for an array of parallel plates.

Also, they integrated a novel approach for incorporating forced convection through the
specification of a fan curve into the optimization procedure, providing a link between
optimized design parameters and the system operating point. They presented examples that
demonstrated the robust nature of the model for conditions typically found in electronic
applications. It was not unusual for a designer to be given an overall maximum heat sink
volume. The examples presented in Culham and Muzychka (2001) were assumed to be
constrained by a overall maximum volume of 50 mm x 50 mm x 25 mm. In addition, it was
assumed that a total heat dissipation of 30 W was uniformly applied over the base plate of
the heat sink that had a uniform thickness of 2 mm. Other constraints that were fixed were
the thermal conductivity of the heat sink at k = 200 W/m.K and the ambient temperature of
the surrounding air medium at T, = 25 °C or 298 K.

Culham and Muzychka (2001) presented several cases that demonstrated the method of
entropy generation minimization for sizing plate fin heat sinks. Their examples included
single and multi-parameter optimizations. Their results demonstrated the influence of
introducing progressively more unconstrained variables into the optimization procedure.
The system of non-linear equations for several cases could be solved using numerical
procedures like Newton-Raphson solution, contained within many commercially available
algebraic software tools. Given the geometric constraints and a uniform heat load to the base
plate of the heat sink of 30 W, an optimum number of fins, N, was to be determined when V¢
=2m/s, t =1 mm, and H = 25 mm. As shown in Table 1, the estimation of the appropriate
number of fins was N =~ 29. It was easily seen that decreasing the number of fins led to an
increase in the thermal resistance of the heat sink which in turn led to an increase in the
temperature excess and a resultant increase in the entropy generation rate. Increasing the
number of fins beyond the optimized value would lead to a decrease in the heat sink
resistance and temperature excess, but the increase in the head loss associated with fluid
drag would result in an increase in the entropy generation rate.

While the optimization procedure estimated the optimum number of fins to be 28.57 the
relatively wide range of near minimum entropy generation rate between 20 < N < 35,
provided designers with a range of options when specifying the appropriate number of fins.
In subsequent applications of the optimization method, additional design variables were
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introduced into the procedure to simultaneously consider multiple parameters that led to an
optimization of the temperature excess and the head loss of the heat sink.

Additional parameters were left unconstrained, like velocity (V)), fin height (H), number of
fins (N), and fin thickness (t). Case (ii) examined the influence of relaxing the constraint on
free stream velocity prescribed in Case (i) while all other assumed constraints remained
unchanged. As shown in Table 1, the optimized number of fins was determined to be N =~ 27
and the approach velocity was estimated to be V; = 2.81 m/s for minimum entropy
generation. A decrease in the number of fins and an increase in the free stream velocity led
to a heat sink with a lower temperature excess but a higher head loss. Overall, the entropy
generation rate for this case was lower than in the previous example. Case (iii) examined a
three parameter optimization where the constraint on the fin thickness was removed. The
results of the optimization gave N = 38, Vy=3.28 m/s, and t = 0.4 mm as shown in Table 1.
Further gains had been made in lowering the heat sink temperature excess and head loss
that resulted in yet a further decrease in the entropy generation rate. However, the fin
thickness might be too thin for practical manufacturing considerations. Finally, none of the
variables of interest would be constrained to predetermined values, thus providing a
simultaneous optimization of all design variables, including the free stream velocity (V}), the
number of fins (N), the fin thickness (f), and the fin height (H). Their results of the
optimization gave N = 19, Vy=1.21 m/s, t = 1.6 mm, and H = 122 mm. Once again a more
optimal solution had been found. While the approach presented provided an optimized heat
sink, the fin height exceeded the maximum allowable height of 25 mm predicated by the
board-to-board spacing.

Moreover, it was important to note, that as more variables became unconstrained, the
system was progressively seeking a more optimal design. For instance, in cases (ii) and (iii),
although the fin count increased, the fin thickness decreased, leading not only to a thermally
more efficient design, but also a system that used less material. Finally, one might introduce
additional constraints as needed that limited the temperature excess or the mass of the heat
sink. Their method outlined was also applicable to fin arrays used in heat exchangers.

