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Abstract 
 
The objective of this thesis is to develop a model that represents the dynamics of a 
hydraulically operated forestry crane. The model was derived with the traditional Euler-
Lagrange formalism and considered the crane mechanics, three double-acting hydraulic 
cylinders and the valve control unit. On the basis of the derived model we reproduced the 
entire crane model in MATLAB in order to run simulations herewith. This gave us the 
possibility to do parameter changes for further studies of the crane in motion. 
 
Another major goal within the thesis work was to estimate cylinder friction of the hydraulic 
actuators. We build up a test rig and used a double-acting cylinder for determing its frictional 
behaviour. For this, we ran open-loop experiments in order to create velocity-friction maps 
that represented the static friction force of the cylinder. In this concern, we varied system 
pressure and cylinder load to study their influence on the friction force. By means of the 
derived static friction maps we approached the cylinder’s dynamic friction behaviour and 
applied both step and ramp control inputs to examine the spring-damping characteristics of 
the microspoic bristles in the contacting area. The dynamic friction experiments have been 
exerted in the fashion of the LuGre model. As a result we acquired different nominal friction 
parameters that we necessarily used to develope adequate friction models. 
 
A third objective of this thesis was to establish a crane-tip control. Instead of a traditional 
control, providing a direct relationship between joystick input and cylinder extension, the focus 
was to build up a control for the end-effector’s trajectory in a two-dimensional frame. This was 
achieved by using inverse kinematics in order to determine the required joint angles that 
corresponded to the desired position of the crane-tip. 
 
The work also contains a CD including all developed MATLAB models that have been written 
within this project. 



     
     

 

Summary 
 
Hydraulic cranes are very popular for carrying out hauling operations of forestry machines. In 
chapter 1 we will give an overview of such vehicles followed by the problem definition and a 
description of the tools that have been used during the project work. 
 
A small hydraulic crane was provided by Rottne Industri AB to do experimental work in the 
laboratory hall of Växjö University. In chapter 2, the laboratory crane and its constituent parts 
are described in detail. This involves the mechanical structure, the connected hydraulic 
system, sensors and peripheral equipment. Sketches of the crane elements are also 
presented in this chapter. 
 
The mechanical model will be derived in chapter 3, beginning with the definition of rotation 
matrices followed by a set-up of necessary kinematic chains. Finally the derivation of the 
Euler-Lagrange equations allows us for examinig the dynamical behaviour of the crane. 
 
In chapter 4 the hydraulic model will be described. It is divided into two major parts, namely 
the mathematical model of the spool valve and the mathematical model of the hydraulic 
cylinders. In both cases we will foremost present a static model which will be followed by the 
dynamic model in order to derive the corresponding equations of motion. 
 
Friction modeling is done in chapter 5. At the beginning of this chapter we will describe the 
main friction phenomenon including the traditional static friction model and the dynamic bristle 
interpretation in the fashion of the LuGre model. Open-loop experiments at the laboratory 
crane will be carried out to examine the frictional behaviour of the used hydraulic cylinders. 
The results provide us the cylinder’s nominal friction parameters which, in turn allows us to 
build up adequate friction models. 
 
The main control principle is described in chapter 6. The traditional control task of a hydraulic 
crane is accomplished via two joysticks that control each cylinder separately. We will present 
a more convenient method using a sophisticated crane-tip control. In this concern, we will 
focus on inverse joint determination combined with traditional PID control. 
 
We used MATLAB for all kind of modeling and simulation during the thesis work. The main 
program files are represented in chapter 7 but can also be found on the attached CD in the 
appendix. 
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Symbols 
 
 
General notation: 
 

yX rv     Position vector of length y referred to the X-frame 

YZX rv    Position vector of distance between part Y and part Z referred to the X-frame 

YX A    Rotation matrix from frame Y to frame X 

)(xrv    Value of x-direction of vector r 

 
Frames: 

eI     Inertial frame 

eeee 4321 ///  Joint frames (origin in the center of 1st, 2nd, 3rd and 4th joint) 

eee ccc 321 //  Cyldiner frames (origin in the center of the opening joint of 1st, 2nd and 3rd 
cylinder) 

 
Indices: 
 

321 ,, xxx  Piston extension from cylinder center of 1st, 2nd and 3rd cylinder 

sss ccc 321 ,,  Center of opening joint of 1st, 2nd and 3rd cylinder 

eee ccc 321 ,,  Center of closing joint of 1st, 2nd and 3rd cylinder 

321 ,, jjj  Center of 1st, 2nd and 3rd joint 

321 ,, cgcgcg  Center of gravity of 1st, 2nd and 3rd link 

21, tt cgcg  Center of gravity of 1st and 2nd torque link 

1t     Joint center of torque link 1 (opening) 

2t     Joint center of torque link 2 (opening) 

3t     Joint center of torque link 3 (closing) 

ct     Crane-tip 

dddct βα ,,  Desired crane-tip postion and corresponding joint angles 

 
Symbols: 
 
q     Vector of generalized coordinates 

α     1st joint variable 

β     2nd joint variable 

3x     3rd joint variable 

T     Kinetic energy  

transT     Translational kinetic energy  



     
     

 

rotT     Rotational kinetic energy  

V     Potential energy 
Q     Generalized forces 

ω     Angular velocity 
m     Mass 
I     Inertia tensor 
J     Jacobian matrix 
g     Gravity acceleration vector 

f     Force vector 

M     Mass matrix 
h     Vector of gyroscopic and active forces 
y     State vector 

cl     Length of cylinder frame 

osl     Offset start (opening joint – start of cylinder frame) 

oel     Offset end (end of cylinder frame – closing joint) 

pl     Length of cylinder piston 

rl     Length of cylinder rod 

cl     Offset end (end of cylinder frame – closing joint) 

1ϕ     Slope angle of 1st cylinder referred to e1 -frame 

2ϕ     Slope angle of 2nd cylinder referred to e2 -frame 

21,εε    Slope angles of 1st and 2nd torque link referred to e2 -frame 

iψ     Auxillary angles in 1st cylinder frame 

iθ     Auxillary angles in 2nd cylinder frame 

2r     Swivel radius of 3rd joint about 2nd joint 

3r     Swivel radius of crane-tip about 3rd joint  

diagr     Distance between 2nd joint and crane-tip 

sx     Spool stroke 

u     Control input 

0p     Tank pressure 

Sp     Supply pressure 

Np     Nominal pressure 

0C     Constant discharge coefficient 

NQ     Nominal flow 

Re     Reynolds number 
ν     Kinematic fluid viscosity 

trp     Transition pressure 

BA pp ,    Cylinder chamber pressures 



     
     

 

nω     Natural frequency 

dω     Ringing frequency 

ζ     Damping ratio 

k     Spring stiffness 
c     Damping factor 
τ     Time constant 

21, AA    Cross-sectional area of upper and lower cylinder chamber ( 21 AA > ) 

frF     Friction force 

gF     Gravitational force 

2,01,0 ,VV  Initial cylinder volumes 

21,VV    Dynamic cylinder volumes 

cd     Diameter of cylinder frame 

rd     Diameter of cylinder rod 

ρ     Density of hydraulic fluid 

intq / extq  Internal / External leakage flow 

oilE     Bulk modulus of oil elasticity 

21,CC    Oil constants 

intk / extk  Leakage coefficients 

μ     Static friction coefficient 

z     Average bristle deflection 

CF     Couloumb friction force 

NF     Nominal force 

vF     Viscous friction force 

vk     Viscous friction coefficient 

vδ     Viscous friction gradient 

SF     Static friction 

StF    Stribeck friction 

σv      Stribeck velocity 

σδ     Stribeck gradient 

210 ,, ααα  Static friction parameters 

10 , σσ  Dynamic friction parameters 

dip kkk ,,  PID control gains 

e     Control error 
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1 Background 

1.1 A typical forwarder in use 

Swedish economy is characterized by a market heavily orientated towards foreign trade in 
which the agricultural sector is of great importance. Within this branch, timber products 
account for an essential part of the export market. This emanates from a highly forested land 
utilization in Sweden (see Figure 1), recently not least because of improved transportation 
and distribution systems. Consequently agricultural technology plays an important role in the 
forest-based industry. In the middle part of southern Sweden there exist numerous 
manufacturers for forestry machines, all of them offer products to facilitate and speed-up the 
machining in wood proceedings. Some of the companies are joining, together with the 
Universities of Växjö and Kalmar, a research group named Heavy Vehicles (swed. Tunga 
Fordon), whose ambition is to develop know-how and advancement in technology in order to 
make the forestry vehicles become more efficient. 
 
One of the members within this research group is Rottne Industri AB, a leading manufacturer 
in logging machinery that has his headquarters located in Rottne, nearby the town of Växjö. In 
Sweden, Rottne Industri covers approximately 15% of the market for forestry machines with a 
production capacity of up to 200 machines per year. The company develops and 
manufactures a wide range of forwarders and harvester machineries covering everything from 
first thinning to clear felling. All of the machines are equipped with a hydraulic crane for 
handling the timber logs. It is a major objective within the sector to continually improve the 
efficiency and reliability of the forestry machines, predominantly by introducing more 
automated steering control. For research purposes Rottne Industri has provided one of their 
forwarders that is now located in the laboratory of the technology department at Växjö 
University. On the basis of this prototype of a forwarder, practicable research activities like 
sensor feedback and programmable control could be done in the laboratory hall of Växjö 
University. 

 

Figure 1: Land utilization in Sweden 
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Forestry work often consists of monotonous work steps that could be performed automatically 
facilitating the human work and thus save time and energy. A main limitation but also an 
essential way to enhance the efficiency of forwarders is the control interface of the crane. 
Nowadays the crane is manoeuvred manually by well-trained and experienced operators. 
They undertake the task of controlling each cylinder separately in order to move the crane-tip 
to its desired position. Consequently the operator has to use several levers and buttons 
simultaneously which complicates a precise and effective realization of the handling 
operation. In respect of this, the forestry industry is particularly interested in a more direct and 
easier way of controlling the crane in order to relief the driver from parallel operations. The 
answer to this problem is a control mechanism which allows controlling the crane-tip in a 
plane Cartesian frame, namely the up-down motion with one lever and the forward-backward 
motion using a second lever. 
 
In comparison to harvester machines that are additionally utilized in operations for felling, 
delimbing and cutting trees, a typical forwarder is used to haul the log from the stump to a 
roadside landing. Beside stability and flexibility, good tracking is one of the major conditions in 
order to carry out good log-hauling in a densely wooded working environment. Primarily 
forwarders are equipped with a powerful hydraulic system that has made them extremely 
popular within the class of heavy articulated vehicles. Since most of the forwarders consist of 
many moving parts, they are regarded as high maintenance wheelers. In the following 
sections a short description of the constructive aspects and the control principle are given. 

1.2 Vehicle construction of a forwarder 

Depending on performance and load carrying capabilities, forwarders nowadays exist in 
several versions that not only vary in dimension and size but also in power transmission, 
hydraulic equipment and steering. Whereas light weight built machines are employed in 
logging operations with load capacities of eight metric tonnes, Rottne’s Solid Rapid forwarder 
for example can carry payloads of up to 16 tonnes. 

 

Figure 2: Rottne forwarder SMV Rapid [15] 
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The machines are characterized by a robust frame design with powerful articulated joints, 
wide wheels and a load area with a low center of gravity for providing a good ground 
clearance. Hence forwarders have an excellent stability which makes them use the full reach 
and lifting capacity of the loader. Commonly they have a high ground pressure which allows 
climbing over rocks and stumps as well as travelling through deep snow or wet lands. 
Forwarders are basically equipped with a 24 volt electrical system for control and monitoring 
operations. The motion of each crane link is quick and easy actuated by hydraulic cylinders 
that are connected to a powerful hydraulic system. The system together with its working 
principle is specified in chapter 1.3. Generally the manipulator is a forward linkage of three 
beams with an additional telescopic extension arm. With this configuration the forwarder has 
a broad reach and a flexible operating mode which makes it a particularly suitable vehicle 
under exceedingly difficult conditions in the forest. 

1.3 The main working principle 

There exist several classifications of robot manipulators with variations in power source 
(hydraulic, electric, pneumatic), control method (servo / non-servo, closed loop / open loop) 
and application area (assembly / non-assembly). Depending on its field of application, a 
robotic system is also defined by its geometry. Several ways of linked motions are possible, 
e.g.: 
 

- articulated manipulators (three revolute joints) 
- spherical or SCARA manipulators (two revolute and one prismatic joint) 
- cylindrical manipulator (one revolute and two prismatic joints) 
- cartesian manipulator (3 prismatic joints) 

 
The laboratory forwarder from Rottne Industri is of the type of an articulated manipulator. It is 
also termed anthropomorphic manipulator because its joints are placed in a human specific 
linkage. The system design is shown in Figure 3 but it should be annotated that the Rottne 
forwarder is additionally equipped with an extractable telescopic forearm on which the gripper 
is mounted. 

Base

Body

Shoulder

Elbow Forearm

0z
1z

1θ

2θ

2z

3θ

 

Figure 3: Anthropomorphic manipulator 
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The configuration in Figure 3 allows the gripper for reaching a wide working area, still being 
most flexible and accessible. Often robotic systems are also valued in accuracy (attribute of 
how close the end-effector can come to a given point) and repeatability (attribute of how close 
the end-effector can return to a previously taught point), that are both highly dependent on the 
resolution of the signals, the backlash in the joints, the control algorithm and several outer 
influences. 
 
The control of a robotic system involves several tasks, beginning from signal perception and 
data processing to the actuating operations of the cylinder. A typical robotic paradigm of the 
anthropomorphic manipulator is given in Figure 4: 

input device/
teach pendant

computer
controller

sensors

mechanical arm

power supply

end-of-arm toolingprogram storage/
network

 

Figure 4: Robotic paradigm  

By using an input device, e.g. a teach pendant, the desired operation is commanded to the 
CPU. Sensors provide the necessary feedback information about the environment, the joint 
angles or the position of the end-effector. The adaptive control algorithm is implemented in 
the computer network and is responsible for calculating and generating a suitable output 
signal to the actuators that will move the mechanical structure. 
 
Forwarders are heavy machines that use a powerful hydraulic system to do work. The control 
principle is based upon articulated steering joint with double acting cylinders. A crane 
operator easily controls the valves from within a cabin and consequently distributes the fluid 
directly through the circulated load-sensing hydraulic system. Hydraulic fluid is transmitted 
under high pressure throughout the hydraulic hoses into the cylinder chambers. Thus, the 
cylinder force acts on the linkage and manoeuvres the coupled arms of the crane. By use of 
different cylinder dimensions, the resulting force of each cylinder can be specified according 
to its requirements. This phenomenon is demonstrated in Figure 5: 

F1

F2

A1

A2

F2F1

Hydraulic fluid

 

Figure 5: Mechanical analogy of hydraulic cylinders 
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Under equal chamber pressure for example, a hydraulic cylinder with two times the diameter 
of another cylinder ( 12 2dd = ) can exert a force that is four times higher since 

4
4

4
~

2
1

2
2

22
ππ ddAF == . By making use of this phenomenon, a hydraulically operated 

crane is able to carry extremely high payloads, which makes it perfectly cut out for log hauling 
operations in the forest. 

1.4 Problem definition 

Human operators of forestry machines are confronted with several multi-tasks at the same 
time, e.g. controlling of up to four crane actuators, cutting and thinning operations as well as 
steering and manoeuvring of the actual vehicle. The simultaneous work inevitably burdens the 
operator extremely which might lead to losses in efficiency and performance. As a result of 
this, several projects have been initiated within the mentioned project groups in order to come 
up with new strategies and methods to disburden the human operator and to increase the 
benefit of forestry machines. 
 
One of the problems to tackle is the control of the crane actuators. Nowadays they have to be 
controlled by at least two joysticks that are independently connected to the hydraulic system. 
With this kind of joystick configuration each hydraulic cylinder is addressed separately which 
might counteract the intended motion of adjacent links. Hence, in order to control the crane-tip 
to a desired position, the different joystick functions have to be balanced repetitively as the 
operator controls the joint angles and not really the position of the gripper. 
 
The cylinders used for actuating the laboratory crane offer complicated and dynamical friction 
behaviour. When using control algorithms for the manoeuvring of the crane links, friction may 
become a major problem, causing the performance of robotic systems to deteriorate. Friction 
occurs in all kind of mechanical systems that are in motion, in our case it is most notably as 
cylinder friction inside the hydraulic actuators. This implicates losses in the accuracy of our 
model, typically due to steady-state errors in position regulation and tracking lags. For an 
effective control method it is therefore of great importance to involve friction compensation 
schemes that capture the friction effect and thus counteract the arising frictional force. 

1.5 Goal 

One of the major goals of this work is to build up a complete model of the crane dynamics, 
including the hydraulic system and real body dimensions. This will be phased in different 
steps, beginning with a detailed investigation of the crane parameters, a derivation of the 
kinematics and dynamics of the crane links, the cylinders and the valve block. Furthermore 
the developed model has to be consolidated afterwards allowing the performance of crane 
simulations in MATLAB/Simulink. 
 
Another goal of this work is to simplify the operating control steps and consequently increase 
the performance of the crane by using a more advanced control princple. This should be done 
via control algorithm that uses the joystick command input for a direct control of the end-
effector. A basic PID control will be implemented that combines the inverse crane kinematics 
with optimization methods. 
 
A major aim of this work is to capture the friction phenomenon that occurs during the motion 
of the hydraulic cylinders. In order to provide friction compensation schemes it is most 
essential to estimate the individual friction force to an accurate extent. Therefore we have to 
set-up a cylinder test rig for friction evaluation and run several experiments that enhance the 
dynamical aspects of the friction force. The evaluated friction maps and nominal friction 
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parameters can then be used for further compensation schemes. It should be pointed out that 
the friction maps will be used to create a reference friction model. However, this work does 
not offer adaptive friction compensation schemes but this should be a major topic of the 
forthcoming works within the project at Växjö University. 

1.6 Recent approaches and previous work 

In recent years technical advancement within the field of forestry machines has been a major 
interest in Northern Europe. There are several ongoing works that deal with the topic of 
enhanced control algorithms for harvesting machines, mainly in order to introduce a certain 
degree of automatization to these machineries. Automatic performance will sooner or later 
speed up the working steps and at the same time ease the workload of the human operators. 
At present time, new control strategies for the hydraulic crane are one of the major subjects 
when it comes to employ automatized processes to forestry machines. Within this scope, 
trajectory-controlling of the crane’s end-effector is the preferential research issue and hence 
numerous papers have been published on this topic, most notably Crane-Tip Control of a 
Hydraulic Crane by Kalle Prorok. 
 
There have been several approaches in modelling of the crane dynamics. Numerous different 
crane types can be found today, but the main basic philosophies are the same no matter what 
the intended application is. One of the models is presented in [2]. This work has addressed 
the crane characteristics with some simplifications, e.g. simplified joint connection without 
torque link, linear illustration of the bodies, frictionless cylinder motion, etc. Furthermore the 
dynamics have been modelled in Dymola whereas this paper involves models that are coded 
in MATLAB. 
 
The forestry research Institute of Sweden Skogforsk is the central research body for the 
Swedish forestry sector and pursue demand-driven applied researches in the forest 
technology. Several projects including optimization in control strategies have been terminated 
and can be reviewed in numerous papers. One of the world pioneers in the field of crane 
control was Björn Löfgren, who has written articles over a couple of decades [2]. The author’s 
motivation is the work on crane-tip control from several different points of view. His 
examinations of the difference between new control algorithms and traditional human control 
concluded, as expected, in a more efficient work in the forest while reducing the work burden 
on the human operators. 
 
There is an on-going work within the project Intelligent Vehicles Off-Road (IFOR) at Umeå 
University, whose long-term focus is an autonomous off-road vehicle. This work describes the 
simplification in handling of a crane by unloading the driver from complicated geometric 
transforms. In [9], Kalle Prorok has described a better algorithm compared to previous work 
and thus tried to make the human control operations more attractive and less prone to 
muscular disorders. This work is still persisting and in the future navigation issues including 
advanced sensors will be studied. 
 
Uwe Mettin and Pedro Xavier Miranda La Hera have derived a control system for a hydraulic 
crane in [1] that is based upon an empirical tuned PID controller with additional feed-forward 
term for friction compensation. Here, two exemplary simulation models of an autonomous 
motion are presented and subsequently a comparison with the behaviour of the real machine 
is shown. 
 
Hydraulic friction is a topic that has been studied considerably for a long time. Consequently 
there is a wide range of friction models available nowadays. Static friction models for example 
are extensively discussed in [17]. When it comes to evaluate dynamic cylinder friction, this 
work will basically focus on the LuGre model that is addressed in several works of Carols 
Canudas de Wit. In [16] particular emphasis is given to the LuGre model and its behaviour in 
different situations. There are also methods presented that illustrate friction compensation 
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and its results from practical experiments. Canudas de Wit also applied model-based 
adaptive friction compensation on a DC motor in [14]. Here, a proposal of nominal static and 
dynamic parameter estimation is given. Its principle method is used in this work later on when 
we will evaluate dynamic friction on the hydraulic cylinders of the laboratory crane. 

1.7 Tools 

During the project work we have used several computer-aided tools which are described in 
the following section. 
 
The part-model of the laboratory crane has been created and provided by Rottne Industri. 
Dimensions of the bodies and the crane parameters could be read out in Solid Works. The 
Solid environment was also utilized to generate the screenshots that are used in this work for 
depicting the correlation of the crane linkage. 
 
We used Simulink for modelling the hydraulic system, beginning with Simulink blocks to 
capture the cylinder’s flow dynamics. Later on we added the valve block including sundry 
control algorithms. Simulink is an object-oriented tool which made it possible to model 
different systems that could be first handled and put together in the end. As a start to the 
crane model this method turned out to be most valuable, since its flexibility made us modify 
and exchange the blocks rather easily. 
 
Afterwards, the whole crane kinematics has been modelled in MATLAB R2007a that allowed 
for solving the derived differential equations. Its m-code can be found in chapter 7 as well as 
on the CD in the appendix of this thesis work. 
 
Friction experiments were performed in the laboratory hall at Växjö University. Since there 
was no adequate digital control system available in the laboratory, a dSpace system was 
provided by courtesy of Kalmar University. Sensor signals were fed into the dSpace hardware 
and could be readout via the Control Desk software. The block models for controlling the 
valves were created in Simulink. Control Desk was connected to the Simulink environment 
and in turn, the block models could be converted into ppc-files that were required to run the 
Control Desk software. 
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2 The laboratory crane 
Design and construction of harvester machines is an important part for the development of 
new control possibilities. Therefore we intent to achieve an environment in which new 
algorithms can be tested. By means of a laboratory crane it is easier and safer to detect 
possible errors that can result during the development process. By courtesy of Rottne Industri 
a small type of the Solid F9 forwarder was provided to the laboratory hall of the department of 
technology and design at Växjö University in March 2007. 

2.1 System description 

This type of a forwarder is primarily a thinning forwarder but also, due to its robust design, it 
can be used for log-hauling operations in small final felling stands. In Figure 6 a sketch of 
Rottne’s Solid F9-6 forwarder vehicle is depicted, illustrating vehicle body and hydraulic 
crane. This is the configuration set-up that is used for daily logging work in the forest. 

 

Figure 6: Solid F9 forwarder [15] 

The laboratory crane is mounted on a floor stand which is in turn affixed on the concrete floor 
of the laboratory hall. Hence, the construction is friction-locked so that the crane mount is 
well-positioned and can’t swerve from its origin position. In assembled state the crane 
consists in principle of mechanical links, joints and hydraulic actuators. The links can be 
assumed to be rigid - however, there is some sort of flexibility in the joints, most notably when 
the rotary joint of the 1st link is pivoted very quickly. Anyhow, we can neglect this matter of fact 
since our developed model only considers movements in two dimensions. Rotation around 
the vertical axis will not be considered. Accordingly, our crane model consists of three joints, 
two revolute joints (rotational) for the first arm and one prismatic joint (translatory) for the 
extension arm.  The 2nd link that is attached to the 1st joint is in general referred to as the 
boom arm, the 3rd link is defined as the jib arm and the 4th link inside of the jib is simply called 
extension arm (see Figure 7). 
 
The laboratory crane is not equipped with a gripper or a rotator that are in normal operating 
conditions attached to the crane-tip to handle the logs. The crane weights approximately 1100 
kg and when fully extended it measures an operating distance of 5.5 meter. The crane 
assemblies and components are drafted in Figure 7. 
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Figure 7: Draft of crane assemblies [12] 

2.2 Description of the crane components and assemblies [7] 

In this chapter we will describe the crane parts, measuring instruments (transmitters, 
transducers and amplifiers), the hydraulic system and other peripheral equipments that will be 
used with the laboratory crane. 

2.2.1 Rigid Beams 

The crane’s framework consists of mechanical links, namely three beams and a telescope 
beam that slides inside of the 3rd link. All of the crane links will be modelled as rigid bodies. 
The motivation for this assumption is given by a more straight-forward derivation of the crane 
dynamics (see chapter 3) which will simplify the equations of motion extremely. 
 
Sketches of the crane links are explicitly given in chapter 2.3, whereas the dimensions of the 
bodies can be found in the MATLAB-code, listed in the appendix at the end of this work. 

2.2.2 Hydraulic system 

A hydraulic system consists of a pump, a tank, filters, individual types of valves, hydraulic 
cylinders and hoses between the different units. 
 
