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Preface

This Textbook has been prepared as per the syllabus for the Engineering Mathematics Second
semester B.E classes of Visveswaraiah Technological University. The book contains eight chapters,
and each chapter corresponds to one unit of the syllabus. The topics covered are: Unit I and II—
Differential Calculus, Unit III and IV—Integral Calculus and Vector Integration, Unit V and VI—
Differential Equations and Unit VII and VIII—Laplace Transforms.

It gives us a great pleasure in presenting this book. In this edition, the modifications have
been dictated by the changes in the VTU syllabus. The main consideration in writing the book
was to present the considerable requirements of the syllabus in as simple manner as possible. This
will help students gain confidence in problem-solving.

Each unit treated in a systematic and logical presentation of solved examples is followed by
an exercise section and includes latest model question papers with answers from an integral part
of the text in which students will get enough questions for practice.

The book is designed as self-contained, comprehensive and friendly from students’ point of
view. Both theory and problems have been explained by using elegant diagrams wherever necessary.

We are grateful to New Age International (P) Limited, Publishers and the editorial department
for their commitment and encouragement in bringing out this book within a short span of period.
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1

UNIT �

Differential Calculus—I

1.1 INTRODUCTION

In many practical situations engineers and scientists come across problems which involve quantities
of varying nature. Calculus in general, and differential calculus in particular, provide the analyst with
several mathematical tools and techniques in studying how the functions involved in the problem
behave. The student may recall at this stage that the derivative, obtained through the basic operation
of calculus, called differentiation, measures the rate of change of the functions (dependent variable)
with respect to the independent variable. In this chapter we examine how the concept of the derivative
can be adopted in the study of curvedness or bending of curves.

1.2 RADIUS OF CURVATURE

Let P be any point on the curve C. Draw the tangent at P to the
circle. The circle having the same curvature as the curve at P
touching the curve at P, is called the circle of curvature. It is also
called the osculating circle. The centre of the circle of the cur-
vature is called the centre of curvature. The radius of the circle
of curvature is called the radius of curvature and is denoted
by ‘ρ’.

Note : 1. If k (> 0) is the curvature of a curve at P, then the radius

of curvature of the curve of ρ is 
1

k
. This follows from the definition

of radius of curvature and the result that the curvature of a circle is the
reciprocal of its radius.

Note : 2. If for an arc of a curve, ψ decreases as s increases, then 
d

ds

ψ
 is negative, i.e., k is negative.

But the radius of a circle is non-negative. So to take ρ = 
1

k
 = 

ds

dψ
 some authors regard k also as non-negative

i.e., k = 
d

ds

ψ
.

Y C

P

O X

O

Fig. 1.1
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The sign of 
d

ds

ψ
 indicates the convexity and concavity of the curve in the neighbourhood of

the point. Many authors take ρ = 
ds

dψ  and discard negative sign if computed value is negative.

∴ Radius of curvature ρ = 
1

k
·

1.2.1 Radius of Curvature in Cartesian Form

Suppose the Cartesian equation of the curve C is given by y = f (x) and A be a fixed point on it. Let
P(x, y) be a given point on C such that arc AP = s.

Then we know that

dy

dx
= tan ψ ...(1)

where ψ is the angle made by the tangent to the curve C at P with the x-axis and

ds

dx
= 1

2
1

2

+ ���
�
��

�
�	

	

�
�	
	

dy

dx
...(2)

Differentiating (1) w.r.t x, we get

d y

dx

2

2 = sec2ψ ψ⋅ d

dx

= 1 2+ ⋅tan ψ ψ� � d

ds

ds

dx

= 1
1

1
2 2

1

2

+ ���
�
��

�
�
�
�

�
�
�
�

+ ���
�
��

�
�
�
�

�
�
�
�

dy

dx

dy

dxρ [By using the (1) and (2)]

=
1

1
2

3

2

ρ
+ ���

�
��

�
�	

	

�
�	
	

dy

dx

Therefore, ρ =

1
2

3

2

2

2

+ ���
�
��

�
�	

	

�
�	
	

dy
dx

d y

dx

...(3)

where y1 = 
dy

dx
 and y2 = 

d y

dx

2

2 .
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Equation (3) becomes,

ρ =
1 1

2
3

2

2

+ y

y

� �

This is the Cartesian form of the radius of curvature of the curve y = f (x) at P (x, y) on it.

1.2.2 Radius of Curvature in Parametric Form

Let x = f (t) and y = g (t) be the Parametric equations of a curve C and P (x, y) be a given point
on it.

Then
dy

dx
=

dy dt

dx dt ...(4)

and
d y

dx

2

2 =
d

dt

dy dt

dx dt

dt

dx

/

/
��


��
⋅

=

dx

dt

d y

dt

dy

dt

d x

dt
dx

dt

dx

dt

⋅ − ⋅

�
��
�
��

⋅

2

2

2

2

2

1

d y

dx

2

2 =

dx

dt

d y

dt

dy

dt

d x

dt
dx

dt

⋅ ⋅

�
��
�
��

2

2

2

2

3

–
...(5)

Substituting the values of 
dy

dx
 and 

d y

dx

2

2  in the Cartesian form of the radius of curvature of the

curve y = f (x) [Eqn. (3)]

∴ ρ =
1

1
1
2

3

2

2

2
3

2

2

2

+
=

+ ���
�
��

�
�	

	

�
�	
	y

y

dy
dx

d y

dx

� �

=

1
2

3

2

2

2

2

2

3

+ ���
�
��

�
�	

	

�
�	
	

⋅ ⋅
�
�



�
�

�
��
�
��

dy dt

dx dt

dx

dt

d y

dt

dy

dt

d x

dt

dx

dt

/
/

– /

∴ ρ =

dx
dt

dy
dt

dx

dt

d y

dt

dy

dt

d x

dt

�
��
�
�� + ���

�
��

�
�	

	

�
�	
	

⋅ − ⋅

2 2
3

2

2

2

2

2

...(6)
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where x′ = 
dx

dt
, y′ = 

dy

dt
, x″ = 

d x

dt

2

2
, y″ = 

d y

dt

2

2

ρ =
x y

x y y x

′ + ′

′ ″ ′ ″

2 2
3
2� �

–

This is the cartesian form of the radius of curvature in parametric form.

������� ��	� �
�����

1. Find the radius of curvature at any point on the curve y = a log sec 
x

a
�
��
�
�� .

Solution

Radius of curvature ρ =
1 1

2
3

2

2

+ y

y

� �

Here, y = a log sec 
x

a
�
��
�
��

y1 = a
x

a

x

a

x

a a
× �

��
�
��

⋅ �
��
�
��

�
��
�
�� ⋅1 1

sec
sec tan

y1 = tan
x

a
�
��
�
��

y2 = sec2 x

a a
�
��
�
�� ⋅ 1

Hence ρ =

1

1

2

3

2
+ �

��
�
��

��

��

�
��
�
��

tan
x

a

a

x

a
sec2

=

sec

sec

2
3 2

21

x

a

a
x
a

�
��
�
��

��

��
�
��
�
��

= 

a
x

a
x

a

sec

sec

3

2

�
��
�
��

�
��
�
��

= a sec 
x

a
�
��
�
��

∴ Radius of curvature = a sec 
x

a
�
��
�
��
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2. For the curve y = c cos h 
x

c
�
��
�
�� , show that ρ = 

y

c

2

·

Solution ρ =
1 1

2
3
2

2

+ y

y

� �

Here, y = c h
x

c
cos

�
��
�
��

y1 = c h
x

c c
sin

�
��
�
�� × 1

 = sin h
x

c
�
��
�
��

and y2 = cos h
x

c c
�
��
�
�� × 1

ρ =

1

1

2

3

2
+ �

��
�
��

��

��

�
��
�
��

sin h
x

c

c
h

x

c
cos

 = 

c h
x
c

h
x
c

cos

cos

2

3

2�
��

�
��

= c cos h
x

c
2 �
��
�
��  = 

1
2

c
c h

x

c
cos

�
��
�
��

�
��

�
��

=
1 2

c
y⋅

∴ ρ =
y

c

2

·   Hence proved.

3. Find the radius of curvature at (1, –1) on the curve y = x2 – 3x + 1.

Solution. Where ρ =
1 1

2
3

2

2

+ y

y

� �
 at (1, – 1)

Here, y = x2 – 3x + 1

y1 = 2x – 3, y2 = 2

Now, ( y1)(1, –1) = – 1

( y2)(1, –1) = 2

∴ ρ(1, –1) =
1 1

2

2 2

2

3

2+
=

� �

= 2

4. Find the radius of curvature at (a, 0) on y = x3 (x – a).

Solution. We have ρ =
1 1

2
3
2

2

+ y

y

� �
 at (a, 0)
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Here, y = x3(x – a) = x4 – x3a

y1 = 4x3 – 3ax2

and y2 = 12x2 – 6ax

Now ( y1)(a, 0) = 4a3 – 3a3 = a3

( y2)(a, 0) = 12a2 – 6a2 = 6a2

∴ ρ(a, 0) =
1

6

3 2
3

2

2

+��

��a

a

� �

=
1

6

6
3

2

2

+ a

a

� �
·

5. Find the radius of curvature at x = 
πa

4
 on y = a sec 

x

a
�
��
�
�� .

Solution. We have ρ =
1 1

2
3

2

2

+ y

y

� �
 at x = 

πa

4

Here y = a
x

a
sec
�
��
�
��

∴ y1 = a
x

a

x

a a
sec tan
�
��
�
�� ⋅ �

��
�
�� × 1

y1 = sec tan
x

a

x

a
�
��
�
��

�
��
�
��

and y2 = sec sec tan3 21 1x

a a

x

a

x

a a
× + �

��
�
�� ⋅ �

��
�
�� ⋅

=
1 3 2

a

x

a

x

a

x

a
sec sec tan�
��
�
�� + �

��
�
��

�
��
�
��

�
��

�
��

At x = 
πa

4
, y1 = sec tan

π π
4 4

2⋅ =

and y2 = 
1

2 2 2
3 2

a a
+ =� �

∴ ρ π
x

a=
4

=

1 2

3 2

3 3

3 2

2
3

2+��

�� = ⋅

� �

a

a

=
3

2
a .
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6. Find ρ at x = 
π
3

 on y = 2 log sin 
x

2
�
��
�
�� .

Solution. We have ρ =
1 1

2
3
2

2

+ y

y

� �
 at x = 

π
3

The curve is y = 2
2

log sin
x�
��
�
��

y1 = 2
1

2
2

1

2
⋅ �
��
�
��

× �
��
�
�� ×

sin
cos

x
x

= cot
x

2
�
��
�
��

and y2 = – cosec2

2

1

2

x�
��
�
�� ×

At x = 
π
3

, y1 = cot
π
6

3
�
��
�
�� =

and y2 =
–1

–
2 6

2cosec2 π =

∴ ρ π
x =

3
=

1 3

2

2
3

2+��

��� �

–

=
1 3

2

4 2

2
4

3

2+
= × =

� �
– –

– .

7. Find the radius of curvature at 
3a

2
,
3a

2
�
��

�
��  on x3 + y3 = 3axy.

Solution. We have ρ =
1 1

2
3
2

2

+ y

y

� �
 at 

3

2

3

2

a a
,

�
��

�
�� .

Here, x3 + y3 = 3axy

Differentiating with respect to x

3x2 + 3y2 y1 = 3a (xy1 + y)

3 ( y2 – ax) y1 = 3 (ay – x2)

⇒ y1 =
ay x

y ax

– 2

2 −
...(1)
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Again differentiating w.r.t x.

⇒ y2 =
y ax ay x ay x yy a

y ax

2
1

2
1

2 2

2 2− ⋅ − − − −

−

� � � � � � � �

� �
...(2)

Now, from (1), at 
3

2

3

2

a a,�
��

�
��

y1 =

a
a a

a
a

a

3
2

3
2

3
2

3
2

2

2

�
��
�
�� − ���

�
��

�
��
�
�� − �

��
�
��

=
6 9

9 6

2 2

2 2

a a

a a

−
−

=
– 9 6

9 6

2 2

2 2

a a

a a

−

−

� �
� �

 = –1

From (2), at 
3

2

3

2

a a
,

�
��

�
��

y2 =

9
2

3
2

3
3
2

9
4

3

9
4

3
2

2 2 2 2

2 2 2

a a
a a

a a
a a

a a

−
�
��

�
��

− − −
�
��

�
��

−

−
�
��

�
��

– –� � � �

=
– –

3
4

4
3
4

4

3
4

2
2

2 2

a a
a

a

a

× ×

�
��

�
��

=
– –6

9
16

32

3

3

4

a

a a
=

Using these

ρ 3

2

3

2

a a
,�

��
�
�� =

1 1

32
3

2
3

2+

−���
�
��

–� �� �

a

= –
2 2 3

32

3

8 2

×
=

−a a

∴ Radius of curvature at 
3

2

3

2

a a
,

�
��

�
��  is 

3

8 2

a
·
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8. Find the radius of curvature of b2x2 + a2y2 = a2b2 at its point of intersection with the y-axis.

Solution. We have ρ =
1 1

2
3
2

2

+ y

y

� �
  at x = 0

Here, b2x2 + a2y2 = a2b2

When x = 0, a2y2 = a2b2

y2 = b2

⇒ y = ± b

i.e., the point is (0, b) or (0, – b)

The curve is b2x2 + a2y2 = a2b2.

Differentiating w.r. to x

2b2x + 2a2yy1 = 0

y1 = –
b x

a y

2

2

Differentiating again w.r. to x

y2 =
– b

a

y xy

y

2

2
1

2

−�
��

�
��

Now at (0, b), y1 =
– b

a b

2

2

0� �
� �  = 0

and y2 =
– b

a

b

b

2

2 2

−�
��

�
��

0

=
– b

a2

i.e., Radius of curvature at (0, b) is

∴ ρ(0, b) =
1 0

3

2

2

2+
�
��
�
��

=
� �

–
–

b

a

a

b

∴ Radius of curvature is 
a

b

2

Next consider (0, – b),

y1 =
–

–

b

a b

2

2

0
×  = 0

y2 =
– – –b

a

b

b

a

b

2

2 2

20�
��

�
�� =
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ρ(0, – b) =
1 0

3

2

2

2+
�
��
�
��

=
� �

b

a

a

b

∴ Radius of curvature of (0, – b) is 
a

b

2

.

9. Show that at any point P on the rectangular hyperbola xy = c2, ρ = 
r

2c

3

2  where r is the

distance of the point from the origin.

Solution. The curve is xy = c2

Differentiating w.r. to x

xy1 + y = 0

y1 = –
y

x
Again differentiating w.r.t. x

y2 = –
xy y

x
1

2

−��

��

= –

– xy

x
y

x

y

x

−�
�
	



	

�
�
	


	

=
2 2

2

ρ = 
1 1

2
3

2

2

+ y

y

� �
=

1

2

2
3

2

2

+ ���
�
��

�
�	

	

�
�	
	

y
x

y

x

=
x y

x
y

x

2 2
3

2

3
2

2

+

×

� �

=
x y

xy

2 2
3
2

2

+� �

where x2 + y2 = r2 and xy = c2.

∴ ρ =
r

c

3

22
.

10. Show that, for the ellipse 
x

a

y

b

2

2

2

2
+  = 1, ρ = 

a b

p

2 2

3  where p is the length of the perpen-

dicular from the centre upon the tangent at (x, y) to the ellipse.
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Solution. The ellipse is 
x

a

y

b

2

2

2

2
+  = 1

Differentiating w.r.t. x

2 2
2

1
2

x

a

yy

b
+ = 0

⇒ y1 = –
b

a

x

y

2

2

Again Differentiating w.r. to x

y2 =
– b

a

y xy

y

2

2
1

2

−�
�
�

�
�
�

=
– b

a

y
b

a

x
y

y

2

2

2

2

2

2

+ ⋅
�

�

�
�
�
�

�

�

�
�
�
�

= –
b

a y

y

b

x

a

4

2 3

2

2

2

2
+

�
�
�

�
�
�

y2 =
– b

a y

4

2 3
�

x

a

y

b

2

2

2

2
1+ =

�
��

�
��

Now, ρ =
1 1

2
3
2

2

+ y

y

� �
 = 

1
4 2

4 2

3

2

4

2 3

+
�
��

�
��

�
��

�
��

b x

a x

b

a y
–

= −
+

×
a y b x

a y

a y

b

4 2 4 2
3

2

6 3

2 3

4

� �

ρ = –
a y b x

a b

4 2 4 2
3

2

4 4

+� �

Taking magnitude ρ =
a y b x

a b

4 2 4 2
3

2

4 4

+� �
...(1)

The tangent at (x0, y0) to the ellipse 
x

a

y

b

2

2

2

2
+  = 1 is

x x

a

y y

b
0

2
0

2
+ = 1
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Length of perpendicular from (0, 0) upon this tangent

=
1

0
2

2
0
2

2
x

a

y

b
�
��
�
�� + ���

�
��

=
a b

a y b x

2 2

4
0
2 4

0
2+

So, the length of perpendicular from the origin upon the tangent at (x, y) is

p =
a b

a y b x

2 2

4
0
2 4

0
2+

By replacing x0 by x and y0 by y

p =
a b

a y b x

2 2

4 2 4 2+

Reciprocal and cube on both sides, we get,

⇒
1

3p
=

a y b x

a b

4 2 4 2
3

2

6 6

+� �

=
a y b x

a b a b

4 2 4 2
3

2

4 4 2 2

1+
×

� �

By using eq. (1), we get

1
3p

=
ρ

a b2 2

⇒ ρ =
a b

p

2 2

3 ·

11. Show that, for the curve y = 
ax

a x+
,  

2

a

2

3ρ�
��
�
��  = 

x

y

y

x

2 2�
��
�
�� + ���

�
�� ·

Solution. Here, y =
ax

a x+
Differentiating w.r.t. x

y1 = a
a x x

a x

a

a x

+ −

+

�

�
�
�

�

�
�
�

=
+

� � � �
� � � �

1
2

2

2

Again Differentiating w.r.t. x

y2 = a
a x

a

a x

2
3

2

3

2 2– –

+
=

+� � � �
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Now, ρ =
1 1

2
3
2

2

+ y

y

� �

Substituting y1 and y2, we get

=

1

2

4

4

3

2

2

3

+
+

�
�	

	

�
�	
	

−
+

�
�	

	

�
�	
	

a

a x

a

a x

� �

� �

ρ = –
a x a

a a x

+ +

+

� �� �
� �

4 4
3
2

2 3
2

...(1)

To show that
2

2 3ρ
a
�
��
�
�� =

x

y

y

x

�
��
�
�� + ���

�
��

2 2

L.H.S.
2

2

3ρ
a
�
��
�
�� =

2

2

4 4
3

2

3 3

2
3

a x a

a a x

+ +

+

�

�
		



	
	

�

�
		


	
	

� �� �
� �

 using (1)

=
a x a

a a x

+ +

+

� �
� �

4 4

2 2

=
a x

a

a

a x

+
+

+

� �
� �

2

2

2

2 ...(2)

R.H.S. =
x

y

y

x

�
��
�
�� + ���

�
��

2 2

=
x

ax

a x+
�
��

�
��

�
�	


	

�
�	

	

2

 + 

ax

a x

x

+
�
��

�
��

�
�	


	

�
�	

	

2

=
a x

a

a

a x

+
+

+

� �
� �

2

2

2

2 ...(3)

∴ L.H.S. = R.H.S. using (2) and (3).
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12. Find ρ at any point on x = a (θ + sinθ) and y = a (1 – cosθ).

Solution. Here x = a (θ + sinθ), y = a (1 – cosθ)

Differentiating w.r.t. θ
dx

dθ = a (1 + cos θ), 
dy

dθ  = a sin θ

y1 =
dy

dx

dy

d
dx

d

= θ

θ

 = 
a

a

sin

cos

θ
θ1 +� �

=
2

2 2

2
2

2

sin cos

cos

θ θ

θ

y1 = tan
θ
2

Again differentiating w.r.t. θ

y2 =
d

dx
tan

θ
2

�
��

�
��

=
d

d

d

dxθ
θ θ

tan
2

�
��

�
�� ×

= sec2 θ
θ2

1

2

1

1
�
��
�
�� × ×

+a cos� �

=
sec2 θ

θ
2

2 2
2

2a × cos

y2 =
1

4
2

4a cos
θ

ρ =
1 1

2
3
2

2

+ y

y

� �

=

1
2

1

4
2

2

3

2

4

+��

��

�
�
	



	

�
�
	


	

tan

cos

θ

θ
a
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= sec2 θ θ
2

4
2

3

2 4�
��
�
��

��

��

× �
��
�
��a cos

=
1

2

4
23

4

cos
cos

θ
θ

�
��
�
��

× �
��
�
��a

ρ = 4
2

a cos
θ�
��
�
�� ·

13. Find the radius of curvature at the point ′θ′ on the curve x = a log sec θ,
y = a (tan θ – θ).

Solution x = a log sec θ, y = a (tan θ – θ)

Differentiating w.r.t. θ

dx

dθ = a 
1

sec
sec tan

θ
θ θ⋅ ⋅ , 

dy

dθ  = a (sec2 θ – 1)

= a tan θ = a tan2 θ

∴ y1 =
dy

dx

dy

d
dx

d

= θ

θ

=
a

a

tan

tan

2 θ
θ

y1 = tan θ

y2 =
d y

dx

d

dx

2

2
= tanθ� �

=
d

d

d

dxθ
θ θ

tan� � ⋅

= sec
tan

2 1θ
θ

×
a

=
sec

tan

2 θ
θa

Now, ρ =
1 1

2
3
2

2

+ y

y

� �

=
1 2

3

2

2

+

�
��

�
��

tan

sec
tan

θ

θ
θ

� �
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=
sec

sec
tan

3

2

θ
θ

θ× a

ρ = a sec θ tan θ.

14. For the curve x = a (cos θ + θ sin θ), y = a (sin θ – θ cos θ), show that the radius of
curvature at ′θ′ varies as θ.

Solution x = a (cos θ + θ sin θ)

⇒
dx

dθ = a (– sin θ + θ cos θ + sin θ) = a θ cos θ

y = a (sin θ – θ cos θ)

⇒
dy

dθ = a (cos θ + θ sin θ – cos θ) = a θ sin θ

y1 =
dy

dx

a

a
= =

θ θ
θ θ

θ
sin

cos
tan

y2 =
d

dx

dy

dx

d

dx
�
��
�
�� = tan θ� �

=
d

d

d

dxθ
θ θ

tan� � ⋅

= sec
cos

2 1θ
θ θ

×
a

=
1

3a θ θcos

Now, ρ =
1 1

2
3
2

2

+ y

y

� �

=
1

1

2
3

2

3

+

�
��

�
��

tan

cos

θ

θ θ

� �

a

= sec3 θ × a θ cos3 θ
= a θ

i.e., ρ ∝ θ.

15. If ρ1 and ρ2 are the radii of curvatures at the extremities of a focal chord of the parabola

y2 = 4ax, then show that ρ ρ
1

– 2

3 2

–2
3+  = 2a

2

3� �
−

.

Solution. If at at1
2

12,� �  and at at2
2

22,� �  are the extremities of a focal chord of the parabola

y2 = 4ax.

