

They SQL Here They SQL There
Ian Amaranayake & David Shannon

Amadeus Software Ltd.

Abstract

The SQL procedure has come to play a significant role in many of the SAS®9
solutions. Not only is it still a language within a language for the Base SAS
programmer, but it is a key procedure in tools such as SAS Data Integration Studio,
Enterprise Guide and behind the scenes of Information Maps.

A brief history of the SQL origins will be presented to understand why it is used and
understood across several software packages and languages.

Common uses of SQL and how it is set apart from the data step will be shown,
including consideration to the new joins and set notations added in the last major
release of SAS. A presentation of some SQL utilities will be given that are invaluable
to a SAS programmer aiming to make frequent reuse of their code. Finally the
internal workings of SQL will be discussed including some little known options that
visualise what processing Proc SQL does internally, hence helping programmers to
write more efficient code.

This paper will be of benefit to any programmer of Base SAS who wishes to gain
exposure to SAS SQL uses and techniques.

Introduction

Proc SQL is nothing new to SAS. It was introduced to Base SAS several major
releases ago and has been a key tool to many SAS programmers since that time.
Similarly, there many SAS programmers who rarely venture into coding with Proc
SQL, preferring to use the data step and standard procedures.

So why did we write this paper now? Well the honest answer is we were asked to!
However, we did suggest this topic and with good reason.

Since the release of SAS 9, all its code generating interfaces such as SAS Data
Integration Studio (formally ETL Studio) and Enterprise Guide make a large use of
Proc SQL. Additionally Proc SQL now has the ability to tune itself, with the ability to
select the type of lookup algorithm is deems most appropriate to the volume and
structure of data queried.

It is time for a closer look at SQL.

A Wider View of SQL and a Little History

Structured Query Language (pronounced as either the initials S.Q.L. or sequel with
identical meaning) is not specific to SAS. The language is actually an ANSI standard
adopted and extended by many RDBMS vendors.

The Structured Query Language was developed by Chamberlin and Ray Boyce in
1973, but this was because Ted Codd (an Oxford University graduate who moved to

They SQL Here They SQL There

Page 2 of 12

the USA to work for IBM) published his paper on the theory of relational tables and
developed System R.

Relational databases from virtually any vendor can trace its roots back to this system,
with their adoption of SQL; for example an Oracle DBA uses PL-SQL, Microsoft SQL
Server developers write T-SQL and SAS users can use Proc SQL.

Why is SQL Commonly the Generated Code Language?

Understanding that SQL is used by several software vendors to drive their databases
and their implementations are all derived from the same standard. The enables
users of one software system to quickly learn the skills needed to exploit another.

SQL is also a well language of few statements and key words when compared to the
SAS data step. What SQL looses in flexibility (although expert SQL programmers
may dispute that statement) it makes up for in its ability to conform to code structure
standards. It is considerably more robust to use such languages in tools such as
Enterprise Guide when automatically generating code.

SAS have adopted SQL across their many code generating interfaces to good effect,
promoting consistency and manageability across their solutions and exposing the
power of SAS software to a much wider audience of users who will be instantly
comfortable and familiar with the language and syntax used.

Typical Uses of SQL

SQL has a wide variety of applications that are worthy of mentioning. Even the most
devout of Base SAS programmers who stick rigidly to the confines of the ‘Data step’
and ‘Proc step’ will surely admit to occasionally straying into the territory of writing
‘Queries’. Queries are fundamental to SQL language, providing the capability to
extract data from one or more source tables and derive new information and
influence the structure of the results returned all within a single instruction.

Perhaps the main frustration that many of those SAS Programmers will share is the
seemingly back to front nature of writing SQL syntax; there is something not quite
right about defining the columns required prior to even mentioning the tables which
source them. The benefits to be gained once the initial hurdle with syntax has been
overcome, however, are considerable.