Generally a forwarder has separate systems, one for transmission and one for the working 
hydraulics. The load-sensing hydraulic system is based on the physical principle that fluids 
are entirely incompressible. The pump delivers an oil flow at high pressure. By controlling the 
valves, the fluid is delivered to both chambers in the hydraulic cylinder depending on the 
direction of movement that is desired as oil is dropped simultaneously from the other cylinder 
chamber. The tank works as storage for oil but it is also important to eliminate the air bubbles 
that are generated by the pump. There are extra fine filters installed in all hydraulic 
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applications (>3μ) in order to intercept the particles that are released from the cylinder 
components. These particles could wear the cylinder components, especially the gaskets 
inside of the valves and consequently harm the cylinders and distort the straight-forward 
manner of the mathematic model. 

2.2.2.1 Hydraulic cylinders 

Hydraulic cylinders are used in order to apply a force to the crane elements that controls the 
joint motions. In general, hydraulic actuators are much more powerful than electrical actuators 
of comparable size due to high actuation forces and high power density. Because of their 
simple construction and low cost, hydraulic cylinders are widely used. A hydraulic cylinder 
basically consists of the cylinder unit, a piston and gaskets that are located at the intersection 
of piston and cylinder (see Figure 8). 

       

Figure 8: Sketch of a double-acting hydraulic cylinder 

The resulting force arises when letting compressed oil fill one of the spaces between cylinder 
and piston at the same time as the other one is dropped off. This force depends on the oil 
pressure inside of each chamber and on the size of the area the pressure acts on. 
Consequently the flow and both chambers' cross-section areas determine how fast the 
cylinder piston moves. 
 
There are several manufactures of hydraulic cylinders but the cylinder's diameters are often 
standardized. On the other hand, stroke and total length can be ordered entirely optional 
according to the customer’s demand. The cylinder sketch is given in Figure 24 and its 
parameters can be found in the appendix. 

2.2.2.2 Valve package 

Valve packages exist in a multitude of versions from several manufactures. Traditionally a 
valve block is designed including a slider that regulates both supply and return port. 
 
The valve package in Figure 9 controls the hydraulic flow by means of separate sliders for 
each port. Each slider is operated electrically with a spool and a local regulator. This type of 
valve block includes possibilities for more exact and more flexible control of the crane. For 
example this makes it possible to set the pressure in the return line deliberately in order to 
break the movement of the oil. In particular this is favourable when chamber pressures 
alternate from positive to negative pressure. 
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Figure 9: Valve block with separated input and output control 

2.2.2.3 Hydraulic power unit 

A hydraulic power unit consists of a pump, a tank, filters and valves for pressure restriction. 
There are different types of pumps available depending on the technical solution that is used 
in order to create the oil flow. The common pump types are gear pumps, radial-piston 
distributor pumps and axial piston pumps. For flexible hydraulic applications, an axial piston 
pump is used in most cases since these can be operated with a variable displacement that is 
the amount of oil that theoretically passes the pump during one rotation. The main advantage 
is that the pump can be continuously adjusted from zero flow to maximum flow. Thus, this 
type of pump is very energy efficient and suitable at applications where flow varies heavily. 
 
The assembly of a hydraulic unit and the special performance of the pump depends on the oil 
flows and the pressures that are requested. For the laboratory crane that implies a capacity of 
approximately 40 l/min at 200 bar pressure which corresponds to an effective energy of 
approximately 15 kW. The hydraulic power unit as shown in Figure 10 is located at Växjö 
University. This unit has a capacity of 60 l/min at 210 bar. 

 

Figure 10: Hydraulic unit at Växjö University 
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2.2.3 Sensors 

There are a number of sensors required in order to operate the crane and to carry out 
feedback control. The sensors can be used to as direct-input sampling in order to know which 
condition the crane has at any time. 
 
In Figure 11 the different types of sensors and their location at the crane are sketched. 
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Figure 11: Crane and sensor placement 

As mentioned earlier, we will disregard the movement that permits the rotary motion of the 
whole crane. Therefore we do not have any sensors installed at the 1st joint. Thus, the 
relevant types of sensors are pressure, position, angle and force sensors. In the following 
section the sensors are described more detailed along with their particular specifications. 
Before employing the sensors at the laboratory crane, appropriate connection and signal 
adjustment has to be done in order to interface with the dSpace system. Technical data 
sheets of the used sensors can be found in the appendix. 

2.2.3.1 Pressure sensors 

Pressures are often measured using the physical principle that the medium that is pressurized 
squeezes against a mechanical diaphragm. This diaphragm will deform and thus the 
deformation can be related to the pressure inside of the medium. In order to obtain a good 
precision, one has to adjust the measuring area to the expected pressures that arise. A 
common pressure sensor is shown in Figure 5. Amplifiers are used with pressure sensors in 
order to obtain a suitable level of the measuring signal. 
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Figure 12: Pressure sensor MBS 2050 

The crane’s pressure sensors are of the type MBS 2050 from the manufacturer Danfoss, see 
Figure 12. The sensors have a measurement range between 0 - 40 MPa and a sensitivity of 
0.3% of maximum pressure. The output signal is in the range of 10% - 90% of the supply 
voltage (5 V) which corresponds to the measurement range. 

2.2.3.2 Load sensors 

There are several possibilities to measure the resulting force on a cylinder. The laboratory 
crane is equipped with load cells that can be connected directly between the cylinder and its 
mounting. These sensors have a good precision but come with the drawback of being 
comparatively expensive. In Figure 13 the load sensor from HBM is shown. 

 

Figure 13: Load Sensor U9B 

For the 1st and 2nd cylinder (lifting and jibbing) sensors with a capacity of 50 kN have been 
chosen, whereas the sensor of the 3rd cylinder (extending) has a capacity of 20 kN. The 
sensors have a typical sensitivity of 0.5% of maximum level. The outgoing signal from the 
sensors is very weak. This is why the sensor has to be connected to an amplifier box to be 
fed with a supply voltage of 24 V. 
 
Another possibility to evaluate the resulting force of the cylinder chambers is to measure the 
pressure in both chambers, the gravitation force and derive a friction model describing the 
size of the friction force precisely (see chapter 5). 

2.2.3.3 Angular sensors 

In order to measure the rotation angles between adjacent links, incremental sensors are 
widely used. These should be designed to determine both the direction from the pulse and the 
zero level in order to avoid resets at each system start. Figure 14 represents an incremental 
sensor that could be appropriate for goniometry. 



    The laboratory crane 
     

    24 

 

Figure 14: Angular sensor 

The angular sensors are from Emeta with a resolution of 1000 pulses per turn, which yields in 
a resolution of approximately 0.3 degrees per pulse. However, it is possible to obtain a more 
detailed analysis of the signals. By dividing one turn into 4000 steps the sensors can be 
operated with a resolution smaller than 0.1 degrees. This resolution corresponds to a crane-
tip displacement of 6 mm. The sensors are supplied with 10 V or 24 V. 

2.2.3.4 Position sensor 

Position sensors are used for measuring the cylinder lengths and speeds. In order to obtain a 
stable and precise signal, the correct attachment of these sensors is most important. The 
crane consists of a thread sensor that operates as a common potentiometer by coiling up a 
thread, which is attached to the telescopic beam. When moving the telescopic beam very 
quickly, the dynamics in the thread can influence the results, as the spool cannot reel up the 
thread fast enough. However, the main advantage is that thread sensors are placed externally 
and thus easily within reach in order to check its function. To avoid the need of resetting the 
sensor each time the system is powered up, absolute position encoders should be preferably 
used. Alternatives encoders can be built-in position sensors, which are located inside of the 
cylinder. However, these sensors are fairly expensive and difficult to attach. The used sensor 
is shown in Figure 15. 

 

Figure 15: Thread sensors 

The length sensor for measuring the telescopic beam extension is produced by Unimeasure 
and is of a potentiometer type. It is supplied with a voltage of 10 V at a measuring range of 
1250 mm. 
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2.2.4 Peripheral equipment 

2.2.4.1 dSpace system 

In order to convert all sensor signals and at the same time trigger output signals to the valves, 
a dSpace system is used to which all cables are connected. Since we have only one dSpace 
module available we must prior the signals of capital importance. The remaining signals may 
be sampled with external equipments whereas the problem is to synchronize the clock to the 
dSpace system. 
 
The University of Kalmar has provided a dSpace system of the type DS 1044. This particular 
system is most appropriate to use with the laboratory crane and is shown in Figure 16. 

 

Figure 16: dSpace system from Kalmar University 

2.2.4.2 Amplifier box 

The following section provides an overview of the amplifiers and voltage supply units. An 
amplifier box was built at Växjö University1, its components are assembled on DIN-strips (35 
mm) inside of a plastic box to provide a flexible connection to other applications. The main 
set-up is shown in Figure 17: 

 

Figure 17: Amplifier box 
                                                      
1 Thanks to Torbjörn Ekevid, lecturer at Växjö University 
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The intention of using such kind of box is that all sensors can be fed from voltage sources of 5 
V, 10 V respectively 24 V. The signal and supply cables to the sensors are connected on the 
backside of the box, whereas the output signals to the dSpace system are transmitted on the 
box's left side. On the box's right side there are couplings to provide voltage supply to other 
applications. A filter is used in order to reduce disturbances that are excited by the main 
power supply.  

2.2.4.3 Interface box 

The laboratory crane is controlled via two joysticks. The control signals from the joysticks 
(related to the joystick deflection) are fed into a so called interface box that forwards the input 
signals to the input ports of a dSpace system 2. After certain data-processing in the Matlab 
environment, the converted control signals will be generated back into the interface box. 
Here, the voltage of the incoming signal will be divided in a defined way to suit the input 
limitations in Rottne’s IPS-system. The IPS-box then steers the electronic valves in the valve 
block of the crane. Figure 18 shows the signal flows between the different hardware parts at 
the laboratory crane: 

dSpace Interface box IPS
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Valve block

Amplifier box

x4

x8

x2

+24V
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x8 x8

sensor signals

PC

Data processing
& visualization

 

Figure 18: Peripheral equipment and data flow at the laboratory crane 

2.3 Sketches of the crane elements 

In this chapter we will address the individual crane elements, illustrating the parts that are 
essential to model the dynamics of the crane. Each link is hereby regarded separately and the 
coordinates are referred to a local frame that has its origin at each link’s rotary joint. We will 
not explicitly determine the vectors by its specific coordinates in the following section, but one 
can find the real crane dimensions in the appendix. 

                                                      
2 Thanks to Johan Olofsson, student in the department of Electrical Engineering at Växjö University 
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2.3.1 Link sketches 

2.3.1.1 Sketch of the 1st link 

We begin with link 1 which is represented in the coordinate frame of e1  (Figure 19). One can 

notice that only the vector to the cylinder’s swivel-joint ( ec1 ) and the 2nd joint position ( 2j ) are 

necessary to establish a vector chain to the next link. The fact that the ze1 -axis is the inertial 

frame’s vertical gives us the possibility to equate frame e1  and the inertial frame eI . 
Furthermore it is not necessary to regard the link’s center of gravity since the 1st link is not in 
motion. 

2j

ec1

zI e

xI e
 

Figure 19: Sketch of the 1st link 

2.3.1.2 Sketch of the 2nd link 

The second joint combines the 1st link with the 2nd link in the e2 -origin (Figure 20). The 

orientation of e2  is determined by its x -axis being parallel to the lower edge of the beam. 
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Figure 20: Sketch of the 2nd link 
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Besides the cylinder joints ( sc1  and sc2 ) one has to locate the joint of the 1st torque beam 1t  

and the joint in which the 3rd link is pivoted, namely 3j . Furthermore it is important to identify 

the center of gravity 2cg  in which the translation and gravity energy is assumed to be stored. 

2.3.1.3 Sketch of the torque link 

At the end of the 2nd beam, a closed-loop torque linkage is attached to transmit the forces to 
the 3rd beam. In Figure 21 both torque links are shown along with their centers of gravity and 
the corresponding joints to the next beam. Notice that et 2  is fixed in the joint of torque link 1 

( 2tj ) whereby torque link 2 is pivoted to its adjacent link 3 in 3tj . 
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Figure 21: Sketches of the torque links 

2.3.1.4 Sketch of the 3rd link 

The frame 3e  is placed in joint 3j  and is orientated by the longitudinal direction of the 3rd link 
(Figure 22). Its necessary coordinates are the center of gravity and the bearing of the 3rd 
cylinder, namely joint sc3 . 
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Figure 22: Sketch of the 3rd link 



    The laboratory crane 
     

    29 

2.3.1.5 Sketch of the 4th link 

The telescopic beam is located inside of link 3 and thus, its frame e4  has the same 

orientation as e3  (Figure 23). Vertically it is fixed at half the beam’s height. Moreover, one 

has to identify the coordinates of the center of gravity 4cg , the end position of the 3rd cylinder 

ec3  and the crane-tip position ct . 

4cg
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ze4
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Figure 23: Sketch of the telescopic beam 

2.3.2 Cylinder sketches 

The laboratory crane is operated by hydraulic cylinders, which serve as actuators. The 
cylinders are of different size, which results from their individual range of application. By 
reason of identical constructions we will demonstrate the cylinder parametrization on the 
basis of the 1st cylinder only. However, it is necessary to fix an own coordinate frame to each 
cylinder separately, namely in its longitudinal direction (see Figure 24). The resulting slope 
angle referred to its attached link is then a function of the piston position and will be derived in 
chapter 3.1. 
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Figure 24: Sketch of the cylinder 

The cylinder length is determined by the offset to the cylinder joints at both ends osl  and oel , 

as well as the lengths of piston, rod and cylinder frame ( pl , rl  and cl ). The only variable 
remains the stroke of the piston x , whose initial position is assumed to be in the cylinder 
center. That follows: 0=x  at a distance of 2/cos ll +  from the cylinder joint. 
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It is important to note, that all cylinder frames are fixed in the joint in which the cylinder is 
attached (opening joint). Furthermore the frame’s x -axis correlates to the longitudinal 
direction of the cylinder. From this it follows that cylinder vectors related to its local frame 
have no portion in y - and z -direction, which holds: )( xrr cc

vv = . 

 
The cylinder vectors are given as 
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and 22 cc rv , 32 cc rv  analogical. 

 
One should keep in mind that the frame of cylinder 1 is fixed at the 2nd link. Besides, the 2nd 
cylinder operates backwards as it is fixed to the torque link. That means the joint angle 
between the 2nd and 3rd link is decreasing with an increasing cylinder stroke. The position and 
orientation of each cylinder frame can be seen in Figure 25. 
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Figure 25: Location and orientation of the cylinder frames 
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3 Mechanical model 
To represent the basic geometric and dynamic aspects of a robot manipulator, one has to 
define the coherence between the different beams, associated to their adjacent link. In this 
chapter we will therefore derive a mathematical model of the crane mechanics. 
 
At first we will consider kinematic aspects, including rotational matrices and vector chains. 
The latter is done in both forward and reverse kinematics. The forward kinematics has to be 
applied when identifying the position of the crane-tip in terms of the joint variables, whereas 
the inverse kinematics is used for control purpose. In this regard, one has to identify the joint 
variables related to the desired position of the end effector. Before we start to model the 
crane mechanics, some simplifications need to be done in order to keep the mathematical 
expressions as short as possible. Assumptions are made as follows: 
 
- The whole model is visually represented in a planar frame that is specified by the rotary joint 
which is attached to the lower end of the 1st link. It is further used as the inertial frame to 
which all kinematic vectors are related. Nevertheless we will use vectors of size 3 in order to 
describe the entire kinetic energy caused by rotation. 
- The cylinders and its internal components are assumed to be massless and hence store no 
kind of energy, neither kinetic nor potential energy. This can be assumed due to the fact that 
the cylinder centers vary merely slightly when the cylinder piston is in motion. The reason for 
that is the fixed position of the cylinder frame which contributes predominantly to the whole 
cylinder mass. Rotational energy can be neglected because the cylinder’s slope velocities are 
almost zero (presented in chapter 3.1.2.2). 
- All parts of the crane, in particular the beams of the crane, are assumed to be rigid bodies 
and consequently resist any deformation. This denotes that the distance between two points 
of a link remains constant, regardless of external forces exerted on it. 

3.1 Kinematics of the crane 

The main objective of crane kinematics is to establish various coordinate frames in order to 
represent the position and orientation of rigid bodies. By using transformations among these 
coordinate frames it is then possible to build vector chains by which all vectors can be 
expressed in terms of a common inertial frame. 
 
Unlike the Denavit-Hartenberg convention, which is used predominantly in textbooks [4,5], we 
focus on transformation matrices that describe only the orientation of a frame. This brings the 
advantage that we are free to choose the orientation of the coordinate frames at each joint 
and do not have to set it exactly onto an axis of the adjacent frames. Figure 26 shows the 
procedure of frame setting for orientation purpose and for the Denavit-Hartenberg convention. 
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Figure 26: Link-fixed frames (solid line) and Denavit-Hartenberg convention (dashed line) 
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The dashed frame is used when applying the Denavit-Hartenberg convention. One can notice 
that its x -axis intersects the 3rd joint in the origin of frame e3 . However, since we prefer to 

use the local frames as given in the CAD-model, we chose the orientation of frame e2 , so 
that its x -axis is parallel to the lower edge of link 2 (solid line). 
 
As a start to the mechanical model, it is necessary to identify the joint variables that build up 
the generalized coordinates of the mechanical system. The number of joint variables is well 
defined by the system’s number of degrees of freedom. As our model consists of two rotary 
joints and one prismatic joint, we write the vector of generalized coordinates as 
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where α  is the angle between the 1st link and the 2nd link, β  is the angle between the 2nd link 
and the 3rd link and x3  is the cylinder extension of the telescopic beam (see Figure 27). 
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Figure 27: Joint variables and their corresponding frames 

Unlike previous definitions of the joint variables, we have defined α  and β  as the rotation 
angle from one link to its adjacent link. This brings the advantage, that the angles can be 
visually verified at the laboratory crane. However, one should keep in mind, that our definition 
of the joint angles does not directly represent the rotation of the coordinate frames to each 
other, because the pivoting joint angles are not referred to the same axis. An appropriate 
determination of the joint angles is addressed in the following section. 
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3.1.1 Rotation matrices 

3.1.1.1 Rotation matrices of link frames 

In this section we will address the problem of describing the orientation of a coordinate frame 
with respect to its adjacent frame. By specifying the geometric relationship between these 
frames, it is then possible to determine rotation matrices relative to the initial frame. We 
decide on fixing the initial frame to the rotary joint of the 1st link.  
 
In our case, the transformation can be obtained as an elementary rotation of a reference 
frame about the y -axis. According to Figure 27 the corresponding rotation matrices in terms 
of the generalized coordinates are 
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for the 2nd  joint and 
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for the 3rd joint. 
 
As we will model the crane in a planar frame (2-dimensional), we do not have to concern with 
the rotation of the 1st link about the z -axis. We are then allowed to equal 2AI  and 21 A . 

 
The extension of the 4th link is based on a prismatic joint, which allows a linear relative motion 
between the 3rd link and the telescopic beam (4th link). As the telescopic beam is located 
inside of the 3rd link, they can be seen as invariably parallel to each other, which follows that 
the 4th link has no rotation about the 3rd joint. Consecutively the rotation from the 4th link to the 
3rd link can be expressed through a unit matrix of 
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which holds that I A4 =I A3 . 
 
When applying kinematic chains in section 3.1.2, we will therefore consider the orientation of 

e3  also as the frame for the referrring coordinates of the telescopic beam. 

 
Now, having defined a coordinate frame to each link in terms of the generalized coordinates, 
we obtain the transformation matrices with respect to the inertial frame by post-multiplication 
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of the preceding transformation matrices: 
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with )sin()( xxs =  and )cos()( xxc =  respectively. 

 

One should bear in mind, that only two rotation matrices 21 A  and 32 A  are necessary to build 

the vector chains of the crane since )3(431 eyeAAI == . 

3.1.1.2 Rotation matrices of cylinder frames 

In order to combine the mechanical model with the hydraulic model it is necessary to 
determine the direction of the cylinder force. This force can be seen as an external input to 
the crane mechanics that causes the desired rotation of the joint variables. In this regard we 
evaluate the cylinders’ rotation matrices by using a simple trigonometric approach. 
 
We begin with the first joint variable α , that is computed as a summation of the variable 
angle 0ψ  and the link-fixed angles 1ψ  and 2ψ  (see Figure 28). Notice, that the dashed lines 
are parallel to the axes of the corresponding coordinate frame and thus represent its 
orientation. 
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Figure 28: Parametrization of α  

We apply the law of cosine to the inner triangle in Figure 28 and yield 
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In order to obtain 1ψ  and 2ψ , we refer to a simple vector trigonometry:  
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It is important to note that equations 10 and 11 result in negative angles 1ψ  and 2ψ . In this 
regard, we have to subtract 1ψ  and 2ψ  from 0ψ  in order to compute the first joint variable 
α . Plugging the cylinder vector 1crv  in equation 2 gives us a definition of α  that describes its 
direct relationship to the cylinder stroke 1x : 
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As one can notice in Figure 28, the cylinder frame has then been rotated by an angle of 

412
ψψπ

++  related to the inertial frame. This leads to the rotation matrix of the 1st cylinder 
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where 4ψ  is determined by 
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However, when modelling the crane in MATLAB, tests have shown that processing time is 
much lower when using a more convenient approach to the rotation angle. Therefore we 
define the cylinder vector in the inertial frame by means of a vector chain (see chapter 3.1.2) 
and apply a tangent function to the cylinder vector afterwards in order to obtain xc e1  related 
to zI e : 
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Here, 1ϕ  denotes the cylinder slope related to the z -axis of the inertial frame eI , however 
the orientation of the cylinder frame relative to e1  and inevitably to eI  is determined by a 
further rotation of 

2
π : 
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Whereas the computing of the transformation of cylinder frame 1 has been fairly simple, it 
needs some more effort to evaluate the rotation matrix of the 2nd cylinder. The reason for this 
is a more complex relationship between the joint angle and the cylinder extension due to the 
fact that a torque link is attached to the end of the 2nd cylinder (see Figure 29). 
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Figure 29: Parametrization of β  

We begin with an approach to 1θ  which is the lower angle inside the closed-loop quadrangle 

3213 tjttj −−− . Assuming we know the magnitude of β  from incremental measuring, 1θ  can 
then be determined by 
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with 123242 tjt rrr vvv −= . 

 
Once again both tana -functions are constant and implicate negative signs, regardless of the 
joint configuration. Therefore they appear as a positive term at the right hand side of equation 
17. 
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We continue with applying the law of cosine to both triangles that arise when splitting the 
quadrangle with its horizontal diagonal 31 cc rr : 
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Knowing 1θ , one can easily compute 2θ  by equating the right hand sides of equation 18 and 
19. It then holds: 
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Now we take a look at the left hand side of the inner quadrangle. The diagonal divides 3θ  into 
an upper and lower angle, namely '3θ  and ''3θ . We apply the law of sine to the arising 
rectangles and obtain: 
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At first sight it is ambiguous that the sina -functions in equation 21 and 22 remain positive. 
Therefore we refer to equation 17 in order to proof that 1θ  is possible to increase beyond 

°180 , which means that '3θ  is likely to become negative. Inserting the crane’s parameters 
shows that 
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We compute equation 23 and notice that °> 1801θ  for °< 50β . However, since '3θ  also 
becomes negative, we don’t have to concern with this special case any further. 
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The next step gives us the rotation angle of the 1st torque link. It is determined by a 
summation of '3θ , ''3θ  and its correlating angle to the x -axis of frame e2 : 
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In order to compute to the rotation angle of the 2nd torque link, we simply refer to the already 
determined angle 2θ . It holds 
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Finally, the determined torque angles have to be placed in the rotation matrix with their 
correct signs. The torque matrices referred to the e2 -frame are 
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In the same fashion as we done when evaluating 1cI A , we now express the vector of the 2nd 
cylinder by a vector chain to its start position and its end position and apply a tangent-function 
to obtain the cylinder’s slope angle related to the 2nd ink: 
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Finally the rotation matrix of the 2nd cylinder is computed as 
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We will not explicitly replace the rotation angles in equation 26 and 27 in terms of the piston 
stroke as the equations become fairly extensive. The computing in MATLAB shows that 
equation 24 consists of more than 50 different terms and thus it is hard to handle in written 
form. 
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3.1.2 Kinematic chains 

A kinematic chain can be seen as a structure of several rigid bodies that are connected via 
kinematic pairs, e.g. by prismatic and revolute joints. The laboratory crane consists of both an 
open kinematic chain, as well as a closed kinematic chain, which is formed by the torque links 
that are attached to the 3rd joint. A kinematic chain does not consider forces and torques to 
the mechanical system, thus it is only a geometric description of the crane. 
 
In this section, we will address both forward and inverse kinematics. Whereas the goal of 
forward kinematics is to determine the position of the end effector in terms of the joint 
variables, the problem of inverse kinematics is to find the values of the joint variables given 
the end effector’s position. As opposed to forward kinematics where there is only one possible 
solution for the end effector’s coordinates, there may be multiple solutions for the joint 
variables when formulating the inverse kinematics problem. 

3.1.2.1 Determination of forward kinematics 

Direct kinematic equations establish the functional relationship between the joint variables 
and the position of the end effector. For us, the problem of the forward kinematics is to specify 
the position of the crane-tip in terms of the generalized coordinates q . Afterwards it must be 
related to the piston position in order to connect the crane mechanics to the hydraulic model. 
The crane-tip position is hereby well defined by the joint variables α , β  and 3x , 

respectively by the cylinder strokes 1x , 2x  and 3x . When applying the rotation matrices that 
have been derived earlier in chapter 3.1.1, we are then able to express vectors from the 
inertial frame to any point of the crane on the basis of a vector chain. 
 