Then t1 · t2 = – 1
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The parametric equations to the parabola are

x = at2, y = 2at

x′ = 2at y′= 2a

x″ = 2a y″ = 0

∴ ρ =
x y

x y x y

′ + ′

′ ″ ″ ′

2 2
3
2� �

–

=
2 2

4

2 2
3
2

2

at a

a

� � � �� �
� �

+

–

= –
8 1

4

3 2
3

2

2

a t

a

+� �

ρ = − +2 1 2
3
2a t� �

ρ
– 2

3 = 2 1
2

3
2 1

a t� � � �
–

+
−

ρ
– 2
3 =

1

2

1

12

3
2

a t� � � �
×

+

Let t1 and t2 be extremities of a focal chord. Then t2 = –
1

1t
·

Now, ρ
1

2

3

–

= ρt t

a t
= = ×

+1

2

3
2

3 1
2

1

2

1

1

–

� � � �

ρ
2

2

3

–

= ρ
t

t a t=
= ×

+–

–

1

2

3
2

3 1
2

1

1

2

1

1� � � �

=
1

2 12

3

1
2

1
2

a

t

t� � � �
×

+

Adding ρ ρ
1

2

3
2

2

3

– –

+ =
1

2

1

1 12

3 1
2

1
2

1
2

a t

t

t� � +
+

+
�
�



�
�


= 2
1

1

2

3
1
2

1
2

a
t

t
� � � �

� �
–

×
+

+

i.e., ρ ρ
1

2

3
2

2

3

– –

+ = 2
2

3a� �
–

· Hence proved.
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�
������� ���

1. Find ρ at any point on y = log sin x. Ans.  cosec x

2. Find ρ at x = 1 on y = 
log x

x
. Ans.  

3

2 2

�
��

�
��

3. Find the radius of curvature at x = 
π
4

 on y = log tan 
x

2
�
��
�
�� · Ans.  2

3

2

3

2
× ���
�
��

�

�
�
�

�

�
�
�

4. Find the radius of curvature of (3, 4) on 
x y2 2

9 16
+  = 2. Ans.  

125

12
�
��

�
��

5. Find the radius of curvature at (x1, y1) on b2x2 – a2y2 = a2b2. Ans.  
b x a y

a b

2
1
2 4

1
2

3

2

4 4

+
�

�
�
�

�

�
�
�� �

6. Find ρ at (4, 2) on y2 = 4 (x – 3). Ans.  4 2

7. Show that ρ at any point on 2xy = a2 is 
4

8

4 4
3

2

2 3

x a

a x

+� �
·

8. Show that ρ at (0, 0) on y2 = 12x is 6.

9. Find radius of curvature at x = 2 on y2 = 
x x

x

−
−

2

5

� �
· Ans.  

1

3
�
��

�
��

10. Find ρ at (a, a) on x3 + y3 = 2a3. Ans.  
a

2

�
��

�
��

11. Find the radius of curvature at (a, 2a) on x2y = a(x2 + a2). Ans.  
5 5

6

a�
�
�
�

�
�
�
�

12. Find the radius of curvature at (–2a, 2a) on x2y = a (x2 + y2). Ans.  2a

13. Show that ρ at (a cos3θ, a sin3θ) on x y
2

3

2

3+  = a
2

3  is 3a sin θ cos θ.

14. Find radius of curvature at θ = 
π
3

 on x = a sin θ, y = b cos 2θ. Ans.  
a b

ab

2 2
3

212

4

+
�

�
�
�

�

�
�
�� �

15. Find ρ for x = t – sin ht cos ht, y = 2cos ht. Ans.  2 cos 2h t htsin
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1.2.3 Radius of Curvature in Pedal Form

Let polar form of the equation of a curve be r = f (θ) and
P(r, θ) be a given point on it. Let the tangent to the curve
at P subtend an angle ψ with the initial side. If the angle
between the radius vector OP and the tangent at P is φ then
we have ψ = θ + φ (see figure).

Let p denote the length of the perpendicular from the
pole O to the tangent at P. Then from the figure,

sin φ =
OM

OP

p

r
=

Hence, p = r sin φ ...(1)

∴
1

ρ  = 
d

ds

ψ
=

d

ds

d

ds

d

ds

d

dr

dr

ds

θ φ θ φ+ = + ⋅ ...(2)

We know that tan φ = r
d

dr
⋅ θ

i.e.,
sin

cos

φ
φ

=
r

d

ds
dr

ds

⋅ θ

Hence, sin φ = r
d

ds
⋅ θ

and cos φ =
dr

ds

From (2),
1

ρ
=

sin
cos

φ φ φ
r

d

dr
+ ⋅

=
1

r
r

d

dr
sin cosφ φ φ+ ⋅�
��

�
��

=
1

r

d

dr
r⋅ sin φ� �

Since, r sin φ = p

Therefore, ρ = r
dr

dp
⋅ ...(3)

This is the Pedal form of the radius of curvature.

1.2.4 Radius of Curvature in Polar Form

Let r = f (θ) be the equation of a curve in the polar form and p(r, θ) be a point on it. Then we know
that

1
2p

=
1 1
2 4

2

r r

dr

d
+ �

��
�
��θ ...(4)Differentiating w.r.t. r, we get

P (r, )�r = f ( )�

r

� �

X
O

p

M

�

Fig. 1.2
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– 2
3p

dp

dr
⋅ =

–
– –52

4
1

2
3

2

4r

dr

d
r

r

dr

d

d

dr

dr

d
+ ���

�
�� + ⋅ ⋅ ⋅ �

��
�
��θ θ θ� �

=
–

.
2 4 2
3 5

2

4

2

2r r

dr

d r

dr

d

d r

d

d

dr
− �

��
�
�� + ⋅ ⋅ ⋅

θ θ θ
θ

=
– 2 4 2

3 5

2

4

2

2r r

dr

d r

d r

d
− �

��
�
�� + ⋅

θ θ

Hence,
dp

dr
= p

r r

dr

d r

d r

d
3

3 5

2

4

2

2

1 2 1
+ �

��
�
��

�
�
�
�

�
�
�
�θ θ

–

Now, ρ = r
dr

dp

r

p
r r

dr

d r

d r

d

⋅ =

+ �
��
�
�� −

�
�	

	

�
�	
	

3
3 5

2

4

2

2

1 2 1

θ θ

=

r
p

r
dr

d
r

d r

d

6
3

2
2 2

2

1

2

⋅

+ �
��
�
�� − ⋅

θ θ
By using equation (4),

=

r
r r

dr
d

r
dr

d
r

d r

d

6
2 4

2
3

2

2
2 2

2

1 1

2

⋅ + �
��
�
��

�
�	

	

�
�	
	

+ �
��
�
�� ⋅

θ

θ θ
–

ρ =

r
dr

d

r
dr

d
r

d r

d

2
2

3

2

2
2 2

2
2

+ ���
�
��

�
�	

	

�
�	
	

+ �
��
�
�� − ⋅

θ

θ θ

...(5)

where r1 =
dr

dθ
,  r2 = 

d r

d

2

2θ
·

∴ ρ =
r r

r r r r

2
1
2

3

2

2
1
2

22

+

+ −
� �

This is the formula for the radius of curvature in the polar form.



DIFFERENTIAL CALCULUS—I 21

������� ��	� �
�����

1. Find the radius of the curvature of each of the following curves:

(i) r3 = 2ap2 (Cardiod) (ii) p2 = ar

(iii)
1

p

1

a

1

b

r

a b2 2 2

2

2 2
= + −  (Ellipse).

Solution. (i) Here r3 = 2ap2

Differentiating w.r.t. p, we get

3 2r
dr

dp
⋅ = 4ap

⇒
dr

dp
=

4

3 2

ap

r

Hence, ρ = r
dr

dp
r

ap

r

ap

r
⋅ = ⋅ =4

3

4

32

where p = 
r

a

3
1

2

2

�
��
�
��

ρ =

4
2

3

3
1

2
a

r
a

r

⋅
�
��
�
��

=
4

3 2

2 2

3

3
2a r

r a

ar=

(ii) Here p2 = ar

Differentiating w.r.t. p, we get

Then 2p = a
dr

dp
⋅

⇒
dr

dp
=

2 p

a

where p = ar ·

ρ = r
dr

dp
r

ar

a

r

a
= ⋅ ⋅ =2 2

3

2

(iii) Given
1

2p
=

1 1
2 2

2

2 2a b

r

a b
+ –

Differentiating w.r.t. p, we get

– 2
3p

=
– 1

2
2 2a b

r
dr

dp
⋅
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Hence
dr

dp
=

a b

p r

2 2

3

Therefore, ρ = r
dr

dp
r

a b

p r

a b

p
. .= =

2 2

3

2 2

3

2. Find the radius of curvature of the cardiod r = a (1 + cos θ) at any point (r, θ) on it. Also

prove that 
ρ2

r
 is a constant.

Solution. Given r = a (1 + cos θ)

Differentiating w.r.t. θ

r1 =
dr

d
a

θ
θ= – sin

and r2 =
d r

d
a

2

2θ
θ= – cos

∴ The radius of curvature in the polar form

ρ =
r r

r r r r

2
1
2

3

2

2
1
2

22

+

+ −
� �

=
a a

a a a a

2 2 2 2
3
2

2 2 2 2

1

1 2 1

+ +

+ + − +

cos sin

cos sin cos – cos

θ θ

θ θ θ θ

� �� �
� � � �� �

=
a

a

3 2 2
3

2

2 2 2 2

1 2

1 2 2

+ + +

+ + + + +

cos cos sin

cos cos sin cos cos

θ θ θ

θ θ θ θ θ

� �
� �

=
a 2 1

3 1

3

2+
+

cos

cos

θ
θ

� �� �
� �

=
2 2 1

3

1

2a + cos θ� �

=

2 2 2
2

3

2

1

2
a cos

θ�
��

�
��

ρ =
4

3 2
a cos

θ

Squaring on both sides, we get

ρ2 =
16

9 2
2 2a cos

θ where cos cos2

2

1

2
1

θ θ= +�
��

�
��� �

=
8

9
1

2a + cos θ� � where 1 + cos θ =�
��

�
��

r

a
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ρ2 =
8

9

8

9

2a r

a

ar⋅ =

Hence,
ρ2

r
=

8

9

a
 which is constant.

3. Show that for the curve rn = an cos nθ the radius of curvature is 
a

n r

n

n+ 1 1� � – ·

Solution. Here rn = an cos nθ
Taking logarithms on both sides, we get

n log r = n log a + log cos nθ
Differentiating w.r.t. θ, we have

n

r

dr

dθ = 0 –
sin

cos

n n

n

θ
θ

r1 = 
dr

dθ = – r tan nθ

Differentiating w.r.t. θ again, we obtain

r2 = 
d r

d

2

2θ
= − + ⋅��


��
rn n n

dr

d
sec tan2 θ θ

θ

= – sec tannr n r n2 2θ θ−� �
= r tan2 nθ – nr sec2 nθ

Using the polar form of ρ, we get

ρ =
r r

r r rr

2
1
2

3

2

2
1
2

22

+

+ −
� �

=
r r n

r r n r r n nr n

2 2 2
3

2

2 2 2 22

+

+ − −

tan

– tan tan sec

θ

θ θ θ

� �
� � � �

=
r n

r n n n n

3 3

2 2 2 21 2

sec

tan tan sec

θ
θ θ θ+ − +

=
r n

n n

sec

sec

3

21

θ
θ+� �

=
r

n n+ 1� � cos θ

=
r

n
r

a

n

n+
�
��
�
��1� �

where cos n
r

a

n

n
θ =

�
�
�

�
�
�

=
a

n r

n

n+ 1 1� � – ·
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4. Find the radii of curvature of the following curves:

  (i) r = aeθ cot α (ii) r (1 + cos θ) = a

(iii) θ = 
r a

a
– cos

a

r

2 2
–1− �
��
�
�� ·

Solution. (i) Here r = aeθ cot α

Differentiating w.r.t θ
dr

dθ = aeθ cot α · cot α

= r · cot α

So that, tan φ =
r
dr

dθ

=
r

r cot
tan

α
α=

Hence,  φ = α, since p = r sin φ
We get, p = r sin α.

This is the Pedal equation of the given curve. From which, we get

dr

dp
=

1

sin α

Hence, p = r
dr

dp
⋅  = r cosec α.

(ii) Given equation of the curve is

r (1 + cos θ) = a

Differentiating w.r.t. θ, we get

r (– sin θ) + (1 + cos θ) · 
dr

dθ
 = 0

or
dr

dθ =
r sin

cos

θ
θ1 +

We have,
1

2p
=

1 1
2 4

2

r r

dr

d
+ �

��
�
��θ

=
1 1

1
2 4

2 2

2r r

r+ ⋅
+

sin

cos

θ
θ� �

=
1

1
1

2

2

2r
+

+

�

�
�
�

�

�
�
�

sin

cos

θ
θ� �

=
1 1

1
2

2 2

2r

+ +

+

�

�
�
�

�

�
�
�

cos sin

cos

θ θ

θ

� �
� �
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=
1 2 1

1
2 2r

+

+

�

�
�
�

�

�
�
�

cos

cos

θ

θ

� �
� �    

= 2

12r + cos θ� �

where 1 + cos θ = 
a

r

1
2p

=
2 2

2r
a

r
ar⋅

=

Hence, p2 =
ar

2
 which is the pedal equation of the curve.

Differentiating w.r.t. p, we get

2p =
a dr

dp2
⋅

⇒
dr

dp
=

4 p

a

∴ ρ = r
dr

dp
⋅

= r
p

a
⋅ 4

 where p = 
ar

2

= r
a

ar
.

4

2

= 2 2
3
2a r .

(iii) Here, θ =
r a

a

a

r

2 2−
− �

��
�
��cos–1

Then,
d

dr

θ
=

2

2

1

1

2 2
2

2

1

2

r

a r a a

r

a

r⋅ ⋅ −
+

−
�
��

�
��

�
��

�
��

–

=
r

a r a

a

r r a2 2 2 2− −
–

=
r a

ar r a

2 2

2 2

−

−
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d

dr

θ
=

r a

ar

2 2−

so that
dr

dθ =
ar

r a2 2−
We have the Pedal equation, we get

1
2p

=
1 1
2 4

2

r r

dr

d
+ �

��
�
��θ

=
1 1
2 4

2 2

2 2r r

a r

r a
+ ⋅

−� �

=
1

1
2

2

2 2r

a

r a
+

−
�
�



�
�


1
2p

=
1

2 2r a−
Hence p 2 = r 2 – a 2

From this we get
dr

dp
=

p

r

∴ ρ = r
p

r
p r a⋅ = = − ⋅2 2

�
������� ���

1. Find the radius curvature at the point ( p, r) on each of the following curves:

(i) pr = a2 (Hyperbola) Ans.  
r

a

3

2

�
�
�

�
�
�

(ii) r3 = a2p (Lemniscate) Ans.  
a

r

2

3

�
�
�

�
�
�

(iii) pan = r n+1 (Sine spiral) Ans.  
a

n r

n

n+

�
�
�
�

�
�
�
�−1 1� �

(iv) p = 
r

r a

4

2 2+
 (Archimedian spiral)

Ans.  
a r

r a

2 2
3

2

2 22

+

+

�

�

�
�
�
�

�

�

�
�
�
�

� �
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2. Find the radius of curvature at (r, θ) on each of the following curves:

(i) r = 
a

θ
Ans.  

r a r

a

2 2
3

2

3

+
�

�

�
�
�
�

�

�

�
�
�
�

� �
(ii) r = a cos θ Ans.  

a

2
�
��

�
��

(iii) r2 = a2 cos 2θ Ans.  
a

r

2

3

�
�
�

�
�
� (iv) rn = an sin nθ Ans.  

a

n r

n

n+

�
�
�
�

�
�
�
�−1 1� �

(v) r2 cos 2θ = a2 Ans.  
r

a

3

2

�
�
�

�
�
� (vi) r = 

a

2
1 − cos θ� � Ans.  

2

3

ar�
�
��

�
�
��

(vii) r = a sec 2θ Ans.  
r

p

4

23

�
�
�

�
�
� (viii) r = a sin nθ Ans.  

na

2
�
��

�
��

3. If ρ1 and ρ2 are the radii of curvature at the extremities of any chord of the cardiode

r = a (1 + cos θ) which passes through the pole. Prove that ρ ρ1
2

2
2+  = 

16

9

2a
·

1.3 SOME FUNDAMENTAL THEOREM

1.3.1 Rolle’s Theorem

If a function f (x) is

1. continuous in a closed interval [a, b],

2. differentiable in the open interval (a, b) and

3. f (a) = f (b).

Then there exists at least one value c of x in (a, b) such that f  ′ (c) = 0

(No proof).

1.3.2 Lagrange’s Mean Value Theorem

Suppose a function f (x) satisfies the following two conditions.

1. f (x) is continuous in the closed interval [a, b].

2. f (x) is differentiable in the open interval (a, b).

Then there exists at least one value c of x in the open interval (a, b), such that

f b f a

b a

( ) –

–

� �
= f ′ (c)
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Proof. Let us define a new function

φ(x) = f (x) – k·x ...(1)

where k is a constant. Since f (x), kx and φ (x) is continuous in [a, b], differentiable in (a, b).

From (1) we have, φ (a) = f (a) – k·a

φ (b) = f (b) – k·b

∴ φ (a) = φ (b) holds good if

f (a) – k·a = f (b) = k·b

i.e., k (b – a) = f (b) – f (a)

or k =
f b f a

b a

� � � �−
− ...(2)

Hence, if k is chosen as given by (2), then φ (x) satisfy all the conditions of Rolle’s theorem.
Therefore, by Rolle’s theorem there exists at least one point c in (a, b) such that φ′(c) = 0.

Differentiating (1) w.r.t. x we have,

φ′(x) = f ′(x) – k

and φ′(c) = 0  gives f ′(c) – k = 0

i.e., k = f ′(c) ...(3)

Equating the R.H.S. of (2) and (3) we have

f b f a

b a

� � � �−
−

= f ′(c) ...(4)

This proves Lagrange’s mean value theorem.

1.3.3 Cauchy’s Mean Value Theorem

If two functions f (x) and g (x) are such that

1. f (x) and g (x) are continuous in the closed interval [a, b].

2. f (x) and g (x) are differentiable in the open interval (a, b).

3. g′ (x) ≠ 0 for all x ∈ (a, b).

Then there exists at least one value c ∈ (a, b) such that

f b f a

g b g a

( ) –

–

� �
� � � � =

′
′

f c

g c

� �
� � ·

Proof: Let us define a new function

φ (x) = f (x) – kg (x) ...(1)

where k is a constant. From the given conditions it is evident that φ (x) is also continuous in [a, b],
differentiable in (a, b).

Further (1), we have

φ (a) = f (a) – k g (a);  φ (b) = f (b) – k g (b)
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∴ φ (a) = φ (b) holds good if

f (a) – k g (a) = f (b) – k g (b)

i.e., k [g (b) – g (a)] = f (b) – f (a)

or k =
f b f a

g b g a

� � � �
� � � �

−
−

...(2)

Here, g (b) ≠ g (a). Because if g (b) = g (a) then g (x) would satisfy all the conditions Rolle’s
theorem at least one point c in (a, b) such that g′(c) = 0. This contradicts the data that g′(x) ≠ 0 for
all x in (a, b). Hence if k is chosen as given by (2) then φ (x) satisfy all the conditions of Rolle’s
theorem.

Therefore by Rolle’s theorem there exists at least one value c in (a, b) such that φ′(c) = 0.

Differentiating (1) w.r.t. x we have,

φ′(x) = f ′(x) – kg′(x)  and  φ′(c) = 0

gives f ′(c) – kg′(c) = 0

i.e., f ′(c) = kg′(c)

Thus, k =
′
′

f c

g c

� �
� � ...(3)

Equating the R.H.S. of (2) and (3) we have

f b f a

g b g a

� � � �
� � � �

−
−

=
′
′

f c

g c

� �
� �

This proves mean value theorem.

1.3.4 Taylor’s Theorem

Taylor’s Theorem for a function of a single variable and Maclaurin’s series function:

Suppose a function f (x) satisfies the following conditions:

(1) f (x), f ′ (x), f ′′ (x), ..... f (n–1) (x) are continuous in the closed interval [a, b].

(2) f (n–1) (x) is differentiable i.e., f (n) (x) exists in the open interval (a, b).

Then there exists a point c ∈ (a, b) such that

f (b) = f (a) + (b – a) f ′ (a) + 
b a–

!

� �2
2

 f ′′ (a) + .......... + 
b a

n

n
–

– !

–� �
� �

1

1    
 f (n–1) (a) + R

n

where R
n
 = 

b a

n

n
–

!

� �
 f n (c) ...(1)

Taylor’s theorem is more usually written in the following forms. Substitute b = x in (1)

f (x) = f (a) + (x – a) f ′(a) + 
x a–

!

� �2
2

 f ′′(a) + 
x a−� �3

3!
 + .... + 

x

n

n−

−

1

1� �!  f (n–1) (a) + R
n
 (x) + ....

...(2)
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where R
n
 (x) = 

x a

n
f x

n
n–

!

� � � �� �
.

Thus f (x) can be expressed as the sum of an infinite series. This series is called the Taylor’s
series for the function f (x) about the point a.

If we a substitute a = 0, in Eqn. (2), we get

f (x) = f (0) + x f ′(0) + 
x2

2 !
 f ′′(0) + 

x3

3!
 f ′′′(0) + ...... + 

x

n

n

!
 f n(0) + ..... ...(3)

This is called the Maclaurin’s series for the function f (x).

If f (x) = y and f ′ (x), f ′′ (x), ..........

are denoted by y1, y2, ...... the Maclaurin’s series can also be written in the form:

y = y (0) + xy1 (0) + 
x2

2 !
 y2 (0) + ...... 

x

n

n

!
 y

n
 (0) + ...... ...(4)

������� ��	� �
�����

1. Verify Rolle’s theorem for the function f (x) = x2 – 4x + 8 in the interval [1, 3].

Solution

f (x) = x2 – 4x + 8 is continuous in [1, 3] and

f ′ (x) = 2x – 4 exist for all values in (1, 3)

∴ f (1) = 1 – 4 + 8 = 5; f (3) = 32 – 4 (3) + 8 = 5

∴ f (1) = f (3)

Hence all the three conditions of the theorem are satisfied.

Now consider f ′ (c) = 0

i.e., 2c – 4 = 0 ⇒ 2c = 4

c =
4

2
 = 2 ∈ (1, 3)

and hence Rolle’s theorem is verified.

2. Verify Rolle’s theorem for the function

f (x) = x (x + 3)e–x/2 in the interval [–3, 0].

Solution f (x) = x (x + 3)e–x/2 is continuous in [–3, 0]

and f ′(x) = (x2 + 3x) – – /1

2
2�

��
�
�� e x  + (2x + 3)e–x/2

= –
1

2
 (x2 – x – 6)e–x/2

Therefore f ′(x) exists (i.e., finite) for all x

Also f (–3) = 0, f (0) = 0
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So that f (–3) = f (0)

Hence all the three conditions of the theorem are satisfied.

Now consider f ′ (c) = 0

i.e.,
–1

2
 (c2 – c – 6)e–c/2 = 0

c2 – c – 6 = 0

(c + 2) (c – 3) = 0

c = 3 or –2

Hence there exists – 2 ∈ (–3, 0) such that

f ′ (–2) = 0

and hence Rolle’s theorem is verified.

3. Verify Rolle’s theorem for the function

f (x) = (x – a)m (x – b)n in [a, b] where m > 1 and n > 1.

Solution f (x) = (x – a)m (x – b)n is continuous in [a, b]

f ′ (x) = (x – a)m · n (x – b)n–1 + m (x – a)m–1 (x – b)n

= (x – a)m–1 (x – b)n–1 [n (x – a) + m (x – b)]

f ′ (x) = (x – a)m–1 (x – b)n–1 [nx – na + mx – mb]

= (x – a)m–1 (x – b)n–1 [(m + n) x – (na + mb)] ...(1)

f ′ (x) exists in (a, b)

Also f (a) = 0 = f (b)

Hence all the conditions of the theorem are satisfied.