) AP S gen
Case N & (C) (mmH,0) Vi(m/s) | t(mm) | H (mm) (Wj 9
) 28.57 11.51 5.62 2.0 1.0 25 0.00435
(ii) 26.77 9.49 7.02 2.81 1.0 25 0.00402
(iii) 38.14 8.66 5.78 3.28 0.4 25 0.00370
(iv) 19.07 7.20 1.90 1.21 1.6 122 0.00290

Table 1. Optimized Conditions for All Test Cases.

Their model was shown to converge to a unique solution that gave the optimized design
conditions for the imposed problem constraints.

The specification and design of heat sinks for electronic applications is not easily
accomplished through the use of conventional thermal analysis tools because “optimized”
geometric and boundary conditions are not known a priori.

Culham et al. (2007) presented an analytical model for calculating the best possible design
parameters for plate fin heat sinks using an entropy generation minimization procedure
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with constrained variable optimization. The researchers adapted the method to include a
thermal spreading resistance in the overall thermal circuit. Their method characterized the
contribution to entropy production of all relevant thermal resistances in the path between
source and sink as well as the contribution to viscous dissipation associated with fluid flow
at the boundaries of the heat sink. The minimization procedure provided a fast, convenient
method for establishing the “best case” design characteristics of plate fin heat sinks given a
set of prescribed boundary conditions. They showed that heat sinks made of composite
materials containing nonmetallic constituents, with a thermal conductivity as much as an
order of magnitude less that typical metallic heat sinks, could provide an effective
alternative where performance, cost, and manufacturability were of importance. Also, they
showed that the spreading resistance encountered when heat flows from a heat source to the
base plate of a heat sink, while significant, could be compensated for by making appropriate
design modifications to the heat sink.

Iyengar and Bar-Cohen (2003) presented a coefficient of performance (COPT) analysis for
plate fin heat sinks in forced convection and showed to provide a viable technique for
combining least-material optimization with the entropy minimization methodology. The
COPT metric related the heat sink cooling capability to the invested fan pumping work and
the thermodynamic work required to manufacture and assemble the heat sink. The
proposed optimization methodology maximized the forced convection cooling that could be
achieved by a heat sink occupying a specified volume, with a fixed energy investment and
entropy generation rate. Also, their study identified the presence of an optimal resource
allocation ratio, providing the most favorable distribution of existing energy resources,
between heat sink manufacturing and operation, over a fixed product life cycle.

Abbassi (2007) investigated the entropy generation in a uniformly heated microchannel heat
sink (MCHS). He used analytical approach to solve forced convection problem across
MCHS. This analytical approach was a porous medium model based on extended Darcy
equation for fluid flow and two-equation model for heat transfer. Simultaneously, closed
form velocity solution in a rectangular channel was employed to capture z-directional
viscous effect diffusion and its pronounced influence on entropy generation through fluid
flow. Subsequently, governing equations were cast into dimensionless form and solved
analytically. Then, second law analysis of problem was conducted on the basis of obtained
velocity and temperature fields and expressions for local and average entropy generation
rate were derived in dimensionless form. Then, average entropy generation rate was
utilized as a criterion for assessing the system performance. At the end, the effect of
influential parameters like, channel aspect ratio (as), group parameter (Br/(2), thermal
conductivity ratio (C) and porosity (g) on thermal and total entropy generation was
investigated. In order to examine the accuracy of the analysis, the results of thermal
evaluation were compared to one of the previous investigations conducted for thermal
optimization of MCHS.

Khan et al. (2009) employed an entropy generation minimization (EGM) procedure to
optimize the overall performance of microchannel heat sinks. The researchers developed
new general expressions for the entropy generation rate by considering an appropriate
control volume and applying mass, energy, and entropy balances. They investigated the
influence of channel aspect ratio, fin spacing ratio, heat sink material, Knudsen numbers,
and accommodation coefficients on the entropy generation rate in the slip flow region. They
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used analytical/empirical correlations for heat transfer and friction coefficients, where the
characteristic length was used as the hydraulic diameter of the channel. In addition, a
parametric study was performed to show the effects of various design variables on the
overall performance of microchannel heat sinks.

