These Probability NOTES Belong to:

Date	Topic	Notes	Questions
1.	Intro		
2.	And \& Or		
3.	Dependant \& Independent		
4.	Dependant \& Independent		
5.	Conditional		
6.	Conditional		
7.	Combinations \& Permutations		
8.	Binomial		
9.	Review		
10.	Review		
11.	TEST		

Record any questions that you find challenging.

How to use this booklet.

Do not do questions sequentially. Once you have got a concept, move on to the next set of questions. Once you have come to the end of a section, go back and complete the missing questions.

Memorize all definitions and terms:

Probability - Page 3	If an experiment has n equally likely outcomes of which r outcomes are favorable to event A, then the probability of event A is: $P(A)=\frac{r}{n}$. $\rightarrow P(\text { Rolling a } 1)=\frac{r}{n} \frac{1}{6} \frac{\text { option }}{\text { options }}$ \rightarrow Probabilities must be between zero and one.
Theoretical Probability - Page 3	- Theoretical Probability is what should happen. - These Probabilities are calculated using formulae.
Experimental Probability - Page 3	- Experimental Probability is what actually happens. - These probabilities are calculated by experiment.
Sample Space - Page $3 \rightarrow$	- The sample space is the set or the list of all possible outcomes. - The sample space is " n " in $P(A)=\frac{r}{n}$
$\begin{aligned} & 0 \leq P \leq 1 \\ & \bullet \quad \text { Page } 3 \rightarrow \end{aligned}$	- Probabilities are always between 0 and 1 - Probabilites can be written in decimal form or as fraction - Probabilities can be converted to percentages. $0.2 \rightarrow 20 \%$ (20% is not a probability it is a percentage)
AND - Page $3 \rightarrow$	- Means both - What is the probability that a randomly chosen student is a boy and in grade 12. Another way of saing this would be what is the probability that a Grade 12 boy is chosen. - Multiply probabilties
OR - Page $3 \rightarrow$	- Means Either - What is the probability that a randomly chosen student is a boy or is in grade 12. Another way of saying this would be, what is the probability that the student chosen is a male student or a grade 12 girl . - Add probabilities
$P(a) \text { vs } p(\bar{a})$ - Page $4,7 \rightarrow$	- $P(a) \rightarrow$ Probability that event "a" happens - $p(\bar{a}) \rightarrow$ Probability that event "a" does not happen - $P(a)+p(\bar{a})=1 \quad$ The complement of a is \bar{a}.
Complement - Page 11	If the probability of winning is 0.8 , then the complement of winning is 0.2 . The complement of winning is losing. P (winning) $=0.8 \&$ $P(\overline{\text { winning }})=P(\text { Not Winning })=0.2$ - Using the complement is often helpful when solving at least or at most questions.

Conditional probability	$P(A \mid B)=$ This is read, the probability of A given B has already happened. The probability of A occurring under $P(A \mid B)$ will not be out of 10 but out of 5 , the number of outcomes that are B.
Mutually exclusive - Page $7 \rightarrow$	- Events are mutually exclusive if they have nothing in common - Playing card example. Hearts and diamonds are mutually exclusive. - Playing card example. Hearts and face cards are not mutually exclusive.
Independent events - Page 16	- Event A and B are independent events if they do not impact each other. - Examples of indepedent events: Rolling dice, Flipping coins, drawing cards with replacement - Probabilities do not change if the events are independent
Dependent events - Page	- Event A and B are dependent if they impact each other in any way - Example of dependent events: Drawing cards without replacement
Binomial Events \& Binomial Distribution - Page 34	- An event/distribution where there are only 2 options. - Example of binomial events. Flipping a coin, Rolling a die and comparing rolling the number 1 vs everything else. - A binomial event always has a yes/no answer. Ie was the result a head? Was the result a 1. Was the result something other than 1? - ${ }_{n} C_{r}(A)^{r}(A \text { NOT })^{n-r}$

Introduction to Probability

Probability	If an experiment has n equally likely outcomes of which r outcomes are favorable to event A, then the probability of event A is: $P(A)=\frac{r}{n}$. $\rightarrow P(\text { Rolling a } 1)=\frac{r}{n} \frac{1}{6} \frac{\text { option }}{\text { options }}$
Sample Space - Page $3 \rightarrow$	- The sample space is the set or the list of all possible outcomes. - The sample space is " n " in $P(A)=\frac{r}{n}$
$\begin{aligned} & 0 \leq P \leq 1 \\ & \cdot \quad \text { Page } 3 \rightarrow \end{aligned}$	- Probabilities are always between 0 and 1 - Probabilites can be written in decimal form or as fraction - Probabilities can be converted to percentages. $0.2 \rightarrow 20 \%$ (20% is not a probability it is a percentage)
OR	Is inclusive.
And	Is exclusive.

A coin is flipped once. What is the probability that the result will be heads?

- $P($ Heads $)=0.5$ or $\frac{1}{2} \rightarrow$ Probabilities are always between zero and one.
- We can convert probabilities to percentages. There is a 50% chance that a coin will land heads.

Theoretical versus Experimental Probabilities

A coin is tossed. Consider the event "a single head."

1. Determine the Theoretical probability
2. Determine the experimental probability with 400 tosses of the coin?

- Theoretical probability is what should happen.
- Experimental probability is what actually happen.

In Math 12 we will focus entirely on theoretical probabilities.

What is the sample space for a regular deck of cards?

Color	Suit	Non-Face Cards										Face Cards		
Red	Hearts	A	2	3	4	5	6	7	8	9	10	J	Q	K
Red	Diamonds	A	2	3	4	5	6	7	8	9	10	J	Q	K
Black	Clubs	A	2	3	4	5	6	7	8	9	10	J	Q	K
Black	Spades	A	2	3	4	5	6	7	8	9	10	J	Q	K

Determine the probabilities. Leave your answer as a fraction in lowest terms. A single card is selected from a deck of 52 cards. What is the probability of the following event?

Determine the sample space for each set of events. Use a tree diagram, a chart or a list to help. Leave your answer as a fraction in lowest terms.
17. A coin and a 6-sided dice are rolled. What is the sample space?
18. $\quad P(H$ and 6$)=$
19. $\quad P(T$ and odd $)=$
20. $P(H$ or 6$)=$
21. $\quad P(T$ or odd $)=$
22. Two 4 sided dice are rolled. What is the sample space?
23. $\quad P(4$ and 2$)=$
24. $P(4$ or 2$)=$
25. $P(\operatorname{Not} a 4)=P(\overline{4})=$
26. $\quad P($ Sum is even $)=$
27. Three coins are flipped. What is the sample space?
28. $P($ A \dagger least 1 head $)=$
29. $\quad P($ No heads $)=$
30. 1-P(No heads)=

Determine the probabilities and number of outcomes.

