References

Abarbanel, H. D. I. and D. D. Holm [1987] Nonlinear stability analysis of inviscid flows in three dimensions: incompressible fluids and barotropic fluids. Phys. Fluids 30, 3369-3382.
Abarbanel, H. D. I., D. D. Holm, J. E. Marsden, and T. S. Ratiu [1986] Nonlinear stability analysis of stratified fluid equilibria. Phil. Trans. Roy. Soc. London A 318, 349-409; also Richardson number criterion for the nonlinear stability of threedimensional stratified flow. Phys. Rev. Lett. 52 [1984], 2552-2555.
Abraham, R. and J. E. Marsden [1978] Foundations of Mechanics. Second Edition, Addison-Wesley.
Abraham, R., J. E. Marsden, and T. S. Ratiu [1988] Manifolds, Tensor Analysis, and Applications. Second Edition, Applied Mathematical Sciences 75, Springer-Verlag.
Adams, J. F. [1969] Lectures on Lie groups. Benjamin-Cummings, Reading, Mass.
Adams, J. F. [1996] Lectures on Exceptional Lie groups. University of Chicago Press.
Adams, M. R., J. Harnad, and E. Previato [1988] Isospectral Hamiltonian flows in finite and infinite dimensions I. Generalized Moser systems and moment maps into loop algebras. Comm. Math. Phys. 117, 451-500.

Adams, M. R., T. S. Ratiu, and R. Schmid [1986a] A Lie group structure for pseudodifferential operators. Math. Ann. 273, 529-551.
Adams, M. R., T. S. Ratiu, and R. Schmid [1986b] A Lie group structure for Fourier integral operators. Math. Ann. 276, 19-41.
Adler, M. and P. van Moerbeke [1980a] Completely integrable systems, Euclidean Lie algebras and curves. Adv. in Math. 38, 267-317.
Adler, M. and P. van Moerbeke [1980b] Linearization of Hamiltonian systems, Jacobi varieties and representation theory. Adv. in Math. 38, 318-379.
Aeyels, D. and M. Szafranski [1988] Comments on the stabilizability of the angular velocity of a rigid body. Systems Control Lett. 10, 35-39.

Aharonov, Y. and J. Anandan [1987] Phase change during acyclic quantum evolution. Phys. Rev. Lett. 58, 1593-1596.
Alber, M. and J. E. Marsden [1992] On geometric phases for soliton equations. Comm. Math. Phys. 149, 217-240.
Alber, M. S., R. Camassa, D. D. Holm, and J. E. Marsden [1994] The geometry of peaked solitons and billiard solutions of a class of integrable PDEs. Lett. Math. Phys. 32, 137-151.
Alber, M. S., R. Camassa, D. D. Holm, and J. E. Marsden [1995] On the link between umbilic geodesics and soliton solutions of nonlinear PDEs. Proc. Roy. Soc. 450, 677-692.
Alber, M. S., G. G. Luther, and J. E. Marsden [1997a] Energy Dependent Schrödinger Operators and Complex Hamiltonian Systems on Riemann Surfaces. Nonlinearity 10, 223-242.
Alber, M. S., G. G. Luther, and J. E. Marsden [1997b] Complex billiard Hamiltonian systems and nonlinear waves, in: A.S. Fokas and I.M. Gelfand, eds., Algebraic Aspects of Integrable Systems: In Memory of Irene Dorfman, Progress in Nonlinear Differential Equations 26, Birkhäuser, 1-15.
Alber, M. S., G. G. Luther, J. E. Marsden, and J. W. Robbins [1998] Geometric phases, reduction and Lie-Poisson structure for the resonant three-wave interaction. Physica D 123, 271-290.
Altmann, S. L. [1986] Rotations, Quaternions, and Double Groups. Oxford University Press.
Anandan, J. [1988] Geometric angles in quantum and classical physics. Phys. Lett. A 129, 201-207.
Arens, R. [1970] A quantum dynamical, relativistically invariant rigid-body system. Trans. Amer. Math. Soc. 147, 153-201.
Armero, F. and J. C. Simo [1996a] Long-Term Dissipativity of Time-Stepping Algorithms for an Abstract Evolution Equation with Applications to the Incompressible MHD and Navier-Stokes Equations. Comp. Meth. Appl. Mech. Eng. 131, 41-90.
Armero, F. and J. C. Simo [1996b] Formulation of a new class of fraction-step methods for the incompressible MHD equations that retains the long-term dissipativity of the continuum dynamical system. Fields Institute Comm. 10, 1-23.
Arms, J. M. [1981] The structure of the solution set for the Yang-Mills equations. Math. Proc. Camb. Philos. Soc. 90, 361-372.
Arms, J. M., R. H. Cushman, and M. Gotay [1991] A universal reduction procedure for Hamiltonian group actions. The Geometry of Hamiltonian systems, T. Ratiu, ed., MSRI Series 22, Springer-Verlag, 33-52.
Arms, J. M., A. Fischer, and J. E. Marsden [1975] Une approche symplectique pour des théorèmes de décomposition en géométrie ou relativité générale. C. R. Acad. Sci. Paris 281, 517-520.
Arms, J. M., J. E. Marsden, and V. Moncrief [1981] Symmetry and bifurcations of momentum mappings. Comm. Math. Phys. 78, 455-478.
Arms, J. M., J. E. Marsden, and V. Moncrief [1982] The structure of the space solutions of Einstein's equations: II Several Killings fields and the Einstein-Yang-Mills equations. Ann. of Phys. 144, 81-106.
Arnold, V. I. [1964] Instability of dynamical systems with several degrees of freedom. Dokl. Akad. Nauk SSSR 156, 9-12.
Arnold, V. I. [1965a] Sur une propriété topologique des applications globalement canoniques de la mécanique classique. C.R. Acad. Sci. Paris 26, 3719-3722.

Arnold, V. I. [1965b] Conditions for nonlinear stability of the stationary plane curvilinear flows of an ideal fluid. Dokl. Mat. Nauk SSSR 162, 773-777.
Arnold, V. I. [1965c] Variational principle for three-dimensional steady-state flows of an ideal fluid. J. Appl. Math. Mech. 29, 1002-1008.
Arnold, V. I. [1966a] Sur la géometrie differentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluids parfaits. Ann. Inst. Fourier, Grenoble 16, 319-361.
Arnold, V. I. [1966b] On an a priori estimate in the theory of hydrodynamical stability. Izv. Vyssh. Uchebn. Zaved. Mat. Nauk 54, 3-5; English Translation: Amer. Math. Soc. Transl. 79 [1969], 267-269.
Arnold, V. I. [1966c] Sur un principe variationnel pour les découlements stationaires des liquides parfaits et ses applications aux problèmes de stabilité non linéaires. J. Mécanique 5, 29-43.
Arnold, V. I. [1967] Characteristic class entering in conditions of quantization. Funct. Anal. Appl. 1, 1-13.
Arnold, V. I. [1968] Singularities of differential mappings. Russian Math. Surveys 23, 1-43.
Arnold, V. I. [1969] Hamiltonian character of the Euler equations of the dynamics of solids and of an ideal fluid. Uspekhi Mat. Nauk 24, 225-226.
Arnold, V. I. [1972] Note on the behavior of flows of a three dimensional ideal fluid under a small perturbation of the initial velocity field. Appl. Math. Mech. 36, 255-262.
Arnold, V. I. [1984] Catastrophe Theory. Springer-Verlag.
Arnold, V. I. [1988] Dynamical Systems III. Encyclopedia of Mathematics 3, SpringerVerlag.
Arnold, V. I. [1989] Mathematical Methods of Classical Mechanics. Second Edition, Graduate Texts in Mathematics 60, Springer-Verlag.
Arnold, V. I. and B. Khesin [1992] Topological methods in hydrodynamics. Ann. Rev. Fluid Mech. 24, 145-166.
Arnold, V. I. and B. Khesin [1998] Topological Methods in Hydrodynamics. Appl. Math. Sciences 125, Springer-Verlag.
Arnold, V. I., V. V. Kozlov, and A. I. Neishtadt [1988] Mathematical aspects of classical and celestial mechanics, in: Dynamical Systems III, V.I. Arnold, ed. SpringerVerlag.
Arnold, V. I. and S. P. Novikov [1994] Dynamical systems VII, Encyclopedia of Math. Sci. 16, Springer-Verlag.
Ashbaugh, M. S., C. C. Chicone, and R. H. Cushman [1990] The twisting tennis racket. Dyn. Diff. Eqns. 3, 67-85.
Atiyah, M. [1982] Convexity and commuting Hamiltonians. Bull. London Math. Soc. 14, 1-15.
Atiyah, M. [1983] Angular momentum, convex polyhedra and algebraic geometry. Proc. Edinburgh Math. Soc. 26, 121-138.
Atiyah, M. and R. Bott [1984] The moment map and equivariant cohomology. Topology 23, 1-28.
Audin, M. [1991] The Topology of Torus Actions on Symplectic Manifolds. Progress in Math 93, Birkhäuser.
Austin, M. and P. S. Krishnaprasad [1993] Almost Poisson Integration of Rigid-Body Systems. J. Comp. Phys. 106.

Baider, A., R. C. Churchill, and D. L. Rod [1990] Monodromy and nonintegrability in complex Hamiltonian systems. J. Dyn. Diff. Eqns. 2, 451-481.
Baillieul, J. [1987] Equilibrium mechanics of rotating systems. Proc. CDC 26, 14291434.

Baillieul, J. and M. Levi [1987] Rotational elastic dynamics. Physica D 27, 43-62.
Baillieul, J. and M. Levi [1991] Constrained relative motions in rotational mechanics. Arch. Rat. Mech. Anal. 115, 101-135.
Ball, J. M. and J. E. Marsden [1984] Quasiconvexity at the boundary, positivity of the second variation and elastic stability. Arch. Rat. Mech. Anal. 86, 251-277.
Bambusi, D. [1999], On the Darboux theorem for weak symplectic manifolds, Proc. Amer. Math. Soc. 127, 3383-3391.
Bao, D., J. E. Marsden, and R. Walton [1984] The Hamiltonian structure of general relativistic perfect fluids. Comm. Math. Phys. 99, 319-345.
Bao, D. and V. P. Nair [1985] A note on the covariant anomaly as an equivariant momentum mapping. Comm. Math. Phys. 101, 437-448.
Bates, L. and R. Cushman [1997] Global Aspects of Classical Integrable Systems, Birkhäuser, Boston.
Bates, L. and E. Lerman [1997] Proper group actions and symplectic stratified spaces. Pacific J. Math. 181, 201-229.
Bates, L. and J. Sniatycki [1993] Nonholonomic reduction. Reports on Math. Phys. 32, 99-115.
Bates, S. and A. Weinstein [1997] Lectures on the Geometry of Quantization, CPAMUCB, Am. Math. Soc.
Batt, J. and G. Rein [1993] A rigorous stability result for the Vlasov-Poisson system in three dimensions. Ann. Mat. Pura Appl. 164, 133-154.
Benjamin, T. B. [1972] The stability of solitary waves. Proc. Roy. Soc. London 328A, 153-183.
Benjamin, T. B. [1984] Impulse, flow force and variational principles. IMA J. Appl. Math. 32, 3-68.
Benjamin, T. B. and P. J. Olver [1982] Hamiltonian structure, symmetrics and conservation laws for water waves. J. Fluid Mech. 125, 137-185.
Berezin, F. A. [1967] Some remarks about the associated envelope of a Lie algebra. Funct. Anal. Appl. 1, 91-102.
Bernstein, B. [1958] Waves in a plasma in a magnetic field. Phys. Rev. 109, 10-21.
Berry, M. [1984] Quantal phase factors accompanying adiabatic changes. Proc. Roy. Soc. London A 392, 45-57.
Berry, M. [1985] Classical adiabatic angles and quantal adiabatic phase. J. Phys. A. Math. Gen. 18, 15-27.
Berry, M. [1990] Anticipations of the geometric phase. Physics Today, December, 1990, 34-40.
Berry, M. and J. Hannay [1988] Classical non-adiabatic angles. J. Phys. A. Math. Gen. 21, 325-333.
Besse, A. L. [1987] Einstein Manifolds. Springer-Verlag.
Bhaskara, K. H. and K. Viswanath [1988] Poisson Algebras and Poisson Manifolds. Longman (UK) and Wiley (US).
Bialynicki-Birula, I., J. C. Hubbard, and L. A. Turski [1984] Gauge-independent canonical formulation of relativistic plasma theory. Physica A 128, 509-519.

