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ABSTRACT

It is generally accepted that the Riemann integral is more useful as a pedagog-

ical device for introductory analysis than for advanced mathematics. This is simply

because there are many meaningful functions that are not Riemann integrable, and

the theory of Riemann integration does not contain sufficiently strong convergence

theorems. Lebesgue developed his theory of measure and integration to address these

shortcomings. His integral is more powerful in the sense that it integrates more func-

tions and possesses more general convergence theorems. However, his techniques are

significantly more complicated and require a considerable foundation in measure the-

ory. There is now an impetus to accept the gauge integral as a possible new standard

in mathematics. This relatively recent integral possesses the intuitive description of

the Riemann integral, with the power of the Lebesgue integral. The purpose of this

thesis is to explore the basis of gauge integration theory through its associated pre-

liminary convergence theorems, and to contrast it with other integration techniques

through explicit examples.
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I. INTRODUCTION

Although the mathematical field of real analysis has evolved tremendously over

the last century, developing the theory of the integral has remained a problematic and

curious issue. As such, the majority of educational institutions normally introduce

the Riemann integral for their undergraduate analysis courses, even to future math-

ematicians. The rationale is that the Riemann integral has an intuitive appeal and

its basic theorems are relatively simple to prove. However, this is essentially the end

of this integral’s usefulness. There is no doubt that Bernhard Riemann’s approach

to integration advanced mathematics greatly, but that was nearly 150 years ago and

his theory is not powerful enough for most modern applications. [Ref.1] Even

when pressed to address more complex results (that are still attainable), Riemann’s

techniques prove no easier than corresponding solutions using more contemporary

approaches.

Recall the familiar example of integrating the function 1Q which represents the

characteristic function of the rationals over some given interval. After some exposure

to number theory and the idea of cardinality, intuition would indicate that the integral

of 1Q should have a value of zero. However, 1Q is not Riemann integrable over any

interval [a, b] as it is discontinuous everywhere, and is the most obvious example of a

non-integrable bounded function. Similar problems exist in the areas of physics and

applied mathematics where there are many useful but much more involved functions

that exhibit this “bad behavior” for integrability.

The theory of integration now used by professional mathematicians was created

by Henri Lebesgue at the beginning of the twentieth century. For many years, his

theory was difficult to criticize as it greatly empowered mathematics, especially in

the fields of real analysis and probability theory. Unfortunately, although this theory

is still relevant, there is a considerable amount of measure theory that needs to be

developed before the Lebesgue integral can even be defined. Experience shows that,
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perhaps because of this and the theory’s abstract character, it is generally deemed

to be difficult and unpopular with physicists and engineers. Notably, the Lebesgue

theory does not cover non-absolutely convergent integrals, and there is a need to

consider such improper integrals.

Consider the improper integral introduced by Peter Dirichlet:

lim
s→∞

∫ s

0

sin(t)

t
dt

This important integral does not even exist as a Lebesgue integral since the

absolute value of t−1 sin(t) is not Lebesgue integrable; note that this is not Riemann

integrable either.

On or about 1956, Jaroslav Kurzweil gave a new definition of the integral that

in many respects is more general than Lebesgue’s. Ralph Henstock further developed

the theory and started to advocate its use at the elementary level. The Kurzweil-

Henstock approach, generally called gauge theory, preserves the intuitive appeal of

Riemann’s definition of the integral but has the power of Lebesgue’s approach. The

basic premise is to use the standard δ, ε definition of the Riemann integral with only

one modification, replacing the constant δ with a function. This function, denoted γ,

is called a gauge and it represents an open interval that varies in length. This small

change in the definition has enormous repercussions in applications. As one might

suspect, generalizing the constant δ to a function γ yields a wider class of integrands,

but it is surprising just how much wider. It turns out that:


Riemann

integrable

functions




⊂




Lebesgue

integrable

functions




⊂




Gauge

integrable

functions




[Ref.2] The classes of gauge integrable functions and Lebesgue integrable functions

are closely related. Indeed, it can be shown that:

A function f is Lebesgue integrable if and

only if both f and |f | are gauge integrable.
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While there are a number of ways to express this new theory, this idea of a

gauge function is consistent. Since there are no uniformly accepted titles for this the-

ory, this new integral goes by several names such as: Henstock, Kurzweil, Henstock-

Kurzweil (HK), gauge, Denjoy, Denjoy-Perron, or simply the generalized Riemann

integral.

The aim of this thesis is to explore the basis of gauge integration theory

through its associated preliminary convergence theorems, and to produce compar-

ative examples with other integration techniques. Presumably, the reader is familiar

with the basic properties of the Riemann and Lebesgue integrals, along with some

knowledge of functional analysis.

3
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II. INTEGRATION WITH TAGGED

PARTITIONS

A. OPENING REMARKS

As gauge integration is, in fact, a generalization of the Riemann integral, it is

important to define and review the Riemann integral and its basic properties. As will

be seen in the following section, Riemann’s integral of 1867 can be generally stated

as a limit of summation of a partition over an interval:

∫
I
f(x)dx = lim

n→∞

n∑
i=1

f(τi)(xi − xi−1) τi ∈ [xi−1, xi], i = 1, . . . , n

Unfortunately, this notation obscures some nuances that will later prove com-

plicated. It does, however, display what needs to be emphasized: that the integral is

formed by combining the values f(τi) in a very direct fashion. This method is very

intuitive and makes for relatively simple calculation.

Gauge integration can now be expressed relatively easily as it differs from the

classical Riemann integral only in that uniformly fine partitions of the integration

domain are replaced by locally fine partitions. Roughly speaking, a gauge function,

γ(τi), defines this locally fine partition which varies from point to point. This idea is

critical to understanding gauge integration and will be the focus of this chapter.

We shall consider this and other integrals only over compact intervals [a, b]

where −∞ < a < b < +∞. Unless otherwise stated, we will consider integrals of

functions f : I → R, where I represents a closed interval [a, b]. While the most im-

portant cases to consider are when the functional ranges are R and C, other spaces of

interest (e.g. Rn) can be investigated without significantly increasing the complexity

of the theory as long as the range of f remains a normed vector space. Eric Schecter’s

book contains extensive coverage of this material. [Ref.3]

5



B. DEFINITION OF THE RIEMANN INTEGRAL

Suppose a function f is to be integrated over the interval [a, b]. Form a parti-

tion of [a, b] with subintervals [xi−1, xi] by selecting numbers xi such that

a = x0 < x1 < x2 < · · · < xn = b. A tagged partition, D, is created by choosing a

number τi, called a tag, from each interval such that:

D : a = x0 < x1 < x2 < · · · < xn = b, τi ∈ [xi−1, xi]

The corresponding Riemann sum for f on the interval [a, b] is then:

f(D) =
n∑

i=1

f(τi)(xi − xi−1)

Armed with the above, we are ready to define the number A ∈ R as the Riemann

integral of f : [a, b] → R if ∀ ε > 0, ∃ δ > 0 such that if D is any tagged partition

of [a, b] where 0 < xi − xi−1 < δ, for i = 1, . . . , n then:

∣∣∣A −
n∑

i=1

f(τi)(xi − xi−1)
∣∣∣ < ε

It is only after some pursuit of this definition that it becomes apparent that the

limitation induced by the constant δ > 0 on the integral is a significant drawback.

Similar to the methodology of introducing integration in undergraduate calcu-

lus, consider f(x) > 0 for a ≤ x ≤ b where S is the area under the graph of f . Then

each term f(τi)(xi − xi−1) is the area of a rectangle, and the Riemann sum of these

rectangles will approximate S. Clearly, the approximation will not be greatly affected

if (xi − xi−1) is relatively large over intervals where f changes little. Conversely, the

rectangles must be small where f is steep or behaves erratically. Since the partitions

need not be uniform and the selection of partitions depends on the behavior of f , this

indicates a strategy for selecting Riemann sums.