The thermal design of plate fin heat sinks can benefit from optimization procedures where
all design variables are simultaneously prescribed, ensuring the best thermodynamic and air
flow characteristic possible. While a cursory review of the thermal network established
between heat sources and sinks in typical plate fin heat sinks would indicate that the film
resistance at the fluid-solid boundary dominates, it is shown that the effects of other
resistance elements, such as the spreading resistance and the material resistance, although of
lesser magnitude, play an important role in the optimization and selection of heat sink
design conditions.

Zhou et al. (2009) proposed the multi-parameter constrained optimization procedure
integrating the design of experiments (DOE), response surface models (RSM), genetic
algorithm (GA), mixed integer optimization (MOST), and computational fluid dynamics
(CED) to design the plate finned heat sinks by minimizing their rates of entropy generation.
The results of three cases demonstrated that the combination optimization algorithm was
feasible. In these cases, the overall rate of entropy generation decreased as the result of
introducing the additional constrained variables into the optimization procedure. As a
result, the general thermal and fluid performance of the heat sink was dramatically
improved.

Based on the results derived by the optimization, the researchers investigated the overall
thermal and fluid performance of the plate finned heat sinks with both side and top bypass
flow. Also, they established two correlations describing Nusselt number and friction factor,
as the functions of geometrical and operational parameters, by means of the multivariate
non-linear regression analysis. They deduced the specific expressions to compute the
thermal resistance and the rate of entropy generation.

Ganzarollia, and Altemania (2010) performed the thermal design of a counterflow heat
exchanger using air as the working fluid with two distinct goals: minimum inlet
temperature difference and minimum number of entropy generation units. The researchers
constituted the heat exchanger by a double-finned conductive plate closed by adiabatic
walls at the fin tips on both sides. The cold and hot air flows were considered in the
turbulent regime, driven by a constant pressure head. The thermal load was constant, and
an optimization was performed in order to obtain the optimum fin spacing and thickness,
according to the two design criteria. They employed a computer program to evaluate the
optimum conditions based on correlations from the literature. They compared the results
obtained from both design criteria to each other. They performed a scale analysis
considering the first design goal and compared the corresponding dimensionless
parameters with the results from the correlations.

Zhang et al. (2010) developed a general three-dimensional distributed parameter model
(DPM) for designing the plate-fin heat exchanger (PFHE). The proposed model that allowed
for the varying local fluid thermophysical properties inside the flow path could be applied
for both dry and wet working conditions by using the uniform enthalpy equations. The
researchers generated the grids in the DPM to match closely the flow passage of the heat
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exchanger. They adopted the classical correlations of the heat transfer and the flow friction
to avoid solving the differential equations. As a result, the computation burden of DPM
became significantly less than that of the Computational Fluid Dynamics method. They
performed the optimal design of a PFHE based on the DPM with the entropy generation
minimization taken into consideration. They employed the genetic algorithm to conduct the
optimization due to its robustness in dealing with complicated problems. The fin type and
fin geometry were selected optimally from a customized fin database. The PFHE included in
an environmental control system was designed by using the proposed approach in their
study. Finally, They evaluated the cooling performance of the optimal PFHE under both dry
and wet conditions.