Birnir, B. [1986] Chaotic perturbations of KdV. Physica D 19, 238-254.
Birnir, B. and R. Grauer [1994] An explicit description of the global attractor of the damped and driven sine-Gordon equation. Comm. Math. Phys. 162, 539-590.
Bloch, A. M., R. W. Brockett, and T. S. Ratiu [1990] A new formulation of the generalized Toda lattice equations and their fixed point analysis via the momentum map. Bull. Amer. Math. Soc. 23, 477-485.
Bloch, A. M., R. W. Brockett, and T. S. Ratiu [1992] Completely integrable gradient flows. Comm. Math. Phys. 147, 57-74.
Bloch, A. M., H. Flaschka, and T. S. Ratiu [1990] A convexity theorem for isospectral manifolds of Jacobi matrices in a compact Lie algebra. Duke Math. J. 61, 41-65.
Bloch, A. M., H. Flaschka, and T. S. Ratiu [1993] A Schur-Horn-Kostant convexity theorem for the diffeomorphism group of the annulus. Inv. Math. 113, 511-529.
Bloch, A. M., P. S. Krishnaprasad, J. E. Marsden, and R. Murray [1996] Nonholonomic mechanical systems with symmetry. Arch. Rat. Mech. An. 136, 21-99.
Bloch, A. M., P. S. Krishnaprasad, J. E. Marsden, and T. S. Ratiu [1991] Asymptotic stability, instability, and stabilization of relative equilibria. Proc. ACC., Boston IEEE, 1120-1125.
Bloch, A. M., P. S. Krishnaprasad, J. E. Marsden, and T. S. Ratiu [1994] Dissipation Induced Instabilities. Ann. Inst. H. Poincaré, Analyse Nonlinéaire 11, 37-90.
Bloch, A. M., P. S. Krishnaprasad, J. E. Marsden, and T. S. Ratiu [1996] The EulerPoincaré equations and double bracket dissipation. Comm. Math. Phys. 175, 1-42.
Bloch, A. M., P. S. Krishnaprasad, J. E. Marsden, and G. Sánchez de Alvarez [1992] Stabilization of rigid-body dynamics by internal and external torques. Automatica 28, 745-756.
Bloch, A. M., N. Leonard, and J. E. Marsden [1997] Stabilization of Mechanical Systems Using Controlled Lagrangians. Proc CDC 36, 2356-2361.
Bloch, A. M., N. Leonard, and J. E. Marsden [1998] Matching and Stabilization by the Method of Controlled Lagrangians. Proc CDC 37, 1446-1451.
Bloch, A. M. and J. E. Marsden [1989] Controlling homoclinic orbits. Theoretical and Computational Fluid Mechanics 1, 179-190.
Bloch, A. M. and J. E. Marsden [1990] Stabilization of rigid-body dynamics by the energy-Casimir method. Systems Control Lett. 14, 341-346.
Bobenko, A. I., A. G. Reyman, and M. A. Semenov-Tian-Shansky [1989] The Kowalewski top 99 years later: A Lax pair, generalizations and explicit solutions. Comm. Math. Phys. 122, 321-354.
Bogoyavlensky, O. I. [1985] Methods in the Qualitative Theory of Dynamical Systems in Astrophysics and Gas Dynamics. Springer-Verlag.
Bolza, O. [1973] Lectures on the Calculus of Variations. Chicago University Press (1904). Reprinted by Chelsea, (1973).
Bona, J. [1975] On the stability theory of solitary waves. Proc. Roy. Soc. London 344A, 363-374.
Born, M. and L. Infeld [1935] On the quantization of the new field theory. Proc. Roy. Soc. London A 150, 141.
Bortolotti, F. [1926] Rend. R. Naz. Lincei 6a, 552.
Bourbaki, N. [1971] Variétés differentielles et analytiqes. Fascicule de résultats 33, Hermann.
Bourguignon, J. P. and H. Brezis [1974] Remarks on the Euler equation. J. Funct. Anal. 15, 341-363.

Boya, L. J., J. F. Carinena, and J. M. Gracia-Bondia [1991] Symplectic structure of the Aharonov-Anandan geometric phase. Phys. Lett. A 161, 30-34.
Bretherton, F. P. [1970] A note on Hamilton's principle for perfect fluids. J. Fluid Mech. 44, 19-31.
Bridges, T. [1990] Bifurcation of periodic solutions near a collision of eigenvalues of opposite signature. Math. Proc. Camb. Philos. Soc. 108, 575-601.
Bridges, T. [1994] Hamiltonian spatial structure for 3-D water waves relative to a moving frame of reference. J. Nonlinear Sci. 4, 221-251.
Bridges, T. [1997] Multi-symplectic structures and wave propagation. Math. Proc. Camb. Phil. Soc. 121, 147-190.
Brizard, A. [1992] Hermitian structure for linearized ideal MHD equations with equilibrium flow. Phys. Lett. A 168, 357-362.
Brockett, R. W. [1973] Lie algebras and Lie groups in control theory. Geometric Methods in Systems Theory, Proc. NATO Advanced Study Institute, R. W. Brockett and D.Q. Mayne (eds.), Reidel, 43-82.

Brockett, R. W. [1976] Nonlinear systems and differential geometry. Proc. IEEE 64, No. 1, 61-72.
Brockett, R. W. [1981] Control theory and singular Riemannian geometry. New Directions in Applied Mathematics, P. J. Hilton and G.S. Young (eds.), Springer-Verlag.
Brockett, R. W. [1983] Asymptotic stability and feedback stabilization. Differential Geometric Control Theory, R. W. Brockett, R. S. Millman, and H. Sussman (eds.), Birkhäuser.
Brockett, R. W. [1987] On the control of vibratory actuators. Proc. 1987 IEEE Conf. Decision and Control, 1418-1422.
Brockett, R. W. [1989] On the rectification of vibratory motion. Sensors and Actuators 20, 91-96.
Broer, H., S. N. Chow, Y. Kim, and G. Vegter [1993] A normally elliptic Hamiltonian bifurcation. Z. Angew Math. Phys. 44, 389-432.
Burov, A. A. [1986] On the non-existence of a supplementary integral in the problem of a heavy two-link pendulum. PMM USSR 50, 123-125.
Busse, F. H. [1984] Oscillations of a rotating liquid drop. J. Fluid Mech. 142, 1-8.
Cabannes, H. [1962] Cours de Mécanique Générale. Dunod.
Calabi, E. [1970] On the group of automorphisms of a symplectic manifold. In Problems in Analysis, Princeton University Press, 1-26.
Camassa, R. and D. D. Holm [1992] Dispersive barotropic equations for stratified mesoscale ocean dynamics. Physica D 60, 1-15.
Carinena, J. F., E. Martinez, and J. Fernandez-Nunez [1992] Noether's theorem in timedependent Lagrangian mechanics. Rep. Math. Phys. 31, 189-203.
Carr, J. [1981] Applications of center manifold theory. Springer-Verlag: New York, Heidelberg, Berlin.
Cartan, E. [1922] Sur les petites oscillations d'une masse fluide. Bull. Sci. Math. 46, 317-352 and 356-369.
Cartan, E. [1923] Sur les variétés a connexion affine et théorie de relativité généralisée. Ann. Ecole Norm. Sup. 40, 325-412; 41, 1-25.
Cartan, E. [1928a] Sur la représentation géométrique des systèmes matériels non holonomes. Atti. Cong. Int. Matem. 4, 253-261.
Cartan, E. [1928b] Sur la stabilité ordinaire des ellipsoides de Jacobi. Proc. Int. Math. Cong. Toronto 2, 9-17.

Casati, P., G. Falqui, F. Magri, and M. Pedroni, M. [1998] Bihamiltonian reductions and w_{n}-algebras. J. Geom. and Phys. 26, 291-310.
Casimir, H. B. G. [1931] Rotation of a Rigid Body in Quantum Mechanics. Thesis, J.B. Wolters' Uitgevers-Maatschappij, N. V. Groningen, den Haag, Batavia.
Cendra, H., A. Ibort, and J. E. Marsden [1987] Variational principal fiber bundles: a geometric theory of Clebsch potentials and Lin constraints. J. Geom. Phys. 4, 183-206.
Cendra, H., D. D. Holm, M. J. W. Hoyle, and J. E. Marsden [1998] The Maxwell-Vlasov equations in Euler-Poincaré form. J. Math. Phys. 39, 3138-3157.
Cendra, H. and J. E. Marsden [1987] Lin constraints, Clebsch potentials and variational principles. Physica D 27, 63-89.
Cendra, H., D. D. Holm, J. E. Marsden and T. S. Ratiu [1998] Lagrangian Reduction, the Euler-Poincaré Equations, and Semidirect Products. AMS Transl. 186, 1-25.
Cendra, H., J. E. Marsden, and T. S. Ratiu [2001] Lagrangian Reduction by Stages, Memoirs of the AMS, volume 152, number 722.
Chandrasekhar, S. [1961] Hydrodynamic and Hydromagnetic Instabilities. Oxford University Press.
Chandrasekhar, S. [1977] Ellipsoidal Figures of Equilibrium. Dover.
Channell, P. [1983] Symplectic integration algorithms. Los Alamos National Laboratory Report AT-6:ATN-83-9.
Channell, P. and C. Scovel [1990] Symplectic integration of Hamiltonian Systems. Nonlinearity 3, 231-259.
Chen, F. F. [1974] Introduction to Plasma Physics. Plenum.
Chern, S. J. [1997] Stability Theory for Lumped Parameter Electromechanical Systems. Preprint.
Chern, S. J. and J. E. Marsden [1990] A note on symmetry and stability for fluid flows. Geo. Astro. Fluid. Dyn. 51, 1-4.
Chernoff, P. R. and J. E. Marsden [1974] Properties of Infinite Dimensional Hamiltonian systems. Springer Lect. Notes in Math. 425.
Cherry, T. M. [1959] The pathology of differential equations. J. Austral. Math. Soc. 1, 1-16.
Cherry, T. M. [1968] Asymptotic solutions of analytic Hamiltonian systems. J. Differential Equations 4, 142-149.
Chetaev, N. G. [1961] The Stability of Motion. Pergamon.
Chetaev, N. G. [1989] Theoretical Mechanics. Springer-Verlag.
Chirikov, B. V. [1979] A universal instability of many dimensional oscillator systems. Phys. Rep. 52, 263-379.
Chorin, A. J., T. J. R. Hughes, J. E. Marsden, and M. McCracken [1978] Product formulas and numerical algorithms. Comm. Pure Appl. Math. 31, 205-256.
Chorin, A. J. and J. E. Marsden [1993] A Mathematical Introduction to Fluid Mechanics. Third Edition, Texts in Applied Mathematical Sciences 4, Springer-Verlag.
Chow, S. N. and J. K. Hale [1982] Methods of Bifurcation Theory. Springer-Verlag.
Chow, S. N., J. K. Hale, and J. Mallet-Paret [1980] An example of bifurcation to homoclinic orbits. J. Diff. Eqns. 37, 351-373.
Clebsch, A. [1857] Über eine allgemeine Transformation der hydrodynamischen Gleichungen. Z. Reine Angew. Math. 54, 293-312.

Clebsch, A. [1859] Über die Integration der hydrodynamischen Gleichungen. Z. Reine Angew. Math. 56, 1-10.
Clemmow, P. C. and J. P. Dougherty [1959] Electrodynamics of Particles and Plasmas. Addison-Wesley.
Conn, J. F. [1984] Normal forms for Poisson structures. Ann. of Math. 119, 576-601, 121, 565-593.
Cordani, B. [1986] Kepler problem with a magnetic monopole. J. Math. Phys. 27, 29202921.

Corson, E. M. [1953] Introduction to Tensors, Spinors and Relativistic Wave Equations. Hafner.
Crouch, P. E. [1986] Spacecraft attitude control and stabilization: application of geometric control to rigid-body models. IEEE Trans. Auto. Cont. 29, 321-331.
Cushman, R. and D. Rod [1982] Reduction of the semi-simple 1:1 resonance. Physica D $6,105-112$.
Cushman, R. and R. Sjamaar [1991] On singular reduction of Hamiltonian spaces. Symplectic Geometry and Mathematical Physics, ed. by P. Donato, C. Duval, J. Elhadad, and G.M. Tuynman, Birkhäuser, 114-128.
Dashen, R. F. and D. H. Sharp [1968] Currents as coordinates for hadrons. Phys. Rev. 165, 1857-1866.
David, D. and D. D. Holm [1992] Multiple Lie-Poisson structures. Reductions, and geometric phases for the Maxwell-Bloch travelling wave equations. J. Nonlinear Sci. 2, 241-262.
David, D., D. D. Holm, and M. Tratnik [1990] Hamiltonian chaos in nonlinear optical polarization dynamics. Phys. Rep. 187, 281-370.
Davidson, R. C. [1972] Methods in Nonlinear Plasma Theory. Academic Press.
de Leon, M., M. H. Mello, and P. R. Rodrigues [1992] Reduction of nondegenerate nonautonomous Lagrangians. Cont. Math. AMS 132, 275-306.
Deift, P. A. and L. C. Li [1989] Generalized affine lie algebras and the solution of a class of flows associated with the QR eigenvalue algorithm. Comm. Pure Appl. Math. 42, 963-991.
Dellnitz, M. and I. Melbourne [1993] The equivariant Darboux theorem. Lect. Appl. Math. 29, 163-169.
Dellnitz, M., J. E. Marsden, I. Melbourne, and J. Scheurle [1992] Generic bifurcations of pendula. Int. Series on Num. Math. 104, 111-122. ed. by G. Allgower, K. Böhmer, and M. Golubitsky, Birkhäuser.
Dellnitz, M., I. Melbourne, and J. E. Marsden [1992] Generic bifurcation of Hamiltonian vector fields with symmetry. Nonlinearity 5, 979-996.
Delshams, A. and T. M. Seara [1991] An asymptotic expression for the splitting of separatrices of the rapidly forced pendulum. Comm. Math. Phys. 150, 433-463.
Delzant, T. [1988] Hamiltoniens périodiques et images convexes de l'application moment. Bull. Soc. Math. France 116, 315-339.
Delzant, T. [1990] Classification des actions hamiltoniennes complètement intégrables de rang deux. Ann. Global Anal. Geom. 8, 87-112.
Deprit, A. [1983] Elimination of the nodes in problems of N bodies. Celestial Mech. 30, 181-195.
de Vogelaére, R. [1956] Methods of integration which preserve the contact transformation property of the Hamiltonian equations. Department of Mathematics, University of Notre Dame Report, 4.

Diacu, F. and P. Holmes [1996] Celestial encounters. The origins of chaos and stability. Princeton Univ. Press, Princeton, NJ.
Dirac, P. A. M. [1930] The Principles of Quantum Mechanics. Oxford University Press.
Dirac, P. A. M. [1950] Generalized Hamiltonian mechanics. Canad. J. Math. 2, 129-148.
Dirac, P. A. M. [1964] Lectures on Quantum Mechanics. Belfer Graduate School of Science, Monograph Series 2, Yeshiva University.
Duflo, M. and M. Vergne [1969] Une propriété de la représentation coadjointe d'une algèbre de Lie. C.R. Acad. Sci. Paris 268, 583-585.
Duistermaat, H. [1974] Oscillatory integrals, Lagrange immersions and unfolding of singularities. Comm. Pure and Appl. Math. 27, 207-281.
Duistermaat, H. [1983] Bifurcations of periodic solutions near equilibrium points of Hamiltonian systems. Springer Lect. Notes in Math. 1057, 57-104.
Duistermaat, H. [1984] Non-integrability of 1:2:2 resonance. Ergodic Theory Dynamical Systems 4, 553.
Duistermaat, J. J. [1980] On global action angle coordinates. Comm. Pure Appl. Math. 33, 687-706.
Duistermaat, J. J. and G. J. Heckman [1982] On the variation in the cohomology of the symplectic form of the reduced phase space. Inv. Math 69, 259-269, 72, 153-158.
Dzyaloshinskii, I. E. and G. E. Volovick [1980] Poisson brackets in condensed matter physics. Ann. of Phys. 125, 67-97.
Ebin, D. G. [1970] On the space of Riemannian metrics. Symp. Pure Math., Am. Math. Soc. 15, 11-40.
Ebin, D. G. and J. E. Marsden [1970] Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 92, 102-163.
Ebin, D. G. [1982] Motion of slightly compressible fluids in a bounded domain I. Comm. Pure Appl. Math. 35, 452-485.

