ANSI/NETA MTS-2015

STANDARD FOR

MAINTENANCE TESTING SPECIFICATIONS

FOR ELECTRICAL POWER EQUIPMENT & SYSTEMS

ANSI/NETA MTS-2015

AMERICAN NATIONAL STANDARD

STANDARD FOR MAINTENANCE TESTING SPECIFICATIONS for Electrical Power Equipment and Systems

Secretariat **NETA (InterNational Electrical Testing Association)**

Approved by American National Standards Institute

– This page intentionally left blank –

American National Standard

Approval of an American National Standard requires verification by ANSI that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of any American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the secretariat or sponsor whose name appears on the title page of this standard.

Caution Notice: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.

Published by InterNational Electrical Testing Association 3050 Old Centre Ave., Suite 102 Portage, MI 49024 269.488.6382 • FAX 269.488.6383 www.netaworld.org neta@netaworld.org Jayne Tanz, CMP - Executive Director

Copyright© 2015 InterNational Electrical Testing Association All rights reserved Printed in the United States of America

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

Copyright Information and Alteration of Content

2015 ANSI/NETA MTS *Standard for Maintenance Testing Specifications for Electrical Power Equipment and Systems* is protected under the copyright laws of the United States, and all rights are reserved. Further, the ANSI/NETA MTS may not be copied, modified, sold, or used except in accordance with such laws and as follows:

Purchasers may reproduce and use all or a portion of the 2015 ANSI/NETA MTS *Standard for Maintenance Testing Specifications for Electrical Power Equipment and Systems* provided 2015 ANSI/NETA MTS *Standard for Maintenance Testing Specifications for Electrical Power Equipment and Systems* is clearly identified in writing as the source of all such uses or reproductions.

2015 ANSI/NETA MTS *Standard for Maintenance Testing Specifications for Electrical Power Equipment and Systems* may be reproduced and used in whole or in part for the purpose of creating project specifications, basis of design documentation, maintenance plans, or other similar uses that purport to require compliance with the contents of this document.

The following sections of the 2015 ANSI/NETA MTS *Standard for Maintenance Testing Specifications for Electrical Power Equipment and Systems* must be incorporated by reference as part of any subsection:

- 3. Qualifications
- 4. Division of Responsibility
- 5. General

The user of this document is required to include the above sections with any other section(s) reproduced from this document.

© Copyright 2015 InterNational Electrical Testing Association 3050 Old Centre Ave., Suite 102 Portage, MI 49024 Voice: 888.300.6382 Facsimile: 269.488.6383 E-mail: neta@netaworld.org • Web: www.netaworld.org

Standards Review Council

The following persons were members of the NETA Standards Review Council which approved this document.

Timothy J. Cotter Lorne Gara Roderic L. Hageman David Huffman Ralph Patterson Alan D. Peterson Jayne Tanz Ron Widup

Maintenance Testing Specifications Ballot Pool Members

The following persons were members of the Ballot Pool which balloted on this document for submission to the NETA Standards Review Council.

Ken Bassett Tom Bishop Scott Blizard Brian Borst Michael Bowers John Cadick Michel Castonguay Tim Crnko David Geary Paul Hartman John Hauck Kerry Heid Andrew Kobler Korey Kruse Ben Lanz Mark Lautenschlager Finley Ledbetter, III Jerry Parnell Lee Perry Tony Perry Mose Ramieh Randall Sagan Mark Siira Jeremy Smith Richard Sobhraj Alan Turpen Wally Vahlstrom Vicki Warren Chris Werstiuck John White Jean-Pierre Wolff

NOTICE

In no event shall the InterNational Electrical Testing Association be liable to anyone for special, collateral, incidental, or consequential damages in connection with or arising out of the use of these materials.

This document is subject to periodic review, and users are cautioned to obtain the latest edition. Comments and suggestions are invited from all users for consideration by the Association in connection with such review. Any such suggestions will be fully reviewed by the Association after giving the commenter, upon request, a reasonable opportunity to be heard.

This document should not be confused with federal, state, or municipal specifications or regulations, insurance requirements, or national safety codes. While the Association recommends reference to or use of this document by government agencies and others, use of this document is purely voluntary and not binding.