Galvis and Culham (2010) used the entropy generation minimization (EGM) method to find
the optimum channel dimensions in micro heat exchangers with a uniform heat flux. With
this approach, pressure drop and heat transfer in the micro channels were considered
simultaneously during the optimization analysis. The researchers developed a
computational model to find the optimum channel depth knowing other channel geometry
dimensions and coolant inlet properties. Their assumptions were laminar and both
hydrodynamically and thermally fully developed flow, and incompressible. However, they
introduced the Hagenbach factor (K) to take into account the developing length effect in the
friction losses. The Hagenbach factor (K) for rectangular channels obtained by Steinke and
Kandlikar (2006) as follows:

K =0.6796 +1.2197 a5 +3.3089a-9.5921a’ +8.9089a +2.9959¢ (46)

The micro channels were assumed to have an isothermal or isoflux boundary condition,
non-slip flow, and fluid properties had dependency on temperature accordingly. For these
particular case studies, the pressure drop and heat transfer coefficient for the isothermal
boundary condition is lower than the isoflux case. As the channel size decreased, they found
higher heat transfer coefficient and pressure drop. The optimum channel geometry that
minimized the entropy generation rate tended to be a deep, narrow channel.

Rao and Patel (2010) discussed the use of particle swarm optimization (PSO) algorithm for
thermodynamic optimization of a cross flow plate-fin heat exchanger. The researchers
considered minimization of total number of entropy generation units for specific heat duty
requirement under given space restrictions, minimization of total volume, and minimization
of total annual cost as objective functions and treated individually. Based on the
applications, they considered heat exchanger length, fin frequency, numbers of fin layers,
lance length of fin, fin height and fin thickness or various flow length of the heat exchanger
for optimization. They included heat duty requirement constraint in the procedure. Also,
they presented two application examples to demonstrate the effectiveness and accuracy of
the proposed algorithm. They validated the results of optimization using PSO by comparing
with those obtained by using genetic algorithm (GA). In addition, they carried out
parametric analysis to demonstrate the influence of heat exchanger dimensions on the
optimum solution. Moreover, they presented the influence of variation of PSO parameters
on convergence and optimum value of the objective.

Ahmadi et al. (2011) conducted a thermal modeling for optimal design of compact heat
exchangers to minimize cost and entropy generation. The researchers applied an & - NTU
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method for estimation of the heat exchanger pressure drop, and effectiveness. Fin pitch, fin
height, fin offset length, cold stream flow length, no-flow length, and hot stream flow length
were considered as six decision variables. They applied fast and elitist nondominated
sorting genetic algorithm (i.e., nondominated sorting genetic algorithm II) to minimize the
entropy generation units and the total annual cost (sum of initial investment and operating
and maintenance costs) simultaneously. The results for Pareto-optimal front clearly revealed
the conflict between two objective functions, the number of entropy generation units (N)
and the total annual cost (Ca). It revealed that any geometrical changes that decreased the
number of entropy generation units, led to an increase in the total annual cost and vice
versa. Moreover, they derived an equation for the number of entropy generation units
versus the total annual cost for the Pareto curve for prediction of the optimal design of the
plate fin heat exchanger as follows:

-2.819N7 - 4311N? + 1.728N, - 0.04891
N? + 21.84N, - 1.867

Ciotar 8) = x10,000 0.0939 < N, < 0.13 (47)

Considering a numerical value for the number of entropy generation units in the range
0.0939 < N; < 0.13 provided the minimum total annual cost for that optimal point along with
other optimal design parameters. Also, optimization of heat exchangers based on
considering exergy destruction revealed that irreversibilities, like pressure drop and high
temperature difference between cold and hot streams, played a key issue in exergy
destruction. Thus, more efficient heat exchanger led to have a heat exchanger with higher
total cost rate. At the end, the sensitivity analysis of change in the optimum number of
entropy generation units and the total annual cost with change in the decision variables of
the plate fin heat exchanger was also performed, and the results were reported.

Shuja and Zubair (2011) presented a detailed second-law based thermoeconomic
optimization for a finned heat sink array. This involved including costs associated with
material and irreversible losses due to heat transfer and pressure drop. The researchers
optimized the effect of important physical, geometrical and unit cost parameters on the
overall finned array for some typical operating conditions that were representative of
electronic cooling applications. They presented the cost optimized results in terms of
different parameters for a finned system. Furthermore, they explained the methodology of
obtaining optimum design parameters for a finned heat sink system that would result in
minimum total cost.