A biased coin is weighted so that it lands heads 70% of the time.
31. $P(H)=$
32. $\quad P(T)=$
33. The biased coin is flipped 20 times. How many heads will result?
34. The biased coin is flipped 50 times. How many tails will result?

A biased coin weighted so that it lands tails 40% of the time.
35. $P(H)=$
36. $P(T)=$
37. The biased coin is flipped 80 times. How many heads will result?
38. The biased coin is flipped 60 times. How many tails will result?

A biased die is weighted so that it returns a 320% of the time.
39. $P(3)=$
40. $P(6)=$
41. The biased 6 -sided die is rolled 50 times. How many $5 s$ will result?
42. The biased 6 -sided die is rolled 200 times. How many even numbers will result?

Calculate the following probabilities.

A card is drawn from a shuffled deck of 52 cards. What is the probability of each event?

43. What is the	44. A red card is	45. A face card is		
sample space?	drawn.	A6 heart is		

In the card game "In Between," 3 cards from a deck of 52 are drawn. To win, the $3^{\text {rd }}$ card must be in between the first two cards. The player loses if the $3^{\text {rd }}$ card is the same as the first two.

- Determine the probability of winning given the first two cards already drawn.

47. What is the sample space?	48. A 3 and a 7 are drawn.	49. A 5 and a Queen are drawn.	50. An 8 and a 9 are drawn.

Calculate the following probabilities.

2 six-sided dice are rolled. Determine the probability of each event

Sample space						51. The sum is odd.	52.	The sum is 6 or 12.	53. A double is rolled.
11	12	13	14	15	16				
21	22	23	24	25	26				
31	32	33	34	35	36				
41	42	43	44	45	46				
51	52	53	54	55	56				
61	62	63	64	65	66				
54.	The sum of the 2 dice is at least 3 .							55. The sum o	he two dice is at mos

Calculate the following probabilities.

56. If you guess on every question, what is the probability of getting 100\% on a 3 question true false test?	57. If you guess on every question, what is the probability of getting 100\% on a 5 question true-false test?	58. If you guess on every question, what is the probability of getting 100% on an 8 question true-false test?
Solution:		
Determine the sample space first		
Question \#1 $\rightarrow 2$ options		
Question \#2 $\rightarrow 2$ options		
Question \#3 $\rightarrow 2$ options		
	0.03125	0.0039
	59. If you guess on every	60. If you guess on every
	question, what is the	question, what is the
T F T F Q\#3 T F T F	probability of getting 100%	probability of getting
	on a 5 question multiple	100% on a 10 question
- There are 8 possible answer keys $2 \times 2 \times 2=2^{3}=8$	choice test? (ABCD)	multiple choice test?(ABCD)
There is one correct answer key		
$P(100 \%)=\frac{1}{8}=0.125$		
	0.000977	0.000000953

"OR", "AND" and Probability

AND	- Means both - What is the probability that a randomly chosen student is a boy and in grade 12. Another way of saying this would be what is the probability that a Grade 12 boy is chosen. - Multiply probabilties
OR	- Means Either - What is the probability that a randomly chosen student is a boy or is in grade 12. Another way of saying this would be, what is the probability that the student chosen is a male student or a grade 12 girl. - Add probabilities
$P(a)$ vs $p(\bar{a})$	- $P(a) \rightarrow$ Probability that event "a" happens - $p(\bar{a}) \rightarrow$ Probability that event "a" does not happen - $P(a)+p(\bar{a})=1 \quad$ The complement of a is \bar{a}.
Complement	If the probability of winning is 0.8 , then the complement of winning is 0.2 . The complement of winning is losing.
Conditional probability	$P(A \mid B)=$ This is read, the probability of A given B has already happened. The probability of A occurring under $P(A \mid B)$ will not be out of 10 but out of 5 , the number of outcomes that are B.

Events A and B are mutually exclusive. Events A and B are not mutually exclusive.

There is no overlap of A and B
$P(A$ and $B)=0$

There is overlap of A and B. $P(A$ and $B)=3 / 9$

Calculate the probabilities		Venn Diagram
61. $P(A)=$	62. $\quad P(B)=$	
63. $P(\bar{A})=$ ($\operatorname{Not} A$)	64. $P(\bar{B})=$	
65. $P(A \& B)=$ Both A and B	66. $P(A$ AOB $)=$ Either A or B or both	
67. $p($ AorB $)=$	68. $P(A \& B)=$	
69. P(Neither)=	70. P(Only one) $=$ Only A or only B	
71. $P(A \mid B)=$	72. $P(B \mid A)=$	
$P(A \mid B)=$ This is read, the probability of A given B has already happened. The probability of A occurring under $P(A \mid B)$ will not be out of 10 but out of 5 , the number of outcomes that are B.		

Challenge \#1: A market study found that 50\% of a neighborhood likes Japanese food while 60\% likes Italian food. 30\% like both. Determine the following probabilities:

- $\quad P($ likes at least 1$)=$
- $\quad P($ likes only one type of food) $=$

Challenge \#2: A TV station determined that 30% of boys watch sports and 60% watch soaps. 20\% watch neither. Determine the following probabilities:

- $\quad P($ Boy watches at most 1 show $)=$
- $\quad P($ Boy watches at least 1 show $)=$

Use Venn diagrams to calculate the following probabilities.

A market study found that 50% of a neighborhood like Japanese food while 60\% like Italian food. 30\% like both. 89. $P($ likes at least 1$)=$
90. P(likes only one type of food)=

Solution:

Draw and label a Venn diagram 30% goes in the overlap Fill out the rest of the diagram by subtracting 30% from 50% and 60%

Use the diagram to calculate the above probabilities.

A TV station determined that 30% of boys watch sports and 60% watch soaps. 20% watch neither.
91. P (Boy watches at most 1 show $)=$
92. $P($ Boy watches at least 1 show $)=$

Solution:

All percentages must add to 100\%. Determine the overlap by adding all percentages and then subtracting by 100\%.

Use the diagram to calculate the above probabilities.

64\% of girls want to go into business and 44% want to go into education. 14\% want neither.
93. $P($ Girl pursue at most one career $)=$

A market Study found that 40% of a neighborhood likes Japanese food while 50\% likes Italian food. 30\% like both.
94. $P($ likes at least 1$)=$
95. P(likes only one type of food)=

A TV station determined that 20% of boys watch sports and 50% watch the news. 40% watch neither.
96. $\quad P($ Boy watches only sports $)=$
97. $P($ Boy watches the news or nothing $)=$
80% of girls want to go into business and 30% want to go into education. 20% want neither.
98. $P($ Girl pursues both careers $)=$
99. \quad (Girl pursue at most one career $)=$

Challenge \#3: A card is drawn from a shuffled deck of 52 cards. Determine the probability that the card is a heart or a spade.

