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Guidelines for representing complex cardinality constraints
in binary and ternary relationships

Dolores Cuadra · Paloma Martínez · Elena Castro · Harith Al-Jumaily

Abstract Ternary relationships represent the association
among three entities whose constraints database designers
do not always know how to manage. In other words, it is
very difficult for the designer to detect, represent and add
constraints in a ternary relationship according to the domain
requirements. To remedy the shortcomings in capturing the
semantics required for the representation of this kind of rela-
tionship, the present paper discusses a practical method to
motivate the designer’s use of ternary relationships in a meth-
odological framework. The method shows how to calculate
cardinality constraints in binary and ternary relationships and
to preserve the associated semantics until the implementation
phase of the database development method.

Keywords Ternary associations · Conceptual models ·
Logical models · Model transformations ·
Database methodology

1 Introduction

Databases are among some of the most important compo-
nents in the development and management of information

Communicated by Dr. Perdita Stevens.

D. Cuadra (B) · P. Martínez · E. Castro · H. Al-Jumaily
Computer Science Department, Carlos III University of Madrid,
Avd. Universidad, 30, 28911 Leganés, Spain
e-mail: dcuadra@inf.uc3m.es

P. Martínez
e-mail: pmf@inf.uc3m.es

E. Castro
e-mail: ecastro@inf.uc3m.es

H. Al-Jumaily
e-mail: haljumai@inf.uc3m.es

systems. Good database design should preserve the integ-
rity, consistency and safety of the data and simplify the 
management of information systems. With the continuous 
changes in business organizations and the proliferation of 
models witnessed during the information technology boom, 
it has become clear that the first phases in database design 
are crucial for the obtainment of a flexible, adaptable and 
complete system. Conceptual data models are presented by 
Moody and Shanks [42] as a key factor in development cost 
and flexibility, as well as in a system’s ability to integrate 
with other systems and meet user requirements. Conceptual 
models have been proposed in database design as tools to 
obtain physical/logical independence. This independence is 
achieved from the abstraction level upwards. One of the first 
of such approaches was by Abrial [1] which explains the 
advantages of using semantic models for problem resolu-
tion and knowledge representation. This approach dealt with 
semantic models in such areas as artificial intelligence, soft-
ware engineering and database design and discussed how to 
use these models as a starting point for the representation 
of the Universe of Discourse (UD) in a natural and intuitive 
way.

As discussed in Parent et al. [43], a conceptual model 
is that which should be able to provide a direct mapping 
between the perceived real world and its representation with-
out distortion or ambiguity. In general, conceptual models 
are defined as being easy to learn and use, intuitively under-
standable, independent of implementation and able to repre-
sent any domain. Graphical or visual languages for making 
schemata are used to facilitate discussion with, and valida-
tion by, domain experts. Although conceptual models can 
enhance the properties discussed above (i.e., ease of learn-
ing, intuitiveness, etc.), particular studies [44,45] have iden-
tified particular problems. For instance, the use of the term 
‘simplicity’ in describing a conceptual model refers to the
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simplicity of the concept, not necessarily to the level of 
complexity of the model itself. Nevertheless, ‘simplicity’ 
in this context has sometimes been incorrectly interpreted 
as meaning that only a few elements are provided for real-
world modeling. For example, binary models are models 
which have no n-ary (i.e., no n > 2) relationships—as in 
the Case*Method [7] or IDEF1X [11]—or models that only 
define maximum cardinality constraints associated with rela-
tionships [24,52]. This type of model does not have a suffi-
cient number of elements for the complete representation 
of certain real domains. Nevertheless, it is important not 
to confuse simplicity (i.e., a lack of complexity) with the 
‘simplicity’ of a conceptual model. In this latter sense, ‘sim-
plicity’ does not imply that a model is basic or trivial. The 
approach taken in Gemino and Wand [28] used the cogni-
tive theory of multimedia learning to examine the truth of 
the perception that a model with mandatory properties is 
more difficult than one with optional properties. However, 
the experiment showed that the conceptual model with man-
datory constraints is in fact easier to use. This means that 
the apparent complexity of the conceptual model can serve 
to clarify the real-world representation. It is very important 
to give a formal description of each conceptual element, to 
avoid mistakes in the use of these elements and to facili-
tate easy learning. According to Harel and Rumpe [32], one 
source of confusion at the moment when conceptual model 
elements are to be distinguished is the muddling of the dis-
tinction between the meanings of ‘data’ and ‘information’, 
an error which can be avoided by reflection upon the dif-
ference between syntax and semantics. Language consists 
of a syntactic notation—that is, an infinite set of legal ele-
ments—together with a semantic meaning of those elements 
and those two aspects must be clearly defined and differen-
tiated. Conceptual syntax is visual while semantics are not 
always specified.

As discussed in Davies et al. [21], one of the most fre-
quently-used conceptual models is the extended entity-rela-
tionship (EER) model. Primarily due to the adequate level of 
abstraction of the elements included in the EER model, the 
model is a precise and comprehensive tool for the represen-
tation of requirements in information systems. Since the pro-
posal of the original EER model by Chen [16] in 1976, several 
extensions and variations, as well as different diagrammatic 
styles, have been defined [41,43]. Other widely-used concep-
tual models include the object-role model (ORM) [30] and 
the Unified Modeling Language (UML) notation with par-
ticular emphasis on the class diagram [56]. Each of these has 
been extended to represent more semantics, including new 
or redefined elements. However, the proliferation of concep-
tual models has also given rise to some confusion inasmuch 
as the same notation or syntax can have different semantics 
depending on the model used. To give one example, while 
the cardinality constraint in a ternary relationship has the

same notation for the Entity-Category-Relationship (ECR) 
model [24] and UML class diagrams, it also has different 
semantics. These semantics define the constraints in two dif-
ferent ways, using the Merise method [50] in the case of the 
former and Chen’s approach [29] in the case of the latter. 
Semantic ambiguity seriously affects designers, both in the 
design process (e.g., the mapping between a conceptual to 
relational schema) and when the schema integration comes 
from several conceptual models. From a logical perspective, 
cardinality constraints have been dealt with. In one recent 
work [34], a logic-based propositional tool was presented 
for the acquisition of integrity constraints that are strongly 
linked with functional dependencies.

Furthermore, having conceptual models that are easy to 
learn and use, intuitive, independent of implementation and 
powerful does not necessarily guarantee, however, that the 
modeling process will be simple. The designer must be able 
to detect conceptual elements in the domain specifications 
which generally appear textually and through interviews with 
the domain expert. This process, known as the abstraction 
process, maps the domain specifications in conceptual ele-
ments such as entities, attributes or relationships. The process 
can be understood as a translation of sentences in natural 
language into elements belonging to a visual language. This 
translation is not trivial and several studies have focused on 
determining the rules necessary for its automation. Some 
heuristic rules to facilitate this process have been offered, 
for instance, in studies focusing on the types of problems 
encountered by novice designers in the abstraction process 
[9,10]. Many experts agree that conceptual elements of asso-
ciated semantics are more difficult to detect and understand 
than to represent. For example, relationships are more diffi-
cult to understand as their degree increases. In Castro et al.
[15], a number of common mistakes in relationship modeling 
are presented. These results suggest that CASE tools could be 
of help in relationship modeling, a proposition specifically 
addressed by certain studies.

The approach taken by the present paper focuses on binary 
and ternary relationships and the definition of their cardinal-
ity constraints. A study of several approaches to the rep-
resentation of cardinality constraints is undertaken and the 
practical method presented later is advocated for in hopes that 
it may bring experts a bit closer towards a consensus view 
on how to handle cardinality constraints. As this is framed 
within the relational database methodology, the transforma-
tion rules outlined in the majority of textbooks on database 
design [8,24,31,39,46,52] will be employed and extended.

Regarding the structure of the remainder of the present 
paper, Sect. 2 studies the definitions of the different relation-
ships in the best-known conceptual models focusing on ter-
nary relationships and their cardinality constraints. In Sect. 3, 
a practical method for calculating cardinality constraints is 
presented that responds to shortcomings found in a previous
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study on relationships. While the methods are addressed to 
the EER model, they could nevertheless also be applied to 
other conceptual models that follow the Merise method or 
Chen’s approach, for example, the UML class diagram using 
Chen’s approach and therefore, the method to complete con-
straints will be the Merise and Participation cardinalities 
(see Sect. 3.1.). Similarly, for the IDEF1X model using the 
Merise method, to complete the cardinality constraints, Chen 
and Participation must be defined (see Sect. 3.1.). Section 4 
presents a set of transformation rules for the preservation of 
semantics in the relational phase of database development. 
In Sect. 5, empirical results from the evaluation of the pro-
posal’s utility are presented. Finally, Sect. 6 offers conclud-
ing remarks, describes ongoing work in the area and proposes 
additional areas for future research.

