

Math Jeopardy

Trig
Derivatives

Inverse Trig

Implicit
Different.

Logs and
Exponents

ALL MIXED UP
$\$ 100$

$\$ 100$

$\$ 100$

$\$ 100$

$\$ 200$
$\$ 300$
$\$ 400$
$\$ 500$

$\$ 500$

 $\$ 500$ $\$ 500$ $\$ 500$ $\$ 500$
Cat1 Help

Text Object.

Math Type Object

Double Click to Edit

Cat2Help

Text Object.

Math Type Object Double Click to Edit

Cat3Help

Text Object.

Math Type Object Double Click to Edit

Cat4Help

Text Object.

Math Type Object Double Click to Edit

Cat5Help

Text Object.

Math Type Object Double Click to Edit

Cat6Help

Text Object.

Math Type Object Double Click to Edit

$\$ 100$

$y=\csc (3 x)$

Find y^{\prime}.

$\$ 100$

$y=\csc (3 x)$

$y^{\prime}=-3 \csc (3 x) \cot (3 x)$

 Find y'.
\$200

What is the derivative of $y=5 \cos (x)-\sec (2 x)$?

\$200

What is the derivative of
$y=5 \cos (x)-\sec (2 x)$

$\$ 300$

A particle is at $\quad s(t)=\frac{\sin (t)}{t}$

$$
\text { for any time, } \mathrm{t}>0 \text { seconds. }
$$

What is its velocity at

$$
\mathrm{t}=\pi / 2 ?(\mathrm{NO} \mathrm{C} \text { 那LCULATOR })
$$

$\$ 300$

A particle is at

$$
s(t)=\frac{\sin (t)}{t}
$$

for any time, $\mathrm{t}>0$ seconds. What is its velocity at $\mathrm{t}=\pi / 2$?

$v\left(\frac{\pi}{2}\right)=\frac{-4}{\pi^{2}}$

$\$ 400$

$$
y=\frac{\cos (4 x)}{3 x^{2}} \quad y^{\prime}=?
$$

Simplify your answer.

$\$ 400$

$$
\begin{gathered}
y=\frac{\cos (4 x)}{3 x^{2}} \\
y^{\prime}=
\end{gathered}
$$

$-4 x \sin (4 x)-2 \cos (4 x)$
 $3 x^{3}$

$\$ 500$

$$
\text { If } y=\tan (3 x)
$$

find the equation of the normal line to this curve at the point

$\$ 500$

If $y=\tan (3 x)$
find the equation of the normal
line to this curve at the point
$\mathrm{x}=\frac{\pi}{4}$

$y+1=\frac{-1}{6}\left(x-\frac{\pi}{4}\right)$
 $$
y=-\frac{1}{6} x+\frac{(\pi-24)}{24}
$$

$\$ 100$

$$
\begin{aligned}
& y=(10 x+4)^{5} \\
& y^{\prime}=?
\end{aligned}
$$

\$100

$y=(10 x+4)^{5}$
$y^{\prime}=$

$50(10 x+4)^{4}$

\$200

$$
\begin{aligned}
& y=\sqrt[3]{9 x^{2}+4} \\
& y^{\prime}=?
\end{aligned}
$$

Ansisuer

$\$ 200$

$y^{\prime}=6 x\left(9 x^{2}+4\right)^{-2 / 3}$

$\$ 300$

Find

y^{\prime}.

$$
y=\sin ^{3}(4 t)
$$

$\$ 300$

$y^{\prime}=$

$12 \sin ^{2}(4 t) \cos (4 t)$

$\$ 400$

$y=\left(\frac{1-2 v}{1+v}\right)^{3} y^{\prime}=?$

Aliswer

$\$ 400$

$-9(1-2 v)^{2}$
 $$
(v+1)^{4}
$$

Given the curve:

$$
\begin{gathered}
y=(4 x-3)^{5}(x+2) \\
\text { Find the } \\
\text { equation of the line } \\
\text { tangent at } x=1
\end{gathered}
$$

$\$ 500$

Given the curve:

$$
y=(4 x-3)^{5}(x+2)
$$

Find the equation of the line tangent to $\mathrm{x}=1$.