Challenge \#4: A card is drawn from a shuffled deck of 52 cards. Determine the probability that the card is a heart or a face card.

Calculate the following probabilities. Leave your answer as a fraction in lowest terms.
A card is drawn from a shuffled deck of 52 cards. Determine the probability of each event.

Challenge \#5: A survey of 200 people indicated that 60 learn from the newspaper, 50 from the TV and 30 from both sources. Determine the following probabilities:

- $\quad P(A$ randomly selected person learns from the newspaper and TV)=
- $\quad P($ A randomly selected person learns from at least one of the sources)=
- $\quad P(A$ randomly selected person learns from exactly one of the sources)=

Challenge \#6: A study of hand-eye coordination tested people on how quickly they could respond to a moving object on a screen. 30% of the people responded in less than $0.3 \mathrm{~s} ; 60 \%$ in 0.5 s or less; and 5% took more than 0.8 s . Determine the following probabilities:

- $\quad P(A$ randomly selected person from this group will take 0.8 s or less)
- $P(A$ randomly selected person from this group will take longer than 0.5)
- $\quad P(A$ randomly selected person from this group will take between 0.3 and 0.5 inclusive)

A survey of 200 people indicated that 60 learn from the newspaper, 50 from the TV and 30 from both sources. What is the probability of each event?

| Venn Diagram | 108. P(A randomly selected person learns from |
| :--- | :--- | the newspaper and TV)=

109. P(A randomly selected person learns from
at least one of the sources)=
110. P(A randomly selected person learns from
exactly one of the sources)=

A study of hand-eye coordination tested people on how quickly they could respond to a moving object on a screen. 30% of the people responded in less than $0.3 \mathrm{~s} ; 60 \%$ in 0.5 s or less; and 5% took more than 0.8 s . What is the probability of each event?
Venn Diagram
111. $P(A$ randomly selected person from this
group will take 0.8 s or less)
112. $P($ A randomly selected person from this
group will take longer than 0.5)
113. $P($ A randomly selected person from this group will take between 0.3 and 0.5 inclusive)

A study of hand-eye coordination tested people on how quickly they could respond to a moving object on a screen. 25% of the people responded in less than $0.3 \mathrm{~s} ; 55 \%$ in 0.5 s or less; and 10% took more than 0.8 s . What is the probability of each event?
114. $P(A$ randomly selected person from this group will take 0.8 s or less)=
115. P(A randomly selected person from this group will take longer than 0.5)=
116. $P(A$ randomly selected person from this group will take between 0.3 and 0.5 inclusive)

Challenge \#7: In a recent survey of grade 12 students, it was found that 70\% took math and 50\% took chemistry. Determine the chance of each event. If 80% took math or chemistry, what percent of students took math only?

Calculate the percentage.

Venn Diagram

Venn Diagram

119. In a recent survey of grade 12 students, it was found that 70\% took math and 50% took chemistry. Determine the chance of each event. If 80% took math or chemistry, what percent of students took both math and chemistry?
120. Neither?
121. In a recent survey of grade 12 students, it was found that 65% took math and 45\% took chemistry. If 30% took math and chemistry, what percent of students took neither math nor chemistry?
122. Took both?

Challenge \#8: Determine the probability of flipping three heads in three flips.

Challenge \#9: Determine the probability of flipping one head in three flips.

Dependent and Independent Probabilities

Complement	The complement of an event happening is the probability that it does not happen - $P($ winning $)=0.8 \& P(\overline{\text { winning })}=P($ Not Winning $)=0.2$ - Using the complement is often helpful when solving an "at least" or "at most question".
$P(a)$ vs $p(\bar{a})$	- $P(a) \rightarrow$ Probability that event " a " happens - $p(\bar{a}) \rightarrow$ Probability that even " a " does not happen - $P(a)+p(\bar{a})=1$ OR $\quad P(a)=1-p(\bar{a})$

A coin is flipped 3 times. Determine the probabilities as fractions in lowest terms.

Here are the possible outcomes:

Challenge \#10: Timmy has a bag full of marbles. There are 6 black marbles and 4 white marbles in the bag. Determine the following probabilities if he removes 2 marbles from the bag without replacement. Determine the probability that both marbles are black.

Challenge \#11: Timmy has a bag full of marbles. There are 6 black marbles and 4 white marbles in the bag. He takes out one marble, looks at it, puts it back in the bag and then randomly draws another marble. Determine the probability that exactly one of marbles is black.

Dependent probabilities

131. What is the probability that at least 1 marble will be black?

Independent probabilities

Timmy has a bag full of marbles. There are 6 black marbles and 4 white marbles in the bag. He takes out one marble, looks at it, puts it back in the bag and then randomly draws another marble.

	Tree diagram:	132. P(Both are black)	133. P(Exactly 1 is black $)=$

Calculate the following probabilities. Round your answer to 3 decimals.
Timmy has a bag full of marbles. There are 3 black marbles, 4 white marbles and 3 striped marble in the bag. He removes 2 marbles one at a time without replacement.

Timmy has a bag full of marbles. There are 3 black marbles, 4 white marbles and 3 striped marble in the bag. He takes out one marble, looks at it, puts it back and then randomly draws another marble.

2 cards are removed from a deck of 52 cards without replacement. Determine the following.

Calculate the following probabilities. Round your answer to 3 decimals.
A biased coin with P (Heads) $=0.7$ was tossed 3 times. Determine the following.

Challenge \#13: The probability that you are late for class is 0.2. The probability that your teacher is late is 0.1. Determine the following probabilities:

- $\quad P$ (both on time) $=$
- $P(1$ of you is late $)=$

Challenge \#14: In 5 tosses of a coin, the first 2 tosses resulted in 2 heads. What is the probability that the 5 tosses will produce exactly 3 heads?

Calculate the following probabilities.

The probability that you are late for class is 0.2. The probability that your teacher is late is 0.1. .If these events are independent, determine the following probabilities.
156. Tree Diagram

157. P (both on time) $=$	158. $P(1$ of you is late $)=$
0.72	0.26

The probability that a student completes her math HW is 0.6 . The probability that she completes her French HW is 0.3. If these events are independent, determine the following probabilities.

159. Tree Diagram	160. P(No HW done)=	161. P (Only 1 complete)=	162. P (both complete)=
15. Tree Diagram			
	0.28	0.54	0.18

Calculate the following probabilities. Round your answer to 3 decimals.

Challenge \#15: The probability that a battery will last one month is 0.7 and that it will last 2 months is 0.2 . At the end of the first month, what is the probability that the battery will also last until the end of the $2^{\text {nd }}$ month?