Gielen et al. (2011) discussed the use of second law based cost functions in plate fin heat sink
design. The researchers proposed and compared a new entropy-based cost function with
existing heat sink cost functions. A case study of a plate fin heat sink pointed out that their
newly developed cost function offered a heat sink that was more than twice as efficient as a
heat sink designed with the traditional thermal resistance minimization objective. The
influences of this new heat sink design on data center cooling systems were considered and
found to be significantly improving the system efficiency and waste heat recovery.

Al-Obaidi (2011) used second law analysis for a steady-state cross flow microchannel heat
exchanger (MCHX) because this type of heat exchangers was known for its higher heat
transfer coefficient and higher area per volume ratio. As a result, broad range studies were
being carried out to optimize its performance and minimize its inefficiencies. The researcher
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employed entropy generation and exergy loss to investigate a multiport serpentine slab
MCHX with ethylene glycol-water and air as the working fluids. She used conservation of
energy and the increase in entropy principles to create a mathematical model that used
various like heat capacity rate ratio, fluids inlet temperatures, effectiveness and pressure
drop for obtaining entropy generation. Results were found on the basis of the behavior of
the entropy generation number (N;) with the key parameters. She found a good agreement
between the predicted and the measured results.

2.3 Pin fins

For heat transfer enhancement, pin fins are widely used as effective elements. For this
purpose, extensive work is being carried out to choose and optimize pin fins for different
applications. Any optimization procedure would lead to desirable results only if the parallel
pressure drop and heat transfer are considered. Pin fin arrays are another popular geometry
used in electronics cooling. Pin fins are attractive as a result of their ability to operate easily
in multi-directional fluid streams.

First, Lin and Lee (1997) conducted the second law analysis on a pin-fin array under
crossflow to evaluate the entropy generation rate. Increasing the crossflow fluid velocity
enhancing the heat transfer rate and hence, reducing the heat transfer irreversibility.
Nevertheless, owing to the simultaneous increase in drag force exerting on the fin bodies,
the hydrodynamic irreversibility increased also. An optimal Reynolds number thereby
existed over wide operating conditions. The researchers searched the optimal
design/operational conditions on the basis of entropy generation minimization. Also, they
made the comparison of the staggered and the in-line pin-fm alignments.

Sara et al. (2001) presented heat transfer and friction characteristics, and the second law
analysis of the convective heat transfer through a rectangular channel with square cross-
sectional pin fins attached over a fiat surface. The researchers used different clearance ratios
and interfin distance ratios and determined optimum pin-fin arrays that minimized entropy
generation. They found that average Nusselt number based on the projected area decreased
with increasing clearance ratio and interfin distance ratio, whereas average Nusselt number
based on the total heat transfer area increased with increasing interfin distance ratio and
with decreasing clearance ratio. Also, they found that the friction factor to decrease with
increasing clearance ratio and interfin distance ratio. They obtained smaller entropy
generation numbers at lower Reynolds number, higher clearance ratio, and higher interfin
spacing ratio.

Khan et al. (2005) applied an entropy generation minimization (EGM) technique as a unique
measure to study the thermodynamic losses caused by heat transfer and pressure drop in
cylindrical pin-fin heat sinks. The researchers obtained a general expression for the entropy
generation rate by considering the whole heat sink as a control volume and applying the
conservation equations for mass and energy with the entropy balance. They used
analytical/empirical correlations for heat transfer coefficients and friction factors in the
optimization model, where the characteristic length was used as the diameter of the pin and
reference velocity used in Reynolds number and pressure drop was based on the minimum
free area available for the fluid flow. They studied both in-line and staggered arrangements
and compared their relative performance on the basis of equal overall volume of heat sinks.
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The details of the necessary models for heat transfer and drag might be found in Khan et al.
(2005) along with the general control volume analysis. It was shown that all relevant design
parameters for pin-fin heat sinks, including geometric parameters, material properties and
flow conditions could be simultaneously optimized.