$y-3=61(x-1)$

$y=61 x-58$

\$100

$$
y=\sin ^{-1}(5 x)
$$

$$
y^{\prime}=?
$$

\$100

$$
\begin{aligned}
& y=\sin ^{-1}(5 x) \\
& y^{\prime}=
\end{aligned}
$$

\$200

$$
\begin{aligned}
& y=(\arctan x)^{2} \\
& y^{\prime}=?
\end{aligned}
$$

$\$ 200$

$y=(\arctan x)^{2}$
$y^{\prime}=$

$2 \tan ^{-1} x$

$$
1+x^{2}
$$

Find the derivative of:

$$
y=\cot ^{-1}\left(\frac{x}{5}\right)-\cot ^{-1}(x)
$$

$\$ 300$

$y=\cot ^{-1}\left(\frac{x}{5}\right)-\cot ^{-1}(x)$ $y^{\prime}=$

$\$ 400$

$$
\begin{aligned}
& y=\ln \left(t^{2}+4\right)+\frac{1}{2} \tan ^{-1}\left(\frac{t}{2}\right) \\
& y^{\prime}=? \\
& \underline{\text { Simplify as much as possible. }}
\end{aligned}
$$

$\$ 400$

$2 t+1$

$y=\ln \left(t^{2}+4\right)+\frac{1}{2} \tan ^{-1}\left(\frac{t}{2}\right)$ $y^{\prime}=$

$\$ 500$

$y=2 \sqrt{x-1}\left(\csc ^{-1} \sqrt{x}\right)$ $y^{\prime}=$?

$\$ 500$

$\$ 100$

$$
4 x^{2}+4 y^{2}=25
$$

$$
\text { Find } \frac{d y}{d x}
$$

Ansisuer

\$100

$$
4 x^{2}+4 y^{2}=25
$$

$d y$
 $-x$
 y

$\$ 200$

$\frac{d y}{d x}=?$

$d x \quad$ when

$\cos (y)=3 x^{2}+y^{2}$

$\$ 200$

$$
\cos (y)=3 x^{2}+y^{2}
$$

$d y=-6 x$
 $d x \quad 2 y+\sin (y)$

$\$ 300$

$$
\begin{aligned}
& x^{2}-x y+y^{3}=1 \\
& \frac{d y}{d x}=
\end{aligned}
$$

$\$ 300$

$$
\begin{aligned}
& x^{2}-x y+y^{3}=1 \\
& \frac{d y}{d x}=
\end{aligned}
$$

$\$ 400$

$$
\begin{aligned}
& \qquad \begin{array}{c}
\frac{4 x^{2}-y^{2}}{3 y^{2}+4 x}=5 y \\
\frac{d y}{d x}=? \\
\text { Hint: Cross Multiply, then } \\
\text { Take the derivative }
\end{array} \text { ? } \\
& \text { Then }
\end{aligned}
$$

$\$ 400$

$$
\begin{aligned}
& \frac{4 x^{2}-y^{2}}{3 y^{2}+4 x}=5 y \\
& \frac{d y}{d x}=?
\end{aligned}
$$

$8 \mathrm{x}-20 \mathrm{y}$

$2 y+45 y^{2}+20 x$

When

$$
5 x^{4 / 5}+10 y^{6 / 5}=15
$$

Find the slope of the Tangent line at $\mathrm{x}=1$.

When

$$
5 x^{4 / 5}+10 y^{6 / 5}=15
$$

Find the slope of the tangent line at $\mathrm{x}=1$.

$$
\begin{gathered}
\frac{d y}{d x}=\frac{-4 x^{-1 / 5}}{12 y^{1 / 5}} \\
\text { So slope }=-1 / 3
\end{gathered}
$$

\$100

$y=\ln (8 x)$

$\frac{d y}{d x}=$?
$d x$

\$100

$y=\ln (8 x)$ $\frac{d y}{d x}=$? $d x$

1
 X

\$200

$y=\cos \left(e^{2 x}\right)$ $\frac{d y}{d x}=$? $d x$

$\$ 200$

$$
\begin{aligned}
& y=\cos \left(e^{2 x}\right) \\
& \frac{d y}{d x} \\
& =-2 e^{2 \mathrm{X}} \mathbf{- 1}\left(\mathrm{e}^{2 \mathrm{x}}\right)
\end{aligned}
$$

$\$ 300$

$y=x^{2} e^{(5 x)}-\ln (2 x+1)$ $\frac{d y}{d x}=?$ $d x$

$\$ 300$

$$
\begin{aligned}
& y=x^{2} e^{(5 x)}-\ln (2 x+1) \\
& \frac{d y}{d x}=
\end{aligned}
$$

$$
5 x^{2} e^{(5 x)}+2 x e^{(5 x)}-\frac{2}{2 x+1}
$$

$\$ 400$

$e^{x}+2$
 $y=\frac{e^{x}-1}{e^{x}-1}$
 Find the derivative.