Below, a set of vectors is given, that describe the distance and orientation of the centers of 
gravity of all links related to the initial frame eI : 

 

111 cgcgI rr vv =  (30)

222212 cgIjcgI rArr vvv ⋅+=  (31)

333322213 cgIjIjcgI rArArr vvvv ⋅+⋅+=  (32)

( )443433333322214 cgeccscIjIjcgI rrrrArArr vvvvvvv +−+⋅+⋅+=  (33)

 
In an analogous manner, the vector to the crane-tip can be computed as 
 

( )cteccscIjIjIctI rrrrArArr vvvvvvv
434333333222 +−++⋅+= . (34)

 
The latter vector chain to the crane-tip ctI rv  is also sketched in Figure 30. This vector is of 
particular importance to the crane control, as it will be used as a feedback signal to the control 
interface. The main control topic will be discussed separately in chapter 6. 
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Figure 30: Vector chain to crane-tip ctI rv  

3.1.2.2 Determination of inverse kinematics 

As one could notice in the preceding section, it was fairly easy to compute the vector 
coordinates of the crane-tip in terms of the joint variables α , β  and 3x . However, in order to 
control the crane, we have to apply the principle of inverse kinematics that deals with the 
problem of finding the joint variables related to a given position of the end-effector. Once 
knowing the exact joint angle at a certain crane configuration we will develop a systematic 
algorithm in order to transform the desired motion specifications assigned to the end-effector 
into the corresponding piston strokes. 
 
The main problem of inverse kinematics is that there may exist more than one possible 
configuration of the vector of generalized coordinates for a specific position of the end-
effector. Besides, the equations to solve are in general non-linear, which might end up in an 
admissible solution that is out of the cranes working area. The problem of multiple solutions 
rises, if the number of degrees of freedom is higher than the number of variables that are 
necessary to describe a given task. 
 
Our first goal is to express the crane-tip position in terms of the generalized coordinates. 
There are several ways to derive inverse kinematics equations, e.g. as proposed in [4, 5]. 
These equations are much too difficult to solve directly. Nevertheless we have to identify the 
joint variables in a closed form without iterative search in order to solve the equations rapidly 
and thus meet the demands of the sampling rate. Therefore we will apply a geometrical 
approach to determine the joint variables with relative certainty. 
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Unlike the problem of forward kinematics that always consists of one unique solution, there 
may be several solutions or even no solution at all when applying the principle of inverse 
kinematics. As a start, we set the extension of the telescopic beam to zero, however it will be 
varied later on in chapter 6. With two degrees of freedom in our system, there are now only 
two crane configurations possible (see Figure 31): 

current crane-tip position

desired crane-tip position

1

2

 

Figure 31: Redundancy of inverse kinematics with 2 possible solutions 

The number of possible solutions to the inverse kinematics problem strongly depends on the 
particular engineering design of the manipulator. With a restriction of the revolute joints α  
and β  to less than 180°, the 2nd solution in Figure 31 then corresponds to a physically 

unrealizable configuration as β  exceeds 180°. 
 
By using a geometrical approach to the problem of inverse kinematics, we are able to define 
the corresponding set of joint variables α  and β  for the 1st solution (see Figure 32). 
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Figure 32: Determination of inverse kinematics 
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Introducing dα̂  and dβ̂  as the desired angles related to the joint-to-joint axis, the law of 
cosine brings us 
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with 322 jjr =  and dctjr 33 = . 

 
Knowing the desired coordinates of the end-effector, the diagonal that divides the quadrangle 

dctjj −−− 320  can be written as 

 

3, jdctdiag rrr vv −= . (36)

 

The desired rotation angle dα̂  is then equal to the summation of the upper and lower angle 
about the 2nd joint. The two angles can be determined by applying the law of cosine to both 
triangles: 
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The desired (predetermined) position of the crane-tip and consequently the vector dctr ,
v

 will be 
computed in chapter 6 in terms of the joystick control input. However, inserting any possible 
value for the end-effector’s position (within working range) leads to a unique solution. 
 
Finally the slope angles between the frame’s x -axis and the joint axis have to be considered. 
The desired joint variables are then defined as 
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With equations 38 and 39 the joint angles are now well-defined at a certain crane position. 
Notice, that such a unique solution only exists at a given extension of the telescopic beam. 
However, when operating the crane, we will optimize the joint extension by applying the 
derived formulas for varying cylinder strokes 3x . The corresponding algorithm will be 
developed in chapter 6 by means of a penalty function. 
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3.1.2.2.1  Joint variable α  

Having derived the joint angles in terms of the end-effector’s position, it is now time to write 
the piston stroke 1x  and 2x  as a function of the joint variables α  and β . By using a 
trigonometric approach, the orientation of each cylinder frame was given in terms of the 
generalized coordinates. Therefore we go back to the results of chapter 3.1.1. Solving 
equation 12 for the cylinder stroke shows that 
 

2
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This particular relationship between the joint angle α  and the piston position 1x  is graphed 
in Figure 33. The MATLAB code can be found in angle_limits_alpha.m. 

 

Figure 33: Correlation between joint angle α  and piston stroke 1x  

When operating the crane it has to be assured that the second link is not rotating beyond an 
angle of °180  in order to keep the system stable. Therefore we have to define an upper 
angle-limitation of maxα = 180°. However, this configuration would correspond to a cylinder 
extension that is out of range and thus impossible to obtain. Because of constraints in the 
cylinder dimension, we can extend the piston to a maximum of maxx = 217 mm. As one can 
notice in Figure 33, this specific threshold corresponds to a maximum joint angle of maxα = 

172°. Consequently, we have to apply this angular limitation to the control parameters in 
order to restrict x1 from extending logically beyond the cylinder’s end. Figure 33 also shows 
that the maximum cylinder retraction of minx = -0.155 mm (due to the rod length) leads to a 

limitation in the lower angle of minα = 45°. These geometrical restraints have been approved 
and verified with the corresponding configuration at the laboratory crane. 
 
Furthermore it appears that the relationship between α  and x1 is almost linear, most notably 
in the range of -0.1 m ≤< 1x 0.15 m. In any case the designers try to keep this relation linear 
in order to facilitate manual operating of the crane. 
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3.1.2.2.2 Joint variable β  

In chapter 3.1.1 we have learned that it is quite a big effort to compute the rotation matrices of 
the torque links in chapter 3.1.1. Now we take advantage of these results and state the 
relation between the 3rd joint variable β  and the stroke of the 2nd cylinder x 2 . 

 
In a first step, it is our goal to determine the overall vector of the 2nd cylinder in terms of β . 
For this purpose, we apply a closed vector chain from the second joint to both the start 
position and the end position of the cylinder and yield 
 

scttttc rrArr 2211121222
vvvv −⋅+= . (41)

 
One should notice, that the joint variable β  is hidden in the rotation matrix 12 tA . 

 
Now we proceed in the same way as we did when computed the stroke of the 1st cylinder - we 
substitute the cylinder vector 22 cr

v  with the individual cylinder elements (equation 2) and 
rewrite equation 41 with focus on the piston length x2 :  
 

2
11

111222
pc

oerosc

ll
lllrx

+
+++−= v  (42)

 
In this case, the above-quoted relationship between β  and x 2  is rather complex since β  
appears in several terms of 22 crv . Thus we do not give an extensive formulation of )(2 βx  
at this point. Instead we compute this particular relationship with MATLAB again, which yields 
in the following figure (m-flie: angle_limits_beta.m): 
 
 

 

Figure 34: Correlation between joint angle β  and piston stroke 2x  
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According to Figure 34, the maximum angle of maxβ = 178° is reached at a retraction stroke 
of min2x = -0.101 m. This retraction determines the upper angular limitation as it corresponds 
to the end position of the cylinder. As one can notice, certain linearity is given below a 
cylinder extension of approximately 2x = 0.150 m. When moving the piston further than this 
threshold, the relationship becomes rather non-linear until the cylinder reaches its maximum 
extension of max2x = 0.210 m at a joint angle of minβ = 5°. 

3.1.2.2.3 Joint variable 3x  

The 3rd cylinder steers the extension and retraction of the telescopic beam. As it has no 
rotation around any axis, the only limitation for this cylinder is due the its cylinder length. With 
a total length of the cylinder of cl = 0.71 m and a piston length of pl = 0.08 m, the maximum 

cylinder extension and cylinder retraction are max3x = 0.315 m and min3x = -0.315 m 
respectively. It is obvious that the relation between the piston stroke and the extension of the 
telescopic beam is directly proportional. 

3.1.3 Workspace 

The workspace of the crane represents the portion of the environment that the crane’s end 
effector can access. As we model the crane in a planar frame with no rotation about the z -
axis, the total workspace is then the total area swept out by the crane-tip as all possible 
motions are executed. 
 
In our case, the robot is designed as an anthropomorphic manipulator, because the links are 
designated as the body, upper arm, and forearm respectively. Its geometry is realized with 
three revolute joints and a prismatic joint, which provides a larger workspace than other 
kinematic geometries relative to its size. This feature becomes extremely indispensable with 
increasing log size and thus a large accessible working area is of great importance for an 
effective forwarder. 
 
The working area is constrained by the geometry of the crane links as well as the operating 
range of its joint variables. The mechanical constraints on the joints have been determined in 
the previous section and are summarized in Table 1: 
 

Joint variable Minimum value Maximum value 

α  45° 172° 

β  5° 178° 
x3  -0.315 m 0.315 m 

Table 1: Limitations of joint variables 

With this set of limitation, we apply the possible range of joint variables to the MATLAB model 
workingarea.m in order to define the various positioning of the crane-tip. The operating 
working area of the crane manipulator is shown in Figure 35: 
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Figure 35: Working area 

The blue area represents the position of the crane-tip accessible with a maximum extension 
of the telescopic beam whereas the black area gives the operating position with a maximum 
retraction of the telescopic beam. The red area (clearance between upper and lower end of 
bubbles) is accessible with extensions in between the limitation range. 
 
Also notice, that Figure 35 represents all possible crane-tip positions only because of cylinder 
limitations. However, we will further define some more constraints in chapter 6 due to 
obstacle avoidance as well as safety tolerance. The latter will be implemented in the control 
algorithm in order to slow down the crane-tip before leaving its working area. 

3.2 Dynamics of the crane 

The derivation of a dynamic crane model plays an essential role in simulation of crane 
motions. Whereas the kinematics equations of chapter 3.1 describe the crane’s motion 
without regarding the interacting forces and torques, the dynamics formulate explicitly the 
relationship between force and motion. In this chapter we will therefore consider the 
equations of motion that are most important for the simulation and the design of new control 
algorithms. This allows testing of control and motion planning strategies without the need of a 
physical system. 
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3.2.1 Euler-Lagrange formulation 

The dynamic approach in this work is based on the Euler-Lagrange method that describes the 
motion of a mechanical structure with holonomic constraints. Since the Euler-Lagrange 
formulation is straightforward, there is no need to consider joint forces explicitly. The whole 
mechanical system is divided into several parts whereas the individual equations will be 
consolidated in the end. In order to determine the Euler-Lagrange equations, we will formulate 
the system’s Lagrangian, namely the difference between the system’s kinetic energy and 
potential energy. 
 
At the beginning of chapter 3 we defined the set of variables that is represented by the vector 
of generalized coordinates q . Notice that the number of degrees of freedom determines the 
vector size. In our case the vector consists of three joint variables, that is two revolute joints 
and one prismatic joint. Consequently, the vector of generalized coordinates q  efficiently 
describes the position and orientation of the links in a planar frame. 
 
As a function of the generalized coordinates, the Lagrangian L  of the system can be defined 
as 
 

VTL −= , (43)

where T  is the total kinetic energy and V  is the total potential energy of the system 
respectively. 
 
The general Lagrange equations is written in the form of 
 

Q
q
L

q
L

dt
d

=
∂
∂

−
∂
∂
&

, (44)

where Q  is the vector of generalized forces associated with q . The terms of the Lagrangian 
will be determined in the next sections. 

3.2.2 Kinetic energy 

The total kinetic energy of a rigid body is given by two terms - the translational kinetic energy 
(relative to the motion of each link) and the rotational kinetic energy (relative to the motion of 
each joint). It is written as a summation of the energy stored in each link: 
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1 ωωvv

, (45)

where im  is the total mass of the body i , cgiI v ,  and iI ω  are the linear and angular 

velocity vectors related to the inertial frame and ii I  denotes the inertia tensor about the 
individual centers of gravity cgir , . The vectors necessary for computing the kinetic energy are 
sketched in Figure 36: 
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Figure 36: Evaluation of kinetic energy 

As already mentioned earlier, we have simplified the dynamic crane model by reducing the 
mechanical parts to n = 4. Furthermore, the 1st link is not in motion when the crane is 
considered to operate in a planar frame. Thus the dynamic formulation takes three links into 
account, namely the 2nd, the 3rd and the telescopic link. The mass as well as the inertia tensor 
of each link is given in the appendix. 
 
We will now focus on the unknown quantities of equation 45 that have to be determined. In 
this regard, the linear and angular velocities of the respective centers of gravity must be given 
as a function of the generalized coordinates. For this purpose, both velocities are expressed 
in terms of the Jacobian matrix that represents the contribution of the joint variables to the 
velocity of a single link i : 
 

qqJv cgvii &⋅= )(,  (46)

qqJ ii &⋅= )(ωω , (47)

where cgviJ ,  denotes the translational Jacobian of the center of gravity and iJ ω  the 
rotational Jacobian respectively. Notice, that the translatory velocity is only dependent on the 

joint variables and is not time-dependent which follows that 
t
r

∂
∂ v = 0. 

 
 
 
 
 
 



    Mechanical model 
     

    50 

The Jacobian matrix can be obtained by a partial derivation of a vector with respect to the 
generalized coordinates. In our case, the Jacobian matrices are determined by: 
 

q
r

qJ cgiI
cgvi ∂

∂
= ,

, )(
v

 (48)

q
qJ iI

i &∂
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=
ω

ω )( . (49)

 
Replacing equations 46 and 47 in equation 56 yields in 
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3.2.3 Potential energy 

The crane is assumed to consist of rigid bodies with no joint flexibility. Thus the potential 
energy that is stored in the system happens to come up only due to gravitational forces. It can 
be expressed by assuming that the mass of each link is concentrated at its center of gravity: 
 

cgI
T rmgV v= , (51)

where g  is the gravity acceleration vector and cgI rv  the vector of the centers of mass in the 
inertial frame associated to q . 

 
The total potential energy of the crane manipulator is then given by 
 

)(
2

, qrgmV
n

i
cgiI

T
i∑

=

= v , (52)

where  cgiI r ,
v  has been derived in chapter 3.1.2 and the mass of each link can be found in the 

appendix. 
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Figure 37: Evaluation of potential energy 

3.2.4 Generalized forces 

The generalized force vector Q  represents the applied forces in the constraints of the bodies 
that are not covered by equation 50 and 52. The goal of this section is to formulate a set of 
forces associated to the generalized coordinates q . 

 
By separating the three cylinder actuators from the mechanical parts of the crane, the 
resulting cylinder force can be seen as an external force that acts onto the crane parts. 
According to this, there are in total six cylinder forces that are introduced to the links 
( 6=m ). The generalized forces can then be formulated as 
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, (53)

where jI f  terms the force vector related to the inertial frame and )(, qr fjI
v  denotes the 

point of force application. 
 
We can further derive the velocity Jacobian )(, qJ fvj  in the same fashion, as done in 
equation 48, which yields in 
 

( )∑
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Figure 38 sketches the cylinder forces mf  and the respective vectors to the points of force 
application: 
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Figure 38: Evaluation of generalized forces 

One should keep in mind that the transmitted actuator force jf  is aligned between two 
bodies and thus corresponds to a spring-damping phenomenon. Anyhow, we will not consider 
a spring-damping behaviour of two bodies in contact. Instead we assume that the generalized 
force is expressed solely in terms of the resulting cylinder force, caused by the differential 
pressure of the adjacent cylinder chambers. The detailed determination of the cylinder forces 
will be separately addressed in chapter 4.2. 

3.2.5 Equations of motion 

As mentioned in the beginning of this chapter, the Euler-Lagrange equation can be written in 
terms of the system’s total kinetic and potential energy. We replace equation 43 in equation 
44, which gives us 
 

( ) ( ) TQ
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qVqqT
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d

=
∂

−∂
−

∂
−∂ )(),()(),( &

&
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We begin with the computation of the 1st term of the equation’s left hand side. In the latter 
section, we have computed V  as a function of the generalized coordinates q  only, and 
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therefore the following holds: 
 

0))((
=

∂
∂

q
qV
&

 (56)

 
It is then obvious that after applying the distributive law, equation 55 yields in 
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According to [10] one can also substitute the time derivative for the partial derivative related to 
q  which gives us 
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Finally, we define the n x n mass matrix 
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and the vector of gyroscopic and active forces 
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for replacing them in equation 58 which yields in: 
 

0),()( =− qqhqqM &&&  (61)

 
Rewriting equation 61 shows that 
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which allows us to define our first state space set of the mechanical system: 
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4 Hydraulic model 
In this chapter we will derive a non-linear model of the hydraulic system that is connected to 
the laboratory crane. A hydraulic system consists of hydraulic cylinders, a hydraulic pump, 
hoses between the different units and valves for controlling the hydraulic flow. This work will 
not specifically regard the hydraulics of the pump, but it has been a major topic of ongoing 
works that in this concern also deals with the subject of load sensing of excavators and 
forestry machines [2]. 
 
As a start, the hydraulic system will be distinguished into a valve model and a cylinder model. 
Afterwards, both sub-systems will be combined in order to derive the non-linear state space 
equations of the entire hydraulic system. Finally in chapter 7, the derived equations are 
applied to a MATLAB environment where the overall aim is to create a suitable m-file that 
captures the dynamic model of the crane. 

4.1 Mathematical model of the spool valve 

The valve block represents the main control unit of the crane. It is made up of six proportional 
directional valves including a spool and two return springs at each end. The following section 
describes a static valve model and will further expound the valve dynamics in order to derive 
the equations of motion. In this regard, we will also consider the critical flow through the 
valves and thus distinguish between laminar and turbulent flow. 

4.1.1 Static model of the spool valve 

4.1.1.1 Valve configuration 

The valves that are used for controlling the double-acting hydraulic cylinders are solely 4/3-
valves, that is, four ways and three positions. Thus, there are two incoming ports (pump 
supply and return tank) and two outgoing ports (A and B) connected to the valve (see Figure 
39). 

)(tu

)(),(),( txtxtx sss &&&

A B

 

Figure 39: Sketch of a 4/3 valve 
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One should bear in mind that port A is always connected to cylinder chamber 1 (blind-end 
side), whereas port B is linked with cylinder chamber 2 (rod-end side). 
 
The spool’s position can be regulated such as the supply port is connected to either port A 
( sx > 0) or port B ( sx < 0). The intermediate position ( sx = 0, sketched in Figure 39) is to 
freeze the cylinder piston, where all the valve flow through the ports is stopped immediately. A 
spring is used at both ends of the spool in order to force the spool back into its initial position. 
This will cause a flow stop when the coil is not energized. 
 
The sixth valve, which controls the flow to the cylinder of the telescopic beam, is slightly 
different compared to the other valves, as it is a so-called regenerative valve. During the 
extraction movement, ports A and B are then both connected to the supply port. From this it 
follows, that the pressures in chamber A and chamber B are nearly the same and the piston 
will only move due to the larger cross-sectional area of the cylinder’s blind-end chamber (A). 
The resulting cylinder force ( rodpAF = ) then determines the piston velocity and will push the 
oil from the rod-end of the cylinder (chamber B) back into chamber A. As a conclusion, a 
regenerative valve gives rise to rapid extractions with less oil consumption. 

 
The several valve configurations and their system responses are sketched in Table 2: 
 

Spool position sx  Valve nr. / 
Cylinder nr. 3 Cylinder response Joint 

variable 

 

2 / 1 
1Q

2Q

 

↑α&&  

 

3 / 2 

1Q
2Q

 

↓β&&  

 

6 / 3 

1Q

2Q

 

↑3x&&  

 

2 / 1 
1Q

2Q

 

↓α&&  

                                                      
3 Valve nr.1 is used in order to control the rotary joint located at link 1 which is not discussed in this work 
due to a planar model. Besides, valve nr.4 and nr.5 are not in use. 
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Spool position sx  Valve nr. / 
Cylinder nr. Cylinder response Joint 

variable 

 

3 / 2 

1Q
2Q

 

↑β&&  

 

6 / 3 

1Q

2Q

 

↓3x&&  

 

2 / 1 
3 / 2 
6 / 3 

no valve flow 

0=α&&
0=β&&

03 =x&&  

Table 2: Flow response of different valve configurations 

4.1.1.2 Working principle 

Generally the crane valves are controlled electronically, that is by solenoid-operated devices 
such as coils. However, the valve block of the laboratory crane is equipped with certain kind 
of pre-valves in addition to the main valve so that its working principle can be explained as 
follows: 
 
The induced magnetic field provides the transformation of an electrical signal into an 
electromagnetic force, which drives the spool of the pre-valve to its desired position (see 
Figure 40). In general there are two pre-valves controlling one main valve. One pre-valve 
controls the pressure at one end of the main valve, the other pre-valve at the other end. The 
main valve spool is centerd by springs. Hence, a flow ( 'Aq , 'Bq ) is caused into the main 
valve chamber and generates a pressure at the spool ends, meaning that the position of the 
main spool sx  is thereby hydraulically operated. From the spool displacement it follows that a 

flow is generated through the valve port caused by the supply pressure Sp  and the tank 

pressure 0p . The output flows of the valve ( Aq , Bq ) then vary the pressures in both cylinder 
chambers. 
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Figure 40: Orifice flows of a 4/3-valve 

The main valve of the crane is a so called flow valve. It is constructed to give an oil flow to the 
valve that is proportional to the control signal. The differential oil pressure across the main 
valve is kept constant, in our case it is kept to eight bars. The constant pressure across the 
valve makes the flow to be dependent only of the main spool position. 

 

Figure 41: Valve spool block (Parker) 

In Figure 41 a valve block from Parker Fluid Control Division is shown. The pre-valve spools 
are located at the right-hand side whereas the main valve spool is the silver rod in the middle. 
On the lower right, one can notice the spool of the pre-valve controlling the differential 
pressure. The lower left valve is used for load sensing. This is because the load-induced 
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pressure downstream of an orifice is sensed and pump flow is adjusted to maintain a constant 
pressure drop (and therefore flow) across the orifice. The red channels are for pressurized oil 
and the blue ones indicate the oil that flows back to the tank. The yellow ones are the 
channels to the chambers of the cylinder. The green channel is controlling the oil pressure 
across the main valve. 
 
The pump that is connected to the valves of the laboratory crane is assumed to produce a 
constant pressure. When operating the crane, the pump is adjusted to a supply pressure of 

sp = 140 bar. It also seems reasonable that the tank pressure 0p  can be put on an 
atmosphere pressure level, as the fluid must be allowed to flow freely back into the tank. The 
experimental setup for friction evaluation (see chapter 5) also includes a separate hydraulic 
cylinder controlled by a traditional industrial proportional control valve. 

4.1.1.3 Flow equations 

Hydraulic flows can arise when a restriction causes a pressure drop between adjacent 
spatiality. In Figure 40 one could identify that the shifted spool determines the restriction size 
of the cross-section areas of supply and return port. Consequently Aq  and Bq  can be seen 
as restriction flows, that are functions of the spool position and the local pressure difference at 
the orifice. 
 
The flow through a restriction is generally turbulent and then happens to be proportional to the 
squared root of the pressure drop: 
 

pxCq s Δ= 0  (64)

 
In practice there is some loss of energy at the orifices that can be considered in terms of a 
constant discharge coefficient 0C : 

 

2max,

0
N

s

N

px

QC
Δ

=  
(65)

where NQ  is the nominal flow and NpΔ  the nominal pressure drop respectively. Both 
quantities are based on static valve characteristics that are provided in data sheets. 
 
When applying equation 64 to the valves of the laboratory crane, the orifice flows yield in 
 

ASASsAtur ppppxCq −−= )sgn(0,  

000, )sgn( ppppxCq BBsBtur −−=  for 0>sx , and 
(66)

000, )sgn( ppppxCq AAsAtur −−=  

BSBSsBtur ppppxCq −−= )sgn(0,  for 0<sx  respectively. 
(67)
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One should keep in mind, that equation 66 changes when using the regenerative valve of the 
3rd cylinder. In this case the flow from port B becomes 
 

SBSBsBtur ppppxCq −−= )sgn(0, . (68)

 
Laminar flow can arise when the restriction at the orifice is fairly narrow, for example in the 
origin of an opening process. Then the flow happens to become directly proportional to the 
pressure drop and hence equations 66 and 67 change to: 
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(70)

 
According to [1] the transition region at which the flow turns from a laminar to a turbulent state 
can be estimated in terms of the transition pressure 
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where trRe  is the threshold for the Reynolds number and ν  is the kinematic viscosity of the 
fluid. 
 
The flow is assumed to be laminar when the pressure drop is below transition pressure. The 
Reynolds number then indicates the point at which the flow changes to a turbulent state. In 
traditional hydraulic applications the critical Reynolds number is generally in the range of 
2000 < trRe  < 3000. Plugging trRe  in equation 71, the size of the transition pressure is then 
in a range of approximately 2 to 4 bar. Hence, the maximum laminar flow is given at 
 

trslam pxCq 0max, 3= , (72)

whereas the turbulent flow has its minimum at 
 

trstur pxCq 0min, = . (73)

 
In order to achieve a smooth transition between the two flow states, we harmonize equations 
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66/69 and 67/70 respectively, which gives a more practical description of the flow dynamics: 
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where transq  is the flow in the transition range max,min, trtr ppp <Δ< . 