Eckard, C. [1960] Variational principles of hydrodynamics. Phys. Fluids 3, 421-427.
Eckmann J.-P. and R. Seneor [1976] The Maslov-WKB method for the (an-)harmonic oscillator. Arch. Rat. Mech. Anal. 61 153-173.
Emmrich, C. and H. Römer [1990] Orbifolds as configuration spaces of systems with gauge symmetries. Comm. Math. Phys. 129, 69-94.
Enos, M. J. [1993] On an optimal control problem on $\mathrm{SO}(3) \times \mathrm{SO}(3)$ and the falling cat. Fields Inst. Comm. 1, 75-112.
Ercolani, N., M. G. Forest, and D. W. McLaughlin [1990] Geometry of the modulational instability, III. Homoclinic orbits for the periodic sine-Gordon equation. Physica D 43, 349.
Ercolani, N., M. G. Forest, D. W. McLaughlin, and R. Montgomery [1987] Hamiltonian structure of modulation equation for the sine-Gordon equation. Duke Math. J. 55, 949-983.
Fedorov, Y. N. [1994] Generalized Poinsot interpretation of the motion of a multidimensional rigid body. (Russian) Trudy Mat. Inst. Steklov. 205 Novye Rezult. v Teor. Topol. Klassif. Integr. Sistem, 200-206.
Fedorov, Y. N. and V. V. Kozlov [1995] Various aspects of n-dimensional rigid-body dynamics. Dynamical systems in classical mechanics, 141-171, Amer. Math. Soc. Transl. Ser. 2, 168.
Feng, K. [1986] Difference schemes for Hamiltonian formalism and symplectic geometry. J. Comp. Math. 4, 279-289.

Feng, K. and Z. Ge [1988] On approximations of Hamiltonian systems. J. Comp. Math. 6, 88-97.
Finn, J. M. and G. Sun [1987] Nonlinear stability and the energy-Casimir method. Comm. on Plasma Phys. and Controlled Fusion XI, 7-25.
Fischer, A. E. and J. E. Marsden [1972] The Einstein equations of evolution-a geometric approach. J. Math. Phys. 13, 546-568.
Fischer, A. E. and J. E. Marsden [1979] Topics in the dynamics of general relativity. Isolated Gravitating Systems in General Relativity, J. Ehlers (ed.), Italian Physical Society, 322-395.
Fischer, A. E., J. E. Marsden, and V. Moncrief [1980] The structure of the space of solutions of Einstein's equations, I: One Killing field. Ann. Inst. H. Poincaré 33, 147-194.
Flaschka, H. [1976] The Toda lattice. Phys. Rev. B 9, 1924-1925.
Flaschka, H., A. Newell, and T. S. Ratiu [1983a] Kac-Moody Lie algebras and soliton equations II. Lax equations associated with $A_{1}^{(1)}$. Physica D 9, 300-323.
Flaschka, H., A. Newell, and T. S. Ratiu [1983b] Kac-Moody Lie algebras and soliton equations III. Stationary equations associated with $A_{1}^{(1)}$. Physica D 9, 324-332.
Fomenko, A. T. [1988a] Symplectic Geometry. Gordon and Breach.
Fomenko, A. T. [1988b] Integrability and Nonintegrability in Geometry and Mechanics. Kluwer Academic.
Fomenko, A. T. and V. V. Trofimov [1989] Integrable Systems on Lie Algebras and Symmetric Spaces. Gordon and Breach.
Fong, U. and K. R. Meyer [1975] Algebras of integrals. Rev. Colombiana Mat. 9, 75-90.
Fontich, E. and C. Simo [1990] The splitting of separatrices for analytic diffeomorphisms. Erg. Thy. Dyn. Syst. 10, 295-318.
Fowler, T. K. [1963] Liapunov's stability criteria for plasmas. J. Math. Phys. 4, 559-569.
Friedlander, S. and M. M. Vishik [1990] Nonlinear stability for stratified magnetohydrodynamics. Geophys. Astrophys. Fluid Dyn. 55, 19-45.
Fukumoto, Y. [1997] Stationary configurations of a vortex filament in background flows. Proc. R. Soc. Lon. A 453, 1205-1232.
Fukumoto, Y. and Miyajima, M. [1996] The localized induction hierarchy and the LundRegge equation. J. Phys. A: Math. Gen. 29, 8025-8034.
Glgani, L. Giorgilli, A. and Strelcyn, J.-M. [1981] Chaotic motions and transition to stochasticity in the classical problem of the heavy rigid body with a fixed point. Nuovo Cimento 61, 1-20.
Galin, D. M. [1982] Versal deformations of linear Hamiltonian systems. AMS Transl. 118, 1-12 (1975 Trudy Sem. Petrovsk. 1, 63-74).
Gallavotti, G. [1983] The Elements of Mechanics. Springer-Verlag.
Gantmacher, F. R. [1959] Theory of Matrices. Chelsea.
Gardner, C. S. [1971] Korteweg-de Vries equation and generalizations IV. The Kortewegde Vries equation as a Hamiltonian system. J. Math. Phys. 12, 1548-1551.
Ge, Z. [1990] Generating functions, Hamilton-Jacobi equation and symplectic groupoids over Poisson manifolds. Indiana Univ. Math. J. 39, 859-876.
Ge, Z. [1991a] Equivariant symplectic difference schemes and generating functions. Physica D 49, 376-386.
Ge, Z. [1991b] A constrained variational problem and the space of horizontal paths. Pacific J. Math. 149, 61-94.

Ge, Z., H. P. Kruse, and J. E. Marsden [1996] The limits of Hamiltonian structures in three-dimensional elasticity, shells and rods. J. Nonlin. Sci. 6, 19-57.
Ge, Z. and J. E. Marsden [1988] Lie-Poisson integrators and Lie-Poisson HamiltonJacobi theory. Phys. Lett. A 133, 134-139.
Gelfand, I. M. and I. Y. Dorfman [1979] Hamiltonian operators and the algebraic structures connected with them. Funct. Anal. Appl. 13, 13-30.
Gelfand, I. M. and S. V. Fomin [1963] Calculus of Variations. Prentice-Hall.
Gibbons, J. [1981] Collisionless Boltzmann equations and integrable moment equations. Physica A 3, 503-511.
Gibbons, J., D. D. Holm, and B. A. Kupershmidt [1982] Gauge-invariance Poisson brackets for chromohydrodynamics. Phys. Lett. 90A.
Godbillon, C. [1969] Géométrie Différentielle et Mécanique Analytique. Hermann.
Goldin, G. A. [1971] Nonrelativistic current algebras as unitary representations of groups. J. Math. Phys. 12, 462-487.

Goldman, W. M. and J. J. Millson [1990] Differential graded Lie algebras and singularities of level sets of momentum mappings. Comm. Math. Phys. 131, 495-515.
Goldreich, P. and A. Toomre [1969] Some remarks on polar wandering, J. Geophys. Res. 10, 2555-2567.
Goldstein, H. [1980] Classical Mechanics. Second Edition, Addison-Wesley.
Golin, S., A. Knauf, and S. Marmi [1989] The Hannay angles: geometry, adiabaticity, and an example. Comm. Math. Phys. 123, 95-122.
Golin, S. and S. Marmi [1990] A class of systems with measurable Hannay angles. Nonlinearity 3, 507-518.
Golubitsky, M., M. Krupa, and C. Lim [1991] Time reversibility and particle sedimentation. SIAM J. Appl. Math. 51, 49-72.
Golubitsky, M., J. E. Marsden, I. Stewart, and M. Dellnitz [1995], The constrained Liapunov Schmidt procedure and periodic orbits, Fields Inst. Commun. 4, 81-127.
Golubitsky, M., and D. Schaeffer [1985] Singularities and Groups in Bifurcation Theory. Vol. 1, Applied Mathematical Sciences 69, Springer-Verlag.
Golubitsky, M. and I. Stewart [1987] Generic bifurcation of Hamiltonian systems with symmetry. Physica D 24, 391-405.
Golubitsky, M., I. Stewart, and D. Schaeffer [1988] Singularities and Groups in Bifurcation Theory. Vol. 2, Applied Mathematical Sciences 69, Springer-Verlag.
Goodman, L. E. and A. R. Robinson [1958] Effects of finite rotations on gyroscopic sensing devices. J. of Appl. Mech. 28, 210-213. (See also Trans. ASME 80, 210213.)

Gotay, M. J. [1988] A multisymplectic approach to the KdV equation: in Differential Geometric Methods in Theoretical Physics. Kluwer, 295-305.
Gotay, M. J., J. A. Isenberg, J. E. Marsden, and R. Montgomery [1997] Momentum Maps and Classical Relativistic Fields. Preprint.
Gotay, M. J., R. Lashof, J. Sniatycki, and A. Weinstein [1980] Closed forms on symplectic fiber bundles. Comm. Math. Helv. 58, 617-621.
Gotay, M. J. and J. E. Marsden [1992] Stress-energy-momentum tensors and the Belifante-Resenfeld formula. Cont. Math. AMS 132, 367-392.
Gotay, M. J., J. M. Nester, and G. Hinds [1979] Presymplectic manifolds and the DiracBergmann theory of constraints. J. Math. Phys. 19, 2388-2399.

Gozzi, E. and W. D. Thacker [1987] Classical adiabatic holonomy in a Grassmannian system. Phys. Rev. D 35, 2388-2396.
Greenspan, B. D. and P. J. Holmes [1983] Repeated resonance and homoclinic bifurcations in a periodically forced family of oscillators. SIAM J. Math. Anal. 15, 69-97.
Griffa, A. [1984] Canonical transformations and variational principles for fluid dynamics. Physica A 127, 265-281.
Grigore, D. R. and O. T. Popp [1989] The complete classification of generalized homogeneous symplectic manifolds. J. Math. Phys. 30, 2476-2483.
Grillakis, M., J. Shatah, and W. Strauss [1987] Stability theory of solitary waves in the presence of symmetry, I \& II. J. Funct. Anal. 74, 160-197 and 94 (1990), 308-348.
Grossman, R., P. S. Krishnaprasad, and J. E. Marsden [1988] The dynamics of two coupled rigid bodies. Dynamical Systems Approaches to Nonlinear Problems in Systems and Circuits, Salam and Levi (eds.). SIAM, 373-378.
Gruendler, J. [1985] The existence of homoclinic orbits and the methods of Melnikov for systems. SIAM J. Math. Anal. 16, 907-940.
Guckenheimer, J. and P. Holmes [1983] Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Applied Mathematical Sciences 43, Springer-Verlag.
Guckenheimer, J. and P. Holmes [1988] Structurally stable heteroclinic cycles. Math. Proc. Camb. Philos. Soc. 103, 189-192.
Guckenheimer, J. and A. Mahalov [1992a] Resonant triad interactions in symmetric systems. Physica D 54, 267-310.
Guckenheimer, J. and A. Mahalov [1992b] Instability induced by symmetry reduction. Phys. Rev. Lett. 68, 2257-2260.
Guichardet, A. [1984] On rotation and vibration motions of molecules. Ann. Inst. H. Poincaré 40, 329-342.
Guillemin, V. and A. Pollack [1974] Differential Topology. Prentice-Hall.
Guillemin, V. and E. Prato [1990] Heckman, Kostant, and Steinberg formulas for symplectic manifolds. Adv. in Math. 82, 160-179.
Guillemin, V. and S. Sternberg [1977] Geometric Asymptotics. Amer. Math. Soc. Surveys 14. (Revised edition, 1990.)

Guillemin, V. and S. Sternberg [1980] The moment map and collective motion. Ann. of Phys. 1278, 220-253.
Guillemin, V. and S. Sternberg [1982] Convexity properties of the moment map. Inv. Math. 67, 491-513; 77 (1984) 533-546.
Guillemin, V. and S. Sternberg [1983] On the method of Symes for integrating systems of the Toda type. Lett. Math. Phys. 7, 113-115.
Guillemin, V. and S. Sternberg [1984] Symplectic Techniques in Physics. Cambridge University Press.
Guillemin, V. and A. Uribe [1987] Reduction, the trace formula, and semiclassical asymptotics. Proc. Nat. Acad. Sci. 84, 7799-7801.

Hahn, W. [1967] Stability of Motion. Springer-Verlag.
Hale, J. K. [1963] Oscillations in Nonlinear Systems. McGraw-Hill.
Haller, G. [1992] Gyroscopic stability and its loss in systems with two essential coordinates. Int. J. Nonlinear Mech. 27, 113-127.
Haller, G. and I. Mezić [1998] Reduction of three-dimensional, volume-preserving flows with symmetry. Nonlinearity 11, 319-339.

Haller, G. and S. Wiggins [1993] Orbit homoclinic to resonances: the Hamiltonian case. Physica D 66, 293-346.
Hamel, G. [1904] Die Lagrange-Eulerschen Gleichungen der Mechanik. Z. Mathematik u. Physik 50, 1-57.

Hamel, G. [1949] Theoretische Mechanik. Springer-Verlag.
Hamilton, W. R. [1834] On a general method in dynamics. Phil. Trans. Roy. Soc. Lon. 95-144, 247-308.
Hannay, J. [1985] Angle variable holonomy in adiabatic excursion of an itegrable Hamiltonian. J. Phys. A: Math. Gen. 18, 221-230.
Hanson, A., T. Regge, and C. Teitelboim [1976] Constrained Hamiltonian systems. Accademia Nazionale Dei Lincei, Rome, 1-135.
Helgason, S. [1978] Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press.
Henon, M. [1982] Vlasov Equation. Astron. Astrophys. 114, 211-212.
Herivel, J. W. [1955] The derivation of the equation of motion of an ideal fluid by Hamilton's principle. Proc. Camb. Phil. Soc. 51, 344-349.
Hermann, R. [1962] The differential geometry of foliations. J. Math. Mech. 11, 303-315.
Hermann, R. [1964] An incomplete compact homogeneous Lorentz metric J. Math. Mech. 13, 497-501.
Hermann, R. [1968] Differential Geometry and the Calculus of Variations. Math. Science Press.

