
Thinking in Sets: How to Thinking in Sets: How to
Program Program

in SQLin SQL
By

Joe Celko
Copyright 2007

Joe Celko Joe Celko -- ArticlesArticles

Member of ANSI X3H2
SQL for Smarties - DBMS Magazine
Celko on SQL - DBP&D
SQL Puzzle - Boxes & Arrows
DBMS/Report - Systems Integration
WATCOM SQL Column - PBDJ
Celko on Software - COMPUTING(UK)
Celko - Intelligent Enterprise
SELECT FROM Austin - DB/M (Netherlands)
www.DBAzine.com
800+ odd articles

Joe Celko Joe Celko -- BooksBooks

JOE CELKO’S SQL FOR SMARTIES
INSTANT SQL (Wrox Press)
JOE CELKO’S SQL PUZZLES & ANSWERS
DATA & DATABASES
TREES & HIERARCHIES IN SQL
SQL PROGRAMMING STYLE
ANALYTICS & OLAP IN SQL
THINKING IN SETS (2007)

Think in AggregateThink in Aggregate

Joe Celko Joe Celko –– Puzzle #1Puzzle #1

Do not try to figure out the details ! Look at
the whole

The completed block is 4 by 5 by 5 units, so
its total volume is 100 cubic units.

It is missing 3 blocks on the corner, which
are 2 cubic units each = 6 cubic units
100 - 6 = 94 cubic units
94/2 = 47 blocks

What makes an Entity?What makes an Entity?

Puzzle is a jigsaw in three parts and shows 14
leprechauns

What makes an Entity? What makes an Entity? --22

Swap the top two pieces and you have 15
leprechauns

What makes an Entity? What makes an Entity? --33

This is a false question
– Each set of Leprechauns is a totally different

aggregation of “leprechaun parts” .
– It depends on not having a clear rule for knowing

what makes a leprechaun.
– Break a piece of chalk in half and you have two pieces

of chalk!

In SQL, a table models one and only one kind
of thing
Each kind of thing has one and only one table

DonDon’’t Sweat Details t Sweat Details --11

DonDon’’t Sweat Details t Sweat Details --22

Try to start with a high level solution to your
problem

Once you know the approach is going to
work, then add the details

But when you get to the details, be exact
– I have a whole lecture on scales, measurements and

the design of encoding schemes

SQL is Not ProceduralSQL is Not Procedural

SQL is NOT a procedural language
– All computable problems can be solved in a non-procedural

language like SQL - big fat hairy deal!

SQL works best with whole tables, not with single
rows
– Tables have no order
– All relations are shown as scalar values within a column

You tell it what you want; it figures out how to get it

Good specifications are hard to write!

SQL is Not ComputationalSQL is Not Computational

SQL is NOT a computational language

Standard SQL has only four function math; everything
else was a vendor extension until SQL-92

Rounding and truncation are implementation defined

You really ought to pass the data to a report writer or
statistical tool for any fancy calculations.

PrinciplesPrinciples

Think in sets, not single values and rows

A good data model will save you a lot of pain.

Much procedural code can be moved inside a query with
the CASE expression and COALESCE() function

GROUP BY is very useful

WHERE and HAVING are not the same thing

Algebra is important!

Logic is very important!

Mother CelkoMother Celko’’s s HeuristicsHeuristics -- 11

Do not draw boxes and arrows
– the arrows imply a flow of something
– flow means process
– process means procedures

Draw circles -- set diagrams
– Sets can be nested, disjoint, overlapping, etc.
– These are relationships

Test for empty sets, NULLs and special values

Develop with small sets, but test with a large sets

Mother CelkoMother Celko’’s Heuristics s Heuristics -- 22

Do not use temp tables
– they usually hold steps in a process
– process means procedure
– You are mimicking magnetic tape files

Do use derived tables
– They are part of the query and the optimizer can get to

them

Nesting of functions is good and you can do it more than
you think
– Talk to a LISP programmer