 
From the different flow equations we graph the flow’s dependency on the pressure drop and 
the maximum spool opening in MATLAB and yield the chart depicted in Figure 42: 

 

Figure 42: Restriction flow in terms of a merged laminar and turbulent flow 

As one can notice in Figure 42, the laminar flow increases constantly with the pressure drop 
until a level of 2 bar has been reached. From 2-4 bar equation 74 takes effect until the 
turbulent flow dominates and thus the flow gradient decreases. In either case, the size of the 
restriction opening is always directly proportional to the valve flow. 
 
Strictly speaking there is some leakage between the spool and the inner body of the valve. It 
follows that there has to be a flow ( 1Lq  and 2Lq ) from the inner spool segment to its adjacent 
chambers (see Figure 40). The corresponding flow chart is given in Figure 43. 
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Figure 43: Restriction flows of a 4/3-valve [1] 

According to Figure 43, the port flows are computed in the following manner: 
 

),,(),,( 1 TAgLASsaA ppxqppxqq −=  

),,(),,( 2 BSgLTBsbB ppxqppxqq −=  

),,(),,( 2 BSgLASsaS ppxqppxqq +=  

),,(),,( 10 TBgLTAsb ppxqppxqq +=  

(75)

 

We notice that the leakage flow is a function of the gap size gx  between the spool and the 
valve frame. In general, the gap size is almost minuscule which follows that the leakage flow 
is innately low. However, when using a spool configuration that overlaps the ports, leakage 
can be further reduced primarily in the non-energized mode. As a matter of negligible leakage 
flow and also in order to keep the equations manageable, we will subsequently not include 
the leakage effect of the valves to the hydraulic model. 

4.1.2 Dynamics of the spool valve 

The dynamic spool model is an essential part when designing control devices. We have 
learned that the spool position is the main control input to the static system and therefore it 
will be represented in a linear function of the control input. 
 
Before we start to model the spool dynamics, the following assumptions are made in order to 
keep the equations of motion rather straightforward:  
 
- The leakage flow, derived in the previous chapter is negligible and will consequently not be 
considered in the dynamic model 
 
- The complex behaviour of the hydraulically operated spool will be simplified and described 
by a solenoid operated spool 
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- Inside the hydraulic hose, there is no pressure drop. However, the rise in pressure at the 
cylinder connectors is taken into account specially. 
 
- The pump supplies the valves with a steadily constant pressure whereas the tank pressure 
is put on a level of atmosphere pressure. 
 
- Hydraulic friction inside of the hoses will be neglected 
 

 

 

The dynamic of a spool valve follows approximately a linear differential equation of second 
order described in equation 76: 
 

Ftkx
dt

tdxc
dt

tdxm s
ss =++ )()()(

2

2

, (76)

where m  is the mass of the spool, c  the damping factor and k  the spring stiffness. The 
force F  can be seen as an input to the system, e.g. the input current to the valves. 
 

By substituting 2
nmk ω=  and kmc ζ2=  equation 76 becomes 
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s ωωζω =++ , [3] (77)

where )(tu  is the systems control input. 

 
The system behaviour is then sufficiently described by the two fundamental model 
parameters, the valve’s natural frequency 
 

2
2

2 1
dn ω

τ
ω +=  (78)

 
and its damping ratio 
 

221

1

dωτ
ζ

+
=  (79)

 

as functions of the time constant τ  and the ringing frequency dω . According to [1], the 

parameters of a proportional control valve can be estimated with 11612 −⋅⋅≈ sn πω  and 

48.0≈ζ . 

 
As we notice, the right hand side of equation 77 is not equal to zero, which makes the system 
become inhomogeneous. That is, the term )(2 tunω  can be seen as an input to the 
homogenous system. The action of changing the spool position is then induced by the control 
input )(tu . 
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With the initial conditions of the spool valve being 0)0( =sx , 0)0( =sx&  and 0)0( =u , we 
can apply the Laplace transform to equation 77, which results in 
 

s2 X (s) + 2ω nζsX (s) + ω n
2 X (s) = ω n

2U (s) . (80)

 
Written equation 80 as a relation between input and output finally yields in the transfer 
function of the form 
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(81)

 
The system behaviour can now be described qualitatively by the poles, namely if the 
denominator of the transfer function is set to zero. 

From equation 81 we obtain )1( 2
2,1 −±−= ζζωns , which gives us three possible states 

for the spool behaviour, dependent on the value of ζ . Generally, the damping ratio is less 
than one ( 1<ζ ) and hence we find two complex values for s . The system is under-damped 

and oscillates with the damped frequency 21 ζωω −= nd . The corresponding model is 
shown in the Simulink block in Figure 44 and will be extensively discussed in chapter 7: 

 

Figure 44: Simulink block of the spool dynamics [1] 

The dynamic spool model contains two non-linearities: On the one hand, limitations in velocity 

vL  and acceleration aL  have to be taken into consideration. On the other hand a delay in the 

phase lag tΔ  has to be adjusted in order to match the phase of the system response. 
 
As a last step, the mathematical model of the spool valve is represented in a state space 
function. By defining the state vector [ ] [ ]T

ss
T xxyyy &== 4334 , the state space correlation 

can be written in the form 
 

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
−−

=⎥
⎦

⎤
⎢
⎣

⎡
)(

0
2
10

2342
4

3

tu
y

y
y

nnn ωζωω&

&
. (82)

 
We notice that the position of the spool, which will be the input signal for the later described 
cylinder model, is solely determined by the control input )(tu . 
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4.2 Mathematical model of the cylinder 

In this chapter we will develop a common mathematical model of a double-acting hydraulic 
cylinder. As a start, a static cylinder model will be examined in order to derive the equilibrium 
of forces at the cylinder. In terms of formulations, these forces can then be represented in 
order to describe the dynamic behaviour of the cylinder. 
 
To allow object oriented block simulation, the cylinder model includes cylinder leakage, 
cylinder friction and the effect of pressure drop at the cylinder connectors. The phenomenon 
of non-linear cylinder friction is a fairly extensive issue and will be addressed separately in 
chapter 5. 

4.2.1 Static model of the cylinder 

The aim of a static cylinder model is to find an expression of the resulting cylinder force, 
which can be seen as a non-potential force to the mechanical system of the crane. For this 
purpose we sketch a common differential cylinder that is presented in the schematic Figure 
45: 
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Figure 45: Schematic sketch of a double-acting cylinder 

The figure on the left indicates the forces and flows at the cylinder whereas the latter’s build 
up the equations of motion which will be derived in the following sections. The figure on the 
right gives the cylinder dimensions in terms of the cylinder’s characteristic parameters. The 
exact cylinder dimensions are given in the appendix. 
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Basically, the resulting force of a double-acting cylinder is determined by the chamber’s 
product difference of pressure and cross-sectional area: 1122 ApAp − . According to Figure 
45 our enhanced cylinder model also considers friction forces as well as Newton’s second law 
of motion and then the following differential equation holds: 
 

frgp FFFFxm −+−= 21&& , (83)

where px&&  is the piston acceleration and m  is the mass of the loose parts (basically the mass 

of piston and rod). The force 1F  is generated by the upper chamber pressure, whereas 2F  

comes from the lower chamber. gF  is the gravitational force )( gm ⋅  and frF  the friction 
force to solve. 
 
As a start to the mathematical cylinder model, we begin with a geometrical approach to the 
model’s dimensions. Let us define the initial conditions for the oil volume of both cylinder 
chambers as 
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respectively. 
 

Notice that pV ,0  denotes the dead volume in the pre-chambers to which the hydraulic hoses 
are connected. The initial chamber volume is based on the initial piston position, which is the 
centering position of the cylinder (see 2.3.2). 
 
The dynamic chamber volumes are then defined by 
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respectively. 
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4.2.2 Dynamics of the cylinder 

The overall aim of chapter 4 is to derive a state space form of the cylinder dynamics. For this 
purpose we reapply equation 83 and after some rewriting we yield the following equation of 
motion: 
 

[ ]frp FmgApAp
m

x −+−= )(1
2211&&  (88)

 
One can observe, that the only variables in equation 88 are given by the chamber pressures 

1p  and 2p  and the friction force frF . Friction evaluation will be studied extensively in chapter 
5, whereas the pressure as a crucial state of the dynamic model is derived in the following 
section. 
 
The mass of substances in the hydraulic system will remain constant regardless of the 
process that acts in the system. It holds: ∑= qV& . The principle of mass conversation is 
graphically shown in Figure 46. 
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Figure 46: Conservation of mass 

This conversation of a fluid mass is described in terms of the following continuity equation: 
 

)( int1
1

int11 qq
dt

dmqqV oil +=⇒+= ρ&  (89)

)( int2
2

int22 extoilext qqq
dt

dmqqqV ++−=⇒−−−= ρ&  (90)

where intq  is the internal leakage flow between piston and cylinder frame and extq  is the 
external leakage flow at the rod-end side of the cylinder. 
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One should keep in mind that 2q  becomes negative when the fluid circulates into the 2nd 

cylinder chamber (see Figure 45). Furthermore, the compressible fluid makes oilρ  a function 
of the local cylinder pressures: 
 

p
ppEp oil

oiloil ∂
∂

=
)()()( ρ

ρ , (91)

where Eoil (p)  denotes the bulk modulus of oil elasticity. 
 
Applying Vm ρ=  to equations 89 and 90 and replacing the derivative of oil density with 
equation 91, we obtain the following differential equation: 
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Let us rewrite the latter equations in terms of the derivative of pressure: 
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Hence, we have determined the rate of change in pressure, which can later be used as a 
state derivative to the dynamic model. Notice, that the time derivation of the overall chamber 

volume yields merely in 
dt

dx
A p

1  and 
dt

dx
A p

2− , respectively. 

 
We now focus on the unknown parameters of the equations 94 and 95. According to [3], the 
heuristically obtained formula for the bulk modulus of oil elasticity can be written in the form 
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where max,oilE  denotes the magnitude at maximum oil compressibility and maxp  the maximum 

system pressure respectively. The oil constants 1C  and 2C  have been determined earlier in 

[6] as 901 =C  and 32 =C . 

 
 



    Hydraulic model 
     

    68 

There are two possible leakage phenomena when operating a hydraulic cylinder. An internal 
leakage flow qint arises at the restriction of the piston and the inner cylinder body. An external 
leakage flow qext  appears at the opening for the rod-outlet. In both cases, the leakage can be 
seen as a flow through an infinitesimal restriction. Thus, the flow happens to be laminar so 
that it becomes directly proportional to the pressure difference between the mediums: 
 

)( 12intint ppkQ −=  (97)

)( 02 ppkQ extext −=  (98)

 

According to [3] the coefficients intk  and extk  can be evaluated by means of the general 
leakage equation 
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where id  denotes the inner diameter of the bore hole, cr  the radius of the shaft, μ  the static 

friction coefficient and L  the length of the restriction. 
 
It is obvious that the leakage flow tends to zero when using appropriate gaskets inside of the 
cylinder. Nevertheless, we include the leakage flow to our model although the friction 
coefficient μ has to be estimated without experimental identification. It is also important to 
notice, that the pressure sensors of the cylinders are located in a pre-chamber to which the 
hydraulic hose is connected. The diameters of pre-chamber and hose are approximately the 
same, but they differ from the diameter of the main cylinder chamber. Consequently the 
pressure inside of the cylinder may vary compared to the measured sensor value. This effect 
can be represented by Bernoulli’s principle: 
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This formula states that an increase in velocity occurs simultaneously with a decrease in 
pressure. 
 

It is obvious that the motion of the piston pv  determines the fluid velocity inside the cylinder 
chamber. The change in velocity is then given by differing diameters of hydraulic hose and 
cylinder chamber and can be captured with the continuity equation for the mass flows 
( constm =& ) 
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where hA  is the cross-sectional area of the hose and cA  the cross-sectional are of the 
cylinder respectively. 
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Assuming that the oil density remains constant, the velocity in the connection region changes 
to 
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h

c
h v
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Av = . (102)

 
Replacing equation 102 in Bernoulli’s formula, the cylinder pressure yields in 
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With a maximum piston velocity of 
s
mvp 5.0=  and an approximate oil density of 

31000
m
kg

oil =ρ , the maximum pressure rise is given as a function of the diameters only: 
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A maximum diameter ratio of dc /dh =10 at the blind-end side for example leads to a rise in 
pressure of Δpmax ≈ 25bar. It seems absolutely vital that the derived pressure variation 
should be taken into account when designing control models of the crane. In this regard, we 
have to consider the increase of pressure in the flow equations 66 - 70 and add the pressure 
difference of equation 104 to Ap  and Bp  respectively. 

 
Now, having derived a set of differential equations, we formulate a state space equation of the 
cylinder hydraulics. To do so, we create the state vector ][ ][ TT ppyyy 216556 == , 
which includes both chamber pressures of the cylinder. Finally we equal y56 and equations 
94 and 95 as representing the time derivatives of the state vector and obtain the following 
state space form of the cylinder hydraulics: 
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At this point we do not explicitly insert the flows that have been derived in chapter 4.1 into the 
state space form. The case differentiation of the spool valve would end up in a rather 
extensive formulation of the state space equations. However, one should bear in mind that it 
can be easily done when it comes to model the hydraulic system in MATLAB. 
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5 Modelling of hydraulic friction 
Friction is a non-linear phenomenon that occurs in all kind of mechanical systems, e.g. in 
bearings, transmissions, cylinder actuators and valves. It is well known that friction is one of 
the major limitations to achieve good performance of robotic systems. It causes the 
performance to deteriorate and leads to steady-state errors in position regulation and tracking 
lags. In general, friction is difficult to describe analytically. There have been different 
sophisticated models proposed that capture the friction phenomenon, beginning with a 
classical static friction map to the description of a dynamic model. 
 
This work will focus on several types of friction models that are essential to evaluate the 
friction in hydraulic cylinders rather precisely. We will briefly expose the physical effect of 
hydraulic friction and describe the basic idea of static friction modelling. Hereby, the unknown 
static parameters are estimated through open-loop experiments on the basis of friction maps 
between velocity and friction force. However, it appears that this classical model is unable to 
reflect some of the behaviours that are experimentally observed. Therefore we will illustrate 
an accurate model that captures the internal cylinder dynamics and in this concern also 
examines the bristle deflection of lubricants. This derived model is vital for describing the 
friction force at zero velocity and thus seems suitable for the design of model-based friction 
compensation. 

5.1 Friction phenomena 

In a classical sense, friction is the tangential force that opposes the motion of two bodies in 
contact. The main working principle of friction can be explained by microscopic bonding of the 
surfaces, which generates intermolecular forces as sketched in Figure 47. 

 

Figure 47: Microscopic approach to friction force [13] 

Physically friction can be regarded as a result of several mechanisms that depend on the 
properties of the bodies, lubrication, wear, temperature variation and velocity of the motion. In 
the following hydraulic cylinder friction is explained by means of different friction phenomena 
that each takes care of certain friction aspects, namely static friction, Coulomb friction and 
viscous friction. 
 
Since the magnitude of friction is mainly independent of the direction of motion, friction often 
holds a symmetric behaviour related to the magnitude of velocity. As a result, the friction 
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curves in the following section are mirrored in the origin of the coordinate frame. 
Nevertheless, when estimating the cylinder friction, we will run open-loop experiments in both 
directions to examine the friction’s dependency on the sign of velocity. For the compensation 
model, however, we facilitate the model and define the mean value of the evaluated 
parameters as being the nominal friction parameters. 

5.1.1 Static friction model 

5.1.1.1 Coulomb friction 

In general, friction is the force that is exerted in the opposite direction to the motion of a body 
whose surface is in contact with another body. The basic idea of friction during motions is that 
the force is proportional to the normal force NF  and thus it is not affected by the contact area 
or the magnitude of velocity v : 
 

)(vsignFF NC μ=  for 0≠v , (107)

where μ  is the friction coefficient of the contacting materials. 

 
The friction approximation in equation 107 is termed Coulomb friction and is a function of the 
sign of velocity as graphed in Figure 48: 
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Figure 48: Coulomb friction 

One should notice that Coulomb friction represents an ideal model in which the friction force 
is not defined for zero velocity. Is the motion at rest, the friction force can take on any value in 
the interval between CF−  and CF+  as the friction is exactly the force that keeps an object 
from moving. 
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5.1.1.2 Viscous friction 

Although the Coulomb model is an adequate representation of many friction compensators, 
the viscosity of lubricants has to be taken into account when the system is determined by 
rapid changes in the velocity. The friction force is then additionally determined by the fluid’s 
internal resistance to flow, which is a result of the shear forces in the fluid layer that increase 
with velocity. The resulting force is denoted as viscous friction: 
 

)( vsignvkF v

vv
δ= , (108)

where vk  is the viscous friction coefficient and vδ  is the gradient that describes the non-
linear dependence on the velocity. 
 

Primarily the coefficient vδ  is specified by the geometry of the application. In our case 
experimental evaluations have shown that the friction force is consistent to the analytical 
model with an coefficient of 5.1≈vδ . The corresponding gradient of viscous friction is 
depicted in Figure 49: 
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Figure 49: Coulomb friction and Viscous friction 

Because viscous friction is often termed as dynamic friction, one should not mistake it for the 
dynamic friction model that we will derive in chapter 5.1.2. 
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5.1.1.3 Static friction (Stiction) 

Static friction, often termed as stiction, is the threshold value that describes the friction force 
at rest. Unlike Coulomb friction that is not determined at zero velocity, static friction introduces 
the force that prevents the sliding of the surfaces of two bodies in contact. In order to 
overcome static cohesion, stiction force has to be higher than Coulomb friction. Basically 
static friction can be modelled as counteracted to external forces that are below the stiction 
threshold, meaning that 
 

eS FF =  for 0=v  (109)

 
The corresponding graph is given in Figure 50: 
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Figure 50: Coulomb friction, Viscous friction and Static friction 

When estimating the friction parameters, we have used several cylinders that hold different 
threshold values for the stiction force. In order to evaluate static friction with a good precision, 
experiments at very low velocities have to be performed which is rather difficult by reasons of 
interfering noise in the position sensor. This gives rise to the need for the dynamic model in 
chapter 5.1.2, which mainly considers the bristle deflection of the lubricants at very low 
velocities. 
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5.1.1.4 Stribeck friction 

According to the work of Richard Stribeck, friction decreases continuously with increasing 
velocity when entering the slipping phase. This phenomenon contradicts the discontinuous 
behaviour of the stiction force. It rather describes the friction force in the transition between 
sticking and slipping, which can be approximately estimated by the model 
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in which σv  denotes the Stribeck velocity and σδ  the gradient of friction decay in the 
velocity dependent term. 
 
This leads to a more general model at stick-slip motions that usually has the shape as 
depicted in Figure 51: 
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Figure 51: Coluomb friction, Viscous friction, Static friction and Stribeck effect 

The peak in Figure 51 is related to the Stribeck force StF  at rest and is often termed as 
breakaway force beyond which the motion is initiated. The breakaway phase is most 
important for friction modelling and offers some anomalies that are not included in the static 
friction model but will be captured by a dynamic model later on. 
 

The coefficients σv  and σδ  are the unknown parameters in the Stribeck model. A lot of 

friction models are sufficiently described with 2=σδ (e.g. Adaptive Friction Compensation 
by Canudas de Wit and Lischinsky [14]) however both Stribeck coefficients can be evaluated 
precisely in an easy manner by means of static friction maps that will be derived in chapter 
5.2.2. The influence on the friction force of both Stribeck velocity and Stribeck gradient is 
shown in Figure 52 and Figure 53: 
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Figure 52: Relationship between Stribeck velocity σv  and friction force 

 

Figure 53: Relationship between Stribeck gradient σδ and friction force 
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It is obvious that the friction force is steeply falling with decreasing Stribeck velocity and 
increasing Stribeck gradient respectively. Superposing the derived models brings us a 
complete static friction model that has the form: 
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where the substitutions give the static friction parameters 
 

0α (Coulomb friction), 

10 αα + (Static friction) and 

2α (Viscous friction). 

(113)

 

5.1.2 Dynamic friction model 

Although the static model describes the friction phenomenon sufficiently for a wide range of 
applications, the increasing demands for precise friction evaluation especially in the field of 
friction compensation of robotic manipulators have driven to the design of numerous dynamic 
friction models. This work will specifically focus on the bristle interpretation of friction which in 
[16] is described as the LuGre model. The next section will first give a brief summary of the 
dynamic properties of friction and finally present the basic idea of the LuGre friction model. 

5.1.2.1 Dynamic properties of friction 

Dynamic friction plays an important role when the contacting surfaces are steadily in transient 
motion affected by permanent velocity reversals. This emanates from the assumption that 
friction is not only determined by velocity but also depends on the rate of changes in the 
external force. Figure 54 shows the common relationship between breakaway force and the 
rate of force application. 

dt
dF
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Figure 54: Relation between breakaway force and rate of force application [16] 
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Figure 54 points out that breakaway force decreases with increasing force rate. Moreover, 
friction is dependent on the rate of velocity changes. Therefore descriptive experiments have 
been exerted in order to capture the friction behaviour at different accelerated motions (see 
Figure 55 below). 

 

Figure 55: Frictional lag 

Figure 55 reveals a hysteresis loop that indicates the significant difference in the friction force 
for increasing and decreasing velocities of a unidirectional motion. Whereas the breakaway 
force is higher for decreasing velocities (~ 500 N), the Stribeck effect is very distinctive at 
increasing velocities. It has also been experimentally proven that the hysteresis loop grows 
wider as the velocity variation becomes faster. 

5.1.2.2 The LuGre Model 

The Lund-Grenoble model (LuGre) is a widely used dynamic model that describes the 
microscopic deflection between the contact surfaces in terms of a damping-spring behaviour. 
The dynamic system can be modeled by an elastic spring, where the friction force is related to 
the average deflection of the bristles in the sticking phase. For this purpose, we will derive a 
differential equation that leads to a new system state, namely the bristle deflection z : 
 

∑
=

=
k

i
izz

1
,  (114)

where k denotes the number of bristles in the contacting area of the two surfaces. 
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The typical microscopic bristle deflection as assumed to appear in a hydraulic cylinder is 
sketched in Figure 56: 

extF

iz

v  

Figure 56: Schematic bristle deflection of contacting surfaces in motion 

The standard parametrization of the bristle model can be obtained by establishing the 
dynamic parameters 0σ  and 1σ  which correspond to the bristle deflection z .  By adding 
linear viscous friction, the dynamic friction force can then be computed as follows: 
 

v
dt
dzzF 210 ασσ ++= , (115)

where 0σ  implies the bristle stiffness and 1σ  represents the damping behaviour of the 
bristles. 
 
For small displacements the bristles will behave like a spring-damping system in whose 
steady-state the deflection z  is a function of the velocity. An appropriate model is given in 
[14]: 
 

v
vg
zv
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dz
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0σ

−= ,  (116)

where v  is the piston velocity and )( vg  the static friction regardless of viscous friction: 
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We noticed that estimated cylinder friction in the hydraulic cylinder shows a characteristic 
which can be divided into three different phases: 

 

Figure 57: System response of a ramp input control 

When increasing the control input from rest, pressure is building up and thus friction force 
increases slowly (sticking phase). In this phase the bristle deflection and piston velocity 
respectively is almost zero. Then, at a certain pressure balance, the piston moves due to 
bristle deflection (shearing phase). Once, the pressure difference between both cylinder 
chambers exceeds an upper threshold, the piston moves with a noticeable velocity whereas 
the friction force is determined by Coulomb friction and viscous friction (slipping phase). 
Figure 58 shows the bristle deflection for all the three phases: 
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Figure 58: Bristle deflection of hydraulic cylinder 

The state variable z  will be determined by means of friction experiments in the following 
chapter. 
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5.2 Estimation of nominal friction parameter 

In this chapter we will apply the derived analytical models of the previous sections for the 
determination of the friction parameters. At first we describe the test bench that we will use for 
the friction measurements including the control interface of the valve block. Static parameter 
estimation with open loop experiments is done in chapter 5.2.2. With the results of static 
friction, we can run dynamic experiments in order to estimate the dynamic parameters by 
non-linear numerical methods. Here, we use appropriate experiments that enhance the 
effects of the unknown values. Finally we adapt the parameters to a suitable friction model 
and compare the analytical model to real-world friction. 
 
For ran the experiments for the estimation of the friction parameter on two different hydraulic 
cylinders. The Rottne cylinder was used as the 3rd cylinder, mounted on the laboratory crane. 
This cylinder was used before in real-world applications. The 2nd cylinder was courtesy of 
Kalmar University. Its maximum operation pressure was limited to 40 bars due to the mounted 
pressure sensors (140 bars at the Rottne cylinder).  

5.2.1 Experimental set-up 

There have been several possibilities to build up an appropriate test rig for friction evaluation. 
We decided not to dismount the cylinders from the crane due to reconfiguration and 
difficulties in connecting them to an external body. The idea was to simply disconnect the 3rd 
cylinder from the crane-tip so that it was free to swivel around the upper joint in which the 
cylinder was fixed to the 3rd link. In order to keep the crane stable we used a heavy frame that 
supported the 2nd link from below. Finally we turned the telescopic beam to the position in 
which it contacted the 2nd and tied both bodies together with a lashing strap to get rid of the 
3rd joint’s backlash. 

   

Figure 59: Test-rig for friction measurements 

We used several loads with different mass that we simply connected to the cylinder’s end. It 
had to be assured, that the load was not able to hit the ground when extending the cylinder 
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thoroughly. Moreover, we were not sure if the cylinder begins to oscillate when moving the 
piston with high velocities. After several tests we found out that heavy cylinder vibrations did 
not occur, not even in accelerated motions. 
 
