Thermodynamic Property Tables

Property Tables

- If you have 2 properties, you can find the others using the thermodynamic property tables.
- E.g. If you have pressure and temperature for steam, you can find it's specific volume, enthalpy, internal energy, and entropy.

- There are separate property tables for saturated mixtures, subcooled liquids, superheated vapors, and ideal gases.
- Thermodynamic property tables can be found in the back of your textbook or various places online.

THE

ΔΩ

Interpolation

- Interpolation allows you to find values that are in between what the table provides
- The interpolation factor is consistent throughout the table for each individual state and is given by:

$$a = \frac{v - v_l}{v_h - v_l}$$

where v is the actual (given) property value, vl is the lower value on the chart, and vh is the higher value on the chart. E.g. If a subcooled liquid has a known pressure of 3.0 kPa, and a temperature of 27°C, but the only temperatures listed on the chart are 20°C and 30°C, then the interpolation factor is:

$$a = \frac{T - T_l}{T_h - T_l} = \frac{27 - 20}{30 - 20} = 0.7$$

• Other properties are found by:

$$v = v_{l} + a * (v_{h} - v_{l})$$

$$u = u_{l} + a * (u_{h} - u_{l})$$

$$h = h_{l} + a * (h_{h} - h_{l})$$
THE
ARC

Saturated Property Tables

- Between a liquid and a vapor contains both.
- Quality (0 ≤ x ≤ 1) determines properties.
- A quality of 0 is a saturated liquid.
- A quality of 1 is a saturated vapor.
- If given a temperature and a pressure, the quality is needed to determine its other properties.

- To determine whether or not a substance is a saturated mixture from the pressure and temperature, look at the pressure charts.
- If the temperature of the actual substance is higher than the saturated temperature, it's a superheated vapor.
- If it's lower, it's a subcooled liquid.
- If the two temperatures are equal, it is a saturated mixture.

ARC

Temperature Tables

- Use the temperature table for when you are given the temperature of a saturated mixture
- Use the temperature and the quality to determine the other properties
- E.g. For steam at 70°C and a quality of 0.25, the specific volume is:

$$v = v_{f} + x * (v_{g} - v_{f})$$

$$v = .00102 + .25 * (5.0395 - .00102)$$

$$v = 1.2606 \frac{m^{3}}{kg}$$

	Temp	Pressure	volume (1	m^3/kg)	energy (kJ/kg)			
	°C MPa		vf	vg	uf	ug		
r	0.01	0.00061	0.00100	205.99	0	2374.9		
	5	0.00087	0.00100	147.01	21.02	2381.8		
	10	0.00123	0.00100	106.30	42.02	2388.6		
	15	0.00171	0.00100	77.875	62.98	2395.5		
	20	0.00234	0.00100	57.757	83.91	2402.3		
	25	0.00317	0.00100	43.337	104.83	2409.1		
	30	0.00425	0.00100	32.878	125.73	2415.9		
	35	0.00563	0.00101	25.205	146.63	2422.7		
	40	0.00739	0.00101	19.515	167.53	2429.4		
	45	0.00960	0.00101	15.252	188.43	2436.1		
	50	0.01235	0.00101	12.027	209.33	2442.7		
	55	0.01576	0.00102	9.5643	230.24	2449.3		
	<mark>6</mark> 0	0.01995	0.00102	7.6672	251.16	2455.9		
	65	0.02504	0.00102	6.1935	272.09	2462.4		
	70	0.03120	0.00102	5.0395	293.03	2468.9		
	75	0.03860	0.00103	4.1289	313.99	2475.2		
	80	0.04741	0.00103	3.4052	334.96	2481.6		
_	85	0.05787	0.00103	2.8258	355.95	2487.8		
	90	0.07018	0.00104	2.3591	376.97	2494.0		
	95	0.08461	0.00104	1.9806	398.00	2500.0		
	100	0.10142	0.00104	1.6718	419.06	2506.0		
	110	0.14338	0.00105	1.2093	461.26	2517.7		
	120	0.19867	0.00106	0.8912	503.60	2528.9		
	130	0.27028	0.00107	0.66800	546.09	2539.5		
h	1							

ΔR(

Temperature Tables

- If given temperature and another property, find the quality by reversing the process.
- E.g. For steam at 70°C and a specific energy of 1000kJ/kg:

$$x = \frac{u - u_{f}}{u_{g} - u_{f}}$$
$$x = \frac{1000 - 293.03}{2468.9 - 293.03}$$
$$x = 0.325$$

