THINC: A Virtual Display Architecture for Thin-Client Computing

Ricardo A. Baratto, Leonard N. Kim, Jason Nieh Network Computing Laboratory Columbia University

isolation...

正正

...connectivity

Source: Internet Mapping Project (http://research.lumeta.com/ches/map/)

dis-integration of the computer

remote display

ubiquitous access

remote collaboration

online help

"Okay your father managed to get a mouse. Now how do we use it?"

thin clients

application processing and data

stateless client

secure server room

existing systems

existing performance problem

LAN WAN

THINC

virtual display architecture high performance remote display transparent operation

• system architecture

- display protocol
- translation
- delivery

system architecture

virtual display architecture

Simple, low-level protocol

Simple, stateless client

display protocol

Inspired by Sun Ray protocol 2D Primitives

- copy
- solid and tile fill
- bitmap fill
- raw

Video

two key problems

how do we translate from application commands to the display protocol?

how and when do we send display updates?

translation

use and preserve semantic information for efficient translation

translation

 use semantic information when doing translation use request semantics to generate update

translation

 use semantic information when doing translation

 preserve semantic information throughout the system

preserving semantics: offscreen rendering

offscreen rendering (cont)

offscreen region

command log

merge, clip, and discard commands as needed

using and preserving semantics: video

 reuse existing hardware acceleration application interfaces

- YUV (luminance-chrominance) color space
 - format independence
 - client hardware acceleration (scaling for free)

maximize interactive response of the system

delivery

- transmit updates as soon as possible
- merge, clip, and discard updates as needed

shortest remaining size first scheduler

beyond remote display

audio

audio

MobiDesk: Mobile Virtual Desktop Computing

virtualization

PC

virtualization

MobiDesk

user session

virtualization + translation

operating system: zap network: move display: thinc

A²M: Access-assured Mobile Desktop Computing

Server-to-Client packets are using regular internet

Indirection-Based Network (IBN)

implementation

- X/Linux server
 - ongoing: windows server
- X/Linux, windows, PDA, Java clients

experimental results

- web and video performance
 - comparison to existing systems
 - Internet 2 sites around the globe

web browsing performance

a/v playback quality

Internet2 web browsing performance

Internet2 a/v playback quality

conclusions

THINC:

- virtual display architecture transparently leverages existing display infrastructure
- efficient translation by using and preserving semantic information from display request
- delivery mechanisms increase responsiveness of the system

for more info...

http://www.ncl.cs.columbia.edu

backup

Web Browsing Data Transfer

A/V Data Transfer