With pressure sensors located in each chamber as well as a length sensor for measuring the 
piston extension we were able to determine the resulting friction force according to equation 
118: 
 

xmmgApApF fr &&++−= 2211 , (118)

where m  is the mass of the moving parts (load, piston and rod). 
 
We used a dSpace system that we fed with the input signal of both pressure and length 
sensor. With the Control Desk software we were able to capture the signals from the dSpace 
system and moreover, the software calculated the friction force continuously. In order to 
analyse the signals we saved the data as mat-files that we later imported in MATLAB to 
obtain suitable charts. 
 
In order to excite the proper output signal to the valve block we had to build a Simulink block, 
specified by the characteristics of the control box to the valves. The block diagram is shown in 
Figure 60 which also points out the opposed control signals to port A and B: 
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Figure 60: Simulink block for output excitation in dSpace 

Before beginning with the experiments for the estimation of friction parameters, we performed 
several test runs with small sinusoidal inputs that should be intended to represent the 
system’s frictional behaviour within stick-motions. By implementing equation 118 to the 
dSpace layout we were able to see how friction force was changing due to a sine function 
input. 
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Figure 61: Friction response on sinusoidal input function 

Although friction force characteristics apparently represented the point of break-away, we had 
to track the position signal in order to observe the piston extension that was barely visible to 
the naked eye. Piston position and its derivative are depicted in Figure 62 and state the 
slipping regime of the piston:  

 

Figure 62: Position and velocity tracking within stick-slip motions 
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The above derived figures approve that friction force at our test cylinder matches the curves 
from the previous friction model. The test bench had been configured properly and we were 
ready to perform experiments for friction parameters estimation. 

5.2.2 Static parameter estimation 

In this section we will briefly summarize the models of the preceding chapters to a general 
static friction model. Then static friction will be evaluated through open-loop experiments 
during constant velocity motions of the hydraulic cylinder. Finally the resultant derived friction-
velocity maps can be used for estimating the unknown nominal parameters of the static 
model. 
 
In chapter 5.1.1 the steady state friction characteristics were given by 
 

)(210 vsignveF vv
v

δααα

σδ

σ ++=
−

. (119)

 
In order to determine the static parameters we had to run open-loop experiments on both 
hydraulic cylinders. Most important to evaluate static friction is to keep the velocity constant 
due to the effect of frictional lag (see also Figure 55). In this regard we tried to apply a PID 
velocity control but it failed due to a time delay in the crane’s system response. We then 
simply controlled the output voltage and the current to the valves respectively and noticed that 
this control method keeps the piston velocity constant as well. 
 
To capture the data loggings, the following signals have been used for static parameter 
estimation: 
 

- Pressure sensor in the upper cylinder chamber 1p  

- Pressure sensor in the lower cylinder chamber 2p  

- Length sensor of piston position px  and its differentiation pv  respectively 

 
Friction force as calculated in equation 83 is then a function of both pressure signals and the 
cylinder dimensions ( 0=px&& ): 

 

mgApApF fr +−= 2211  (120)

 
The corresponding Simulink models for friction force and piston velocity are shown in Figure 
63 and Figure 64. 
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Figure 63: Simulink data processing of friction force 
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Figure 64: Simulink data processing of piston velocity 

For the measurement of the piston position we had to add a Bessel-filter to our Simulink 
model in order to read off the real piston velocity online at very low velocities. Here, the time 
delay of the filter did not carry weight since the cylinder extended extremely slowly. To keep 
track of higher velocities, we increased the filter’s edge frequency so that a constant signal 
was always logged within a full extension. For further data processing in MATLAB we used 
the unfiltered signal. Both logging layouts are shown in Figure 65. 
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Pressure 1 VelocityPressure 2 Friction force
 

Figure 65: dSpace data logging with unfiltered (left) and filtered (right) velocity signal (grey) 

We began the experiments with approximately ten different piston velocities in the range of 

s
m0001.0  to 

s
m1.0 . Within this range numerous values were collected at very low 

velocity in order to specify the identification of the Stribeck effect. Afterwards we applied the 
complementary output to the valves to achieve negative velocities for the retracting motion. 
We also evaluated the static friction at zero velocity by finding the maximum output, friction 
force respectively at which the piston was kept just about from moving. Hence we were able 
to determine the coefficients 0α  and 1α  immediately. 

 
After a certain delay all sensor signals remained on a constant level. We saved the mat data 
files and created a chart in MATLAB that represented the friction force at different velocities. 

 

Figure 66: Measured friction force over velocity 
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In order to obtain a general friction map we had to find a continuous behaviour between 
friction and velocity. For this purpose we drew a curve through the measured values and 
applied hereby two different methods. 
 
The first was to simply average the values at each velocity level to eliminate the error due to 
noise in the sensor signals. As an output, we yielded several well-defined friction values that 
corresponded each to a certain velocity. This form of a friction map sufficiently describes all 
the unknown static parameters as graphically estimated in Figure 67. 

1α

0α

2α)( σσ Fvv p=

 

Figure 67: Graphical estimation of static parameters 

The Stribeck velocity was determined by equating pv  and σv  in equation 119, which 
approximately resulted in: 
 

e
F 1

0
αασ +=  for σα Fv p <<2  (121)

 

The Stribeck velocity to solve is then the point of intersection at the specific friction force σF . 

 
Another way of finding an analytical expression of the cylinder friction is to use the 
optimization toolbox in MATLAB. Therefore we applied the lscurvefit-command to the 
experimentally evaluated values. By doing so we were able to determine a non-linear function 
that represented the static parameters, solved through least square deviation: 
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where )( pvF  includes the measured friction values and )(ˆ
pvF  is the non-linear function 

solved by the lscurvefit-command in MATLAB. 
 
However, in this case we encountered the problem of unequally distributed values, which 
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means that the majority of our measured values corresponded to low velocities. Consequently 
MATLAB solved the least square problem with an inaccurate curve gradient at higher 
velocities or insufficient consideration of the Stribeck effect (see Figure 68). Consistently, we 
decided to estimate the parameters manually as proposed in Figure 67. 
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Figure 68: Problem of inaccurate curve gradient when solving the least-square function  

Thereafter we substituted the derived parameters in equation 119 in order to verify the 
resulted continuous graph with the experimentally obtained curve. The friction maps for both 
cylinders are depicted in Figure 69 whereas the static parameters are listed separately in 
Table 3: 
 

Cylinder 0α  1α  2α  σv  

Rottne (0 kg) 160 / 280 180 / 120 8000 / 12000 0.002 / 0.002 
Rottne (115 kg) 170 / 350 450 / 450 10500 / 12000 0.004 / 0.002 
Kalmar (0 kg) 105 / 80 350 / 300 1250 / 1800 0.01 / 0.015 
Kalmar (115 kg) 140 / 100 310 / 350 1200 / 1800 0.015 / 0.02 

Table 3: Evaluation of static parameters (extension / retraction) 
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Figure 69: Static friction map of Rottne cylinder and Kalmar cylinder 
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From Figure 69 we basically notice two fundamental differences. On the one hand, friction 
force at the Rottne cylinder increases more heavily than the Kalmar cylinder does. This might 
probably arise from the fact that the Rottne cylinder has been used in real-world application 
before and consequently it consists of wear particles that have been piled up as a 
consequence of abrasion. Another significant disparity is given by a much higher Stribeck 
velocity of the friction force at the Kalmar cylinder. This is reflected in a major specification of 
the Stribeck effect within in the friction curve, represented by its minimum at higher velocities. 
 
One should bear in mind that the above friction parameters have been experimentally 
evaluated and may further change as dependent on temperature variations, position and 
normal forces in contact. Nevertheless, as start to our dynamic model, the derived coefficients 
turn out to be suitable for the derivation of static friction maps and further parameter 
estimation. 

5.2.3 Dynamic parameter estimation 

The derived static friction model is a fundamental description of hydraulic cylinder friction. 
Nevertheless, there are several other important friction properties that cannot be explained 
solely by static models. Modelling dynamic friction is therefore crucial for the design of friction 
compensation schemes in order to capture the instantaneous response on internal dynamics, 
e.g. velocity changes. 
 
Previous work on dynamic friction has exposed that stick-slip motions and velocity reversals 
are extremely sensitive to the dynamic parameters 0σ  and 1σ . In order to capture dynamic 
friction effects we therefore apply different identification mechanisms representing the 
dynamics of the friction internal state variable z . At first we focus on the evaluation of the 
dynamic parameter 0σ , that is the spring-like coefficient of the bristle deflection. For this 
purpose we apply a gently inclined ramp function as an input signal to the valves, beginning 
with the piston at rest. The second dynamic parameter will then be determined by a system 
response to a ramp input whereas the damping characteristics of the bristles represent 1σ . In 
both cases we estimate the coefficients for extracting motions as well as for retracting 
motions. The results will be compared at the end of this section. 

5.2.3.1 Estimation of dynamic parameter 0σ  

Let us use a small ramp function as an input to the valves. The corresponding Simulink model 
is depicted in Figure 70: 
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Figure 70: Simulink model of ramp input control 
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Rewriting equation 119 for ramp control allows us to neglect the damping term while 
assuming 0≈v  and 0≈z& : 
 

)(0 tuzF ≈≈σ , (123)

where )( tu  is the input function to the valves. 

 
The internal state z  is determined by means of the following equation 
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When applying the input ramp function cttu =)(  with small 0>c , equation 124 can be 
integrated for 0>v  as follows: 
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It is most important that the experiments are performed from rest, that is 0)( 0 =tz , which 
means that we initiate the ramp signal when the piston is fully retracted. In this special case 
we can assure that the bristles are not deflected by means of unbalanced chamber pressures. 
Furthermore, we have to compute z  within the time interval [ T,0 ], whereas T  specifies 
the time up to the very moment before point of break-away. 
 
Next, the ramp responding curves are depicted together with piston position and friction force 
for both hydraulic cylinders. 
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Figure 71: Ramp response of Rottne cylinder and Kalmar cylinder 
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When comparing both ramp responses, we consider a much stronger shearing strain at the 
Rottne cylinder with a maximum bristle deflection of approximately 4 mm. The deflection at 
the Kalmar cylinder is almost unrecognizable and only measurable by further data processing, 
e.g. averaging the data samples and creating a mean curve. 
 
One should bring to mind that ramp control enhances the springing effect of bristles and 
though we can easily compute the bristle stiffness by solving equation 123 for 0σ . When 

averaging the data vectors Z  and U  in the proper relation, 0σ  is then determined by 

 

ZZ
UZUZ T

T

== − 1
0σ .  [14] (126)

 
Since point of break-away was reached very early at the Kalmar cylinder, we had to use 
different input ramps for both cylinders in order to log the datas for nearly the same time 
period. 
 
The computed values for the first dynamic coefficient are listed below in Table 4: 
 

Cylinder 0σ  extending 0σ  retracting 0σ  averaged 

Rottne (c=0.01) 1.2 x 10e5 1.0 x 10e5 1.1 x 10e5 
Kalmar  (c=0.0001) 1.0 x 10e6 1.2 x 10e6 1.1 x 10e6 

Table 4: Estimation of dynamic parameter 0σ  

According to Table 4 the bristle deflection of the Kalmar cylinder is far less than it is at the 
Rottne cylinder. Therefore it is evident that its bristle stiffness and consequently its averaged 
coefficient 0σ  are approximately higher by the power of ten. 

5.2.3.2 Estimation of dynamic parameter 1σ  

The estimated coefficients are now being used for computing the second dynamic parameter 

1σ . Therefore we run open-loop experiments again, but to cover the bristle’s damping 
behaviour we use step inputs instead of a ramp control. The corresponding Simulink block is 
shown in Figure 72. 
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Figure 72: Simulink model of step input control 
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Within the shearing phase, a step input leads approximately to pxz && ≈  which lets us 
simplify equation 119 to 
 

Fxxxm pp =+++ &&& )( 210 ασσ , (127)

where 0σ  and 2α  are the previously predetermined coefficients and 1σ  is the 2nd dynamic 
parameter to solve. 
 
Notice that due to inconstant piston velocity we have to consider Newton’s second law to our 
friction model. In this regard, we derive the unfiltered piston position twice and multiply the 
result with the mass of the cylinder’s loos parts that are predominantly its rod, its piston and 
the external load. 
 
When running the experiment, it is most crucial to use sufficiently small step inputs in order to 
examine the bristle behaviour within the stiction regime. This condition turned out to be almost 
unmanageable because of immoderate noise that interfered with the smallish and unfiltered 
velocity signal. The following step responses were investigated through MATLAB data 
processing. Figure 73 shows the step input response for both cylinders whereas the 
estimated parameters for 1σ  are given in Table 5: 

 
Rottne cylinder 

 
 

Kalmar cylinder 

 

Figure 73: Step response of Rottne cylinder and Kalmar cylinder 
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Cylinder 1σ  ext 1σ  ret 1σ  avg 

Rottne -1.53 x 10e4 -1.55 x 10e4 -1.54 x 10e4 
Kalmar -1.74 x 10e5 -1.73 x 10e5 -1.74 x 10e5 

Table 5: Estimation of dynamic parameter 1σ  

From Table 5 we can slightly discover a bristle displacement in both cases due to the step 
input signal. Again, the deflection is larger at the Rottne cylinder which means that the piston 
is damped at a lower level. This results in a low damping coefficient 1σ  which is apparently 
ten times smaller than the coefficient estimated for the Kalmar cylinder. 

5.2.4 Influence on friction due to variations in load and pressure 

Hydraulic cylinders may show varieties in friction behaviour when performing under different 
circumstances. Friction force is most likely to depend on outer environmental conditions. In 
order to investigate this dependency and to expose the difference in friction we ran several 
experiments in which we varied the main control pressure and the cylinder load. 
 
Surprisingly we found out that neither lower pressure nor increasing mass makes a significant 
difference in the friction force. Figure 74 shows the derived static friction curves for pressure 
supply of 140 bar (black curve) and 100 bar (red curve): 

 

Figure 74: Comparison between friction force with variation in pressure supply 
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The nearly identical friction curve of varying loads is depicted in Figure 75: 

 

Figure 75: Comparison between friction force with variation in load 

In Figure 75 the black curve indicates the friction force when carrying a load of 115 kg. The 
red curve represents a mass of 20 kg whereas the green curve shows the friction with no 
external loads. It is obvious that no load leads to the least friction force inside of the cylinders. 
The maximum friction appears apparently when carrying the maximum load, most notably in 
the region of slow velocities, but still the deviation in friction force is quite little. 

The results from this chapter allow us to neglect the influence of external loads or pressure 
differences in real-world conditions. This assumption is very useful for our further simulations 
in MATLAB since we do not need to consider these environmental parameters. 
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6 Control of the crane 

6.1 Control task 

Joysticks have replaced the traditional mechanical control lever in nearly all modern hydraulic 
control systems. Today’s forestry cranes are controlled predominantly by two joysticks that 
are mounted on an operating panel inside of the vehicle cab. The joysticks are two-
dimensional having two axes of movement and some buttons for additional operations such 
as gripper control. Depending on the deflection of the joystick lever a corresponding input 
signal will be fed to the spools of the valve block. This generates the flow that acts on the 
hydraulic cylinders. Hence, the joystick movement directly controls the cylinder force and thus 
the velocity of the joint rotation, but the operator has to be very skilled in order to drive the 
crane-tip to its desired position. A possible joystick set-up of this common control principle is 
shown in Figure 76. 

 

Figure 76: Possible arrangement for a two-joystick control of the crane-tip 

This control method seems to be rather complicated which gives us motivation to simplify the 
control in order to facilitate the control operations for the driver. A more sophisticated control 
method might be to use a single joystick to control herewith the direction of the crane-tip in 
the −xz plane as illustrated in Figure 77. 
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Figure 77: Possible arrangement for a single joystick control of the crane-tip 
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That means the direction of the speed of the end-effector (the gripper) follows the joystick 
command and if you release it, the crane simply stops moving. Hence, the joystick input will 
be used as a target-value for the desired speed of the crane-tip and not of the hydraulic 
cylinders. The output from the controller then feeds the corresponding current into the valves 
in order to keep the cylinders at a necessary speed that is required to fulfill the specified 
crane-tip trajectory. 
 
During forestry work, this type of control might also require a second joystick but in 
comparison to control methods nowadays, it will be used only for rotational control about the 
1st swivel-joint to determine the −xz plane. However, this configuration simplifies the learning 
task for humans, making it unnecessary to coordinate both hands in a complex pattern. 
Moreover this arrangement is likely to reduce strain injuries while increasing the efficiency of 
the main work. A first suggestion for this control is given in [9], but still there are no forestry 
machines in use that adapted this control principle by now. 
 
The follwing chapter describes a two-dimensional control approach in the common 

−xz plane. Other solutions, including a full three-dimensional crane-tip control in the 
−xyz space will be developed in the near future within the department of Applied Physics 

and Electronics at Umeå University, Sweden. 

6.2 Inverse joint control 

In this section we will formulate an adequate control algorithm that allows us to control the 
crane-tip in a Cartesian −xz frame. 
 
The essential approach to the above described control system is to emit a new target value, a 
so called set-point for the position of the crane-tip. The set-point calculation is done 
periodically at each sample, using the joystick input for the determination of the velocity of the 
crane-tip in −x and −z direction. The so called point-to-point calculation is a comparably 
simple method that enables us to calculate the new coordinates of the crane-tip position 
rather quick and straight-forward. A typical sequence of sample values and its effect on the 
corresponding velocity is given in Figure 78. 
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Figure 78: Sampling sequence of set-points for crane-tip velocity 

One can notice that the joystick deflection directly, or rather at the next sampling, determines 
the desired velocity of the crane-tip. It is done as the controller permanently calculates the 
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relative speed between the cylinders. This is the main difference to the traditional control that 
uses the joystick input for controlling the hydraulic cylinders and thus moving the crane-tip 
circularly in proportion to the angular velocity about each joint.  
 
We used a PID control for control purposes. It is described in the following section. 

6.2.1 PID control 

We approach the described control problem by applying ordinary PID-controllers to every 
joint. The PID-control uses the input signal from the joystick and transforms the joystick 
values into a corresponding crane-tip velocity predetermined by the operator. In accordance 
with the sampling period, the trajectory of the crane-tip can be achieved. 
 
In chapter 3.1.2 we derived the inverse crane kinematics that describes how to calculate the 
joint angles for an arbitrary crane-tip position within the working area. The appropriate 
algorithm can now be used for the transformation of the corresponding joint angles that are 
necessary to reach the newly-calculated position of the crane-tip. In chapter 3.1.2.2 we have 
also found out that the joint angles are almost linearly proportional to the cylinder extension 
with a slight variation near the endpoints. For controlling the crane-tip we could make use of 
this linearity and just apply a simple linear equation to calculate the required cylinder length. 
However, we begin the programming with the non-linear relationship between the piston 
position and the joint angles and come back to a linear control when processing time seems 
to be immoderate. 
 
For a start we know in which direction the cylinder piston has to move according to the 
predetermined cylinder lengths. A more accurate control regarding the exact crane-tip 
trajectory will be achieved by a proper adjustment of the PID-elements. The traditional PID-
control is well-known as a discrete expression given by the equation 
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with pk  being the proportional gain, Ik  the integral gain and dk  the derivative gain. The 

control error te  results from the deviation between the real crane-tip coordinates given by 
the sensor signals and the desired coordinates that are calculated by the control system. The 
index in the control error denotes the sampling time, meaning that 1−te  is the error of the 

previous sampling to te . The length of time of a sampling period is given by T  and finally the 
resulting control signal to trigger the valves is termed u . 
 
This control seems to be the most common control but since we have limited control signals 

we probably encounter wind-up effects of the integral part, meaning that the term ∑
∞

=
−

0j
jte  

continues to integrate indefinitely. This might end up in high control inputs even though the 
control error is low. Inevitably the discrete control will lead to inadequate results. We can 
avoid the wind-up problem by rewriting equation 128 into its differential form: 
 

( ) ( )211 −−− +++−=−=Δ ttdtittptt eekekeekuuu  (129)

where uΔ  is the difference of the control output between 1−tu  and tu . 
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The present control output is then defined by the sum of the previous control output and the 
differential output of equation 129. This allows for limiting the control output to 
 

( ) max
min1 uuu tt Δ+= − , (130)

where max
min  denotes the range of possible control values within the predefined boundaries.  

 
A possible MATLAB-code for the decribed differential PID-control of a single cylinder is given 
in Figure 79: 
 
 
********************************************************************* 
% control cylinder 1 
% ********************************************************************* 
c1.K_p = 1; % proportional gain 
c1.K_d = 0.01; % derivative gain 
c1.K_i = 0.0001; % integral gain 
  
c1.e_2 = c1.e_1; % error t_-2 
c1.e_1 = c1.e; % error t_-1 
c1.e = alpha_d - x(1); % error 
  
c1.d_u = c1.K_p * (c1.e - c1.e_1) + c1.K_i * c1.e + c1.K_d * (c1.e - 2 * c1.e_1 +    
c1.e_2); % differential control force 
c1.u = c1.u + c1.d_u; % control force 
c1.u = sign(c1.u) * min(abs([x_s_max; c1.u])); % limit control input 
c1.i = 1 * c1.u; % input to spool 

Figure 79: PID-control implementation in MATLAB 

When operating the crane, these equations will be solved on-line in the crane’s main control 
computer. On the basis of MATLAB simulations it turned out that the data processing of the 
control values seemed to be rather slow, probably due to limited CPU-power and lacking 
memory. This problem was mainly related to the floating point calculation of the inverse 
kinematics. It is obvious that the complex correlation of the torque link is a crucial factor for a 
long processing time. Future works should focus on optimizing the code to a greater extent in 
order to speed up the data processing of the crane control. Besides, the PID gains have to be 
adjusted in a proper way to suit the real-world applications of the crane. In this work the PID 
control was configured only to control the crane-tip in the simulation mode of MATLAB. 

6.2.2 Control algorithm 

Within this work, the main goal of a control algorithm was to simulate the behaviour of the 
crane in the MATLAB environment using a large number of variations including geometrical 
modifications and other parameter changes. The algorithm should be used later on for further 
modifying the control while running the algorithm online in a real-world environment. 
 
The present algorithm is called within the m-file main.m during each integration step. Its basic 
steps are listed below in. 
 

1) If time is below new sampling interval, leave algorithm 

2) Measure the current joint angles α , β  and the extension of the telescopic beam 3x  

3) Read the joystick values xu  and zu  
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4) Transform the joystick input into a corresponding crane-tip velocity xjoyx ukv ⋅=, , 

zjoyz ukv ⋅=,  respectively 

5) Determine the new crane-tip coordinates by means of equations   

Samplejoyxoldold Tvxxxx ,+=Δ+=              

Samplejoyzoldold Tvzzzz ,+=Δ+=  

6) Limit x  and z  according to working area 

7) Do Loop of inverse kinematics with varying telescope extensions 3x  

8) Calculate penalty function (see 6.2.3) 

9) Apply inverse kinematics to determine desired joint angles dα  and dβ  

10) Determine if new configuration is better than previous ones (penalty function) 

11) End Loop of inverse kinematics 

12) Overwrite control error 2te  with last error 1te  

13) Overwrite control error 1te  with present error te  ( αe  and βe ) 

14) Calculate new control errors from the difference ααα −= de  and βββ −= de  

15) Save errors αe  and βe  in te  

16) Apply equation 129 to calculate the additional control input 

17) Apply equation 130 to calculate the new control input using control boundaries 

18) Emit new control input to the valves 

19) Go to Step 1 

Table 6: Control algorithm 

Besides the limitation of the working area (step 6) and the implementation of the penalty 
function (step 8), all other algorithm steps are represented in the attached m-file main.m. 
However, the missing steps are described in the next chapter for further modifications. 

6.2.3 Optimization 

The algorithm in Table 6 is based on the described inverse kinematics problem but also 
includes variations in length of the telescopic beam according to a penalty function. This 
function is not implemented in the attached MATLAB code but it should be designed in further 
studies to vary the extension length of the 3rd cylinder in a loop while calculating the best-
angle configuration for the other two cylinders. 
 
The overall aim of a penalty function is to determine the best cylinder configuration, aiming at 
limitation of crane-tip coordinates (working range) and avoidance of large changes in joint 
angles. This is explicitly done by testing several values of the telescopic extension 3x  and 
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selecting the configuration with lowest penalty p  afterwards. 

A suitable penalty function is given in [9]: 
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On the right-hand side of equation 131, the first term penalizes the crane-tip coordinates 
outside the accessible working range including an arbitrary factor 0w . The factors 1w , 2w  and 

3w  of the 2nd term limit high joint angles requiring unachievable cylinder speed. Furthermore 
one should attempt to keep the pistons in the middle of each cylinder, avoiding the risk of new 
crane reconfiguration (due to maximum retraction / extension length) which might end up in 
large errors. For this purpose, the notations α , β  and 3x  are used as being the middle-
value of the nominal working range. Hence, the terms referred to the factors 4w , 5w  and 6w  
will force the cylinder to strive into their recommended center position. 
 
Equation 131 can be extended at will considering new optimization methods. Future works on 
the topic of crane control should implement this penalty function in the present MATLAB code. 

6.3 Performance of crane model with PID-control 

When running the animation of the crane in MATLAB, quality of the crane control has a huge 
influence on good performance. In order to test the implemented PID-control, we simulated 
several control tasks with the corresponding MATLAB file animation_crane.m. 
 