Challenge \#16: There is a 5% chance that a car will malfunction in the $1^{\text {st }}$ year and a 10% chance in the first 2 years. What is the probability that the car lasts the first year but breaks down in the $2^{\text {nd }}$ year?

Students visit www.mathbeacon.com for detailed solutions and support with your homework.
168. The probability that a battery will last one month is 0.7 and that it will last 2 months is 0.2. At the end of the first month, what is the probability that the battery will also last until the end of the $2^{\text {nd }}$ month?

$\begin{array}{ll} \mathrm{P}\left(\mathrm{~L}_{1}\right)=0.7 & 0.3 \\ \text { Lasts } & \text { Does not last } \end{array}$
$P\left(L_{1} \& L_{2}\right)=0.2$
P (Lasts 2 months) $=P\left(\right.$ Lasts $1^{\text {st }}$ \& $2^{\text {nd }}$)
$=P\left(L_{1}\right)$ and $P\left(L_{2} \mid L_{1}\right)$
$0.2=(0.7)(A)$
$A=0.2857$

169. The probability that a battery will last one month is 0.8 and that it will last 3 months is 0.4 . At the end of the first month, what is the probability that the battery will also last until the end of the $3^{\text {rd }}$ month?
170. The probability that your new IBook lasts 3 years is 0.9 and that it will last 5 years is 0.3 . After 3 years, what is the chance that your I-Book will last another 2 years?

171. There is a 5% chance that a car will malfunction in the $1^{\text {st }}$ year and a 10% chance in the first 2 years. What is the probability that the car lasts the first year but breaks down in the $2^{\text {nd }}$ year?	172. The probability that your new IBook last 3 years is 0.9 and that it will last 5 years is 0.3 . After 3 years what is the chance that your I-Book will break down in the next two years?	173. The probability that a battery will last one month is 0.6 and that it will last 2 months is 0.3 At the end of the first month, what is the probability that the battery will also last until the end of the $2^{\text {nd }}$ month?
0.05 Breaks		
$\begin{gathered} P(\text { lasts } 2 \text { years })=P\left(\text { lasts } 1^{\text {st }}\right) \& P\left(\text { lasts } 2^{\text {nd }}\right) \\ 0.9=(0.95)\left(L_{2}\right) \\ L_{2}=0.947 \end{gathered}$		
$\begin{gathered} P\left(\text { Breaks in the } 2^{\text {nd }} \text { year }\right)=1-P\left(\text { lasts } 2^{\text {nd }}\right) \\ B_{2}=1-0.947 \end{gathered}$		
0.053	0.667	0.5

Determine the following probabilities. Round your answer to 3 decimals.
If a fair six-sided die is tossed twice, determine the following probabilities:
174. Determine the probability that the first toss is greater than 2 and the second is less than 2.
175. Determine the probability that the first toss is greater than 5 and the second is less than 5.
176. Determine the probability that the first toss is greater than 4 and the second is less than 4.
177. A bag contains 5 red balls and 10 black balls. Two balls are drawn from the bag, one after the other, without replacement. Determine the probability that one of each is chosen.
178. A bag contains 5 red balls and n black balls. Two balls are drawn from the bag, one after the other, without replacement. Determine an expression to represent the probability that one of each is chosen.
179. A bag contains \times red balls and 10 black balls. Two balls are drawn from the bag, one after the other, without replacement. Determine an expression to represent the probability that one of each is chosen.

${ }_{n} C_{r}$, Tree Diagrams and Probabilities.

Timmy takes 4 marbles out of the bag at the same time. Determine the probability for the following events: $P(4 B), P(3 B), P(2 B), P(1 B), P(O B)$.

Remember: The order of fractions does not matter.

Challenge \#17: Little Timmy removed 4 cards without replacement from a deck of 52 cards. Determine the probability of drawing exactly 3 out of 4 kings.

Challenge \#18: A biased coin with $P($ Heads $)=0.7$ was tossed 5 times. Determine the probability that exactly 4 out of the 5 flips will land heads.

Calculate the following probabilities. Round your answer to 4 decimals. Little Timmy removed 4 cards without replacement from a deck of 52 cards.

Tree Diagram	$\begin{aligned} & \text { 180. } P(3 \text { Kings })= \\ & { }_{4} C_{3}(\text { KKK } 0)= \\ & { }_{4} C_{3} \frac{4}{52} \cdot \frac{3}{51} \cdot \frac{2}{50} \cdot \frac{48}{49}= \end{aligned}$ 0.0007	181. $P(4$ Kings $)=$ $0.0000(037)$	182. $P(2$ Kings $)=$ 0.0260

Little Timmy removed 4 cards without replacement from a deck of 52 cards.

183. What is the probability of		
picking at least 1 five?	184. omit	
picking at least 1 heart?		

Calculate the following probabilities. Round your answer to 3 decimals. A biased coin with $P($ Heads $)=0.7$ was tossed 5 times. Calculate each probability.

Tree Diagram:	186. $P(5 H)=$	0.168	187. $P(4 H)=$ Solution: ${ }_{n} C_{r}(H H H H T)=$ 5 flips choose 4 heads $\begin{aligned} & { }_{5} C_{4}(0.7)(0.7)(0.7)(0.7)(0.3)= \\ & =0.36015 \end{aligned}$	0.360
	188. $P(3 T)=$	0.132	189. $P(4 T)=$ 0.028	
190. What is the probability of flipping at least 2 heads?		191. What is the probability of flipping at least 1 head?		

Calculate the following probabilities. Round your answer to 3 decimals.
5 balls are removed without replacement from a bag containing 5 red balls and 6 yellow balls.

Challenge \#19: Two cards are drawn without replacement from a shuffled deck of 52 cards. What is the probaility that the second card will be an ace? Round your answer to 3 decimals.

Challenge \#20: Two cards are drawn without replacement from a shuffled deck of 52 cards. What is the probaility that the first card is a heart and the second card is the king of hearts.

Conditional Probability

Two cards are drawn without replacement from a shuffled deck of 52 cards. What is the probaility that the second card will be the following card? Round your answer to 3 decimals.
198. An ace is the second card

Solution:

- This a conditional probability question because probabilities are conditional based on the first card chosen.
- There are 2 options for the first card, an ace or not an ace.

$P\left(A_{2}\right)=P(A, A) \operatorname{or} P(\bar{A}, A)$
$=\frac{4}{52} \times \frac{3}{51}+\frac{48}{52} \times \frac{4}{51}$
$=\frac{4}{52}=\frac{1}{13} \approx 0.0769$

Two cards are drawn without replacement from a shuffled deck of 52 cards. Determine the following probabilities. Round your answer to 3 decimals.