2 Related work

The present section attempts to elucidate the distinction 
between syntax and semantics in order to define the car-
dinality constraints in the most relevant conceptual models. 
As mentioned earlier, the confusion between these two con-
cepts is often the cause of mistakes made by novice database 
designers. As one of the keys to the correct modeling of car-
dinality constraints is the clarification of the relationship con-
cept [6], this section first presents different definitions and 
representations for the relationship concept and their prop-
erties.

2.1 Review of relationship definitions

In general, a relationship is defined as an association between 
elements. This simple-sounding definition, however, has sev-
eral different interpretations. For example, Thalheim [54] 
presents the higher-order entity-relationship model (HERM) 
which defines relationships between relationships and rela-
tionships between higher degree relationships. Elmasri and 
Navathe [24], nevertheless, only consider the relationship 
between entities while Teorey [52] distinguishes groups of 
entities and relationships through clusters. Therefore, the 
association or relationship can be between entities, relation-
ships or clusters of entities. Compounding this complexity, 
the term, ‘association’, can also have different senses depend-
ing on the perspective of the speaker. Thus, ‘marriage’ can 
be seen as a relationship usually existing between a man and 
a woman or as an entity representing a social and legal con-
cept. This duality often produces confusion in the modeling 
of this conceptual element.

Furthermore, models such as the ORM [30] not using the 
relationship element define associations between objects as 
the set of predicates that are distinguished by a name and 
applied to a set of roles compiling a set of Facts. Although 
the representation is different, the concept itself is the same.

The definition of association by the ORM is similar to that 
in McAllister [41].

Other well-known conceptual models [24,30,41,54] share 
the instances of a relationship definition; that is, the instance 
is an element of the Cartesian product between instances of 
entities, although the HERM [54] also includes the cluster 
and associations among relationships. Unfortunately, most 
designers are confused about n-ary or higher relationships 
and either do not use them or often use them erroneously. 
Mistakes regarding the degree of relationship choice, incor-
rect cardinalities and errors in the transformation of concep-
tual schemata to relational schemata are common (see Batra 
and Antony [10] and Castro et al. [15]).

2.2 Review of the syntax and semantics of cardinality
constraints

The problems in relationship modeling can be found in 
the detection and representation of its properties, such as 
cardinality constraints. Detection problems in ternary rela-
tionships are described in Castro et al. [15] a study present-
ing experimental results aimed to demonstrate difficulties 
encountered by novice students and practitioners in the use 
of ternary relationships. Some of the relevant factors detected 
that influence the modeling of ternary relationships include 
domain knowledge and intersection data (i.e., attributes in 
ternary relationships). The representation of cardinality con-
straints was another of the problems detected that lead to an 
incorrectly modeled relationship.

Cardinality constraints can be defined as the limit on the 
combination of relationship instances or, in other words, the 
description of the valid subset of the Cartesian product of 
instances belonging to the relationship.

Cardinality constraints have many associated syntaxes and 
semantics [26]. Syntax is represented through visual lan-
guages and is not standard since it depends on the relationship 
definition adopted by the conceptual model chosen. While 
some conceptual models represent only maximum cardinali-
ties [52], others represent both maximum and minimum car-
dinalities with labels close to or opposite the site associated 
with the entity. For example, Fig. 1 (left) shows minimum 
and maximum cardinalities represented by labels which, fol-
lowing Elmasri and Navathe [24], are located opposite the 
site of the entity associated with this cardinality. The seman-
tics collected for the model are ‘an employee works in one 
and only one department’. The same semantics can also be 
collected from Fig. 1 (right) using Teorey notation [52] where 
the shaded area represents a maximum cardinality of 
n. T h i s  graphical notation only allows maximum 
cardinalities of 1 or n.

The semantics of cardinality constraints are also ambig-
uous. Two principal approaches can be distinguished [26]. 
First, Chen’s constraints are an extension of the mapping
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Fig. 1 Representing cardinality constraints in ECR model (left) and with Teorey notation (right)
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Fig. 2 Merise method for the representation of cardinality constraints

constraint (i.e., a special case of cardinality constraint that 
considers only the maximum cardinality which for binary 
relationships, for example, can be 1:1, 1:N or N:M) [16]. 
They have been adopted or extended in different data models. 
Second, the Merise method [50] incorporates participation 
semantics in a relationship. For binary relationships, the two 
approaches agree in cardinality constraints (except in graph-
ical notations or syntax) and represent the same semantics.

For both approaches, two different interpretations can 
be made in calculating cardinality constraints depending on 
whether entity instances (i.e., potential instances or incom-
plete instances) or relationship instances (i.e., real instances) 
are taken into account [29].

The first semantic interpretation specifies the maximum 
and minimum number of instances of an entity or an entity 
subset that can participate in relationship instances. For a 
binary relationship, the interpretation is that if the entity’s 
minimum cardinality is zero, the entity’s participation in a 
relationship is optional. In another case, the i ≥ 1 mini-
mum cardinality forces each entity instance to participate in 
the relationship i-times. The studies of Elmasri and Navathe 
[24] and Halpin [30] are among those using this interpreta-
tion, known as the Merise method or participation 
constraint.

Figure 2 shows an example of a binary relationship accord-
ing to the Merise method. The related semantics are ‘every 
project instance must participate in the works relationship, 
but an employee instance need not be in the works relation-
ship’. The cardinality constraints are represented by a label 
next to the associated entity.

Most conceptual models [7,11,24,30,31,39,46,48,52] 
use this interpretation with a different representation but the 
same semantics. The semantics can be calculated by looking 
at the entity instances and counting the maximum and min-
imum number of times that they appear in the relationship. 
This interpretation is termed ‘EntityLook’ because it focuses 
on instances of the entity. Nevertheless, there is a prob-
lem with this interpretation. While mandatory participation 
forces all entity instances to participate in the relationship, 
what would happen if participation were not mandatory?
Taking the previous example, for instance, if an employee

enrolStudent

Subject

enrolls Score

Ana
Laura
Silvia

0..10

DB1
DB2
DBAD

Ana,    DB1,   7
Laura, DB1,   5
Silvia,  DBAD,4
Ana,   DB2,    5

Fig. 3 Ternary relationship and its associated instances

works on a project, he must work on at least two projects. 
However, as there are employees who do not have any asso-
ciated projects, how may this specification be represented?
Notice that this constraint cannot be represented with mini-
mum and maximum cardinalities.

The second semantic interpretation looks at relationship 
instances and is termed ‘RelationshipLook’. Setting one of 
the components or roles in the relationship, the interpreta-
tion obtains the maximum and minimum number of different 
combinations of that component or role with the remaining 
components or roles. This approach is used in Halpin [30], 
but the semantic values are constrained to being greater than 
zero. If this interpretation is applied to the previous example 
s h o w n i n F i g . 2, while the Project cardinality constraint 
does not change, the Employee cardinality becomes (2,n).

In summary, while the binary relationship is satisfactorily 
defined by examining the syntax and semantics, a deficiency 
becomes apparent in the case of optional participation.

2.3 Motivation

For ternary relationships, this deficiency becomes even more 
important due to the fact that the Merise method and Chen’s 
approach do not agree (some examples of this assertion are 
presented in [49]). Looking at Fig. 3, the constraints asso-
ciated with the Score entity can be obtained by considering 
Score instances and seeing that the latter’s participation is 
mandatory in enroll. However, regarding the enroll role, the 
score role or component could be optional. This participa-
tion constraint or Merise method depends on EntityLook or 
RelationshipLook, respectively. Another constraint is 
observed in the enroll relationship: the student and subject 
combination is unique (known in the relational framework 
as functional dependency). The combination of instances
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defines the other constraint type, Chen’s approach, yet the 
combination between two entities is not clear. Is the combina-
tion between two entity instances (i.e., potential instances)?
Or is the combination between two components (i.e., roles) 
in the relationship (i.e., real instances)?

The interpretation of potential instances determines a 
(0,1) cardinality insomuch as there are instance combinations 
between Student and Subject entities that do not appear in the 
enrolls relationship, for example, the (Ana,DBAD) combina-
tion. However, the real instance interpretation determines a 
(1,1) cardinality and only considers the instances in enrolls.

Therefore, cardinality constraints could be classified 
according to either the Merise method or Chen’s approach, 
as well as according to the EntityLook (potential instances) 
or RelationshipLook (real instances) interpretations.