Hermann, R. [1973] Geometry, Physics, and Systems. Marcel Dekker.
Hirsch, M. and S. Smale [1974] Differential Equations, Dynamical Systems and Linear Algebra. Academic Press.
Hirschfelder, J. O. and J. S. Dahler [1956] The kinetic energy of relative motion. Proc. Nat. Acad. Sci. 42, 363-365.
Holm, D.D. [1996] Hamiltonian balance equations. Physica D 98, 379-414.
Holm, D. D. and B. A. Kupershmidt [1983] Poisson brackets and Clebsch representations for magnetohydrodynamics, multifluid plasmas, and elasticity. Physica D 6, 347363.

Holm, D. D., B. A. Kupershmidt, and C. D. Levermore [1985] Hamiltonian differencing of fluid dynamics. Adv. in Appl. Math. 6, 52-84.
Holm, D. D. and J. E. Marsden [1991] The rotor and the pendulum. Symplectic Geometry and Mathematical Physics, P. Donato, C. Duval, J. Elhadad, and G.M. Tuynman (eds.), Birkhäuser, pp. 189-203.
Holm, D. D., J. E. Marsden, and T. S. Ratiu [1986] The Hamiltonian structure of continuum mechanics in material, spatial and convective representations. Séminaire de Mathématiques Supérieurs, Les Presses de l'Univ. de Montréal 100, 11-122.
Holm, D. D., J. E. Marsden and T. S. Ratiu [1998] The Euler-Poincaré equations and semidirect products with applications to continuum theories. Adv. in Math. 137, 1-81.
Holm, D. D., J. E. Marsden, and T. Ratiu [1998b] The Euler-Poincaré equations in geophysical fluid dynamics, in Proceedings of the Isaac Newton Institute Programme on the Mathematics of Atmospheric and Ocean Dynamics, Cambridge University Press (to appear).
Holm, D. D., J. E. Marsden, and T. S. Ratiu [1998c] Euler-Poincaré models of ideal fluids with nonlinear dispersion. Phys. Rev. Lett. 349, 4173-4177.

Holm, D. D., J. E. Marsden, T. S. Ratiu, and A. Weinstein [1985] Nonlinear stability of fluid and plasma equilibria. Phys. Rep. 123, 1-116.
Holmes, P. J. [1980a] New Approaches to Nonlinear Problems in Dynamics. SIAM.
Holmes, P. J. [1980b] Averaging and chaotic motions in forced oscillations. SIAM J. Appl. Math. 38, 68-80 and 40, 167-168.
Holmes, P. J., J. R. Jenkins, and N. Leonard [1998] Dynamics of the Kirchhoff equations I: coincident centers of gravity and buoyancy. Physica D 118, 311-342.
Holmes, P. J. and J. E. Marsden [1981] A partial differential equation with infinitely many periodic orbits: chaotic oscillations of a forced beam. Arch. Rat. Mech. Anal. 76, 135-166.
Holmes, P. J. and J. E. Marsden [1982a] Horseshoes in perturbations of Hamiltonian systems with two-degrees-of-freedom. Comm. Math. Phys. 82, 523-544.
Holmes, P. J. and J. E. Marsden [1982b] Melnikov's method and Arnold diffusion for perturbations of integrable Hamiltonian systems. J. Math. Phys. 23, 669-675.
Holmes, P. J. and J. E. Marsden [1983] Horseshoes and Arnold diffusion for Hamiltonian systems on Lie groups. Indiana Univ. Math. J. 32, 273-310.
Holmes, P. J., J. E. Marsden, and J. Scheurle [1988] Exponentially small splittings of separatrices with applications to KAM theory and degenerate bifurcations. Contemp. Math. 81, 213-244.
Hörmander, L. [1995] Symplectic classification of quadratic forms, and general Mehler formulas. Math. Zeit. 219, 413-449.
Horn, A. [1954] Doubly stochastic matrices and the diagonal of a rotation matrix. Amer. J. Math. 76, 620-630.

Howard, J. E. and R. S. MacKay [1987a] Linear stability of symplectic maps. J. Math. Phys. 28, 1036-1051.
Howard, J. E. and R. S. MacKay [1987b] Calculation of linear stability boundaries for equilibria of Hamiltonian systems. Phys. Lett. A 122, 331-334.
Hughes, T. J. R., T. Kato, and J. E. Marsden [1977] Well-posed quasi-linear secondorder hyperbolic systems with applications to nonlinear elastodynamics and general relativity. Arch. Rat. Mech. Anal. 90, 545-561.
Iacob, A. [1971] Invariant manifolds in the motion of a rigid body about a fixed point. Rev. Roumaine Math. Pures Appl. 16, 1497-1521.
Ichimaru, S. [1973] Basic Principles of Plasma Physics. Addison-Wesley.
Isenberg, J. and J. E. Marsden [1982] A slice theorem for the space of solutions of Einstein's equations. Phys. Rep. 89, 179-222.
Ishlinskii, A. [1952] Mechanics of Special Gyroscopic Systems (in Russian). National Acad. Ukrainian SSR, Kiev.
Ishlinskii, A. [1963] Mechanics of Gyroscopic Systems (in English). Israel Program for Scientific Translations, Jerusalem, 1965 (also available as a NASA technical translation).
Ishlinskii, A. [1976] Orientation, Gyroscopes and Inertial Navigation (in Russian). Nauka, Moscow.
Iwai, T. [1982] The symmetry group of the harmonic oscillator and its reduction. J. Math. Phys. 23, 1088-1092.
Iwai, T. [1985] On reduction of two-degrees-of-freedom Hamiltonian systems by an S^{1} action, and $S O_{0}(1,2)$ as a dynamical group. J. Math. Phys. 26, 885-893.
Iwai, T. [1987a] A gauge theory for the quantum planar three-body system. J. Math. Phys. 28, 1315-1326.

Iwai, T. [1987b] A geometric setting for internal motions of the quantum three-body system. J. Math. Phys. 28, 1315-1326.
Iwai, T. [1987c] A geometric setting for classical molecular dynamics. Ann. Inst. Henri Poincaré, Phys. Théor. 47, 199-219.
Iwai, T. [1990a] On the Guichardet/Berry connection. Phys. Lett. A 149, 341-344.
Iwai, T. [1990b] The geometry of the $\mathrm{SU}(2)$ Kepler problem. J. Geom. Phys. 7, 507-535.
Iwiínski, Z. R. and L. A. Turski [1976] Canonical theories of systems interacting electromagnetically. Letters in Applied and Engineering Sciences 4, 179-191.
Jacobi, C. G. K. [1837] Note sur l'intégration des équations différentielles de la dynamique. C.R. Acad. Sci., Paris 5, 61.
Jacobi, C. G. K. [1843] J. Math. 26, 115.
Jacobi, C. G. K. [1866] Vorlesungen über Dynamik. (Based on lectures given in 1842-3) Verlag G. Reimer; Reprinted by Chelsea, 1969.
Jacobson, N. [1962] Lie Algebras. Interscience, reprinted by Dover.
Jeans, J. [1919] Problems of Cosmogony and Stellar Dynamics. Cambridge University Press.
Jellinek, J. and D. H. Li [1989] Separation of the energy of overall rotations in an N-body system. Phys. Rev. Lett. 62, 241-244.
Jepson, D. W. and J. O. Hirschfelder [1958] Set of coordinate systems which diagonalize the kinetic energy of relative motion. Proc. Nat. Acad. Sci. 45, 249-256.
Jost, R. [1964] Poisson brackets (An unpedagogical lecture). Rev. Mod. Phys. 36, 572579.

Kammer, D. C. and G. L. Gray [1992] A nonlinear control design for energy sink simulation in the Euler-Poinsot problem. J. Astr. Sci. 41, 53-72.
Kane, T. R. and M. Scher [1969] A dynamical explanation of the falling cat phenomenon. Int. J. Solids Structures 5, 663-670.
Kaplansky, I. [1971] Lie Algebras and Locally Compact Groups, University of Chicago Press.
Karasev, M. V. and V. P. Maslov [1993] Nonlinear Poisson Brackets. Geometry and Quantization. Transl. of Math. Monographs. 119. Amer. Math. Soc.
Kato, T. [1950] On the adiabatic theorem of quantum mechanics. J. Phys. Soc. Japan 5, 435-439.
Kato, T. [1967] On classical solutions of the two-dimensional non-stationary Euler equation. Arch. Rat. Mech. Anal. 25, 188-200.
Kato, T. [1972] Nonstationary flows of viscous and ideal fluids in \mathbb{R}^{3}. J. Funct. Anal. 9, 296-305.
Kato, T. [1975] On the initial value problem for quasi-linear symmetric hyperbolic systems. Arch. Rat. Mech. Anal. 58, 181-206.
Kato, T. [1984] Perturbation Theory for Linear Operators. Springer-Verlag.
Kato, T. [1985] Abstract Differential Equations and Nonlinear Mixed Problems. Lezioni Fermiane, Scuola Normale Superiore, Accademia Nazionale dei Lincei.
Katz, S. [1961] Lagrangian density for an inviscid, perfect, compressible plasma. Phys. Fluids 4, 345-348.
Kaufman, A. [1982] Elementary derivation of Poisson structures for fluid dynamics and electrodynamics. Phys. Fluids 25, 1993-1994.
Kaufman, A. and R. L. Dewar [1984] Canonical derivation of the Vlasov-Coulomb noncanonical Poisson structure. Contemp. Math. 28, 51-54.

Kazhdan, D., B. Kostant, and S. Sternberg [1978] Hamiltonian group actions and dynamical systems of Calogero type. Comm. Pure Appl. Math. 31, 481-508.
Khesin, B. A. [1992] Ergodic interpretation of integral hydrodynamic invariants. J. Geom. Phys. 9, 101-110.
Khesin, B. A. and Y. Chekanov [1989] Invariants of the Euler equations for ideal or barotropic hydrodynamics and superconductivity in D dimensions. Physica $D \mathbf{4 0}$, 119-131.
Kijowski, J. and W. Tulczyjew [1979] A Symplectic Framework for Field Theories. Springer Lect. Notes in Phys. 107.
Kirillov, A. A. [1962] Unitary representations of nilpotent Lie groups. Russian Math. Surveys 17, 53-104.
Kirillov, A. A. [1976a] Local Lie Algebras. Russian Math. Surveys 31, 55-75.
Kirillov, A. A. [1976b] Elements of the Theory of Representations. Grundlehren Math. Wiss., Springer-Verlag.
Kirillov, A. A. [1981] The orbits of the group of diffeomorphisms of the circle and local Lie superalgebras. (Russian) Funktsional. Anal. i Prilozhen. 15, 75-76.
Kirillov, A. A. [1993] The orbit method. II. Infinite-dimensional Lie groups and Lie algebras. Representation theory of groups and algebras. Contemp. Math. 145, 3363.

Kirk, V., J. E. Marsden, and M. Silber [1996] Branches of stable three-tori using Hamiltonian methods in Hopf bifurcation on a rhombic lattice. Dyn. and Stab. of Systems 11, 267-302.
Kirwan, F. C. [1984] Cohomology Quotients in Symplectic and Algebraic Geometry. Princeton Math. Notes 31, Princeton University Press.
Kirwan, F. C. [1985] Partial desingularization of quotients of nonsingular varieties and their Betti numbers. Ann. of Math. 122, 41-85.
Kirwan, F. C. [1988] The topology of reduced phase spaces of the motion of vortices on a sphere. Physica D 30, 99-123.
Kirwan, F. C. [1998] Momentum maps and reduction in algebraic geometry. Diff. Geom. and Appl. 9, 135-171.
Klein, F. [1897] The Mathematical Theory of the Top. Scribner.
Klein, M. [1970] Paul Ehrenfest. North-Holland.
Klingenberg, W. [1978] Lectures on Closed Geodesics. Grundlehren Math. Wiss. 230, Springer-Verlag.
Knapp, A. W. [1996] Lie Groups: Beyond an Introduction. Progress in Mathematics 140, Birkhäuser, Boston.
Knobloch, E. and J. D. Gibbon [1991] Coupled NLS equations for counterpropagating waves in systems with reflection symmetry. Phys. Lett. A 154, 353-356.
Knobloch, E., Mahalov, and J. E. Marsden [1994] Normal forms for three-dimensional parametric instabilities in ideal hydrodynamics. Physica D 73, 49-81.
Knobloch, E. and M. Silber [1992] Hopf bifurcation with $Z_{4} \times T^{2}$ symmetry: in Bifurcation and Symmetry, K. Boehmer (ed.). Birkhäuser.
Kobayashi and Nomizu [1963] Foundations of Differential Geometry. Wiley.
Kocak, H., F. Bisshopp, T. Banchoff, and D. Laidlaw [1986] Topology and Mechanics with Computer Graphics. Adv. in Appl. Math. 7, 282-308.
Koiller, J. [1985] On Aref's vortex motions with a symmetry center. Physica D 16, 27-61.

Koiller, J. [1992] Reduction of some classical nonholonomic systems with symmetry. Arch. Rat. Mech. Anal. 118, 113-148.
Koiller, J., J. M. Balthazar, and T. Yokoyama [1987] Relaxation-Chaos phenomena in celestial mechanics. Physica D 26, 85-122.
Koiller, J., I. D. Soares, and J. R. T. Melo Neto [1985] Homoclinic phenomena in gravitational collapse. Phys. Lett. 110A, 260-264.
Koon, W. S. and J. E. Marsden [1997] Optimal control for holonomic and nonholonomic mechanical systems with symmetry and Lagrangian reduction. SIAM J. Control and Optim. 35, 901-929.
Koon, W. S. and J. E. Marsden [1997b] The Hamiltonian and Lagrangian approaches to the dynamics of nonholonomic systems. Rep. Math. Phys. 40, 21-62.
Koon, W. S. and J. E. Marsden [1998], The Poisson reduction of nonholonomic mechanical systems, Reports on Math. Phys. 42, 101-134.
Kopell, N. and R. B. Washburn Jr. [1982] Chaotic motions in the two degree-of-freedom swing equations. IEEE Trans. Circuits and Systems 29, 738-746.
Korteweg, D. J. and G. de Vries [1895] On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary wave. Phil. Mag. 39, 422-433.
Kozlov, V. V. [1996] Symmetries, Topology and Resonances in Hamiltonian Mechanics. Translated from the Russian manuscript by S. V. Bolotin, D. Treshchev, and Y. Fedorov. Ergebnisse der Mathematik und ihrer Grenzgebiete 31. Springer-Verlag, Berlin.
Kosmann-Schwarzbach, Y. and F. Magri [1990] Poisson-Nijenhuis structures. Ann. Inst. H. Poincaré 53, 35-81.