6



C. γ-FINE PARTITIONS

Using the behavior of f at τ , assign to τ a neighborhood γ(τ). This results in

a interval-valued function γ defined on [a, b]. Consider the sums formed from tagged

partitions where [xi−1, xi] ⊆ γ(τi). As previously stated, γ is called a gauge.

A tagged partition is said to be γ-fine when:

[xi−1, xi] ⊆ γ(τi), ∀ i = 1, 2, . . . , n

The right hand side will often be denoted γ(τ). This definition shows that the function

γ determines the size of the interval associated with a given tag.

An alternate manner of thinking about the gauge function, γ, is to define

γ(τi) =
(
τi−δ(τi), τi +δ(τi)

)
, where δ(τ) is a strictly positive function. Then δ(τ) will

depend on the behavior of f at τ and will produce variable length intervals. Notice

that with this definition, the Riemann integral will have constant length intervals

γ(τi) =
(
τi − δ, τi + δ

)
, with each length now being less than 2δ. This is equivalent

to the previous definition as δ can be made arbitrarily small.

In choosing a Riemann sum, the traditional way of thinking is to choose the

partition first, then the associated tags afterward. A critical difference for gauge

integration is to think of the tags τ1, . . . , τn as fixed, then deciding if xi−1 and xi

are close enough to τi to make f(τi)(xi, xi−1) a good approximation. Consider the

following illustration:

Let γ : [0, 1] → R be γ(0) = .01 and γ(x) = x/2 for 0 < x ≤ 1. Note that

the interval γ(x) =
(
x− δ(x), x + δ(x)

)
does not contain 0 unless x = 0. As a result,

any γ-fine partition of [0, 1] must have 0 as a tag. Using similar ideas, it is possible

to force any finite number of points to be tags.

The strategy of forming a Riemann sum and the use of γ-fine partitions is best

seen in the following example; note that the properties of the function dictate the

choice of γ.

7



1. Unbounded Function Example

Let f(0) = 0 and f(x) = 1/
√

x for 0 < x ≤ 1. Find a gauge γ on [0, 1] which

correlates to a Riemann sum differing from the actual area by less than ε. As in

ordinary calculus, the improper integral technique will be used for this unbounded

example.

Since 2
√

x is an antiderivative of 1/
√

x when x > 0, the area of the region is:

lim
s→0+

∫ 1

s

1√
x
dx = lim

s→0+
(2 − 2

√
s) = 2

Note that the area of the strip bounded by x = u and x = v is 2
√

v−2
√

u, even when

u = 0. The reader should recall that this computation is not a formal proof using the

improper Riemann integral technique. The value of 2 was attained following an easy

calculation based on the results of a proof of the general case. The Kenneth Ross text

contains a very readable explanation of the development of this technique. [Ref.4]

Consider choosing γ(τ) such that γ(τ) ⊆ (0,∞) when 0 < τ ≤ 1. Similar to

the previous illustration, the first interval [0, x1] must have the tag τ1 = 0 to control

the error. Since f(0) = 0, the error for the strip between x = 0 and x = x1 will be

2
√

x1. By forcing x1 to approach zero by the choice of γ(0), that action suffices to

make the error arbitrarily small. In other words, ∀x1 < ε2/2, 2
√

x1 < ε.

For the error 2
√

v − 2
√

u − (1/
√

τ )(v − u) when 0 < u ≤ τ ≤ v, the number

of strips to be used is not known and the error in each strip must be estimated such

that the sum of all errors can be controlled.

Walking through the steps, consider
√

v − √
u = (v − u)/(

√
v +

√
u). This

implies: |2√v− 2
√

u− 1/
√

τ (v−u)| = (v−u) · |2/(
√

v +
√

u)− 1/
√

τ |. After getting

a common denominator, replace
√

v +
√

u by
√

τ . This leads to:

∣∣∣2√v − 2
√

u − 1√
τ
(v − u)

∣∣∣ ≤ u − v

τ

∣∣∣2√τ −√
v −√

u
∣∣∣

With |√τ − √
v| ≤ (v − τ)/

√
τ and |√τ − √

v| ≤ (τ − u)/
√

τ , use these and apply

the triangle inequality which results in:

8



u − v

τ

∣∣∣√τ −√
v +

√
τ −√

u
∣∣∣ ≤ u − v

τ
·
(v − τ√

τ
+

τ − u√
τ

)
=

(u − v)2

τ
√

τ

The factor v − u in (v − u)2/(τ
√

τ) will be used to cancel τ
√

τ through the choice of

γ(τ). The remaining factor v−u will control the increase in error through summation.

To make this expressly clear, define the γ functions as:

γ(0) = (−ε2/16, ε2/16) and γ(τ) = (τ − δτ , τ + δτ )

with δτ = ετ
√

τ/4 when 0 < τ ≤ 1. Note that 0 is not in γ(τ) when τ > 0.

The choices of γ(τ) imply that |2
√

(v) − 2
√

(u) − f(τ)(v − u)| is less than

ε/2 when τ = 0, and less than (ε/2)(v − u) when 0 < u ≤ τ ≤ v, provided that

[u, v] ⊆ γ(τ).

Now consider a γ-fine partition of [0, 1]. The first strip error is at most ε/2.

The summation of errors for the remaining strips is less than
∑n

i=2(ε/2)(xi − xi−1) or

(ε/2)(1 − x1). Thus,

∣∣∣∣∣2 −
n∑

i=1

f(τi)(xi − xi−1)

∣∣∣∣∣ < ε,

as required.

The only remaining question is whether γ-fine partitions exist over [0, 1]. Since

γ has the values γ(0) = (−ε2/16, ε2/16) and γ(τ) = (τ−δτ , τ+δτ ) with δτ = ετ
√

(τ)/4

when 0 < τ ≤ 1. Assign x1 so that 0 < x1 < ε2/16 and h so that 0 < h < εx1
√

x1/4.

Choose the least integer n such that x1 + (n − 1)h ≥ 1. Let x2 = x1 + h, x3 =

x1 + 2h, . . . , xn−1 = x1 + (n − 2)h, and xn = 1. Also set x0 = 0 and let τi = xi−1

for k = 1, 2 . . . , n. The selection of x1 implies that [x0, x1] ⊆ γ(0). The choice of h

implies that [x1, x2] ⊆ γ(x1). Since the length of γ(τ) is an increasing function of τ

for 0 < τ ≤ 1, it is also true that [xi−1, xi] ⊆ γ(xi−1) for i = 3, 4, . . . , n and thus the

partition is γ-fine.

9
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III. THE GAUGE INTEGRAL

Recall that when applying the techniques associated with the Riemann inte-

gral, the intervals are thought of as being chosen first with each width being less than

some constant δ. As the tag is considered next, there are no questions as to whether a

tagged partition exists, or what conditions may or may not be satisfied. However, as

alluded to in the unbounded example, gauge integration techniques brings forth these

questions as the sequence of choosing partitions and tags is reversed. Since gauge

functions are arbitrary, and the partitions must be made the “correct” width, the ex-

istence of γ-fine partitions becomes abstract and is no longer obvious. If the infimum

of a set of arbitrary positive functions is itself positive, i.e. inf{γ(x) : x ∈ [a, b]} > 0,

then it is fairly clear that γ-fine partitions exist as this is essentially the constant δ

case. By contrast, if the infimum is 0 which is often the case for interesting functions,

then a proof of the existence of γ-fine tagged partitions is required. The following

theorem and subsequent proof will address this issue for the general case.

A. γ-FINE EXISTENCE THEOREM

If γ is some gauge function defined over the interval [a, b], then there exists a

γ-fine tagged partition of [a, b].

Proof : Let S be the set of points x ∈ (a, b] such that there exists a γ-fine tagged

partition of [a, x]. Note that S is non-empty since it contains the interval (a, a+δ(a)).

In effect, (a, a + δ(a)) ⊂ (a − δ(a), a + δ(a)) = γ(a). So, the set {[a, x]} with the tag

a, is itself a γ-fine tagged partition of [a, x] ∀x ∈ (a, a + δ(a)). Let y = sup S and

note that y ∈ [a, b]. We now need only to show that y belongs to to S and that y = b;

this will then cover the whole interval.