InterNational Electrical Testing Association 3050 Old Centre Ave., Suite 102 • Portage, MI 49024 Voice: 888.300.6382 Facsimile: 269.488.6383 Email: neta@netaworld.org • Web: www.netaworld.org Jayne Tanz, CMP - Executive Director

FOREWORD

(This Foreword is not part of American National Standard ANSI/NETA MTS-2015)

The InterNational Electrical Testing Association (NETA) was formed in 1972 to establish uniform testing procedures for electrical equipment and apparatus. NETA has been an Accredited Standards Developer for the American National Standards Institute since 1996. NETA's scope of standards activity is different from that of IEEE, NECA, NEMA, and UL. In matters of testing electrical equipment and systems NETA continues to reference other standards developers' documents where applicable. NETA's review and updating of presently published standards takes into account both national and international standards. NETA's standards may be used internationally as well as in the United States. NETA firmly endorses a global standardization. IEC standards as well as American consensus standards are taken into consideration by NETA's ballot pools and reviewing committees.

The first NETA *Maintenance Testing Specifications for Electrical Power Equipment and Systems* was published in 1975. Since 1989, revised editions of the *Maintenance Testing Specifications* have been published in 1993, 1997, and 2001.

In 2005, this document was approved for the first time as an American National Standard. It was published as a revised American National Standard in 2011. The 2015 *Standard for Maintenance Testing Specifications for Electrical Power Equipment and Systems* is the most current revision of this document, and was approved as a revised American National Standard on December 3, 2014.

The ANSI/NETA *Standard for Maintenance Testing Specifications for Electrical Power Equipment and Systems* was developed for use by those responsible for the continued operation of existing electrical systems and equipment to guide them in specifying and performing the necessary tests to ensure that these systems and apparatus perform satisfactorily, minimizing downtime, and maximizing life expectancy. This document aids in ensuring safe, reliable operation of existing electrical power systems and equipment. Maintenance testing can identify potential problem areas before they become major problems requiring expensive and time-consuming solutions.

PREFACE

(This Preface is not part of American National Standard ANSI/NETA MTS-2015)

It is recognized by the Association that the needs for maintenance testing of commercial, industrial, governmental, and other electrical power systems vary widely. Many criteria are used in determining what equipment is to be tested and to what extent.

To help the user better understand and navigate more efficiently through this document, we offer the following information:

Notation of Changes

Material included in this edition of the document but not part of the previous edition is marked with a black vertical line to the left of the insertion of text, deletion of text, or alteration of text.

Document Structure

The document is divided into thirteen separate and defined sections:

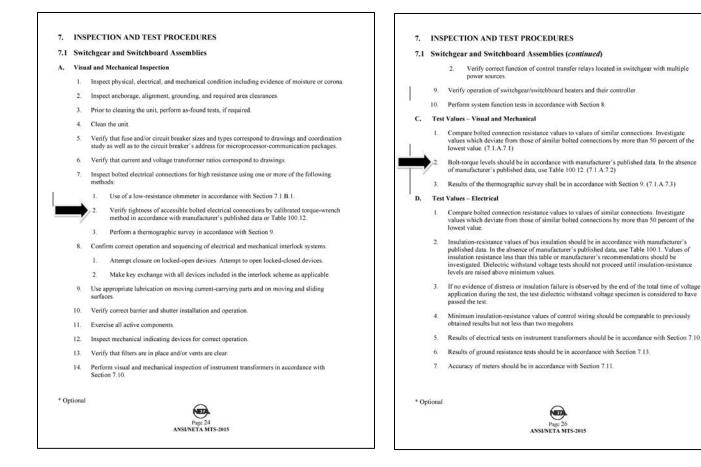
Section	Description
Section 1	General Scope
Section 2	Applicable References
Section 3	Qualifications of Testing Organization and Personnel
Section 4	Division of Responsibility
Section 5	General
Section 6	Power System Studies
Section 7	Inspection and Test Procedures
Section 8	System Function Test
Section 9	Thermographic Survey
Section 10	Electromagnetic Field Survey
Section 11	Corona Studies - RESERVED
Tables	Reference Tables
Appendices	Various Informational Documents

Section 7 Structure

Section 7 is the main body of the document with specific information on what to do relative to the inspection and maintenance testing of electrical power equipment and systems. It is not intended that this document explain how to test specific pieces of equipment or systems.