Kostant, B. [1966] Orbits, symplectic structures and representation theory. Proc. USJapan Seminar on Diff. Geom., Kyoto. Nippon Hyronsha, Tokyo 77.
Kostant, B. [1970] Quantization and unitary representations. Springer Lect. Notes in Math. 570, 177-306.
Kostant, B. [1973] On convexity, the Weyl group and the Iwasawa decomposition. Ann. Sci. École Norm. Sup. 6, 413-455.
Kostant, B. [1978] On Whittaker vectors and representation theory. Inv. Math. 48, 101184.

Kostant, B. [1979] The solution to a generalized Toda lattice and representation theory. Adv. in Math. 34, 195-338.
Koszul, J. L. [1985] Crochet de Schouten-Nijenhuis et cohomologie. É. Cartan et les mathématiques d'Aujourdhui, Astérisque hors série, Soc. Math. France, 257-271.
Kovačič, G. and S. Wiggins [1992] Orbits homoclinic to resonances, with an application to chaos in the damped and forced sine-Gordon equation. Physica D 57, 185.
Krall, N. A. and A. W. Trivelpiece [1973] Principles of Plasma Physics. McGraw-Hill.
Krein, M. G. [1950] A generalization of several investigations of A. M. Liapunov on linear differential equations with periodic coefficients. Dokl. Akad. Nauk. SSSR 73, 445-448.
Krishnaprasad, P. S. [1985] Lie-Poisson structures, dual-spin spacecraft and asymptotic stability. Nonlinear Anal. TMA 9, 1011-1035.
Krishnaprasad, P. S. [1989] Eulerian many-body problems. Cont. Math. AMS 97, 187208.

Krishnaprasad, P. S. and J. E. Marsden [1987] Hamiltonian structure and stability for rigid bodies with flexible attachments. Arch. Rat. Mech. Anal. 98, 137-158.

Krupa, M. [1990] Bifurcations of relative equilibria. SIAM J. Math. Anal. 21, 1453-1486.
Kruse, H. P. [1993] The dynamics of a liquid drop between two plates. Thesis, University of Hamburg.
Kruse, H. P., J. E. Marsden, and J. Scheurle [1993] On uniformly rotating field drops trapped between two parallel plates. Lect. in Appl. Math. AMS 29, 307-317.
Kummer, M. [1975] An interaction of three resonant modes in a nonlinear lattice. J. Math. Anal. App. 52, 64.
Kummer, M. [1979] On resonant classical Hamiltonians with two-degrees-of-freedom near an equilibrium point. Stochastic Behavior in Classical and Quantum Hamiltonian Systems. Springer Lect. Notes in Phys. 93.
Kummer, M. [1981] On the construction of the reduced phase space of a Hamiltonian system with symmetry. Indiana Univ. Math. J. 30, 281-291.
Kummer, M. [1986] On resonant Hamiltonian systems with finitely many degrees of freedom. In Local and Global Methods of Nonlinear Dynamics, Lect. Notes in Phys. 252, Springer-Verlag.
Kummer, M. [1990] On resonant classical Hamiltonians with n frequencies. J. Diff. Eqns. 83, 220-243.
Kunzle, H. P. [1969] Degenerate Lagrangian systems. Ann. Inst. H. Poincaré 11, 393414.

Kunzle, H. P. [1972] Canonical dynamics of spinning particles in gravitational and electromagnetic fields. J. Math. Phys. 13, 739-744.
Kupershmidt, B. A. and T. Ratiu [1983] Canonical maps between semidirect products with applications to elasticity and superfluids. Comm. Math. Phys. 90, 235-250.
Lagrange, J. L. [1788] Mécanique Analytique. Chez la Veuve Desaint.
Lanczos, C. [1949] The Variational Principles of Mechanics. University of Toronto Press.
Larsson, J. [1992] An action principle for the Vlasov equation and associated Lie perturbation equations. J. Plasma Phys. 48, 13-35; 49, 255-270.
Laub, A. J. and K. R. Meyer [1974] Canonical forms for symplectic and Hamiltonian matrices. Celestial Mech. 9, 213-238.
Lawden, D. F. [1989] Elliptic Functions and Applications. Applied Mathematical Sciences 80, Springer-Verlag.
Leimkuhler, B. and G. Patrick [1996] Symplectic integration on Riemannian manifolds. J. of Nonl. Sci. 6, 367-384.

Leimkuhler, B. and R. Skeel [1994] Symplectic numerical integrators in constrained Hamiltonian systems. Journal of Computational Physics 112, 117-125.
Leonard, N. E. [1997] Stability of a bottom-heavy underwater vehicle. Automatica J. IFAC 33, 331-346.
Leonard, N. E. and P. S. Krishnaprasad [1995] Motion control of drift-free, left-invariant systems on Lie groups. IEEE Trans. Automat. Control 40, 1539-1554.
Leonard, N. E. and W. S. Levine [1995] Using Matlab to Analyze and Design Control Systems, Second Edition, Benjamin-Cummings Publishing Co.
Leonard, N. E. and J. E. Marsden [1997] Stability and Drift of Underwater Vehicle Dynamics: Mechanical Systems with Rigid Motion Symmetry. Physica D 105, 130162.

Lerman, E. [1989] On the centralizer of invariant functions on a Hamiltonian G-space. J. Diff. Geom. 30, 805-815.

Levi, M. [1989] Morse theory for a model space structure. Cont. Math. AMS 97, 209216.

Levi, M. [1993] Geometric phases in the motion of rigid bodies. Arch. Rat. Mech. Anal. 122, 213-229.
Lewis, A. [1996] The geometry of the Gibbs-Appell equations and Gauss' principle of least constraint. Reports on Math. Phys. 38, 11-28.
Lewis, A. and R. M. Murray [1995] Variational principles in constrained systems: theory and experiments. Int. J. Nonl. Mech. 30, 793-815.
Lewis, D. [1989] Nonlinear stability of a rotating planar liquid drop. Arch. Rat. Mech. Anal. 106, 287-333.
Lewis, D. [1992] Lagrangian block diagonalization. Dyn. Diff. Eqns. 4, 1-42.
Lewis, D., J. E. Marsden, R. Montgomery, and T. S. Ratiu [1986] The Hamiltonian structure for dynamic free boundary problems. Physica D 18, 391-404.
Lewis, D., J. E. Marsden, and T. S. Ratiu [1987] Stability and bifurcation of a rotating liquid drop. J. Math. Phys. 28, 2508-2515.
Lewis, D., T. S. Ratiu, J. C. Simo, and J. E. Marsden [1992] The heavy top, a geometric treatment. Nonlinearity 5, 1-48.
Lewis, D. and J. C. Simo [1990] Nonlinear stability of rotating pseudo-rigid bodies. Proc. Roy. Soc. Lon. A 427, 281-319.
Lewis, D. and J. C. Simo [1995] Conserving algorithms for the dynamics of Hamiltonian systems on Lie groups. J. Nonlinear Sci. 4, 253-299.
Li, C. W. and M. Z. Qin [1988] A symplectic difference scheme for the infinitedimensional Hamilton system. J. Comp. Math. 6, 164-174.
Liapunov, A. M. [1892] Problème Générale de la Stabilité du Mouvement. Kharkov. French translation in Ann. Fac. Sci. Univ. Toulouse, 9, 1907; reproduced in Ann. Math. Studies 17, Princeton University Press, 1949.
Liapunov, A. M. [1897] Sur l'instabilité de l'équilibre dans certains cas où la fonction de forces n'est pas maximum. J. Math. Appl. 3, 81-84.
Libermann, P. and C. M. Marle [1987] Symplectic Geometry and Analytical Mechanics. Kluwer Academic.
Lichnerowicz, A. [1951] Sur les variétés symplectiques. C.R. Acad. Sci. Paris 233, 723726.

Lichnerowicz, A. [1973] Algèbre de Lie des automorphismes infinitésimaux d'une structure de contact. J. Math. Pures Appl. 52, 473-508.
Lichnerowicz, A. [1975a] Variété symplectique et dynamique associée à une sous-variété. C.R. Acad. Sci. Paris, Sér. A 280, 523-527.

Lichnerowicz, A. [1975b] Structures de contact et formalisme Hamiltonien invariant. C.R. Acad. Sci. Paris, Sér. A 281, 171-175.

Lichnerowicz, A. [1976] Variétés symplectiques, variétés canoniques, et systèmes dynamiques, in Topics in Differential Geometry, H. Rund and W. Forbes (eds.). Academic Press.
Lichnerowicz, A. [1977] Les variétés de Poisson et leurs algèbres de Lie associées. J. Diff. Geom. 12, 253-300.
Lichnerowicz, A. [1978] Deformation theory and quantization. Group Theoretical Methods in Physics, Springer Lect. Notes in Phys. 94, 280-289.
Lichtenberg, A. J. and M. A. Liebermann [1983] Regular and Stochastic Motion. Applied Mathematical Sciences 38. Springer-Verlag, 2nd edition [1991].
Lie, S. [1890] Theorie der Transformationsgruppen. Zweiter Abschnitt. Teubner.
Lin, C. C. [1963] Hydrodynamics of helium II. Proc. Int. Sch. Phys. 21, 93-146.

Littlejohn, R. G. [1983] Variational principles of guiding center motion. J. Plasma Physics 29, 111-125.
Littlejohn, R. G. [1984] Geometry and guiding center motion. Cont. Math. AMS 28, 151-168.

Littlejohn, R. G. [1988] Cyclic evolution in quantum mechanics and the phases of BohrSommerfeld and Maslov. Phys. Rev. Lett. 61, 2159-2162.
Littlejohn, R. and M. Reinch [1997] Gauge fields in the separation of rotations and internal motions in the n-body problem. Rev. Mod. Phys. 69, 213-275.
Love, A. E. H. [1944] A Treatise on the Mathematical Theory of Elasticity. Dover.
Low, F. E. [1958] A Lagrangian formulation of the Boltzmann-Vlasov equation for plasmas. Proc. Roy. Soc. London A 248, 282-287.
Lu, J. H. and T. S. Ratiu [1991] On Kostant's convexity theorem. J. AMS 4, 349-364.
Lundgren, T. S. [1963] Hamilton's variational principle for a perfectly conducing plasma continuum. Phys. Fluids 6, 898-904.
MacKay, R. S. [1991] Movement of eigenvalues of Hamiltonian equilibria under nonHamiltonian perturbation. Phys. Lett. A 155, 266-268.
MacKay, R. S. and J. D. Meiss [1987] Hamiltonian Dynamical Systems. Adam Higler, IOP Publishing.
Maddocks, J. [1991] On the stability of relative equilibria. IMA J. Appl. Math. 46, 71-99.
Maddocks, J. and R. L. Sachs [1993] On the stability of KdV multi-solitons. Comm. Pure and Applied Math. 46, 867-901.
Manin, Y. I. [1979] Algebraic aspects of nonlinear differential equations. J. Soviet Math. 11, 1-122.
Marle, C. M. [1976] Symplectic manifolds, dynamical groups and Hamiltonian mechanics; in Differential Geometry and Relativity, M. Cahen and M. Flato (eds.), Reidel.
Marsden, J. E. [1967], A correspondence principle for momentum operators, Can. Math. Bull. 10, 247-250.
Marsden, J. E. [1981] Lectures on Geometric Methods in Mathematical Physics. SIAM.
Marsden, J. E. [1982] A group theoretic approach to the equations of plasma physics. Canad. Math. Bull. 25, 129-142.
Marsden, J. E. [1987] Appendix to Golubitsky and Stewart [1987].
Marsden, J. E. [1992] Lectures on Mechanics. London Mathematical Society Lecture Note Series, 174, Cambridge University Press.
Marsden, J. E., D. G. Ebin, and A. Fischer [1972] Diffeomorphism groups, hydrodynamics and relativity. Proceedings of the 13th Biennial Seminar on Canadian Mathematics Congress, pp. 135-279.
Marsden, J. E. and T. J. R. Hughes [1983] Mathematical Foundations of Elasticity. Prentice-Hall. Dover edition [1994].
Marsden, J. E. and M. McCracken [1976] The Hopf Bifurcation and its Applications. Springer Applied Mathematics Series 19.
Marsden, J. E., G. Misiolek, M. Perlmutter, and T. S. Ratiu [1998] Symplectic reduction for semidirect products and central extensions. Diff. Geometry and Appl. 9, 173212.

Marsden, J. E., R. Montgomery, P. Morrison, and W. B. Thompson [1986] Covariant Poisson brackets for classical fields. Ann. of Phys. 169, 29-48.