Khan et al. (2008) applied an entropy generation minimization (EGM) method to study the
thermodynamic losses caused by heat transfer and pressure drop for the fluid in a
cylindrical pin-fin heat sink and bypass flow regions. The researchers obtained a general
expression for the entropy generation rate by considering control volumes around the heat
sink and bypass regions. The conservation equations for mass and energy with the entropy
balance were applied in both regions. Inside the heat sink, analytical/empirical correlations
were used for heat transfer coefficients and friction factors, where the reference velocity
used in the Reynolds number and the pressure drop was based on the minimum free area
available for the fluid flow. In bypass regions theoretical models, based on laws of
conservation of mass, momentum, and energy, were used to predict flow velocity and
pressure drop. They studied both in-line and staggered arrangements and compared their
relative performance to the same thermal and hydraulic conditions. Also, they performed a
parametric study to show the effects of bypass on the overall performance of heat sinks.

Sahiti et al. (2008) derived experimentally the heat transfer and pressure drop characteristics
of a double-pipe pin fin heat exchanger. The researchers used the empirical correlations
previously validated with their experimental data to develop a mathematical model for the
optimization of the actual heat exchanger. They developed the optimization model on the
basis of the entropy generation minimization for various heat exchanger flow lengths and
various pin lengths. They derived the conclusions on the basis of the behavior of the entropy
generation number (N;) as a function of the Reynolds number (Re). They showed that not all
definition forms for the entropy generation number led to the right conclusions.

Nwachukwu and Onyegegbu (2009) derived an expression for the optimum pin fin
dimension on exergy basis for a high temperature exchanger employing pin fins. Their
result was different from that obtained by Poulikakos and Bejan (1982) for a low
temperature heat recovery application. In addition, the researchers established a simple
relation between the amounts the base temperature of the optimized pin fin was raised for a
range of absorptive coating values. Employing this relation, if the absorptivity of the
coating, the plate emissivity, the number of protruding fins, and some area and fluid
parameters were known, they obtained immediately the corresponding value for the base
temperature of the fin. Their analysis showed that the thermal performance of the exchanger
improved substantially with a high absorptivity coating hence could be seen as a heat
transfer enhancement feature of the exchanger operating with radiation dominance.

Kamali et al. (2010) used numerical analysis to investigate entropy generation for array of
pin-fin heat sink. Technique was applied to study the thermodynamic losses caused by heat
transfer and pressure drop in pin-fin heat sinks. The researchers obtained a general
expression for the entropy generation rate by considering the whole heat sink as a control
volume and applying the conservation equations for mass and energy with the entropy
balance. They used analytical and empirical correlations for heat transfer coefficients and
friction factors in the numerical modeling. Also, they studied heat transfer and pressure
drop effects in entropy generation in control volume over pin-fins. They used numerical
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analysis for three different models of pin-fin heat sinks. The models were different in cross
section area. These cross section areas were circle, horizontal ellipse, and vertical ellipse.
Reference velocity used in Reynolds number and pressure drop was based on the minimum
free area available for the fluid flow. As expected, the pressure drop and entropy generation
increased with the rise of frontal velocity. Also, they investigated in-line arrangement of fins
for numerical analysis and compared their relative performance. Finally, they compared the
performance of these three models from the views point of heat transfer and total entropy
generation rate. The elliptic pin fin showed the lowest pressure drops. Whereas, the circular
geometry appeared as the best from the view point of the total entropy generation rate for
low approach velocities and the elliptical geometry was the next favorable geometry from
the view point of total entropy generation rate for higher approach velocities. Eventually,
vertical elliptic fins showed the highest pressure drop and entropy generation among these
different geometries.