Expected Test Results

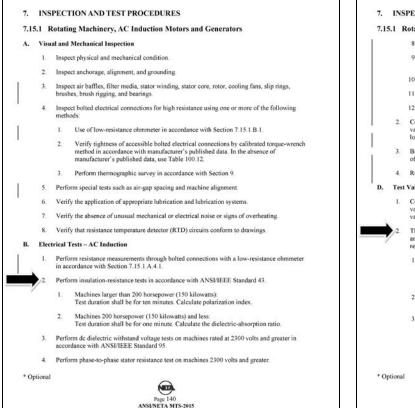
Section 7 consists of sections specific to each particular type of equipment. Within those sections there are, typically, four main bodies of information:

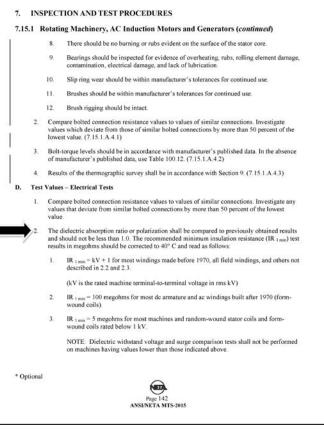

- A. Visual and Mechanical Inspection
- B. Electrical Tests
- C. Test Values Visual and Mechanical
- D. Test Values Electrical

PREFACE (continued)

Results of Visual and Mechanical Inspections

Some, but not all, visual and mechanical inspections have an associated test value or result. Those items with an expected result are referenced under Section C. Test Values – Visual and Mechanical. For example, Section 7.1 Switchgear and Switchboard Assemblies, item 7.1.A.7.2 calls for verifying tightness of connections using a calibrated torque wrench method. Under the Test Values – Visual and Mechanical Section 7.1.C.2, the expected results for that particular task are listed within Section C, with reference back to the original task description on item 7.1.A.7.2.





PREFACE (continued)

Results of Electrical Tests

Each electrical test has a corresponding expected result, and the test and the result have identical numbers. If the electrical test is item four, the expected result under the Test Values section is also item four. For example, under Section 7.15.1 Rotating Machinery, AC Induction Motors and Generators, item 7.15.1.B.2 (item 2 within the Electrical Tests section) calls for performing an insulation-resistance test in accordance with IEEE Standard 43. Under the Test Values – Electrical section, the expected results for that particular task are listed in the Test Values section under item 2.

PREFACE (continued)

Optional Tests

The purpose of these specifications is to assure that all tested electrical equipment and systems supplied by either contractor or owner are operational and within applicable standards and manufacturer's published tolerances and that equipment and systems are installed in accordance with design specifications.

Certain tests are assigned an optional classification. The following considerations are used in determining the use of the optional classification:

- 1. Does another listed test provide similar information?
- 2. How does the cost of the test compare to the cost of other tests providing similar information?
- 3. How commonplace is the test procedure? Is it new technology?

If/When Applicable

The phrases "if applicable", "when applicable", and any variation thereof do not occur in this standard. This standard assumes that if devices or pieces of equipment are not present, they will not be subject to testing or verification.

Manufacturer's Instruction Manuals

It is important to follow the recommendations contained in the manufacturer's published data. Many of the details of a complete and effective testing procedure can be obtained from this source.

Summary

The guidance of an experienced testing professional should be sought when making decisions concerning the extent of testing. It is necessary to make an informed judgment for each particular system regarding how extensive a procedure is justified. The approach taken in these specifications is to present a comprehensive series of tests applicable to most industrial and larger commercial systems. In smaller systems, some of the tests can be deleted. In other cases, a number of the tests indicated as optional should be performed.

Likewise, guidance of an experienced testing professional should also be sought when making decisions concerning the results of test data and their significance to the overall analysis of the device or system under test. Careful consideration of all aspects of test data, including manufacturer's published data and recommendations, must be included in the overall assessment of the device or system under test.

The Association encourages comment from users of this document. Please contact the NETA office or your local NETA Accredited Company.

Standards Review Council InterNational Electrical Testing Association

Timothy J. Cotter Lorne Gara Roderic L. Hageman Dave Huffman Ralph Patterson Alan D. Peterson Jayne Tanz Ron Widup