 The pressure for any saturated mixture is the pressure at that temperature

Temp	Pressure	volume (1	m^3/kg)	energy	(kJ/kg)
°C	MPa	vf	vg	uf	ug
0.01	0.00061	0.00100	205.99	0	2374.9
5	0.00087	0.00100	147.01	21.02	2381.8
10	0.00123	0.00100	106.30	42.02	2388.6
15	0.00171	0.00100	77.875	62.98	2395.5
20	0.00234	0.00100	57.757	83.91	2402.3
25	0.00317	0.00100	43.337	104.83	2409.1
30	0.00425	0.00100	32.878	125.73	2415.9
35	0.00563	0.00101	25.205	146.63	2422.7
40	0.00739	0.00101	19.515	167.53	2429.4
45	0.00960	0.00101	15.252	188.43	2436.1
50	0.01235	0.00101	12.027	209.33	2442.7
55	0.01576	0.00102	9.5643	230.24	2449.3
60	0.01995	0.00102	7.6672	251.16	2455.9
65	0.02504	0.00102	6.1935	272.09	2462.4
70	0.03120	0.00102	5.0395	293.03	2468.9
75	0.03860	0.00103	4.1289	513.99	2475.2
80	0.04741	0.00103	3.4052	334.96	2481.6
85	0.05787	0.00103	2.8258	355.95	2487.8
90	0.07018	0.00104	2.3591	376.97	2494.0
95	0.08461	0.00104	1.9806	398.00	2500.0
100	0.10142	0.00104	1.6718	419.06	2506.0
110	0.14338	0.00105	1.2093	461.26	2517.7
120	0.19867	0.00106	0.8912	503.60	2528.9
130	0.27028	0.00107	0.66800	546.09	2539.5

ARC

Pressure Tables

- Use the pressure table for when you are given the pressure of a saturated mixture
- Like the temperature table, use the pressure and the quality to determine the other properties
- E.g. For R134a at 300kPa and a quality of 0.25, the specific volume is:

$$v = v_{f} + x * (v_{g} - v_{f})$$

$$v = .0007737 \leftarrow .25 * (.0677 \leftarrow .0007737)$$

$$v = .0175 \frac{m^3}{kg}$$

г									
	Pressure	Temp	volume (m'	enthalpy (
	kPa	°C	vf	vg	hf	hfg			
	60	-36.9	0.0007098	0.3112	3.9				
	80	-31.1	0.0007185	0.2376	11.3				
e	100	-26.4	0.0007259	0.1926	17.3				
	120	-22.3	0.0007324	0.1621	22.5				
e	140	-18.8	0.0007383	0.1402	27.1				
	160	-15.6	0.0007437	0.1235	31.2				
)	180	-12.7	0.0007487	0.1104	35.0				
	200	-10.1	0.0007534	0.0999	38.5				
2S	220	-7.6	0.0007578	0.0912	41.7				
	240	-5.4	0.0007620	0.0839	44.7				
a	260	-3.2	0.0007661	0.0777	47.5				
	280	-1.2	0 0007699	0 0724	50.2				
	300	0.7	0.0007737	0.0677	52.8				
	320	2.5	0.0007773	0.0636	55.2				
	340	4.2	0.0007808	0.0600	57.5				
	360	5.8	0.0007842	0.0567	59.8				
	400	8.9	0.0007907	0.0512	64.0				
	500	15.7	0.0008060	0.0411	73.4				
)	600	21.6	0.0008200	0.0343	81.5				
	700	26.7	0.0008332	0.0294	88.8				
	800	31.3	0.0008459	0.0256	95.5				
	900	35.5	0.0008581	0.0227	101.6				
	1000	39.4	0.0008701	0.0203	107.4				

R134a - TetraFlouroEthane Saturation Properties

ARC

Superheated Gas Tables

 Used for temperatures higher than the saturation temperature at a given pressure.

- Any two properties allow you to find all other properties at that state.
- E.g. For superheated R744 at 100° and h=558 kJ/kg, the pressure is:

$$a = \frac{h - h_l}{h_h - h_l}$$

$$a = \frac{558 - 554}{560.97} = 0.524$$

$$P = P_l + a * (P_h - P_l)$$

$$P = 3.0 + .524 * (2.0 - 3.0)$$

$$P = 2.48 MPa$$

Carbon Dioxide Refrigerant (R744) - Superheated									
	P	[•] = 3.0 M	Pa (-5.5	55°C)		P	= 2.0 M	Pa (-19	.5°C)
	Temp	volume	enthalpy	entropy		Temp	volume	enthalpy	entropy
	C	v(m^3/kg)	h(kJ/kg)	s(kJ/kg.K)		C	v(m^3/kg)	h(kJ/kg)	s(kJ/kg.K)
	Sat.	0.012207	433.61	1.8754		Sat.	0.019033	436.85	1.9461
	0	0.012931	442.22	1.9072		-10	0.020507	448.58	1.9915
	10	0.014082	455.98	1,9567		0	0.021926	460.00	2.0341
	20	0.015116	468.46	2.0001		10	0.023257	470.84	2.0731
	30	0.016074	480.20	2.0395		20	0.024526	481.32	2.1095
	40	0.01698	491.46	2.0760		30	0.025748	491.57	2.1438
	50	0.017847	502.39	2.1104		40	0.026934	501.65	2.1766
	60	0.018683	513.09	2.1430		50	0.028091	511.63	2.2079
	70	0.019495	523.64	2.1742		60	0.029224	521.54	2.2381
	80	0.020287	534.07	2.2041		70	0.030337	531.41	2.2673
	90	0.021063	544 42	2.2330		80	0.031434	541.26	2.2956
	100	0021814	554.73	2.2610		90	0.032516	551.11	2.3231
		0.02257 4	565.00	2.2882		100	0.033586	560.97	2.3499
	120	0.023313	575.26	2.3146		110	0.034646	570.85	2.3760
	130	0.024043	585.51	2.3404		120	0.035696	580.76	2.4015
	140	0.024766	595.77	2.3655		130	0.036738	590.69	2.4265
	150	0.025481	606.05	2.3901		140	0.037773	600.66	2.4509
	160	0.026191	616.35	2.4142		150	0.038802	610.68	2.4749
	170	0.026895	626.67	2.4377		160	0.039825	620.73	2.4984
					·	170	0.040842	630.84	2.5214
				Tł	HE				

Subcooled Liquid Tables

- Used for temperatures lower than the saturation temperature at a given pressure
- Any two properties allow you to find all other properties at that state.
- E.g. For subcooled water at 240°C and u=1027 KJ/kg, the pressure is:

 $a = \frac{u - u_l}{u - u_l}$ $u_h - u_l$ 1027 -1026 .1 = 0.1641031 .6 - 1026 . $P = P_l + a * (P_h - P_l)$ P = 10.0 + .164 * (5.0 - 10.0)

P = 9.18 MPa

Compressed Liquid Water Properties - (5 M									
P = 5 MPa						P = 10 MPa			
Temp	density	energy	enthalpy	entropy		density	energy	enthalpy	entropy
°C	kg/m^3	u(kJ/kg)	h(kJ/kg)	s(kJ/kg.K)		kg/m^3	u(kJ/kg)	h(kJ/kg)	s(kJ/kg.K)
20	1000 4	83.6	88.6	0.2954		1002.7	83.3	93.3	0.2944
40	994.4	166.9	172.0	0.5705		996.5	166.3	176.4	0.5685
60	985.3	250.3	255.4	0.8287		987.5	249.4	259.5	0.8260
80	974.0	333.8	339.0	1.0723		976.2	332.7	342.9	1.0691
100	960.6	417.6	422.9	1.3034		962.9	416.2	426.6	1.2996
120	945.5	501.9	507.2	1.5236		947.9	500.2	510.7	1.5191
140	928.6	586.8	592.2	1.7344		931.3	584.7	595.5	1.7293
160	910.1	672.6	678.0	1.9374		913.0	670.1	681.0	1.9315
180	889.7	759.5	765.1	2.1338		892.9	756.5	767.7	2.1271
200	867.3	847.9	853.7	2.3251		870.9	844.3	855.8	2.3174
220	842.6	938.4	944.3	2.5127		846.8	934.0	945.8	2.5037
240	<u>815.</u>	1031.6	1037.7	2.6983		820.2	1026.1	038.3	2.6876
260	784.0	1128.5	1134.9	2.8841		790.3	1121.6	1134.3	2.8710
-									

THE

 \mathbf{P}

d Liquid Water Properties

References

Fundamentals of Engineering Thermodynamics, Moran and Shapiro, Ch.3

Thermodynamics – Theory <u>http://ecourses.ou.edu/cgi-</u> <u>bin/ebook.cgi?doc=&topic=th&chap_sec=02.3&page=theory</u>

Steam Tables – Thermodynamics <u>http://www.engineersedge.com/thermodynamics/steam_tables.ht</u> <u>m</u>

Guide to Using the Two-Phase Property Tables <u>http://abata.sdsmt.edu/pdf_files/ME211/Guide%20to%20Using%20</u> <u>the%20Two%20Phase%20Property%20Tables.pdf</u>

Prepared by Veronica Hannink

