This lecture will help you understand:

- · The Earth's atmosphere
- Outdoor pollution and solutions
- Stratospheric ozone depletion
- Acidic deposition and consequences
- Indoor air pollution and solutions

Central Case: Charging toward cleaner air in London

- London has had bad air pollution for centuries that has killed thousands
- Today, smog from traffic is a problem
- The "congestion-charging" program charges drivers to drive into central London during the week

 Congestion decreased, fewer accidents occurred and the air became cleaner

The atmosphere

- Atmosphere = the thin layer of gases that surrounds Earth
 - Absorbs radiation and moderates climate
 - Transports and recycles water and nutrients
 - 78% nitrogen gas, 21% oxygen gas, 1% other gases
 - Its four layers differ in temperature, density and composition
- Minute concentrations of **permanent** (remain at stable concentrations) and **variable gases** (varying concentrations)
- · Human activity is changing the amounts of some gases

The first two layers of the atmosphere

- Troposphere = bottommost layer
 - Air for breathing, weather
 - Temperature declines with altitude
 - **Tropopause** = limits mixing between troposphere and the layer above it
- Stratosphere = 11-50 km (7-31 mi) above sea level
 - Drier and less dense, with little vertical mixing
 - Colder in its lower regions
 - Contains UV radiation-blocking ozone, 17-30 km (10-19 mi) above sea level

The two highest levels of the atmosphere

- Mesosphere = 50-80 km (31-56 mi) above sea level
 - Extremely low air pressure
 - Temperatures decrease with altitude
- **Thermosphere** = atmosphere's top layer
 - Extends upward to 500 m (300 mi)

Solar energy heats the atmosphere The spatial relationship between the Earth and sun determines the amount of solar energy striking the Earth Energy from the sun Heats air Moves air

- Creates seasons
- Influences weather and climate
- · Solar radiation is highest near the equator

Solar energy creates seasons

- · Because the Earth is tilted
 - Each hemisphere tilts toward the sun for half the year
 - Results in a change of seasons
 - Equatorial regions are unaffected by this tilt, so days average 12 hours through the year

The atmosphere drives weather and climate

- Weather = specifies atmospheric conditions over short time periods and within a small geographic areas
- **Climate** = describes patterns of atmospheric conditions across large geographic regions over long periods of time
- Mark Twain said "Climate is what we expect; weather is what we get"

Air masses produce weather

- **Front** = the boundary between air masses that differ in temperature, moisture, and density
- Warm Front = the boundary where warm moist air replaces colder, drier air
- Cold Front = the boundary where colder, drier air displaces warmer, moister air

Air masses have different atmospheric pressures

• **High-pressure system** = air that moves away from a center of high pressure as it descends

- Brings fair weather

- Low-pressure system = air moves toward the low atmospheric pressure at the center of the system and spirals upward
 - Clouds and precipitation

The atmosphere

- Convective currents contribute to climatic patterns and affect moisture distribution
- Hadley cells = near the equator, surface air warms, rises, and expands
 - Releases moisture and heavy rainfall near the equator
- Ferrel cells and polar cells = lift air
 - Creates precipitation at 60 degrees latitude north and south
 - Causes air to descend at 30 degrees latitude

Global wind patterns

- The atmospheric cells interact with Earth's rotation to produce global wind patterns
 - As Earth rotates, equatorial regions spin faster
- **Coriolis effect** = the north-south air currents of the convective cells appear to be deflected from a straight path
 - Results in curving global wind patterns

Wind patterns

- **Doldrums** = near the equator
 - Few winds

ocean

- **Trade winds** = between the equator and 30 degrees latitude
 - Blow from east to west
- Westerlies = from 30 to 60 degrees latitude - Originate from the west and blow east
- People used these winds to sail their ships across the