A simple query, for example, which is used to extract columns from a table can
precisely control the order in which columns are created in the output table, write the
same column with both formatted and unformatted values and order the results, all
within a single step.

proc sql;

 create table demog as

 select studyid,

 siteid,

 siteid as site_name format=site.,

 subjid,

 age,

 sex,

 weight

 from fmts.demography

 order by studyid, siteid, subjid;

They SQL Here They SQL There

Page 3 of 12

One of SQL’s key strengths is the flexibility afforded by numerous types of outer and
inner joins.

Consider the use of the Natural join, for example, which dynamically identifies the
columns in common between the tables being joined, and providing they are of the
same type, will perform the selected join.

proc sql;

 create table haem as

 select h.*, l.normalrangelower, l.normalrangeupper

 from lab_h as h natural left join lab_ranges as l;

quit;

Cross joins, which along with Natural joins are new in SAS 9, provide the ability to
perform a Cartesian product on both of the tables specified in the join. This can prove
particularly useful when creating a template structure of a data set which is then used
in an Outer join.

Consider the following example which builds up a template data set for quality of life
score data comprising one record per question per subject in our trial. Joining the
actual quality of life data from our clinical trial afterwards, using an Outer join, allows
us to retain the original structure defined by the template.

proc sql;

 create table allscores as

 select d.subjid, q.*

 from fmts.demography as d cross join fmts.qol_template as q;

 create table actualscores as

 select *

 from allscores as a left join fmts.actual_qol_data as q

 where a.subjid=q.subjid and a.question=q.question;

quit;

One-to-one, one-to-many and many-to-many joins are all supported within SQL as is
the ability to join tables on different columns names and using different operators.

Consider the following code which joins only the appropriate lab normal ranges to our
Haematology data, as compared to its ‘Data step’ counterpart.

proc sql;

 create table haem as

 select h.*, l.normalrangelower, l.normalrangeupper

 from lab_h as h left join lab_ranges as l

 on h.labtest=l.labtest;

quit;

data haem;

 merge lab_h(IN=h)

 lab_ranges(IN=l keep=labtest normalrangelower normalrangeupper);

 by labtest;

 if h;

run;

They SQL Here They SQL There

Page 4 of 12

From an efficiency perspective one should note the SQL version takes fewer lines of
code, is performed in a single instruction, and when working with reasonably large
data will out perform the traditional Base SAS technique, particularly if the data
sources being joined are not indexed or ordered and require sorting. One could also
argue that the code in the SQL version is, if anything, more verbose than its ‘Data
step’ counterpart.

This technique of using Outer joins can also be used to detect which records in one
data set do not exist in another. Consider the next example which uses a Left join to
identify which subjects did not receive treatment during a study.

proc sql;

 create table notreat as

 select d.*

 from fmts.demography as d left join fmts.treat as t

 on d.subjid=t.subjid

 where t.subjid = .;

quit;

One of the most common uses of SQL is to interact directly with a DBMS using a
technique known as SQL pass-through. This provides the user with the advantage of
querying a native database directly, using either SAS or DBMS specific SQL, without
having to leave the current SAS session.

proc sql ;

 connect to ORACLE (user=&userid orapw=&pwd path=&path);

 create table accounts as

 select

 subjid 'Subject ID',

 labtest 'Lab Test',

 labresul 'Lab Result',

 labunit 'Lab Test Unit',

 labnrlu 'Lab Normal Range Upper',

 labnrll 'Lab Normal Range Lower'

 from connection to oracle

 (select subjid,

 labtest,

 labresul,

 labunit,

 labnrlu,

 labnrll

 from labs

 order by subjid, labtest);

 disconnect from oracle ;

quit ;

Inner queries in this instance can exploit the full power of the DBMS specific SQL
implementation whilst also making use of SAS specific SQL to create a table in the
outer query.