Cardinality constraints are divided into four types, num-
bered from (1) to (4). The semantics associated with the 
maximum cardinality is the same for each of these types. 
Nevertheless, a problem is encountered with the minimum 
cardinality. The first type of cardinality constraint (1) is the 
Merise method [50] which uses the EntityLook interpretation. 
By this interpretation, the minimum cardinality n, where n 
is greater than zero, represents the mandatory participation 
for all instances associated with an entity in a relationship 
(e.g., a student must be enrolled in at least one subject). 
The zero cardinality is the optional participation of entity 
instances in a relationship. The second constraint type (2) is 
Chen’s approach with the EntityLook interpretation, reflect-
ing that when the minimum cardinality is zero, participation 
is optional. An example of this is that the (Ana,DBAD) com-
bination does not participate in the relationship (Fig. 3). If 
the minimum cardinality is 1, all instance combinations must 
appear at least once in the relationship. Constraint types (3) 
and (4) look at the relationship. They set either one or two 
components using the Merise method or Chen’s approach, 
respectively, and count how many times these appear in the 
relationship. The minimum cardinality of zero only makes 
sense if the relationship admits components without informa-
tion. Some approaches treat the relationships with unknown 
or inapplicable information. Allowing this kind of cardinality 
directly affects the relationship definition. Most conceptual 
models define cardinality constraints as being of the fourth 
type, with the UML class diagram [56] or the EER model 
used by Elmasri and Navathe [24] being relevant examples.

According to the reviews presented in the previous sec-
tions, some conclusions can be extracted.

1. The inclusion of ternary relationships in conceptual mod-
els is not a problem with regard to the simplicity property.
This kind of association appears in real-world problems
and conceptual models must provide some mechanism
to represent it.

2. Both syntactical and semantic definitions are ambigu-
ous. The problem is not the lack of formal proposals that 
solve this ambiguity, but rather the lack of understanding 
to use this relationship and manage its constraints.

3. The use of the Merise method or Chen’s approach to 
manage the cardinality constraint is not sufficient in and 
of itself. To reflect all semantics associated with a ternary 
relationship, both approaches must be used jointly.

This paper presents a practical method for the use of binary 
and ternary relationships with their cardinality constraints 
while ensuring the complete management of the relationship 
semantics. The present section has discussed the different 
ways in which the cardinality constraints associated with a 
relationship may be obtained. In this discussion, however, 
particular deficiencies in the semantics of the cardinality con-
straints for both binary and ternary relationships have been 
detected and analyzed. While a recent study by Calí [12] has 
addressed this issue, it has shown cardinality constraint repre-
sentation through relational structures, but in a highly formal 
manner. By contrast, the present paper proposes a practical 
method based on the work of Jones and Song [38] and McAll-
ister [41] for the use, representation and validation of seman-
tics without information loss or other, previously discussed 
ambiguities. In the latter of these two studies, a complete 
approach for the representation of cardinality constraints in 
n-ary relationships is presented. Nevertheless and similar to 
the study by Calí, the paper gives a very formal approxi-
mation that is difficult to deal with. Finally, the approach in 
Jones and Song [38] deals with transformation rules, yet it 
does not include the use of the Merise method.

3 Defining cardinality constraints: syntax and semantics

The present section begins with the definition of certain basic
elements used in the conceptual model. Subsequently, sev-
eral cardinality constraints associated with relationships are
proposed, along with numerous results that verify these con-
straints.

The paragraphs directly below present the definitions of
the basic elements used in the conceptual model, namely
‘entity’ or ‘class’ and ‘relationship’ or ‘association’. Through
such formal definitions, the cardinality constraints of a rela-
tionship will then be built.

Definition 1  L et E  =  (A1, . . .,  An, {id j ( E)|1 ≤  j  ≤  n}) 
be an entity type such that Ai is an attribute defined in a data 
domain and {id  j (E)|1 ≤ j ≤ n} a set of unique keys that 
identifies the instances of E1.

1 A ‘unique key’ is a single column (or set of columns) that uniquely
identifies (or identify) each row in a table.
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The Primary Key (PK) can be distinguished in the unique
key set. The PK is mandatory and is one of the constraints
imposed in most conceptual models.

Et is defined as the set of instances for E . Elements
belonging to Et and denoted by et ∈ Et are vectors whose i th
component verifies that ei ∈ dom(Ai ) and that each instance
is unique.

The set of key instances is denoted by #E = �P K (E),
where � is the projection of E on PK.

Definition 2 Let R = (r1 E1, . . ., rn E j , A1, . . ., As) be a
relationship R with order n and attributes Ai where ri is
the role of Ek in R.

Rt is the set of the instances of R and r t is an element of this
set whose representation is a vector with n components. The
i th component is a key instance of the entity which partici-
pates with the i th role (denoted by P Ki ).

For example, the employee entity could be defined as
Employee = (ID_Emp, NSS, Name, Address; {ID_Emp,
NSS}) where ID_Emp is the PK. Employee instances are
Employeet ={(001, 123087400, Charlie Smith, 265 Soldier
Home Rd), (002, 560236098, Lanna Harrison, 143 Alabama
Rd)}. Considering the relationship between an employee
and supervisor, the relationship Supervise = (Is_Supervised
Employee, Supervises Employee) can be defined. Supervise
has degree 2 and one instance of this relationship could be
Superviset = {(002,001)}, or the semantic representation,
‘Lanna Harrison is supervised by Charlie Smith’.

3.1 Cardinality constraints

The proposal presented here combines cardinalities from the 
Merise method and Chen’s approach with entity participa-
tion. Based on the cardinality constraints explained in Sect. 2, 
a new notation is added to consider different cardinality con-
straints associated with n-ary relationships (in this case, ter-
nary relationships) and reflect the most important semantics. 
Also as discussed in Sect. 2, conceptual models have two 
ways of representing cardinality constraints, namely Entity-
Look and RelationshipLook. Our proposal uses both of these 
to complete and extend the cardinality constraint definition.

The approach presented here depends upon three con-
cepts—entity participation, Merise cardinality constraints
and Chen cardinality constraints—based on binary relation-
ships and is defined below.

3.1.1 Entity participation cardinality constraint

Let R = (r1 E1, . . ., rn E j , A1, . . ., As) be a relationship
where E j is the entity participation cardinality and rk a role.
When the participation E j in R with role rk is optional, car-
dinality can be defined as C(rk E j , R) = 0. When the par-
ticipation of E j in R with role rk is mandatory, cardinality

Writer Bookwrites

a
b

...

...
1
2

...

...
a
b

3
1

3 ...

Fig. 4 Example of entity participation cardinality
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b

...

...
1
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b

3
1

3 ...a 1c ...
c 1

Fig. 5 Merise cardinality combined with participation cardinality

can be defined as (C(rk E j , R) = 1). A formal expression is
presented below:

C
(
rk E j , R

) = 1 iff ∀ PKi ∈ #E j , ∃r t ∈ Rt such that

r t
k = PKi wherer t

k is the kth component of the r t .

In the other case, C
(
rk E j , R

) = 0 (1)

This mandatory entity participation can be represented in a 
conceptual model by a black circle at the endpoint of a line 
between the entity and the relationship, an example of which 
can be found below in Fig. 4.

The example shows that all writer instances participate in
the writes relationship, but a book need not participate in the
writes relationship since a book can be written by an anon-
ymous writer. This constraint is associated with instances of
one entity and determines the participation type of this entity
in the relationship.

3.1.2 Merise cardinality constraint

Let R = (r1 E1, . . ., rn E j , A1, . . ., As) be a relationship.
Merise cardinality for role ri can therefore be defined as
C Merise(ri E j , R) = (min, max) where min ∈ {1…N},
max ∈ {1…N} U {‘n’} and 1 ≤ min ≤ max, if key instance
P Ki of ri E j in Rt appears in Rt min and max times, respec-
tively, as minimum and maximum. Formally, then, Merise
cardinality can be expressed in the manner presented below:

C Merise
(
ri E j , R

) = (min, max) iff min

≤ |{r t ∈ Rt/r t
i = PKi }| ≤ max ∀ PKi ∈ ri E j (2)

|M | number of elements in the M set,
‘n’ no-restricted value,
r t

i the i th component of the vector, and
ri E j the ith component of the rt vector such that rt ∈ Rt . As 

shown in Fig. 5, the representation of Merise cardinal-

ity is a label at the endpoint of a line between the entity and
the relationship. It represents the requirement that the writ-
ers and books related to the writes relationship must fulfill.
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Fig. 6 Cardinality constraint proposal applied to works relationship

The example shows that all writers write one or many books 
and, if all writers of one book are known, up to three writers 
are stored.

It is important to consider the difference between Fig. 5 
and Fig. 4, the latter of which representing the case that a 
book cannot participate in the relationship writes if the author 
of the book is unknown. Such a requirement cannot be rep-
resented with the Merise method. Figure 5 shows how, by 
combining this method with the participation cardinality, all 
requirements can be represented.