In this special case we applied vertical control with the control paramteres 5.0=verjoy  and 

0=horjoy . Then the simulation was run five seconds in order to investigate the crane’s 

trajectory beginning at initial conditions for the joint configuration °= 100α  and °= 100β . 
Since we did not reset the initial control conditions within these five seconds, this type of 
control should force the gripper to follow a path parallel to the x-axis. Consequently it should 
be characterized by the same z-coordinates. From Figure 80 and Figure 81 one can clearly 
notice the expected upward movement of the crane tip, however we also want to figure out if 
the gripper has deviated from its straight vertical path. Therefore we have created a chart that 
represents the trajectory of the crane tip in both x- and z-axis (see Figure 82). 
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Figure 80: Vertical control – initial configuration 

 

Figure 81: Vertical control – configuration after 5 seconds 
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Figure 82: Trajectory path of the crane tip with vertical control 

Figure 82 indicates that the crane tip almost follows a linear path in z-axis. Starting at 

mz 2.0−=  the crane tip moves with a gradient of 
s
m

dt
dz 25.0≈  and reaches mz 1.1=   

after five seconds. However, the crane-tip also moves in x-direction, most notably in the 
beginning of the control task. Obviously the reason is the gravitational force of the crane 
referring the first joint. Here the cylinder can’t build up the necessary force that quickly. This 
time delay should be further reduced by adjusting the control coefficients. 
 
In our second test we ran the simulation with opposite control, namely a horizontal control 
task with the control parameters 0=verjoy  and 5.0−=horjoy . The result of the animation 
can be seen in Figure 83 and Figure 84. The crane tip moves straight to the left 

(approximately with 
s
m

dt
dx 3,0−≈ ) and finally ends up in the same position on the z-axis. 

However, if we look closer to the trajectory in z-direction, we notice that in between motion, 
the crane tip has deviated from its initial z-position mz 2.0−=  to mz 6.0−=  after three 
seconds. In this special case the cylinders can build up the pressure fast enough to force the 
crane tip almost in its initial level on the z-axis ( mz 3.0−= ). In Figure 85 the motions for both 
x-axis and z-axis are depicted. 
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Figure 83: Horizontal control – initial configuration 

 

Figure 84: Horizontal control – configuration after 5 seconds 



    Control of the crane 
     

    105 

 

 

Figure 85: Trajectory path of the crane tip with horizontal control 

The prescending simulations gave us a useful indication that generally the control task 
operates quite well. Motion control was responded by a coresponding movement in the 
desired direction. However we have noticed that gravity can lead to a deviation at the 
beginning of each motion. Once the cylinders have compensated these forces, motion control 
can be achieved in a good way as seen in Figure 85. In forthcoming projects one should 
further optimize the control parameters efficiently for its desired application. 
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7 Crane modelling in MATLAB 
Crane modelling was an essential topic during the making of this thesis work. We started the 
work with a basic cylinder model and extended it to a hydraulic model including valve control. 
Simultaneously we appraoched the crane dynamics by creating a simple model of a two-link 
multi-body system and enhanced it step by step to its present degree. 
 
In this chapter we begin with the formulism of the complete set of state space equations that 
have been derived earlier during this work. It is the essential part of the program codes that 
have been written in MATLAB R 2007a. The program code is divided into several sections. In 
7.2 the main program is presented, including the crane kinematics and dynamics, the 
dynamics of the hydraulic system and the control algorithm. The crane dimensions and the 
complete coordinates of the SolidWorks model are given in chapter 7.3. The code for plotting 
the charts that depict the gradient of the generalized coordinates α , β  and 3x  is presented 
in the MATLAB code ‘PLOT CHARTS’ in chapter 0. Here, one can also find the sub-elements 
that are needed to call the command for the crane animation. 

7.1 Complete set of state space equations 

We will now assembly the previously derived parts to a complete model, which means that 
the mechanical and the hydraulic model will be connected. In order to investigate the 
correlation between the different parts, one has to perform the calculations by running the 
corresponding MATLAB files from the attached CD. In this section we will not show the 
relationships in detail because of the many variables and large expressions in the state 
vector. However, for simulation purposes it is not necessary to do the entire calculation in 
advance. 
 
The mechanical model was represented in chapter 3, its equation of motion was then derived 
in terms of the generalized coordinates q . In chapter 4 the hydraulic model was discussed in 

detail. From this emanates both the equation of motion for the valve spool 34y  as well as the 

gradient of the cylinder pressures 56y . The latter expression is linked between the hydraulics 
and the mechanics as the piston stroke of each cylinder is directly related to the joint angles, 
namely the generalized coordinates. The seventh state of each cylinder part-system results 
from the system state of dynamic cylinder friction. This state describes the deflection of the 
surfaces in contact, in this work it was termed z . The set of state space equations can then 
be written as: 
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We have now created the set of space state equations for a sinlge part-model. In the same 
fashion we are then able to combine the three part-models to a complete crane model. This 
overall model is characterized by 21 states; however the follwing m-file CRANE_MAIN does 
not include the friction state as we adapted the static friction model for reasons of better 
performance. 

7.2 MATLAB-code ‘CRANE_MAIN’ 

This section represents the main MATLAB-code. It is divided into two basic parts, the main 
function defining the crane dynamics and the ode-function in which the hydraulic flow is 
defined. In turn, the hydraulic is split into several sub-sections, including valve control, 
hydraulic flow and cylinder friction. At the end of this m-file the derivative of the state vector is 
calculated. 
 
function CRANE_MAIN() 
  
  
% Mathematical model of the crane in x-z-plane 
% 1st part: mechanical system (main) 
% 2nd part: hydraulic system (ode) 
  
clear all 
close all 
clf 
clc 
tic 
  
 global c1 c2 c3 l0 l1 l2 l3 l4 % cylinder and link properties 
 global t_step p_s p_0 C_0 k E_max p_max x_s_max C_1 C_2 F_c F_s v_s k_v w_n B p_tr 
p_tr_min p_tr_max rho % general properites 
 global joy % control inputs  
  
  
 % generalized vectors 
% ************************************************************************* 
syms alph bet x3 alph_p bet_p x3_p % generalized coordinates 
syms f1 f2 f3 % generalized forces (resulting cylinder forces) 
q   = [alph; bet; x3]; % (3) 
q_p = [alph_p; bet_p; x3_p]; 
     
w_alph = [0;alph_p;0]; % angular velocity alpha 
w_bet = [0;bet_p;0]; % angular velocity beta 
I_w_alpha = w_alph; % angular velocity alpha in inertia frame 
I_w_beta = w_alph + w_bet; % angular velocity beta in inertia frame 
% ************************************************************************* 
  
  
% gravitation vector 
% ************************************************************************* 
g = 9.81; % gravitational acceleration [m/s2] 
I_g = [0; 0; -g]; 
% ************************************************************************* 
  
  
% control input 
% ************************************************************************* 
joy.hor = 0; % horizontal axis -0.5 = left, 0 = stop, 0.5 = right [m/s] 
joy.ver = 0.5; % vertical axis -0.5 = down, 0 = stop, 0.5 = up [m/s] 
joy.t_samp = 5; % sampling interval [sec] 
joy.t_low = 0; % initial time minimum [sec] 
% *************************************************************************     
  
  
% crane parameters 
% ************************************************************************* 
[par] = dimension; 
l0 = par{1}; % tripod 
l1 = par{2}; % link 1 
l2 = par{3}; % link 2 
l3 = par{4}; % link 3 
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l4 = par{5}; % link 4 
cl = par{6}; % torque link 
c1 = par{7}; % cylinder 1 
c2 = par{8}; % cylinder 2 
c3 = par{9}; % cylinder 3 
% ************************************************************************* 
  
  
% general properties 
% *************************************************************************     
% fluid ******************************************************************* 
rho = 1000; % oil density [kg/m3] 
E_max = 1e9; % maximum bulk modulus of oil [Pa] 
C_1 = 90; % bulk modulus coefficient 1 [-] 
C_2 = 3; % bulk modulus coefficient 2 [-] 
% pump 
p_s = 140e5; % supply pressure of the pump [Pa] 
p_0 = 0; % atmosphere pressure of the tank [Pa] 
p_max = 200e5; % maximum pressure [Pa] 
% cylinder **************************************************************** 
F_c = 100; % coulomb friction [N] 
F_s = 750; % static friction (stiction) [N] 
v_s = 0.005; % stribeck velocity [m/s] 
k_v = 3500; % viscous friction coefficient [Ns/m] 
mu = 0.6; % friction coefficient of cylinder gaskets [-] 
k = 5e6; % spring stiffness at cylinder floor [N/m] (limitation of cylinder stroke) 
% spool ******************************************************************* 
x_s_max = 0.05; % maximum spool stroke [m] 
w_n = 2 * pi * 161.2; % natural frequency of the valve spool [1/s] 
B = 0.481; % damping factor of the valve spool[-] 
p_tr = 3e5; % (63) transition pressure corresponding to Reynolds transition [Pa] 
p_tr_min = 2e5; % (63) lower threshhold for transition region [Pa] 
p_tr_max = 4e5; % (63) upper threshhold for transition region [Pa] 
Q_N = 0.0001; % nominal flow [m3/s] (valve characteristic) 
p_n = 150e5; % nominal pressure drop [Pa] (valve characteristic) 
    C_0 = Q_N / (x_s_max * sqrt(0.5 * p_n)); % discharge coefficient [sqrt(m5/kg)] 
% *************************************************************************     
  
  
% cylinder 1 
% ************************************************************************* 
c1.A_1 = power(c1.d_c,2) * pi / 4; % area chamber 1 [m2] 
c1.A_2 = c1.A_1 - (power(c1.d_r,2) * pi / 4); % area chamber 2 [m2] 
c1.A_0 = power(c1.d_0,2) * pi / 4; % area dead zone [m2] 
c1.V_0d1 = c1.l_0 * c1.A_0; % dead volume chamber 1 [m3] 
c1.V_0d2 = c1.l_0 * c1.A_0; % dead volume chamber 2 [m3] 
c1.V_01 = c1.V_0d1 + c1.A_1*(c1.l_c-c1.l_p)/2; % (84) volume of oil in chamber 1 at x 
= 0 [m3] 
c1.V_02 = c1.V_0d2 + c1.A_2*(c1.l_c-c1.l_p)/2; % (85) volume of oil in chamber 2 at x 
= 0 [m3] 
c1.l_k = c1.l_c/20; % spring position from cylinder end [m] 
c1.k_int = pi * (c1.d_c/2+c1.r_c) * power(c1.r_c,3) / (6*mu*c1.l_p); % (99) internal 
leakage factor [m3/kg] 
c1.k_ext = pi * (c1.d_r/2+c1.r_c) * power(c1.r_c,3) / (6*mu*c1.l_cw); % (99) external 
leakage factor [m3/kg] 
% ************************************************************************* 
  
% cylinder 2 
% ************************************************************************* 
c2.A_1 = power(c2.d_c,2) * pi / 4; % area chamber 1 [m2] 
c2.A_2 = c2.A_1 - (power(c2.d_r,2) * pi / 4); % area chamber 2 [m2] 
c2.A_0 = power(c2.d_0,2) * pi / 4; % area dead zone [m2] 
c2.V_0d1 = 0.02 * c2.A_0; % dead volume chamber 1 [m3] 
c2.V_0d2 = 0.02 * c2.A_0; % dead volume chamber 2 [m3] 
c2.V_01 = c2.V_0d1 + c2.A_1 * (c2.l_c - c2.l_p) / 2; % (84) volume of oil in chamber 1 
at x = 0 [m3] 
c2.V_02 = c2.V_0d2 + c2.A_2 * (c2.l_c - c2.l_p) / 2; % (85) volume of oil in chamber 2 
at x = 0 [m3] 
c2.l_k = c2.l_c/20; % spring position from floor [m] 
c2.k_int = pi * (c2.d_c / 2 + c2.r_c) * power(c2.r_c,3) / (6*mu*c2.l_p); % (99) 
internal leakage factor [m3/kg] 
c2.k_ext = pi * (c2.d_r / 2 + c2.r_c) * power(c2.r_c,3) / (6*mu*c2.l_cw); % (99) 
external leakage factor [m3/kg] 
% ************************************************************************* 
  
% cylinder 3 
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% ************************************************************************* 
c3.A_1 = power(c3.d_c,2) * pi / 4; % area chamber 1 [m2] 
c3.A_2 = c3.A_1 - (power(c3.d_r,2) * pi / 4); % area chamber 2 [m2] 
c3.A_0 = power(c3.d_0,2) * pi / 4; % area dead zone [m2] 
c3.V_0d1 = 0.02 * c3.A_0 * pi / 4; % dead volume chamber 1 [m3] 
c3.V_0d2 = 0.02 * c3.A_0 * pi / 4; % dead volume chamber 2 [m3] 
c3.V_01 = c3.V_0d1 + c3.A_1*(c3.l_c-c3.l_p)/2; % (84) volume of oil in chamber 1 at x 
= 0 [m3] 
c3.V_02 = c3.V_0d2 + c3.A_2*(c3.l_c-c3.l_p)/2; % (85) volume of oil in chamber 2 at x 
= 0 [m3] 
c3.l_k = c3.l_c/20; % spring position from floor [m] 
c3.k_int = pi * (c3.d_c/2+c3.r_c) * power(c3.r_c,3) / (6*mu*c3.l_p); % (99) internal 
leakage factor [m3/kg] 
c3.k_ext = pi * (c3.d_r/2+c3.r_c) * power(c3.r_c,3) / (6*mu*c3.l_cw); % (99) external 
leakage factor [m3/kg] 
c3.l = (c3.l_c + c3.l_p) / 2 + c3.l_r + x3 + c3.o_s + c3.o_e; % (2) total lenght of 
cylinder [m] 
% ************************************************************************* 
  
  
% slope angle of the torque link 
% ************************************************************************* 
cl.l1 = norm(cl.r1); % length of torque link 1 [m] 
cl.l2 = norm(cl.r2); % length of torque link 2 [m] 
cl.teta1 = 2 * pi - bet - pi / 2 + l3.phi + l2.phi; % (17) angle lower closed loop 
l2.p4_p5 and l3.p2 [rad] 
cl.t1_t3 = sqrt(l2.p4_p5' * l2.p4_p5 + l3.p2' * l3.p2 - 2 * norm(l2.p4_p5) * 
norm(l3.p2) * cos(cl.teta1)); % (18) distance between closed loop fix in link 2 and 3 
[m] 
cl.teta2 = acos((cl.l1 * cl.l1 + cl.l2 * cl.l2 - cl.t1_t3 * cl.t1_t3) / (2 * cl.l1 * 
cl.l2)); % (20) angle upper closed loop cl.l1 and cl.l2 [rad] 
    cl.teta2 = simplify(cl.teta2); 
    cl.fhandle_teta2 = sym_2_fun(cl.teta2,'alph, bet'); 
cl.teta31 = asin(norm(l3.p2) / cl.t1_t3 * sin(cl.teta1)); % (21) angle between torque 
link 1 and cl.t1_t3 [rad] 
cl.teta32 = asin(cl.l2 / cl.t1_t3 * sin(cl.teta2)); % (22) angle between cl.t1_t3 and 
l2.p4_p5 [rad] 
cl.eps1 = cl.teta31 + cl.teta32 + l2.phi; % (24) angle between torque link 1 and 
torque link 2 
    cl.eps1 = simplify(cl.eps1); 
    cl.fhandle_eps1 = sym_2_fun(cl.eps1,'alph, bet'); 
% ************************************************************************* 
  
  
% transformation matrices 
% ************************************************************************* 
A_IK1 = eye(3); % rotation around z-axis of link 1 (==0) 
A_K1K2 = A_y(pi / 2 - alph); % (4) rotation around y-axis of link 2 ! alpha' = pi / 2 
- alpha ! 
A_K2K3 = A_y(pi - bet); % (5) rotation around y-axis of link 3 ! beta' = pi - beta ! 
A_K2_CL = A_y(-cl.eps1); % (26) rotation from torque link 1 to K2 
  
A_IK2 = A_IK1 * A_K1K2; % (7) rotation matrix of K2 associated to initial frame 
A_IK3 = A_IK1 * A_K1K2 * A_K2K3; % (8) rotation matrix of K2 associated to initial 
frame 
A_ICL = A_IK1 * A_K1K2 * A_K2_CL; % rotation matrix of torque frame associatred to 
initial frame 
% ************************************************************************* 
  
  
% k-vectors in world frame 
% ************************************************************************* 
I_r_11_12 = A_IK1 * l1.p2; % link 1 
I_r_21_25 = A_IK2 * l2.p5; % link 2 
I_r_41_42 = A_IK3 * l4.p2; % link 4 
  
I_r_11_1cg = A_IK1 * l1.cg; % center of gravity - link 1 
I_r_21_2cg = A_IK2 * l2.cg; % center of gravity - link 2 
I_r_31_3cg = A_IK3 * l3.cg; % center of gravity - link 3 
I_r_41_4cg = A_IK3 * l4.cg; % center of gravity - link 4 
  
I_r_11_13 = A_IK1 * l1.p3; % cylinder 1 - end 
I_r_21_22 = A_IK2 * l2.p2; % cylinder 1 - start 
I_r_21_23 = A_IK2 * l2.p3; % cylinder 2 - start 
I_r_31_33 = A_IK3 * l3.p3; % cylinder 3 - start 
I_r_31_42 = I_r_31_33 + A_IK3 * [c3.l;0;0]; % cylinder 3 - end 
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I_r_21_24 = A_IK2 * l2.p4; % joint 2  - link 2 
I_r_24_cl = A_ICL * cl.r1; % cylinder 2 - end 
  
I_r_42_ct = A_IK3 * (- l4.p2 + l4.p1); % cylinder 1 end - crane tip 
% ************************************************************************* 
  
  
% 0-vectors in world frame 
% ************************************************************************* 
I_r_0_1cg = I_r_11_1cg; % (30) center of gravity - link 1 
I_r_0_2cg = I_r_11_12 + I_r_21_2cg; % (31) center of gravity - link 2 
I_r_0_3cg = I_r_11_12 + I_r_21_25 + I_r_31_3cg; % (32) center of gravity - link 3 
I_r_0_4cg = I_r_11_12 + I_r_21_25 + I_r_31_42 - I_r_41_42 + I_r_41_4cg; % (33) center 
of gravity - link 4 
  
I_r_0_13 = I_r_11_13; % cylinder 1 - end 
I_r_0_22 = I_r_11_12 + I_r_21_22; % cylinder 1 - start 
I_r_0_23 = I_r_11_12 + I_r_21_23; % cylinder 2 - start 
I_r_0_cl = I_r_11_12 + I_r_21_24 + I_r_24_cl; % cylinder 2 - end 
I_r_0_33 = I_r_11_12 + I_r_21_25 + I_r_31_33; % cylinder 3 - start 
I_r_0_42 = I_r_11_12 + I_r_21_25 + I_r_31_42; % cylinder 3 - end 
I_r_0_ct = I_r_11_12 + I_r_21_25 + I_r_31_42 + I_r_42_ct; % (34) crane tip 
% ************************************************************************* 
  
  
% velocity of center of mass (r = r(q) --> i = 0) 
% ************************************************************************* 
I_v_0_1cg = jacobian(I_r_0_1cg,q)*q_p; % (36) velocity link 1 
I_v_0_2cg = jacobian(I_r_0_2cg,q)*q_p; % (36) velocity link 2 
I_v_0_3cg = jacobian(I_r_0_3cg,q)*q_p; % (36) velocity link 3 
I_v_0_4cg = jacobian(I_r_0_4cg,q)*q_p; % (36) velocity link 4 
% ************************************************************************* 
  
  
% piston stroke 1 
% ************************************************************************* 
c1.r = A_IK1' * (I_r_0_22 - I_r_0_13); % cylinder vector in K1 
c1.l = sqrt(c1.r(1) * c1.r(1) + c1.r(2) * c1.r(2) + c1.r(3) * c1.r(3)); % (1) total 
length of cylinder (joint-2-joint) 
  
c1.phi = atan(c1.r(1) / c1.r(3)); % (15) angle between cylinder and link 
    c1.phi = simplify(c1.phi); 
    c1.fhandle_phi = sym_2_fun(c1.phi,'alph'); 
  
c1.x = c1.l - c1.l_r - c1.l_c / 2 - c1.l_p / 2 - c1.o_s - c1.o_e; % (2)/(40) extension 
[m] 
    c1.x = simplify(c1.x); 
    c1.fhandle_x = sym_2_fun(c1.x,'alph'); 
     
c1.v = jacobian(c1.x,q) * q_p; % velocity [m/s] 
    c1.v = simplify(c1.v); 
    c1.fhandle_v = sym_2_fun(c1.v,'alph, alph_p'); 
% ************************************************************************* 
  
     
% piston stroke 2 
% ************************************************************************* 
c2.r = l2.p4 + A_K2_CL * cl.r1 - l2.p3; % (41) cylinder vector in K2 
c2.l = sqrt(c2.r(1) * c2.r(1) + c2.r(2) * c2.r(2) + c2.r(3) * c2.r(3)); % (1) total 
length of cylinder (joint-2-joint) 
  
c2.phi = atan(c2.r(3) / c2.r(1)); % (28) angle between cylinder and link (phi gets 
negativ) 
    c2.phi = simplify(c2.phi);  
    c2.fhandle_phi = sym_2_fun(c2.phi,'alph, bet'); 
  
c2.x = c2.l - c2.l_r - c2.l_c / 2 - c2.l_p / 2 - c2.o_s - c2.o_e; % (2)/(42) extension 
[m] 
    c2.x = simplify(c2.x); 
    c2.fhandle_x = sym_2_fun(c2.x,'alph, bet'); 
     
c2.v = jacobian(c2.x,q) * q_p; % velocity [m/s] 
    c2.v = simplify(c2.v); 
    c2.fhandle_v = sym_2_fun(c2.v,'alph, alph_p, bet, bet_p'); 
% ************************************************************************* 
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% kinetic energy (translation)  
% ************************************************************************* 
T_k = (1/2) * l1.m * I_v_0_1cg.' * I_v_0_1cg +... 
      (1/2) * l2.m * I_v_0_2cg.' * I_v_0_2cg +... 
      (1/2) * l3.m * I_v_0_3cg.' * I_v_0_3cg +... 
      (1/2) * l4.m * I_v_0_4cg.' * I_v_0_4cg; % (45/1) 
% *************************************************************************   
  
  
% kinetic energy (rotation) 
% ************************************************************************* 
T_r = (1/2) * I_w_alpha.' * l2.I * I_w_alpha +... 
      (1/2) * I_w_beta.' * l3.I * I_w_beta + ... 
      (1/2) * I_w_beta.' * l4.I * I_w_beta; % (45/2) 
% ************************************************************************* 
  
  
% total kinetic energy 
% ************************************************************************* 
T = T_k + T_r; % (45) 
% ************************************************************************* 
  
  
% potential energy 
% ************************************************************************* 
V =  l1.m * I_g' * I_r_0_1cg +... 
     l2.m * I_g' * I_r_0_2cg +... 
     l3.m * I_g' * I_r_0_3cg +... 
     l4.m * I_g' * I_r_0_4cg; % (52) 
% ************************************************************************* 
  
  
% actuator forces 
% ************************************************************************* 
A_Ic1 = A_y(pi / 2 + c1.phi); % (16) rotation matrix from cylinder 1 to earth frame  
A_Ic2 = A_IK2 * A_y(-c2.phi); % (29) rotation matrix from cylinder 2 to earth frame 
A_Ic3 = A_IK3; % rotation matrix from cylinder 3 to earth frame 
  
I_f_a1 = A_Ic1 * [f1;0;0]; % cylidner force vector 1 
I_f_a2 = A_Ic2 * [f2;0;0]; % cylidner force vector 2 
I_f_a3 = A_Ic3 * [f3;0;0]; % cylidner force vector 3 
% ************************************************************************* 
  
  
% non-potential forces 
% ************************************************************************* 
Q = jacobian(I_r_0_13,q).' * I_f_a1 - jacobian(I_r_0_22,q).' * I_f_a1 +... 
    jacobian(I_r_0_cl,q).' * I_f_a2 - jacobian(I_r_0_23,q).' * I_f_a2 +... 
    jacobian(I_r_0_42,q).' * I_f_a3 - jacobian(I_r_0_33,q).' * I_f_a3; % (54) 
% ************************************************************************* 
  
  
% derivation of Euler-Lagrange terms M & h 
% ************************************************************************* 
M = jacobian(jacobian(T,q_p).',q_p); % (41) 
h = - jacobian(jacobian(T,q_p).',q) * q_p + jacobian(T,q).' - jacobian(V,q).' + Q; % 
(53) 
M = simplify(M); 
h = simplify(h); 
fhandle_M = sym_2_fun(M,'alph, bet, x3, f1, f2, f3'); 
fhandle_h = sym_2_fun(h,'alph, alph_p, bet, bet_p, x3, x3_p, f1, f2, f3'); 
% ************************************************************************* 
  
% ode options 
% *************************************************************************     
t_start = 0; 
t_step  = 0.001; 
t_end   = 0.5; 
  
opt = odeset('OutputFcn',@odeplot,... 
             'RelTol',1.e-1,...   % Standard 1.e-3 
             'AbsTol',1.e-1,...   % Standard 1.e-6 
             'OutputFcn',@odeplot); 
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x0  = [100*pi/180 0 0 0 0 0 100*pi/180 0 0 0 0 0 0 0 0 0 0 0]; % inital conditions 
% *************************************************************************       
  
  
% ode call 
% ************************************************************************* 
[t,x] = 
ode23(@odefunction,t_start:t_step:t_end,x0,opt,fhandle_M,fhandle_h,c1.fhandle_x,c2.fha
ndle_x,c1.fhandle_v,c2.fhandle_v); 
% ************************************************************************* 
  