Now consider f ′ (c) = 0

From (1) (c – a)m–1 (c – b)n–1 [(m + n) c – (na + mb)] = 0

⇒ c – a = 0, c – b = 0, (m + n) c – (na + mb) = 0

i.e., c = a, c = b, c = 
na mb

m n

+
+

a, b are the end points.

c = 
na mb

m n

+
+

 is the x-coordinate of the point which divides the line joining [a, f (a)], [b, f (b)]

internally in the ratio m : n.

∴ c =
na mb

m n

+
+

 ∈ (a, b)

Thus the Rolle’s theorem is verified.
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4. Verify Rolle’s theorem for the following functions:

(i) sin x in [– π, π] (ii) ex sin x in [0, π]

(iii)
sin x

ex  in [0, π] (iv) ex (sin x – cos x) in 
π π
4

,
5

4
	

�

�
�

Solution

(i) f (x) = sin x is continuous in [– π, π]

f ′ (x) = cos x exists in [– π, π]

and also f (– π) = sin (– π) = 0

f (π) = sin π = 0

so that f (– π) = f (π)

Thus f (x) satisfies all the conditions of the Rolle’s theorem satisfied.

Now consider f ′ (c) = 0

∴ cos c = 0 so that

c = ± 
π
2

 Both these values

lie in (– π, π).

∴ c = ± 
π
2

 ∈ (– π, π)

Hence Rolle’s theorem is verified.

(ii) f (x) = ex sin x is continuous in [0, π]

f ′ (x) = ex cos x + sin x · ex

= ex (cos x + sin x)

f ′ (x) exists in (0, π)

And also f (0) = e0 sin (0) = 0

f (π) = eπ sin (π) = 0

∴ f (0) = f (π) = 0

Therefore f (x) satisfies all the conditions of Rolle’s theorem.

Now consider f ′ (c) = 0

ec (cos c + sin c) = 0

cos c + sin c = 0

sin c = – cos c as ec ≠ 0

or tan c = –1

c =
–π
4

 or c = 
3

4

π

Hence there exists c = 
3

4

π
 ∈ (0, π)

Hence Rolle’s theorem is verified.
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(iii) f (x) =
sin x

e x  is continuous in (0, π)

f ′ (x) =
e x xe

e

x x

x

cos – sin� �
2

f ′ (x) =
cos – sinx x

ex ...(1)

f ′ (x) exists in (0, π)

Also f (0) =
sin 0

0e
 = 0

f (π) =
sin π

πe
 = 0

f (0) ≠ f (π) = 0

Hence all the conditions of the theorem are satisfied.

Consider f ′ (c) = 0

From (1),
cos – sinc c

ec = 0

cos c – sin c = 0

sin c = cos c

tan c = 1

c =
π
4

Hence this exists c =
π
4

 ∈ (0, π)

∴ Rolle’s theorem is verified.

(iv) Let f (x) = ex (sin x – cos x) is continuous in 
π π
4

5

4
,

	

�

�
�

f ′ (x) = ex (cos x + sin x) + ex (sin x – cos x)

f ′ (x) = 2ex sin x ...(1)

f (x) is differentiable in 
π π
4

5

4
,

�
��

�
��

f
π
4
�
��
�
�� = eπ π π/ sin – cos4

4 4
�
��

�
��

= eπ / –4 1

2

1

2
0

�
��

�
�� =

f
5

4

π�
��
�
�� = e5 4 5

4

5

4
π π π/ sin – cos�
��

�
��
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= e5 4 1

2

1

2
0π/ − +

�
��

�
�� =

∴ f
π
4
�
��
�
�� = f

5

4
0

π�
��
�
�� =

Hence all the conditions of the theorem are satisfied.

Now consider f ′ (c) = 0

From (1), we have, 2 ec sin c = 0 (� ec ≠ 0)

∴ sin c = 0 = sin nπ
c = nπ where n = 0, 1, 2, .....

But c = π ∈ 
π π
4

5

4
,

�
��

�
��

Thus Rolle’s theorem is satisfied.

5. Show that the constant c of Rolle’s theorem for the function f (x) = log 
x ab

a b x

2 +
+

	


��

�

��� �  in

a ≤ x ≤ b where 0 < a < b is the geometric mean of a and b.

Solution. The given f (x) is continuous in [a, b] since 0 < a < b

f (x) = log 
x ab

a b x

2 +
+

	


��

�

��� �

The given function can be written in the form

f (x) = log (x2 + ab) – log (a + b) – log x

f ′ (x) =
2

0
1

2

x

x ab x+
– –

=
2 2 2

2

2

2

x x ab

x ab x

x ab

x ab x

– –+

+
=

+

� �
� � � �

...(1)

f ′ (x) exists in (a, b)

Also f (a) = log 
a ab

a b a

2 +
+

	


��

�

��� �  = log 1 = 0

f (b) = log 
b ab

a b b

2 +
+

	


��

�

��� �  = log 1 = 0

∴ f (a) = f (b) = 0

Hence all the conditions of the theorem are satisfied.

Now consider f ′ (c) = 0
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From (1), we have
c ab

c ab c

2

2

–

+� �
= 0

c2 – ab = 0

i.e., c = ± ab

∴ c = + ab  ∈ (a, b) and we know

that ab  is the geometric mean of a and b.

6. Verify Lagrange’s mean value theorem for the following functions:

(i) f (x) = (x – 1) (x – 2) (x – 3) in [0, 4] (ii) f (x) = sin2 x in 0,
2

π	

�

�
�

(iii) f (x) = log x in [1, e] (iv) f (x) = sin–1 x in [ 0, 1].

Solution

(i) We have the theorem 
f b f a

b a

� � � �−
−

 = f ′ (c)

f (x) = (x – 1) (x – 2) (x – 3) is continuous in [0, 4]

a = 0, b = 4 by data

∴ f (b) = f (4) = 3·2·1 = 6 and

f (a) = f (0) = (–1) (–2) (–3) = – 6

We have f (x) = x3 – 6x2 + 11x – 6 in the simplified form.

∴ f ′ (x) = 3x2 – 12x + 11 exists in (0, 4)

The theorem becomes,

f f4 0

4 0

� � � �–

–
= 3c2 – 11c + 11

6

4

– –6� �
= 3c2 – 12c + 11

or 3c2 – 12c + 8 = 0

∴ c =
12 144 96

6

± –

c =
12 48

6

±

i.e., c =
12 48

6

12 48

6

+
,

–

c = 3.15 and 0.85 both belongs to (0, 4)

∴ c = 3.15 and 0.85 ∈ (0, 4)

Thus the theorem is verified.
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(ii) We have the theorem 
f b f a

b a

� � � �–

–
 = f ′ (c)

Here, f (x) = sin2 x is continuous in 0
2

,
π	


�
�
�

f ′ (x) = 2 sin x cos x

= sin 2x

∴ f (x) is differentiable in 0
2

,
π�

��
�
��

with a = 0, b = 
π
2

f (a) = f (0) = sin2 (0) = 0

f (b) = f
π π
2 2

12�
��
�
�� = �

��
�
�� =sin

The theorem becomes

f f
π

π
2

0

2
0

�
��
�
�� –

–

� �
= sin 2c

1 0

2

–
π = sin 2c

i.e.,
2

π = sin 2c

2c = sin–1 
2

π
�
��
�
��

c =
1

2

2
sin–1

π
�
��
�
��

= 0.36 which lies between 0 and 
π
2

Here, c = 0.36 ∈ 0
2

,
π�

��
�
��

Thus the theorem is verified.

(iii) We have the theorem 
f b f a

b a

� � � �–

–
 = f ′ (c)

f (x) = log x is continuous in [1, e]

f ′ (x) =
1

x
 f (x) is differentiable in (1, e)
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with a = 1, b = e

f (a) = f (1) = log 1 = 0

f (b) = f (e) = log e = 1

The theorem becomes,

f e f

e

� � � �–

–

1

1
=

1

c

1 0

1

–

–e
=

1

c

1

1e –
=

1

c

c = e – 1

2 < e < 3 since 1 < e – 1 < 2 < e

So that c = e – 1 ∈ (1, e)

Thus the theorem is verified.

(iv) we have the theorem 
f b f a

b a
f c

� � � � � �–

–
= ′

f (x) = sin–1 x is continuous in [0, 1]

f ′ (x) =
1

1 2– x
 which exists for all x ≠ 1

Therefore f (x) is differentiable in (0, 1)

By Lagrange’s theorem

f f1 0

1 0

� � � �–

–
= f ′ (c)

sin–1 1 – sin–1 0 =
1

1 2– c

i.e.,
π
2

0– =
1

1 2– c

π
2

=
1

1 2– c
 ⇒ 

4
2π

 = 1 – c2

i.e., c2 = 1
4
2

–
π

c2 =
π

π

2

2

4–
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or c = ±
π

π

2 4–
 = ± 0.7712

Hence c = 0.7712 lies between 0 and 1.

Therefore Lagrange’s theorem is verified for f (x) = sin–1 x in [0, 1].

7. Prove that 
b – a

1 – a2
 < sin–1 b – sin–1 a < 

b – a

1 – b2
 where a < b < 1.

Solution

Let f (x) = sin–1 x

∴ f ′ (x) =
1

1 2– x

f (x) is continuous in [a, b] and

f (x) is differentiable in (a, b)

Applying Lagrange’s mean value theorem for f (x) in [a, b], we get a < c < b

sin – sin

–

–1 –1b a

b a
=

1

1 2– c
...(1)

Now a < c ⇒ a2 < c2 ⇒ – a2 > – c2 ⇒ 1 – a2 > 1 – c2

Hence
1

1 2– a
<

1

1 2– c
...(2)

Also, c < b on similar lines,

1

1 2– c
<

1

1 2– b
...(3)

Combining (2) and (3), we get

1

1 2– a
<

1

1

1

12 2– –c b
<

or
1

1 2– a
<

sin – sin

– –

–1 –1b a

b a b
<

1

1 2
 by using (1)

On multiplying by (b – a) which is positive, we have

b a

a

–

–1 2
 < sin–1 b – sin–1 a < 

b a

b

–

–1 2
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8. Show that

b – a

1 – b2  < tan–1 b – tan–1 a < 
b – a

1 a2+
, if 0 < a < b and deduce that 

π π
4

3

25
tan

4

3 4

1

6
–1+ < < + ·

Solution

Let f (x) = tan–1 x is continuous in [a, b], a > 0.

Hence f ′ (x) = 
1

1 2+ x
, f (x) is differentiable in (a, b).

Applying Lagrange’s theorem, we get

f b f a

b a

� � � �–

–
= f ′ (c) for some c : a < c < b

tan – tan

–

–1 –1b a

b a
=

1

1 2+ c
...(1)

Now c > a   ⇒   c2 > a2   ⇒   1 + c2 > 1 + a2

∴
1

1 2+ c
<

1

1 2+ a
...(2)

and c < b   ⇒   c2 < b2   ⇒   1 + c2 < 1 + b2

∴
1

1 2+ c
>

1

1 2+ b
...(3)

From (2) and (3), we obtain

1

1 2+ b
<

1

1

1

12 2+
<

+c a

i.e.,
1

1 2+ b
<

tan – tan

–

–1 –1b a

b a a
<

+
1

1 2
 using (1)

On multiplying (b – a), we get

b a

b

–

1 2+
< tan–1 b – tan–1 a < 

b a

a

–

1 2+

In particular if a = 1, b = 
4

3
 then

4
3

1

1
16
9

4

3
1

4
3

1

1 1

–
tan – tan

–
–1 –1

+
< <

+

π π
4

3

35

4

3 4

1

6
+ < < +tan –1

Hence proved.
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9. Verify Cauchy’s mean value theorem for the following pairs of functions.

(i) f (x) = x2 + 3, g (x) = x3 + 1 in [1, 3].

(ii) f (x) = sin x, g (x) = cos x in 0,
2

π	

�

�
� .

(iii) f (x) = ex, g (x) = e–x in [a, b],

Solution

(i) We have Cauchy’s mean value theorem

f b f a

g b g a

� � � �
� � � �

–

–
=

′
′

f c

g c

� �
� �

Here, a = 1, b = 3

f (x) = x2 + 3

g (x) = x3 + 1

∴ f ′ (x) = 2x

g′ (x) = 3x2

f (x) and g (x) are continuous in [1, 3], differentiable in (1, 3)

g′ (x) ≠ 0 V– x ∈ (1, 3)

Hence the theorems becomes

f f

g g

3 1

3 1

� � � �
� � � �

–

–
=

2c

c3 2

12 4

28 2

–

–
=

2

3

8

26

2

3c c
⇒ =

2

13
=

1

3c

or c =
13

6
2

1

6
=  ∈ (1, 3)

Thus the theorem is verified.

(ii) We have Cauchy’s mean value theorem

f b f a

g b g a

� � � �
� � � �

–

–
=

′
′

f c

g c

� �
� �

Here, f (x) = sin x

g (x) = cos x

f ′ (x) = cos x

g′ (x) = – sin x

∴ g′ (x) ≠ 0
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Clearly both f (x) and g (x) are continuous in 0
2

,
π	


�
�
�  and differentiable in 0

2
,

π�
��

�
�� . Therefore

from Cauchy’s mean value theorem

f f

g g

π

π
2

0

2
0

�
��
�
��

�
��
�
��

–

–

� �

� �
=

′
′

f c

g c

� �
� �  for some c : 0 < c < 

π
2

i.e.,
1 0

0 1

–

–
=

cos

– sin

c

c

–1 = – cot c or cot c = 1

∴ c =
π
4

Clearly c =
π π
4

0
2

∈���
�
��,

Thus Cauchy’s theorem is verified.

(iii) We have Cauchy’s mean value theorem

f b f a

g b g a

� � � �
� � � �

–

–
=

′
′

f c

g c

� �
� �

Here f (x) = ex

and g (x) = e–x

f  ′ (x) = ex

g′ (x) = – e–x

∴ f (x) and g (x) are continuous in [a, b] and differentiable in (a, b)

and also g′ (x) ≠ 0

∴ From Cauchy’s mean value theorem

f b f a

g b g a

� � � �
� � � �

–

–
=

′
′

f c

g c

� �
� �

i.e.,
e e

e e

b a

b a

–

–– – =
e

e

c

c– –

i.e.,
e e

e e

b a

b a

–

–
1 1 = – e2c

i.e.,
e e e e

e e

a b b a

a b

–

–

� �
� �

= – e2c

ea + b = e2c
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i.e., a + b = 2c

or c =
a b+

2

∴ c =
a b+

2
 ∈ (a, b)

Hence Cauchy’s theorem holds good for the given functions.

10. Expand ex in ascending powers of x – 1 by using Taylor’s theorem.

Solution

The Taylor’s theorem for the function f (x) is ascending powers of x – a is

f (x) = f (a) + (x – a) f ′ (a) + 
x a–

!

� �2
2

 f ′′ (a) + ......

Here f (x) = ex and a = 1

f ′ (x) = ex

f ′′ (x) = ex

f ′ (1) = e

f ′′ (1) = e1

and so on.

∴ ex = e + (x – 1) e + 
x –

!

1

2

2� �
 e + .....

= e x
x

1 1
1

2

2

+ + +
�
��
��

�
��
��

–
–

..........� � � �

11. Obtain the Taylor’s expansion of log
e
 x about x = 1 up to the term containing fourth degree

and hence obtain log
e
 (1.1).

Solution

We have Taylor’s expansion about x = a given by

y (x) = y (a) + (x – a) y
1
 (a) + 

x a–

!

� �2
2

 y
2
 (a) + 

x a–

!

� �3
3

 y
3
 (a) + 

x a–

!

� �4
4

 y
4
 (a) + .......

y (x) = log
e
 x at a = 1

y (1) = log
e
 1 = 0

Differentiating y (x) successively, we get

y
1
 (x) =

1

x
⇒ y

1
 (1) = 1

y
2
 (x) =

–1

x2 ⇒ y
2
 (1) = –1

y3 (x) =
2
3x

⇒ y3 (1) = 2
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y4 (x) =
– 6

4x
⇒ y4 (1) = – 6

Taylor’s series up to fourth degree term with a = 1 is given by

y (x) = y (1) + (x – 1) y
1
 (1) + 

x –

!

1

2

2� �
 y

2
 (1) + 

x –

!

1

3

3� �
 y

3
 (1) + 

x –

!

1

4

4� �
 y

4
 (1)

Hence, log
e
 x = 0 + (x – 1) (1) + 

x – 1

2

2� �
 (–1) + 

x – 1

6

3� �
 (2) + 

x – 1

24

4� �
 (–6)

log
e
 x = x

x x x
– –

– –
–

–
1

1

2

1

3

1

4

2 3 4

� � � � � � � �
+

Now putting x = 1.1, we have

log
e
 (1.1) = 01

01

2

01

3

01

4

2 3 4

. –
. .

–
.� � � � � � � �

+

= 0.0953

12. Expand tan–1 x in powers of (x – 1) up to the term containing fourth degree.

Solution

Taylor’s expansion in powers of (x – 1) is given by

y (x) = y (1) + (x – 1) y
1
 (1) + 

x –

!

1

2

2� �
 y

2
 (1) + 

x –

!

1

3

3� �
 y

3
 (1) + 

x –

!

1

4

4� �
 y

4
 (1) + ......

y (x) = tan–1 x

⇒ y (1) = tan–1 (1) = 
π
4

y1 (x) =
1

1 2+ x

⇒ y (1) =
1

2

We have y1 =
1

1 2+ x

(1 + x2) y1 = 1 ...(1)

Differentiate successively to obtain expressions

Hence we have to differentiate (1)

(1 + x2) y2 + 2 xy1 = 0 ...(2)

Putting x = 1

2y2 (1) + (2) (1) 
1

2
= 0
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∴ y2 (1) =
–1

2

Differentiating (2) w.r.t. x, we get

(1 + x2) y3 + 4x y2 + 2y1 = 0 ...(3)

Putting x = 1, 2y
3
 (1) – 2 + 1 = 0,

y
3
 (1) =

1

2

Differentiating (3) w.r.t. x, we get

(1 + x2) y
4
 + 6xy

3
 + 6y

2
= 0 ...(4)

Putting x = 1

2y4 (1) + 3 – 3 = 0

y
4
 (1) = 0

Substituting these values in the expansion, we get

tan–1 x =
π
4

1

2
1

1

2

1

6

2 3

+ +
�
��
��

�
��
��

x
x x

– –
– –� � � � � �

13. By using Maclaurin’s theorem expand log sec x up to the term containing x6.

Solution

Let y (x) = log sec x,

y (0) = log sec 0 = 0

We have y
1

=
sec tan

sec

x x

x
 = tan x

y
1
 (0) = 0

y
2

= sec2 x

y2 (0) = 1

To find the higher order derivatives

Consider y
2

= 1 + tan2 x

y2 = 1 + y1
2

This gives, y
3

= 2y
1
 y

2

Hence, y
3
 (0) = 2y

1
 (0) y

2
 (0) = 0

and y4 = 2 [ y1 y3 + y2
2] so that

y
4
 (0) = 2 [ y

1
 (0) y

3
 (0) + y

2
2 (0)] = 2 [0·1 + 12] = 2

This yields y
5

= 2 [ y
1
 y

4
 + y

2
 y

3
 + 2y

2 
y

3
]

= 2 [ y1 y4 + 3y2 y3]

y
5
 (0) = 2 [ y

1
 (0) y

4
 (0) + 3y

2
 (0) y

3
 (0)]

= 2 [0·2 + 3·1·0] = 0

y6 = 2 [ y1 y5 + y2 y4 + 3 {y2 y4 + y3
2}]
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= 2 [ y
1
 y

5
 + 4y

2
 y

4
 + 3y

3
2]

This yields y6 (0) = 2 [ y1 (0) y5 (0) + 4y2 (0) y4 (0) + 3y3
2 (0)]

= 2 [0·0 + 4·1·2 + 3·0] = 16

Therefore by Maclaurin’s expansion, we have

y = y (0) + xy1 (0) + 
x2

2 !
 y2 (0) + ........

log sec x = 0 + x · 0 + 
x2

2 !
 (1) + 

x3

3!
 (0) + 

x4

4
2

!
⋅  + 

x5

5!
 (0) + 

x6

6
16

!
⋅  + .......

=
x x x2 4 6

2 12 45
+ +  + ........

14. Expand log (1 + sin x) up to the term containing x4 by using Maclaurin’s theorem.

Solution

Let y = log (1 + sin x)

y (0) = 0

We have, y
1

=
cos

sin

x

x1 +
y

1
 (0) = 1

Now, y
1

=

sin –

cos –

π

π
2

1
2

x

x

�
��

�
��

+ �
��

�
��

=

2
1
2 2

1
2 2

2
1
2 2

2

sin – cos –

cos –

π π

π

x x

x

�
��

�
��

�
��

�
��

�
��

�
��

∴ y
1

= tan 
π
4 2

–
x�

��
�
��

∴ y
2

= – sec –
1

2 4 2
2 π x�
��

�
��

= – tan –
1

2
1

2 2
2+ �
��

�
��

	

�

�
�

π x

y
2

=
–1

2
 (1 + y

1
2)

y
2
 (0) =

–1

2
 (1 + 1) = – 1
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y
3

= –
1

2
 2y

1
 y

2
 = – y

1
 y

2

This gives, y3 (0) = –1 (–1) = 1

y
4

= – [ y
1
 y

3
 + y

2
2]

y4 (0) = – [1 × 1 + (–1)2] = –2

y
5

= – [ y
1
 y

4
 + y

2
 y

3
 + 2y

2
 y

3
] = – (y

1
 y

4
 + 3y

2
 y

3
)

which gives, y5 (0) = – [1 (–2) + 3 (–1)] = 5

Therefore by Maclaurin’s theorem, we have

y = y (0) + xy1 (0) + 
x2

2 !
 y2 (0) + .......

log (1 + sin x) = 0 + x · 1 + 
x x x x2 3 4 5

2 3 4 5
5

!
–1

! !
–2

!
.........� � � � � �+ + + +

= x
x x x x

–
! !

–
! !

........
2 3 4 5

2 3

2

4

5

5
+ + +

15. Expand log (1 + ex) in ascending powers of x up to the term containing x4.

Solution

Let y = log (1 + ex),

y (0) = log 2

Now y1 =
e

e

x

x1 +

y1 (0) =
1

2

y
2

=
e

e

e

e e
y y

x

x

x

x x
1 1

1

1
1

2 1 1
+

=
+ +

=
� �

� �. –

y2 (0) =
1

2
1

1

2

1

4
–

�
��

�
�� =

∴ y
3

= y
1
 (–y

2
) + (1 – y

1
) y

2
 = y

2
 – 2y

1
 y

2

∴ y
3
 (0) =

1

4
2

1

2

1

4
0– ⋅ ⋅ =

y4 = y3 – 2 ( y1 y3 + y2
2)

y
4
 (0) = 0 – 2 

1

2
0

1

16 8
⋅ +�

��
�
�� = –1
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Therefore from Maclaurin’s theorem, we get

y = y (0) + xy
1
 (0) + 

x2

2 !
 y

2
 (0) + .......

log (1 + ex) = log 2 + x
x x x

.
!

.
! !

– ........
1

2 2

1

4 3
0

4

1

8

2 3 4

+ + + �
��
�
�� +� �

log (1 + ex) = log 2 + 
x x x

2 8 192

2 4

+ +– .......  .

16. Expand by Maclaurin’s theorem 
e

e

x

x1 +
 up to the term containing x3.