203. $1^{\text {st }} \rightarrow$ Heart, $2^{\text {nd }} \rightarrow$ King of Hearts
Solution:

Color	Suit	Non-Face Cards										Face Cards		
Red	Hearts	A	2	3	4	5	6	7	8	9	10	J	Q	K
Red	Diamonds	A	2	3	4	5	6	7	8	9	10	J	Q	K
Black	Clubs	A	2	3	4	5	6	7	8	9	10	J	Q	K
Black	Spades	A	2	3	4	5	6	7	8	9	10	J	Q	K

Two cards are drawn without replacement from a shuffled deck of 52 cards. What is the probability that the second card is each card? Round your answer to 3 decimals.

| 206. A 10 is the $2^{\text {nd }}$ card. | 207. A face card is the $2^{\text {nd }}$ card. | 208. A red card is the $2^{\text {nd }}$ card. |
| :--- | :--- | :--- | :--- |
| 209. An even number is the $2^{\text {nd }}$ card. | 210. The 5 of clubs is the $2^{\text {nd }}$ card. | 211. A diamond is the $2^{\text {nd }}$ card. |

Two cards are drawn without replacement from a shuffled deck of 52 cards. Determine the following probabilities. Round your answer to 3 decimals.

212. $1^{\text {st }} \rightarrow$ Face, $2^{\text {nd }} \rightarrow$ King	213. $1^{\text {st }} \rightarrow$ Red, $2^{\text {nd }} \rightarrow$ Red Face	214. $1^{\text {st }} \rightarrow$ Club, $2^{\text {nd }} \rightarrow 8$ of Clubs
0.017	0.057	0.005

Understanding Bayes Law

Challenge \#19: 100 grade 12 students were surveyed. 60 were boys and 40 were girls. 80% of the boys and 70% of the girls who were surveyed said they love chocolate ice cream.

Examine the following two questions and calculate each probability below.

- Determine the probability that a randomly selected student likes chocolate ice cream.(215)
- A student is chosen who likes chocolate ice cream, determine the probability that selected student is a boy.(219)

Can you see the difference between these two questions?

221. A computer supply store buys 40% of their computer chips from Bigchips and 60% from Fastchips. On average, 6% of the Bigchips are faulty and 5% of the Fastchips are faulty. If a randomly selected chip is faulty, what is the probability that Bigchips made it?

Calculate the following probabilities. Round your answer to 3 decimals.

There are 100 boys and 120 girls in the grade 12 year. 20 boys and 30 girls have no siblings. A student is randomly selected.

222. Tree Diagram	223. What is the probability that the student has no siblings?	224. A student is chosen who has no siblings. What is the probability that the student is a girl?
\qquad		

There are 100 boys and 50 girls in the grade 12 year. 40 boys and 10 girls have no siblings. A student is randomly selected.

225. Tree Diagram	226. What is the probability that the student has no siblings?	227. A student is chosen who has no siblings. What is the probability that the student is a girl?
	0.333	

Calculate the following probabilities.

A new medical test for tsprayitis is 95% accurate. Suppose 8% of the population have tsprayitis. What is the probability of each event?

A new medical test for bad hair is 90% accurate. Suppose 20% of the population has bad hair. What is the probability of each event?

232. Tree Diagram	233. A randomly selected person will test negative.	234. A person tests negative, calculate the probability that they actually have bad hair.	235. A person tests positive, calculate the probability that they actually have good hair.

A new medical test for Simonsonrea is 80% accurate. Suppose 30% of the population has Siminsonrea. What is the probability of each event?

236. Tree Diagram	237. A randomly selected person will test negative.	238. A person tests negative, caclulate the probablity that they do not have Simonsonrea.	239. A person tests positive, calculate the probability that they actually have Simonsonrea.

240. There are two bags full of marbles. One bag is black and one bag is green. The black bag contains 6 white balls and 2 red balls. The green bag contains 2 red balls and 6 white balls. A marble is randomly selected from the black bag and placed in the green bag. A marble is then randomly selected from the green bag.

Challenge \#21: What is the probability that the ball selected from the green bag is white?

Challenge \#22: If a white ball is selected from the green bag, what is the probability that a red ball was transferred from the black bag to the green bag?

Calculate the following probabilities.

Little Timmy has a black bag and a green bag. The black bag contains 6 white balls and 2 red balls. The green bag contains 2 red balls and 6 white balls. A marble is randomly selected from the black bag and placed in the green bag. A marble is then randomly selected from the green bag.

| 241. What is the probability that the ball selected from the green bag is white? | 242. If a white ball is selected |
| :--- | :--- | :--- |
| from the green bag, what is | |
| the probability that a red ball | |

Little Timmy has Black Bag and a Green bag. The black bag contains 4 red ball and 6 white balls. The green bag contains 3 red balls and 2 white balls.
246. A marble is randomly selected from the black bag and placed in the green
bag. A marble is then randomly selected from the green bag. What is the probability that the ball selected from the green bag is white?
247. If a white ball is selected from the green bag, what is the probability that a white marble was transferred from the black bag to the green bag?

Calculate the following probabilities. Round your answer to 3 decimals.

Little Timmy has black bag and a green bag. The black bag contains 7 red marbles and 3 white marbles. The green bag contains 3 red marbles and 1 white marbles.
248. A marble is randomly selected from the black bag and placed in the green
bag. A marble is then randomly selected from the green bag. What is the probability that the marble selected from the green bag is white?
249. If a white marble is selected from the green bag, what is the probability that a white marble was transferred from the black bag to the green bag?
250. A black bag contains 6 red balls and 4 green balls. A white bag contains 4 red balls and 1 green ball. A regular die is rolled and if a 1 comes up, a ball is selected randomly from the black bag. Otherwise, a ball will be selected randomly from the white bag. If a green ball is selected, what is the probability that it came from the white bag?

Permutations, Combinations and Probabilities

Color	Suit	Non-Face Cards										Face Cards		
Red	Hearts	A	2	3	4	5	6	7	8	9	10	J	Q	K
Red	Diamonds	A	2	3	4	5	6	7	8	9	10	J	Q	K
Black	Clubs	A	2	3	4	5	6	7	8	9	10	J	Q	K
Black	Spades	A	2	3	4	5	6	7	8	9	10	J	Q	K

Calculate the number of possible 5 card hands.

Calculate the following probabilities. Round your answer to 3 decimals.

Find the probability of the following 5 card hands:	Formula	Probability
256. 3 fives, 2 other cards	$\frac{{ }_{4} C_{3} x_{48} C_{2}}{{ }_{52} C_{5}}$	0.002
257. 3 black, 2 hearts		0.078
258. 1 heart, 3 clubs, 5 of spades		0.001
259. 4 red, king of clubs		0.0057
260. AH, KH, QH, JH, 10H		0.000(0004)
261. 2 fours, 2 fives, any other card		0.001
262. 4 Sevens, any other card		0.000(02)?