Since y = sup S, this means that either y ∈ S, or there is a point p1 ∈ S such

that y − δ(y) < p1 < y. To address the latter, let D be a γ-fine tagged partition of

11



[a, p1] and let E = D ∪ {[p1, y]}, with y as the tag for the last interval. Now E is a

γ-fine tagged partition of [a, y] and this shows that y ∈ S. Now suppose y < b and let

p2 ∈ [a, b] be such that y < p2 < y + δ(y) and let E = F ∪ {[y, p2]} with y as the last

interval tag. Then E is a γ-fine tagged partition of [a, p2] and it follows that p2 ∈ S,

a contradiction to the fact that y is an upper bound of the set S. Hence, y �< b,

⇒ y = b as required. Notice that this proof relies directly on the Completeness

Axiom and, in fact, can be shown to be equivalent to it.

The language and methods have now been established in order to pursue a

definition of the integral that differs only slightly from the previous Riemann defini-

tion, yet is significantly superior in integrating power. It is very desirable to develop

a precise, yet flexible notation for tagged partitions and Riemann sums. The capi-

tal script lettering shall normally be D, E ,F for tagged partitions; the definition of

which can now be rephrased. A tagged partition D of [a, b] is a set of ordered pairs,

[(τ1, I1), . . . , (τn, In)] where I1, . . . , In are non-overlapping closed intervals whose union

is [a, b] and τi ∈ Ii for i = 1, 2, . . . , n. Further, suppose L(I) is the length of I in

the Euclidean sense. The f(τ)L(I) is the term in the Riemann sum representing

the tagged interval(τ, I). Thus, we let fL(D) denote the Riemann sum given by the

tagged partition D. That is,

fL(D) =
∑
I∈D

f(τ)L(I)

Furthermore, the terms “integral” and “integrate,” along with the associated symbols,

will refer to the gauge definitions unless otherwise stated.

B. DEFINITION OF THE GAUGE INTEGRAL

Let f : [a, b] → R be given. A number A ∈ R is called the integral of f on

[a, b] provided ∀ε > 0, ∃ a function γ such that |A − fL(D)| < ε whenever D is a

γ-fine tagged partition of [a, b].
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A key goal in pursuing a modification of the classical Riemann integral is

to be able to integrate more functions. The previous “unbounded example” uses a

function that is not Riemann integrable as it is not bounded, and an improper integral

technique had to be used. The following example will show that even within the class

of bounded functions, the gauge integral is more applicable.

1. Bounded Function Example

Evaluate the integral of a function that is constant over the complement of a

countably infinite subset of [a, b], and prove its integrability. Note that there is no

value assigned to the countable set itself.

To address this problem, recall that a set S is countably infinite when S =

{s1, s2, . . .}. Hence g(x) = C (constant) for all x not in S. So, the only realistic

possibility for
∫ b
a g is C(b − a) since this is

∫ b
a g when g is constant on [a, b]. The aim

is to develop a gauge so that |C(b − a) − gL(D)| < ε for all γ-fine partitions I of D.

Since

C(b − a) − gL(D) =
∑
I∈D

[
C − g(τ)

]
L(I)

and g(τ) = C when τ is not in S with the only remaining difficulty is the construction

of γ(τ) when τ ∈ S. Note, for τ not in S, there is no restriction on L(I) and γ(τ)

can be chosen as (τ − 1, τ + 1).

Every sn in S is the tag for at most two intervals in a partition of [a, b]. The

simple choice for δn is such that |C − g(sn)|δn ≤ ε/2n+2 when τ = sn and I ⊆ γ(τ).

Also, the sum of all terms tagged with sn is at most ε/2n.

Grouping and ordering all nonzero terms [C − g(τ)]L(I) by subscript n such

that τ = sn. Hence,

∣∣∣C(b − a) − gL(D)
∣∣∣ <

∞∑
n=1

ε

2n

when D is γ-fine. The solution is now complete as the last sum equals ε.

Notice that there are no limitations on the last example other than it needs

to be countable. Thus, we can let S be the rational numbers over some interval [a, b],

13



say [0, 1]. Choosing the function to be one over the irrationals and zero over the

rationals, we now have a special case of the example where the integral exists and is

equal to one. In similar fashion, if we choose the function to be 1Q we have answered

the initial problem in the introduction.

C. COMMENTS ON UNBOUNDED INTERVALS

The process of explaining integration over unbounded intervals, such as
∫ ∞
0 f(x)dx,

is detailed in undergraduate calculus courses as limits of integrals over bounded inter-

vals. Here, we will form a definition in terms of Riemann sums. Thus, the definition

will be equivalent to the one given previously for bounded intervals.

Using the previous analogy of introducing Riemann sums, we can again con-

sider the area under a positive curve; say f over [a,∞). Making the assumption that

the area under f is finite, we can again consider how to approximate the area with

rectangles. As before, it is beneficial to have narrow rectangles over the steep por-

tions of f . Clearly, a finite number of partitions cannot cover [a,∞), so the rectangles

should cover a “large” interval [a, s]. Using a carefully selected tagged partition of

[a, s] and large enough s, the resulting Riemann sum will closely approximate the

area.

The strategy for using the familiar ideas above is to extend R with the points

at positive and negative infinity. Henceforth, R̄ = R∪{−∞,∞}. The extended real

numbers will be ordered as expected, −∞ < x < ∞ for all x ∈ R. An interval in R̄
is said to be unbounded if at least one endpoint is −∞ or ∞, and bounded otherwise.

For [a, b] ∈ R̄, the previous definitions for a gauge and tagged partition will

remain unchanged. The corresponding Riemann sum, however, cannot transfer di-

rectly as there is no length that can cover an infinite interval. We know that the sum

must have a value of zero for all unbounded intervals in the partition, and the most

direct method is to extend the definition of length. So, L(Ik) = 0 for all unbounded

intervals, then fL(D) is as before.

14



Clearly, the only intervals that can have −∞ or ∞ as a tag are unbounded

ones, and the values of f at these tags will not affect the sum. Integrals in the form

of:

∫ ∞

a
f(x)dx

∫ a

−∞
g(x)dx

∫ ∞

−∞
h(x)dx

can now be expressed exactly as detailed in the previous chapter. In order to apply the

definition of the integral on unbounded IK , it is necessary to use similar methodology

in addressing
∫ b
a f(x)dx when a, b are finite but f is unbounded approaching a or b.

15
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IV. FUNDAMENTAL THEOREM OF

CALCULUS

The Fundamental Theorem of Calculus (FTC) generally asserts that:

∫ b

a
f(x)dx = F (b) − F (a)

where F is the antiderivative, and it is assumed that the necessity that f be inte-

grable over [a, b] is satisfied; notice that our previous examples fail these conditions.

However, the antiderivative does play a significant role, and we will review the major

points of the example solutions to ease into the FTC for gauge integration.

In our first example, it was demonstrated that
∫ 1
0 1/

√
xdx = 2. Setting F (x) =

2
√

x for x ∈ (0, 1), then F ′(x) = f(x) when x ∈ (0, 1] but F ′(0) does not exist.

Regardless, it was shown that
∫ 1
0 f(x)dx = F (1) − F (0) by manipulating 2

√
v −

2
√

u − (1/
√

τ)(v − u). This last statement is F (v) − F (u) − f(τ)(v − u). The

solution was attained by observing that (v − u)2/(τ
√

τ ) was a dominate term over

|F (v) − F (u) − f(τ)(v − u)| when τ ∈ [u, v]. By applying a limit calculation, it can

be observed that this dominate term is only possible if F ′(x) = f(x).

In the second example, the function f can also be considered an application

of the FTC where F (x) = Cx. The continuity of F is critical at the points where

there is no standing assumption that F ′(x) = f(x). The fact that S was countable

ensured that it did not have “too many” points, and thus the properties of F could

be used for continuity.

These examples show that the integrability of f is proved rather than assumed.