The SAS implementation of SQL also provides seamless integration with different
elements of SAS language. Queries can make use of SAS functions and operators,
as well as SQL specific operators, when constructing expressions. Global statements

They SQL Here They SQL There

Page 5 of 12

such as titles, footnotes and options are all honoured when creating reports. Equally
when creating tables or views, columns attributes such as lengths, formats and labels
can also be specified.

proc sql;

 create table demog as

 select substr(usubjid,4) as subject length=4 'Subject ID',

 age,

 gender format=$gender.,

 height 'Height in Metres',

 weight 'Weight in Kilograms',

 weight/(height**2) as bmi 'Body Mass Index'

 from demography;

quit;

Proc SQL also interfaces with SAS Macro language, providing the capability to create
macro variables as a result of a query. Consider the following typical example of SQL
syntax which creates a macro variable containing the result of a COUNT DISTINCT
function.

proc sql noprint;

 select count(distinct subjid) into: nobs

 from fmts.bloodpressure;

quit;

%put Number of Subjects: &nobs;

4 proc sql noprint;

5 select count(distinct subjid) into: nobs

6 from fmts.bloodpressure;

7 quit;

NOTE: PROCEDURE SQL used (Total process time):

 real time 0.01 seconds

 cpu time 0.01 seconds

8 %put Number of Subjects: &nobs;

Number of Subjects: 60

This technique has the advantage of being both more concise and more efficient than
an equivalent technique which may be implemented using typical Base SAS code.

It is also possible to create a macro variable which contains a series of values
resulting from a query, with a delimiter to separate each individual value.

proc sql;

 select distinct subjid into: subject_list separated by ' '

 from fmts.bloodpressure;

quit;

They SQL Here They SQL There

Page 6 of 12

4 proc sql noprint;

5 select distinct subjid into: subject_list separated by ' '

6 from fmts.bloodpressure;

7 quit;

NOTE: PROCEDURE SQL used (Total process time):

 real time 0.03 seconds

 cpu time 0.01 seconds

8 %put &subject_list;

001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018

019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036

037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054

Further Applications of Proc SQL

There are a number of additional uses of SQL that should also be considered which
go beyond the more common applications that have been discussed thus far.

When considering the macro interface to SAS, for example, it is possible to create a
range of macro variables which adopt the same naming convention based on the
result of a query.

Again, when it comes to considering efficiency and ease of coding, one should
consider that the following code only requires two complete statements to determine
the number of distinct subjects and then use that value to create the precise number
of macro variables required. To code the equivalent process in Base SAS would yet
again require additional steps, if only for the fact that the first macro variable would
not be available for resolution in the same data step that attempts to use it.

proc sql noprint;

 select count(distinct subjid) into: nobs

 from fmts.bloodpressure;

 select avg(supsys) into :SUBJ1 - :SUBJ%cmpres(&nobs)

 from fmts.bloodpressure

 group by subjid;

quit;

One very powerful feature of SQL is the capability to reuse the value of a column
several observations ago when deriving a new column. In the following example, the
average supine systolic blood pressure at baseline is subtracted from the average
calculated for each visit date to determine the change from baseline value.

proc sql;

 create table change_baseline as

 select day,

 avg(supsys) as mean_supsys,

 calculated mean_supsys - (select avg(supsys)

 from fmts.bloodpressure

 where day=1) as change_baseline

 from fmts.bloodpressure

 group by day;

quit;

They SQL Here They SQL There

Page 7 of 12

In some situations, Proc SQL will actually re-merge the results of an aggregate
function back onto the original data. In the following program, the average baseline
measurement is merged back onto each subjects record in order to calculate a new
change from baseline value.

proc sql;

 create table change_baseline as

 select a.subjid,day,

 supsys,

 (select supsys

 from fmts.bloodpressure as b

 where day=1 and a.subjid=b.subjid) as baseline,

 supsys - calculated baseline as change_baseline,

 avg(calculated baseline) as average_baseline,

 supsys - calculated average_baseline as change_baseline_average

 from fmts.bloodpressure as a

 order by subjid, day;

quit;

SQL also provides access to a series of read only views called ‘DICTIONARY tables’
which contain information about the current SAS session. These dictionary tables
can only be accessed using Proc SQL and can be used to efficiently automate key
processes.