Marsden, J. E., R. Montgomery, and T. Ratiu [1989] Cartan-Hannay-Berry phases and symmetry. Cont. Math. AMS 97, 279-295.
Marsden, J. E., R. Montgomery, and T. S. Ratiu [1990] Reduction, Symmetry, and Phases in Mechanics. Memoirs of the AMS volume 88, number 436.
Marsden, J. E. and P. J. Morrison [1984] Noncanonical Hamiltonian field theory and reduced MHD. Cont. Math. AMS 28, 133-150.
Marsden, J. E., P. J. Morrison, and A. Weinstein [1984] The Hamiltonian structure of the BBGKY hierarchy equations. Cont. Math. AMS 28, 115-124.
Marsden, J. E., O. M. O’Reilly, F. J. Wicklin, and B. W. Zombro [1991] Symmetry, stability, geometric phases, and mechanical integrators. Nonlinear Science Today 1, 4-11; 1, 14-21.
Marsden, J.E. and J. Ostrowski [1998] Symmetries in Motion: Geometric Foundations of Motion Control. Nonlinear Sci. Today (http://link.springer-ny.com).
Marsden, J. E., G. W. Patrick, and W. F. Shadwick [1996] Integration Algorithms and Classical Mechanics. Fields Institute Communications 10, Am. Math. Society.
Marsden, J. E., G. W. Patrick, and S. Shkoller [1998] Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs. Comm. Math. Phys. 199, 351-395.
Marsden, J. E. and T. S. Ratiu [1986] Reduction of Poisson manifolds. Lett. Math. Phys. 11, 161-170.
Marsden, J. E., T. S. Ratiu, and G. Raugel [1991] Symplectic connections and the linearization of Hamiltonian systems. Proc. Roy. Soc. Edinburgh A 117, 329-380.
Marsden, J. E., T. S. Ratiu, and J. Scheurle [2000] Reduction theory and the LagrangeRouth equations, J. Math. Phys. 41, 3379-3429.
Marsden, J. E., T. S. Ratiu, and A. Weinstein [1984a] Semi-direct products and reduction in mechanics. Trans. Amer. Math. Soc. 281, 147-177.
Marsden, J. E., T. S. Ratiu, and A. Weinstein [1984b] Reduction and Hamiltonian structures on duals of semidirect product Lie Algebras. Cont. Math. AMS 28, 55-100.
Marsden, J. E. and J. Scheurle [1987] The Construction and Smoothness of Invariant Manifolds by the Deformation Method. SIAM J. Math. Anal. 18, 1261-1274.
Marsden, J. E. and J. Scheurle [1993a] Lagrangian reduction and the double spherical pendulum. ZAMP 44, 17-43.
Marsden, J. E. and J. Scheurle [1993b] The reduced Euler-Lagrange equations. Fields Institute Comm. 1, 139-164.
Marsden, J. E. and J. Scheurle [1995] Pattern evocation and geometric phases in mechanical systems with symmetry. Dyn. and Stab. of Systems 10, 315-338.
Marsden, J. E., J. Scheurle, and J. Wendlandt [1996] Visualization of orbits and pattern evocation for the double spherical pendulum. ICIAM 95: Mathematical Research, Academie Verlag, Ed. by K. Kirchgässner, O. Mahrenholtz, and R. Mennicken 87, 213-232.
Marsden, J. E. and S. Shkoller [1999], Multisymplectic geometry, covariant Hamiltonians and water waves, Math. Proc. Camb. Phil. Soc. 125, 553-575.
Marsden, J. E. and A. J. Tromba [1996] Vector Calculus. Fourth Edition, W.H. Freeman.
Marsden, J. E. and A. Weinstein [1974] Reduction of symplectic manifolds with symmetry. Rep. Math. Phys. 5, 121-130.
Marsden, J. E. and A. Weinstein [1979] Review of Geometric Asymptotics and Symplectic Geometry and Fourier Analysis, Bull. Amer. Math. Soc. 1, 545-553.

Marsden, J. E. and A. Weinstein [1982] The Hamiltonian structure of the MaxwellVlasov equations. Physica D 4, 394-406.
Marsden, J. E. and A. Weinstein [1983] Coadjoint orbits, vortices and Clebsch variables for incompressible fluids. Physica D 7, 305-323.
Marsden, J. E., A. Weinstein, T. S. Ratiu, R. Schmid, and R. G. Spencer [1983] Hamiltonian systems with symmetry, coadjoint orbits and plasma physics. Proc. IUTAMIS1MM Symposium on Modern Developments in Analytical Mechanics, Torino 1982, Atti della Acad. della Sc. di Torino 117, 289-340.
Marsden, J. E. and J. M. Wendlandt [1997] Mechanical systems with symmetry, variational principles and integration algorithms. Current and Future Directions in Applied Mathematics, Edited by M. Alber, B. Hu, and J. Rosenthal, Birkhäuser, 219-261.
Martin, J. L. [1959] Generalized classical dynamics and the "classical analogue" of a Fermi oscillation. Proc. Roy. Soc. London A 251, 536.
Maslov, V. P. [1965] Theory of Perturbations and Asymptotic Methods. Moscow State University.
Mazer, A. and T. S. Ratiu [1989] Hamiltonian formulation of adiabatic free boundary Euler flows. J. Geom. Phys. 6, 271-291.
Melbourne, I., P. Chossat, and M. Golubitsky [1989] Heteroclinic cycles involving periodic solutions in mode interactions with $O(2)$ symmetry. Proc. Roy. Soc. Edinburgh 133A, 315-345.
Melbourne, I. and M. Dellnitz [1993] Normal forms for linear Hamiltonian vector fields commuting with the action of a compact Lie group. Proc. Camb. Phil. Soc. 114, 235-268.
Melnikov, V. K. [1963] On the stability of the center for time periodic perturbations. Trans. Moscow Math. Soc. 12, 1-57.
Meyer, K. R. [1973] Symmetries and integrals in mechanics. In Dynamical Systems, M. Peixoto (ed.). Academic Press, pp. 259-273.
Meyer, K. R. [1981] Hamiltonian systems with a discrete symmetry. J. Diff. Eqns. 41, 228-238.
Meyer, K. R. and R. Hall [1992] Hamiltonian Mechanics and the n-body Problem. Applied Mathematical Sciences 90, Springer-Verlag.
Meyer, K. R. and D. G. Saari [1988] Hamiltonian Dynamical Systems. Cont. Math. AMS 81.

Mielke, A. [1992] Hamiltonian and Lagrangian Flows on Center Manifolds, with Applications to Elliptic Variational Problems. Springer Lect. Notes in Math. 1489.
Mikhailov, G. K. and V. Z. Parton [1990] Stability and Analytical Mechanics. Applied Mechanics, Soviet Reviews. 1, Hemisphere.
Miller, S. C. and R. H. Good [1953] A WKB-type approximation to the Schrödinger equation. Phys. Rev. 91, 174-179.
Milnor, J. [1963] Morse Theory. Princeton University Press.
Milnor, J. [1965] Topology from the Differential Viewpoint. University of Virginia Press.
Mishchenko, A. S. and A. T. Fomenko [1976] On the integration of the Euler equations on semisimple Lie algebras. Sov. Math. Dokl. 17, 1591-1593.
Mishchenko, A. S. and A. T. Fomenko [1978a] Euler equations on finite-dimensional Lie groups. Math. USSR, Izvestija 12, 371-389.
Mishchenko, A. S. and A. T. Fomenko [1978b] Generalized Liouville method of integration of Hamiltonian systems. Funct. Anal. Appl. 12, 113-121.

Mishchenko, A. S. and A. T. Fomenko [1979] Symplectic Lie group actions. Springer Lecture Notes in Mathematics 763, 504-539.
Mishchenko, A. S., V. E. Shatalov, and B. Y. Sternin [1990] Lagrangian Manifolds and the Maslov Operator. Springer-Verlag.
Misiolek, G. [1998] A shallow water equation as a geodesic flow on the Bott-Virasoro group. J. Geom. Phys. 24, 203-208.
Misner, C., K. Thorne, and J. A. Wheeler [1973] Gravitation. W.H. Freeman, San Francisco.
Mobbs, S. D. [1982] Variational principles for perfect and dissipative fluid flows. Proc. Roy. Soc. London A 381, 457-468.
Montaldi, J. A., R. M. Roberts, and I. N. Stewart [1988] Periodic solutions near equilibria of symmetric Hamiltonian systems. Phil. Trans. Roy. Soc. London A 325, 237-293.
Montaldi, J. A., R. M. Roberts, and I. N. Stewart [1990] Existence of nonlinear normal modes of symmetric Hamiltonian systems. Nonlinearity 3, 695-730, 731-772.
Montgomery, R. [1984] Canonical formulations of a particle in a Yang-Mills field. Lett. Math. Phys. 8, 59-67.
Montgomery, R. [1985] Analytic proof of chaos in the Leggett equations for superfluid ${ }^{3}$ He. J. Low Temp. Phys. 58, 417-453.
Montgomery, R. [1988] The connection whose holonomy is the classical adiabatic angles of Hannay and Berry and its generalization to the non-integrable case. Comm. Math. Phys. 120, 269-294.
Montgomery, R. [1990] Isoholonomic problems and some applications. Comm. Math. Phys. 128, 565-592.
Montgomery, R. [1991a] How much does a rigid body rotate? A Berry's phase from the eighteenth century. Amer. J. Phys. 59, 394-398.
Montgomery, R. [1991b] The Geometry of Hamiltonian Systems, T. Ratiu ed., MSRI Series 22, Springer-Verlag.
Montgomery, R., J. E. Marsden, and T. S. Ratiu [1984] Gauged Lie-Poisson structures. Cont. Math. AMS 28, 101-114.
Moon, F. C. [1987] Chaotic Vibrations, Wiley-Interscience.
Moon, F. C. [1998] Applied Dynamics, Wiley-Interscience.
Morozov, V. M., V. N. Rubanovskii, V. V. Rumiantsev, and V. A. Samsonov [1973] On the bifurcation and stability of the steady state motions of complex mechanical systems. PMM 37, 387-399.
Morrison, P. J. [1980] The Maxwell-Vlasov equations as a continuous Hamiltonian system. Phys. Lett. A 80, 383-386.
Morrison, P. J. [1982] Poisson brackets for fluids and plasmas, in Mathematical Methods in Hydrodynamics and Integrability in Related Dynamical Systems. M. Tabor and Y. M. Treve (eds.) AIP Conf. Proc. 88.

Morrison, P. J. [1986] A paradigm for joined Hamiltonian and dissipative systems. Physica D 18, 410-419.
Morrison, P. J. [1987] Variational principle and stability of nonmonotone Vlasov-Poisson equilibria. Z. Naturforsch. 42a, 1115-1123.
Morrison, P. J. and S. Eliezer [1986] Spontaneous symmetry breaking and neutral stability on the noncanonical Hamiltonian formalism. Phys. Rev. A 33, 4205.
Morrison, P. J. and D. Pfirsch [1990] The free energy of Maxwell-Vlasov equilibria. Phys. Fluids B 2, 1105-1113.

Morrison, P. J. and D. Pfirsch [1992] Dielectric energy versus plasma energy, and Hamiltonian action-angle variables for the Vlasov equation. Phys. Fluids B 4, 3038-3057.
Morrison, P. J. and J. M. Greene [1980] Noncanonical Hamiltonian density formulation of hydrodynamics and ideal magnetohydrodynamics. Phys. Rev. Lett. 45, 790-794, errata 48 (1982), 569.
Morrison, P. J. and R. D. Hazeltine [1984] Hamiltonian formulation of reduced magnetohydrodynamics. Phys. Fluids 27, 886-897.
Moser, J. [1958] New aspects in the theory of stability of Hamiltonian systems. Comm. Pure Appl. Math. XI, 81-114.
Moser, J. [1965] On the volume elements on a manifold. Trans. Amer. Math. Soc. 120, 286-294.
Moser, J. [1973] Stable and Random Motions in Dynamical Systems with Special Emphasis on Celestial Mechanics. Princeton University Press.
Moser, J. [1974] Finitely Many Mass Points on the Line Under the Influence of an Exponential Potential. Springer Lect. Notes in Phys. 38, 417-497.
Moser, J. [1975] Three integrable Hamiltonian systems connected with isospectral deformations. Adv. in Math. 16, 197-220.
Moser, J. [1976] Periodic orbits near equilibrium and a theorem by Alan Weinstein. Comm. Pure Appl. Math. 29, 727-747.
Moser, J. [1980] Various aspects of integrable Hamiltonian systems. Dynamical Systems, Progress in Math. 8, Birkhäuser.
Moser, J. and A. P. Veselov [1991] Discrete versions of some classical integrable systems and factorization of matrix polynomials. Comm. Math. Phys. 139, 217-243.
Murray, R. M. and S. S. Sastry [1993] Nonholonomic motion planning: steering using sinusoids. IEEE Trans. on Automatic Control 38, 700-716.
Naimark, J. I. and N. A. Fufaev [1972] Dynamics of Nonholonomic Systems. Translations of Mathematical Monographs, Amer. Math. Soc., vol. 33.
Nambu, Y. [1973] Generalized Hamiltonian dynamics. Phys. Rev. D 7, 2405-2412.
Nekhoroshev, N. M. [1971a] Behavior of Hamiltonian systems close to integrable. Funct. Anal. Appl. 5, 338-339.
Nekhoroshev, N. M. [1971b] Action angle variables and their generalizations. Trans. Moscow Math. Soc. 26, 180-198.
Nekhoroshev, N. M. [1977] An exponential estimate of the time of stability of nearly integrable Hamiltonian systems. Russ. Math. Surveys 32, 1-65.
Neishtadt, A. [1984] The separation of motions in systems with rapidly rotating phase. P.M.M. USSR 48, 133-139.

Nelson, E. [1959] Analytic vectors. Ann. Math. 70, 572-615.
Neumann, C. [1859] de problemate quodam mechanico, quod ad primam integralium ultra-ellipticorum clossem revocatur. J. Reine u. Angew. Math. 56, 54-66.
Newcomb, W. A. [1958] Appendix in Bernstein [1958].
Newcomb, W. A. [1962] Lagrangian and Hamiltonian methods in Magnetohydrodynamics. Nuc. Fusion Suppl., part 2, 451-463.
Newell, A. C. [1985] Solitons in Mathematics and Physics. SIAM.
Newton, P. [1994] Hannay-Berry phase and the restricted three-vortex problem. Physica D 79, 416-423.
Nijenhuis, A. [1953] On the holonomy ogroup of linear connections. Indag. Math. 15, 233-249; 16 (1954), 17-25.