It is very important to emphasize the semantics that can be 
represented with the Merise cardinality and participation car-
dinality in a conceptual schema. These semantics are shown 
in the following example which represents the requirement: 
‘A company’s employees can participate in projects or not. 
Those employees who participate in projects are always par-
ticipants in at least two projects’. As demonstrated in Fig. 6, 
the method for the representation of this requirement is to 
divide the constraints into entity participation and participa-
tion inside the relationship.

The associated semantics are adequately completed, in 
that they represent the previously expressed requirements 
that in the Employee there can be instances that do not par-
ticipate in the works relationship, but those that do always 
participate appear at least twice.

The ternary relationship has greater associated semantics 
than the binary relationship and different cardinality con-
straints must be specified to support these semantics. For 
this reason, the cardinality constraint is defined as follows.

3.1.3 Chen cardinality constraint

Let R = (r1 E1, . . ., rn E j , A1, . . ., As) be a relation-
ship. The Chen cardinality of the role ri is defined as
CChen(ri E j , R) = (min, max), where min ∈ {1…N},
max ∈ {1…N} U {‘n’}, and 1 ≤ min ≤ max, if one combina-
tion of n−1 keys given (P K1, . . ., P Ki−1, P Ki+1, . . ., P Kn)

∈ Rt , appears in Rt min and max number of times as mini-
mum and maximum.

CChen
(
ri E j , R

) = (min, max) iff

min ≤ |{r t ∈ Rt
∣∣(r t

1, . . . , r t
i−1, r t

i+1, . . . , r t
n

)

= (PK1, . . . , PKi−1, PKi+1, . . . , PKn)}|
≤ max∀ (PK1, . . . , PKi−1, PKi+1, . . . , PKn)

∈ r1 E1, . . . , ri−1 Es . . . , ri+1 Et , . . . rn E j (3)

Employee Projectworks
(1,n)(2,n)

a
b

...

...
1
2

...

...

A
B

...

...

c ...

Technique

(1,n)

(2,2) (1,n)

(1,2)

a B 1
b B 1
b A 1
a A 1

Fig. 7 Example showing cardinality constraint proposal with entity
cardinality added

The representation of the Chen cardinality is a label on the
opposite side of the role associated with these constraints.

In order to clarify the differences between the Chen and 
Merise cardinality approaches, it may be instructive to sup-
pose that further conditions apply to the example presented 
above in Fig. 6. As opposed to the original representation, 
one may imagine that the techniques which the employees 
use in each project must be included, taking into account 
that an employee who participates in a project uses at least 
one technique and normally two. Additionally, any particu-
lar technique applied in a project can be used by only two 
employees. Figure 7 illustrates how the Merise method col-
lects the semantics of this wording.

Since the Merise method only takes a key instance of entity
into account to find its participation with the two other key
instances of entities in the relationship, the restriction on the
maximum number of techniques applied by an employee on
each project cannot be indicated. Moreover, the maximum
number of employees who use a particular technique in a spe-
cific project cannot be represented either. Chen’s approach,
however, collects all of the restrictions, given that the approx-
imation combines two key instances of entities to look at the
participation of the other key instance of entity in the relation-
ship. Finally, the entity cardinality represents the optional or
mandatory participation of each entity in the works relation-
ship. According to the example, the Technique entity ensures
that all their key instances take part in the works relationship.
The remaining cardinality constraints identify the rules for
working on a project, namely that only two employees can
work on a project using the same technique. If one employee
participates in a project, she/he uses two techniques, at most,
and each technique used in a project is used by two and only
two employees. Finally, all employees work on the same pro-
ject with two different techniques or on at least two projects.

3.2 Validation of cardinality constraints

An important aspect of conceptual design is the check-
ing of whether the conceptual schema is well formed and
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represents the Universe of Discourse (UD) [22,41]. A con-
ceptual schema is well formed if there is an instance that ful-
fills all schema constraints. If this instance is a real instance, 
then the schema reflects the UD. The first of these two con-
ditions (or validations) is known as the structural validation 
and the second as the semantics validation. Both are based on 
the approach in García-Molina et al. [27] in which integrity 
constraints in the relational model are sorted into structural 
and semantics constraints. Other research carried out within 
the relational model framework includes Hartmann [33] and 
Ishakbeyoglu and Özsoyoglu [37].

The framework of this paper is the relational database
development methodology and, thus, the first validation car-
ried out in the development of the database must be done in
the conceptual phase. This validation is extremely important
in order to guarantee a good design, refining the schema and
proceeding to the next phase in the relational methodology.
The matter of the structural validation of the cardinality con-
straint associated with a relationship is addressed since this
type of validation is domain independent and can be carried
out through a set of verification rules.

Semantic validation consists of the checking of whether
the conceptual schema represents business rules or a correct
description of the real world. Therefore, the most efficient
semantic validation is that done through domain expert inter-
views.

The structural validation of cardinalities must make sure
that the cardinalities in a relationship are not contradic-
tory. Consequently, at least one relationship instance must
be found which verifies all constraints defined with respect
to the relationship.

Formally, let R = (r1E1, . . ., rnE j , A1, . . ., As) be a
binary/ternary relationship:

C (Ei , R) = 1 is not valid iff ∃a ∈ #Ei

so that ∀r t ∈ Rtr t
i �= a.

(4)

CMerise (ri Ei , R) = (min, max) is not valid iff :
(a) min > 1 and ∃a ∈ ri Ei such that

|{r t ∈ Rt
∣∣r t

i = a}∣∣ < min or

(b) ∃ PKi ∈ri Ei such that |{r t ∈ Rt
∣
∣r t

i = PKi }
∣∣> max

(5)

CChen (ri Ei , R) = (min, max) is not valid iff :
(a) min > 1 and ∃ PK1, . . . , PKi−1, PKi+1, . . . , PKn

∈ r1 E1, . . . , ri−1 Es, ri+1 Et , . . . rn E j such that

|{r t ∈ Rt |
(

r t
1, . . . , r t

i−1, r t
i+1, . . . , r t

n

)

= (PK1, . . . , PKi−1, PKi+1, . . . , PKn)}| < min or

(b) ∃ PK1, . . . , PKi−1, PKi+1, . . . , PKn

∈ r1 E1, . . . , ri−1Es, ri+1Et , . . . rn E j such that

X Z

YSCB(X,Y)

CMerise (X, SCB(X,Y))

R

SCB(X,Z)

SCB(Y,Z)

CMerise (Y, SCB(X,Y)) CMerise (Y, SCB(Y,Z))

CMerise (Z, SCB(Y,Z))

CMerise (X, SCB(X,Z)) CMerise (Z, SCB(X,Z))

Fig. 8 Semantically constraining binaries related to R

|{r t ∈ Rt
∣∣∣
∣
(

r t
1, . . . , r t

i−1, r t
i+1, . . . , r t

n

)
,

= (
PK1, . . . PKi−1, PKi+1, . . . , PKn

)}
∣∣∣
∣ > max (6)

While the valid cardinality definition is easy, its proof is 
not trivial. This work draws from related approaches such as 
Camps [13], Jones and Song [38] and McAllister [41]. These 
approaches are based on EntityLook and their rules have been 
adapted to the present proposal for ternary relationships. The 
adapted rules are based on the following notations:

Considering a ternary relationship R = (X = r1 E1, Y = 
r2 Ei , Z = r3 E j , A1, . . .,  As ), we denote by CChenmax 
(X, R), CChenmin(X, R), C Merisemax(X, R), and 
C Merisemin(X, R) the maximum and minimum cardinality 
of CChen(X,R) and CMerise(X,R), respectively. Further-
more, semantically constraining binaries are needed to val-
idate ternary relationship constraints (the definition appears 
in Jones and Song [38]). These implicit binary relationships 
will be denoted by SCB (X,Y). A graphical representation is 
presented in Fig. 8 to facilitate a greater understanding of the 
rules notation.