4 people are randomly selected from a group of 8 boys and 6 girls to represent the school in the debate championships.

Challenge \#20: How many unique groups can be created from the group of 14 students?

Challenge \#21: Determine the probability that exactly 3 of the four students chosen are girls.

Calculate the number of possibilities. Round your answer to 3 decimals.
A bowling team is made up of 6 boys and 4 girls.
263. How many different groups 264. How many different groups of 4 can be sent to the city championships if 2 boys and 2 girls have to go?

Solution
Choose 2 boys from $6 \rightarrow{ }_{6} C_{2}$
Choose 2 girls from $4 \rightarrow{ }_{4} C_{2}$
Multiply the results ${ }_{6} C_{2} \times{ }_{4} C_{2}=$
of 4 can be sent to the city championships?
265. How many different groups of 4 can be sent to the city championships if 1 boy and 3 girls have to go?

Calculate the following probabilities.
4 people are to be randomly selected from a group of 8 boys and 6 girls.

6 people are randomly selected from a group of 10 boys and 12 girls.

Calculate the following probabilities.

Of the 20 students on this year's student council, 14 are girls. Five students from the council are to be randomly selected to participate in a student exchange to Huddy-Huddy-ville.

272. What is the probability that at least 2 girls are selected?
 273. What is the probability that at least 1 girl is selected?
 274. What is the probability that at most 4 girls are selected?

Of the 15 students on this year's student council, 8 are girls. 6 students from the council are to be randomly selected to participate in a student exchange to Huddy-H-STATE.

276. What is the probability that at least 1 girl is selected?
277. What is the probability that at most 5 girls are selected?

Color	Suit	Non-Face Cards										Face Cards		
Red	Hearts	A	2	3	4	5	6	7	8	9	10	J	Q	K
Red	Diamonds	A	2	3	4	5	6	7	8	9	10	J	Q	K
Black	Clubs	A	2	3	4	5	6	7	8	9	10	J	Q	K
Black	Spades	A	2	3	4	5	6	7	8	9	10	J	Q	K

Use the following 5 card hand descriptions to help you answer the questions below.

Royal Flush	A,K,Q,J,10 same suit	Full House	a pair and 3 of a kind	3 of a kind	3 cards same rank
Straight Flush	Run of 5 same suit	Flush	All 5 same suit	2 pair	Two pairs
Four of a kind	4 cards same rank	Straight	A run of 5, any suit	1 pair	2 cards same rank

Calculate the following probabilities and round your answer to 6 decimals.
5 cards are dealt from a shuffled deck of 52 cards. What is the probability of each event?

278. A full house made up of a pair of aces and 3 kings.	279. A flush made up of all hearts.	280. A royal flush made up of Hearts. $(A, K, Q, J, 10)$	281. Four of a kind made up of 4 aces.	282. Four of a kind made up of 4 queens and an ace.
0.000009	0.000495	0.000000(4)	0.000018	0.000002

Calculate the following probabilities.

A pizza store offers 15 different toppings on its pizzas.
283. Suppose a pizza has 5 toppings. How many different pizzas can be made?
284. What is the probability that the 5 randomly selected toppings will include ham, pineapple and feta cheese?

Solution:

3 specific toppings choose 3
$\rightarrow_{3} C_{3}$
12 other toppings choose 2
$\rightarrow_{12} C_{2}$
$P(H, P A, F)=\frac{{ }_{3} C_{3} \times_{12} C_{2}}{{ }_{15} C_{5}}=$
285. What is the probability that the 5 randomly selected toppings will include pepperoni and bacon?
0.095

A pizza store offers 12 different toppings on its pizzas.

286. Suppose a pizza has 4		
toppings. How many different	287. What is the probability that pizzas can be made?	288. What is the probability that the 4 randomly selected toppings will include turkey, 4 randomly selected beets and spinach?
		toppings will include ground beef and sausage?

Calculate the following probabilities.

Allie, Betsy, Colleen, Debby and Edith are finalists in radio prize giveaway. 2 of them will be randomly selected to win prizes. What is the probability of each event?

Detailed solutions are available in the answer key.

Enriched: Determine the probabilities and round your answer to 3 decimals.

 29. $\quad P(4$ of a kind in a 5 card hand) $=$
Solution

Picking the 4 equal cards
Pick Rank $\rightarrow 13$ options pick $1 \rightarrow_{13} C_{1}$
Pick Suit $\rightarrow 4$ options pick $4 \quad \rightarrow{ }_{4} C_{4}$
Picking other 1 card \rightarrow must be different Pick Rank $\rightarrow 12$ options pick $1 \rightarrow_{12} C_{1}$
Pick suit $\rightarrow 4$ options pick $1 \quad \rightarrow_{4} C_{1}$
$P(4$ of a kind $)=\frac{{ }_{13} C_{1} \times{ }_{4} C_{4} \times{ }_{12} C_{1} \times{ }_{4} C_{1}}{{ }_{52} C_{5}}=0.00024$
294. $P(2$ pair $)=$

295. $P(3$ of a kind $)=$

	296. $P(1$ pair $)=$

0.4226

Calculate the following probabilities

Mr. Spray has 5 different Probabilities Retests to give randomly to his students. Two boys and 3 girls want to retest. Determine the probability of each event.

297. The 3 girls take the same test	298. Exactly 3 people take the same test. 0.256	299. All 5 people take a different test. 0.0384
300. All 5 of them take the same test.	301. All the boys write the same test. All the girls write the same test but it is different than the boys.	302. Exactly 2 people take the same test and the 3 remaining take a different test.

Binomial Theorem and Probabilities

The Binomial Theorem ${ }_{n} C_{r}(a)^{r}(\bar{a})^{n-r}$
n is the \# of options, r is the \# chosen, a is the probability that an even occurs.

Calculate the following probabilities.