We have also seen that the interval need not be bounded. They also show that f(x)

need not equal F ′(x) for all x. Recall a countable set can be used with the requirement

that F is continuous over [a, b]. These will all be notable features of the FTC that

will now be stated and proved.

17



A. FUNDAMENTAL THEOREM

If F : [a, b] → R is differentiable at each point of I = [a, b] then f = F ′ is

gauge integrable and:

∫ b

a
f = F (b) − F (a)

1. FTC Proof

Given ε > 0, ∃ δ(τ) > 0 such that when 0 < |z − τ | ≤ δ(τ) for z ∈ I,

then since f(τ) = F ′(τ) exists we have:

∣∣∣∣∣F (z) − F (τ)

z − τ
− f(τ)

∣∣∣∣∣ ≤ ε.

Furthermore, if |z − τ | ≤ δ(τ) for z ∈ I, it follows that:

|F (z) − F (τ) − (z − τ)f(τ)| ≤ ε|z − τ |

Thus, if a ≤ u ≤ τ ≤ v ≤ b and 0 < v − u ≤ δ(τ), the triangle inequality implies:

|F (v)−F (u)−(v−u)f(τ)| ≤ |F (v)−F (τ)−(v−τ)f(τ)|+ |F (τ)−F (u)−(τ−u)f(τ)|

≤ ε(v − τ) + ε(τ − u) = ε(v − u).

If D is a γ-fine partition with Riemann sum of f(D) over I, then the sum∑n
i=1 (F (xi) − F (xi−1)) =

[
− F (x0) + (F (x1) − F (x1)) + · · ·

· · ·+ (F (xn−1 − F (xn−1) + F (xn)
]

= F (b) − F (a) will satisfy:

|F (b) − F (a) − f(D)| =

∣∣∣∣∣
n∑

i=1

(
F (xi) − F (xi−1) − f(τi)(xi − xi−1)

)∣∣∣∣∣

≤
n∑

i=1

∣∣∣F (xi) − F (xi−1) − f(τi)(xi − xi−1)
∣∣∣ ≤ n∑

i=1

ε(xi − xi−1) = ε(b − a).

Since ε > 0 is arbitrary, this shows that f is gauge integrable and that∫ b
a f = F (b) − F (a) as required. [Ref.5]
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2. Alternate Statement of FTC

Another approach in stating the FTC is to fully develop the definition of the

primitive. Let I be an interval in R̄ where F : I → R is given. A function F : I → R
is a primitive of f on I given that F is continuous on I and F ′(x) = f(x) for all x ∈ I

save a countable set of x values.

Notice that when F is a primitive over an unbounded interval I, each infinite

endpoint of I (which is in I) will be in the countable set for which F ′(x) �= f(x).

This follows the notion of the derivative being meaningful only at points in R. We

can now restate the FTC as follows:

If f : [a, b] → R has a primitive F on [a, b], f is integrable and
∫ b
a f(x)dx =

F (b) − F (a). The proof is similar to the previous one, but will not be stated here.

See [Ref.6] for details.

B. IMPROPER INTEGRALS

In general terms, an improper integral is one that does not exist by the defi-

nition, but can be interpreted by use of a limit. In effect:

lim
s→a

∫ b

s
f(x)dx or lim

s→b

∫ s

a
g(x)dx

Notice the function must still be integrable over both [s, b] ∀ s < a, and [a, s] ∀ b < s

respectively. Our first example in Chapter 2 demonstrated this idea.

The FTC permits us to address many types of problems that have this prop-

erty. Namely, when f has a primitive F over (a, b] and lims→a F (s) exists ∈ R. It

can then be said that F (a) = lims→a F (s), and the result is a primitive of f on [a, b].

Hence, applying the FTC on [a, b] we have:

∫ b

a
f(x)dx = F (b) − F (a) = F (b) − lim

s→a
F (s) = lim

s→a

(
F (b) − F (s)

)
= lim

s→a

∫ b

s
f(x)dx

As a result, the integral exists as a gauge integral and has the same value if evaluated

as an improper Riemann integral.
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1. Example

Suppose that
∫ b
a g and

∫ b
s g exist ∀ s where a < s < b. Demonstrate that:

∫ b

a
g = lim

s→a+

∫ b

s
g

In order to pursue the solution, we must consider the particular gauge γ over [a, b]

such that
∣∣∣∫ b

a g − gL(D)
∣∣∣ < ε when D is a γ-fine partition of [a, b]. Choose some

s ∈ (a, b). Because g is integrable on [s, b], ∃ γs where | ∫ b
s g − gL(F)| < ε when F is

a γs-fine partition of [s, b].

Now, select γs so that γs(τ) ⊆ γ(τ), and choose k ∈ γ(a) and notice

|g(a)| · L([a, k]) < ε. Let s ∈ (a, k) with F being a γs-fine partition of [s, b]. Choose

D = [a, s] ∪ F with the first partition having endpoint a as the tag. This results in

D being a γ-fine partition of [a, b] with:

∣∣∣∣∣
∫ b

a
g −

∫ b

s
g

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ b

a
g − gL(D)

∣∣∣∣∣ +

∣∣∣∣∣gL(F) −
∫ b

s
g

∣∣∣∣∣ +
∣∣∣∣g(a)L

(
[a, s]

)∣∣∣∣
As each term on the right is less than ε, we have lims→a+

∫ b
s g =

∫ b
a g as ε can

be made arbitrarily small. This example is important as it demonstrates that if a

function fails to have an integral according to the improper integral definition, then

it will fail to have a meaningful gauge integral.

For instance, consider
∫ b
a 1/y2dy. This function has no useful improper integral

when lims→0+

∫ 1
s 1/y2dy = lims→0+(−1+s−1) = ∞, and hence no gauge integral either.

Notice that the example could have been restated as limt→b−
∫ t
a g with similar results.

This leaves one unresolved issue for addressing improper integrals. Namely,

that
∫ b
a f will still exist even when lims→b− f exists without a primitive of f on (a, b].

2. Improper Integral Theorem

Let f : [a, b] → R have an integral on [s, b] ∀ s such that a < s < b. Then∫ b
a f exists iff lims→a+

∫ b
s f exists; furthermore, those values will be equal.
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The proof of this theorem is a bit lengthy and is full of technical details that

add little in understanding gauge integration; hence, it is omitted. The McLeod book

[Ref.7] contains the most readable version of this proof.

This theorem gives insight on the nature of improper integrals within gauge

integration theory. First, the gauge integral exists precisely when the improper Rie-

mann integral exists and has the same value. Secondly, that the gauge integral over

intervals in R̄ has no improper extensions; it is either integrable or it is not.
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V. THE DEVELOPMENT OF GAUGE

INTEGRATION THEORY

The majority of theorems and topics discussed in this chapter should be quite

familiar from the usual study of the Riemann integral. The purpose of this chapter is

three-fold; first, to build a mathematical bridge to the more advanced topics presented

later. The next purpose is to reassure the reader that basic properties of the Riemann

and Lebesgue integrals also hold for the gauge integral, and finally, to demonstrate

that the use of gauges and tagged partitions often simplify long-established proofs. In

most cases where the proposition and proof nearly parallel the traditional ones, the

proofs shall be omitted. In some instances, such as property 5, the proof is highlighted

as it gives additional insight to the use of gauge theory within an argument. The proof

of the last theorem, which concerns absolutely continuous singular functions being

constant, is an elegant example of how gauge theory can be a versatile tool in greatly

simplifying difficult concepts.

A. BASIC PROPERTIES

Among the properties of the gauge integral, there are basically two that deter-

mine its value. First is the function f , called the integrand, secondly is the interval

I = [a, b] over which integration is defined. We shall first deal with f , and consider

the integral as a function of the integrand.

1. Linearity

Let f : I → R and g : I → R be integrable. For c ∈ R, then cf and f + g are

integrable. Also,
∫
I cf = c

∫
I f and

∫
I(f + g) =

∫
I f +

∫
I g. Notice that this extends

to all finite linear combinations
∑n

k=1 ckfk as well.
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2. Positivity

If f : I → R is integrable over I and f(x) ≥ 0 for x ∈ I, then
∫
I f ≥ 0.