Solution

Let y =
e

e

x

x1 +

y (0) = 1

Now y = 1
1

1
–

+ e x

y1 =
e

e

e

e e

x

x

x

x x
1 1

1

12
+

=
+

⋅
+� �

 = y (1 – y) = y – y2

∴ y
1
 (0) =

1

2

1

4

1

4
– =

y2 = y1 – 2y y1

∴ y
2
 (0) =

1

4
2

1

2

1

4
0– ⋅ ⋅ =

y
3

= y
2
 – 2 ( yy

2
 + y

1
2)

∴ y3 (0) = 0 – 2 
1

2
0

1

16 8
⋅ +�

��
�
�� = –1

Therefore from Maclaurin’s theorem,

y = y (0) + xy
1
 (0) + 

x2

2 !
 y

2
 (0) + 

x3

3!
 y

3
 (0) + .....

e

e

x

x1 +
=

1

2

1

4 2
0

3

1

8

2 3

+ ⋅ + + �
��
�
�� +x

x x

! !
– .......� �

=
1

2 4 48

3

+ +x x
– .......
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17. Expand tan–1 (1 + x) as far as the term containing x3 using Maclaurin’s series.

Solution

Let y = tan–1 (1 + x)

∴ y (0) = tan–1 (1) = 
π
4

y
1

=
1

1 1

1

2 22 2+ +
=

+ +x x x� � � �

∴ y
1
 (0) =

1

2

Now (x2 + 2x + 2) y
1

= 0

∴ (x2 + 2x + 2) y2 + (2x + 2) y1 = 0

2y
2
 (0) + 2y

1
 (0) = 0

∴ y
2
 (0) = –

1

2

(x2 + 2x + 2) y
3
 + (2x + 2) y

2
 + (2x + 2) y

2
 + 2y

1
= 0

i.e., (x2 + 2x + 2) y3 + 4 (x + 1) y2 + 2y1 = 0

2y3 (0) + 4 –
1

2
�
��
�
��  + 2

1

2
�
��
�
�� = 0

∴ y3 (0) =
1

2

Hence by Maclaurin’s theorem, we get

y = y (0) + xy
1
 (0) + 

x
y

x
y

2

2

3

32
0

3
0

! !
.......� � � �+ +

tan–1 (1 + x) =
π
4

1

2

1

2 2

1

3 3

2 3

+ + +x
x x

–
! !

.......

=
π
4 2 4 18

2 3

+ + −x x x
– .........

18. Expand esin x up to the term containing x4 by Maclaurin’s theorem.

Solution

Let y = esin x

y (0) = 1

y
1

= esin x · cos x

y1 (0) = 1

i.e., y
1

= cos x · y
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y2 = cos x · y1 – sin x · y

∴ y
2
 (0) = 1 – 0 = 1

y3 = cos x · y2 – (2 sin x + cos x) y1

∴ y
3
 (0) = 1 – (0 + 1) 1 = 0

y4 = cos x · y3 – sin x · y2 – (2 sin x + cos x) y2 – (2 cos x – sin x) y1

∴ y
4
 (0) = 0 – (3·0 + 1) 1 – (2 – 0) 1 = –3

Therefore from Maclaurin’s expansion, we obtain

esin x = 1 1
2

1
3

0
4

3
2 3 4

+ ⋅ + ⋅ + + +x
x x x

! ! !
– ........� � � �

= 1
2

3
4

2 4

+ + +x
x x

!
–

!
........  .

19. Expand log x x 12+ +�� ��  by using Maclaurin’s theorem up to the term containing x3.

Solution

Let y = log x x+ +�� ��
2 1

∴ y (0) = 0

y1 =
1

1
1

2

2 12 2x x

x

x+ +
+

+�� ��

	




�
�
�

�



�
�
�

=
1

1

1

12

2

2x x

x x

x+ +

+ +

+

	



�
�

�


�
�

y1 =
1

12x +

∴ y1 (0) = 1

y
1
 x2 1+ = 1

or y
1
2 (x2 + 1) = 1

Differentiating, we get

y
1
2 · 2x + (x2 + 1) · 2y

1
 y

2
= 0

i.e., (x2 + 1) y
2
 + xy

1
= 0

∴ y
2
 (0) = 0

(x2 + 1) y
3
 + 2xy

2
 + xy

2
 + y

1
= 0
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i.e., (x2 + 1) y3 + 3xy2 + y1 = 0

∴ y3 (0) = –1

Therefore by Maclaurin’s theorem, we get

log x x+ +�� ��
2 1 = x

x
–

!
..........

3

3
+

�
������� ���

1. Verify Rolle’s theorem for the following functions in the given intervals:

(i) x2 – 6x + 8 in [2, 4] Ans.  = 3c

(ii) 2x2 + 2x – 5 in [–3, 2] Ans.  =c − 1 2

(iii) x3 – 3x2 – 9x + 4 in [–3, 3] Ans.  =c − 1

(iv) 2x3 – 2x + 5 in [–1, 1] Ans.  =c ±	

�

�
�

1

3

(v) x3 – 3x2 – 4x + 5 in [–2, 2] Ans.  =c
3 21

3

–	


��

�

��

(vi) x3 + 2x2 – 4x + 5 in [–2, 2] Ans.  =c
2

3
	

�

�
�

(vii) (x – a)3 (x – b)4 in [a, b] Ans.  =c
a b4 3

7

+	

�

�
�

2. Find whether Rolle’s theorem is applicable to the following functions. Justify your answer.

(i) f (x) = 2 + (x – 1)2/3 in [0, 2] Ans.   is not differentiable at f x x� � = 0

(ii) f (x) = x – 1 in [0, 2] Ans.   is not differentiable at f x x� � = 1

(iii) f (x) = tan x in [0, π] Ans.  tan  is discontinuous at  =  2   0,  x x π π∈ � �
(iv) f (x) = sec x in [0, 2π] Ans.  sec  is discontinuous at  =  2  and  =  

both lie in 0,  2

x x xπ π
π

3 2

� �
	


�

�

�

(v) f (x) = x2/3 in [–8, 8] Ans.  f x x� � is not differentiable at  =  0

3. Verify Lagrange’s mean value theorem for the following functions:

(i) f (x) = 2x2 – 7x + 10 in [2, 5] Ans.  c = 35.

(ii) f (x) = x (x – 1) (x – 2) in [0, 1/2] Ans.  c =
	


��

�

��

6 21

6

–
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(iii) f (x) = tan–1 x in [0, 1] Ans. c = ���
�
��

	


�
�

�

�
�

4
1

1 2

π
–

/

(iv) f (x) = ex in [0, 1] Ans.  log e − 1� �

(v) f (x) = (x2 – 4) (x – 3) in [1, 4] Ans.  c = +1 3

(vi) f (x) = cos2 x in [0, π/2] Ans.  c = =	

�

�
�

1

2

2
0 345sin .–1

π

(vii) f (x) = x2 4–  in [2, 4] Ans.  c = 6

4. Verify Cauchy’s mean value theorem for the following pairs of functions:

(i) f (x) = x , g (x) = 
1

x
 in [a, b] Ans.  c ab=

(ii) f (x) = x2, g (x) = x  in [1, 4] Ans.  c = ���
�
��

	


�
�

�

�
�

15

4

2 3/

(iii) f (x) = tan–1 x, g (x) = x in 
1

3
1,

	

�

�
�

Ans. c =
	




�
�
�

�



�
�
�

3 12 12

3

1 2
– –

/
π

π

� �� �

(iv) f (x) = sin x, g (x) = cos x in [a, b] Ans.  c
a b= +	


�
�
�2

(v) f (x) = log x, g (x) = 
1

x
 in [1, e] Ans.  c

e

e
=

−
	

�

�
�1

5. Expand sin x in ascending powers of x – π/2 using Taylor’s series.

Ans.  sin –
!

–
!

– .......... x x x= �
��

�
�� + �

��
�
��

	


�
�

�

�
�

1
1

2 2

1

4 2

2 2π π

6. Using Taylor’s Theorem expand log x in powers of x – 1 up to the term containing (x – 1)4.

Ans.  log ....... x x x x x= − − − + − − − +	

�

�
�

1
1

2
1

1

3
1

1

4
1

2 3 4� � � � � � � �

7. Using Maclaurin’s theorem prove the following:

(i) sec x = 1
2

5

4

2 4

+ + +
x x

! !
...........

(ii) ax = 1
2 3

2
2

3
3

+ + + +log log
!

log
!

.........a x a
x

a
x� � � � � �

(iii) sin–1 x = x
x x+ + +

3 5

6

3

40
.........
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(iv) log (1 + cos x) = log – – .........2
4 96

2 4x x +

(v) log (1 + tan x) = x
x x

–
! !

.........
2 3

2

4

3
+ +

(vi) log (sec x + tan x) = x
x x+ + +

3 5

6 24
.........

(vii) log (1 + sin2 x) = x x5 45

6
– ..........+

(viii) ex cos x = 1
3

3

+ +x
x

– .........

(ix) Obtain the Maclaurin’s expansion for the function e a sin–1 x.

Ans.  e a x
a

x
a a

x
a a

xa xsin

! ! !
.........

−
= + + +

+
+

+
+

	



�
�

�


�
�

1

1
2

1

3

2

4

2
2

2 2

3

2 2 2

4� � � �

(x) Expand sin (m sin–1 x) by Maclaurin’s theorem up to the term containing x5.

Ans.  sin m x mx
m m m m m

xsin
–

!

– –

!
.........− = + + +

	



�
�

�


�
�

1

2 2 2 2 2 2

5
1

3

1 3

5
� �

� � � � � �

����	������ �������� ������ ���	
���� ����� ���� �������

1. Find the radius of curvature of the curve x3 + y3 = 3axy at the point 
3a

2
,
3a

2
�
��

�
�� ·

Solution. Refer page no. 7. Example 7.

2. State and prove Lagrange’s mean value theorem.

Solution. Refer page no. 27.

3. State Taylor’s theorem for a function of single variable. Using Maclaurin’s series, obtain the
series of esin x as for as the term containing x4.

Solution. Refer page no. 29 for first part and page no. 48 for second part. Example 18.

4. State Rolle’s theorem. Verify Rolle’s theorem for f (x) = (x – a)m (x – b)n in [a, b] given m
and n are positive integers.

Solution. Refer page no. 27 for first part and page no. 29 for second part. Example 3.

5. Expand log (1 + cos x) by Maclaurin’s series up to the term containing x4.

Solution. Let y = log (1 + cos x), then y (0) = log 2

We find that

y1 = –
sin

cos

x

x1+ ⇒  y1 (0) = 0
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y2 = –
cos cos sin

cos

cos

cos

x x x

x

x

x
y

� �� �
� �
1

1 1

2

2 1
2+ +

+

�
��
��

�
��
��

= −
+

+���
���

⇒ y2 (0) = –
1

2

y3 = –
– sin cos cos sin

cos

x x x x

x
y y

� �� �
� �

1

1
2

2 1 2

+ +

+
+

�
��
��

�
��
��

=
sin

cos
cos sin

cos

x

x

x x

x
y y

1 1
2

2 1 2+
−

+
−

� �

= y
x

x
y1 21

2–1
cos

cos
+

+
−���

��� ⇒ y
3
 (0) = 0

y
4

= y
x

x
y y

x x x x

x
y2 2 1 2 31

2
1

1
2–1

cos

cos

– sin cos cos sin

cos
+

+
−���

���
+

+ +

+
−

�
��
��

�
��
��

� �
� �

= y
x

x
y y y

x

x
y2 2 1 1 31

2
1

2–1
cos

cos
–

cos

cos
+

+
−���

���
+

+
−���

���

⇒ y
4
 (0) = –

1

4

Thus, for y = log (1 + cos x), we have

y (0) = log 2, y1 (0) = 0, y2 (0) = –
1

2
, y3 (0) = 0

y4 (0) = –
1

4
, ....

According, the Maclaurin’s series expansion gives

log (1 + cos x) = log –
! !

2
1

2 2

1

4 4

2 4x x�
��
�
��

−
�
��
�
��

+ ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= log – –2
4 96

2 4x x + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

6. Obtain the formula for the radius of curvature in polar form.

Solution. Refer page no. 19.

7. If ρ1 
, ρ

2
 be the radii of curvature at the extremities of any focal chord of the cardiode

r = a (1 + cos θ) show that ρ ρ1
2

2
2+  = 

16a

9

2

·

Solution. Let ρ1 be the radius of curvature at (r, θ) then ρ2 is the radius of curvature at
(r, θ + π) on the curve r = a (1 + cos θ).

Here, r = a (1 + cos θ)
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⇒ r
1

= – a sin θ and

r
2

= – a cos θ

ρ
1

=
r r

r r rr

2
1
2

3

2

2
1
2

22

+

+ −
� �

=
a a

a a a

2 2 2 2
3

2

2 2 2 2 2

1

1 2 1

+ +

+ + + +

cos sin

cos sin cos cos

θ θ

θ θ θ θ

� �� �
� � � �

=
a

a

2 2 2
3

2

2 2 2 2

1 2

1 2 2

+ + +

+ + + + +

cos cos sin

cos cos sin cos cos

θ θ θ

θ θ θ θ θ

� �� �
� �

=
a

a

2
3

2

2

2 1

3 1

× +

+

cos

cos

θ

θ

� �� �
� �� �

=

a

a

2 2

3

2

2 2

2 2
2

3 2
2

× ×���
���

× ×

cos

cos

θ

θ where 1 + cos  =  2cos
2

2θ θ�
��

�
��

=
8

2

6
2

4

3 2

3 3

2 2

a

a
a

cos

cos
cos

θ

θ
θ=

ρ2 is obtained from ρ1 by replacing θ by θ + π.

∴ ρ
2

=
4

3 2
a cos

θ π+�
��

�
��

=
4

3 2 2
a cos

θ π+�
��

�
��

ρ2 = – sin
4

3 2
a

θ

Now, ρ ρ1
2

2
2+ =

4

3 2

4

3 2

2 2

a acos
–

sin
θ θ�

��
�
�� + ���

�
��

=
16

9 2 2
2 2 2a cos sin

θ θ+�
��

�
��

=
16

9
2a

∴ ρ ρ1
2

2
2+ =

16

9
2a ·



DIFFERENTIAL CALCULUS—I 55

8. State and prove Cauchy’s mean value theorem.

Solution. Refer page no. 28, Section 1.3.3.

9. Show that for the curve r2 sec 2θ = a2, ρ = 
a

3r

2

·

Solution. For the given curve, we have

r2 = a2 cos 2θ
Differentiating this w.r.t. θ, we get

2r
dr

d
⋅

θ = – 2a2 sin 2θ

or
d

dr

θ
= –

sin

r

a2 2θ
Therefore,

tan φ θ= ⋅r
d

dr
= –

sin

r

a

2

2 2θ

= –
cos

sin

2

2

θ
θ Using the given equation

= – cot 2θ

= tan
π θ
2

2+�
��

�
��

So that, φ =
π θ
2

2+

Hence p = r sin φ

= r sin
π θ
2

2+�
��

�
��

= r cos 2θ

= r
r

a
⋅

2

2
where cos 2

2

2

θ =
�
��

�
��

r

a

=
r

a

3

2

This is the pedal equation of the given curve. From this, we get

dp

dr
=

3 2

2

r

a
or

dr

dp  = 
a

r

2

23

Therefore, ρ = r
dr

dp

a

r
⋅ =

2

3

i.e., ρ is inversely proportional to r.
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10. Obtain Taylor’s series expansion of log
e 
x about the point x = 1 up to the fourth degree term

and hence obtain log
e 

1.1.

Solution. Refer page no. 42. Example 11.

11. For the curve θ = cos
r

k

k r

r
1

2 2
− �
��
�
�� − −

 prove that r
ds

dr
 = constant.

Solution. Refer page no. 24. Example 4, point (iii).

12. State Rolle’s theorem and verify the same for f (x) = log
x ab

x a b

2 +
+

	


��

�

��� �  in [a, b].

Solution. Refer page no. 27 and page no. 34. Example 5.

13. Find the first-four non-zero terms in the expansion of f (x) = 
x

ex 1−  using Maclaurin’s series.

Solution. We have Maclaurin’s series

y (x) = y xy
x

y
x

y0 0
2

0
3

01

2

2

3

3� � � � � � � �+ + + + ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
! !

By data f (x) = y x
x

ex� � = −1 ⇒ y (0) = 0

i.e., y =
x

e e
e

x

ex x⋅
= ⋅–1

or exy = ex

We differentiating this equation successively four times and evaluate at x = 0 as follows.

exy1 + exy = e ⇒ y1 (0) = e

exy2 + 2exy1 + exy = 0 ⇒ y2 (0) = – 2e

exy3 + 3exy2 + 3exy1 + exy = 0 ⇒ y3 (0) = 3e

Thus by substituting these values in the expansion, we get

x

e x−1 = e x x
x− + ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

�
��

�
��

2
3

2
·

14. State Lagrange’s mean value theorem. Prove that 0 < a < b 
b a

1 b
tan b – tan a

b a

1 a2
–1 –1

2

−
+

< < −
+

·

Solution. Refer page no. 27 and page no. 39. Example 8.

15. Show that

1 sin 2x 1 x
x

2

x

6

x

24

2 3 4

+ = + − − + ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  ·

Solution. We have y (x) = y xy
x

y( )
!

0 0
2

01

2

2+ + + ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅� � � �

Let y = 1 2+ sin x
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= cos sin sin cos2 2 2x x x x+ +

= cos sinx x+� �2 = cos x + sin x

Thus, y = cos x + sin x ⇒ y (0) = 1

y1 = – sin x + cos x ⇒ y1 (0) = 1

y2 = – cos x – sin x = – y ⇒ y2 (0) = – 1

y3 = – y1 ⇒ y3 (0) = – 1

y4 = – y2 ⇒ y4 (0) = 1

Substituting these values in the expansion of  y (x), we get

1 2+ sin x = 1
2 6 24

2 3 4

+ − − + ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅x
x x x

16. For the curve r = a (1 – cos θ), prove that 
e

r

2

 = constant.

Solution. Refer page no. 22. Example 2.

17. State and prove Cauchy’s mean value theorem.

Solution. Refer page no. 28.

�����	���� ����	����

1. The rate at which the curve is called

(a) Radius of curvature (b) Curvature

(c) Circle of curvature (d ) Evolute. Ans. b

2. The radius of curvature of r = a cos θ at (r, θ) is

(a) a (b) 2a

(c)
1

2
a (d ) a2. Ans. d

3. The radius of curvature of y = e–x2 at (0, 1) is

(a) 1 (b) 2

(c)
1

2
(d )

1

3
· Ans. c

4. The radius of the circle of curvature is

(a) 1 (b) ρ

(c)
1

ρ
(d ) ρ2. Ans. b
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5. The radius of curvature of the curve Pa2 = r3 is

(a)
a

r

2

3
(b)

a b

p

2 2

3

(c)
a3

3
(d ) None of these. Ans. a

6. The ellipse in the pedal form 
1

2p
 = 

1 1
2 2

2

2 2a b

r

a b
+ −  the radius of curvature at the point

( p, r) is

(a)
a b

p

2

(b)
a b

b

2 2

2

(c)
a b

p

2 2

3 (d ) None of these. Ans. c

7. Lagrange’s mean value theorem is a special case of

(a) Rolle’s theorem (b) Cauchy’s mean value theorem

(c) Taylor’s theorem (d ) Taylor’s series. Ans. b

8. The result “If f ′ (x) = 0 ∀ x in [a, b] then f (x) is a constant in [a, b]” can be obtained from

(a) Rolle’s theorem (b) Lagrange’s mean value theorem

(c) Cauchy’s mean value theorem (d ) Taylor’s theorem. Ans. b

9. The first-three non-zero terms in the expansion of ex tan x is

(a) x x x+ +2 31

3
(b) x

x
x+ +

3
5

3

2

5

(c) x x x+ +2 35

6
(d ) x

x
x+ +

3
5

3

1

6
. Ans. c

10. In the expansion of tan x and tan–1 x, considering first-three non-zero terms

(a) The first-three non-zero terms are same (b) The first-two non-zero terms are same

(c) All coefficients are same (d ) First-two coefficients are same. Ans. c

11. The derivative f ′(x) of a function f (x) is positive or zero in (a, b) without being zero always.
Then in (a, b)

(a) f (b) < f (a) (b) f (b) > f (a)

(c) f (b) – f (a) = f ′ (c), c ∈ (a, b) (d ) f (b) = f (a). Ans. b

12. The Lagrange’s mean value theorem for the function f (x) = ex in the interval [0, 1] is

(a) C = 0.5413 (b) C = 2 . 3

(c) C = 0.3 (d ) None of these. Ans. a
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13. The Maclaurin’s series expension of ex is

(a) 1
2 3

2 3

+ + + + ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅x
x x

! !
(b) 1

2 3

2 3

+ + + ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅x
x x

–
! !

(c) x
x x

–
! !

2 3

2 3
+ + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (d ) None of these. Ans. a

14. The Maclaurin’s series expansion of log (1 + x) is

(a) x
x x

–
3 5

3 5
+ + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (b) x

x x x+ + + + ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
2 3 4

2 3 4! ! !

(c) x
x x x

–
! !

–
!

2 3 4

2 3 4
+ + ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (d ) 1

2 3

2 3

+ + + ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅x
x x

–
! !

· Ans. c

15. The Maclaurin’s series expansion of cos x is

(a) 1
2 4 6

2 4 6

–
! !

–
!

x x x+ + ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ (b) x
x x

–
! !

3 5

3 5
+ + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

(c) 1
2 3 4

2 3 4

+ + + + ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅x x x

! ! !
(d ) None of these. Ans. a

16. The radius of curvature at a point (x, 4) of y = a cosh 
x

a
�
��
�
��  is

(a)
y

a

2

(b)
x

a

2

(c)
a

y

2

(d ) None of these. Ans. a

17. The radius of curvature of the curve y = 4 sin x – sin 2x at x = 
π
2

 is

(a)
5

4
(b)

5

4

(c)
5 5

4
(d ) None of these. Ans. c

18. The radius of curvature at a point t on the curve x = at2 and y = 2at is

(a) 2 1 2
3

2a t+� � (b) a (1 + t2)3

(c) 2 1 5
3
2a t+� � (d ) 2 12 2

3
2a t+� � . Ans. a

19. The length of the perpendicular from the origin on to the line ax + by = c is

(a) p = 
c

a b2 2
1

2+� �
(b) p = 

a

a b2 2 2
+� �

(c) p = 
b

a b2 2
1

2+� �
(d ) None of these. Ans. a



60 ENGINEERING MATHEMATICS—II

20. The radii of curvature of the curve 2ap2 = r3 is

(a)
2

5
2ar (b)

2

3
2ar

(c)
4

5
2ar (d ) None of these. Ans. b

21. The radii of curvature of the curve r = aeθcot α is

(a) r cosec α (b) r cot α

(c) θ cot α (d ) None of these. Ans. a

22. The radii of curvature of the curve 
2a

r
 = 1 – cos θ is

(a)
2 3 2r

a
(b)

4 3 2r

a

(c)
ar3 2

2
(d ) None of these. Ans. a

���



UNIT ��

Differential Calculus–II

2.1 INDETERMINATE FORMS

If f (x) and g (x) are two functions, then we know that

lim
x a→

f x

g x

� �
� � =

lim

lim
x a

x a

f x

g x
→

→

� �

� �

If lim
x a→

 f (x) = 0 and lim
x a→

 g (x) = 0, then the expression 
f x

g x

� �
� �

 is said to have the indeterminate

form 
0
0

, at x = 0.

If lim
x a→

 f (x) = ∞, lim
x a→

g (x) = ∞, then 
f x

g x

� �
� �

 is said to have the indeterminate form ∞
∞

.

The other indeterminate forms are  ∞ – ∞, 0 × ∞, 00, 1∞, ∞0.

2.1.1 Indeterminate Form 
0
0

Here, we shall give a method called  L’ Hospital’s rule to evaluate the limits of the expressions which

take the indeterminate forms 
0
0

 and 
∞
∞

.