The cardinality constraints associated with R must fulfill
the following rules:

Rule 1: (a) C Merisemax(X, SC B(X, Y )) ≥ CChenmax

(Y, R)

(b) C Merisemin(X, SC B(X, Y )) ≥ CChenmin

(Y, R)

Rule 2: (a) C Merisemax(X, R)≥C Merisemax(X,SC B
(X, Y ))

(b) C Merisemin(X, R)≥C Merisemin(X, SC B
(X, Y ))

Rule 3: C Merisemin(X, R) ≥ C Merisemin(X, SC B
(X, Y ))xCChenmin(Z , R)

Rule 4: C Merisemax(X, SC B(X, Y ))xC Merisemax

(Y, SC B(Y, Z)) ≥ C Merisemax(X, R)

Rule 5: C Merisemax(X, SC B(X, Y )) ≥ C Merisemin

(X, SC B(X, Y ))

Rule 6: C Merisemin(X, SC B(X, Y ))xC Merisemax

(Y, SC B(Y, Z)) ≥ C Merisemin(X, R)
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Rule 7: C Merisemin(X, SC B(X, Y ))xC Merisemax

(X, SC B(X, Z)) ≥ C Merisemin(X, R)

Rule 8: C Merisemax(X, R) ≥ CChenmax(Z , R)

+ C Merisemin(X, SC B(X, Y )) − 1
Rule 9: If CChenmin(Z , R) > 1 → C Merisemin

(X, SC B(X, Z)) > 1 and C Merisemin(Y, SC B
(Y, Z)) > 1

Rule 10: C(X, SC B(X, Y )) = 0 iff C(X, R) = 0

According to McAllister [41], among these rules exists a 
minimal set—namely rules 1, 2, 4 and 10—that proves the 
structural validity of the relationship R. In addition, the total 
number of cardinalities in an n-ary relationship with n roles 
is given by 3n − 2n+1 + 1. For ternary relationships, the total 
number of cardinalities is 12, proving that the approach does 
not generate redundancies. The definition of rules provides 
a tool for the designer to verify cardinality constraints for 
each ternary relationship and may also help detect other car-
dinality constraints not noticed by the designer or even the 
domain expert.

In this way, the rules may aid the designer in her/his 
work since, through the solution of constraints implic-
itly associated with binary relationships (represented in Fig. 
8 by a dotted line) that are easier to detect or to ask the 
domain expert about, certain cardinalities for the ternary 
relationship may also be deduced. In the exam-ple 
presented in Fig. 7, it might be simpler to ask how many 
techniques an employee uses. If the domain expert were to 
respond that there are 4 techniques, at best, then 
C Merisemax(Employee, SC B(Employee, T echniques)) 
= 4 and, by the application of rule 1(a), the Chen cardi-
nality for Techniques cannot be greater than 4 (Rules 1(a): 
C Merisemax(Employee, SC B(Employee, T echniques)) 
≥ CChenmax(T echniques, R)). Semantically, this implies 
that an employee for a given project cannot use more than 4 
distinct techniques. Once the rule has been applied, it is eas-
ier to ask the domain expert, setting the employee and project 
values (since these are associated with the techniques) and, 
in agreement with the domain specifications, indicate that an 
employee uses 2 techniques at most in each project, just as 
is indicated in Fig. 7. With respect to the range of possible 
values in which this cardinality could lie, it is limited to a 
value less than or equal to 4, aiding the designer’s work in 
understanding the domain through simple questions for the 
expert (i.e., more intuitive questions inasmuch as they deal 
with binary relationships) as well as in the completeness of 
the semantics of the ternary relationship.

4 Incorporating cardinality constraint semantics
into a methodological framework

Conceptual modeling is very important in the development
of information systems and, therefore, also in relational data-

base development. In the previous section, a method was pre-
sented for the calculation of cardinality constraints in binary 
and ternary relationships, as well as the solution of short-
comings in the capture of the semantic constraints required 
in a database. Therefore, the proposal provides a schema with 
more semantics, bringing it closer to the real world or UD. 
While resources are provided to arrive at good designs, the 
designer must nevertheless know how to use these resources. 
Validation rules aid in the completion of the design and the 
fulfillment of the validation schema.

The validation of schemata is quite important inasmuch 
as, with a correct schema, consistent information is presented 
in the first phase. This provides a designer with a firm footing 
as she/he proceeds to the next phase in the method (i.e., the 
relational phase).

The principal difficulty when a conceptual schema is 
transformed into a relational schema is one of maintain-
ing consistent information. Generally, it is quite difficult to 
achieve a complete mapping between both models, as well 
as maintain their structural and semantic restrictions when 
moving from the conceptual to the relational model. Restric-
tions that cannot be applied in the relational model must usu-
ally be reflected outside the database management system 
(DBMS) in application programs in several different ways 
[13]. Regarding this particular issue, a number of extensions 
of the relational model have been proposed [17,18,51] that 
provide a more semantically-oriented model.

Principal rules for transformation are described in most 
database textbooks [24,25,30,39,46,52]. This section will 
discuss the transformation of relationships in the relational 
schema, the main focus of this paper.

The correct transformation of schemata and the constraints 
expressed therein is necessary in order to preserve their 
intended meaning. Although the standard relational model 
[17] was initially unable to sufficiently reflect the seman-
tics that could be present in a conceptual schema, it has 
been enhanced with specific elements used to preserve these 
original semantics. New Structured Query Language (SQL) 
versions have been developed and new integrity constraints 
have been defined [23,55] so as to offer additional informa-
tion regarding previously existing SQL integrity constraints. 
In what follows below, the present proposal applies the 
basic rules of transformation to map relationships in rela-
tions and adds CHECKS and ASSERTIONS to complete 
the semantics where necessary. The approach is based on 
SQL 2003 [23]. The transformation of binary relationships 
will be examined first, followed by that of ternary relation-
ships.

4.1 Binary relationship transformation

The cardinality constraints associated with binary rela-
tionships are those of entity participation and CMerise
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Fig. 9 Canonical form for the transformation of binary relationships

Table 1 Transformation options and structural relational constraints
in binary relationships

Cases C Merisemax Structural constraints

0 All > 1 PK is (P K1, P K2)

1 C Merisemax(r1 Ei , R) = 1 PK is (P K1)

2 C Merisemax(r1 Ei , R) = 1 PK is (P K1)

C Merisemax(r2 E j , R) = 1 UK = {(P K2)}

cardinality. The first of these establishes whether all entity 
instances participate in the relationship or if there are entity 
instances that do not participate, denoted by mandatory or 
optional participation. The second shows the number of times 
that the entity key instance appears in the relationship for each 
entity in the relationship. For the transformation of binary 
relationships, the canonical form is presented in Fig. 9 below.

For this transformation, the structural relational con-
straints are applied according to the maximum Merise cardi-
nality as indicated in Table 1 below.

According to whether the entity participation is manda-
tory—the CMerisemax �= ‘n’ and CMerisemin > 1—the
following patterns must be applied for the completion of the
semantics (for both roles depending on their cardinalities):

Pattern 1 CREATE ASSERTION
C(r1Ei,R)_Mandatory
CHECK (NOT EXITS (SELECT PK1

FROM Ei WHERE PK1

NOT IN (SELECT PK1
FROM R)));

Pattern 2 CREATE ASSERTION
CMerisemin(r1Ei,R)

CHECK ((CMerisemin(r1Ei,R) ≤
SELECT MIN
(NUMBER_MIN) FROM (SELECT
COUNT(*) FROM R
GROUP BY PK1) AS NUM-
BER_MIN));

Pattern 3 CREATE ASSERTION
CMerisemax(r1Ei,R)
CHECK ((CMerisemax(r1Ei,R) ≤
SELECT MAX
(NUMBER_MAX) FROM (SELECT
COUNT(*) FROM R
GROUP BY PK1) AS NUM-
BER_MAX));

Table 2 Particular cases in the transformation of binary relationships

Particular cases Cardinality constraint represented

C Merisemax(r2 E j , R) = 1

C(E j , R) = 1

R
(
PKi, . . . PKj . . .

)
C Merisemax(r1 Ei , R) = 1

C Merisemax(r2 E j , R) = 1

UK = {P K j } C(Ei , R) = 1

C(E j , R) = 1

Fig. 10 Canonical form for the transformation of ternary relationships

It is necessary to mention two particular cases here. A binary 
relationship can also be transformed into two relations (i.e., 
one for each entity) or one relation that includes the informa-
tion of the two entities. These occur when some CMerisemax 
is equal to one at least in one entity. The last column of 
Table 2 shows the cardinality constraints reflected through 
the structural transformation.

The proposal here presented extends the number of cases 
presented in Fahrner and Vossen [25] and discusses every car-
dinality constraint approach, including those of the Merise 
method and Chen’s approach.

4.2 Ternary relationship transformation

In this case, it is assumed that a particular ternary relationship 
is valid and cannot be represented through binary relation-
ships. Most database book references [24,25,28,31] propose 
ternary relationship transformation as a new relation whose 
primary key is made up of the primary key of each asso-
ciated entity. To complete the transformation rules, Fig. 10 
presents the canonical form to be used as the starting point 
for the explanation of different transformations, depending 
on cardinality constraints. According to the proposal, a ter-
nary relationship has three types of cardinality constraints; 
to wit, entity participation, CMerise and CChen. Therefore, 
a further set of assertions must be defined in order to check 
the Chen cardinalities.