  
% plot call 
% ************************************************************************* 
PLOT_CHARTS(t,x,c1,c2,c3,cl,l0,l1,l2,l3,l4,t_step,t_end) 
% ************************************************************************* 
  
  
% trajectory of the crane tip 
% ************************************************************************* 
for i = 1 : length(t) 
     
    A_IK1 = eye(3); 
    A_IK2 = A_IK1 * A_y(pi / 2 - x(i,1)); 
    A_IK3 = A_IK1 * A_y(pi / 2 - x(i,1)) * A_y(pi - x(i,7)); 
  
    ct(1:3,i) = A_IK1 * l1.p2 + ... 
                A_IK2 * l2.p5 + ... 
                A_IK3 * l3.p3 + ... 
                A_IK3 * [c3.o_s + c3.l_c / 2 + x(i,13) + c3.l_p / 2 + c3.l_r + 
c3.o_e;0;0] + ... 
                A_IK3 * (l4.p1 - l4.p2); 
     
end 
  
    figure 
    subplot(2,1,1) 
    plot(t',ct(1,:)) 
    grid 
    xlabel('time [sec]') 
    ylabel({'trajectory of crane tip';'in x-direction [m]'}) 
    subplot(2,1,2) 
    plot(t',ct(3,:)) 
    grid 
    xlabel('time [sec]') 
    ylabel({'trajectory of crane tip';'in z-direction [m]'}) 
% ************************************************************************* 
  
  
end       
         
% ************************************************************************* 
% --------------------------END OF MAIN------------------------------------  
% ************************************************************************* 
  
function 
dxdt=odefunction(t,x,M_function,h_function,x1_function,x2_function,v1_function,v2_func
tion) 
  
 global c1 c2 c3 l1 l2 l3 l4 % cylinder and link properties 
 global p_s p_0 C_0 k E_max p_max x_s_max C_1 C_2 F_c F_s v_s k_v w_n B p_tr p_tr_min 
p_tr_max rho % general properites 
 global joy % control input 
 global alpha_d beta_d x3_d % computation of generalized coordinates 
  
  
% some definition of cylinder piston (x, v) 
% ************************************************************************* 
x1_real = x1_function(x(1)); 
v1_real = v1_function(x(1),x(2)); 
x2_real = x2_function(x(1),x(7)); 
v2_real = v2_function(x(1),x(2),x(7),x(8)); 
% ************************************************************************* 
  
  
% crane control 
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% ************************************************************************* 
if (t == 0) || ((t - joy.t_low) > joy.t_samp) % sampling criterion 
joy.t_low = t; % reset of lower time 
  
  % position of the crane tip 
    A_IK1 = eye(3); 
    A_IK2 = A_IK1 * A_y(pi / 2 - x(1)); 
    A_IK3 = A_IK1 * A_y(pi / 2 - x(1)) * A_y(pi - x(7)); 
    ct = A_IK1 * l1.p2 + ... % link 1 
         A_IK2 * l2.p5 + ... % link 2 
         A_IK3 * l3.p3 + ... % link 3 
         A_IK3 * [c3.o_s + c3.l_c / 2 + x(13) + c3.l_p / 2 + c3.l_r + c3.o_e;0;0] + 
... % cylinder 3 
         A_IK3 * (l4.p1 - l4.p2); % tele beam 
  
  % inverse kinematics 
    joy.delta = [joy.hor * joy.t_samp; 0; joy.ver * joy.t_samp]; % joystick input 
    ct_d = ct + joy.delta; % desired position of the crane tip [m] 
    x3_d = 0; % telescopic beam extension (will be varied ...) 
     
    l3.ct = l3.p3 + [c3.o_s + c3.l_c / 2 + x3_d + c3.l_p / 2 + c3.l_r + c3.o_e;0;0] + 
(l4.p1 - l4.p2); % K3-vector from joint 3 to crane tip [m] 
    r1 = norm(l2.p5); % length of r1 [m] 
    r2 = norm(l3.ct); % length of r2 [m] 
    r_diag = ct_d - l1.p2; % (36) diagonal vector [m] 
  
    beta_d = acos((r1 * r1 + r2 * r2 - r_diag' * r_diag) / (2 * r1 * r2)); % (35) 
desired angle beta related to joint axis [rad] 
    alpha_d = acos((l1.p2' * l1.p2 + r_diag' * r_diag - ct_d' * ct_d) / (2 * 
norm(l1.p2) * norm(r_diag))) + acos((r1 * r1 + r_diag' * r_diag - r2 * r2) / (2 * r1 * 
norm(r_diag))); % (37) desired angle alpha related to joint axis [rad] 
    alpha_d = alpha_d - atan(l2.p5(3) / l2.p5(1)); % (38) desired angle alpha related 
to frame axis [rad] 
    beta_d = beta_d + atan(l2.p5(3) / l2.p5(1)) - atan(l3.ct(3) / l3.ct(1)); % (39) 
desired angle beta related to frame axis [rad] 
  
  % text 
    disp({['sampling time = ',num2str(joy.t_low)]}) 
    disp({['ct (x) = ',num2str(ct(1))],['ct_d (x) = ',num2str(ct_d(1))]}) 
    disp({['ct (z) = ',num2str(ct(3))],['ct_d (z) = ',num2str(ct_d(3))]}) 
    disp({['alpha = ',num2str(x(1) * 180 / pi)],['alpha_d = ',num2str(alpha_d * 180 / 
pi)]}) 
    disp({['beta = ',num2str(x(7) * 180 / pi)],['beta_d = ',num2str(beta_d * 180 / 
pi)]}) 
    disp(' ') 
end 
% ************************************************************************* 
  
  
% ************************************************************************* 
% control cylinder 1 
% ************************************************************************* 
c1.K_p = 1; % proportional gain 
c1.K_d = 0.01; % derivative gain 
c1.K_i = 0.0001; % integral gain 
  
c1.e_2 = c1.e_1; % error t_-2 
c1.e_1 = c1.e; % error t_-1 
c1.e = alpha_d - x(1); % error 
  
c1.d_u = c1.K_p * (c1.e - c1.e_1) + c1.K_i * c1.e + c1.K_d * (c1.e - 2 * c1.e_1 + 
c1.e_2); % differential control force 
c1.u = c1.u + c1.d_u; % control force 
c1.u = sign(c1.u) * min(abs([x_s_max; c1.u])); % limit control input 
c1.i = 1 * c1.u; % input to spool 
% ************************************************************************* 
% control cylinder 2 
% ************************************************************************* 
c2.K_p = 1; % proportional gain 
c2.K_d = 0.01; % derivative gain 
c2.K_i = 0.005; % integral gain 
  
c2.e_2 = c2.e_1; % error t_-2 
c2.e_1 = c2.e; % error t_-1 
c2.e = beta_d - x(7); % error 
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c2.d_u = c2.K_p * (c2.e - c2.e_1) + c2.K_i * c2.e + c2.K_d * (c2.e - 2 * c2.e_1 + 
c2.e_2); % differential control force 
c2.u = c2.u + c2.d_u; % control force 
c2.u = sign(c2.u) * min(abs([x_s_max; c2.u])); % limit control input 
c2.i = - 1 * c2.u; % input to spool 
% ************************************************************************* 
% control cylinder 3 
% ************************************************************************* 
c3.K_p = 1; % proportional gain 
c3.K_d = 0.01; % derivative gain 
c3.K_i = 0.005; % integral gain 
  
c3.e_2 = c3.e_1; % error t_-2 
c3.e_1 = c3.e; % error t_-1 
c3.e = x3_d - x(13); % error 
  
c3.d_u = c3.K_p * (c3.e - c3.e_1) + c3.K_i * c3.e + c3.K_d * (c3.e - 2 * c3.e_1 + 
c3.e_2); % differential control force 
c3.u = c3.u + c3.d_u; % control force 
c3.u = sign(c3.u) * min(abs([x_s_max; c3.u])); % limit control input 
c3.i = 1 * c3.u; % input to spool 
% ************************************************************************* 
  
  
% ************************************************************************* 
% chamber flow cylinder 1 
% ************************************************************************* 
c1.dp1 = rho / 2 * (power((c1.A_1 / c1.A_0),2) - 1) * power(v1_real,2); % (104) 
additional pressure chamber 1 (Bernoulli) 
c1.dp2 = rho / 2 * (power((c1.A_2 / c1.A_0),2) - 1) * power(v1_real,2); % (104) 
additional pressure chamber 2 (Bernoulli) 
if x(5) >= 0 % positive flow x(5) = 0 redundant 
    delta_p1 = p_s - (x(3) - c1.dp1); 
    delta_p2 = (x(4) - c1.dp2) - p_0; 
elseif x(5) < 0 % negative flow 
    delta_p1 = (x(3) - c1.dp1) - p_0; 
    delta_p2 = p_s - (x(4) - c1.dp2); 
end 
    if abs(delta_p1) >= p_tr_max % (66/67) turbulent flow 
        c1.Q_1 = C_0 * x(5) * sign(delta_p1) * sqrt(abs(delta_p1)); % flow chamber 1 
p_1==p_s 
    elseif abs(delta_p1) < p_tr_min % (69/70) laminar flow 
        c1.Q_1 = C_0 * x(5) * delta_p1 * (abs(delta_p1) / p_tr) / (2 * sqrt(p_tr)); % 
factor '(3...' is between 2e-3 and 4e-3 
    else % (74) transition range 
        c1.Q_1 = abs((abs(delta_p1) - p_tr_min) / (p_tr_max - p_tr_min)) * ... 
                 C_0 * x(5) * sign(delta_p1) * sqrt(abs(delta_p1)) + ... 
                 (1 - abs((abs(delta_p1) - p_tr_min) / (p_tr_max - p_tr_min))) * ... 
                 C_0 * x(5) * delta_p1 * (abs(delta_p1) / p_tr) / (2 * sqrt(p_tr)); % 
(69) transition flow 
    end 
    if abs(delta_p2) >= p_tr % (58/59) turbulent flow 
        c1.Q_2 = C_0 * x(5) * sign(delta_p2) * sqrt(abs(delta_p2)); % flow chamber 2 
p_2==p_0 
    elseif abs(delta_p2) < p_tr % laminar flow 
        c1.Q_2 = C_0 * x(5) * delta_p2 * (abs(delta_p2) / p_tr) / (2 * sqrt(p_tr)); 
    else % (74) transition range 
        c1.Q_2 = abs((abs(delta_p2) - p_tr_min) / (p_tr_max - p_tr_min)) * ... 
                 C_0 * x(5) * sign(delta_p2) * sqrt(abs(delta_p2)) + ... 
                 (1 - abs((abs(delta_p2) - p_tr_min) / (p_tr_max - p_tr_min))) * ... 
                 C_0 * x(5) * delta_p2 * (abs(delta_p2) / p_tr) / (2 * sqrt(p_tr)); % 
(69) transition flow 
    end 
c1.Q_int = c1.k_int * (x(3) - x(4)); % (97) internal leakage 
c1.Q_ext = c1.k_ext * x(4); % (98) external leakage 
% ************************************************************************* 
% chamber flow cylinder 2 
% ************************************************************************* 
c2.dp1 = rho / 2 * (power((c2.A_1 / c2.A_0),2) - 1) * power(v2_real,2); % (104) 
additional pressure chamber 1 (Bernoulli) 
c2.dp2 = rho / 2 * (power((c2.A_2 / c2.A_0),2) - 1) * power(v2_real,2); % (104) 
additional pressure chamber 2 (Bernoulli) 
if x(11) >= 0 % positive flow x(11) = 0 redundant 
    delta_p1 = p_s - (x(9) - c2.dp1); 
    delta_p2 = (x(10) - c2.dp2) - p_0; 
elseif x(11) < 0 % negative flow 
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    delta_p1 = (x(9) - c2.dp1) - p_0; 
    delta_p2 = p_s - (x(10) - c2.dp2); 
end 
    if abs(delta_p1) >= p_tr % (66/67) turbulent flow 
        c2.Q_1 = C_0 * x(11) * sign(delta_p1) * sqrt(abs(delta_p1)); % flow chamber 1 
p_1==p_s 
    elseif abs(delta_p1) < p_tr % (69/70) laminar flow 
        c2.Q_1 = C_0 * x(11) * delta_p1 * (abs(delta_p1) / p_tr) / (2 * sqrt(p_tr)); % 
factor '(3...' is between 2e-3 and 4e-3 
    else % (74) transition range 
        c2.Q_1 = abs((abs(delta_p1) - p_tr_min) / (p_tr_max - p_tr_min)) * ... 
                 C_0 * x(11) * sign(delta_p1) * sqrt(abs(delta_p1)) + ... 
                 (1 - abs((abs(delta_p1) - p_tr_min) / (p_tr_max - p_tr_min))) * ... 
                 C_0 * x(11) * delta_p1 * (abs(delta_p1) / p_tr) / (2 * sqrt(p_tr)); % 
(69) transition flow 
    end 
    if abs(delta_p2) >= p_tr % (66/67) turbulent flow 
        c2.Q_2 = C_0 * x(11) * sign(delta_p2) * sqrt(abs(delta_p2)); % flow chamber 2 
p_2==p_0 
    elseif abs(delta_p2) < p_tr % (69/70) laminar flow 
        c2.Q_2 = C_0 * x(11) * delta_p2 * (abs(delta_p2) / p_tr) / (2 * sqrt(p_tr)); 
    else % (74) transition range 
        c2.Q_2 = abs((abs(delta_p2) - p_tr_min) / (p_tr_max - p_tr_min)) * ... 
                 C_0 * x(11) * sign(delta_p2) * sqrt(abs(delta_p2)) + ... 
                 (1 - abs((abs(delta_p2) - p_tr_min) / (p_tr_max - p_tr_min))) * ... 
                 C_0 * x(11) * delta_p2 * (abs(delta_p2) / p_tr) / (2 * sqrt(p_tr)); % 
(69) transition flow 
    end 
c2.Q_int = c2.k_int * (x(9) - x(10)); % (97) internal leakage 
c2.Q_ext = c2.k_ext * x(10); % (98) external leakage 
% ************************************************************************* 
% chamber flow cylinder 3 
% ************************************************************************* 
c3.dp1 = rho / 2 * (power((c3.A_1 / c3.A_0),2) - 1) * power(x(14),2); % (104) 
additional pressure chamber 1 (Bernoulli) 
c3.dp2 = rho / 2 * (power((c3.A_2 / c3.A_0),2) - 1) * power(x(14),2); % (104) 
additional pressure chamber 2 (Bernoulli) 
if x(17) >= 0 % positive flow x(17) = 0 redundant 
    delta_p1 = p_s - (x(15) - c3.dp1); 
    delta_p2 = (x(16) - c3.dp2) - p_s; % (68) regenerative valve 
elseif x(17) < 0 % negative flow 
    delta_p1 = (x(15) - c3.dp1) - p_0; 
    delta_p2 = p_s - (x(16) - c3.dp2); 
end 
    if abs(delta_p1) >= p_tr % (66/67) turbulent flow 
        c3.Q_1 = C_0 * x(17) * sign(delta_p1) * sqrt(abs(delta_p1)); % flow chamber 1 
p_1==p_s 
    elseif abs(delta_p1) < p_tr % (69/70) laminar flow 
        c3.Q_1 = C_0 * x(17) * delta_p1 * (abs(delta_p1) / p_tr) / (2 * sqrt(p_tr)); % 
factor '(3...' is between 2e-3 and 4e-3 
    else % (74) transition range 
        c3.Q_1 = abs((abs(delta_p1) - p_tr_min) / (p_tr_max - p_tr_min)) * ... 
                 C_0 * x(17) * sign(delta_p1) * sqrt(abs(delta_p1)) + ... 
                 (1 - abs((abs(delta_p1) - p_tr_min) / (p_tr_max - p_tr_min))) * ... 
                 C_0 * x(17) * delta_p1 * (abs(delta_p1) / p_tr) / (2 * sqrt(p_tr)); % 
(69) transition flow    
    end 
    if abs(delta_p2) >= p_tr % (66/67) turbulent flow 
        c3.Q_2 = C_0 * x(17) * sign(delta_p2) * sqrt(abs(delta_p2)); % flow chamber 2 
p_2==p_0 
    elseif abs(delta_p2) < p_tr % (69/70) laminar flow 
        c3.Q_2 = C_0 * x(17) * delta_p2 * (abs(delta_p2) / p_tr) / (2 * sqrt(p_tr)); 
    else % (74) transition range 
        c3.Q_2 = abs((abs(delta_p2) - p_tr_min) / (p_tr_max - p_tr_min)) * ... 
                 C_0 * x(17) * sign(delta_p2) * sqrt(abs(delta_p2)) + ... 
                 (1 - abs((abs(delta_p2) - p_tr_min) / (p_tr_max - p_tr_min))) * ... 
                 C_0 * x(17) * delta_p2 * (abs(delta_p2) / p_tr) / (2 * sqrt(p_tr)); % 
(69) transition flow 
    end 
 c3.Q_int = c3.k_int * (x(15) - x(16)); % (97) internal leakage 
 c3.Q_ext = c3.k_ext * x(15); % (98) external leakage 
% ************************************************************************* 
  
  
% ************************************************************************* 
% compressibility of oil cylinder 1 
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% ************************************************************************* 
c1.E_1 = 0.5 * E_max * log10(C_1 * (abs(x(3)) / p_max) + C_2); % (96) bulk modulus of 
oil [Pa] 
c1.E_2 = 0.5 * E_max * log10(C_1 * (abs(x(4)) / p_max) + C_2); % (96) bulk modulus of 
oil [Pa] 
% ************************************************************************* 
% compressibility of oil cylinder 2 
% ************************************************************************* 
c2.E_1 = 0.5 * E_max * log10(C_1 * (abs(x(9)) / p_max) + C_2); % (96) bulk modulus of 
oil [Pa] 
c2.E_2 = 0.5 * E_max * log10(C_1 * (abs(x(10)) / p_max) + C_2); % (96) bulk modulus of 
oil [Pa] 
% ************************************************************************* 
% compressibility of oil cylinder 3 
% ************************************************************************* 
 c3.E_1 = 0.5 * E_max * log10(C_1 * (abs(x(15)) / p_max) + C_2); % (96) bulk modulus 
of oil [Pa] 
 c3.E_2 = 0.5 * E_max * log10(C_1 * (abs(x(16)) / p_max) + C_2); % (96) bulk modulus 
of oil [Pa] 
% ************************************************************************* 
  
  
% ************************************************************************* 
% chamber volumes cylinder 1 
% ************************************************************************* 
c1.V_1 = c1.V_01 + c1.A_1 * x1_real; % (86) 
c1.V_2 = c1.V_02 - c1.A_2 * x1_real; % (87) 
% ************************************************************************* 
% chamber volumes cylinder 2 
% ************************************************************************* 
c2.V_1 = c2.V_01 + c2.A_1 * x2_real; % (86) 
c2.V_2 = c2.V_02 - c2.A_2 * x2_real; % (87) 
% ************************************************************************* 
% chamber volumes cylinder 3 
% ************************************************************************* 
 c3.V_1 = c3.V_01 + c3.A_1 * x(13); % (86) 
 c3.V_2 = c3.V_02 - c3.A_2 * x(13); % (87) 
% ************************************************************************* 
  
  
% ************************************************************************* 
% friction force cylinder 1 
% ************************************************************************* 
 c1.F_f = k_v * v1_real + sign(v1_real) * (F_c + F_s * exp(-abs(v1_real) / v_s)); % 
friction force [N] 
% ************************************************************************* 
% friction force cylinder 2 
% ************************************************************************* 
 c2.F_f = k_v * v2_real + sign(v2_real) * (F_c + F_s * exp(-abs(v2_real) / v_s)); % 
friction force [N] 
% ************************************************************************* 
 % friction force cylinder 3 
% ************************************************************************* 
  c3.F_f = k_v * x(14) + sign(x(14)) * (F_c + F_s * exp(-abs(x(14)) / v_s)); % 
friction force [N] 
% ************************************************************************* 
  
  
% ************************************************************************* 
% spring force cylinder 1 
% ************************************************************************* 
 if x1_real > (c1.l_c / 2) - c1.l_k - (c1.l_p / 2); 
  c1.F_k = k * ((c1.l_c / 2) - x1_real - (c1.l_p / 2) - c1.l_k); 
 elseif x1_real < -(c1.l_c / 2) + c1.l_k + (c1.l_p / 2); 
  c1.F_k = k * (-c1.l_c / 2 - x1_real + c1.l_p / 2 + c1.l_k);   
 else 
  c1.F_k = 0; 
 end 
% ************************************************************************* 
% spring force cylinder 2 
% ************************************************************************* 
 if x2_real > (c2.l_c / 2) - c2.l_k - (c2.l_p / 2); 
   c2.F_k = k * ((c2.l_c / 2) - x2_real - (c2.l_p / 2) - c2.l_k); 
 elseif x2_real < -(c2.l_c / 2) + c2.l_k + (c2.l_p / 2); 
   c2.F_k = k * (-c2.l_c / 2 - x2_real + c2.l_p / 2 + c2.l_k);    
 else 
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  c2.F_k = 0; 
 end 
% ************************************************************************* 
% spring force cylinder 3 
% ************************************************************************* 
  if x(13) > (c3.l_c / 2) - c3.l_k - (c3.l_p / 2); 
   c3.F_k = k * ((c3.l_c / 2) - x(13) - (c3.l_p / 2) - c3.l_k); 
  elseif x(13) < -(c3.l_c / 2) + c3.l_k + (c3.l_p / 2); 
   c3.F_k = k * (-c3.l_c / 2 - x(13) + c3.l_p / 2 + c3.l_k);   
  else 
   c3.F_k = 0; 
  end 
% ************************************************************************* 
  
  
% resulting cylinder forces acting on crane 
% ************************************************************************* 
 f1 = x(3) * c1.A_1 - x(4) * c1.A_2 + c1.F_k - c1.F_f; % (83) 
 f2 = x(9) * c2.A_1 - x(10) * c2.A_2 + c2.F_k - c2.F_f; % (83) 
 f3 = x(15) * c3.A_1 - x(16) * c3.A_2 + c3.F_k - c3.F_f; % (83) 
% ************************************************************************* 
  
  
% Lagrange formulation 
% ************************************************************************* 
M_real  = M_function(x(1),x(7),x(13),f1,f2,f3); 
h_real  = h_function(x(1),x(2),x(7),x(8),x(13),x(14),f1,f2,f3); 
q_pp = M_real\h_real; % (62) 
% ************************************************************************* 
  
  
% derivative of the state vector 
% ************************************************************************* 
dxdt = [x(2) % (63) d/alpha 
        q_pp(1) % (63) d/alpha_dot 
        c1.E_1 / c1.V_1 * (-c1.A_1 * v1_real + c1.Q_1 - c1.Q_int) % (105) d/p1_1 
        c1.E_2 / c1.V_2 * (c1.A_2 * v1_real - c1.Q_2 + c1.Q_int - c1.Q_ext) % (106) 
d/p2_1 
        x(6) % (82) d/xs_1 
        power(w_n,2) * c1.i - 2 * B * w_n * x(6) - power(w_n,2) * x(5) % (82) 
/d_xs_dot_1 
        x(8) % (3) d/beta 
        q_pp(2) % (3) d/beta_dot 
        c2.E_1 / c2.V_1 * (-c2.A_1 * v2_real + c2.Q_1 - c2.Q_int) % (105) d/p1_2 
        c2.E_2 / c2.V_2 * (c2.A_2 * v2_real - c2.Q_2 + c2.Q_int - c2.Q_ext) % (106) 
d/p2_2 
        x(12) % (82) d/xs_2 
        power(w_n,2) * c2.i - 2 * B * w_n * x(12) - power(w_n,2) * x(11) % (82) 
d/xs_dot_2 
        x(14) % (3) d/x3 
        q_pp(3) % (3) d/x3_dot 
        c3.E_1 / c3.V_1 * (-c3.A_1 * x(14) + c3.Q_1 - c3.Q_int) % (105) d/p1_3 
        c3.E_2 / c3.V_2 * (c3.A_2 * x(14) - c3.Q_2 + c3.Q_int - c3.Q_ext) % (106) 
d/p2_3 
        x(18) % (82) d/xs_3 
        power(w_n,2) * c3.i - 2 * B * w_n * x(18) - power(w_n,2) * x(17)]; % (82) 
d/xs_dot_3 
% ************************************************************************* 
  
end 
  
% ************************************************************************* 
% --------------------------END OF ODE-------------------------------------  
% ************************************************************************* 
 

7.3 MATLAB-code ‘DIMENSION’ 

This section represents the dimension of the elements that are part of the laboratory crane at 
Växjö University, including the beam-linkage and the three double-acting cylinders. The 
values have been derived from the SolidWorks model provided by Rottne Industri AB. 
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function struct = parameter 
  
  
% Definition of the crane's dimension 
% l0 = tripod 
% l1 = link 1 
% l1 = link 2 
% l1 = link 3 
% l1 = link 4 
% cl = torque link  (closed-loop) 
% c1 = cylinder 1 
% c2 = cylinder 2 
% c3 = cylinder 3 
  
  
% tripod     
% ************************************************************************* 
l0.p1 = [0;0;0]; % origin [m] (initial frame) 
l0.p2 = [0;0;-1.21]; % floor [m]  
% ************************************************************************* 
  