The full list of available dictionary tables along with descriptions on what they actually
contain is shown in the table below.

Dictionary Table Table Contents Available
from SAS
Version

CATALOGS Information on SAS catalogs available to
the current SAS session

V8

CHECK_CONSTRAINTS Information on check constraints defined
on all SAS tables

V9

COLUMNS Information on all columns from all tables

in all libraries in the current SAS session

V8

CONSTRAINT_COLUMN_USAGE Information on all column constraints
defined

V9

CONSTRAINT_TABLE_USAGE Information on all table constraints defined V9

DICTIONARIES Information on all dictionaries and columns
within SQL dictionary tables

V9

ENGINES Information on all SAS library engines
available

V9

EXTFILES Information on all external file references V8

FORMATS Information on all available formats to the

current session, including SAS supplied
formats

V9

GOPTIONS Information on all SAS graphic options and
their values

V9

INDEXES Information on all SAS Indexes defined V8

They SQL Here They SQL There

Page 8 of 12

Dictionary Table Table Contents Available
from SAS
Version

LIBNAMES Information on all SAS libraries defined V9

MACROS Information on all SAS macros variables
and their values

V8

MEMBERS Information on all catalogs, tables and
views

V8

OPTIONS Information on SAS global system options
and their values

V8

REFERENTIAL_CONSTRAINTS Information on referential constraints V9

REMEMBER Remembered (cached) information V9

STYLES Information on all available ODS Styles V9

TABLES Table information from all libraries V8

TABLE_CONSTRAINTS Table constraints V9

TITLES The active titles and footnotes V8

VIEWS List of available VIEWS in the current

session.

V8

One of the key benefits of using dictionary tables is that they are always dynamically
generated at the point where the table is actually queried. The following code
demonstrates how, for example, we can retrieve all of the titles and footnotes
currently in effect in our SAS session and return the results in a table. If titles or
footnotes are subsequently changed and the Proc SQL step re-submitted, the results
returned will reflect the new titles and footnotes that have been defined.

proc sql;

 create table titlesineffect as

 select *

 from dictionary.titles;

The ‘Columns’ dictionary table can be particularly useful when attempting to retrieve
all of the columns which have a specific naming convention and can be used across
any or all of the tables and libraries that are visible to the current SAS session.

proc sql;

 create table allVALs as

 select *

 from dictionary.columns

 where upcase(name) like "VAL%";

quit;

Standard programs, macros and applications can be developed which make use of
the ability to dynamically determine which libraries are in existence, or the values of
specific options and goptions.

Consider the following example which lists all of the available libraries and then
determines the physical location of the WORK library. This information could then be

They SQL Here They SQL There

Page 9 of 12

used to create additional files (other than SAS library members) which are only
required to exist for the duration of the current SAS session.

proc sql;

 select distinct libname

 from dictionary.libnames;

 select path into:work_path

 from dictionary.libnames

 where libname='WORK';

quit;

%put &work_path;

The ‘Tables’ dictionary table can also be used to good effect, to dynamically process
specific tables that have been created. Consider the following program which creates
a macro variable containing a list of tables that adhere to a specific naming
convention and then uses this information to append the tables together.

proc sql noprint;

 select distinct cat(compress(libname),'.',compress(memname))

 into:table_list separated by ' '

 from dictionary.tables

 where libname in (‘WORK’,’DATA_IN’) and

 upcase(scan(memname,1,'_'))='LAB';

quit;

%put &table_list;

data all;

 set &table_list;

run;

It should also be noted that most of the dictionary tables that exist can also be
viewed via a series of SAS views which can be found in the SASHELP library. For
example, the VMACRO SAS view allows us to dynamically access any of the
variables currently held in a global or local symbol table in the same manner as the
‘Macros’ dictionary table. The advantage of using one of the available SAS views is
that they can be accessed within both Data steps and Proc steps as well as Proc
SQL.