Unlike binary relationships, not all combinations of
CMerise and CChen cardinalities are feasible. For example, if
the C Merisemax(r1 Ei , R) = ‘n’ (i.e., non-restricted value),
it is implied that CChenmax(r2 E j, R) and CChenmax(r3 Ek, R)

must also be ‘n’ through the application of the validation rules 
presented in the previous section. Thus, seven options have 
been distinguished in ternary relationship transformations. 
Table 3 presents the primary key and unique keys to be added

10



Table 3 Transformation
options and structural relational
constraints in ternary
relationships

Cases CChenmax C Merisemax Structural constraints

0 All > 1 All > 1 PK is (P K1, P K2, P K3)

1 CChenmax(r1 Ei , R) = 1 All > 1 PK is (P K2, P K3)

2 CChenmax(r1 Ei , R) = 1 All > 1 PK is (P K1, P K3)

CChenmax(r2 E j , R) = 1 UK is (P K2, P K3)

3 CChenmax(r1 Ei , R) = 1 All > 1 PK is (P K1, P K2)

CChenmax(r2 E j , R) = 1 UK = {(P K1, P K3), (P K2, P K3)}

CChenmax(r3 EK , R) = 1

4 CChenmax(r2 E j , R) = 1 C Merisemax(r1 Ei , R) = 1 PK is (P K1)

CChenmax(r3 EK , R) = 1 UK = {(P K1, P K3), (P K2, P K3)}

5 CChenmax(r1 Ei , R) = 1 C Merisemax(r1 Ei , R) = 1 PK is (P K1)

CChenmax(r2 E j , R) = 1 UK = {(P K1, P K3), (P K2, P K3)}

CChenmax(r3 EK , R) = 1

6 CChenmax(r1 Ei , R) = 1 C Merisemax(r1 Ei , R) = 1 PK is (P K1)

CChenmax(r2 E j , R) = 1 C Merisemax(r2 E j , R) = 1 UK is (P K2)

CChenmax(r3 EK , R) = 1

7 CChenmax(r1 Ei , R) = 1 C Merisemax(r1 Ei , R) = 1 PK is (P K1)

CChenmax(r2 E j , R) = 1 C Merisemax(r2 E j , R) = 1 UK = {(P K2), (P K3)}

CChenmax(r3 EK , R) = 1 C Merisemax(r3 EK , R) = 1

to the relation R according to the maximum cardinality con-
straints.

To complete the transformation rules, the assertions
must be created with the same criteria as that used for
binary relationships. The patterns (from 1 to 5) will be
applied for each mandatory entity participation, for each
C Merisemin(r E, R) or CChenmin(r E, R) > 1 and
C Merisemax(r E, R) or CChenmax(r E, R) �= ‘n′.

Pattern 4 CREATE ASSERTION
CChenmin(r1Ei,R)

CHECK ((CChenmin(r1Ei,R)

≤ SELECT MIN
(NUMBER_MIN)

FROM (SELECT COUNT(*)
FROM R GROUP BY
PK2,PK3)

AS NUMBER_MIN));
Pattern 5 CREATE ASSERTION

CChenmax(r1Ei,R)
CHECK ((CChenmax(r1Ei,R)
≤ SELECT MAX
(NUMBER_MAX)

FROM (SELECT SELECT
COUNT(*) FROM R GROUP
BY PK2,PK3)

AS NUMBER_MAX));

The handling of the rules for this approach can be clarified
through an example and should explain all steps necessary

EmployeeEmployee Projectworks
(1,n)(2,n)

TechniqueTechnique

(1,n)

(2,2) (1,n)

(1,2)

cod_E cod_P

cod_T

Employee(cod_E ,…)

Project (cod_P,…)

Technique(cod_T ,…)

Work(cod_T, cod_P, cod_E)

Fig. 11 An example of ternary relationship transformation

for the preservation of ternary relationship semantics. This 
example has already been explained in Sect. 3 on cardinal-
ity constraints; however, here the focus is on the application 
of rules in accordance with Table 3 and the aforementioned 
assertions.

Figure 11 shows the canonical transformation associated 
with the ternary relationship works. Case 0 is applied since 
all maximum cardinality constraints are greater than it (see 
Table 3). The primary key is (cod_T, cod_P, 
cod_E) i n t h e  Work relationship. In a following step, 
assertions are added depending upon cardinality constraints. 
The Technique entity has mandatory participation in works 
and to preserve this constraint, the following assertion must 
be added (i.e., Pattern 1 is applied):

CREATEASSERTIONC(Technique,R)_Mandatory

CHECK (NOTEXITS (SELECTcod_TFROM

TechniqueWHEREcod_TNOTIN

(SELECTcod_TFROMWork)));

To check the minimum Merise cardinality in the Employee
relation, Pattern 2 is applied ensuring that the cod_E value
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appears in the Work relation at least twice:

CREATEASSERTIONCMerisemin(Employee,R)

CHECK ((2 ≤ SELECTMIN (NUMBER_MIN)FROM

(SELECTCOUNT(∗)FROMWorkGROUPBY

cod_E)ASNUMBER_MIN));
There are two Chen cardinalities that limit the population
in the Work relation and they must be checked through the
application of Patterns 4 and 5:

CREATEASSERTIONCChenmin(Employee,R)

CHECK ((2 ≤ SELECTMIN (NUMBER_MIN)FROM

(SELECTCOUNT(∗)FROM

WorkGROUPBYcod_T, cod_P)

ASNUMBER_MIN));CREATEASSERTIONCChenmax

(Employee,R)CHECK ((2 ≥ SELECTMAX

(NUMBER_MAX)FROM (SELECTCOUNT(∗)FROM

WorkGROUPBYcod_T, cod_P)ASNUMBER_MAX));
These assertions are created to ensure that a project using a
particular technique must have two and only two employees
allocated to that technique. The other business rule is that a
single employee allocated to a project may use one or two
techniques. The following assertion ensures its fulfilment
(Pattern 5):

CREATEASSERTIONCChenmax(Technique,R)

CHECK((2 ≥ SELECTMAX (NUMBER_MAX)FROM

(SELECTCOUNT(∗)FROMWorkGROUPBYcod_E,

cod_P)ASNUMBER_MAX));
Following the application of the transformation rules, it may 
be concluded that the maximum cardinality constraints in 
one relationship establish the relation structure, that is, the 
relation definition. For this reason, the first step in mapping 
the relationship to relation is to assign the respective case 
according to Table 3 and then to add the assertion associated 
with constraints about the population of R.

5 A practical experience managing ternary relationships

The present proposal includes cardinality constraint defini-
tions in order to avoid confusion and ambiguities in the design
process. To do this, the proposal sets the terminology and
method for calculating cardinality constraints, thereby mak-
ing the design task easier. This section presents experimental
evidence to evaluate particular aspects of the proposal includ-
ing (a) the correct detection of specifications, (b) confidence
in use and (c) accuracy in the representation of specifica-
tions. Experiments were carried out with designers who have

experience handling several different conceptual models and
using various approaches to calculate cardinality constraints.

Purpose

The aim of the experiment is to verify if the proposed
approach and notation accomplish the goal for which they
have been defined, that is, whether approach C, due to its
clearer semantics and despite its seemingly greater complex-
ity, may nevertheless allow designers to more easily detect
cardinalities through the specifications indicated in the ques-
tionnaire (designers are given the abstraction process).

The experiment is designed to compare both the interpre-
tation and representation of cardinality constraints according
to three different approaches or techniques: Chen, Merise and
the present proposal. The main questions posed for specific
study are

• How many specifications are well-detected for each
method? The answer to this question is attained by calcu-
lating the number of specifications from the experimental
text that participants properly detected for each method.

• Which method is easier to use? The question is analyzed
according to the participants’ level of confidence in their
answers and the correctness of the representation and
interpretation of the cardinality constraint.

Methodology

• Research Model The present study focuses on the EER
data model, since the main concern here is the represen-
tation and interpretation of cardinality constraints in ter-
nary relationships. Three methods of representation and
interpretation are presented.

• Independent variables:

◦ Data model The participant applies each of the three
methods to represent and interpret the semantics of
cardinality constraints. The experiment is focused
particularly on the cardinality constraint associated
with ternary relationships since these constraints are
ambiguous despite there being different methods
for their representation and interpretation. The three
approaches presented are labeled A, B and C which
correspond to Chen, Merise and our proposal, respec-
tively.

◦ Task factor Two main tasks are directed towards per-
formance. The first task is focused on the detection of
how the participant associates the domain specifica-
tions depending on the approach used (i.e., A, B or C)
and her/his level of confidence. The second task con-
cerns cardinality constraint representation according
to the three methods.
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• Dependent variables The first of these variables is cor-
rectness. The correctness applied to modeling will be
measured through cardinality constraints defined with
respect to ternary relationships. For each method, the par-
ticipant is scored according to the comparison between
the real solution and his or her own solution, taking into
account the number of specifications represented in the
schema, the level of confidence in the participant’s solu-
tion and the cardinality constraint representation.