Corollary : If f, g : I → R are both integrable over I and f(x) ≤ g(x) for all x ∈ I,

then
∫
I f ≤ ∫

I g.

3. Absolute Integral Inequality

A function is said to be absolutely integrable over I if both f and |f | are inte-

grable over I. Note that this concept is one of the key issues explored in the following

chapter.

If f : I → R is absolutely integrable over I, then:

∣∣∣∣
∫

I
f

∣∣∣∣ ≤
∫

I
|f |

4. Integration by Parts

Let F and G be primitives of f and g on I. Then fG is integrable ⇔ Fg is

integrable. Furthermore:

∫ b

a
fG = F (b)G(b) − F (a)G(a) −

∫ b

a
Fg

5. Bounded Continuity Theorem

If f : I → R is continuous on I, then it is bounded on I.

Proof : Since f is continuous for every x ∈ I, then ∃ γ(x) > 0 such that |f(t) −
f(x)| < 1, ∀ t ∈ I that satisfy |t − x| < γ(x). Let this define a positive function γ

on I. With D as a γ-fine tagged partition of I, let M be the maximum value of all

tags within D; i.e. M = max{|f(τi)|}. Given some x ∈ I, there is an index j such

that x ∈ [xj−1, xj] and hence:

|f(x)| ≤ |f(x) − f(cj)| + |f(cj)| < 1 + M

Then f is bounded by 1 + M as required.
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B. CAUCHY CRITERION

Recall that a sequence of real numbers (ai)
∞
i=1 has a limit A ∈ R ⇔ ∀ ε >

0, ∃ N ∈ N such that |ai − aj | < ε when i, j > N . This is the Cauchy criterion

for convergence and is quite useful in that the value of the limit need not be known.

Similarly, this idea extends integrals and is used in the proofs of many subsequent

results.

Theorem

The function f : I → R is integrable over I ⇔ ∀ ε > 0, ∃ a gauge γ such

that |fL(D) − fL(E)| < ε for all γ-fine partitions D and E of I.

Proof :

“⇒” Let A represent the integral of f over I. Given some ε > 0, there

exists a γ function for γ-fine partitions D, E of I, such that |A − fL(D)| < ε/2

and |A − fL(E)| < ε/2. It immediately follows from the triangle inequality that

|fL(D) − fL(E)| ≤ |A − fL(D)| + |A − fL(E)| < ε

“⇐” We are given that for all n, ∃ a gauge γn such that |fL(D)−fL(E)| <

1/n when D, E are γ-fine partitions of I. Notice that we can replace γn(τ) by γ1(τ)∩
γ2(τ) ∩ · · · ∩ γn(τ) so that γj(τ) ⊆ γi(τ) when i < j. Now for each n, fix a γn-fine

partition Dn. Consider the sequence of elements fL(Dn) ∈ R and suppose that i < j.

Then Dj is not only γj-fine, it is also γi-fine since γj is a subset of γi. Hence:

|fL(Dj) − fL(Di)| < 1/i

Then
(
fL(Dn)

)∞
n=1

is a Cauchy sequence converging to a limit A ∈ R.

As mentioned previously, the most significant advantage of the gauge theory

approach compared to the Lebesgue approach is its relative simplicity. An excellent

example of this is the theorem proof that an absolutely continuous singular function is

constant. This result is very important for the development of Lebesgue integration.
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The traditional proof is quite complex and involves, among other results, the Vitali

Covering Lemma. A typical presentation of this argument is detailed in Royden’s Real

Analysis, [Ref.8]. The concepts in just this lemma alone are very involved and often

difficult for students to grasp. The following proof bypasses all of that machinery and

uses only elementary facts from measure theory in conjunction with gauge theory.

C. ABSOLUTELY CONTINUOUS SINGULAR FUNCTION
THEOREM

Given that F is absolutely continuous on I, if F ′ = 0 almost everywhere on I,

then F is constant on I.

Proof : Define G = {x ∈ I : F ′(x) = 0, or doesn’t exist}. Then m(G) = 0

(m ≡ Lebesgue measure). For ε > 0, choose ρ > 0 such that
∑n

i=1 |F (ti) − f(si)| < ε

when {[si, ti]} is a finite collection of non-overlapping intervals in [a, b] that satisfy∑n
i=1 |ti − si| < ρ. Since m(G) = 0, there exists a sequence of open intervals {Ok}

such that G ⊆ ⋃∞
k=1 Ok and

∑∞
k=1 L(Ok) < ρ. Define a positive function δ on I as

follows:

If x /∈ G, fix δ(x) > 0 such that |F (t)−F (x)| ≤ ε · |t−x|, ∀ t ∈ I where |t−x| < δ(x).

If x ∈ G, fix δ(x) > 0 such that
(
x − δ(x), x + δ(x)

)
⊆ Ok for some k.

Let D be a γ-fine tagged partition of I and define:

S
Ẽ

= {i : τi /∈ E} and SE = {i : τi ∈ E}

Notice |F (τi) − F (τi−1)| ≤ ε · (xi − xi−1) ∀ i ∈ S
Ẽ
, and that:

∑
i∈SE

(xi − xi−1) ≤
∞∑

k=1

L(Ik) < ρ
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Now we have:

|F (b)−F (a)| =

∣∣∣∣∣
n∑

i=1

(
F (xi) − F (xi−1)

)∣∣∣∣∣ ≤
∑

i∈S
Ẽ

|(F (xi)−F (xi−1)|+
∑
i∈SE

|(F (xi)−F (xi−1)|

≤ ∑
i∈S

Ẽ

ε · (xi − xi−1) + ε ≤ ε · (b − a + 1)

Since ε > 0 was arbitrary, ⇒ F (b) = F (a). Then it follows that the exact same

argument will show F (x) = F (a) ∀ x ∈ (a, b), and thus F is constant on I. [Ref. 9]
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VI. ABSOLUTE INTEGRABILITY

An important and useful characteristic when analyzing a function is whether or

not |f | is integrable when f is known to be integrable. Knowledge of this attribute is

important for investigating convergence behavior, and in determining what functional

space the function exists in. This is also an important element for the calculation of

the length of curves. While examining the integrability of |f |, we need to consider

the summation:

n∑
i=1

∣∣∣∣∣
∫ xi

xi−1

f

∣∣∣∣∣
that is taken over the intervals of a partition of I. The connection between this sum

and a Riemann sum for |f | is given by a fundamentally important result in gauge

theory called “Henstock’s Lemma.” The concepts in this lemma will be evident in

most of the significant results about the gauge integral.

A. HENSTOCK’S LEMMA

For f : I → R integrable over I, there is a gauge γ on I such that

|fL(D)− ∫
I f | < ε when D is any γ-fine partition of I. Let J be a subset of D where

J = {J1, . . . , Jn} is a collection of tagged, closed intervals such that τ ∈ Ji ⊂ γ(τi),

then:

∣∣∣∣∣
n∑

i=1

[
fL(Ji) −

∫
Ji

f
]∣∣∣∣∣ ≤ ε and

n∑
i=1

∣∣∣∣fL(Ji) −
∫

Ji

f
∣∣∣∣ ≤ 2ε

[Ref.10] In general, the above lemma states that gauge γ defines Riemann sums

equally well on subintervals of I as it does on the whole. Thus, the partition D can

be broken down into subsets without losing the close approximation of the sum of

integrals. This assertion of the lemma is a central idea in proving the monotone and

dominated convergence theorems as we shall see in the next chapter.
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The second portion of the lemma claims that
∑ |f(τ)| · L(J) closely approxi-

mates
∑ | ∫J f |. This is a consequence of the inequality

∣∣∣|A| − |B|
∣∣∣ ≤ ∣∣∣A − B

∣∣∣. This

aspect of the lemma is critical for proving the integrability of |f |.