However, there are efficiencies involved in using the dictionary tables which relate to
the way in which Proc SQL dynamically retrieves the information about the current
state of your SAS session. Whenever a dictionary table is queried, Proc SQL
optimises the query prior to any selection being performed. This makes the use of
dictionary tables faster and more efficient than performing the equivalent operation
within a data step or proc step using a SASHELP view. Consider the following code
for example which aims to create a table containing all of the columns in all of the
tables in our FMTS library.

They SQL Here They SQL There

Page 10 of 12

proc sql noprint;

 create table allcols1 as

 select distinct memname, name

 from dictionary.columns

 where libname='FMTS'

 order by memname;

quit;

proc sort data=sashelp.vcolumn(keep=libname memname name

 where=(libname='FMTS'))

 out=allcols2(drop=libname);

 by memname;

run;

Lookup used Real Time (seconds) CPU Time (seconds)

Dictionary Table 0.01 0.01

SAS View 0.25 0.24

Comparing the performance times that appear in the log we find that the Proc SQL
step takes less time than the Base SAS procedure, even when processing a
reasonably small volume of data.

A Look under the Covers of SQL

When submitted the SQL procedure attempts to optimise the written code. Whilst
this is an extremely powerful feature, it is not a reason for disregarding good coding
practices as the user can very much influence the efficiency of the query by the logic
written. Good training and studying of materials are essential to achieve this.

To understand which execution algorithm Proc SQL is using, append the _method
option onto the proc statement and examine the log after submission.

proc sql _method;

 select *

 from sashelp.class;

quit;

The log produced is shown below:

1 proc sql _method;
2 select *
3 from sashelp.class;

NOTE: SQL execution methods chosen are:

 sqxslct
 sqxsrc(SASHELP.CLASS)
4 quit;
NOTE: PROCEDURE SQL used (Total process time):
 real time 1.20 seconds
 cpu time 0.03 seconds

This shows that rows are selected (sqxsrc) from the select clause (sqxslct). The full
list of abbreviations and meanings are shown in the table below:

Execution Algorithm Description

They SQL Here They SQL There

Page 11 of 12

Execution Algorithm Description

sqxcrta Create table as select

sqxslct Select

sqxjsl Step loop join (Cartesian)

sqxjm Merge Join

sqxindx Index Join

sqxhash Hash Join

sqxsort Sort

sqxsrc Source rows from table

sqxfil Filter rows

sqxsumg Summary stats with group by

sqxsumm Summary stats with NO group by

A further, perhaps more advanced method of understanding how proc SQL is
executing a query, is the _tree option. Again, append this to the proc SQL statement
and view the log after submission.

There is not enough room to present a detailed discussion of the output produced
within this paper. For readers interested in optimising the SQL code we refer the
reader to the paper “The SQL Optimizer Project: _Method and _Tree in SAS®9.1” by
Russ Lavery.

Conclusions

Along side the standard 4GL programming language that SAS gives us is Proc SQL.

To the glancing eye this procedure consists of a different style of syntax that can
possibly be achieved in the data step. Look at little closer and there is a well formed,
universally understood and efficient language for handling data.

SAS Institute are using SQL behind the business face of many SAS 9 data
transforms, enabling a much wider audience to understand the code generated.

References

“SAS SQL”, Elena Muriel, Amadeus Software Ltd.

“Inside PROC SQL's Query Optimizer”, Paul Kent, SAS Institute.

“The SQL Optimizer Project: _Method and _Tree in SAS®9.1”, Russ Lavery,
SUGI 30.

They SQL Here They SQL There

Page 12 of 12

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Author Name: Ian Amaranayake & David Shannon

 Company: Amadeus Software Limited

Address: The Old School Hall, 11 Wesley Walk, Witney, Oxon OX28 6ZJ

 Work Phone: +44 (0) 1993 848010

Email: ian.amaranayake@amadeus.co.uk or david.shannon@amadeus.co.uk

 Web: www.amadeus.co.uk

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the

USA and other countries. ® indicates USA registration.

mailto:Ian.Amaranayake@amadeus.co.uk
mailto:david.shannon@amadeus.co.uk