Outdoor air pollution

- Air pollutants = gases and particulate material added to the atmosphere
- Can affect climate or harm people
- **Air pollution** = the release of pollutants
- **Outdoor (ambient) air pollution** = pollution outside
 - Has recently decreased due to government policy and improved technologies in developed countries
 - Developing countries and urban areas still have significant problems

Natural sources pollute: dust storms

• **Dust storms** = Hundreds of millions of tons of dust are blown westward across the Atlantic Ocean by trade winds every year

- Unsustainable farming and grazing, erosion and desertification

Dust storm off west coast of Africa empt C 208 Paramet Society, Inc., paliting in Paramet Beganit Com

Natural sources pollute: volcanoes

- Release large quantities of particulate matter, sulfur dioxide & other gases
 - Can remain for months or years
 - **Aerosols** = reflect sunlight back into space and cool the atmosphere and surface

Natural sources pollute: fires

- Pollutes atmosphere with soot and gases
- Over 60 million ha of forests and grasslands burn per year
- · Severe fires are caused by human interaction
- Cleared forests, harsh droughts, and climate change (El Niño)

Types of outdoor air pollution

- · Air pollution can come from mobile or stationary sources
- **Point Sources** = specific spots where large quantities of pollutants are discharged (power plants and factories)
- **Nonpoint Sources** = more diffuse, consisting of many small sources (automobiles)
- **Primary Pollutants** = directly harmful and can react to form harmful substances (soot and carbon dioxide)
- Secondary Pollutants = form when primary pollutants interact or react with constituents or components of the atmosphere (tropospheric ozone and sulfuric acid)

Legislation addresses pollution

- · Congress passed a series of laws starting in 1955
- The Clean Air Act of 1970
 - Sets standards for air quality, limits on emissions
 - Provides funds for pollution-control research
 - Allows citizens to sue parties violating the standards
- The Clean Air Act of 1990
 - Strengthens standards for auto emissions, toxic air pollutants, acidic deposition, stratospheric ozone depletion
 - Introduced emissions trading

The EPA sets standards

- Environmental Protection Agency (EPA) sets nationwide standards for emissions of toxic pollutants
- States monitor air quality and develop, implement, and enforce regulations within their borders
 - If a state's plans for implementation are not adequate, the EPA can take over enforcement

Criteria pollutants: carbon monoxide

- **Criteria pollutants** = pollutants judged to pose especially great threats to human health
- Carbon monoxide (CO)
 - A colorless, odorless gas
 - Produced primarily by incomplete combustion of fuel
 - Poses risk to humans and animals, even in small concentrations

Criteria pollutants: sulfur and nitrogen dioxide

- Sulfur dioxide (SO₂) = colorless gas with a strong odor
- Coal emissions from electricity generation and industryCan form acid precipitation
- Nitrogen dioxide (NO₂) = highly reactive, foul smelling reddish brown gas
 - Nitrogen oxides (NO_x) = nitrogen and oxygen react at high temperatures
 - Vehicle engine and industrial combustion, electrical utilities
 - Contributes to smog and acid precipitation

Criteria pollutants: tropospheric ozone

- **Tropospheric ozone** (**O**₃) = a colorless gas with a strong odor
 - A secondary pollutant
 - Results from interactions of sunlight, heat, nitrogen oxides, and volatile carbons
 - A major component of smog
 - Poses a health risk as a result of its instability

Criteria pollutants: particulate matter and lead

- **Particulate matter** = solid or liquid particles suspended in the atmosphere
 - Primary pollutants: dust and soot
 - Secondary pollutants: sulfates and nitrates
 - Damages respiratory tissue when inhaled
 - Most is wind-blown dust
- **Lead** = particulate pollutant added to gas and used in industrial metal smelting
 - Bioaccumulates and causes nervous system malfunction
 - Banned in gasoline in developed, but not in developing countries

Agencies monitor pollutants

- State and local agencies also monitor, calculate, and report to the EPA the emissions of pollutants
 - Four criteria pollutants: carbon monoxide, sulfur dioxide, particulate matter, and lead
 - All nitrogen oxides
 - Not tropospheric ozone (no emissions to monitor)
 - Volatile organic compounds (VOCs) = carboncontaining chemicals used emitted by vehicle engines and industrial processes