Hypotheses

The hypotheses to be taken into account by the study are

• H1: There will be no significant difference between
approaches A, B and C regarding the number of spec-
ifications represented in the schema;

• H2: There will be no significant difference between
approaches A, B and C regarding the level of participant
confidence in their use;

• H3: There will be no significant difference between
approaches A, B and C regarding the modeling of car-
dinality constraints.

Strategy

Prior to the experiment, a session was held with the partici-
pating designers to explain these three different methods for 
representing and calculating cardinality constraints in ter-
nary relationships. The first two of these were approaches 
A and B, the Chen approach [16] and Merise method [50], 
respectively, that is, the most popular methods for determin-
ing cardinality constraints. The third was method C, the car-
dinality constraints technique proposed here, consisting of a 
combination of Entity participation, CChen and CMerise.

The material was conveyed in general terms, although
some examples were given to ensure a better understand-
ing of each approach. The designers were familiar with
the traditional approaches, Chen (approach A) and Merise
(approach B), but not with the terminology. The main objec-
tive for this session, therefore, was to equip the participants
with this related terminology.

The informational session took place one half hour prior
to the execution of the experiment. The 30 test participants
(see description below) were called and advised that during
the session they would be able to ask as many questions as
they pleased, while not being able to ask any at the time of
the actual experiment.

A questionnaire, divided into two main parts, was given
following the informational session (see Appendix A). The
first part consisted of six domain specifications for a ter-
nary relationship to be modeled by the cardinality constraint

Table 4 Summary of participant characteristics

Participant characteristics

Years of data modeling
experience (mean/stdev)

6.41 (2.85)

Years of design teaching
experience (mean/stdev)

4.20 (1.5)

Number of Data Models two (18)

greater than two (12)

Practical Expertise three years (20)

Every participants with Chen
approach

greater than three (10)

5 with Chen approach and 5 with
Merise approach

methods. The second part had three subsections, one for
each method. For each method, the designer had to respond
whether one specification could be represented and how con-
fident he/she was in the correctness of his/her answer, as well
as to give the cardinality constraints representation.

Experimental results

Subject demographics Subjects consisted of 30 expert design-
ers, all of whom being teachers of topics related to data-
base design. The design teachers also have experiences in 
the industry as database consultants. All of them are familiar 
with and use more than two conceptual models. The par-
ticipants were chosen among 33- to 45-year-old graduates 
of the Carlos III University of Madrid. Thus, it could be 
established that each subject possessed sufficient training in 
ER modeling and that their design experience included the 
use of other models (e.g., UML or the Merise data model). 
A summary of relevant participant characteristics is shown 
in Table 4 below.

The results for determining whether differences were to
be found between methods are presented here below.

Number of specifications Hypothesis 1 deals with the num-
ber of specifications represented for each method. This means
that for each method and specification, the participant may
indicate, using numbers from 1 to 6, his/her level of con-
fidence that the specification has been well detected with
the method or, alternatively, by abstaining from the use of
numeric indicators in order to indicate the inapplicability of
the method.

Due to the nature of the sample, Fisher’s least significant 
difference test (a simple multiple range test) has been used. 
The mean test statistically proves the difference between 
samples (Table 5). Samples are denoted by N_esp_A, B or C 
which represents the number of well-detected specifications 
for each method as judged by study participants. Samples
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Table 5 Screen shot of multiple range tests for the number of the spec-
ifications captured for each method

Multiple range tests

Method: 95.0 percent LSD

Mean Homogeneous
groups

N_esp_A 2.83333 X
N_esp_A 3.66667 XX
N_esp_B 5.16667 X

Contrast Difference +/− Limits

N_esp_A–N_esp_B 0.833333 1.71107

N_esp_A–N_esp_C −1.5 1.71107

N_esp_B–N_esp_C ∗ − 2.33333 1.71107

The statistical tool uses the European convention of a comma for the
decimal point
* Statistically significant difference.
This table applies a multiple comparison procedure to determine which
means are significantly different from which others. The bottom half of
the output shows the estimated difference between each pair of means.
An asterisk has been placed next to 1 pair, indicating that this pair shows
a statistically significant difference at the 95.0% confidence level. At
the top of the page, 2 homogenous groups are identified using columns
of X’s. Within each column, the levels containing X’s form a group of
means within which there are no statistically significant differences.
The method currently being used to discriminate among the means is
Fisher’s least significant difference (LSD) procedure. With this method,
there is a 5.0% risk of calling each pair of means significantly different
when the actual difference equals 0

were run through a normal distribution test prior to the appli-
cation of the Fisher LSD test.

According to the data shown in Table 5, the average con-
trast between these samples indicates that method B shows 
a statistically significant difference, at the 95% confidence 
level, with method C. The number of specification differ-
ences seen between approach B and C is due to the fact that 
approach B is the lowest in the representation of specifica-
tions. Explained in another way, there are six specifications 
and with approach B designers represented 2.8 of them, on 
average, taking into account those which both can and can-
not be applied with this method (i.e., of the six specifications, 
approach B can be applied to only three, leaving three oth-
ers which should not be indicated with numeric evaluations 
by the participants). Thus, of the six specifications, approach 
B is only applied well in 2.8. This stands in contrast with 
approach C for which participants detected 5.1.

In general, the rest of the average comparisons are not 
statistically significant. It can be concluded that while study 
participants had no previous familiarity with approach C (i.e., 
it had only just been explained to participants during the train-
ing session), they were nevertheless able to correctly apply 
it. In other words, the participants were able to distinguish 
between which specifications were and were not able to be 
represented with each method (Table 5).

Table 6 Average in self-confidence level in answers for each approach

Method Approach Average

A Chen 3.91

B Merise 2.94

C Proposal 4.18

Table 7 ANOVA table to study the differences in self-confidence level
between methods

ANOVA Table

Analysis of variance

Source Sum of squares Df Mean square F-ratio P-value

Between groups 5.07003 2 2.53502 2.05 0.1633

Within groups 18.5487 15 1.23658

Total (Corr.) 23.6188 17

The statistical tool uses the European convention of a comma for the
decimal point
The ANOVA table decomposes the variance of the data into two com-
ponents: a between-group component and a within-group component.
The F-ratio, which in this case equals 2.05002, is a ratio of the between-
group estimate to the within-group estimate. Since the P-value of the
F-test is greater than or equal to 0.05, there is not a statistically sig-
nificant difference between the means of the 3 variables at the 95.0%
confidence level

Level of confidence Participant confidence has been mea-
sured here using a Likert scale with six possible levels. When
a participant detected and represented a cardinality constraint
associated with one text specification, she/he was required
to measure how confident she/he was in this assessment.
A participant’s level of confidence could be expressed with
a number value between one and six.

More specifically, the participant was asked to read a spec-
ification or requirement and then indicate with a number
between 1 and 6 in the appropriate space of the questionnaire
the degree to which she/he was confident that the specifica-
tion could be represented by the indicated approach. In this
case, all of the values indicated in the questionnaire were
taken into account regardless of whether the specification
was properly represented by each method. The objective of
these confidence level measurements was to determine the
method with which the participants were most familiar.

The average for confidence l evels f or e ach s ample is 
shown in Table 6. According to the results, method B presents 
a lowest confident level than the others methods, but the 
ANOVA test (Table 7) indicated that there is no 
statistically significant difference between groups.

These results suggest to the authors that designers either
do not understand this approach or have some doubts in its
use. Contrary to what the authors had expected, approach
C in the representation of cardinality constraints was seen
by study participants as similar to the other approaches with
which they were more familiar. This reinforces the hypothesis
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Table 8 Comparison of self-confidence for each specification

1 2 3 4 5 6

Method A
Correct solution 6 0 0 6 0 6

Average of self-confidences 4 3 0 6 4 5

Method B

Correct solution 0 6 6 0 6 0

Average of self-confidences 3 2 2 3 3 4

Method C

Correct solution 6 6 6 6 6 6

Average of self-confidences 5 6 4 5 6 5

Table 9 Real solution with experimental solution comparison

Comparison of means Confidence interval

Real solution-A −3.12035 to 0.78702

Real solution-B −3.89327 to 4.22661

Real solution-C −0.0433447 to 0.422661

advanced by the authors here that some design confusion is
caused by the fact that syntax and semantics are not set in
the elements of the conceptual model.

The main conclusion to be drawn from the experiment
is that the designers felt comfortable with the method pro-
posed and learned it easily, given that their level of confidence
in approach C was higher than those reported for the other
approaches with which they had much greater familiarity.

Correctness Correctness is measured as a comparison of 
the real solution and the solution proposed by designers 
according to the definition given in Moody and Shanks [42], 
first taking into account whether, for each approach, the par-
ticipants correctly carried out the abstraction process (what 
specifications can be represented with each method) and, sec-
ond, whether these were represented well.