  
% link 1 (rotary) 
% ************************************************************************* 
l1.p1 = [0;0;0]; % origin [m] (initial frame) 
l1.p2 = [0;0;0.73]; % joint link 2 [m] 
l1.p3 = [0.115;0;0.033]; % end cylinder 1 [m] 
l1.cg = [0;0;0.73/2]; % center of gravity [m] 
l1.m = 50; % mass [kg] 
l1.I = [0 0 0; 
        0 0 0; 
        0 0 0]; % inertia tensor [kg m4] 
% ************************************************************************* 
  
  
% link 2 (boom) 
% ************************************************************************* 
l2.p1 = [0;0;0]; % joint link 1 [m] 
l2.p2 = [0.199;0;-0.061]; % start cylinder 1 [m] 
l2.p3 = [1.519;0;0.214]; % start cylinder 2 [m] 
l2.p4 = [2.231;0;0.109]; % closed loop [m] 
l2.p5 = [2.309;0;0.081]; % joint link 3 [m] 
l2.cg = [1.085;0;0.082]; % center of gravity [m] 
l2.m = 68.2; % mass [kg] 
l2.I = [0.724  0       6.793; 
        0    118.644   0; 
        6.793  0     118.1]; % intertia tensor [kg m4] 
l2.p4_p5 = l2.p5 - l2.p4; % vector between closed loop and joint link 3 [m] 
l2.phi = atan(l2.p4_p5(3) / l2.p4_p5(1)); % angle between vector p4/p5 and x-axis(K2) 
[rad] !negative! 
% ************************************************************************* 
  
  
% link 3 (jib) 
% ************************************************************************* 
l3.p1 = [0;0;0]; % joint link 2 [m] 
l3.p2 = [-0.035;0;0.094]; % closed loop [m] 
l3.p3 = [0.255;0;0.207]; % start cylinder 3 [m] 
l3.p4 = [0.98;0;0]; % x-end of link 3 [m] 
l3.cg = [0.403;0;0.097]; % center of gravity [m] 
l3.m = 27.54; % mass [kg] 
l3.I = [0.367 0   1.124; 
        0     7.9 0; 
        1.124 0   7.638]; % inertia tensor [kg m4] 
l3.phi = atan(l3.p2(1) / l3.p2(3)); % angle between x-axis(K3) and l3_p2 [rad] 
!negative! 
% ************************************************************************* 
  
  
% link 4 (extension) 
% ************************************************************************* 
l4.p1 = [1.136;0;-0.051]; % crane tip [m] 
l4.p2 = [1.058;0;0.107]; % end cylinder 3 [m] 
l4.cg = [0.678;0;0.004]; % center of gravity [m] 
l4.m = 10.11; % mass [kg] 
l4.I = [0.019 0     0.044 
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        0     5.942 0 
        0.044 0     5.935]; % interia tensor [kg m4] 
% ************************************************************************* 
  
  
% torque links in K2         
% ************************************************************************* 
cl.r1 = [0.182;0;0]; % vector torque link 1 [m] 
cl.r2 = [0.194;0;0]; % vector torque link 2 [m] 
% ************************************************************************* 
  
  
% specification of cylinder 1 
% ************************************************************************* 
c1.o_s = 0.05; % offset start [m] 
c1.o_e = 0.01; % offset end [m] 
c1.l_c = 0.43; % length cylinder [m] 
c1.l_p = 0.1; % length piston [m] 
c1.l_r = 0.31; % length rod [m] 
c1.l_0 = 0.02; % length dead zone [m] 
c1.l_cw = 0.01; % thickness of cylinder body [m] 
c1.d_c = 0.1; % diameter cylinder [m] 
c1.d_r = 0.04; % diameter rod [m] 
c1.d_0 = 0.01; % diameter dead zone [m] 
c1.r_c = 0.0001; % leakage radius [m] 
c1.e = 0; % initial control error (deviation of norm) 
c1.e_i = 0; % initial integral error at t 
c1.e_1 = 0; % initial integral error at t_-1 
c1.e_2 = 0; % initial integral error at t_-2 
c1.u = 0; % initial control input 
% ************************************************************************* 
  
  
% specification of cylinder 2    
% ************************************************************************* 
c2.o_s = 0.035; % offset start [m] 
c2.o_e = 0.095; % offset end [m] 
c2.l_c = 0.445; % length cylinder body [m] 
c2.l_p = 0.1; % length piston [m] 
c2.l_r = 0.31; % length rod [m] 
c2.l_cw = 0.01; % thickness of cylinder [m] 
c2.d_c = 0.09; % diameter cylinder [m] 
c2.d_r = 0.045; % diameter rod [m] 
c2.d_0 = 0.01; % diameter dead zone [m] 
c2.r_c = 0.0001; % leakage radius [m] 
c2.e = 0; % initial control error (deviation of norm) 
c2.e_i = 0; % initial integral error at t 
c2.e_1 = 0; % initial integral error at t_-1 
c2.e_2 = 0; % initial integral error at t_-2 
c2.u = 0; % initial control input 
% ************************************************************************* 
  
  
% specification of cylinder 3       
% ************************************************************************* 
c3.o_s = 0.04; % offset start [m] 
c3.o_e = 0.04; % offset end [m] 
c3.l_c = 0.71; % length cylinder [m] 
c3.l_p = 0.08; % length piston [m] 
c3.l_r = 0.71; % length rod [m] 
c3.l_cw = 0.01; % thickness of cylinder body [m] 
c3.d_c = 0.05; % diameter cylinder [m] 
c3.d_r = 0.03; % diameter rod [m] 
c3.d_0 = 0.01; % diameter dead zone [m] 
c3.r_c = 0.0001; % leakage radius [m] 
c3.e = 0; % initial error (deviation of norm) 
c3.e_i = 0; % initial integral error at t 
c3.e_1 = 0; % initial integral error at t_-1 
c3.e_2 = 0; % initial integral error at t_-2 
c3.u = 0; % initial control input 
% ************************************************************************* 
  
  
struct = [{l0 l1 l2 l3 l4 cl c1 c2 c3}]; 
  
end 
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7.4 MATLAB-code ‘PLOT_CHARTS’ 

This code calls all the plot functions beginning with six charts of the generalized coordinates 
( )Tx3βα , its derivatives ( )Tv3βα ωω , cylinder pressures 1p  and 2p  and the spool 

stroke px  along with its velocity pv . At the 3rd cylinder, px  and pv  are obviously the same 

as the generalized coordinates 3x and 3v  respectively. Finally, at the end of the plot call, the 
animation of motion of the crane will be simulated ( 
 

 

Figure 86: Characteristic charts of cylinder 1 
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Figure 87: Characteristic charts of cylinder 2 

 

Figure 88: Characteristic charts of cylinder 3 
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In the second section the call command for the crane animation is listed. The entire crane is 
drawn by line-representation of all crane elements. Finally the vector of generalized 
coordinates is used to determine the position and direction of all elements for sequential 
processing of the animation (see Figure 89) 

 

Figure 89: Animation chart 

 

function PLOT_CHARTS(t,x,c1,c2,c3,cl,l0,l1,l2,l3,l4,t_step,t_end) 
  
% cylinder 1 
% ************************************************************************* 
figure; 
  
% chart 1 - alpha 
subplot(3,2,1); 
plot(t,x(:,1)*180/pi); 
xlabel('time [sec]') 
ylabel('\alpha [ºdeg]') 
grid on 
  
% chart 2 - w_alpha 
subplot(3,2,2); 
plot(t,x(:,2)*180/pi); 
xlabel('time [sec]') 
ylabel('\omega_\alpha [ºdeg/sec]') 
grid on 
  
% chart 3 - pressure 1 
subplot(3,2,3); 
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plot(t,x(:,3)); 
xlabel('time [sec]') 
ylabel('p_1 [Pa]') 
grid on 
  
% chart 4 - pressure 2 
subplot(3,2,4); 
plot(t,x(:,4)); 
xlabel('time [sec]') 
ylabel('p_2 [Pa]') 
grid on 
  
% chart 5 - spool stroke 
subplot(3,2,5); 
plot(t,x(:,5)); 
xlabel('time [sec]') 
ylabel('x_s [m]') 
grid on 
  
% chart 6 - spool velocity 
subplot(3,2,6); 
plot(t,x(:,6)); 
xlabel('time [sec]') 
ylabel('v_s [m/s]') 
grid on 
  
  
% cylinder 2 
% ************************************************************************* 
figure 
  
% chart 1 - beta 
subplot(3,2,1); 
plot(t,x(:,7)*180/pi); 
xlabel('time [sec]') 
ylabel('\beta [ºdeg]') 
grid on 
  
% chart 2 - beta_p 
subplot(3,2,2); 
plot(t,x(:,8)*180/pi); 
xlabel('time [sec]') 
ylabel('\omega_\beta [ºdeg/sec]') 
grid on 
  
% chart 3 - pressure 1 
subplot(3,2,3); 
plot(t,x(:,9)); 
xlabel('time [sec]') 
ylabel('p_1 [Pa]') 
grid on 
  
% chart 4 - pressure 2 
subplot(3,2,4); 
plot(t,x(:,10)); 
xlabel('time [sec]') 
ylabel('p_2 [Pa]') 
grid on 
  
% chart 5 - spool stroke 
subplot(3,2,5); 
plot(t,x(:,11)); 
xlabel('time [sec]') 
ylabel('x_s [m]') 
grid on 
  
% chart 6 - spool velocity 
subplot(3,2,6); 
plot(t,x(:,12)); 
xlabel('time [sec]') 
ylabel('v_s [m/s]') 
grid on 
  
  
% cylinder 3 
% ************************************************************************* 
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figure 
  
% chart 1 - cylinder stroke 
subplot(3,2,1); 
plot(t,x(:,13)); 
xlabel('time [sec]') 
ylabel('x_p [m]') 
grid on 
  
% chart 2 - cylinder velocity 
subplot(3,2,2); 
plot(t,x(:,14)); 
xlabel('time [sec]') 
ylabel('v_p [m/s]') 
grid on 
  
% chart 3 - pressure 1 
subplot(3,2,3); 
plot(t,x(:,15)); 
xlabel('time [sec]') 
ylabel('p_1 [Pa]') 
grid on 
  
% chart 4 - pressure 2 
subplot(3,2,4); 
plot(t,x(:,16)); 
xlabel('time [sec]') 
ylabel('p_2 [Pa]') 
grid on 
  
% chart 5 - spool stroke 
subplot(3,2,5); 
plot(t,x(:,17)); 
xlabel('time [sec]') 
ylabel('x_s [m]') 
grid on 
  
% chart 6 - spool velocity 
subplot(3,2,6); 
plot(t,x(:,18)); 
xlabel('time [sec]') 
ylabel('v_s [m/s]') 
grid on 
  
% ************************************************************************* 
  
  
% animation 
% ************************************************************************* 
figure 
  
% cylinder 1 specs 
cylinder1 = drahtmodell_rechteck_xz(c1.l_c/2,c1.d_c/2); 
piston1 = drahtmodell_rechteck_xz(c1.l_p/2,c1.d_c/2); 
rod1 = drahtmodell_rechteck_xz(c1.l_r/2,c1.d_r/2); 
  
% cylinder 2 specs 
cylinder2 = drahtmodell_rechteck_xz(c2.l_c/2,c2.d_c/2); 
piston2 = drahtmodell_rechteck_xz(c2.l_p/2,c2.d_c/2); 
rod2 = drahtmodell_rechteck_xz(c2.l_r/2,c2.d_r/2); 
  
% cylinder 3 specs 
cylinder3 = drahtmodell_rechteck_xz(c3.l_c/2,c3.d_c/2); 
piston3 = drahtmodell_rechteck_xz(c3.l_p/2,c3.d_c/2); 
rod3 = drahtmodell_rechteck_xz(c3.l_r/2,c3.d_r/2); 
  
% cylinder mount 
c1_mount_s = {[0 0 0 
               c1.o_s 0 0]}; 
            
c1_mount_e = {[0 0 0 
               -c1.o_e 0 0]}; 
            
c2_mount_s = {[0 0 0 
               c2.o_s 0 0]}; 
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c2_mount_e = {[0 0 0 
              -c2.o_e 0 0]}; 
            
c3_mount_s = {[0 0 0 
               c3.o_s 0 0]}; 
            
c3_mount_e = {[0 0 0 
              c3.o_e 0 0]}; 
           
% crane specs 
link_0 = {[l0.p1'; 
           l0.p2']}; 
  
link_1 = {[l1.p1'; 
           l1.p2']; 
          [0 0 l1.p3(3); 
           l1.p3']}; 
  
link_2 = {[l2.p1';    
           l2.p5(1) 0 0]; 
          [l2.p2'; 
           l2.p2(1) 0 0]; 
          [l2.p3'; 
           l2.p3(1) 0 0] 
          [l2.p4'; 
           l2.p4(1) 0 0]; 
          [l2.p5'; 
           l2.p5(1) 0 0]};  
        
link_3 = {[l3.p4'; 
           l3.p2(1) 0 0];   
          [l3.p2'; 
           l3.p2(1) 0 0]; 
          [l3.p3'; 
           l3.p3(1) 0 0]}; 
        
link_4 = {[0 0 0; 
           l4.p1(1) 0 0; 
           l4.p1']; 
          [l4.p2' 
           l4.p2(1) 0 0]}; 
                    
cl_1 =   {[0 0 0; 
           cl.r1']}; 
           
cl_2 =   {[0 0 0; 
           cl.r2']}; 
               
  
for i=1:length(t) 
  
l_x1 = c1.fhandle_x(x(i,1)); 
l_x2 = c2.fhandle_x(x(i,1),x(i,7)); 
  
A_IK1 = eye(3); 
A_IK2 = A_IK1 * A_y(pi / 2 - x(i,1)); 
A_IK3 = A_IK1 * A_y(pi / 2 - x(i,1)) * A_y(pi - x(i,7)); 
  
A_Ic1 = A_y(pi / 2 + c1.fhandle_phi(x(i,1))); % angle cylinder 1 related to inertia 
frame 
A_Ic2 = A_IK2 * A_y(-c2.fhandle_phi(x(i,1),x(i,7))); % angle cylinder 2 / link 2 
  
A_It1 = A_IK2 * A_y(- cl.fhandle_eps1(x(i,1),x(i,7))); % angle torque 1 related to 
inertia frame 
A_It2 = A_IK2 * A_y(- cl.fhandle_eps1(x(i,1),x(i,7)) - cl.fhandle_teta2(x(i,1),x(i,7)) 
+ pi); % angle torque 2 related to inertia frame 
  
c1.center_c = A_IK1 * l1.p2 + A_IK2 * l2.p2 + A_Ic1 * [c1.o_s + c1.l_c / 2;0;0]; 
c1.center_p = c1.center_c + A_Ic1 * [l_x1;0;0]; 
c1.center_r = c1.center_p + A_Ic1 * [(c1.l_p + c1.l_r) / 2;0;0]; 
  
c2.center_c = A_IK1 * l1.p2 + A_IK2 * l2.p3 + A_Ic2 * [c2.o_s + c2.l_c / 2;0;0]; 
c2.center_p = c2.center_c + A_Ic2 * [l_x2;0;0]; 
c2.center_r = c2.center_p + A_Ic2 * [(c2.l_p + c2.l_r) / 2;0;0]; 
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c3.center_c = A_IK1 * l1.p2 + A_IK2 * l2.p5 + A_IK3 * l3.p3 + A_IK3 * [c3.o_s + c3.l_c 
/ 2;0;0]; 
c3.center_p = c3.center_c + A_IK3 * [x(i,13);0;0]; 
c3.center_r = c3.center_p + A_IK3 * [(c3.l_p + c3.l_r) / 2;0;0]; 
  
  
x_c_1(i,:) = [c1.center_c' A_Ic1(1,:) A_Ic1(2,:) A_Ic1(3,:)]; 
x_piston_1(i,:) = [c1.center_p' A_Ic1(1,:) A_Ic1(2,:) A_Ic1(3,:)]; 
x_rod_1(i,:) = [c1.center_r' A_Ic1(1,:) A_Ic1(2,:) A_Ic1(3,:)]; 
   
x_c_2(i,:) = [c2.center_c' A_Ic2(1,:) A_Ic2(2,:) A_Ic2(3,:)]; 
x_piston_2(i,:) = [c2.center_p' A_Ic2(1,:) A_Ic2(2,:) A_Ic2(3,:)]; 
x_rod_2(i,:) = [c2.center_r' A_Ic2(1,:) A_Ic2(2,:) A_Ic2(3,:)]; 
  
x_c_3(i,:) = [c3.center_c' A_IK3(1,:) A_IK3(2,:) A_IK3(3,:)]; 
x_piston_3(i,:) = [c3.center_p' A_IK3(1,:) A_IK3(2,:) A_IK3(3,:)]; 
x_rod_3(i,:) = [c3.center_r' A_IK3(1,:) A_IK3(2,:) A_IK3(3,:)]; 
  
  
x_00(i,:) = [0 0 0 1 0 0 0 1 0 0 0 1]; 
x_01(i,:) = [x_00(i,1:3) + (l1.p1)' A_IK1(1,:) A_IK1(2,:) A_IK1(3,:)]; 
x_02(i,:) = [x_01(i,1:3) + (A_IK1 * l1.p2)' A_IK2(1,:) A_IK2(2,:) A_IK2(3,:)]; 
x_03(i,:) = [x_02(i,1:3) + (A_IK2 * l2.p5)' A_IK3(1,:) A_IK3(2,:) A_IK3(3,:)]; 
x_04(i,:) = [x_rod_3(i,1:3) + (A_IK3 * ([c3.l_r / 2 + c3.o_e;0;0] - l4.p2))' 
A_IK3(1,:) A_IK3(2,:) A_IK3(3,:)]; 
x_cl_1(i,:) = [x_02(i,1:3) + (A_IK2 * l2.p4)' A_It1(1,:) A_It1(2,:) A_It1(3,:)]; 
x_cl_2(i,:) = [x_cl_1(i,1:3) + (A_It1 * cl.r1)' A_It2(1,:) A_It2(2,:) A_It2(3,:)]; 
  
x_c_1_mount_s(i,:) = [x_02(i,1:3) + (A_IK2 * l2.p2)' A_Ic1(1,:) A_Ic1(2,:) 
A_Ic1(3,:)]; 
x_c_1_mount_e(i,:) = [x_01(i,1:3) + (A_IK1 * l1.p3)' A_Ic1(1,:) A_Ic1(2,:) 
A_Ic1(3,:)]; 
x_c_2_mount_s(i,:) = [x_02(i,1:3) + (A_IK2 * l2.p3)' A_Ic2(1,:) A_Ic2(2,:) 
A_Ic2(3,:)]; 
x_c_2_mount_e(i,:) = [x_cl_2(i,1:3) A_Ic2(1,:) A_Ic2(2,:) A_Ic2(3,:)]; 
x_c_3_mount_s(i,:) = [x_03(i,1:3) + (A_IK3 * l3.p3)' A_IK3(1,:) A_IK3(2,:) 
A_IK3(3,:)]; 
x_c_3_mount_e(i,:) = [x_rod_3(i,1:3) + (A_IK3 * [c3.l_r / 2;0;0])' A_IK3(1,:) 
A_IK3(2,:) A_IK3(3,:)]; 
  
end 
  
CRANE_ANIMATION({x_00 link_0 4;... 
                 x_01 link_1 4;... 
                 x_02 link_2 4;... 
                 x_03 link_3 4;... 
                 x_04 link_4 4;... 
                 x_cl_1 cl_1 5;... 
                 x_cl_2 cl_2 5;... 
                 x_c_1 cylinder1 6;... 
                 x_piston_1 piston1 5;... 
                 x_rod_1 rod1 6;... 
                 x_c_2 cylinder2 6;... 
                 x_piston_2 piston2 5;... 
                 x_rod_2 rod2 6;... 
                 x_c_3 cylinder3 6;... 
                 x_piston_3 piston3 5;... 
                 x_rod_3 rod3 6;... 
                 x_c_1_mount_s c1_mount_s 6;... 
                 x_c_1_mount_e c1_mount_e 6;... 
                 x_c_2_mount_s c2_mount_s 6;... 
                 x_c_2_mount_e c2_mount_e 6;... 
                 x_c_3_mount_s c3_mount_s 6;... 
                 x_c_3_mount_e c3_mount_e 6},t_step,t_end,[0,0]);  
 % ************************************************************************* 
  
 End 
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8 Conclusions and outlook 
The major goal of this thesis work was to develop a model of a hydraulic laboratory crane 
including friction estimation of the hydraulic cylinders and a new approach to a more 
sophisticated control of the crane's end-effector. 
 
As a start to the crane model we initially derived the equations of motion for the mechanical 
model in the traditional Euler-Lagrange fashion. We tried to keep the mathematical 
expressions rather simple by making some smaller assumptions. Since the crane is a 
complex linkage and consequently its dynamic behaviour is pretty complicated to describe, 
the assumptions made us handle the mathematics in a convenient straightforward manner. 
We then modelled the hydraulic flow through the valves into each of the three actuators by 
using an ordinary equation of motion of 2nd order for the spool movement and a rather 
detailed derivation of the hydraulic flow to determine the derivative of the chamber pressures 
of each cylinder. Here we distinguished between laminar and turbulent flow, the Bernoulli flow 
phenomenon and the regenerative valve in use with the cylinder for the telescopic extension. 
Finally we have determined eighteen state variables including three joint angles (the 
generalized coordinates), its derivatives and for each cylinder two chamber pressures and the 
valve spool positions with their derivatives. The complete model was then transcribed in 
MATLAB where we encountered the problem of a highly complicated inverse kinematics. This 
was caused mainly by the complex relationship of the torque link as it builds a closed loop 
chain that was extremely hard to handle with the geometric approach in chapter 3. However, 
the movement of the crane could be visualized in terms of an animation function in MATLAB 
and although the sequences proceeded rather slowly, the crane seemed to move as 
expected. Future works should focus on facilitating the torque link relation in order to keep the 
equations as simple as possible and to run the simulation even faster. 
 
Friction evaluation was the second main goal of this work. We put up a cylinder test rig in the 
laboratory hall that allowed for friction experiments of the hydraulic cylinder of the telescopic 
beam. First we ran experiments while keeping the piston velocity constant. We obtained 
velocity-friction maps tracking the friction force for several velocities, both positive and 
negative. These maps represented the common static friction behaviour of the cylinders and 
corresponded quite well with the theoretical friction model. We noticed that the cylinder from 
Rottne was characterised by a higher friction forcet thanit was shown at the Kalmar cylinder. 
This probably arised from the fact that the Rottne cylinder was used before in real-world 
applications and consequently abrasion led to smaller wear particles that caused high friction. 
To examine the dynamic friction behaviour of the cylinders we applied the LuGre model which 
deals with the bristle interpretation of friction. For this purpose we ran experiments with a 
ramp input to investigate the spring-like behaviour of the bristles and a step input for the 
damping characteristics. We simplified the LuGre model by making plausible assumptions 
which yielded in the dynamic parameters representing the friction variables in the LuGre 
model. When running the experiments we were also able to do variations in pressure and 
loads but the results showed us that neither less system pressure nor different mass of the 
loads results in a significant change of friction force. 
 
The last goal of this work was to establish a more sophisticated control algorithm in order to 
operate the crane in a more convenient manner. The idea was to use the joysticks not to 
control the actuators in a traditional way but to apply the inverse kinematics to control the the 
crane tip in the planar zx −  frame. This was done by feeding the joystick input signal to a 
dSpace box which then was calculated into a desired velocity for horizontal and vertical 
movement of the crane-tip. Depending on the sampling rate, the new coordinates in terms of 
the velocity were determined and by means of a traditional PID control, the required input 
signal could be fed to the valves. This control worked quite well in the animation mode but still 
there was some smaller deviation of the desired trajectory. A higher accuracy could possibly 
be reached by using smaller sampling intervals but the major drawback here is the rising 
processing time for the PID control. 
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9 Appendix 

9.1 Data sheets 

 

Figure 90: Data sheet of Danfoss pressure sensor MBS 2050 
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Figure 91: Data sheet of HBM load sensor U9B (50 kN) 
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Figure 92: Data sheet of HBM load sensor U9B (10 kN) 
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Figure 93: Data sheet of EMETA incremental sensor 
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Figure 94: Data sheet of UniMeasure position sensor LX-PA-50 

 
 
 
 



    Appendix 
     

    133 

9.2 CD-Rom 

9.2.1 Content 

THESIS 
- Thesis_Modelling_Simulation_And_Control_Of_A_Hydraulic_Crane.doc: Word-document of the thesis work 
- Thesis_Modelling_Simulation_And_Control_Of_A_Hydraulic_Crane.pdf: PDF-document of the thesis work 

MATLAB 
- A_x.m /  A_y.m /  A_z.m: Rotational matrix about x-/ y-/ and z-axis 
- ANGLE_LIMIT_ALPHA.m: Correlation between joint variable alpha and piston stroke of cylinder 1 
- CRANE_ANIMATION.m: Animation of the crane 
- CRANE_MAIN.m: Main functionf for crane simulation 
- CYLINDER.m: Test file for cylinder simulation 
- CYLINDER_SIMULINK.mdl: Corresponding test model for cylinder simulation 
- DIMENSION.m: Crane dimensions 
- PLOT_CHARTS.m: Charts of cylinder sepcification 
- TRANSITION_FLOW.m: Transition phase of laminar and turbulent pressure 
- WORKING_AREA.m: Operating range of the crane 

CAD 
- 38652rev2.sldasm: Solid Assembly file of the laboratory crane 

FRICTION 
- CYLINDER KALMAR: MATLAB- and dSPACE- files of the Kalmar cylinder 
- CYLINDER ROTTNE: MATLAB- and dSPACE- files of the Rottne cylinder 

9.2.2 CD-Rom attachment 
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