L’ Hospital’s Theorem

Let f (x) and g (x) be two functions such that

(1) lim
x a→

 f (x) = 0 and lim
x a→

 g (x)= 0

(2) f ′ (a) and g′ (a) exist and g′ (a) ≠ 0

then, lim
x a→

f x

g x

� �
� �  = lim .

x a

f x

g x→

′
′
� �
� �

61



62 ENGINEERING MATHEMATICS—II

Proof. Suppose f (x) and g (x) satisfy the conditions of Cauchy’s mean value theorem in the
interval [a, x]. Then, we have

f x f a

g x g a

� � � �
� � � �

−
− =

f c

g c

′
′
� �
� �  where c lies between a and x i.e., a < c < x

Since, f (a) = 0, g(a) = 0 and as x → a, c → a, we get

f x

g x

� �
� � =

′
′

f c

g c

� �
� �

Hence, lim
x a→

f x

g x

� �
� � = lim lim

c a x a

f c

g c

f x

g x→ →

′
′

=
′
′

� �
� �

� �
� �  (replacing c by x)

If f ′(a) = 0 = g′(a), then this theorem can be extended as follows:

lim
c a

f x

g x→

� �
� � = lim

x a

f x

g x→

′′
′′
� �
� �

= lim ,
x a

f x

g x→

′′′
′′′
� �
� �  if ′′f a( )  = 0 = ′′g a( )

and so on.

������� ��	� �
�����

1. Evaluate: lim
x sin x

xx 0 3→

− ⋅

Solution L = lim
sin

x

x x

x→

−
0 3

0

0
�
��
�
��  form

By L’ Hospital rule

L = lim
cos

x

x

x→

−
0 2

1

3

0

0
�
��
�
��  form

= lim
sin

x

x

x→ 0 6

0

0
�
��
�
��  form

= lim
cos

x

x
→

=
0 6

1

6
·

2. Evaluate: lim
tan x sin x

sin xx 0 3→

− ⋅

Solution L = lim
tan sin

sinx

x x

x→

−
0 3

0

0
�
��
�
��

 form

= lim

sin
cos

sin

sinx

x
x

x

x→

−

0 3
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= lim
cos

sin cosx

x

x x→

−
0 2

1 0

0
�
��
�
��

form

By L’ Hospital rule

= lim
sin

– sin sin cosx

x

x x x→ +0 3 22

and = lim
– sin cos –x x x→ +

=
+

= ⋅
0 2 2

1

2

1

0 2

1

2

3. Evaluate: lim
a b

sin xx 0

x x

→

−
.

Solution L = lim
sinx

x xa b

x→

−
0

0

0
�
��
�
��

form

By L’ Hospital rule

= lim
log log

cosx

x xa a b b

x→

−
0

0

0
�
��
�
��

form

=
log loga b−

1

= log
a

b
	

�
�
� .

4. Evaluate: lim
x 0 x 2

x sin x

e 1
.

→ −� �

Solution L = lim
sin

x x

x x

e→ −0 2
1� �

0

0
�
��
�
��

form

By L’ Hospital rule

L = lim
cos sin

x x x

x x x

e e→

+
− ⋅0 2 1� �

0

0
�
��
�
��

form

= lim
– sin cos cos

–x x x

x x x x

e e→

+ +
0 22 2

=
2

2 2 1
1

−
=

� �
.

5. Evaluate: lim
x cos x – log 1 x

xx 0 2→

+� �
·

Solution L = lim
cos log

x

x x x

x→

− +�
�
�

�
�
�

0 2

1� � 0

0
�
��
�
��

form
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By L’ Hospital rule

= lim
cos sin

x

x x x
x

x→

− −
+

�

�
�
�

�

�
�
�

0

1
1

2
0

0
�
��
�
��

form

= lim

– sin cos – sin

x

x x x x
x

→

− +
+

�

�

�
�
�

�

�

�
�
�0

2

1

1

2

� �

=
1

2
.

6. Evaluate: lim
cos hx – cos x

x sin xx 0→
.

Solution L = lim
cos cos

sinx

hx x

x x→

−
0

0

0
�
��
�
��

form

By L’ Hospital rule

= lim
sin sin

cos sinx

hx x

x x x→

+
+0

0

0
�
��
�
��

form

= lim
cos cos

– sin cos cosx

hx x

x x x x→

+
+ +0

=
2

2
 = 1.

7. Evaluate: lim
a – b

x
.

x 0

x x

→

Solution L = lim
x

x xa b

x→

−
0

0

0
�
��
�
��

form

By L’ Hospital rule

= lim
log – log

x

x xa a b b
→0 1

= log log log .a b
a

b
− = 	


�
�
�

8. Evaluate: lim
sec x – 2tan x

1 cos4xx
4

2

→ +π
.

Solution L = lim
sec tan

cosx

x x

x→

−
+π

4

2 2

1 4

0

0
�
��
�
��

form
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By L’ Hospital rule

= lim
sec tan sec

– sinx

x x x

x→

−
π
4

2 22 2

4 4

= lim
– sec tan –

sinx

x x

x→ π
4

2 1

2 4

� � 0

0
�
��
�
��

form

= lim
sec sec tan – sec tan

cosx

x x x x x

x→
−

⋅ + ⋅�
��
��

�
��
��π

4

2 2 21 2

8 4

� �

=
– sec

cos

4

4
0

8

π

π

+

=
–

–

4

8

1

2
= .

9. Evaluate: lim
sin hx sin x

xsin xx 0 2→

−
.

Solution L = lim
sin sin

sinx

hx x

x x→

−
0 2

0

0
�
��
�
��

form

By L’ Hospital rule

= lim
cos cos

sin sin cosx

hx x

x x x x→

−
+0 2 2

0

0
�
��
�
��

form

= lim
sin sin

sin cos cos sinx

hx x

x x x x x→

+
+ ⋅ +0 2 2 2 2

= lim
sin sin

sin cosx

hx x

x x x→

+
+0 2 2 2 2

0

0
�
��
�
��

form

= lim
cos cos

cos – sin cosx

hx x

x x x x→

+
+ +0 4 2 2 2 2 2 2� �

=
1 1

4 0 2

2

6

1

3

+
+ +

= = .

10. Evaluate: lim
e 1 x

x log 1 x
.

x 0

2x 2

→

− +
+

� �
� �

Solution L = lim
logx

xe x

x x→

− +
+0

2 2
1

1

� �
� �

0

0
�
��
�
��
 form
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By L’ Hospital rule

= lim
log

x

xe x
x

x
x

→

− +

+
+ +0

22 2 1

1
1

� �

� �

0

0
�
��
�
��
 form

= lim
x

xe

x x
→

−

+
+

+

= −
+

=
0

2

2

4 2
1

1

1
1

4 2

1 1
1

� �

.

11. Evaluate: If lim
x 1 a cos x b sin x

x

1

3
,

x 0 3→

− +
=

� �
 find a and b.

Solution

Given
1

3
= lim

cos sin
x

x a x b x

x→

− +
0 3

1� � 0

0
�
��
�
��
 form

By L’ Hospital rule

= lim
cos sin cos

x

a x x a x b x

x→

− + +
0 2

1

3

At x = 0, the numerator = 1 – a + b.

In order that the limit should exist, we must have
1 – a + b = 0 ...(1)

Applying L’ Hospital rule with this assumption, we get

1

3
= lim

sin cos sin – sin
x

a x a x x x b x

x→

+ +
0 6

� � 0

0
�
��
�
��
 form

= lim
cos – sin cos cos – cos

x

a x a x x x x b x
→

+ + +
0 6

� �

=
a a b+ −2

6

1

3
=

3

6

a b−

Hence, 3a – b = 2 ...(2)

Solving (1) and (2), we get a = 
1

2
, b = 

– 1

2   
⋅

12. Evaluate: lim
log sin x

cot x
.

x 0→

Solution L = lim
log sin

cotx

x

x→ 0
–

∞
∞
�
��
�
��

 form

Since, log 0 = – ∞, cot 0 = ∞
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By L’ Hospital rule

L = lim
cot

x

x

x→ −0 cosec2

∞
∞
�
��
�
��  form

= lim
x → 0

 – sin x · cos x = 0.

13. Evaluate: lim
log x

cosec xx 0→
.

Solution L = lim
log

x

x

x→ 0 cosec
− ∞

∞
�
��

�
��  form

By L’ Hospital rule

L = lim
– cotx

x
x x→ 0

1

cosec

= lim
– sin

cosx

x

x x→ 0

2 0

0
�
��
�
��  form

= lim
– sin cos

cos sin –x

x x

x x x→ −
=

0

2 0

1 0
 = 0.

14. Evaluate: lim
log cos x

tan xx
2

→
⋅

π

Solution L = lim
log cos

tanx

x

x→ π
2

–
∞
∞

�
��
�
��  form

By L’ Hospital rule

= lim
– tan

secx

x

x→ π
2

2

= lim
x →

π
2

 – sin x · cos x = 0.

15. Evaluate: lim
log sinax

log sinbxx 0→
⋅

Solution L = lim
logsin

logsinx

ax

bx→ 0

–

–

∞
∞

�
�
�
�
�
�  form

By L’ Hospital rule

= lim
cos / sin

cos / sinx

a ax ax

b bx bx→ 0
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= lim
cot

cotx

a ax

b bx→ 0

∞
∞
�
��
�
��  form

= lim
tan

tanx

a bx

b ax→ 0

0

0
�
��
�
��  form

= lim
sec

secx

ab bx

ba ax→
=

0

2

2

1

1
= 1.

16. Evaluate: lim
log x a

log e e
.

x a x a→

−

−
� �
� �

Solution L = lim
log

logx a x a

x a

e e→

−

−
� �
� �

∞
∞
�
��
�
��  form

By L’ Hospital rule

= lim
/

/ –x a x x a

x a

e e e→

−1 � �
� �

= lim
x a

x a

x

e e

x a e→

−
−� �

0

0
�
��
�
��

 form

= lim
x a

x

x x

e

x a e e→ − +� �

= lim
x a x a→ − +

1

1� �
= 1.

�
������� ���

1. Evaluate:

(i) lim
– sin

tanx

x x

x→ 0 3
Ans.  

1

6
�
��

�
�� (ii) lim

tan –

tanx

x x

x x→ 0 2
Ans.  

1

3
�
��

�
��

(iii) lim
cos

logx

x

x x→

−
+0

1

1� � Ans.  
1

2
�
��

�
�� (iv) lim

– sin

sin

x

x xe e

x x→

−
0

Ans.  1

(v) lim
log

x

x x

x→

+ −
−1 2

1

1� � Ans.  1 (vi) lim
cos – cos

sinx

hx x

x x→ 0
Ans.  1

(vii) lim
– –

sin

–

x

x xe e x

x x→ 0 2

2 Ans.  
1

3
�
��

�
�� (viii) lim

log

cosx

x x

x→

− +
−0

1

1

� �
Ans.  1

(ix) lim
logx

xx x

x x→

−
− −1 1

Ans.  2 (x) lim
sin sin–1

x

x x

x→

⋅
0 2 Ans.  1
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(xi) lim
cos

sinx

x x

x x→

+ −
0

2

3

2 2 Ans.  
1

12
�
��

�
�� (xii) lim

tan

tanx

x x

x x→

−
0

2 2

2 2
Ans.  

2

3
�
��

�
��

(xiii) lim
sin

logx

xe x

x→

+ −
+0

1

1� � Ans.  2 (xiv) lim
–3

x

x xe e

x→

+ −
0

3

2

2

5
· Ans.  

9

5
�
��

�
��

2. If lim
sin sin

x

x a x

x→

+
0 3

2
 is finite, find a. Ans.  a = − 2

3. If lim
cos sin

x

x a x b x

x→

+ −
0 3

1� �
 = 1, find a and b. Ans.  a b= − = −�

��
�
��

5

2

3

2
,

4. Evaluate:

(i) lim
log

x

x

x→ 0 cosec Ans.  0 (ii) lim
logsin

logsinx

x

x→ 0

2
Ans.  1

(iii) lim
log tan

log tanx

x

x→ 0

2
Ans.  1 (iv) lim

log

tanx

x

x→

−	
�
�
�

π

π

2

2
Ans.  0

(v) lim
log

cotx

x

x→

−
1

1� �
π

Ans.  0 (vi) lim
x x

x

e→ ∞

2

2 · Ans.  0

2.1.2 Indeterminate Forms ∞∞∞∞∞ – ∞∞∞∞∞ and 0 × ∞

L’ Hospital rule can be applied to limits which take the indeterminate forms ∞ – ∞ and 0 × ∞. First

we transform the given limit in the form 
0

0
 or 

∞
∞  and then by use L’Hospital rule to evaluate the

limit.

������� ��	� �
�����

1. Evaluate: lim
1

x

log 1 x

xx 0 2→
−

+�
�
�

�
�
�

� �
.

Solution L = lim
log

x x

x

x→
−

+�
�
�

�
�
�

0 2

1 1� �
∞ ∞–  form

Hence, required limit L = lim
log

x

x x

x→

− +
0 2

1� � 0

0
�
��
�
��  form

By L’ Hospital rule = lim
x

x

x→

−
+

0

1
1

1

2

= lim
x

x

x

x→

+
0

1

2
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= lim
x x→ +0

1

2 1� �

=
1

2
.

2. Evaluate: lim
1

x
cot x

x 0→
−���

���
.

Solution
L = lim cot

x x
x

→
−���

���0

1
∞ ∞–  form

Hence, we have L = lim
cos

sinx x

x

x→
−���

���0

1

= lim
sin cos

sinx

x x x

x x→

−
0

0

0
�
��
�
��

 form

By L’ Hospital rule = lim
cos cos sin

cos sinx

x x x x

x x x→

− +
+0

= lim
sin

cos sinx

x x

x x x→ +0

0

0
�
��
�
��

 form

= lim
cos sin

cos sin cosx

x x x

x x x x→

+
− +0

=
0

2 0

0

2
0

−
= = .

3. Evaluate: lim
x 0→

 x log tan x.

Solution L = lim
x → 0

 x log tan x [0 × (– ∞)] form

Hence, we have = lim
log tan

x

x

x
→ 0 1

–
∞
∞

�
��

�
��  form

Applying L’ Hospital rule = lim

sec
tan
–x

x
x

x

→ 0

2

2

1

 

= lim –
sec

tanx

x x

x→ 0

2 2 0

0
�
��
�
��  form

= lim –
sec sec tan

secx

x x x x x

x→

+ ⋅�
�
�

�
�
�

0

2 2 2

2

2 2

= lim
x → 0

 – [2x + 2x2 tan x] = 0.

4. Evaluate: lim
x 0→

 tan x log x.
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Solution L = lim
x → 0

 tan x log x [0 × (– ∞)] form

= lim
log

cotx

x

x→ 0
–

∞
∞

�
��

�
��  form

By L’ Hospital rule = lim
–x

x
x→ 0

1

cosec2

= lim
– sin

x

x

x→ 0

2 0

0
�
��
�
��  form

= lim
– sin cos

.
x

x x
→

=
0

2

1
0

5. Evaluate: lim
1

x

1

sin xx 0 2 2→
−�

��
�
��

.

Solution L = lim
sinx x x→

−�
��

�
��0 2 2

1 1
[∞ – ∞] form

= lim
0x

x x

x x→

−sin

sin

2 2

2 2

0

0
�
��
�
��

form

= lim
0x

x x

x

x

x→

− ×sin

sin

2 2

4

2

2

= lim
0x x

x x

x

x

x→ →

− ×sin
lim

sin

2 2

4 0

2

2

lim
sin

lim
sinx x

x

x

x

x→ →
= ∴ =	


�
�
�0 0

1 1

= lim
sin

x

x x

x→

−
0

2 2

4

0

0
�
��
�
��

form

 By applying L’ Hospital rule

= lim
sin cos

x

x x x

x→

−
0 3

2 2

4

= lim
sin

x

x x

x→

−
0 3

2 2

4

0

0
�
��
�
��

form

= lim
cos

x

x

x→

−
0 2

2 2 2

12

= lim
cos

x

x

x→

−
0 2

2 1

6
(� 1 – cos 2x = 2 sin2 x)

= lim
– sin

x

x

x→0

2

2

2

6
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= lim –
sin

x

x

x→

	

�

�
�0

2
1

3

=
–

lim
sin1

3 0

2

  x

x

x→

	

�

�
�

=
– 1

3
1

  
×

=
–

.
1

3  

6. Evaluate: lim
1

x
cot x .

x 0 2
2

→
−�

��
�
��

Solution L = lim cot
x x

x
→

−	

�

�
�0 2

21
[∞ – ∞] form

= lim
cos

sinx x

x

x→
−

	

�

�
�0 2

2

2

1

= lim
sin cos

sinx

x x x

x x→

−
0

2 2 2

2 2

0

0
�
��
�
��

form

= lim
sin cos

sinx

x x x

x

x

x→

− ×
0

2 2 2

4

2

2

= lim
sin cos

lim
sinx x

x x x

x

x

x→ →

− ×
0

2 2 2

4 0

2

2
lim

sin
x

x

x→
=	


�
�
�0

1

= lim
sin cos

x

x x x

x→

−
0

2 2 2

4

∴ sin2 x – x2 cos2 x = sin2 x – x2 (1 – sin2 x)

= (1 + x2) sin2 x – x2

= lim
sin

x

x x x

x→

+ −
0

2 2 2

4

1� � 0

0
�
��
�
��

form

By L’ Hospital rule

= lim
sin cos sin

x

x x x x x x

x→

+ ⋅ + −
0

2 2

3

1 2 2 2

4

� �

= lim
sin sin

x

x x x x x

x→

+ + −
0

2 2

3

1 2 2 2

4

� � 0

0
�
��
�
��

form

Again by L’ Hospital rule

= lim
cos sin sin cos sin

x

x x x x x x x x

x→

+ ⋅ + + + −
0

2 2

2

1 2 2 2 2 4 2 2

12

� �
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= lim
sin sin sin

x

x x x x x

x→

+ − + + −
0

2 2 2

2

2 1 1 2 4 2 2 2

12

� � � �

= lim
sin sin sin

x

x x x x x x

x→

− − +
0

2 2 2 2

2

2 2 4 4 2

12

= lim
0x

x
x

x
x

x
→

− × 	
�
�
� − + × 	
�

�
�2 2 4 4

2

12

2
2sin

sin
sin

= lim
0x

x
x

x
x

x
→

− × 	
�
�
� − + × × 	
�

�
�2 2 4 4 2

2
2

12

2
2sin

sin
sin

=
2 2 0 8

12

8

12

2

3

− − + = = .

7. Evaluate: lim
x

4
→ π

 (1 – tan x) sec 2x.

Solution L = lim
x→ π

4

 (1 – tan x) sec 2x [0 × ∞] form

= lim
tan

cosx

x

x→

−
π
4

1

2

0

0
�
��
�
��
 form

By L’ Hospital rule

= lim
– sec

– sin

–

–x

x

x→
= =

π
4

2

2 2

2

2
1·

8. Evaluate: lim log 2 –
x

a
cot x – a .

x a→

	

�

�
� � �

Solution L = lim log – cot –
x a

x

a
x a

→

	

�

�
�2 � � [0 × ∞] form

= lim
log

tanx a

x
a

x a→

−	
�
�
�

−

2

� �
0

0
�
��
�
��

form

By L’ Hospital rule = lim

–1

secx a

x
a

a

x a→

−	
�
�
�

× 	
�
�
�

−

1

2

2 � �

=

–
–1

.

1

1
a

a

	

�

�
�

=
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�
�������� ���

Evaluate the following:

1. lim
–

–
logx

x

x x→

	

�

�
�1 1

1
· Ans.  

1

2
�
��

�
�� 2. lim

sin
–

x x x→

	

�

�
�0

1 1
· Ans.  0

3. lim – cos
x

a

x

x

a→

	

�

�
�0

· Ans.  0 4. lim
x → 0

 (cosec x – cot x). Ans.  0

5. lim
x → π

2

 (sec x – tan x). Ans.  0 6. lim
log

–
logx x

x

x→

	

�

�
�1

1
· Ans.  − 1

7. lim
x → π

2

 (x tan x – 
π
2

 sec x). Ans.  − 1 8. lim
x → 0

 x3 log x. Ans.  0

9. lim
x → 1

 sec 
π
2

x
	

�

�
�  × log x. Ans.  

−�
��

�
��

2

π

2.1.3 Indeterminate Forms 00, 1∞∞∞∞∞, ∞∞∞∞∞0, 0∞∞∞∞∞

Let L = lim .
x a

g x
f x

→
� �� � � �  If L takes one of the indeterminate forms 00, 1∞, ∞0, 00 then taking

logarithm on both sides, we get

log L = lim
x a→

 g (x) log f (x)

Then, log L will take the indeterminate form 0 × ∞ and which can be evaluated by using the
method employed in preceding section.

������� ��	� �
�����

1. Evaluate: lim
x 0→

 (1 + sin x)cot x.

Solution L = lim
x → 0

 (1 + sin x)cot x [1∞] form

Taking logarithm on both sides

log L = lim
x → 0

 cot x log (1 + sin x) [∞ × 0] form

= lim
log sin

tanx

x

x→

+
0

1� � 0

0
�
��
�
��  form

By L’ Hospital rule

= lim
cos / sin

secx

x x

x→

+
0 2

1

log L = lim
cos

sec sinx

x

x x→ +
=

+
=

0 2 1

1

1 1 0
1

� � � �
∴ L = e1 = e.



DIFFERENTIAL CALCULUS–II 75

2. Evaluate: lim
x →

π
4

 (tan x)tan 2x.

Solution L = lim
x →

π
4

(tan x)tan 2x (1∞) form

Taking logarithm on both sides

log L = lim
x →

π
4

 tan 2x log (tan x) [∞ × 0] form

= lim
log tan

cotx

x

x→ π
4

2

0

0
�
��
�
��
 form

By L’ Hospital rule

= lim
sec tan

–x

x x

x→
π
4

2

22 2cosec

= lim
sec

x

x

x x→

−
π
4

2

22 2tan cosec

=
– 2

2 1 1

2

2

� �
⋅ ⋅

log L = – 1

L = e–1

=
1

e
·

3. Evaluate: lim
tan x

xx 0

1

x2

→

	

�

�
� .

Solution L = lim
tan

x

xx

x→

	

�

�
�0

1
2

[1∞] form

(Since, lim
tan

x

x

x→ 0
 = 1 as x → 0)

Taking logarithm on both sides

log L = lim log
tan

x x

x

x→ 0 2

1
[∞ × 0] form

= lim
log

tan

x

x

x
x→ 0 2

0

0
�
��
�
��

 form

By L’ Hospital rule

= lim

tan
.

sec – tan

x

x

x

x x x

x

x→

�
�
�

�
�
�

0

2

2

1

2
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= lim
sec – tan

tanx

x x x

x x→ 0

2

22

0

0
�
��
�
��

 form

= lim
sec sec tan – sec

sec tanx

x x x x x

x x x x→

+
+0

2 2 2

2 2

2

2 2

= lim
sec tan

sec tanx

x x

x x x→ +0

2

2 2

0

0
�
��
�
��  form

Again By L’ Hospital Rule

log L = lim
sec sec tan sec tan

sec sec tan secx

x x x x x

x x x x x→

+ ⋅
+ +

=
0

2 2 2

2 2 2

2

2 2

1

3� �
∴ L = e1/3.

4. Evaluate: lim
x → ∞

 (1 + x2)e–x
.

Solution L = lim
x → ∞

 (1 + x2)e–x ∴ =
+ ∞ = ∞

	

�

�
�

−∞e 0

1

,

 
  [∞0] form

Taking log on both sides

log L = lim
x → ∞

 e–x log (1 + x2) [0 × ∞] form

= lim
log

x x

x

e→ ∞

+1 2� � ∞
∞
�
��
�
��  form

By L’ Hospital rule

= lim
x x

x x

e→ ∞

+2 1 2� �

= lim
x x

x

x e→ ∞ +
2

1 2� �
∞
∞
�
��
�
��

 form

= lim
x x xx e x e→ ∞ + +

2

1 22� �
log L = 0

L = e0 = 1.