Nijenhuis, A. [1955] Jacobi-type identities for bilinear differential concomitants of certain tensor fields. Indag. Math. 17, 390-403.
Nill, F. [1983] An effective potential for classical Yang-Mills fields as outline for bifurcation on gauge orbit space. Ann. Phys. 149, 179-202.
Nirenberg, L. [1959] On elliptic partial differential equations. Ann. Scuola. Norm. Sup. Pisa 13(3), 115-162.
Noether, E. [1918] Invariante Variationsprobleme. Kgl. Ges. Wiss. Nachr. Göttingen. Math. Physik. 2, 235-257.
Oh, Y. G. [1987] A stability criterion for Hamiltonian systems with symmetry. J. Geom. Phys. 4, 163-182.
Oh, Y. G., N. Sreenath, P. S. Krishnaprasad, and J. E. Marsden [1989] The dynamics of coupled planar rigid bodies. Part 2: bifurcations, periodic solutions, and chaos. Dynamics Diff. Eqns. 1, 269-298.
Olver, P. J. [1980] On the Hamiltonian structure of evolution equations. Math. Proc. Camb. Philps. Soc. 88, 71-88.
Olver, P. J. [1984] Hamiltonian perturbation theory and water waves. Cont. Math. AMS 28, 231-250.
Olver, P. J. [1986] Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics 107, Springer-Verlag.
Olver, P. J. [1988] Darboux' theorem for Hamiltonian differential operators. J. Diff. Eqns. 71, 10-33.
Ortega, J.-P., and Ratiu, T. S. [1997] Persistence and smoothness of critical relative elements in Hamiltonian systems with symmetry. C. R. Acad. Sci. Paris Sér. I Math. 325, 1107-1111.
Ortega, J.-P., and Ratiu, T. S. [1998] Symmetry, Reduction, and Stability in Hamiltonian Systems. In preparation.
O'Reilly, O. M. [1996] The dynamics of rolling disks and sliding disks. Nonlinear Dynamics 10, 287-305.
O'Reilly, O. M. [1997] On the computation of relative rotations and geometric phases in the motions of rigid bodies. Preprint.
O'Reilly, O., N. K. Malhotra, and N. S. Namamchchivaya [1996] Some aspects of destabilization in reversible dynamical systems with application to follower forces. Nonlinear Dynamics 10, 63-87.
Otto, M. [1987] A reduction scheme for phase spaces with almost Kähler symmetry regularity results for momentum level sets. J. Geom. Phys. 4, 101-118.
Ovsienko, V. Y. and B. A. Khesin [1987] Korteweg-de Vries superequations as an Euler equation. Funct. Anal. Appl. 21, 329-331.
Palais, R. S. [1968] Foundations of Global Non-Linear Analysis. Benjamin.
Paneitz, S. M. [1981] Unitarization of symplectics and stability for causal differential equations in Hilbert space. J. Funct. Anal. 41, 315-326.
Pars, L. A. [1965] A Treatise on Analytical Dynamics. Wiley.
Patrick, G. [1989] The dynamics of two coupled rigid bodies in three-space. Cont. Math. AMS 97, 315-336.
Patrick, G. [1992] Relative equilibria in Hamiltonian systems: The dynamic interpretation of nonlinear stability on a reduced phase space. J. Geom. and Phys. 9, 111-119.
Patrick, G. [1995] Relative equilibria of Hamiltonian systems with symmetry: linearization, smoothness and drift. J. Nonlinear Sci. 5, 373-418.

Pauli, W. [1933] General Principles of Quantum Mechanics. Reprinted in English translation by Springer-Verlag (1981).
Pauli, W. [1953] On the Hamiltonian structure of non-local field theories. Il Nuovo Cimento 10, 648-667.
Pekarsky, S. and J. E. Marsden [1998] Point Vortices on a Sphere: Stability of Relative Equilibria. J. of Math. Phys. 39, 5894-5907.
Penrose, O. [1960] Electrostatic instabilities of a uniform non-Maxwellian plasma. Phys. Fluids 3, 258-265.
Percival, I. and D. Richards [1982] Introduction to Dynamics. Cambridge Univ. Press.
Perelomov, A. M. [1990] Integrable Systems of Classical Mechanics and Lie Algebras. Birkhäuser.
Poincaré, H. [1885] Sur l'équilibre d'une masse fluide animée d'un mouvement de rotation. Acta Math. 7, 259.
Poincaré, H. [1890] Sur la problème des trois corps et les équations de la dynamique. Acta Math. 13, 1-271.
Poincaré, H. [1892] Les formes d'équilibre d'une masse fluide en rotation. Revue Générale des Sciences 3, 809-815.
Poincaré, H. [1901a] Sur la stabilité de l'équilibre des figures piriformes affectées par une masse fluide en rotation. Philos. Trans. A 198, 333-373.
Poincaré, H. [1901b] Sur une forme nouvelle des équations de la mécanique. C.R. Acad. Sci. 132, 369-371.
Poincaré, H. [1910] Sur la precession des corps déformables. Bull. Astron. 27, 321-356.
Potier-Ferry, M. [1982] On the mathematical foundations of elastic stability theory. Arch. Rat. Mech. Anal. 78, 55-72.
Pressley, A. and G. Segal [1988] Loop Groups. Oxford Univ. Press.
Pullin, D. I. and P. G. Saffman [1991] Long time symplectic integration: the example of four-vortex motion. Proc. Roy. Soc. London A 432, 481-494.
Puta, M. [1993] Hamiltonian Mechanical Systems and Geometric Quantization. Kluwer.
Rais, M. [1972] Orbites de la représentation coadjointe d'un groupe de Lie, Représentations des Groupes de Lie Résolubles. P. Bernat, N. Conze, M. Duflo, M. Lévy-Nahas, M. Rais, P. Renoreard, M. Vergne, eds. Monographies de la Société Mathématique de France, Dunod, Paris 4, 15-27.
Ratiu, T. S. [1980] Thesis. University of California at Berkeley.
Ratiu, T. S. [1981a] Euler-Poisson equations on Lie algebras and the N-dimensional heavy rigid body. Proc. Nat. Acad. Sci. USA 78, 1327-1328.
Ratiu, T. S. [1981b] The C. Neumann problem as a completely integrable system on an adjoint orbit. Trans. Amer. Math. Soc. 264, 321-329.
Ratiu, T. S. [1982] Euler-Poisson equations on Lie algebras and the N-dimensional heavy rigid body. Amer. J. Math. 104, 409-448, 1337.
Rayleigh, J. W. S. [1880] On the stability or instability of certain fluid motions. Proc. London. Math. Soc. 11, 57-70.
Rayleigh, L. [1916] On the dynamics of revolving fluids. Proc. Roy. Soc. London A 93, 148-154.
Reeb, G. [1949] Sur les solutions périodiques de certains systèmes différentiels canoniques. C.R. Acad. Sci. Paris 228, 1196-1198.
Reeb, G. [1952] Variétés symplectiques, variétés presque-complexes et systèmes dynamiques. C.R. Acad. Sci. Paris 235, 776-778.

Reed, M. and B. Simon [1974] Methods on Modern Mathematical Physics. Vol. 1: Functional Analysis. Vol. 2: Self-adjointness and Fourier Analysis. Academic Press.
Reyman, A. G. and M. A. Semenov-Tian-Shansky [1990] Group theoretical methods in the theory of integrable systems. Encyclopedia of Mathematical Sciences 16, Springer-Verlag.
Riemann, B. [1860] Untersuchungen über die Bewegung eines flüssigen gleich-artigen Ellipsoides. Abh. d. Königl. Gesell. der Wiss. zu Göttingen 9, 3-36.
Riemann, B. [1861] Ein Beitrag zu den Untersuchungen über die Bewegung eines flüssigen gleichartigen Ellipsoides. Abh. d. Königl. Gesell. der Wiss. zu Göttingen.
Riesz, F. and B. S. Nagy [1990], Functional analysis. Dover Publications Inc., New York. Translated from the second French edition by Leo F. Boron, Reprint of the 1955 original.
Robbins, J. M. and M. V. Berry [1992] The geometric phase for chaotic systems. Proc. Roy. Soc. London A 436, 631-661.
Robinson, C. [1970] Generic properties of conservative systems, I, II. Amer. J. Math. 92, 562-603.
Robinson, C. [1975] Fixing the center of mass in the n-body problem by means of a group action. Colloq. Intern. CNRS 237.
Robinson, C. [1988] Horseshoes for autonomous Hamiltonian systems using the Melnikov integral. Ergodic Theory Dynamical Systems 8*, 395-409.
Rosenbluth, M. N. [1964] Topics in microinstabilities. Adv. Plasma Phys. 137, 248.
Routh, E. J. [1877] Stability of a given state of motion. Macmillan. Reprinted in Stability of Motion, A. T. Fuller (ed.), Halsted Press, 1975.
Routh, E. J. [1884] Advanced Rigid Dynamics. Macmillian.
Rubin, H. and P. Ungar [1957] Motion under a strong constraining force. Comm. Pure Appl. Math. 10, 65-87.
Rumjantsev, V. V. [1982] On stability problem of a top. Rend. Sem. Mat. Univ. Padova 68, 119-128.
Ruth, R. [1983] A canonical integration technique. IEEE Trans. Nucl. Sci. 30, 26692671.

Rytov, S. M. [1938] Sur la transition de l'optique ondulatoire à l'optique géométrique. Dokl. Akad. Nauk SSSR 18, 263-267.
Salam, F. M. A., J. E. Marsden, and P. P. Varaiya [1983] Arnold diffusion in the swing equations of a power system. IEEE Trans. CAS 30, 697-708, $31673-688$.
Salam, F. A. and S. Sastry [1985] Complete Dynamics of the forced Josephson junction; regions of chaos. IEEE Trans. CAS 32 784-796.
Salmon, R. [1988] Hamiltonian fluid mechanics. Ann. Rev. Fluid Mech. 20, 225-256.
Sánchez de Alvarez, G. [1986] Thesis. University of California at Berkeley.
Sánchez de Alvarez, G. [1989] Controllability of Poisson control systems with symmetry. Cont. Math. AMS 97, 399-412.
Sanders, J. A. [1982] Melnikov's method and averaging. Celestial Mech. 28, 171-181.
Sanders, J. A. and F. Verhulst [1985] Averaging Methods in Nonlinear Dynamical Systems. Applied Mathematical Sciences 59, Springer-Verlag.
Sanz-Serna, J. M. and M. Calvo [1994] Numerical Hamiltonian Problems. Chapman and Hall, London.
Sattinger, D. H. and D. L. Weaver [1986] Lie Groups and Lie Algebras in Physics, Geometry, and Mechanics. Applied Mathematical Sciences 61, Springer-Verlag.

Satzer, W. J. [1977] Canonical reduction of mechanical systems invariant under abelian group actions with an application to celestial mechanics. Indiana Univ. Math. J. 26, 951-976.
Scheurle, J. [1989] Chaos in a rapidly forced pendulum equation. Cont. Math. AMS 97, 411-419.
Scheurle, J., J. E. Marsden, and P. J. Holmes [1991] Exponentially small estimates for separatrix splittings. Proc. Conf. Beyond all Orders, H. Segur and S. Tanveer (eds.), Birkhäuser.
Schouten, J. A. [1940] Ricci Calculus (2nd Edition 1954). Springer-Verlag.
Schur, I. [1923] Über eine Klasse von Mittelbildungen mit Anwendungen auf Determinantentheorie. Sitzungsberichte der Berliner Math. Gessellshaft 22, 9-20.
Scovel, C. [1991] Symplectic numerical integration of Hamiltonian systems. Geometry of Hamiltonian systems, ed. T. Ratiu, MSRI Series 22, Springer-Verlag, pp. 463-496.
Segal, G. [1991] The geometry of the KdV equation. Int. J. Mod. Phys. A 6, 2859-2869.
Segal, I. [1962] Nonlinear semigroups. Ann. Math. 78, 339-364.
Seliger, R. L. and G. B. Whitham [1968] Variational principles in continuum mechanics. Proc. Roy. Soc. London 305, 1-25.
Serrin, J. [1959] Mathematical principles of classical fluid mechanics. Handbuch der Physik VIII-I, 125-263, Springer-Verlag.
Shahshahani, S. [1972] Dissipative systems on manifolds. Inv. Math. 16, 177-190.
Shapere, A. and F. Wilczek [1987] Self-propulsion at low Reynolds number. Phys. Rev. Lett. 58, 2051-2054.
Shapere, A. and F. Wilczeck [1989] Geometry of self-propulsion at low Reynolds number. J. Fluid Mech. 198, 557-585.

Shinbrot, T., C. Grebogi, J. Wisdom, and J. A. Yorke [1992] Chaos in a double pendulum. Amer. J. Phys. 60, 491-499.
Simo, J. C. and D. D. Fox [1989] On a stress resultant, geometrically exact shell model. Part I: Formulation and optimal parametrization. Comp. Meth. Appl. Mech. Engr. 72, 267-304.
Simo, J. C., D. D. Fox, and M. S. Rifai [1990] On a stress resultant geometrically exact shell model. Part III: Computational aspects of the nonlinear theory. Comput. Methods Applied Mech. and Engr. 79, 21-70.
Simo, J. C., D. R. Lewis, and J. E. Marsden [1991] Stability of relative equilibria I: The reduced energy momentum method. Arch. Rat. Mech. Anal. 115, 15-59.
Simo, J. C. and J. E. Marsden [1984] On the rotated stress tensor and a material version of the Doyle Ericksen formula. Arch. Rat. Mech. Anal. 86, 213-231.
Simo, J. C., J. E. Marsden, and P. S. Krishnaprasad [1988] The Hamiltonian structure of nonlinear elasticity: The material, spatial, and convective representations of solids, rods, and plates. Arch. Rat. Mech. Anal. 104, 125-183.
Simo, J. C., T. A. Posbergh, and J. E. Marsden [1990] Stability of coupled rigid body and geometrically exact rods: block diagonalization and the energy-momentum method. Phys. Rep. 193, 280-360.
Simo, J. C., T. A. Posbergh, and J. E. Marsden [1991] Stability of relative equilibria II: Three dimensional elasticity. Arch. Rat. Mech. Anal. 115, 61-100.
Simo, J. C., M. S. Rifai, and D. D Fox [1992] On a stress resultant geometrically exact shell model. Part VI: Conserving algorithms for nonlinear dynamics. Comp. Meth. Appl. Mech. Engr. 34, 117-164.