\# OFHEADS 4 4 $\mathbf{3}$				
$\begin{gathered} P(4 \text { HEADS })= \\ { }_{4} C_{4}(0.6)^{4}=0.1296 \end{gathered}$	$\begin{gathered} P(3 \text { HEADS })= \\ { }_{4} C_{3}(0.6)^{3}(0.4)^{1}=0.3456 \end{gathered}$	$\begin{gathered} P(2 \text { HEADS })= \\ { }_{4} C_{2}(0.6)^{2}(0.4)^{2}=0.3456 \end{gathered}$	$\begin{gathered} P(1 \text { HEAD })= \\ { }_{4} C_{1}(0.6)^{2}(0.4)^{3}=0.1536 \end{gathered}$	$\begin{array}{r} P(O \text { HEADS })= \\ { }_{4} C_{0}(0.4)^{4}=0.0256 \end{array}$
How many pathways to 4 Hs ${ }_{4} C_{4}=1$ HHHH $(0.6)(0.6)(0.6)(0.6)=0.1296$ NOTICE: $(0.6)^{4}=0.1296$	How many pathways to 3 Hs NOTICE: $(0.6)^{3}(0.4)^{1}=0.0864$	How many pathways to 2 Hs ${ }_{4} C_{2}=6$ HHTT $(0.6)(0.6)(0.4)(0.4)=0.0576$ HTHT $(0.6)(0.4)(0.6)(0.4)=0.0576$ HTTH $(0.6)(0.4)(0.4)(0.6)=0.0576$ THHT $(0.4)(0.6)(0.6)(0.4)=0.0576$ THTH $(0.4)(0.6)(0.4)(0.6)=0.0576$ TTHH $(0.4)(0.4)(0.6)(0.6)=0.0576$ NOTICE: $(0.6)^{2}(0.4)^{2}=0.0576$	How many pathways to 1 H $\begin{gathered} 4 C_{1}=4 \\ \text { HTTT } \\ (0.6)(0.4)(0.4)(0.4)=0.0384 \\ \text { THTT } \\ (0.4)(0.6)(0.4)(0.4)=0.0384 \\ \text { TTHT } \\ (0.4)(0.4)(0.6)(0.4)=0.0384 \\ \text { TTTH } \\ (0.4)(0.4)(0.4)(0.6)=0.0384 \end{gathered}$ $(0.6)^{1}(0.4)^{3}=0.0384$	How many pathways to OHs $\begin{gathered} { }_{4} C_{0}=1 \\ \text { TTTT } \\ (0.4)(0.4)(0.4)(0.4)=0.0256 \end{gathered}$ NOTICE: $(0.4)^{4}=0.0256$
Remember: Order of fractions does not matter.				

Calculate the following probabilities. Round your answer to 3 decimals.

A fair coin is tossed 5 times. Determine the probability of each event.					
303. $P(0$ heads $)=$	304. $P(1$ heads $)=$	305. $P(2$ heads $)=$	306. $P(3$ heads $)=$	307. $P(4$ head $)=$	308. $P(5$ heads $)=$
	0.156	0.313	0.313	0.156	0.031
309. P(at least 1 head)=			310. $P($ at most 4 heads) $=$		
		0.969			0.969

- How can I get my calculator to do the same thing-.

A coin is tossed 5 times. Determine the probability of each event.		
*Pdfbin(N,P,S)= $N=$ Number of events $P=$ Probability of success $S=$ Number of successful events Calculates probability of a single event	311. $P(4$ heads $)=$	Pdfbin($5,0.5,4$) $=$
		0.156
	312. $P(3$ Heads $)=$	
		0.313
	313. $P(0$ Heads $)=$	
		0.031
*Cdfbin(N,P,S)= $N=$ Number of events $P=$ Probability of success $S=$ The sum of the first S successful events Calculates sum of probabilities.	314. P(At most 3 heads)=	Cdfbin($5,0.5,3)=$
		0.813
	315. P(At most 4 heads)=	
		0.969
	316. $P(A \dagger$ least 4 least 4 heads $)=$	0.188
*Press STAT \rightarrow Choose F DISTRIBUTION \rightarrow Choose (10)pdfbin or (11)cdfbin. IMPORTANT \rightarrow These options can only be used to calculate probabilities for a binomial distribution.		

Challenge \#22: The probability of the Vancouver Canucks winning any game against any opponent is 0.60 Determine the probability that the Canucks win 6 of the next seven games (Any order).

Challenge \#23: The probability of a Canucks' win in any game of a best of seven game series is 60%. Determine the probability that the Canucks win a best of 7 series in exactly 6 games.

Calculate the following probabilities. Round your answer to 3 decimals.
The probability of the Vancouver Canucks winning any game against any opponent is 60%.
325. P(Canucks win 6 of 7
games)=
326. P(Canucks win 5 of 7games)=
327. P(Canucks win 7 of 7games)=

The probability of a Canucks' win in any game of a best of seven game series is 60%.

The probability of a Canucks' win in any game of a best of seven game series is 60%. 331. P (Canucks lose in 4 games $)=\quad$ 332. $P($ Canucks lose in 7 games $)=$ 333. $P($ Canucks lose in 6 games $)=$

0.026		

Questions 340-360 ar	ood review for the tes	
334. A biased coin with P (Heads) $=0.7$ was tossed 5 times. Find $P(3 H)=$	335. 2 regular die are rolled. Find $P($ sum is at most 10$)=$	336. A biased coin with $P($ Heads $)=0.7$ was tossed 3 times. Find $P(2 H$ \& $1 T)=$
337. The probability that your new IBook last 3 years is 0.9 and that it will last 5 years is 0.3 . After 3 years what is the chance that your I-Book will break down in the next two years?	338. In a recent survey of grade 12 students, it was found that 70\% took math and 50\% took chemistry. If 80% took math or chemistry, what percent of students took math only?	339. Timmy is planning to role a die 6 times. After he rolled 2 fives and 2 threes, he wonders what the probability will be that the 6 roles will result in 2 fives and 4 threes.
340. A regular die is rolled twice. Determine the probability that the first toss is greater than 4 and the second is less than 4.	341. 80% of girls want to go into business and 30% want to go into education. 20\% want neither. Find P (Girl pursue at most one career)=	342. A certain experiment has only 4 outcomes: A, B, C, D. The probability of each outcome is twice the probability of the following outcome. Find $P(B)=$
343. The probability of the Vancouver Canucks winning any game against any opponent is 60%. Find $P($ Canucks win 5 of 7games $)=$	344. A pizza store offers 12 different toppings on its pizzas. What is the probability that the 4 randomly selected toppings will include ground beef and sausage?	345. (optional) A six-sided die is rolled 100 times. Write a formula using cdfbin or pdfbin for P(at most 99 sixes)

	There are 3 black marbles, 4 white marbles and 3 striped marble in the bag. He takes out one marble, looks at it, puts it back and then randomly draws another marble. Find $P(1 W$ \& 15$)=$		Of the 15 students on this year's student council, 8 are girls. 6 students from the council are to be randomly selected to participate in a student exchange to Huddy-H-STATE. Find P(at least 1 girl is selected).		A computer supply store buys 40% of computer chips from X-Chips and 60% from Y-Chips. On average 6% of the X-Chips are faulty and 5% of the Y-Chips are faulty. If a randomly selected chip is faulty, what is the probability that X -Chips made it?
	A single card is selected from a deck of 52 cards. Determine $P($ Club or jack) $=$		A biased 4-sided die is weighted so that it returns a $1,40 \%$ of the time. Determine $P(2)=$		Find P (2 fours, 2 fives, any other card) when 5 cards are drawn from a regular deck.
352.	Two cards are drawn without replacement from a shuffled deck of 52 cards. Find $\mathrm{P}\left(1^{\text {st }} \rightarrow\right.$ Club, $2^{\text {nd }}$ $\rightarrow 8$ of Clubs).		The probability of the Vancouver Canucks winning any game agains \dagger any opponent is 60%. Find P(Canucks win a best of 7 game series in 7 games)=	354.	Two cards are drawn without replacement from a shuffled deck of 52 cards. Find P (King of Spades is the $2^{\text {nd }}$ card).