- This page intentionally left blank -

CONTENTS

1.	GENERA	L SCOPE	1
2.			2
3.		CATIONS OF TESTING PERSONNEL	11
4.	-	N OF RESPONSIBILITY	12
5.	GENERA	L	13
	5.1	Safety and Precautions	13
	5.2	Suitability of Test Equipment	13
	5.3	Test Instrument Calibration	14
	5.4	Test Report	15
6.	POWER S	SYSTEM STUDIES	16
	6.1	Short-Circuit Studies	16
	6.2	Coordination Studies	17
	6.3	Arc-Flash Hazard Analysis	19
	6.4	Load-Flow Studies	21
	6.5	Stability Studies	22
	6.6	Harmonic-Analysis Studies	23
7.	INSPECT	ION AND TEST PROCEDURES	24
	7.1	Switchgear and Switchboard Assemblies	24
	7.2.1.1	Transformers, Dry-Type, Air-Cooled, Low-Voltage, Small	28
	7.2.1.2	Transformers, Dry-Type, Air-Cooled, Large	30
	7.2.2	Transformers, Liquid-Filled	34
	7.3.1	Cables, Low-Voltage, Low-Energy – Reserved	38
	7.3.2	Cables, Low-Voltage, 600-Volt Maximum	39
	7.3.3	Cables, Medium- and High-Voltage	41
	7.4	Metal-Enclosed Busways	44
	7.5.1.1	Switches, Air, Low-Voltage	46
	7.5.1.2	Switches, Air, Medium-Voltage, Metal-Enclosed	49
	7.5.1.3	Switches, Air, Medium- and High-Voltage, Open	52
	7.5.2	Switches, Oil, Medium-Voltage	55
	7.5.3	Switches, Vacuum, Medium-Voltage	58
	7.5.4	Switches, SF ₆ , Medium-Voltage	61
	7.5.5	Switches, Cutouts	64
	7.6.1.1	Circuit Breakers, Air, Insulated-Case/Molded-Case	66
	7.6.1.2	Circuit Breakers, Air, Low-Voltage Power	69
	7.6.1.3	Circuit Breakers, Air, Medium-Voltage	73
	7.6.2	Circuit Breakers, Oil, Medium- and High-Voltage	77
	7.6.3	Circuit Breakers, Vacuum, Medium-Voltage	82
	7.6.4	Circuit Breakers, SF ₆	86
	7.7	Circuit Switchers	90
	7.8	Network Protectors, 600-Volt Class	93
	7.9.1	Protective Relays, Electromechanical and Solid-State	97
	7.9.2	Protective Relays, Microprocessor-Based	105
	7.10.1	Instrument Transformers, Current Transformers	108
	7.10.2	Instrument Transformers, Voltage Transformers	111
	7.10.3	Instrument Transformers, Coupling-Capacitor Voltage Transformers	114
	7.11.1	Metering Devices, Electromechanical and Solid-State	117

CONTENTS (continued)

7.11.2	Metering Devices, Microprocessor-Based	119
7.12.1.1	Regulating Apparatus, Voltage, Step-Voltage Regulators	121
7.12.1.2	Regulating Apparatus, Voltage, Induction Regulators	126
7.12.2	Regulating Apparatus, Current – Reserved	130
7.12.3	Regulating Apparatus, Load Tap-Changers	131
7.13	Grounding Systems	135
7.14	Ground-Fault Protection Systems, Low-Voltage	137
7.15.1	Rotating Machinery, AC Induction Motors and Generators	140
7.15.2	Rotating Machinery, Synchronous Motors and Generators	144
7.15.3	Rotating Machinery, DC Motors and Generators	151
7.16.1.1	Motor Control, Motor Starters, Low-Voltage	154
7.16.1.2	Motor Control, Motor Starters, Medium-Voltage	157
7.16.2.1	Motor Control, Motor Control Centers, Low-Voltage	161
7.16.2.2	Motor Control, Motor Control Centers, Medium-Voltage	161
7.17	Adjustable-Speed Drive Systems	162
7.18.1.1	Direct-Current Systems, Batteries, Flooded Lead-Acid	165
7.18.1.2	Direct-Current Systems, Batteries, Vented Nickel-Cadmium	167
7.18.1.3	Direct Current Systems, Batteries, Valve-Regulated Lead-Acid	170
7.18.2	Direct-Current Systems, Chargers	172
7.18.3	Direct-Current Systems, Rectifiers – Reserved	174
7.19.1	Surge Arresters, Low-Voltage Surge Protection Devices	175
7.19.2	Surge Arresters, Medium- and High-Voltage Surge Protection Devices	177
7.20.1	Capacitors and Reactors, Capacitors	179
7.20.2	Capacitors and Reactors, Capacitor Control Devices – Reserved	181
7.20.3.1	Capacitors and Reactors, Reactors (Shunt and Current-Limiting), Dry-Type	182
7.20.3.2	Capacitors and Reactors, Reactors (Shunt and Current-Limiting), Liquid-Filled	184
7.21	Outdoor Bus Structures	188
7.22.1	Emergency Systems, Engine Generator	190
7.22.2	Emergency Systems, Uninterruptible Power Systems	192
7.22.3	Emergency Systems, Automatic Transfer Switches	195
7.23	Communications – Reserved	198
7.24.1	Automatic Circuit Reclosers and Line Sectionalizers,	
	Automatic Circuit Reclosers, Oil/Vacuum	199
7.24.2	Automatic Circuit Reclosers and Line Sectionalizers	
	Automatic Line Sectionalizers, Oil	203
7.25	Fiber-Optic Cables	206
SYSTEM	FUNCTION TESTS	207
THERMO	GRAPHIC SURVEY	208
ELECTRO	DMAGNETIC FIELD SURVEY	209
CORONA	STUDIES – RESERVED	210

TABLES

8. 9. 10. 11.