5. Evaluate: lim
x → π

2

 (sec x)cot x.

Solution L = lim
x →

π
2

 (sec x)cot x [∞0] form

log L = lim
x →

π
2

 cot x log sec x [0 × ∞] form
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= lim
log sec

tanx

x

x→ π
2

∞
∞
�
��
�
��

 form

By L’ Hospital rule

= lim

sec tan

sec

secx

x x

x

x→

⋅

π
2

2

= lim
tan

secx

x

x→ π
2

2

log L = lim
x →

π
2

 sin x cos x = 0

∴ L = e0 = 1

�
������� ���

Evaluate:

1. lim cos
x

xx
→ 0

1
2� � Ans.  e−1 2 2. lim sin

tan

x

x
x

→ π
2

� � Ans.  1

3. lim
tan

x

x

x→

	

�
�
�0

1
Ans.  1 4. lim

x

xx
→ 0

Ans.  1

5. lim
sin

x

xx

x→

	

�

�
�0

1

Ans.  1 6. lim cos
x

b

xax
→ 0

2� � Ans.  e a b− 2 2

7. lim
x

xx
→

−

1

1

1� � Ans.  
1

e
�
��

�
�� 8. lim sin

x

xx
→ 0

Ans.  1

9. lim – log

x

xx
→

−
1

2
1
11� � � � Ans.  e 10. lim –

tan

x

x

x
→ 1

22� �
π

Ans.  e2 π

11. lim cos
x

xx
→ 0

2
1
2� � Ans.  

1

e
�
��

�
�� 12. lim

sin
x

xhx

x→

	

�

�
�0

1
2

Ans.  
1

6
�
��

�
��

13. lim log

x

xx
→ 0

Ans.  e 14. lim
sin

x

x

x→

	

�
�
�0

2
1 Ans.  1

15. lim
x

x x xa b
→

+�
�
�

�
�
�

0

1

2
Ans.  ab 16. lim – tan–1

x

x
x

→ ∞

�
��

�
��

π
2

1

Ans.  1
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2.2 TAYLOR’S THEOREM FOR FUNCTIONS OF TWO VARIABLES

Statement: If f (x, y) has continuous partial derivatives up to nth order in a neighbourhood of a point
(a, b), then

f (a + h, b + k) = f (a, b) + h
x

k
y

∂
∂

+ ∂
∂

�
��

�
��  f (a, b) + 

1

2

2

!
,h

x
k

y
f a b

∂
∂

+ ∂
∂

�
��

�
��

� �

+ ∂
∂

+ ∂
∂

�
��

�
��

+ + ∂
∂

+ ∂
∂

�
��

�
��

+1

3

1

1

3 1

!
, ..........

– !
,

–

h
x

k
y

f a b
n

h
x

k
y

f a b R
n

n� � � � � �   ...(1)

where Rn = 
1

n
h

x
k

y

n

!

∂
∂

+ ∂
∂

�
��

�
��

 f (a + θh, b + θk) for some θ : 0 < θ < 1.

Here, Rn is called the remainder after n times.
By the Taylor’s theorem given in

f (x, y) = f (a, b) + 
1

1!
– , – ,x a f a b y b f a bx y� � � � � � � �+

+ + + +1

2
2

2 2

!
– , – – , – , ............x a f a b x a y b f a b y b f a bxx xy yy� � � � � � � � � � � � � �   ...(2)

This is called the Taylor’s expansion of f (x, y) about the point (a, b). If a = 0 and b = 0, we
get the Maclaurin’s form of Taylor’s theorem.

i.e., f (x, y) = f x f yfx y0 0
1

1
0 0 0 0,

!
, ,� � � � � �+ +

+ + + +1

2
0 0 2 0 0 0 02 2

!
, , , ............x f xy f y fxx xy yy� � � � � � ...(3)

Further, if the Taylor’s series of f (x, y) is approximated to some terms up to a particular degree
the resulting expression of f (x, y) is called as the Taylor’s polynomial.

������� ��	� �
�����

1. Expand ex sin y by using Maclaurin’s theorem up to the third degree terms.

Solution

Let f (x, y) = ex sin y

Now fx = ex sin y fy = ex cos y

fxx = ex sin y fyy = – ex sin y

fxy = ex cos y fxyy = – ex sin y

fxxx = ex sin y fyyy = – ex cos y

fxxy = ex cos y
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At (0, 0)

f (0, 0) = 0 fx (0, 0) = 0 fy (0, 0) = 1

fxx (0, 0) = 0 fxy (0, 0) = 1 fyy (0, 0) = 0

fxxx (0, 0) = 0 fxxy (0, 0) = 1 fxyy (0, 0) = 0

fyyy(0, 0) = – 1

Hence, by Maclaurin’s theorem

f (x, y) = f x f y fx y0 0 0 0 0 0, , ,� � � � � �+ +

+ + +1

2
0 0 2 0 0 0 02 2

!
, , ,x f xy f y fxx xy yy� � � � � �

+ + + + + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅1

3
0 0 3 0 0 3 0 0 0 03 2 2 3

!
, , , ,x f x y f xy f y fxxx xxy xyy yyy� � � � � � � �

Substituting all the values in the expansion of f (x, y), we get

ex sin y = 0 0 1
1

2
0 2 1 02 2+ ⋅ + ⋅ + ⋅ + ⋅ + −x y x xy y

!

+ ⋅ + + ⋅ + + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅1

3
0 3 3 03 2 2 3

!
–1x x y xy y � �

ex sin y = y xy
x y y+ + − +

2 3

2 6
..........  .

2. Expand ex log (1 + y) by Maclaurin’s theorem up to the third degree term.

Solution

Let f (x, y) = ex log (1 + y)

The function and it’s partial derivatives evaluated at (0, 0) is as follows:

f (x, y) = ex log (1 + y) → 0

fx = ex log (1 + y) → 0

fy = ex · 1/ (1 + y) → 1

fxx = ex log (1 + y) → 0

fxy = ex/1 + y → 1

fyy = – ex/(1 + y)2 → –1

fxxx = ex log (1 + y) → 0

fxxy = ex/(1 + y) → 1

fxyy =  – ex/(1 + y)2 → – 1

fyyy = 2ex/(1 + y)3 → 2

∴ By Maclaurin’s theorem

f (x, y) = f x f y f x f xy f y fx y xx xy yy0 0 0 0 0 0
1

2
0 0 2 0 0 0 02 2, , ,

!
, , ,� � � � � � � � � � � �+ + + + +

+ + + + + ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅1

3
0 0 3 0 0 3 0 0 0 03 2 2 3

!
, , , ,x f x y f xy f y fxxx xxy xyy yyy� � � � � � � �
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Substituting all the values in the expansion of f (x, y), we get

ex log (1 + y) = y xy y x y xy y+ − + +1

2
2

1

6
3 3 22 2 2 3� � � �– .

3. Expand eax + by by using Maclaurin’s theorem up to the third term.

Solution. Since the expansions required in powers of x, y the point (a, b) associated is (0, 0)
and the expansion of f (x, y) about (0, 0) is given by

f (x, y) = f x f y f x fxx yy xx0 0 0 0 0 0
1

2
0 02, , ,

!
,� � � � � � � �+ + +

+ + +2 0 0 0 0
1

3
0 02 3xy f y f x fxy yy xxx, ,

!
,� � � � � �

+ + + + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅3 0 0 3 0 0 0 02 2 3x y f xy f y fxxy xyy yyy, , ,� � � � � �
The functions and its partial derivatives evaluated at (0, 0) is as follows:

f (x, y) = eax + by → 1

fx = aeax + by → a

fy = beax + by → b

fxx = a2eax + by → a2

fxy = abeax + by → ab

fyy = b2eax + by → b2

fyyy = b3eax + by → b3

fxxx = a3eax + by → a3

fxyy = ab2eax + by → ab2

fxxy = a2beax + by → a2b

Substituting these values in the expansion of f (x, y), we get

f (x, y) = 1
2 3

2 3

+ + +
+

+
+

+ ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ax by
ax by ax by

� � � � � �
! !

 .

4. Expand tan–1 y/x about the point (1, 1) using Taylor’s theorem up to the second degree terms.

Solution. The expansion of f (x, y) about (1, 1) is given by

f (x, y) = f x f y fx y1 1 1 1 1 1 1 1, , – ,� � � � � � � � � �+ − +

+ − + − − + −1

2
1 1 1 2 1 1 1 1 1 1 1

2 2

!
, , ,x f x y f y fxx xy yy� � � � � �� � � � � � � �

+ − + − − +1

3
1 1 1 3 1 1 1 1 3 1 1 1 1

3 2 2

!
, , – – ,x f x y f x y fxxx xxy xyy� � � � � � � � � � � �� � � �

+ − + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅y f yyy1 1
3� � � �
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Let f (x, y) = tan−1 y

x
;      f (1, 1) = tan–1 (1) = 

π
4

fx =
1

1
2

2

2 2 2

+
=

+y

x

y

x

y

x y

– –
; fx (1, 1) =

– 1

2

fy =
1

1

1
2

2

2 2

+
⋅ =

+y

x

x

x

x y
; fy (1, 1) =

1

2

fxx =
2

2 2 2

xy

x y+� �
; fxx (1, 1) =

1

2

fyy =
– 2
2 2 2

xy

x y+� �
; fyy (1, 1) =

– 1

2

fxy =
x y x x

x y

y x

x y

2 2

2 2 2

2 2

2 2 2

1 2+ ⋅ − ⋅

+
=

+

� �

� � � �
–

; fxy (1, 1) = 0

Substituting these values in the expansion of f (x, y), we get

tan −1 y

x
=

π
4

1

2
1 1

1

2

1

2
1

1

2
1

2 2+ − + − + − −�
��

�
��

+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅–
!

–x y x y� � � � � � � � .

5. Expand ex cos y by Taylors’s  theorem about the point 1,
4

π	

�

�
�  up to the second degree terms.

Solution. The expansion of f (x, y) about 1
4

,
π	


�
�
�  is given by

f (x, y) = f x f y fx y1
4

1 1
4 4

1
4

, , ,
π π π π	


�
�
� + − 	


�
�
� + −	
�

�
�

	

�

�
�

�
��

�
��

� �

+ − 	

�

�
� + − −	
�

�
�

	

�

�
�

�
��

1

2
1 1

4
2 1

4
1

4
2

!
, ,x f x y fxx xy� � � �π π π

+ 	
�
�
�

	

�

�
� + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅y f yy– ,

π π
4

1
4

2

The function and its partial derivatives are evaluated at 1
4

,
π	


�
�
� .

f (x, y) = ex cos y →
e

2

fx = ex cos y →
e

2

fy = – ex sin y →
– e

2
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fxx = ex cos y →
e

2

fxy = – ex sin y →
– e

2

fyy = – ex cos y →
– e

2

Substituting these values in the expansions of f (x, y), we get

ex cos y = 
e

x y x x y y
2

1 1
4

1

2
1 2 1

4 4
2

2

+ − − −	
�
�
�

�
��

�
��

+ − − − −	
�
�
� − −	
�

�
�

�

�
�
�

�

�
�
�

�
��
��

�
��
��

� � � � � �π π π
·

�
������� ���

1. Expand x2y about the point (1, – 2) by Taylor’s theorem.

Ans.  – –
!

–2 4 1 2
1

2
4 1 4 1 2

2
x y x x y− + + + − + − +�

��
�
��

� � � � � � � � � �

2. Expand x2y + 3y – 4 about the point (1, – 2) by Taylor’s theorem.

Ans.  − − − + + − − + − + + − +12 4 1 4 2 2 1 2 1 2 1 2
2 2

x y x x y x y� � � � � � � � � � � � � �
3. Expand exy about the point (1, 1) by using Taylor’s theorem up to second degree terms.

Ans.  e x y x x y y1 1 1
1

2
1 4 1 1 1

2 2+ − + − + − + − − + − + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅���
���

�
��

�
��

� � � � � � � � � � � �
!

4. Obtain the Taylor’s expansion of ex sin y about the point 0
2

,
π	


�
�
�  up to second degree terms.

Ans.  1
1

2 2
2

2

+ + − −	
�
�
�

�

�
�
�

�

�
�
�

+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
�

�
�
�

�

�
�
�

x x y
!

π

5. Expand tan−1 y

x
 about the point (1, 2) using Taylor’s theorem up to second degree terms:

Ans.  tan –2− + − + − + − − − − − −�
��

�
��

1 2 2
2

1

5
1 2

1

50
4 1 6 1 2 4 2x y x x y y� � � � � � � � � � � �

6. Obtain the Maclaurin’s expansion of the following functions:

(i) exy up to second degree terms. Ans.  1
1

2
2 2+ + + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅�

��
�
��

xy x y

(ii) log (1 – x – y) up to 3rd degree terms.  Ans.  x y x y x y− − − + − + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅�
��

�
��

� � � � � �1

2

1

3
2 3

(iii) eax sin by up to 3rd degree terms. Ans.  by ab xy a b x y b y+ + − + ⋅ ⋅ ⋅ ⋅ ⋅�
��

�
��

1

6
3 2 2 3 3� �
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(iv) sin (x + y) up to 3rd degree terms. Ans.  x y
x y

+ −
+

+ ⋅ ⋅ ⋅ ⋅ ⋅
�

�
�
�

�

�
�
�� � � �3

3!

(v) cos (ax + by) up to 2nd degree terms. Ans.  1
2

2

−
+

+ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
�

�
�
�

�

�
�
�

ax by� �
!

2.3 MAXIMA AND MINIMA OF FUNCTIONS OF TWO VARIABLES

Maximum Value of a Function

A function f (x, y) is said to have a maximum at a point (a, b), if these exists a neighbourhood N
of (a, b) such that

f (x, y) < f (a, b) for all (x, y) ∈ N.

Minimum Value of a Function

A function f (x, y) is said to have a minimum at (a, b), if there exists a neighbourhood N of (a, b)
such that

f (x, y) > f (a, b) for all (x, y) ∈ N.

2.3.1 Necessary and Sufficient Conditions for Maxima and Minima

The necessary conditions for a function f (x, y) to have either a maximum or a minimum at a point
(a, b) are fx (a, b) = 0 and fy (a, b) = 0.

The points (x, y) where x and y satisfy fx (x, y) = 0 and fy (x, y) = 0 are called the stationary
or the critical values of the function.

Suppose (a, b) is a critical value of the function f (x, y). Then fx (a, b) = 0, fy (a, b) = 0.

Now denote

fxx (a, b) = A, fxy (a, b) = B, fyy (a, b) = C

1. Then, the function f (x, y) has a maximum at (a, b) if AC – B2 > 0 and A < 0.

2. The function f (x, y) has a minimum at (a, b) if AC – B2 > 0 and A > 0.

Maximum and minimum values of a function are called the “extreme values of the function”.

Working rule to find the maximum and minimum value of a function f (x, y)

1. Find fx (x, y) and fy (x, y).

2. Solve the equations fx (x, y) = 0 and fy (x, y) = 0.

Let (a, b) be a root of the above equations. Here (a, b) is called the critical point.

3. Then find fxx (x, y), fxy (x, y), fyy (x, y).

4. Then A = fxx (a, b), B = fxy (a, b), C = fyy (a, b).

5. If AC – B2 > 0 and A < 0, then f has a maximum at (a, b).

6. If AC – B2 > 0 and A > 0, then f has a minimum at (a, b).
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7. If AC – B2 < 0, then f has neither a maximum nor a minimum at (a, b). The point
(a, b) is called the ‘Saddle point’.

8. If AC – B2 = 0, further investigation is necessary.

������� ��	� �
�����

1. Find the extreme values of the function 2xy – 5x2 – 2y2 + 4x + 4y – 6.

Solution

Let f (x, y) = 2xy – 5x2 – 2y2 + 4x + 4y – 6

Now fx = 2y – 10x + 4

fy = 2x – 4y + 4

Now fx = 0 and fy = 0 implies

2y – 10x + 4 = 0 and 2x – 4y + 4 = 0

i.e., 5x – y – 2 = 0 and x – 2y + 2 = 0

Solving, we get x =
2

3
, y =

4

3

∴ The critical point of f is 
2

3

4

3
,

	

�

�
�

Now A = fxx = – 10, B = fxy = 2

C = fyy = – 4

and AC – B2 = (–10) (– 4) – (+2)2 = 36 > 0

and A = – 10 < 0

∴ f attains its maximum at 
2

3

4

3
,

	

�

�
�

Also maximum f (x, y) = f 
2

3

4

3
,

	

�

�
� = 2

2

3

4

3
5

4

9
2

16

9
4

2

3
4

4

3
6⋅ ⋅ ⋅ − ⋅ + ⋅ + ⋅ −– ,

= – 2.

2. Find the extreme values of the function x3y2 (1 – x – y).

Solution

Let f (x, y) = x3y2 (1 – x – y)

i.e., f (x, y) = x3y2 – x4y2 – x3y3

Now fx = 3x2y2 – 4x3y2 – 3x2y3

fy = 2x3y – 2x4y – 3x3y2

Then fx = 0 and fy = 0

3x2y2 – 4x3y2 – 3x2y3 = 0 and 2x3y – 2x4y – 3x3y2 = 0
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i.e., x2y2 (3 – 4x – 3y) = 0 and x3y (2 – 2x – 3y) = 0

∴ x = 0 or y = 0 or 4x + 3y = 3 and

x = 0 or y = 0 or 2x + 3y = 2

Solving 4x + 3y = 3 and 2x + 3y = 2

we get x =
1

2
, y =

1

3

Hence, the critical points are (0, 0) and 
1

2

1

3
,

	

�

�
�

Further, A = fxx = 6xy2 – 12x2y2 – 6xy3

= 6xy2 (1 – 2x – y)

B = fxy = 6x2y – 8x3y – 9x2y2

= x2y (6 – 8x – 9y)

C = fyy = 2x3 – 2x4 – 4x3y

= 2x3 (1 – x – 3y)

(i) At the point (0, 0), A = 0, B = 0, C = 0, AC – B2 = 0 and further investigation is
required.

(ii) At the point 
1

2

1

3
,

	

�

�
�    A = –

1

9
, B = 

–1

12
, C = 

–1

8

Now AC – B2 =
–1

–
9

1

8

1

12

1

144
0

2	

�
�
�

−	

�
�
� − 	
�

�
� = >

and A =
– 1

9
0<

∴ f (x, y) attains it’s maximum at 
1

2

1

3
,

	

�

�
�

Maximum f (x, y) = f
1

2

1

3

1

8

1

9
1

1

2

1

3
, – –

	

�

�
� = ⋅ 	


�
�
�

=
1

432
·

3. Find the extreme values of the function x3 + y3 – 3xy.

Solution
Let f (x, y) = x3 + y3 – 3xy

We have fx = 3x2 – 3y

fy = 3y2 – 3x

Now fx = 0 and fy = 0 implies

⇒ x2 – y = 0 and y2 – x = 0

i.e., x2 = y and x = y2
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Eliminating y, we get
x = (x2)2 or x = x4

or x – x4 = 0
x (1 – x3) = 0

⇒ x = 0, x = 1
if x = 0, then y = 0

and if x = 1 then y = 1

∴The critical points are (0, 0) and (1, 1)

Further, A = fxx = 6x,

B = fxy = – 3

C = fyy = 6y

At (0, 0), A = 0, B = – 3, C = 0

So that AC – B2 = 0 – 9 < 0

Hence, there is neither a maximum nor minimum at (0, 0)

i.e., (0, 0) is a saddle point.

At (1, 1), A = 6, B = – 3, C = 6

and AC – B2 = 6 · 6 – (– 3)2 = 36 – 9 = 27 > 0

and A = 6 > 0

Hence, f (x, y) attains its minimum value at (1, 1)

Also, minimum, f (x, y) = f (1, 1) = 13 + 13 – 3·1·1 = – 1.

4. Find the extreme values of the function x4 + 2x2y – x2 + 3y2.

Solution

Let f (x, y) = x4 + 2x2y – x2 + 3y2

We have fx = 4x3 + 4xy – 2x

and fy = 2x2 + 6y

Then fx = 0 and fy = 0 implies

2x (2x2 + 2y – 1) = 0 and 2 (x2 + 3y) = 0

i.e.,  x = 0 or 2x2 + 2y – 1 = 0 and x2 + 3y = 0

which is same as

{x = 0 and x2 + 3y = 0} or {2x2 + 2y – 1 = 0 and x2 + 3y = 0}

i.e., x = 0 and y = 0.

where x2 = – 3y

∴ 2x2 + 2y – 1 = 0

2 (– 3y) + 2y – 1 = 0

which implies y =
– 1

4

Hence, x2 = 
3

4
 or x = ± 

3

2
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Hence, the critical values are (0, 0), 
3

2

1

4
,

–	

�

�
�

 and 
−	

�

�
�

3

2

1

4
,

–

Further

A = fxx = 12x2 + 4y – 2, B = fxy = 4x, C = fyy = 6

(i) At (0, 0), A = – 2, B = 0, C = 6 and AC – B2 = – 12 < 0

Hence, there is neither a maximum nor a minimum at (0, 0)

(ii) At 
3

2

1

4
,

–	

�

�
�

, A = 12
3

4
4

1

4
2 6⋅ + 	


�
�
� =–

–

B = 4
3

2
2 3 6⋅ = =, C

Then, AC – B2 = 6 (6) – 2 3
2

� �  = 24 > 0 and

A = 6 > 0

∴ f (x, y) has a minimum at 
3

2

1

4
,

–	

�

�
�

Hence, f (x, y) attains its minimum value at 
3

2

1

4
,

–	

�

�
�

Also,  minimum  f (x, y) =
– 3

8
	

�
�
�

(iii) Similarly, at 
−	

�

�
�

3

2

1

4
,

–

f (x, y) attains its minimum.

Thus, f (x, y) attains minimum 
– 3

8
 at ±
	

�

�
�

3

2

1

4
,

–
.

5. Determine the maxima/minima of the function

sin x + sin y + sin (x + y).

Solution

Let f (x, y) = sin x + sin y + sin (x + y)

We have fx = cos x + cos (x + y)

fy = cos y + cos (x + y)

Now fx = 0 and fy = 0 implies

cos (x + y) = – cos x and cos (x + y) = – cos y

i.e., – cos x = – cos y or cos x = cos y

or x = y

Then, cos 2x = – cos x = cos (π – x)
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or 2x = π – x or x = 
π
3

So that y =
π
3

The critical point is 
π π
3 3

,
	

�

�
�

Further, A = fxx = – sin x – sin (x + y)

B = fxy = – sin (x + y)

C = fyy = – sin y – sin (x + y)

At 
π π
3 3

,
	

�

�
� , A = – sin – sin –

π π
3

2

3

3

2

3

2
3= − − =

B = – sin –
2

3

3

2

π =

C = – sin – sin – – –
π π
3

2

3

3

2

3

2
3= =

and AC – B2 = – – – –3 3
3

2

9

4
0

2

� � � �
	

�

�
�

= >

Also A = – 3 0<

∴ f (x, y) attains its maximum at 
π π
3 3

,
	

�

�
�

and  maximum f (x, y) = f 
π π
3 3

,
	

�

�
�  = sin sin sin

π π π
3 3

2

3
+ + 	


�
�
�

=
3

2

3

2

3

2

3 3

2
+ + = .

6. Examine the function f (x, y) = 1 + sin (x2 + y2) for extreme.

Solution f (x, y) = 1 + sin (x2 + y2)

fx = 2x cos (x2 + y2)

fy = 2y cos (x2 + y2)

Now fx = 0 and fy = 0 implies

i.e., 2x cos (x2 + y2) = 0 and 2y cos (x2 + y2) = 0

∴ x = 0, y = 0 and (0, 0) is the stationary point.