1. Proof of Lemma

The set I \ ⋃n
i=1 Ji consists of a finite number of disjoint intervals.

(Note that J is not said to be a γ-fine partition as it is possible that
⋃n

i=1 Ji �= I)

Let E1, . . . , Em be these disjoint intervals with their endpoints adjoined. For an

arbitrary ε′ > 0, the integrability of f over each Ej implies that ∃ γ-fine tagged

partition Ej for each Ej such that:

∣∣∣∣∣fL(Ej) −
∫

Ej

f

∣∣∣∣∣ <
ε′

m

Then D′ = J ∪ E1 ∪ · · · ∪ Em is a γ-fine tagged partition of I. For ease of notation

we’ll say fL(J ) =
∑n

i=1 fL(Ji), then:

∣∣∣∣fL(D′) −
∫

I
f

∣∣∣∣ =

∣∣∣∣∣∣fL(J ) −
n∑

i−1

∫
Ji

f +
m∑

i=1

[
fL(Ei) −

∫
Ei

f
]∣∣∣∣∣∣ < ε

This implies: ∣∣∣∣∣∣fL(J ) −
n∑

i−1

∫
Ji

f

∣∣∣∣∣∣ −
∣∣∣∣∣

m∑
i=1

[∫
Ei

f − fL(Ei)
] ∣∣∣∣∣ < ε,

and after applying the triangle inequality m times we have:∣∣∣∣∣∣fL(J ) −
n∑

i−1

∫
Ji

f

∣∣∣∣∣∣ < ε +
m∑

i=1

∣∣∣∣∣
∫

Ei

f − fL(Ei)

∣∣∣∣∣ < ε + m · ε′

m
= ε + ε′ (∀ε′ > 0)

Thus, it follows that |fL(J ) − ∑n
i=1

∫
Ji

f | ≤ ε.

To address the second portion of the lemma, let J + be the collection {Ji} such that

fL(Ji) − ∫
Ji

f ≥ 0, (J − being ≤ 0). Hence, we have:

0 ≤ ∑
J+

[
fL(Ji) −

∫
Ji

f
]

=
∑
J+

∣∣∣∣fL(Ji) −
∫

Ji

f
∣∣∣∣ ≤ ε

and
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−∑
J−

[
fL(Ji) −

∫
Ji

f
]

=
∑
J−

∣∣∣∣fL(Ji) −
∫

Ji

f

∣∣∣∣ ≤ ε

Therefore,

n∑
i=1

∣∣∣∣fL(Ji) −
∫

Ji

f
∣∣∣∣ ≤ 2ε

2. Lemma Example

Suppose
∫ c
a f = 0 ∀ c ∈ (a, b] and we want to demonstrate that

∫ b
a |f | = 0.

Choose γ so that |fL(D)−∫ b
a f | < ε when D is γ-fine. Suppose a < c1 < c2 ≤ b, then:

∫ c2

c1
f =

∫ c2

a
f −

∫ c1

a
f = 0

Now, since the integral of f is zero for all subintervals Ji, then

∣∣∣∣f(τ)L(Ji) −
∫

Ji

f
∣∣∣∣ =

∣∣∣f(τ)
∣∣∣ · L(Ji) (∀ Ji ∈ D)

As a result from Henstock’s lemma we have, |f | · L(D) ≤ 2ε which can be made

arbitrarily small. This shows
∫ b
a |f | = 0.

B. FUNCTION VARIATION

Recall that a function f is absolutely integrable if f and |f | are both integrable.

In the following sections, we shall give conditions for the absolute integrability of a

function, and demonstrate that integrable functions need not be absolutely integrable.

For such a function, one can imagine that there is some sort of cancellation taking

place within the functional range of f so that the Riemann sums converge to a limit

(the integral). Conversely, when the absolute value is taken, the cancellation fails

to take place for |f | and thus the Riemann sums diverge. The crititical point in

understanding this concept is deciding whether these oscillations can be controlled.

The variation of Φ : [a, b] → R denoted: V ar(Φ : [a, b]) is defined by:

V ar
(
Φ : [a, b]

)
= supP

{ n∑
i=1

|Φ(xi)−Φ(xi−1)| : P = {a = x0 < x1 < . . . < xn = b}
}
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Φ is of bounded variation if V ar(Φ : [a, b]) < ∞. The set of all functions that

are of bounded variation on [a, b] is denoted by BV [a, b]. Geometrically speaking,

the variation of a function is a measure of how much the function oscillates over an

interval. The next example demonstrates that even a continuous function can have

an infinite variation.

1. Infinite Variation Example

Let

f(x) =




0 if t = 0

t · sin(1/t) if 0 < t ≤ 1

Set xn = 1
(n−1/2)π

Then,

f(xn) =




1
(n+1/2)π

n even

−1
(n+1/2)π

n odd

If Pn is the partition {0 = xn < xn−1 < . . . < x1 = 1}, then

n−1∑
i=1

∣∣∣∣f(xi) − f(xi+1)
∣∣∣∣ ≥ 2

π
·

n−1∑
i=1

1

i + 1

However,
∑∞

i=1
1

i+1
diverges. Hence, V ar(f : [0, 1]) = ∞.

Understanding the properties of bounded variation will give an insight to the necessary

and sufficient condition for the absolute integrability of an integrable function.

C. INTEGRATION OF ABSOLUTE VALUES THEOREM

Let f : I → R be integrable over I = [a, b]. Then |f | is integrable over I if

and only if, the indefinite integral F (x) =
∫ x
a f is of bounded variation over I.

In effect:

V ar
(
F : [a, b]

)
=

∫ b

a
|f |
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The proof here will be omitted as it contains rather lengthy and tedious argu-

ments. [Ref.10] contains a detailed justification.

We shall next investigate a specific example of an integrable function that is

not absolutely integrable. Such functions are said to be conditionally integrable.

1. Conditionally Integrable Example

f(x) =




x2cos(π/x2) 0 < x ≤ 1

0 x = 0

with derivative:

f ′(x) =




2xcos(π/x2) + 2π
x

sin(π/x2) 0 < x ≤ 1

0 x = 0

Henceforth, f ′ is integrable by the FTC. However, much like the argument presented

in the previous example, |f ′| is not integrable. To see this, let βn = 1/
√

2n and

αn =
√

2/(4n + 1). then:

∫ αn

βn

f ′ =
1

2n

The intervals { [αn, βn] : n ∈ N} are pairwise disjoint. Thus, it follows that:

V ar
(
f : [0, 1]

)
≥

N∑
n=1

∣∣∣∣
∫ αn

βn

f ′
∣∣∣∣ =

N∑
n=1

1

2n

for all N , and f /∈ BV [0, 1].
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VII. CONVERGENCE THEOREMS

Some of the most use useful tools in general integration theory will be devel-

oped in this chapter. Now that absolute integrability and Henstock’s Lemma have

been explored, we have the foundations to start examining the convergence theorems.

Recall that one of the principal reasons that Lebesgue integration is preferred

over the Riemann approach concerns the associated convergence theorems. Namely,

those of the form lim
∫
I fk =

∫
I(lim fk) hold for the Lebesgue integral under quite

general conditions. The most significant theorems of this type are the Monotone

Convergence Theorem (MCT) and the Dominated Convergence Theorem (DCT). We

shall demonstrate that these convergence theorems hold for the gauge integral as well,

thus showing that gauge integration possesses the same advantages over Riemann

integration as does the Lebesgue integral.

We must first introduce the concept of uniform integrability which is central

to understanding the following convergence theorems. We say that {fk} is uniformly

integrable over I if each fk is integrable over I and ∀ ε > 0, there is a gauge γ and

γ-fine partition D on I such that:

|fL(D) −
∫

I
fk| < ε, ∀ k ∈ N

The point of this definition is that that same gauge works uniformly for all

k. For uniformly integrable sequences of integrable functions we have the following

convergence theorem.

A. UNIFORMLY INTEGRABLE SEQUENCE
CONVERGENCE THEOREM

Let {fk} be uniformly integrable over I and assume that fk → f pointwise.