In the table presented in Table 8, the first row shows the 
real solution for each specification, w hile t he s econd row 
displays the average participant confidence score taken for 
each specification. Correctness is measured as the difference 
between the first and second rows. A score of zero indicates 
that the corresponding participant solution is correct, while 
negative values indicate that some participants believed that 
a specification could be represented by an incorrect method. 
As can be observed, in approaches A and B, some of the par-
ticipants appear to have committed errors while attempting 
to represent certain specifications. For approach A, this was 
the case with specifications 2 and 5, while for approach B, 
this was the case with specifications 1, 4 and 6.

In accordance with the confidence intervals represented 
in Table 9, no empirical evidence exists that one particular 
approach is better represented than another insofar as 0 is 
also included in these intervals. Nevertheless, observing the

45%

22%

33%
A

B

C

Fig. 12 The percentage of the correctly represented constraints

wide varieties of values for approach B, it is clear that this
approach is the most variable among the three.

With respect to the representation of cardinalities in ter-
nary relationships and as shown in Fig. 12, for each of the 
three approaches, the percentage of correctly represented 
constraints was calculated following the assignment of the 
number 1 to all correct representations and 0 to all incorrect 
representations.

Analysis and discussion

The experiment was carried out with 30 participants, all of
whom being either database teachers or database consultants.
Despite this common professional background, however, it
was not possible to fully eliminate bias from the study due
to the different experiences and abilities of each participant.
This fact notwithstanding, certain conclusions may still nev-
ertheless be drawn.

Regarding specifications, method C is that which detects
the greatest number. In general, these results ought to be
taken with a certain degree of caution since the participants
can intuit the general nature of the experiment. As a result,
they attempt to represent all of the specifications presented
in the text, independently of the method. In other words, the
participants do not know to reject the specifications which
cannot be detected with methods A or B.

While always taking into account the possibility of subject 
bias as discussed in the previous paragraph, in terms of par-
ticipant confidence levels, results show method C to be sim-
ilar to method A, and method B to have obtained the worst 
results of the three. With regard to the difference in confi-
dence observed for the methods A and B, the authors believe 
this to be attributable to the participants’ greater familiarity 
and experience with the former. As for the proposed method 
C, the recorded confidence level was quite high, particularly 
when considering participants’ complete lack of previous 
experience with the method. These results are likely due to 
the fact that method C clearly establishes what ‘relationship’ 
or ‘association’ mean, allowing it to facilitate the detection of 
constraints. As discussed in Sect. 2 of the present study, these 
characteristics of the proposed approach are not necessarily 
present in the other approaches.

Finally, method C presents a level of correctness slightly
lower than that of method A; however, the representation of
cardinalities is more correct with the latter.
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Despite the preliminary nature of the study, a number of
conclusions may nevertheless be drawn regarding the pro-
posed method and in comparison with the other methods
observed.

These results make clear that the abstraction process
to detect which specification could be collected with each
approach was not properly carried out by participants. While
the present study did not go to lengths to study the causes of
this fact, it is possible that lack of experience in the detection
and use of ternary relationships could at least partially be
blamed.

It is also clear that method B was not well understood by
participants, given its significantly lower participant confi-
dence score. Method C, however, was correctly applied and
enjoyed a high level of participant confidence. Furthermore,
method C appears to behave in a manner quite similar to that
of method A.

The results show that the solution arrived at by approach
C is the closest to the real solution while the solution arrived
at by approach B is the farthest.

6 Conclusions and future work

Conceptual models are used in the first phases of data-
base development in which requirement specifications are
acquired and then represented in a conceptual schema which
is simple and easily understood by domain experts. When
these initial phases are finished, the conceptual schema is
usually transformed to a relational schema to be implemented
in a relational database management system.

The most common properties of conceptual models are 
that they should be easy to learn, intuitive, independent and 
powerful enough to represent any domain. However, the 
authors have noted some associated problems [19]. Some-
times, for instance, conceptual models mistake simplicity for 
a limitation of expressivity. For example, binary models are 
simple, but may not represent some domain specifications. 
Another problem is that of how to handle conceptual elements 
when these are not clearly defined. This generates ambiguity 
for the user and when the element is the relationship and its 
cardinality constraints, problems worsen.

To avoid ambiguity, this proposal formally defines the syn-
tax and semantics of relationships and cardinality constraints. 
Relationship definitions and cardinality constraints in the 
most often used conceptual models have been studied. Types 
of cardinality constraints provide integration and comparison 
between schemata of different conceptual models [35]. This 
study provides results on the cardinality constraints in ter-
nary relationships. Since ternary relationships do not reflect 
all their properties through cardinality constraints, it is nec-
essary to add more expressivity to the cardinality constraints, 
as well as to clarify the concept.

The method to manage the ternary relationship semantics
separates cardinalities into two types: first, the participation
concept is considered to be a concept associated with
instances of the entity and second, instance combinations in
the relationship. The entity cardinality defines the optional or
mandatory participation of entity instances associated with
the relationship. Furthermore, cardinality constraints associ-
ated with the relationship are defined to reflect how combined
components belong to relationship instances. Cardinalities
are denoted CMerise or CChen depending on whether one or
n −1 components are set to calculate the number of different
combinations in relationship instances.

A set of structural validation rules has also been pre-
sented to help in the detection of mistakes made by designers
when defining cardinality constraints in ternary relationships.
Finally, a preliminary empirical study has demonstrated that
the proposed approach, in comparison with other approaches,
facilitates the detection and representation of ternary rela-
tionship.

For use in the logical phase in the database develop-
ment methodology, an exhaustive set of rules has been pre-
sented to transform the cardinality constraints proposed in 
this work. Cardinality constraints offer a dynamic capabil-
ity that involves the definition of ASSERTIONS to avoid 
semantics when an updating operation occurs in the data-
base. Integrity constraints used in our proposal are based on 
SQL 2003 [23].

Some ongoing work in the field f ocuses o n t he imple-
mentation of these assertions through event-condition-action 
(ECA) rules. In Al-Jumaily et al. [2] a set of triggers asso-
ciated with cardinality constraints is proposed, as well as 
an execution model that ensures that termination avoids the 
cycles of the execution. The Rational Rose CASE [47] was  
the tool selected for the incorporation of a trigger genera-
tor [4,5] which creates a complete relational script without 
the loss of semantics. Future work will focus on the effi-
ciency of the object-relational database [3] with incorporated 
triggers.

Other tasks are aimed at helping designers by means of 
tools incorporated in a CASE tool. This is an important 
topic given that the abstraction process is not an easy task. 
Semantics validations in binary relationship are presented 
in Martínez et al. [40]. A natural language dialog system is 
developed to provide designers with an easy interface which 
will provide cardinality constraints according to this con-
versation. A further objective is an extension of this work 
to ternary relationships. The incorporation of an Intelligent 
Tutor to teach database design has been explained previously 
in Castro et al. [14] and Iglesias et al. [36]. This Tutor will 
apply the practical method presented in this work to facilitate 
the cardinality constraints definition, as well as its represen-
tation in a conceptual schema. As part of this work, another 
recent study [19] has been carried out. This study presents
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experimental results to apply the present method to database
design students in a Computer Science bachelor’s degree pro-
gram using a web platform.
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Appendix A: Experimental materials

Participants in the experiment completed the following questionnaire:

Domain Specifications 

1. Company employees who work on projects use at least two skills, but there are 

employees who work on projects that do not require skills. 

2. The company forbids employees from using more than three skills in their 

projects.  

3. The company can only have 30 projects requiring skilled employees.

4. One employee has a skill that is uniquely associated with one project.

5. Every skill is related to one employee in one project. 

6. One employee can use the same skill in different projects.

Model of the ternary relationship and confidence level for 

each method 

A Directions: Indicate in the square of the specification whether approach A can 

be represented, and the confidence level for your answer (1-DK/NA, 2-None, 3- 

Low, 4-Middle, 5- High, 6- Complete). Represent specifications by means of 

cardinality constraints in the following schema.   

B Directions: Indicate in the square of the specification whether approach B can 

be represented and the confidence for your answer (1-DK/NA, 2-None, 3- Low, 

4-Middle, 5- High, 6- Complete). Represent specifications by means of 

cardinality constraints in the following schema.   

C Directions: Indicate in the square of the specification whether approach C can 

be represented and the confidence level for your answer (1-DK/NA, 2-None, 3- 

Low, 4-Middle, 5- High, 6- Complete). Represent specifications by means of 

cardinality constraints in the following schema.   

Employee Projectworks

Skill

1 2 3

4 5 6

Employee Projectworks

Skill

1 2 3

4 5 6

Employee Projectworks

Skill

1 2 3

4 5 6
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