A = fxx = – 4x2 sin (x2 + y2) + 2 cos (x2 + y2)

B = fxy = – 4xy sin (x2 + y2)

C = fyy = – 4y2 sin (x2 + y2) + 2 cos (x2 + y2)

At (0, 0); A = 2, B = 0, C = 2
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∴ AC – B2 =  4 > 0

Since, AC – B2 > 0, A = 2 > 0, (0, 0) is minimum point and the minimum value of

f (x, y) = f (0, 0) = 1.

�
������� ���

Find the extreme values of the following functions:

1. x2 – xy + y2 + 3x – 2y + 1 Ans.  Min.  =  
– 4

3
at

–
,

4

3

1

3

	

�

�
�

�
��

�
��

2. x2 + xy + y2 + 3x – 3y + 4 Ans.  Min. =  5 at − −3 3,� �

3. x2 + 2y2 – 4x + 4y + 6 Ans.  Min. =  0 at 2, −1� �
4. x3 + 3xy2 – 15x2 – 15y2 + 72x Ans.  Max. =  112 at 4, 0� �

5. x3 + y3 – 63 (x + y) + 12xy Ans.  Max.  =  784 at 

Min.  =   at 3,  3

− −

−

�

�
�
�

�

�
�
�

7 7

216

,� �
� �

6. x2y2 (12 – 3x – 4y) Ans.  Max.  =  8 at 2,  1� �

7. x3 – y3 – 3y2 Ans.  Max. =  0 at 3 4,  − 2� �

8. xy (a – x – y), where a > 0 Ans.  Max. =   at 
3a a a

27 3 3
,

	

�

�
�

�
�
�

�
�
�

9. x2y (x + 2y – 4) Ans.  Min.  =  2 at − 	

�

�
�

�
��

�
��

2
1

2
,

10. 2x3 + xy2 + 5x2 + y2 Ans.  Min. =   at 0,  0

         Max. =  
125

7
 at 

         and 1,  2  1, 2  are saddle points

0

5

3
0

� �

� � � �

−	
�
�
�

− − −

�

�

�
�
�
�
�

�

�

�
�
�
�
�

,

,

11. x4 + y4 – (x + y)4 Ans. , Min. =   and 2 at 1,  1  and  1− −14 1� � � �

12. x2 + xy + y2 + x + y Ans. , Min.  =   at − − −	

�

�
�

�
��

�
��

1

3

1

3

1

3

2.4 LAGRANGE’S METHOD OF UNDETERMINED MULTIPLIERS

So far, we have considered the method of finding the extreme values of a function f (x, y, z), where
these variables x, y, z are independent. Sometimes we may have to find the maximum or minimum
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values of a function f (x, y, z), when x, y, z are connected by some relations say φ (x, y, z) = 0. In
such cases we may eliminate z from the given conditions and express the function f (x, y, z) as a
function of two variables x and y and obtain the extreme values of f as before. In such cases we have
an alternative method for finding the critical points called “Lagrange’s method of undetermined
multipliers”.

Suppose we want to find the maximum or minimum values of the function

µ = f (x, y, z) ...(1)

Subject to the condition

φ (x, y, z) = 0 ...(2)

Then, d µ = fx dx + fy dy + fz dz

and d φ = φx dx + φy dy + φz dz = 0

But the necessary conditions for the function f (x, y, z) to have a maximum or a minimum values
are fx = 0, fy = 0, fz = 0.

Hence, fx dx + fy dy + fz dz = 0 ...(3)

and φx dx + φy dy + φz dz = 0 ...(4)

Multiplying (4) by λ and adding it to (3), we get

( fx + λ φx) dx + ( fy + λ φy) dy + ( f + λ φz) dz = 0

This is possible only if

fx + λ φx = 0 ...(5)

fy + λ φy = 0 ...(6)

fz = λ φz = 0 ...(7)

Solving the equations (2),  (5), (6) and (7), we get the values of x, y, z and the undetermined
multiplies λ. Thus, we obtain the critical points of the function f (x, y, z).

But this method does not help us in identifying whether the critical points of the function gives
the maximum or minimum.

Working Rules

To find the extreme values of the function f (x, y, z) subject to the conditions φ (x, y, z) = 0

1. Form the auxiliary equation

F (x, y, z, λ) = f (x, y, z) + λ φ (x, y, z)

2. Find the critical points of F as a function of four variables x, y, z, λ. i.e., solving the
equations Fx = 0, Fy = 0, Fz = 0 and Fλ = φ = 0, we get

λ = – – –
f f fx

x

y

y

z

zφ φ φ
= =

The values of x, y, z thus obtained will give us the critical point (x, y, z).



DIFFERENTIAL CALCULUS–II 91
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1. Find the minimum value of x2 + y2 + z2 subject to the condition ax + by + cz  = p.

Solution

Let F = (x2 + y2 + z2) + λ (ax + by + cz)

We form the equations Fx = 0, Fy = 0, Fz = 0

i.e., 2x + λa = 0, 2y + λb = 0, 2z + λc = 0

or λ =
– 2x

a
, λ = 

– 2y

b
, λ = 

– 2z

c

⇒
– 2x

a
=

– –2 2y

b

z

c
=

or
x

a
=

y

b

z

c
=  = k (say)

∴ x = ak, y = bk, z = ck

But ax + by + cz = p and hence, we have

a2k + b2k + c2k = p

∴ k =
p

a b c2 2 2+ +

Hence, the required minimum value of x2 + y2 + z2 is

a2k2 + b2k2 + c2k2 = k2 (a2 + b2 + c2)

i.e.,
p a b c

a b c

2 2 2 2

2 2 2 2

+ +

+ +

� �

� �
=

p

a b c

2

2 2 2+ +

thus, the required minimum value is p

a b c

2

2 2 2+ +
.

2. The temperature T at any point (x, y, z) in space is T = 400 xyz2. Find the highest tempera-
ture at the surface of the unit sphere x2 + y2 + z2 = 1.

Solution
Let F = 400 xyz2 + λ (x2 + y2 + z2)
We form the equations Fx = 0, Fy = 0, Fz = 0

i.e., 400 yz2 + λ · 2x = 0 or λ = 
– 200 2yz

x

400 xz2 + λ · 2y = 0 or λ = 
– 200 2xz

y

800 xyz + λ · 2z = 0 or λ = – 400 xy

Now,
−200 2yz

x
=

− = −200
400

2xz

y
xy
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Taking the equality pairs, we get

y

x
=

x

y
, z2 = 2y2, z2 = 2x2

i.e., y2 = x2 or y = x also z = 2x
But x2 + y2 + z2 = 1 and hence, we have

x2 + x2 + 2x2 = 1 i.e., 4x2 = 1 or x = 
1

2

∴ x =
1

2
, y = 

1

2
, z = 

1

2
 is a stationary point.

The maximum (height) temperature
T = 400 xyz2 is

= 400
1

2

1

2

1

2
50

	

�
�
�
	

�
�
�
	

�
�
� = .

3. If 
1

x

1

y

1

z
+ +  = 1, show that the minimum value of the function a3x2 + b3y2 + c3z2 is

(a + b + c)3.

Solution

Let F = (a3x2 + b3y2 + c3z2) + λ 
1 1 1

x y z
+ +

	

�

�
�

we form the equations Fx = 0, Fy = 0, Fz = 0

i.e., 2a3x + λ
– 1

2x

	

�
�
� = 0 or λ = 2a3x3

2b3y + λ 
– 1

2y

	

�
�
� = 0 or λ = 2b3 y3

2c3z + λ 
– 1

2z

	

�
�
� = 0 or λ = 2c3z3

Now 2a3x3 = 2b3 y3 = 2c3z3

⇒ a3x3 = b3y3 = c3z3

⇒ ax = by = cz

∴ y =
ax

b
,  z = 

ax

c

But
1 1 1

x y z
+ + = 1 i.e., 

1

x

b

ax

c

ax
+ +  = 1

a b c

ax

+ +
= 1

∴ x =
a b c

a

+ +



DIFFERENTIAL CALCULUS–II 93

Also y =
a b c

b

+ + ,  z = 
a b c

z

+ +

Required minimum value of the function a3x2 + b3y2 + c3z2 is given by

= a
a b c

a
b

a b c

b
c

a b c

c
3

2
3

2
3

2

⋅ + +	

�

�
� + + +	


�
�
� + + +	


�
�
�

= (a + b + c)2 (a + b + c) = (a + b + c)3

Thus, the required minimum value is (a + b + c)3.

4. Find the minimum value of x2 + y2 + z2, when x + y + z = 3a.

Solution

Let F = (x2 + y2 + z2) + λ (x + y + z)

We form the equations Fx = 0, Fy = 0, Fz = 0

i.e., 2x + λ = 0, 2y + λ = 0, 2z + λ = 0

or λ = – 2x, λ = – 2y, λ = – 2z

⇒ – 2x = – 2y = – 2z or x = y = z

But x + y + z = 3a

Substituting y = z = x, we get 3x = 3a

 x = a

∴ x = a, y = a, z = a

The required minimum value of x2 + y2 + z2 is a2 + a2 + a2 = 3a2.

5. Find the minimum value of x2 + y2 + z2 subject to the conditions xy + yz + zx = 3a2.

[July 2003]

Solution

Let F = (x2 + y2 + z2) + λ (xy + yz + zx) = 0

We form the equations Fx = 0, Fy = 0, Fz = 0

i.e., 2x + λ (y + z) = 0, 2y + λ (x + z) = 0, 2z + λ (x + y) = 0

⇒ λ =
– 2x

y z+
, λ = 

– 2y

x z+
, λ = 

– 2z

x y+ ·

Equating the R.H.S. of these, we have

2x

y z+
=

2 2y

x z

z

x y+
=

+ ...(1)

Consider,

x

y z+
=

y

x z+
i.e., x2 + xz = y2 + yz or (x2 – y2) + z (x – y) = 0

or (x – y) (x + y + z) = 0

⇒ x = y or x + y + z = 0
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we must have x = y, since x + y + z cannot be zero.

Suppose x + y + z = 0, then by squaring, we get

(x2 + y2 + z2) + 2 (xy + yz + zx) = 0

⇒ x2 + y2 + z2 + 2 (3a2) = 0

or x2 + y2 + z2 = – 6a2 < 0

which is not possible. Similarly by equating the other two pairs in (1), we get

y = z, z = x thus x = y = z

But xy + yz + zx = 3a2,  putting y = z = x, we get

3x2 = 3a2 ⇒ x = a

Thus, x = a = y = z and the minimum value of x2 + y2 + z2 is

a2 + a2 + a2 = 3a2.

�
������� ���

1. Find the minimum value of x2 + y2 + z2 subject to the condition xyz = a3.  [Ans. 3a2]

2. Find the maximum and minimum values of x2 + y2 subject to the conditions

5x2 + 6xy + 5y2 = 8. [Ans. 4 and 1]

3. Find the maximum value of x2 y2 z2 subject to the condition x2 + y2 + z2 = a2.

Ans.
a2 3

3

	

�
�
�

�

�
�
�

�

�
�
�

4. Find the minimum value of x2 + y2 + z2 subject to the conditions

(i) xy + yz + zx = 3a2 [Ans. 3a2]

(ii) xyz = a3 [Ans. 3a2]

(iii) ax + by + cz = P.
Ans.

P

a b c

2

2 2 2+ +
�
�
�

�
�
�

����	������ �������� ������ ���	
���� ����� ���� �������

1. Evaluate:

 (i) lim
a b c

3x 0

x x x
1

x

→

+ +	

�

�
�

(ii) lim 2x tan x sec x
x

2
→

−
π

π� � .
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Solution

(i) lim
x

x x x xa b c
→

+ +	

�

�
�0

1

3
[1∞] form

Let K = lim
x

x x x xa b c
→

+ +	

�

�
�0

1

3

Taking logarithm on both sides

log K = lim log
x

x x x

x

a b c
→

+ +	

�

�
�0

1

3

Apply L’ Hospital rule

= lim

log log log

x

x x x

x x x

a b c

a a b b c c

→

+ +
	

�

�
�

+ +	

�

�
�

�

�
�
�

�
�
�

�

�
�
�

�
�
�

0

3
3

1

=
3

3 3
× + +	

�

�
�

log log loga b c

log K =
1

3
log abc� �

log K = log abc� �
1

3

K = abc� �
1

3

i.e., lim
x

x x x xa b c
→

+ +	

�

�
�0

1

3
= abc� �

1

3 .

(ii)  Let

K = lim tan sec
x

x x x
→

−
π

π
2

2� � [∞ – ∞] form

= lim
sin

cos
–

cosx

x
x

x x→
⋅ ⋅�

��
�
��π

π
2

2
1

= lim
sin

cosx

x x

x→

−�
��

�
��π

π

2

2 0

0
�
��
�
��  form

Applying L’ Hospital rule

K = lim
cos cos

– sinx

x x x

x→

+�
�
�

�
�
� = −

π
2

2 2
2 .
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2. Evaluate: lim tan x
x

4

tan 2x

→ π
� � .

Solution. Refer page no. 75. Example 2.

3. Evaluate:

(i) lim
1

x

1

sin xx 0 2 2→
−�

��
�
��

(ii) lim sin x
x

2

tan x

→ π
� � .

Solution.  (i) Refer page 61. Example 5.

(ii) lim sin
tan

x

x
x

→ π
2

� � [1∞] form

Let K = lim sin
tan

x

x
x

→π
2

� �

log K = lim tan logsin
x

x x
→

π
2

� �

= lim
logsin

cotx

x

x→

�
��

�
��π

2

0

0
�
��
�
��

 form

Apply L’ Hospital rule

= lim sin
cos

–x

x
x

x→

⋅�

�

�
�
�

�

�

�
�
�π

2

2

1

cosec

= lim
– cos sin

sinx

x x

x→

×�
�
�

�
�
�π

2

2

log K = 0

K = e0 = 1

i.e., lim sin
tan

x

x
x

→ π
2

� � = 1.

4. Find the value of a and b such that lim
x 1 a cos x b sin x

xx 0 3→

+ −�
�
�

�
�
�

� �
 = 1.

Solution. Consider lim
cos sin

x

x a x b x

x→

+ −�
�
�

�
�
�

0 3

1� � 0

0
�
��
�
��

 form

Applying L’ Hospital rule, we have

= lim
– sin cos cos

x

x a x a x b x

x→

+ + −
0 2

1

3

� � � �
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This is equal to 
1

0

+ −a b
 and we must have

1 + a – b = 0 ...(1)

To apply the L’ Hospital rule again. Hence, we have

= lim
– cos sin sin

x

x a x a x b x

x→

− +�
�
�

�
�
�

0

2

6

� � 0

0
�
��
�
��  form

Applying the L’ Hospital rule again, we have

= lim
sin cos cos

x

x a x a x b x
→

− +
0

3

6

� �

This is equal to 
– 3

6

a b+
 which must be equal to 1

∴ – 3a + b = 6 ...(2)

Solving (1) and (2), we get

a =
– 5

2
   and  b = 

– 3

2
·

5. Evaluate: lim
log cos x

tan xx
2

→
π

� �
.

Solution. Refer page no. 67, Example 14.

6. Find the maximum and minimum distances of the function x4 + 2x2y – x2 + 3y2.

Solution. Refer page no. 86, Example 4.

7. Expand eax + by in the neighbourhood of the origin up to the third degree term.

Solution. Refer page no. 80, Example 3.

8. Expand log (1 + x – y) up to third degree terms about the origin.

Solution. By Maclaurin’s series

f (x, y) = f x f y fx y0 0 0 0 0 0, , ,� � � � � �+ +

+ + + + ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅1

2
0 0 2 0 0 0 02

!
, , ,x f xy f fxx xy yy� � � � � �� �

Here, f (x, y) = log (1 + x – y) ⇒ f (0, 0) = log 1 = 0

fx =
1

1+ −x y
⇒ fx (0, 0) = 1

fy =
– 1

1+ −x y
⇒ fy (0, 0) = – 1

fxx =
– 1

1
2+ −x y� �

⇒ fxx (0, 0) = – 1



98 ENGINEERING MATHEMATICS—II

fxy =
1

1
2+ −x y� �

⇒ fxy (0, 0) = 1

fyy =
– 1

1
2+ −x y� �

⇒ fyy (0, 0) = – 1

fxxx =
2

1
3+ −x y� �

⇒ fxxx (0, 0) = 2

fxxy =
– 2

1
3+ −x y� �

⇒ fxxy (0, 0) = – 2

fxyy =
2

1
3+ −x y� �

⇒ fxyy (0, 0) = 2

fyyy =
– 2

1
3+ −x y� �

⇒ fyyy (0, 0) = – 2

and so on.

Substituting these in (1)

log (1 + x – y) = 0
1

2
22 2+ − + + −x y x xy y� � � �

!
–

+ − + − + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅1

3
2 6 6 23 2 2 3

!
x x y xy y� �

= x y x y x y− − + − + ⋅ ⋅ ⋅ ⋅ ⋅� � � � � �–
1

2

1

3
2 3

9. Divide the number 48 into three parts such that its product is maximum.

Solution. Let x, y, z be the three parts of the number 48

∴ x + y + z = 48

Also, let u = xyz and

F = xyz + λ (x + y + z)

We form the equations Fx = 0, Fy = 0, Fz = 0

i.e., yz + λ = 0; xz + λ = 0; xy + λ = 0

or λ = – yz; λ = – xz and λ = – xy

⇒ – yz = – xz = – xy

and hence x = y = z

Since x + y + z = 48, we get

x = y = z = 16

Thus, 16, 16, 16 are the three parts of 48 such that the product is maximum.

10. Find the minimum value of x2 + y2 + z2 when x + y + z = 3a.

Solution. Refer page no. 93. Example 4.
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11. Find the stationary value of x2 + y2 + z2 subject to the condition xy + yz + zx = 3a2.

Solution. Refer page no. 93. Example 5.

12. If x, y, z are the angles of a triangle, show that the maximum value of cos x cos y cos z

is 
1

8
·

Solution. We need to find the maximum value of u = cos x cos y cos z subject to the
condition x + y + z = π
Let F = cos x cos y cos z + λ (x + y + z)

We form the equations Fx = 0,   Fy = 0,   Fz = 0

i.e., – sin x cos y cos z + λ = 0

– cos x sin y cos z + λ = 0

– cos x cos y sin z + λ = 0

or λ = sin x cos y cos z

λ = cos x sin y cos z

λ = cos x cos y sin z

Now, sin x cos y cos z = cos x sin y cos z = cos x cos y sin z

From the first pair, we have

sin x cos y = cos x sin y

i.e., sin x cos y – cos x sin y = 0

i.e., sin (x – y) = 0 ⇒ x – y = 0

or x = y

similarly from the other pairs, we get

y = z and z = x

Combining these we have x = y = z

But x + y + z = λ
∴ x + x + x = π

or x = 
π
3

Hence x = y = z = 
π
3

∴ The maximum value of

cos x cos y cos z = cos3x, where x = 
π
3

Thus, we have cos3

3

π	

�
�
� =

1

2

1

8

3	

�
�
� = ·

13. Find the point on the paraboloid z = x2 + y2 which is closest to the point (3, – 6, 4).

Solution. Let A (3, –6, 4) and let P(x, y, z) be any point on the paraboloid x2 + y2 – z = 0

∴ AP2 = (x – 3)2 + ( y + 6)2 + (z – 4)2 by distance formula
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Let u (x, y, z) = (x – 3)2 + ( y + 6)2 + (z – 4)2 and we need to find the point P1 = (x1, y1, z1)

Satisfying z = x2 + y2 such that AP1
2 is minimum.

Now, let F = [(x – 3)2 + ( y + 6)2 + (z – 4)2] + λ (x2 + y2 – z)

We form the equation Fx = 0, Fy = 0, Fz = 0

i.e., 2 (x – 3) + 2λx = 0 or λ = 
− −

= − +
x

x x

3
1

3� �

2 ( y + 6) + 2λy = 0 or λ = 
− +

= − −
y

y y

6
1

6� �

2 (z – 4) – λ = 0 or λ = 2z – 8

∴ − +1
3

x
= − −1

6

y
⇒

3

x
 = 

−6

y
or y = – 2x

Also − +1
3

x
= 2z – 8 ⇒ 7

3+
x

 = 2z or z = 
1

2
7

3+	
�
�
�x

But we have x2 + y2 = z

∴ x2 + 4x2 =
7 3

2

x

x

+
or 5x2 = 

7 3

2

x

x

+

or 10x3 – 7x – 3 = 0

x = 1 is a root by inspection and is the only real root.

Also y = – 2x and z = 
1

2
7

3+	
�
�
�x  gives

y = – 2, z = 5

Thus the required point is (1, – 2, 5).

14. Find the dimensions of the rectangular box, open at the top, of the maximum capacity whose
surface area is 432 sq. cm.

Solution. Let x, y, z respectively be the length, breadth and height of the rectangular box.
Since it is open at the top, the surface area (S) is given by

S = xy + 2xz + 2yz = 432 (using the data)

Volume (V) = xyz

We need to find x, y, z such that V is maximum subject to the condition that

xy + 2xz + 2yz = 432

Let F = xyz + λ (xy + 2xz + 2yz)

We form the equation Fx = 0, Fy = 0, Fz = 0

i.e., yz + λ ( y + 2z) = 0 or λ = – yz/( y + 2y)

xz + λ (x + 2z) = 0 or λ = – xz/(x + 2z)

xy + λ (2x + 2y) = 0 or λ = – xy/2(x + y)

Now
−
+
yz

y z2
=

−
+

= −
+

xz

x z

xy

x y2 2� �
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or
y

y z+ 2
=

x

x z+ 2
gives x = y

Also
z

x z+ 2
=

y

x y2 2+
gives y = 2z

Hence, x = y = 2z

But xy + 2xz + 2yz = 432

x2 + x2 + x2 = 432

or 3x2 = 432 or x2 = 144

we have x = 12 and hence y = 12, z = 6

Thus the required dimensions are 12, 12, 6.

�����	���� ����	����

1. The necessary conditions for f (x, y) = 0 to have extremum are

(a) fxy = 0, fyx = 0 (b) fxx = 0, fyy = 0

(c) fx = 0, fy = 0 (d ) fx = 0, fy = 0 and fxx > 0, fyy > 0.