Then f is integrable over I with:

lim
∫

I
fk =

∫
I
(lim fk) =

∫
I
f
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Proof : Let ε > 0. Let γ be a gauge on I such that |fL(D) − ∫
I fk| < ε/3 for every

k when D is γ-fine. Choose a γ-fine tagged partition E of I. Pick N such that

|fiL(E) − fjL(E)| < ε/3 when i, j ≥ N (note that this is possible by the pointwise

convergence of {fk}). We now have:

∣∣∣∣
∫

I
fi −

∫
I
fj

∣∣∣∣ ≤
∣∣∣∣
∫

I
fi − fiL(E)

∣∣∣∣ +
∣∣∣fiL(E) − fjL(E)

∣∣∣ +

∣∣∣∣fjL(E) −
∫

I
fj

∣∣∣∣ < ε

and thus lim
∫
I fk = L exists.

Now suppose that D is γ-fine tagged partition of I. Similar to the above,

choose N such that |fNL(D) − fL(D)| ≤ ε/3 and also that |L − ∫
I fN | < ε/3. Then:

∣∣∣fL(D) − L
∣∣∣ ≤ ∣∣∣fL(D) − fNL(D)

∣∣∣ +

∣∣∣∣fNL(D) −
∫

I
fN

∣∣∣∣ +

∣∣∣∣
∫

I
fN − L

∣∣∣∣ < ε

Hence, f is integrable over I with
∫
I f = L = lim

∫
I fk as required.

B. UNIFORMLY INTEGRABLE SERIES
CONVERGENCE THEOREM

Let fk, f : I → R be non-negative with each fk integrable over I and suppose

f =
∑∞

k=1 fk pointwise on I, then:

(i)
∑∞

k=1 fk is uniformly integrable over I

(ii) f is integrable over I and
∑∞

k=1

∫
I fk =

∫
i f =

∫
i

∑∞
k=1 fk

Discussion: The proof of (i) is a fairly straightforward application of Henstock’s

lemma that creates a dominant term over the series that, as one would expect, can be

made arbitrarily small. Unfortunately, the argument introduces a significant amount

of new definitions and notation that only distorts the central ideas. The interested

reader should look to [Ref.11] for details. However, from (i) and the proof of the

uniformly integrable sequence convergence theorem, (ii) immediately follows.
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We now have the necessary machinery to state and prove the first significant

convergence theorem.

C. MONOTONE CONVERGENCE THEOREM

Recall that a sequence of functions {fk} is monotone when it is increasing or

decreasing. It is increasing if fn(x) ≤ fn+1(x) for all n and x, and this will be denoted

fk ↑ f . Reversal of the inequality produces a decreasing sequence, fk ↓ f . A monotone

sequence has, for every x, two options for its behavior. Either L = limn→∞ fn(x) is

an element of R or is infinite. The version of the monotone convergence theorem

that is forthcoming shall assume a finite limit. Further study will reveal that this

assumption can be removed.

1. MCT

Let fk : I → R be integrable over R, and suppose that fk(x) ↑ f(x) ∈ R,

∀x ∈ R . If supk

∫
I fk < ∞, then:

(i) {fk} is uniformly integrable over I

(ii) f is integrable over I and lim
∫
I fk =

∫
I f =

∫
I lim fk

Proof : Choose f0 = 0, hk = fk − fk−1 for k ≥ 1. Then hk ≥ 0,
∑n

k=1 hk = fn → f

pointwise, and:

∞∑
k=1

∫
I
hk = lim

n→∞

n∑
k=1

∫
I
(fk − fk−1) = lim

n→∞

∫
I
fn = supn

∫
I
fn < ∞

Thus, the uniformly integrable sequence convergence theorem can now be directly

applied to give the desired result.

Of course, a similar result holds for decreasing sequences. The MCT gives a

very useful and powerful sufficient condition by granting the interchange of integra-
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tion with the sequential limit. The following example shows a typical application of

monotone convergence.

2. MCT Example

Suppose f, h are nonnegative functions over I. Suppose f is integrable on I,

and h is integrable over each subinterval Jn. Now, we need to demonstrate that f ∨h

is integrable on I. [Recall that the function f ∨ h = max{f(x), h(x)}]
Begin by fixing the expanding bounded intervals Jn such that:

∞⋃
n=1

Jn = I ∩R

Let hn equal h on Jn and zero elsewhere. Choose vn = f∨hn, and now vn is integrable

on I by design, and also increases to f ∨ g on I. Since
∫
I vn ≤ ∫

I f , the MCT can be

applied to show the integrability of f ∨ h on I.

Notice that the MCT allows for the interchange of integration with the se-

quence limit without limiting the interval I in any way. The Monotone Convergence

Theorem gives further evidence of the difference between the Riemann and gauge

integral. An earlier example can be used to show that the Riemann integral does not

have an equivalent theorem.

3. Riemann MCT Counterexample

Let rn be a sequential arrangement of the rationals (Q) in [0, 1] with rm �= rn

when m �= n. Let fn(x) = 1 when x = rn and zero otherwise. Then
∫ 1
0 fn exists in

the Riemann sense and has value zero.

Thus,
∑∞

n=1

∫ 1
0 fn is convergent, but

∑∞
n=1 fn is not Riemann integrable since

it is one on Q and zero otherwise over [0, 1].

D. DOMINATED CONVERGENCE THEOREM

It should be observed that not even the gauge integral permits the interchange

of integral and sequential limit.
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1. DCT Example

Let gn(x) = n for x ∈ (0, 1/n), and g(x) = 0 otherwise. Then limn→∞ gn(x) =

0 for all x ∈ [0, 1]. However,
∫ 1
0 gn = 1, ∀ n. As a result, limn→∞

∫ 1
0 gn and∫ 1

0 (limn→∞ gn) both exist, but fail to be equal.

The DCT rules out this type of behavior displayed in this example by a con-

dition which is simple to state and easy to check for specific instances. Also note

that in many applications, the condition that fk be monotone is not satisfied. The

dominated convergence theorem gives conditions sufficient for
∫
I fk =

∫
I(lim fk) to

hold, but is generally easier to work with. [Ref.12]

2. DCT

Let fk : I → R be integrable over I, ∀ k. Let f, g : I → R be such that

{fn} converges pointwise to f on I, with g being integrable over I. If |fk(t)| ≤ g(t)

for k ∈ N and t ∈ I, then f integrable such that:

lim
k→∞

∫
I
fk =

∫
I
( lim
k→∞

fk) =
∫

I
f

Proof : Since |fk(t)| ≤ g(t), then each fk is absolutely integrable. Define U1 =

sup{fk : k ∈ N}. If uk = f1 ∨ · · ·∨ fk, then each uk integrable such that uk ↑ U1 and∫
I uk ≤ ∫

I g. The MCT ⇒ U1 integrable over I. Similarly, Uk = sup{fj : j ≥ k}
is integrable over I. Now we have Uk ↓ f pointwise and

∫
I Uk ≥ − ∫

I g, and thus the

MCT ⇒ f is integrable with limk

∫
I Uk =

∫
I f .

Analogously, the same argument is made for the lower dominate term with

L1 = inf{fk : k ∈ N} and Lk = inf{fj : j ≥ k}. Again, the MCT implies that f

is integrable with limk

∫
I Lk =

∫
I f . Thus, with Lk ≤ fk ≤ Uk, we have:

lim
k→∞

∫
I
Lk = lim

k→∞

∫
I
Uk ⇒ lim

k→∞

∫
I
f =

∫
I
f

as required.
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VIII. FINAL COMMENTS

While this paper concludes with the monotone and dominated convergence

theorems, it is clear that there is much at the elementary level that has not been

addressed. The basic convergence theorems that the gauge integral enjoys over the

Riemann integral are indeed very powerful, and make for a natural stopping point for

this exposition. However, it is apparent that the majority of available material after

the basic convergence theorems diverges significantly in both style and content. In

other words, there is little similarity in either material, or in what format the material

is approached, between various authors. This is in stark contrast to the typical

elementary analysis books based on the Riemann integral. For general acceptance

of this theory, the mathematical community should come to a consensus on how to

present this material in both approach and notation. Perhaps after this point it

would be realistic to consider replacing the Riemann integral with the gauge integral

for elementary analysis courses.