Sequence Sequence --11

There are no FOR-NEXT loops in SQL

Instead of doing things one at a time, you have
to do them all at once, in a set, in parallel

To get a subset of integers, first you need to
have a set of integers

Build an auxiliary table of sequential numbers
from 1 to some value (n)

Sequence Sequence --22

Sequence tables should start with one
and not with zero – it’s important for
use with COUNT(*)

Other columns in the table can be
–Random numbers
–Number words (ordinal and cardinal)
–Complicated functions

SequenceSequence --33

Sequence can be used as a loop replacement

Example: given a string with a comma separated list, cut it
into integers:

‘12,345,99,765’ becomes a column in a table

Procedural approach:
– parse the string left to right until you hit a comma
– slice off the substring to the left of the comma
– cast that substring as an integer
– parse past comma
– loop and lop until the string is empty

Sequence Sequence --44

Non-procedural approach
– find all the commas at once
– find all the digits bracketed by pairs of sequential

commas, adding one on each end
– convert that set of substrings into integers as a set

Hint: first find al the commas
SELECT I1.keycol, S1.seq

FROM InputStrings AS I1,
Sequence AS S1

WHERE SUBSTRING (‘,’ || instring || ‘,’ FROM S1.seq FOR
1) = ‘,’;

Now find the pairs of Commas

Sequence Sequence --55

SELECT I1.keycol,
CAST (SUBSTRING (‘,’ || instring || ‘,’ FROM S1.seq +1

FOR S2.seq - S1.seq -1) AS INTEGER)
FROM InputStrings AS I1,

Sequence AS S1, Sequence AS S2
WHERE SUBSTRING (‘,’ || instring || ‘,’ FROM S1.seq FOR 1)

= ‘,’
AND SUBSTRING (‘,’ || instring || ‘,’ FROM S2.seq FOR 1)
= ‘,’

AND S1.seq < S2.seq
AND S2.seq = (SELECT MIN(S3.seq)

FROM Sequence AS S3
WHERE S1.seq < S3.seq);

Subsets Subsets -- 11

Not everything works on equality

Less than, greater than and BETWEEN
define subsets nested within a larger set

This sort of query usually involves a self-
join where one copy of the tables defines
the elements of the subset and the other
defines the boundary of the subset

Subsets Subsets -- 2 2

9 8 7 6

7

6
6

7
6

Top(n) ValuesTop(n) Values

One version exists in Microsoft ACCESS and SQL
Server
– Those implementations use an ORDER BY

clause and hide file sorting under the covers

This is best done procedurally with the Partition
routine from QuickSort
The MAX() and MIN() are okay because they
return a scalar value
TOP(n) returns a set of rows, so it is not a
function

Top (n) Values Top (n) Values --22

Procedural approach:
– Sort the file in descending order
– return the top (n) of them with a loop

Problems: the spec is bad
– How do you handle multiple copies of a value?
– How do you handle exactly (n) values?
– How do you handle less than (n) values?

Top (n) Values Top (n) Values -- 33

Subset approach:
– Decide if ties count or not; this is the pure set

model versus SQL’s multi-set model

– Find the subset with (n) or fewer members
whose values are equal to the (n) highest
values in the entire set

– Use one copy of the table as the elements of
the subset and one to establish the boundary
of it.

Top (n) Values Top (n) Values -- 44

SELECT DISTINCT E1.salary
FROM Employees AS E1 -- elements

WHERE :n -- n is parameter
> (SELECT COUNT(*)

FROM Employees AS E2 -- boundary
WHERE E1.salary > E2.salary);

Use > or >= , depending on where you put the boundary in
relation to the elements.
Use SELECT or SELECT DISTINCT, depending on how you
want to count elements
Use COUINT(*) or COUNT(DISTINCT <col>), depending
on how you want to count NULL elements

Top (n) Values Top (n) Values -- 55

An equivalent version can also be done with a
self-join and a GROUP BY clause
SELECT E1.salary