$\$ 400$

$$
y=\frac{e^{x}+2}{e^{x}-1}
$$

dy $\quad-3 e^{x}$ dx
 $$
\left(\mathrm{e}^{\mathrm{x}}-1\right)^{2}
$$

$\$ 500$

Find y^{\prime}
 If

$\$ 500$

$$
y=x^{\ln x}
$$

$\frac{d y}{d x}=\frac{2 \ln x\left(x^{\ln x}\right)}{x}$ dx
 X

$\$ 100$

$y=e^{\pi}$ $\frac{d y}{d x}=$? $d x$

Ansisuer

\$100

$y=e^{\pi}$ dy $d x$

\$200

$$
\begin{gathered}
y=\frac{1}{\cos \left(5 x^{2}+3 x\right)} \\
\frac{d y}{d x}=?
\end{gathered}
$$

$\$ 200$

$$
\begin{gathered}
y=\frac{1}{\cos \left(5 x^{2}+3 x\right)} \\
\frac{d y}{d x}=
\end{gathered}
$$

$\sin \left(5 x^{2}+3 x\right)(10 x+3)$ $\cos ^{2}\left(5 x^{2}+3 x\right)$

$\$ 300$

$y=\sin ^{-1}(\cos x)$ $\frac{d y}{d x}=?$ $d x$

$\$ 400$

$$
\begin{aligned}
& y=x^{2}+\tan (x)-e^{2 x} \\
& y^{\prime}(0)=?
\end{aligned}
$$

$\$ 400$

$y=x^{2}+\tan (x)-e^{2 x}$ $y^{\prime}(0)=$?
 $y^{\prime}=2 x+\sec ^{2} x-2 e^{2 x}$
 $y^{\prime}(0)=-1$

$\$ 500$

A particle is following the Path of

$$
x^{2}-10 y+4 y^{3}=3
$$

Find its velocity at $(3,1)$
Answier

$\$ 500$

A particle is
following the path of

$$
x^{2}-10 y+4 y^{3}=3
$$

Find its velocity at $(3,1)$
$-3 \mathrm{~m} / \mathrm{sec}$.

Final Jeopardy

Create Question

Here

Final Jeopardy

Answer

Final Jeopardy

Nice Try.

Sound and other objects

(sn0065A Slot machines
(1) J0074879 Space Laser

J0074877 Space Laser 2

J J0097484 Large Explosion

Do Not Delete!
Contains objects for game.

Design Credits

PowerPoint Slide Show created by

Randy Wyatt
Green Hope High School
Morrisville, NC

Revision History

Version 4 - June 2003

- Changed points to dollars
- Added link to credits screen by clicking on "Math Jeopardy" on game board
- Changed problems and answers to generic place holders
- Minor color and sound changes on opening game screen

Version 5 - September 2003

- Removed macros and visual basic code
- Rearranged "back to problem" and "back to game board" buttons on answer pages

Testing Area

Help for Teachers

To create a new set of categories and problems:

- Update topics on title screen (slide 2)
- Rename category headers on question board (slide 3)
- Change category help slides (immediately following question board)
- Modify questions and answers (answers immediately follow each question slide)
- Cut and Paste Daily Doubles

Tips:

- Questions and answers are MathType objects. It is easier if you keep it that way. Even for text problems.
- To put copy of question on the answer slide, copy and paste the MathType object from the question slide then resize.
- The EXIT graphic on the game board will exit WITHOUT saving anything. It is intended for student use when playing.
- Make sure you test your game to make sure everything is linked and working correctly.
- When playing the intro screen of the game you can click in the lower right corner at any time to skip the intro and go directly to the question board.

Do NOT:

- Change any hyperlinks