Su et al. (2011) studied theoretically the entropy generation during heat transfer of a pin fin
array in channels with lateral ejection holes for a turbine blade. The researchers established
the entropy generation model based on the second-law analysis. They analyzed the
distribution of the entropy generation due to heat transfer and fluid friction irreversibility
respectively and made a comparison for three typical short pin fin channels. The entropy
generation number component due to heat transfer decreased while Re, increased, while the
component due to fluid friction increased with the increase of Res. The entropy generation
number (N;) reached minimum when the two components met and the corresponding
Reynolds number (Re;) was optimal. The ejection holes affected the energy lost of the
working fluid. For the three cases studied in this work, case b with short ejection holes gave
the best comprehensive thermal performance with comparison to cases with no and long
ejection holes. They suggested that their results would be helpful for the design of the heat
dissipation of pin fin heat exchangers.

3. Conclusion

This chapter provides a comprehensive, up-to-date review in a chronological order on the
research progress made on entropy generation minimization (thermodynamic optimization,
or finite time thermodynamics). EGM is the method which combines into simple models the
most basic concepts of heat transfer, fluid mechanics, and thermodynamics (Bejan, 1982a).
These simple models are used in the real (irreversible) devices and processes optimization,
subject to finite-size and finite-time constraints. The current review is related to using EGM
method in heat exchangers for both internal structure and external structure. Examples are
drawn from different kinds of applications: parallel flow, counterflow, crossflow, phase-
change heat exchanger optimizations, as well as optimization of internal enhancement.
Attention is also gives to micro systems such as microchannel heat exchanger (MCHX).
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5. Nomenclature

A total heat transfer area, m2
B duty parameter
Be Bejan number
Br Brinkman number = Ec.Pr
C thermal conductivity ratio
c modified ratio of heat capacity rates, (m c,)n/(m c,).
C capacity ratios
Crotal total annual cost, $
Cp constant-pressure specific heat, ]/ kg.K
d diameter, m
E~ exergy loss rate
Ec Eckert number
Fa total drag force on the fin (or array), N
Fp pressure-drop factor
Fup modified pressure-drop factor
f Fanning friction factor
G mass flux, kg/m2.s
H height, m
h heat transfer coefficient, W/m?2XK, enthalpy, J/kg
j Colburn factor
K Hagenbach factor
k thermal conductivity, W/m.K
L length, m
m mass flow rate, kg/s
N number of fins

Ns, Nm, Ng entropy generation numbers
Nu Nusselt number

NTU  number of heat transfer units, U,A,/ ( m Cp)min

NTU, modified number of heat transfer units, U,A,/ ( m o)

P temperature effectiveness for a fluid, pressure, Pa

P perimeter, m

Pe Peclet number = Re.Pr

Pr Prandtl number = v/a

0 heat dissipation rate, W

dg/dx  heat transfer rate per unit length, W/m

R heat capacity ratio

Rpin resistance of the fin structure as a function of geometry, K/W
Reink overall resistance for the sink array, K/W

Ra Rayleigh number

Re Reynolds number

S, entropy generation rate due to thermal effects, W/K
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S, entropy generation rate due to viscous dissipation, W/K
S entropy generation number ratio
St Stanton number
T temperature, K
T, ambient temperature or dead-state temperature, K
T, inlet temperature ratio
To environment temperature, K
t fin thickness, m
u overall heat transfer coefficient, W/m2.K
Vv velocity, m/s
4 free stream or approach velocity, m/s
v specific volume, m3/kg
wc channel width, m
Y heat exchange reversibility norm (HERN)
Greek
a thermal diffusivity = k/pc, , m2/s
as channel aspect ratio = H/wc
A difference
£ effectiveness, porosity
¢ irreversibility distribution ratio
r entropy flux
n efficiency
i exergy recovery index
A Reduced length
U dynamic viscosity, kg/m.s
v kinematic viscosity, m2/s
1 Reduced period
0 blade angle
& temperature excess of the fin, (T — T.,)
Yol density, kg/m3
0o dimensionless temperature difference
1) capacity ratios
v entropy generation distribution factor
Subscripts
0 without augmentation
1 stream 1
2 stream 2
av average
b blade
c cold stream
gen generation
h hydraulic, hot stream
in in
max maximum value
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min minimum value

0 dead state or external (air side)
opt optium

out out

W-S Witte-Shamsundar

Superscripts

*

at maximum irreversibility
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