Simo, J. C. and N. Tarnow [1992] The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. ZAMP 43, 757-792.
Simo, J. C., N. Tarnow, and K. K. Wong [1992] Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics. Comput. Methods Appl. Mech. Engr. 1, 63-116.
Simo, J. C. and L. VuQuoc [1985] Three-dimensional finite strain rod model. Part II. Computational Aspects. Comput. Methods Appl. Mech. Engr. 58, 79-116.
Simo, J. C. and L. VuQuoc [1988a] On the dynamics in space of rods undergoing large overall motions-a geometrically exact approach. Comput. Methods Appl. Mech. Engr. 66, 125-161.
Simo, J. C. and L. VuQuoc [1988b] The role of nonlinear theories in the dynamics of fast rotating flexible structures. J. Sound Vibration 119, 487-508.
Simo, J. C. and K. K. Wong [1989] Unconditionally stable algorithms for the orthogonal group that exactly preserve energy and momentum. Int. J. Num. Meth. Engr. 31, 19-52.
Simon, B. [1983] Holonomy, the Quantum Adiabatic Theorem, and Berry's Phase. Phys. Rev. Letters 51, 2167-2170.
Sjamaar, R. and E. Lerman [1991] Stratified symplectic spaces and reduction. Ann. of Math. 134, 375-422.
Slawianowski, J. J. [1971] Quantum relations remaining valid on the classical level. Rep. Math. Phys. 2, 11-34.
Slebodzinski, W. [1931] Sur les équations de Hamilton. Bull. Acad. Roy. de Belg. 17, 864-870.
Slebodzinski, W. [1970] Exterior Forms and Their Applications. Polish Scientific.
Slemrod, M. and J. E. Marsden [1985] Temporal and spatial chaos in a van der Waals fluid due to periodic thermal fluctuations. Adv. Appl. Math. 6, 135-158.
Smale, S. [1964] Morse theory and a nonlinear generalization of the Dirichlet problem. Ann. Math. 80, 382-396.
Smale, S. [1967] Differentiable dynamical systems. Bull. Amer. Math. Soc. 73, 747-817. (Reprinted in The Mathematics of Time. Springer-Verlag, by S. Smale [1980].)
Smale, S. [1970] Topology and Mechanics. Inv. Math. 10, 305-331; 11, 45-64.
Sniatycki, J. [1974] Dirac brackets in geometric dynamics. Ann. Inst. H. Poincaré 20, 365-372.
Sniatycki, J. and W. Tulczyjew [1971] Canonical dynamics of relativistic charged particles. Ann. Inst. H. Poincaré 15, 177-187.
Sontag, E. D. and H. J. Sussman [1988] Further comments on the stabilization of the angular velocity of a rigid body. Systems Control Lett. 12, 213-217.
Souriau, J. M. [1966] Quantification géométrique. Comm. Math. Phys. 1, 374-398.
Souriau, J. M. [1967] Quantification géométrique. Applications. Ann. Inst. H. Poincaré 6, 311-341.
Souriau, J. M. [1970] (C1969) Structure des Systèmes Dynamiques. Dunod, Paris. English translation by R. H. Cushman and G. M. Tuynman. Progress in Mathematics, 149. Birkhäuser Boston, 1997.

Spanier, E. H. [1966] Algebraic Topology. McGraw-Hill (Reprinted by Springer-Verlag).
Spencer, R. G. and A. N. Kaufman [1982] Hamiltonian structure of two-fluid plasma dynamics. Phys. Rev. A 25, 2437-2439.
Spivak, M. [1976] A Comprehensive Introduction to Differential Geometry. Publish or Perish.

Sreenath, N., Y. G. Oh, P. S. Krishnaprasad, and J. E. Marsden [1988] The dynamics of coupled planar rigid bodies. Part 1: Reduction, equilibria and stability. Dyn. Stab. Systems 3, 25-49.
Stefan, P. [1974] Accessible sets, orbits and foliations with singularities. Proc. Lond. Math. Soc. 29, 699-713.
Sternberg, S. [1963] Lectures on Differential Geometry. Prentice-Hall. (Reprinted by Chelsea.)
Sternberg, S. [1969] Celestial Mechanics, Vols. I, II. Benjamin-Cummings.
Sternberg, S. [1975] Symplectic homogeneous spaces. Trans. Amer. Math. Soc. 212, 113-130.

Sternberg, S. [1977] Minimal coupling and the symplectic mechanics of a classical particle in the presence of a Yang-Mills field. Proc. Nat. Acad. Sci. 74, 5253-5254.
Su, C. A. [1961] Variational principles in plasma dynamics. Phys. Fluids 4, 1376-1378.
Sudarshan, E. C. G. and N. Mukunda [1974] Classical Mechanics: A Modern Perspective. Wiley, 1974; Second Edition, Krieber, 1983.
Sussman, H. [1973] Orbits of families of vector fields and integrability of distributions. Trans. Amer. Math. Soc. 180, 171-188.
Symes, W. W. [1980] Hamiltonian group actions and integrable systems. Physica D 1, 339-374.
Symes, W. W. [1982a] Systems of Toda type, inverse spectral problems and representation theory. Inv. Math. 59, 13-51.
Symes, W. W. [1982b] The QR algorithm and scattering for the nonperiodic Toda lattice. Physica D 4, 275-280.
Szeri, A. J. and P. J. Holmes [1988] Nonlinear stability of axisymmetric swirling flow. Phil. Trans. Roy. Soc. London A 326, 327-354.
Temam, R. [1975] On the Euler equations of incompressible perfect fluids. J. Funct. Anal. 20, 32-43.
Thirring, W. E. [1978] A Course in Mathematical Physics. Springer-Verlag.
Thomson, W. (Lord Kelvin) and P. G. Tait [1879] Treatise on Natural Philosophy. Cambridge University Press.
Toda, M. [1975] Studies of a non-linear lattice. Phys. Rep. Phys. Lett. 8, 1-125.
Tulczyjew, W. M. [1977] The Legendre transformation. Ann. Inst. Poincaré 27, 101-114.
Vaisman, I. [1987] Symplectic Geometry and Secondary Characteristic Classes. Progress in Mathematics 72, Birkhäuser.
Vaisman, I. [1994] Lectures on the Geometry of Poisson Manifolds. Progress in Mathematics 118, Birkhäuser.
Vaisman, I. [1996] Reduction of Poisson-Nijenhuis manifolds. J. Geom. and Physics 19, 90-98.
van der Meer, J. C. [1985] The Hamiltonian Hopf Bifurcation. Springer Lect. Notes in Math. 1160.
van der Meer, J. C. [1990] Hamiltonian Hopf bifurcation with symmetry. Nonlinearity 3, 1041-1056.
van der Schaft, A. J. [1982] Hamiltonian dynamics with external forces and observations. Math. Systems Theory 15, 145-168.
van der Schaft, A. J. [1986] Stabilization of Hamiltonian systems. Nonlinear Amer. TMA 10, 1021-1035.
van der Schaft, A. J. and D. E. Crouch [1987] Hamiltonian and self-adjoint control systems. Systems Control Lett. 8, 289-295.
van Kampen, N. G. and B. U. Felderhof [1967] Theoretical Methods in Plasma Physics. North-Holland.
van Kampen, N. G. and J. J. Lodder [1984] Constraints. Am. J. Phys. 52(5), 419-424.
van Saarloos, W. [1981] A canonical transformation relating the Lagrangian and Eulerian descriptions of ideal hydrodynamics. Physica A 108, 557-566.
Varadarajan, V. S. [1974] Lie Groups, Lie Algebras and Their Representations. Prentice Hall. (Reprinted in Graduate Texts in Mathematics, Springer-Verlag.)
Vershik, A. M. and L. Faddeev [1981] Lagrangian mechanics in invariant form. Sel. Math. Sov. 1, 339-350.
Vershik, A. M. and V. Ya Gershkovich [1988] Non-holonomic Riemannian manifolds. Encyclopedia of Math. Dynamical Systems 7, Springer-Verlag.
Veselov, A. P. [1988] Integrable discrete-time systems and difference operators. Funct. An. and Appl. 22, 83-94.
Veselov, A. P. [1991] Integrable Lagrangian correspondences and the factorization of matrix polynomials. Funct. An. and Appl. 25, 112-123.
Vinogradov, A. M. and I. S. Krasilshchik [1975] What is the Hamiltonian formalism? Russ. Math. Surveys 30, 177-202.
Vinogradov, A. M. and B. A. Kupershmidt [1977] The structures of Hamiltonian mechanics. Russ. Math. Surveys 32, 177-243.
Vladimirskii, V. V. [1941] Über die Drehung der Polarisationsebene im gekrümmten Lichtstrahl Dokl. Akad. Nauk USSR 21, 222-225.
Wald, R.M. [1993] Variational principles, local symmetries and black hole entropy. Proc. Lanczos Centenary Volume SIAM, 231-237.
Wan, Y. H. [1986] The stability of rotating vortex patches. Comm. Math. Phys. 107, 1-20.
Wan, Y. H. [1988a] Instability of vortex streets with small cores. Phys. Lett. A 127, 27-32.
Wan, Y. H. [1988b] Desingularizations of systems of point vortices. Physica D 32, 277295.

Wan, Y. H. [1988c] Variational principles for Hill's spherical vortex and nearly spherical vortices. Trans. Amer. Math. Soc. 308, 299-312.
Wan, Y. H. and M. Pulvirente [1984] Nonlinear stability of circular vortex patches. Comm. Math. Phys. 99, 435-450.
Wang, L. S. and P. S. Krishnaprasad [1992] Gyroscopic control and stabilization. J. Nonlinear Sci. 2, 367-415.
Wang, L. S., P. S. Krishnaprasad, and J. H. Maddocks [1991] Hamiltonian dynamics of a rigid body in a central gravitational field. Cel. Mech. Dyn. Astr. 50, 349-386.
Weber, R. W. [1986] Hamiltonian systems with constraints and their meaning in mechanics. Arch. Rat. Mech. Anal. 91, 309-335.
Weinstein, A. [1971] Symplectic manifolds and their Lagrangian submanifolds. Adv. in Math. 6, 329-346 (see also Bull. Amer. Math. Soc. 75 (1969), 1040-1041).
Weinstein, A. [1973] Normal modes for nonlinear Hamiltonian systems. Inv. Math. 20, 47-57.
Weinstein, A. [1977] Lectures on Symplectic Manifolds. CBMS Regional Conf. Ser. in Math. 29, Amer. Math. Soc.

Weinstein, A. [1978a] A universal phase space for particles in Yang-Mills fields. Lett. Math. Phys. 2, 417-420.
Weinstein, A. [1978b] Bifurcations and Hamilton's principle. Math. Z. 159, 235-248.
Weinstein, A. [1981] Neighborhood classification of isotropic embeddings. J. Diff. Geom. 16, 125-128.

Weinstein, A. [1983a] Sophus Lie and symplectic geometry. Exposition Math. 1, 95-96.
Weinstein, A. [1983b] The local structure of Poisson manifolds. J. Diff. Geom. 18, 523557.

Weinstein, A. [1984] Stability of Poisson-Hamilton equilibria. Cont. Math. AMS 28, 3-14.
Weinstein, A. [1990] Connections of Berry and Hannay type for moving Lagrangian submanifolds. Adv. in Math. 82, 133-159.
Weinstein, A. [1996] Lagrangian Mechanics and Groupoids. Fields Inst. Comm. 7, 207231.

Weinstein, A. [1997] The modular automorphism group of a Poisson manifold, J. Geom. Phys. 23, 379-394.
Wendlandt, J. M. and J. E. Marsden [1997] Mechanical integrators derived from a discrete variational principle. Physica D 106, 223-246.
Whittaker, E. T. [1927] A Treatise on the Analytical Dynamics of Particles and Rigidbodies. Cambridge University Press.
Whittaker, E. T. and G. N. Watson [1940] A Course of Modern Analysis, 4th ed. Cambridge University Press.
Wiggins, S. [1988] Global Bifurcations and Chaos. Texts in Applied Mathematical Sciences 73, Springer-Verlag.
Wiggins, S. [1990] Introduction to Applied Nonlinear Dynamical Systems and Chaos. Texts in Applied Mathematical Sciences 2, Springer-Verlag.
Wiggins, S. [1992] Chaotic Transport in Dynamical Systems. Interdisciplinary Mathematical Sciences, Springer-Verlag.
Wiggins, S. [1993] Global Dynamics, Phase Space Transport, Orbits Homoclinic to Resonances and Applications. Fields Institute Monographs. 1, Amer. Math. Soc.
Wilczek, F. and A. Shapere [1989] Geometry of self-propulsion at low Reynold's number. Efficiencies of self-propulsion at low Reynold's number. J. Fluid Mech. 198, 587599.

Williamson, J. [1936] On an algebraic problem concerning the normal forms of linear dynamical systems. Amer. J. Math. 58, 141-163; 59, 599-617.
Wintner, A. [1941] The Analytical Foundations of Celestial Mechanics. Princeton University Press.
Wisdom, J., S. J. Peale, and F. Mignard [1984] The chaotic rotation of Hyperion. Icarus 58, 137-152.
Wong, S. K. [1970] Field and particle equations for the classical Yang-Mills field and particles with isotopic spin. Il Nuovo Cimento 65, 689-694.
Woodhouse, N. M. J. [1992] Geometric Quantization. Clarendon Press, Oxford University Press, 1980, Second Edition, 1992.
Xiao, L. and M. E. Kellman [1989] Unified semiclassical dynamics for molecular resonance spectra. J. Chem. Phys. 90, 6086-6097.
Yang, C. N. [1985] Fiber bundles and the physics of the magnetic monopole. The Chern Symposium. Springer-Verlag, pp. 247-254.

Yang, R. and P. S. Krishnaprasad [1990] On the dynamics of floating four bar linkages. Proc. 28th IEEE Conf. on Decision and Control.
Zakharov, V. E. [1971] Hamiltonian formalism for hydrodynamic plasma models. Sov. Phys. JETP 33, 927-932.
Zakharov, V. E. [1974] The Hamiltonian formalism for waves in nonlinear media with dispersion. Izvestia Vuzov, Radiofizika 17.
Zakharov, V. E. and L. D. Faddeev [1972] Korteweg-de Vries equation: a completely integrable Hamiltonian system. Funct. Anal. Appl. 5, 280-287.
Zakharov, V. E. and E. A. Kuznetsov [1971] Variational principle and canonical variables in magnetohydrodynamics. Sov. Phys. Dokl. 15, 913-914.
Zakharov, V. E. and E. A. Kuznetsov [1974] Three-dimensional solitons. Sov. Phys. JETP 39, 285-286.
Zakharov, V. E. and E. A. Kuznetsov [1984] Hamiltonian formalism for systems of hydrodynamic type. Math. Phys. Rev. 4, 167-220.
Zenkov, D. V. [1995] The Geometry of the Routh Problem. J. Nonlinear Sci. 5, 503-519.
Zenkov, D. V., A. M. Bloch, and J. E. Marsden [1998] The Energy Momentum Method for the Stability of Nonholonomic Systems. Dyn. Stab. of Systems. 13, 123-166.
Zhuravlev, V. F. [1996] The solid angle theorem in rigid-body dynamics. J. Appl. Math. and Mech. (PMM) 60, 319-322.
Ziglin, S. L. [1980a] Decomposition of separatrices, branching of solutions and nonexistena of an integral in the dynamics of a rigid body. Trans. Moscow Math. Soc. 41, 287.

Ziglin, S. L. [1980b] Nonintegrability of a problem on the motion of four point vortices. Sov. Math. Dokl. 21, 296-299.
Ziglin, S. L. [1981] Branching of solutions and nonexistence of integrals in Hamiltonian systems. Dokl. Akad. Nauk SSSR 257, 26-29; Funct. Anal. Appl. 16, 30-41, 17, 8-23.