Air pollution has decreased since 1970

- Total emissions of the six monitored pollutants have declined
 - Despite increased population, energy consumption, miles traveled, and gross domestic product

Toxic substances also pollute

- **Toxic air pollutants** = substances known to cause cancer; reproductive defects; or neurological, development, immune system, or respiratory problems
 - Some are produced naturally: hydrogen sulfide
 - Most are produced by humans: smelting, sewage treatment, industry
- Not monitored as closely as the six criteria pollutants
 - Monitoring is improving

Recent policies have been contentious

- President G.W. Bush has pushed proposals that would overturn key aspects of legislation
- **New source reviews** = old utility plants have to install the best available technology when upgrading
 - The Bush administration proposed abolishing this requirement and dropped lawsuits against violators
- Clear Skies Initiative = establishes a market-based canand-trade program for some pollutants
 - Stopped in the Senate, because it would increase pollution
 - The EPA had skewed its analysis to promote the legislation

Burning fossil fuels produces industrial smog

- **Smog** = unhealthy mixtures of air pollutants over urban areas
- Industrial (gray air) smog = industries burn coal or oil
- Occurs in cooler, hilly areas
- Government regulations in developed countries reduced smog
- Coal-burning industrializing countries face significant health risks

 Donarda, Henninghamaa, all mobility in the 1948 sincig even Copyright 200 france blocks in: address in france brance brance brance.

Synthetic chemicals deplete stratospheric ozone

- Ozone layer = ozone in the lower stratosphere
 - 12 ppm concentrations effectively block incoming damaging ultraviolet radiation
- Chlorofluorocarbons (CFCs) = chemicals that attack ozone
 - 1 million metric tons/year were produced
 - Releases chlorine atoms that split ozone

The hole in the ozone

- **Ozone hole** = ozone levels over Antarctica had declined by 40-60%
 - Depletion also in the Arctic and globally
- Causes skin cancer, harms crops and decreases ocean productivity

The Montreal Protocol addressed ozone depletion

- **Montreal Protocol** = 180 nations agreed to cut CFC production in half
 - Follow-up agreements deepened cuts, advanced timetables and addresses other ozone-depleting chemicals
 - Today, production and use of ozone-depleting chemicals has decreased 95%
 - The ozone layer is beginning to recover

Challenges still face us

- CFCs will remain in the stratosphere for a long time
- Nations can ask for exemptions to the ban

The Montreal Protocol is a success

- Considered the biggest environmental success story
 - Policymakers included industry in helping solve the problem
 - Implementation of the plan allowed an adaptive management strategy that changed strategies in response to new scientific data, technological advances, and economic figures
- The Montreal Protocol can serve as a model for international environmental cooperation

Acid deposition is another transboundary issue

- Acidic deposition = the deposition of acid, or acidforming pollutants, from the atmosphere onto Earth's surface
 - Acid rain = precipitation of acid
 - **Atmospheric deposition** = the wet or dry deposition on land of pollutants

Sources of acid deposition

- Originates from burning fossil fuels that release sulfur dioxide and nitrogen oxides
- These compounds react with water to form sulfuric and nitric acids

Effects of acid deposition

- Nutrients are leached from topsoil
- Soil chemistry is changed
- Metal ions (aluminum, zinc, etc.) are converted into soluble forms that pollute water
- · Widespread tree mortality
- Affects surface water and kills fish
- Damages agricultural crops
- Erodes stone buildings, corrodes cars, erases writing on tombstones

Acid deposition has not been greatly reduced

- · New technologies such as scrubbers have helped
- SO₂ emissions are lower
- But, NO_x emissions are higher
- Acid deposition's effects are worse than predicted
 - The Clean Air Act cannot restore ecosystems
 - More must be done to control acid deposition