100.1	Insulation Resistance Test Values, Electrical Apparatus and Systems Other Than Rotating	
	Machinery	212
100.2	Switchgear Withstand Test Voltages	
100.3	Dissipation Factor/Power Factor at 20° C; Liquid-Filled Transformers,	
	Regulators, and Reactors, Maintenance Test Values	214

CONTENTS (continued)

TABLES (Continued)

100.4	Insulating Fluid Limits	
	100.4.1 Suggested Limits for Class I Insulating Oil, Mineral Oil	215
	100.4.2 Suggested Limits for Less-Flammable Hydrocarbon Insulating Liquid	216
	100.4.3 Suggested Limits for Service-Aged Silicone Insulating Liquid	217
	100.4.4 Suggested Limits for Service-Aged Tetrachloroethylene Insulating Fluid	217
100.5	Transformer Insulation Resistance, Maintenance Testing	218
100.6	Cables, Maintenance Test Values	
	100.6.1 Medium-Voltage Cables, Maintenance Test Values, DC Test Voltages	219
	100.6.2 Field Test Voltages for Laminated Dielectric, Shielded Power Cable Systems	
	Rated 5,000 Volts and Above with High DC Voltage	220
	100.6.3 Very Low Frequency Testing Levels for Medium-Voltage Cable	
	0.1 Hz Test Voltage (rms)	221
100.7	Molded-Case Circuit Breakers, Inverse Time Trip Test	222
100.8	Instantaneous Trip Tolerances for Field Testing of Circuit Breakers	223
100.9	Instrument Transformer Dielectric Tests, Field Maintenance	224
100.10	Maximum Allowable Vibration Amplitude	225
100.11	Insulation Resistance Test Values for Rotating Machinery for One Minute at 40° C	226
100.12	Bolt-Torque Values for Electrical Connections, US Standard Fasteners	
	100.12.1 Heat-Treated Steel – Cadmium or Zinc Plated	227
	100.12.2 Silicon Bronze Fasteners, Torque (Pound-Feet)	227
	100.12.3 Aluminum Alloy Fasteners, Torque (Pound-Feet)	228
	100.12.4 Stainless Steel Fasteners, Torque (Pound-Feet)	228
100.13	SF ₆ Gas Tests	229
100.14	Insulation Resistance Conversion Factors	
	100.14.1 Insulation Resistance Conversion Factors (20° C)	230
	100.14.2 Insulation Resistance Conversion Factors (40° C)	231
100.15	High-Potential Test Voltage for Automatic Circuit Reclosers	232
100.16	High-Potential Test Voltage for Periodic Test of Line Sectionalizers	233
100.17	Metal-Enclosed Bus Dielectric Withstand Test Voltages	
100.18	Thermographic Survey, Suggested Actions Based on Temperature Rise	235
100.19	Dielectric Withstand Test Voltages for Electrical Apparatus	
	Other than Inductive Equipment	236
100.20	6 6	
	100.20.1 Rated Control Voltages and Their Ranges for Circuit Breakers	237
	100.20.2 Rated Control Voltages and Their Ranges for Circuit Breakers,	
	Solenoid-Operated Devices	239
100.21	Accuracy of IEC Class TP Current Transformers, Error Limit	240
100.22	Minimum Radii for Power Cable	241
	DICES	
APPEN		

Appendix A – Definitions	243
Appendix B – Frequency of Maintenance Tests	245
Appendix C – About the InterNational Electrical Testing Association	249
Appendix D – Form for Comments	251
Appendix E – Form for Proposals	252

- This page intentionally left blank -

1. GENERAL SCOPE

1.1 Maintenance Testing Specifications

- 1. These specifications cover the suggested field tests and inspections that are available to assess the suitability for continued service and reliability of electrical power distribution equipment and systems.
- 2. The purpose of these specifications is to assure that tested electrical equipment and systems are operational, are within applicable standards and manufacturer's tolerances, and are suitable for continued service.
- 3. The work specified in these specifications may involve hazardous voltages, materials, operations, and equipment. These specifications do not purport to address all of the safety problems associated with their use. It is the responsibility of the user to review all applicable regulatory limitations prior to the use of these specifications.