FROM Personnel AS E1, Personnel AS E2
WHERE E1.salary < E2.salary
GROUP BY E1.salary -- boundary value

HAVING COUNT(DISTINCT E2.salary) < :n;
The same possible versions of the query exist
here

Top (n) Values Top (n) Values -- 66

You can also use the SQL-99 OLAP functions

SELECT *
FROM (SELECT Foo.*,

ROW_NUMBER()
OVER(ORDER BY foo_key) AS row_nbr

FROM Foo) AS F
WHERE row_nbr < (:n);

You can also use the RANK() and DENSE_RANK()
functions to handle duplicates.

Relational Division Relational Division -- 1 1

Relational division is easier to explain with an
example. We have a table of pilots and the
planes they can fly (dividend); we have a table of
planes in the hanger (divisor); we want the
names of the pilots who can fly every plane
(quotient) in the hanger.

CREATE TABLE PilotSkills
(pilot CHAR(15) NOT NULL,
plane CHAR(15) NOT NULL);

CREATE TABLE Hanger(plane CHAR(15));

Relational Division Relational Division --22

The standard solution (i.e. Chris Date) is to find the pilots
for whom there does not exist a plane in the hanger for
which they have no skills.

SELECT DISTINCT pilot FROM PilotSkills AS PS1
WHERE NOT EXISTS

(SELECT * FROM Hanger
WHERE NOT EXISTS

(SELECT * FROM PilotSkills AS PS2
WHERE (PS1.pilot = PS2.pilot)

AND (PS2.plane = Hanger.plane)));

Relational Division Relational Division -- 33

Imagine that each pilot gets a set of stickers that he pastes
to each plane in the hanger he can fly. If the number of
planes in the hanger is the same as the number of stickers
he used, then he can fly all the planes in the hanger.

SELECT Pilot
FROM PilotSkills AS PS1, Hanger AS H1

WHERE PS1.plane = H1.plane
GROUP BY PS1.pilot

HAVING COUNT(PS1.plane)
= (SELECT COUNT(*) FROM Hanger)

Relational Division Relational Division -- 44

The SQL-92 set difference operator, EXCEPT, can
be used to write a version of relational division.

SELECT Pilot
FROM PilotSkills AS P1

WHERE NOT EXISTS
(SELECT plane FROM Hanger
EXCEPT
SELECT plane FROM PilotSkills AS P2
WHERE P1.pilot = P2.pilot);

Trees in SQLTrees in SQL

Trees are graph structures used to represent
–Hierarchies
–Parts explosions
–Organizational charts

Three methods in SQL
–Adjacency list model
–Nested set model (and variations)
–Transitive closure list

Tree as GraphTree as Graph

A1 A2

A0 B0

Root

Tree as Nested SetsTree as Nested Sets

root

A0

A1 A2

B0

Graph as TableGraph as Table

node parent
==========
Root NULL
A0 Root
A1 A0
A2 A0
B0 Root

Graph with TraversalGraph with Traversal

A1
left = 3

right = 4

A2
left = 5

right = 6

A0
left = 2

right = 7

B0
left = 8

right = 9

Root
left = 1

right =10

Nested Sets with NumbersNested Sets with Numbers

1 2 3 4 5 6 7 8 9 10

A0

A1 A2

B0Root

Nested Sets as NumbersNested Sets as Numbers

Node lft rgt
============
Root 1 10
A0 2 7
A1 3 4
A2 5 6
B0 8 9

Problems with Adjacency list Problems with Adjacency list --11

Not normalized - change A0 and see that it changes in
many places

You have to use cursors or self-joins to traverse the
tree

Cursors are not a table -- their order has meaning --
Closure violation!