Indoor air pollution

- Indoor air contains higher concentrations of pollutants than outdoor air
 - 6,000 people die per day from indoor air pollution
- The average U.S. citizen spends 90% of the time indoors
 - Exposed to synthetic materials that have not been comprehensively tested
 - To reduce heat loss and improve energy efficiency, building ventilation systems were sealed off ventilation and windows put in that did not open, trapping pollutants inside

Indoor air pollution in the developing world

Stems from burning

- Wood, charcoal, dung, crop wastes
- Little to no ventilation

Fuel burning pollution causes an estimated 1.6 million deaths per year

- Soot and carbon monoxide
- Causes pneumonia, bronchitis, allergies, cataracts, asthma, heart disease, cancer and death

Tobacco smoke and radon

- The most dangerous indoor pollutants in the developed world
- Secondhand smoke from cigarettes is especially dangerous
 - Containing over 4000 dangerous chemicals
 - Causes eye, nose, and throat irritation
- Smoking has declined in developed nations
- Radon causes 20,000 deaths a year in the U.S.
- A radioactive gas resulting from natural decay of rock;

Volatile Organic Compounds (VOCs)

- The most diverse group of indoor air pollutants
- Released by everything from plastics and oils to perfumes and paints
- Most VOCs are released in very small amounts
- Unclear health implications due to low concentrations
- Also include pesticides, which are found indoors more often than outdoors due to seepage
- Formaldehyde, which leaks from pressed wood and insulation, irritates mucous membranes and induces skin allergies

Living organisms can pollute indoors

- Tiny living organisms can also pollute
- · Includes dust mites and animal dander worsen asthma
- Fungi, mold, mildew, airborne bacteria cause severe allergies, asthma, and other respiratory ailments
- Sick building syndrome = a sickness produced by indoor pollution with general and nonspecific symptoms
 - Solved by using low-toxicity building materials and good ventilation

We can reduce indoor air pollution

- In developed countries:
- Use low-toxicity material
- Monitor air quality
- Keep rooms clean
- Limit exposure to chemicals
- In developing countries:
- Dry wood before burning
- Cook outside
- Use less-polluting fuels (natural gas)

Conclusion

Ó.

- Indoor air pollution is a potentially serious health threat
 - We can significantly minimize risks
- Outdoor air pollution has been addressed by government legislation and regulation in developed countries
- Reduction in outdoor air pollution represents some of the greatest strides in environmental protection
 - There is still room for improvement, especially in developing countries

QUESTION: Review

The major component of Earth's atmosphere is ...

a) Nitrogen gas

- b) Oxygen gas
- c) Argon gasd) Water vapor

QUESTION: Review

ð

QUESTION: Review

_____ is defined as the ratio of water vapor in the atmosphere compared to the amount the atmosphere could contain

- a) Atmospheric pressure
- b) Ozonification
- c) Temperature
- d) Relative humidity

QUESTION: Review

If you were on a sailing ship going from Europe to the United States, you would want to be in the æ

a) Doldrums

<u>ک</u>

۲

- b) Trade windsc) Westerlies
- c) Westerliesd) Polar cell

QUESTION: Review

The Clean Air Act does all of the following, except:

- a) Allows higher levels of emissions of some criteria pollutants
- b) Provides funds for pollution control research
- c) Allows citizens to sue violators
- d) Sets standards for air quality

QUESTION: Review Which criteria pollutant is colorless, odorless, and poses a risk to humans, even in small amounts? a) Sulfur dioxide b) Nitrogen dioxide c) Tropospheric ozone d) Carbon monoxide

QUESTION: Viewpoints

Should the government be able to prevent restaurants from allowing smoking, to protect people from secondhand smoke?

- a) Yes; I don't want to be exposed to this form of pollution
- b) Yes, only if the restaurant agrees
- c) No, let the restaurant owner decide
- d) No; I want to be able to smoke in a restaurant