Answers to Probabilities Notes

$$
\left.\begin{array}{|l|l|l|}
\hline \text { 177) }\left(\frac{5}{15} \times \frac{10}{14}\right)+\left(\frac{10}{15} \times \frac{5}{14}\right) & \left(\frac{5}{178)}\right. \\
5+n
\end{array} \frac{n}{4+n}\right)+\left(\frac{n}{5+n} \times \frac{5}{4+n}\right)\left(\frac{x}{x+10} \times \frac{10}{x+9}\right)+\left(\frac{10}{x+10} \times \frac{9}{x+9}\right)
$$

Alli, Betsy, Colleen, Debby and Edith are finalists in radio prize giveaway. 2 of them will be randomly selected to win prizes. What is the probability of each event?					
290) Alli is one of the winners		291) Alli is a winner but Betsy is not		292) Debby and Edith do not win	
1 A one way to pick A 4 other options pick 1 $P(A)=\frac{{ }_{1} C_{1} \times{ }_{4} C_{1}}{{ }_{5} C_{2}}=\frac{4}{10}=0$		1 A one way to pick A 1 B do not pick it 3 other options pick 1 $P(A \text { not } B)=\frac{{ }_{1} C_{1} \times{ }_{3} C_{1}}{{ }_{5} C_{2}}=\frac{3}{10}=0.3$		1 E do not pick it 1 D do not pick it 3 other options pick 2 $P(A n o+B)=\frac{{ }_{3} C_{2}}{{ }_{5} C_{2}}=\frac{3}{10}=0.3$	
NOTE: This Question can be done by listing the sample set and counting. Much easier!!					
$\begin{aligned} & A B, A C, A D, A E \\ & B C, B D, B E \\ & C D, C E \\ & D E \end{aligned}$	AB, de de	E, AE	$\begin{aligned} & l, A C, A D, A E \\ & \\ & \text {, } \end{aligned}$		$\begin{aligned} & A B, A C, A \\ & B C \\ & \end{aligned}$
Sample set		4 out of 10	3 out of		3 out of 10

293) Full House:	294) 2 Pairs
Picking 3 equal cards	Picking the 2 pairs
Pick Rank $\rightarrow 13$ options pick $1 \quad \rightarrow_{13} C_{1}=13$	Pick Rank $\rightarrow 13$ options pick2 $\quad \rightarrow_{13} C_{2}=78$
Pick Suit $\rightarrow 4$ options pick $3 \quad \rightarrow{ }_{4} C_{3}=4$	Pick Suit of $1^{\text {st }}$ pair $\rightarrow 4$ options pick $2 \rightarrow{ }_{4} C_{2}=6$
	Pick Suit of $2^{\text {nd }}$ pair $\rightarrow 4$ options pick $2 \rightarrow{ }_{4} C_{2}=6$
Picking 2 equal cards \rightarrow Different than the 3 above	
Pick Rank $\rightarrow 12$ options pick $1 \quad \rightarrow_{12} C_{1}=12$	Picking the $5^{\text {th }}$ card \rightarrow must be different than pairs
Pick suit $\rightarrow 4$ options pick $2 \quad \rightarrow_{4} C_{2}=6$	Pick Rank $\rightarrow 11$ options pick $1 \quad \rightarrow{ }_{11} C_{1}=11$
	Pick Suit $\rightarrow 4$ options pick $1 \quad \rightarrow{ }_{4} C_{1}=4$
${ }_{13} C_{1} \cdot{ }_{4} C_{3} \cdot{ }_{12} C_{1} \cdot{ }_{4} C_{2}=0.00144$	
295) 3 of a kind in a 5 card hand Picking the 3 or a kind	296) 1 pair in a 5 card hand
Picking the 3 or a kind	Picking the 1 pair
Pick Rank $\rightarrow 13$ options pick $1 \quad \rightarrow{ }_{13} C_{1}=13$	Pick Rank $\rightarrow 13$ options pick $1 \rightarrow_{13} C_{1}=13$
Pick Suit of pair $\rightarrow 4$ options pick $3 \quad \rightarrow{ }_{4} C_{3}=4$	Pick Suit of pair $\rightarrow 4$ options pick $2 \rightarrow_{4} C_{2}=6$
Pick 2 other cards \rightarrow must be different	Pick 3 different cards \rightarrow must be different
Pick rank $\rightarrow 12$ options pick $2 \quad \rightarrow_{12} C_{2}=66$	Pick rank $\rightarrow 12$ options pick $3 \rightarrow{ }_{12} C_{3}=220$
Pick suit $\rightarrow 4$ options pick $1 \quad \rightarrow{ }_{4} C_{1}=4$	Pick suit of $1^{\text {st }}$ card $\rightarrow 4$ options pick $1 \rightarrow{ }_{4} C_{1}=4$
Pick suit $\rightarrow 4$ options pick $1 \quad \rightarrow{ }_{4} C_{1}=4$	Pick suit of $2^{\text {nd }}$ card $\rightarrow 4$ options pick $1 \rightarrow 4{ }_{4} C_{1}=4$
	Pick suit of $3^{\text {rd }}$ card $\rightarrow 4$ options pick $1 \rightarrow{ }_{4} C_{1}=4$
$\frac{{ }_{13} C_{1} \cdot{ }_{4} C_{3} \cdot{ }_{12} C_{2} \cdot{ }_{4} C_{1} \cdot{ }_{4} C_{1}}{C_{5}}=0.0211$	${ }_{13} C_{1} \cdot{ }_{4} C_{2} \cdot{ }_{12} C_{3} \cdot{ }_{4} C_{1} \cdot{ }_{4} C_{1} \cdot{ }_{4} C_{1}=0.4226$
${ }_{52} C_{5}$	${ }_{52} C_{5}$

Answers to mixing it up.

340. 0.309	$341.11 / 12$	342.0 .441	343.0 .667	344.30%	345.0 .028	346.0 .167
347.0 .7	$348.4 / 15$	349.0 .261	350.0 .091	$351 . \operatorname{cdfbin}\left(100, \frac{1}{6}, 99\right)$	352.0 .24	353.0 .999
354.0 .444	$355.4 / 13$	356.0 .2	357.0 .0006	358.0 .0045	359.0 .0006	360.0 .019