Cursors take MUCH longer than queries

Ten level self-joins are worse than cursors

Problems with Adjacency list Problems with Adjacency list --22

Often mix structure (organizational
chart, edges) with elements (personnel,
nodes)

These are different kinds of things and
should be in separate tables

Another advantage of separating them
is that you can have multiple
hierarchies on one set of nodes

Example of SelfExample of Self--JoinJoin

Find great grandchildren of X

SELECT T1.node, T2.node, T3.node, T4.node
FROM Tree AS T1, Tree AS T2,

Tree AS T3, Tree AS T4
WHERE T1.node = ‘X’

AND T1.node = T2.parent
AND T2.node = T3.parent,
AND T3.node = T4.parent;

Find Root of TreeFind Root of Tree

SELECT * -- adjacency list
FROM Tree

WHERE parent IS NULL;

SELECT * -- nested sets
FROM Tree

WHERE lft = 1; -- index the lft column

Note that you can tell the size of a subtree rooted
at a given node with the simple formula
((rgt - lft +1) /2)

Find All Leaf NodesFind All Leaf Nodes

SELECT * -- adjacency list
FROM Tree

WHERE node NOT IN
(SELECT parent FROM Tree);

SELECT * --nested sets
FROM Tree

WHERE lft = rgt -1; -- index on lft

Find Superiors of XFind Superiors of X

Traversal up tree via procedure or N-way self-
join

SELECT Super.*
FROM Tree AS T1, Tree AS Supers

WHERE node = ‘X’
AND T1.lft BETWEEN Supers.lft AND

Supers.rgt;

Find Subordinates of XFind Subordinates of X

Traversal down tree via cursors or N-way self-
join

SELECT Subordinates.*
FROM Tree AS T1,

Tree AS Subordinates
WHERE T1.node = ‘X’

AND Subordinates.lft BETWEEN
T1.lft AND T1.rgt;

Totals by Level in TreeTotals by Level in Tree

In Adjacency model you put traversal results
in a temp table, then group and total

SELECT T1.node, SUM(C1.cost)
FROM Tree AS T1, Tree AS T2, Costs AS C1

WHERE C1.node = T2.node
AND T2.lft BETWEEN T1.lft AND T1.rgt

GROUP BY T1.node;

The MedianThe Median

The median is a statistic that measures
central tendency in a set of values

The median is the value such that there are
as many cases below the median value as
there are above it

If the number of elements is odd, no problem

If the number of elements is even, then
average the middle values

Procedural WayProcedural Way

Sort the values

Count the size of the set (n)

If n is odd then read (n/2) records

Print the next record

If n is even then read (n/2) and (n/2)+1 records

Average them and print results

Think in SetsThink in Sets

Do not ask for values, but for a set of values
The median is the average of the subset of values
which “sit in the middle”
A middle implies something on either side of it
The subset of greater values has the same
cardinality as the subset of lesser values

lesser median greater

Median by Partition Median by Partition --11

Now the question is how to define a median
in terms of the partitions.

Clearly, the definition of a median means that
if (lesser = greater) then the value in the
middle is the median.

Let’s use Chris Date’s Parts table and find the
Median wgt of the Parts.

Median by Partition Median by Partition --22

If there are more greater values than half the size
of the table, then wgt cannot be a median.
If there are more lesser values than half the size
of the table, then the middle value(s) cannot be a
median.
If (lesser + equal) = greater, then the middle
value(s) is a left hand median.
If (greater + equal) = lesser, then the middle
value(s) is a right hand median.
If the middle value(s) is the median, then both
lesser and greater have to have tallies less than
half the size of the table.

Median by Partition Median by Partition --33

Instead of a WHERE clause operating on the columns of the
derived table, why not perform the same test as a HAVING clause
on the inner query which derives Partitions?