Additionally, this paper only discussed integrals of functions from [a, b] to R.

The associated functional space created by the collection of gauge integrable func-

tions is called Denjoy space, after Arnaud Denjoy who first explored this aspect. It is

analogous, but not equal to, the Banach space L1[a, b] for Lebesgue integrable func-

tions in R. In fact, L1[a, b] is a subspace of Denjoy space. Recall that all Riemann

integrable functions are Lebesgue integrable, and clearly all Riemann integrable func-

tions will be in the space of improper Riemann integrable functions. However, there

are functions that are integrable with the improper Riemann integral technique, but

not Lebesgue integrable, and vice-versa.

All of these functional spaces are subsets of Denjoy space. This is both an

advantage and disadvantage. The advantage is clear as we have discussed the inte-

grating power of the gauge integral. With that power, however, comes a significantly

larger functional space that implies some very troublesome functions can live in this
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space. The result is that the metric becomes more complicated to work with, as

does some of the more advanced convergence theorems. In fact, Denjoy space has a

natural semi-norm called the Alexiewicz norm. In contrast to the case of Lebesgue

integrable functions with the L1-norm, Denjoy space is not complete under the Alex-

iewicz norm. Thus, the real advantage of the gauge integral isn’t really its expanded

functional space, but rather the insight it gives through its simplicity.

In his analysis book, Eric Schechter draws the analogy between these integrals

and series. He compares gauge integrals to convergent series, and the Lebesgue inte-

gral to absolutely convergent series. The absolutely convergent series are much easier

to work with, and provide a clean, consistent theory. Series that are just convergent

are more general and thus more complex. However, it is a rare event to have to work

with a series that is conditionally convergent. [Ref.3]

As mentioned in the opening remarks of Chapter 2, the theory of gauge inte-

gration can be easily extended to complex functions, or functions in Rn. The theory

can also be extended to non-compact intervals without great difficulty or loss of sim-

plicity. However, gauge theory has also been extended to infinite dimensional spaces

and even more abstract spaces, but at the cost of losing its intuitive advantage. The

theory quickly becomes quite abstract and difficult to follow. Ralph Henstock has

written a number of documents in this area, but it doesn’t appear that there is much

current research in this direction.

As a note on a type of function that is not gauge integrable, it would be

nice to have a bounded, non-integrable function on a finite domain to explore. This

would allow the reader to really grasp the meaning of “non-integrable” outside the

obvious examples concerning unbounded functions or unbounded domains. In fact,

these types of functions exist, but are very difficult to demonstrate and are somewhat

less than satisfying. Actually, for bounded functions on a finite interval, the Lebesgue

and gauge integrals are equivalent. Hence, the same kind of non-integrable functions

will exist for both. Recall the example provided by Vitali that proves the existence
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of a non-Lebesgue measurable set. [Ref.8] The proof is centered about the Axiom

of Choice, and is non-constructive in nature. Thus, the existence is proved without

actually finding the function, or even giving specific criterion. So for most students

just being introduced to real analysis, the example of such a function will have to

wait until a later course.
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APPENDIX. A BRIEF HISTORY OF THE

GAUGE INTEGRAL

The history of integration theory is both quite extensive and remarkable. A

sizeable treatise could easily be devoted just to the non-mathematical portions of it.

Here only a few remarks are made in order to add chronological perspective to the

topic, and to add emphasis to important achievements.

The roots of integration can clearly be traced to Archimedes’ “The Method.”

This work, while stunning in its achievement, is less important towards the develop-

ment of the integral as it was lost for so many centuries. The real story of integration

starts with Newton and Leibniz. Even today, if F : [a, b] → R and F ′(x) = f(x) for

every x ∈ [a, b] we say that F (b) − F (a) is the definite integral of f from a to b, in

symbols:

F (b) − F (a) =
∫ b

a
f

We also refer to the function F as the Newton indefinite integral of f .

By today’s standards, the Newtonian definition looks much more concrete than

the Leibniz definition consisting of an integral as a sum of infinitely many infinitesimal

quantities. This is because the concept of derivative is firmly fixed in our thinking as

a well defined mathematical concept. During Newton’s era, however, the concepts of

derivative and limit were somewhat vague. Despite the logical inconsistencies asso-

ciated with the development of integral calculus, the founding masters of these new

calculus techniques were able to make wonderful discoveries with the newly formed

tools. The Bernoulli brothers and Euler made the most significant discoveries during

this period.

Out of all the many definitions that survived modern analytical scrutiny, by

far the simplest and most intuitive is that which was given at the beginning of the

modern era by Cauchy (1789-1857) and completed and fully investigated by Riemann
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(1826-1866). As mentioned in the introduction, it is still the Riemann theory that is

taught today at universities to mathematicians, physicists and engineers alike.

Among non-mathematicians, there is an almost universal identification of the

integral as the Riemann integral with little or no concept of differing methods of

integration. This can generally be identified with no advancement in mathematical

analysis beyond the introductory courses. Regardless, this identification is somewhat

surprising for two reasons. Firstly the Riemann integral, despite its wide use and its

intuitive appeal, has serious shortcomings that have been identified for well over a

century. Secondly, over eighty years ago Henri Lebesgue (1875-1941) gave another

definition of what is now known as the Lebesgue integral. As discussed in this paper,

his integral turns out to be the correct one for almost all uses and is the one currently

used (almost exclusively) by professional mathematicians.

Aside from the complexities in developing the Lebesgue method of integra-

tion mentioned in the introduction, both the Lebesgue and Riemann definitions re-

quire the assumption that the derivative F ′ be integrable to obtain the basic formula∫ b
a F ′ = F (b) − F (a). This encouraged mathematicians in the early 1900s to seek a

more general fundamental theorem (such as the gauge FTC). In 1914 Oskar Perron

proposed yet another definition that had certain advantages over the Lebesgue defi-

nition. Namely that it had the more general fundamental theorem, and included the

Newton integral and all improper integrals as well. Note that the Perron integral has

since been proven to be equivalent to the gauge integral. Perron was joined by Ar-

naud Denjoy, and the two further developed this more general theory. However, while

their theory solved some lingering problems, it further exasperated the complexity of

understanding it.

In 1957, the Czech mathematician Jaroslav Kurzweil, in connection with re-

search in differential equations, gave an elementary definition of the integral equiva-

lent to the one given by Perron. In 1961, Ralph Henstock independently rediscovered

Kurzweil’s approach and advanced it further. Henstock quickly recognized that the
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most significant repercussion of gauge theory is that it preserves the intuitive geomet-

rical background of the Riemann theory, and yet it has the integrating advantages of

the Lebesgue theory.

E. J. McShane made a further essential contribution when he noticed that a

simple alteration in the definition of the gauge integral produces exactly the Lebesgue

integral. Thus, he recaptured Lebesgue integration in the Kurzweil-Henstock frame-

work and by doing so made it accessible to non-specialists. In our definition of a

tagged partition, D : a = x0 < x1 < x2 < · · · < xn = b; τi ∈ [xi−1, xi]. McShane

simply drops the requirement that the tag τi must belong to the subinterval [xi−1, xi].

McShane also was the first to make a serious attempt in having the gauge integral

be the primary integral for undergraduate courses in real analysis. He claimed the

theory is so simple that it can be presented in introductory courses, and wrote a text

suitable for such purposes.

The field of gauge integration now has many mathematicians working in many

directions. This paper addresses mostly the pedagogical advances for developing the

fundamental ideas of real analysis, and the majority of recent works suitable for this

type of study are in the list of references. However, there are many working on the

cutting edge of analysis research in this field. The interested reader should explore the

periodical, Real Analysis Exchange, for the most up-to-date research level articles.
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