SELECT AVG(DISTINCT wgt)
FROM (SELECT P1.weight

FROM Parts AS P1, Parts AS P2
GROUP BY P1.pno, P1.weight

HAVING SUM(CASE WHEN P2.weight = P1.weight
THEN 1 ELSE 0 END)

>= ABS(SUM(CASE WHEN P2.weight < P1.weight
THEN 1
WHEN P2.weight > P1.weight
THEN -1 ELSE 0 END)))

AS Partitions;

Median by Sequence Median by Sequence -- 11

Let’s use the SQL-99 OLAP operators to get a
weighted median using a sequence operator

Moral to the story – sequences are still useful

SELECT AVG(DISTINCT wgt)
FROM (SELECT P1.wgt,

ROW_NUMBER() OVER(ORDER BY wgt ASC) AS low,
ROW_NUMBER() OVER(ORDER BY wgt DESC) AS high

FROM Parts) AS Sides
WHERE low IN (high , high-1, high+1);

Characteristic functions Characteristic functions --11

A characteristic function returns a one or a zero if
a predicate is TRUE or FALSE

We can write it with a CASE expression in SQL-92

You can use it inside aggregate functions to get
descriptions of subsets

It gives you set properties

Characteristic functions Characteristic functions --22

Example: find the number of men and women in
the company in each department

SELECT department,
SUM(CASE WHEN sex = ‘m’

THEN 1 ELSE 0 END) AS men,
SUM(CASE WHEN sex = ‘f’

THEN 1 ELSE 0 END) AS women
FROM Personnel
GROUP BY department;

CASE Expressions CASE Expressions --11

Use in place of procedural code

Example: raise price of cheap books by 10%, and reduce
expensive books by 15%; Use $25 as break point

First attempt:
BEGIN

UPDATE Books SET price = price *1.10 WHERE price <= $25.00;
UPDATE Books SET price = price *0.85 WHERE price > $25.00;
END;

Look at what happens to a book priced $25.00

CASE Expressions CASE Expressions --22

Second attempt: use a cursor

Third attempt: procedural code
BEGIN
IF (SELECT price FROM Books WHERE isbn = :my_book)

<= $25.00
THEN UPDATE Books

SET price = price *1.10
WHERE isbn = :my_book

ELSE UPDATE Books
SET price = price *0.85

WHERE isbn = :my_book
END;

CASE Expressions CASE Expressions --33

Use the CASE expression inside the UPDATE
statement
UPDATE Books

SET price = CASE WHEN price <= $25.00
THEN price *1.10
WHEN price > $25.00
THEN price *0.85
ELSE price END;

The ELSE clause says “leave it alone” as a safety
precaution

Questions & AnswersQuestions & Answers

?

	Thinking in Sets: How to Program �in SQL
	Joe Celko - Articles
	Joe Celko - Books
	Think in Aggregate
	Joe Celko – Puzzle #1
	What makes an Entity?
	What makes an Entity? -2
	What makes an Entity? -3
	Don’t Sweat Details -1
	Don’t Sweat Details -2
	SQL is Not Procedural
	SQL is Not Computational
	Principles
	Mother Celko’s Heuristics - 1
	Mother Celko’s Heuristics - 2
	Sequence -1
	Sequence -2
	Sequence -3
	Sequence -4
	Sequence -5
	Subsets - 1
	Subsets - 2
	Top(n) Values
	Top (n) Values -2
	Top (n) Values - 3
	Top (n) Values - 4
	Top (n) Values - 5
	Top (n) Values - 6
	Relational Division - 1
	Relational Division -2
	Relational Division - 3
	Relational Division - 4
	Trees in SQL
	Tree as Graph
	Tree as Nested Sets
	Graph as Table
	Graph with Traversal
	Nested Sets with Numbers
	Nested Sets as Numbers
	Problems with Adjacency list -1
	Problems with Adjacency list -2
	Example of Self-Join
	Find Root of Tree
	Find All Leaf Nodes
	Find Superiors of X
	Find Subordinates of X
	Totals by Level in Tree
	The Median
	Procedural Way
	Think in Sets
	Median by Partition -1
	Median by Partition -2
	Median by Partition -3
	Median by Sequence - 1
	Characteristic functions -1
	Characteristic functions -2
	CASE Expressions -1
	CASE Expressions -2
	CASE Expressions -3
	Questions & Answers