[Ans. c]

2. The stationary points of f (x, y) = x2 + xy2 + y4 is

(a) (1, 0) (b) (0, 1)

(c) (0, 0) (d ) (1, 1). [Ans. d ]

3. Minimum value of x2 + y2 + 6x + 14 is

(a) 5 (b) 2

(c) 3 (d ) – 2. [Ans. a]

4. If p = q = 0, rt – s2 > 0, r < 0 then f (x, y) is

(a) Minimum (b) Saddle point

(c) Maximum (d ) None of these. [Ans. c]

5. The conditions for f (x, y) to be minimum or maximum is p = ......, q = ....., rt – s2 = ..... is

(a) 0, 0, + ve (b) 1, –1, + ve

(c) 0, 0, – ve (d ) None of these. [Ans. a]

6. Lim is equal to
x

x x

x→−

+ −
+5

2

3

3 10

125

(a) 
7

25
(b)

7

125

(c) − 7

75
(d ) None of these. [Ans. c]
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7. Lim is equal to
x

x

x x x→ −
−

−
�
��

�
��3 23

9

3

(a) 0 (b) 3

(c) 9 (d ) 2. [Ans. d]

8. Lim is equal to
x

x

x x x→ −
−

−
�
��

�
��3 23

9

3

(a) 
1

2
(b) 0

(c) 1 (d ) None of these. [Ans. a]

9. Lim is equal to
x

x

x→ −0 1 cos

(a) 
1

2
(b) 1

(c) 2 (d ) None of these. [Ans. c]

10. Lim is equal to
x

x x

x x→

+
+0

2

sin

(a) 
1

2
(b) 1

(c) 2 (d ) None of these. [Ans. a]

11. Lim is equal to
x

x
x

x→∞ +
	

�

�
�1

(a) 2 (b) e

(c) 1 (d ) None of these. [Ans. c]

12. Lim is equal to
x

x

x→

−

−
π π
4

1

4

tan

(a) 2 (b) – 2

(c) 1 (d ) –1. [Ans. a]

13. Lim
x→0

 x cot x is equal to

(a) 0 (b) 1

(c) doesn’t exist (d ) None of these. [Ans. b]
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14. Lim is equal to
x

x

x→

−
0 2

1sec

tan

(a) 2 (b) 1

(c) 0 (d )
1

2
· [Ans. d]

15. Lim
x→0

 tan 5x cot 3x is equal to

(a) 15 (b)
1

15

(c) 
5

3
(d )

3

5
· [Ans. c]

16. Lim
h

x h x

h→

+ −
0

2 2� �
 is equal to

(a) 1 (b) x

(c) 0 (d ) 2x. [Ans. d]

17. The function (x) is continuous for

(a) all x (b) x ≠ 0

(c) x > 0 (d ) x < 0. [Ans. a]

18. Lim is equal to
x

x

x→∞

−

−	
�
�
�1

1

(a) e–1 (b) e

(c) e–x (d ) e x. [Ans. b]

19. If rt – s2 > 0, r < 0 then f (a, b) is

(a) Maximum value of f (x, y) (b) Minimum value of f (x, y)

(c) Saddle point (d ) None of these. [Ans. a]

20. If rt – s2 > 0, r > 0 then f (a, b) is

(a) Maximum value of f (x, y) (b) Minimum value of f (x, y)

(c) Saddle point (d ) None of these. [Ans. b]

21. If rt – s2 < 0 then (a, b) is

(a) Maximum value of f (x, y) (b) Minimum value of f (x, y)

(c) Saddle point f (x, y) (d ) None of these. [Ans. c]

22. If L (x, y, z, λ) = f (x, y, z) + λ φ (x, y, z) is called

(a) Particular function (b) Auxillary function

(c) General function (d ) None of these. [Ans. b]
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23. To find maxima or minima of f (x, y, z) subject to

(a) φ (x, y, z) = 0 (b) f (x, y, z) = 0

(c) φ (x, y, z) ≠ 0 (d ) f (x, y, z) ≠ 0. [Ans. a]

24. A set of necessary conditions for f (x, y) to have a maximum or minimum is that

(a) ∂
∂

=f

x
0  and 

∂
∂

≠f

y
0 (b) ∂

∂
≠f

x
0  and 

∂
∂

=f

y
0

(c) ∂
∂

=f

x
0  and 

∂
∂

=f

y
0 (d ) None of these. [Ans. c]

25. The stationary points of f (x, y) = y2 + 4xy + 3x2 + x3 is

(a) (0, 1) and 
2

3
1,

	

�

�
� (b) (0, 0) and 

2

3

4

3
,

−	

�

�
�

(c) (0, 2) and 
2

3

4

3
,

	

�

�
� (d ) None of these. [Ans. b]

���
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Similarly, we can define another

f x y dx dy
a

b

c

d
,� ��� ��� �

�	
For continuous function f (x, y), we have

f x y dx dy
R

,� ��� = f x y dy dx f x y dx dy
c

d

a

b

c

d

a

b

, ,� � � �� ��� �
�
�
�

�

�
	
	

=
�

�
�
�

�

�
	
	

If f (x, y) is continuous on a bounded region S and S is given by
S = {(x, y)/a ≤ x ≤ b and φ1 (x) ≤ y ≤ φ2 (x)}, where φ1 and φ2 are

two continuous functions on [a, b] then

f x y dx dy
S

,� ��� = f x y dy dx
x

y

a

b

,� �
� �

� �

φ

φ

1

2

��
�

�
�
�

�

�
	
	

The iterated integral in the R.H.S. is also written in
the form

dx f x y dy
x

x

a

b

,� �
� �

� �

φ

φ

1

2

��
Similarly, if S = {(x, y)/c ≤ y ≤ d

and φ
1
 ( y) ≤ x ≤ φ

2
 ( y)}

then f x y dx dy
S

,� ��� = f x y dx dy
y

y

c

d
,� �

� �

� �

φ

φ

1

2�� ���
�
�	

If S cannot be written in neither of the above two forms we divide S into finite number of sub-
regions such that each of the subregions can be represented in one of the above forms and we get
the double integral over S by adding the integrals over these subregions.

������� ��	� �
�����

1. Evaluate: I = xy dy dx2

0

2

0

1 �� .

Solution  I = xy dy dx2

0

2

0

1 �� ��� �
�	

=
xy

dx
3

0

2

0

1

3

�
�
�

�
�
	� (Integrating w.r.t. y keeping x constant)

=
1

3
8

0

1
x dx�

=
1

3

8

2

4

3

2

0

1
x�
�
�

�
�
	 = ⋅

y =  (x)�2

S

y = (x)�1

a b 
x

y

Fig. 3.1
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2. Evaluate: xy dy dx
1

2

0

1 �� .

Solution. Let I be the given integral

Then,  I = x y dy dx
1

2

0

1 �� 
�� ��

= x
y

dx x dx⋅
�
�
�
�
�
	 = =� �

2

1

2

0

1

0

1

2
3
2

3
4

. ·

3. Evaluate the following:

(i) e dy dxx y

2

3

1

2 +�� (ii) dy dx
x

x

0

1

2��
(iii) ( )x y dx dy

y

3y

1

2
+�� (iv) r sin dr d

0

cos

0

θπ
θ θ��

Solution. Let I be the given integral. Then

(i)  I = e e dy dxx y

2

3

1

2 �� �
��

�
��

= e e dxx y

2

3

1

2�
= e e e dxx 3 2

1

2
−� � �

= e e e dxx3 2

1

2
–� � �

= e e e x3 2

1

2
–� �

I = e e e e3 2 2 1– –� � � � ·

(ii)  I = dy dx
x

x

20

1 �� 
�� ��
= y dx x x dx

x

x
2

2

0

1

0

1
= −�� � �

=
x x2 3

0

1

2 3
−

�
�
�

�
�
	

=
1

2

1

3
–  = 

1

6

(iii)  I = x y dx dy
y

y
+
��

���� � �
3

1

2

=
x

xy dy
x y

x y2 3

1

2

2
+

�
�
�

�
�
	

=

=

�
= 6 2 142 3

1

2

1

2
y dy y= =�
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(iv)  I = sin
cos

θ θ
θ

π
r dr d

0
0 �� 


��
��


��
��

= sin

cos

θ θ
θ

π r
d

2

0
0 2

�
�
�
�
�
	�

=
1

2
2

0
sin cosθ θ θ

π
⋅� d

where cos θ = t
– sin θ dθ = dt

∴ sin θ dθ = – dt

=
1

2
2

0
t dt⋅� –� �

π

=
– 1

2 3

3

0

t�
�
�
�
�
	

π

=
–

cos
1

6 0
θ π

=
–

–1
1

6
1

1

3
− = ⋅� �

4. Evaluate: 
dy dx

1 x y2 20

1+x

0

1 2

+ +
⋅��

Solution  I =
dy

x y
dx

x

1 2 20

1

0

1 2

+ +



��
��


��
��

+��
where a2 = 1 + x2 or a = 1 2+ x

=
dy

a y
dx

a

2 2
00

1

+



��
��


��
��

��
=

1

00

1

a

y

a
dx

a

tan–1�
��

�
�	�

=
1

4 4 120

1

0

1

a
dx

dx

x
⋅ =

+�� π π

=
π
4

12

0

1

log x x+ +�
��

�
�	� �

=
π
4

2 1log +� �

Note : 
π π π
4

1
4 4

12

0

1
1

0

1 1log sin sinx x h x h+ +
��
��

�
��

�
�	

= =− − � �
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5. Evaluate: x y z dz dy dx2 2 2

– a

a

–b

b

– c

c

+ +��� � � .

Solution I = x y z dz dy dx
z a

a

y b

b

x c

c
2 2 2+ +

===
��� � �
–––

Integrating w.r.t. z, x and y – constant.

= x z y z
z

dy dx
z a

a

y b

b

x c

c
2 2

3

3
+ +

�
�
�

�
�
	

===
��

–––

= x a a y a a
a a

dy dx
y b

b

x c

c
2 2

3 3

3 3
+ + + + +

�
��

�
��

�
�
�
�

�
�
	
	==

�� � � � �
––

= 2 2
2

3
2 2

3

ax ay
a

dy dx
y b

b

x c

c

+ +
�
��

�
��==

��
––

Integrating w.r.t. y, x – constant.

= 2
2

3

2

3
2

3 3

ax y
ay a

y dx
y b

b

x c

c

+ +
�
�
�

�
�
	

==
�

––

= 2
2

3

2

3
2 3 3

3

ax b b
a

b b
a

b b dx
x c

c

+ + + + +
�
�
�

�
�
	

=
� � � � � � �

–

= 4
4

3

4

3
2

3 3

ax b
ab a b

dx
x c

c

+ +
�
�
�

�
�
	

=
�

–

= 4
3

4

3

4

3

3 3 3

ab
x ab

x
a b

x
c

c�
��
�
��

+ +
�
�
�
�

�
�
	
	

� � � �
–

= 4
2

3

4

3
2

4

3
2

3 3 3

ab
c ab

c
a b

c
�
��

�
��

+ ⋅ +� � � �

=
8

3

8

3

8

3

3 3 3abc ab c a bc+ +

I =
8

3
2 2 2abc

a b c+ + ⋅� �

6. Evaluate: e dz dy dxx y z

0

x y

0

x

0

a
+ +

+

��� .

Solution  I = e e dz dy dxx y z

z

x y

y

x

x

a
+

=

+

==

⋅���
000
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=
y

x
x y z x y

x

a

e e dy dx
=

+ +

=
�� ⋅

0
0

0

=
y

x
x y x y

x

a

e e dy dx
=

+ +

=
��

00

1–� �

=
y

x
x y x y

x

a

e e e e dy dx
==
�� ⋅ ⋅

0

2 2

0

–� �

= e
e

e e dxx
y x

x y x

x

a
2

2

0
0

0
2

�
�
�
�
�
	



��
��


��
��=

� –

=
e

e e e dx
x

x x x

x

a 2
2

0
2

1 1− − −


�
�


�
�=

� � � � �

=
e

e e dx
x

x x

x

a 4
2

0
2

3

2
− +

�
��

�
��=

�

=
e e

e
x x

x

a4 2

0
8

3

4
− +

�
�
�

�
�
	

=
e e

e
a a

a
4 2

8

3

4

1

8

3

4
1− +

�
��

�
��

− +�
��

�
��–

=
e e

e
a a

a
4 2

8

3

4

3

8
– –+

I =
1

8
6 8 34 2e e ea a a– –+ ⋅� �

7. Evaluate: 
0

log 2

0

x

0

x log y� � � +
 ex + y + z dz dy dx.

Solution I =
x y

x

z

x y

= = =

+� � �0

2

0 0

log log

 ex + y. ez dz dy dx

=
x

x y z x y

y

x
e e dy dx

=

+ +

=� �0

2

00

log log

=
x

x y x y

y

x
e e dy dx

=

+ +

=� � −
0

2

0
1

log
log

=
x

x y x y

y

x
e e e dy dx

=

+

=� � ⋅
0

2

0
1

log
log –

But elog y = y

∴ I =
x

x y x y

y

x
e y e e e dy dx

= =� � ⋅ ⋅
0

2
2

0

log
–� �
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= e y e e e e dxx y y x y

y

x

x

2

00

2
– –

log

� �
==�

= e x e e e e dxx x x x x

x

2

0

2
0 1 1– – – – –

log

� � � �� � � �
=�

= x e e e e e dxx x x x x

x

3 3 2 2

0

2
– –

log
+ +

=� � �

= x e e e dxx x x

x

3 3

0

2
–

log
+

=� � �

= x
e e e

e
x x x

x. – –

log3 3 3

0

2

3 9 3
+

�
�
�

�
�
	

=
x e e

e
x x

x
3 3

0

2

3

4

9
–

log

+
�
�
�

�
�
	

=
log .

– – – –
log

log log2

3
0

4

9
1 1

3 2
3 2 2e

e e
�
�
�

�
�
	 +� � � �

=
8 2

3

4

9
8 1 2 1

log
– – –� � � �+

=
8 2

3

28

9
1

log
– +

Thus, I =
8 2

3

19

9

log
– .

8. Evaluate: 
0 0

2 2 2
2 2a a y

a x y dx dy� � –
– – .

Solution I = a y x dx dy
a ya

2 2 2

00

2 2

– –
–

� ��� 
����

��
��

= b x dy
ba

2 2

00
–�� 
�� ��

where b2 = a2 – y2

=
x

b x
b x

b
dy

b
a

2 2
2 2

2

0
0

– sin–1+
�
�
�

�
�
	�

=
b

dy a y dy
aa 2

2 2

00 2 2 4
. –

π π= �� � �

=
π π
4 3 6

2
3

0

3

a y
y a

a

–
�
�
�

�
�
	 =
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�
������� ���

I. Evaluate the following double integrals:

1.
0

3

1

2� � +xy x y dy dx� � Ans.  24 2.
0

2

0

2
π π

� � +sin x y dy dx� � Ans.  2

3.
0

1

0

2

� � ce dy dxy
x

Ans.  
1

2
e −�

��
�
�	

1 4.
0

1

0

1� � xy dy dx
x–

Ans.  
1

24
�
��

�
�	

5.
0

1 2

0

1� � +x y dy dx
x

� �
–

Ans.  
1

4
�
��

�
�	 6.

0

1

0

2

� � e dx dyx y
y

/ Ans.  
1

2
�
��

�
�	

7.
0

2

0

2 2a a x
x y dy dx� � – Ans.  

a5

15

�
�
�

�
�
	 8.

0

2∞ ∞� � x e dx dyx y

y

– / Ans.  
1

2
�
��

�
�	

9.
0

4

4

2

2

a

y a

a y
dx dy� � /

Ans.  
16

3
a 2�

��
�
�	

10.
θ

π θ
θ

= =� �0

2

2 20

a r

a r
dr d

r

a

–

cos Ans.  2a
π
2

1−�
��

�
��

�
��

�
�	

II. Evaluate the triple integrals:

1.
0

2

1

3
2

1

2� � � xy z dz dy dx Ans.  26 2.
–3

3

0

1

1

2� � � + +x y z dx dy dz� � Ans.  12

3.
0

1

0

1

0� � � xyz dx dy dz
y

Ans.  
1

16
�
��

�
�	 4.

0

1 1

0

1

2� � �y

x
x dz dx dy

–
Ans.  

4

35
�
��

�
�	

5.
0

1

0

1 2

2 2� � � +
xyz dz dy dx

x y
Ans.  

3

8
�
��

�
�	 6.

0

4

0

2

0

4 2

� � �z z x
dy dx dz

–
Ans.  8π

7.
–1 –

1

0� � � + +
+z

x z

x z
x y z dy dx dz� � Ans.  0

8.
0

2

0 0

2 2π θ
θ� � �a a r a

r dr d
sin – /� � Ans.  

5

64

3πa�
�
�

�
�
	

9. 0

1

0

1

30

1

1� � � + + +

– – –x x y dz dy dx

x y z� � Ans.  
1

2
log 2

5

8
−�

��
�
��

�
��

�
�	

10.
0 0 0

2 2 2 2 2a a x a x y
xyz dz dy dx� � �– – – Ans.  

a6

48

�
�
�

�
�
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3.3.1 Evaluation of a Double Integral by Changing the Order of Integration

In the evaluation of the double integrals sometimes we may have to change the order of integration
so that evaluation is more convenient. If the limits of integration are variables then change in the
order of integration changes the limits of integration. In such cases a rough idea of the region of
integration is necessary.

3.3.2 Evaluation of a Double Integral by Change of Variables

Sometimes the double integral can be evaluated easily by changing the variables.

Suppose x and y are functions of two variables u and v.

i.e., x = x (u, v) and y = y (u, v) and the Jacobian

J =
∂
∂

=

∂
∂

∂
∂

∂
∂

∂
∂

≠
x y

u v

x

u

x

v
y

u

y

v

,

,

� �
� � 0

Then the region A changes into the region R under the transformations

x = x (u, v) and y = y (u, v)

Then f x y dx dy
A

,� ��� = f u v J du dv
R

,� ���
If x = r cos θ, y = r sin θ

J =
∂
∂

=

∂
∂

∂
∂θ

∂
∂

∂
∂θ

= =
x u

r

x

r

x

y

r

y
r

r
r

,

,

cos – sin

sin cos

� �
� �θ

θ θ
θ θ

∴ f x y dx dy
A

,� ��� = F r r dr d
R

, θ θ� ��� . ...(1)

3.3.3 Applications to Area and Volume

1. dx dy
R
��  = Area of the region R in the Cartesian form.

2. r dr d
R

⋅�� θ  = Area of the region R in the polar form.

3. dx dy dz
V
���  = Volume of a solid.

4. Volume of a solid (in polars) obtained by the revolution of a curve enclosing an area A about
the initial line is given by

V = 2 2π θ θr dr d
A

sin .⋅��
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5. If z = f (x, y) be the equation of a surface S then the surface area is given by

1
2 2

+ ∂
∂
�
��
�
�� + ∂

∂
�
��
�
���� z

x

z

y
dx dy

A

Where A is the region representing the projection of S on the xy-plane.

������� ��	� �
�����

Type 1. Evaluation over a given region

1. Evaluate xy dx dy
R
��  where R is the triangular region bounded by the axes of coordinates

and the line 
x

a

y

b
1+ = .

Solution. R is the region bounded by x = 0, y = 0 being the coordinates axes and 
x

a

y

b
+ = 1

being the straight line through (0, a) and 0 1, –b
x

a
�
��

�
��

�
��

�
��

when x is held fixed and y varies from 0 to b
x

a
1 –
�
��

�
��

∴
x

a

y

b
+ = 1

⇒
y

b
= 1 –

x

a

⇒ y = b
x

a
1 –
�
��

�
��

∴ xy dx dy
R
�� = xy dy dx

y

b
x

a

x

a

=

�
��

�
��

=
��




�
��

�
�
�



�
��

�
�
�0

1

0

–

= x
y

dx

b
x

a
a

⋅
�
�
�
�
�
	
�
��

�
���

2

0

1

0
2

–

= x
b x

a
dx

a

⋅ �
��

�
��



��
��


��
���

2 2

0
2

1 –

=
b

x
x

a

x

a
dx

a2 2 3

2
0

2
2– +

�
��

�
���

=
b x x

a

x

a

a2 2 3 4

2
0

2 2
2
3 4

– +
�
�
�

�
�
	

x—
a

+ y—
b

= 1

(a, 0)O

Fig. 3.2
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=
b a

a a
2 2

2 2

2 2

2

3

1

4
– +

�
�
�

�
�
	

=
a b2 2

24

2. Evaluate xy dx dy��  over the area in the first quadrant bounded by the circle x2 + y2 = a2.

Solution xy dx dy�� = xy dy dx
y

a x

x

a

==
��

�

�

�
�
�

�

�

	
	
	00

2 2– � x y a

y a x

y a x

2 2 2

2 2 2

2 2

+ =

⇒ =

=



�
��

�
��

–

–       

= x
y

dx

a xa

⋅
�
�
�
�
�
	�

2

00
2

2 2–

= x
a x

dx
a 2 2

0
2

–�
��

�
���

=
1

2
2 3

0

a x x dx
a

–� ��
=

1
2 2 4

2
2 4

0

a
x x

a

–
�
�
�

�
�
	

=
1

2 2 4 8

4 4 4a a a
– .

�
�
�

�
�
	 =

3. Evaluate x dx dy
R
��  where R is the region bounded by 

x

a

y

b
1

2

2

2

2
+ =  and lying in the first

quadrant.

Solution. From the ellipse

x

a

y

b

2

2

2

2
+ = 1

y

b

2

2 = 1
2

2
–

x

a

y =
b

a
a x2 2−

x changes from 0 to a and y changes from 0 to 
b

a
a x2 2–

x dx dy
R
�� = x dy dx

y

b

a
a x

x

a

==
��



�
��

�
��


�
��

�
��00

2 2–

Y

X

x  + y  = a
2 2 2

O (a, 0)

Fig. 3.3

Y

X
O (a, 0)

x
—
a

2

2

y
—
b

2

2
+ = 1

Fig. 3.4
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= x y dx
b

a
a x

a

0
0

2 2–�
= x

b

a
a x dx

a
2 2

0

–�
��

�
���

Putting x = a sin θ, dx = a cos θ dθ

a x2 2– = a cos θ

∴ θ varies from 0 to π/2

=
b

a
a a a dsin cos cosθ θ θ θ

π

⋅ ⋅�
0

2

= a b d2 2

0

2

sin cosθ θ θ
π

�
= a b

a b2
21

3 3
× = ⋅

4. Evaluate xy dx dy
R
��  where R is the region in the first quadrant included between

x

a

y

b
1 and

x

a

y

b
1

2

2

2

2
+ = + = .

Solution
x

a

y

b
+ = 1

⇒ y = b
x

a
1 –
�
��

�
��

=
b

a
a x–� �

x

a

y

b

2

2

2

2
+ = 1

⇒
y

b

2

2 = 1
2

2
–

x

a

y =
b

a
a x2 2– (� y ≥ 0)

∴ xy dx dy
R
�� = xy dy dx

y
b

a
a x

b

a
a x

a

=

��


�
��

�
��


�
��

�
��–

–

� �

2 2

0

Y

(a, b)

(a, 0)

X
O

x—a
+      = 1y

—b
x
—
a

2

2

y
—
b

2

2
+ = 1

Fig. 3.5
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= x
y

dx
b

a
a x

b

a
a xa 2

0
2

2 2

�
�
�
�
�
	�

–

–

� �

=
1

2

2

2
2 2

2

2

2

0

x
b

a
a x

b

a
a x dx

a

– – –� � � ��
�
�

�
�
	�

=
b

a
ax x dx

a2

2
2 3

0
2

2 2–� ��

=
b

a
a

x x
a2

2

3 4

0
2

2
3 2

–
�
�
�

�
�
	

=
b

a

a a2

2

4 4

2

2

3 2
–

�
�
�

�
�
	  = 

a b2 2

12
⋅

5. Evaluate xy dx dy
R

2��  where R is the Triangular region bounded by y = 0, x = y and

x + y = 2.

Solution. Given

y = 0, x = y, x + y = 2

where y = 0, y + y = 2

⇒ 2y = 2

⇒ y = 1

where x = y, x = 2 – y

∴ y varies from 0 to 1

x varies from y to 2 – y

xy dx dy
R

2�� = xy dx dy
x y

y

y

2
2

0

1

==
��
–

= y
x

dy
x y

y

y

2
2 2

0

1

2

�
�
�
�
�
	

==
�

–

=
1

2
22 2 2

0

1

y y y dy– –� �� ��
=

1

2
4 42

0

1

y y dy–� ��
=

1

2

4

3

1

6
3 4

0

1

y y– .
�
��

�
�	

=

Y

(1, 1)

x = 2 – yx = y

O (2, 0)
X

Fig. 3.6
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6. Evaluate xy x y dx dy
R

+�� � �  over the region between y = x2 and y = x.

Solution. The bounded curves are y = x2 and y = x. The
common points are given by solving the two equations.

So, we have

x2 = x = x (x – 1) = 0

⇒ x = 0 or 1

when x = 0, we have y = 0 and

when x = 1, y = 1 (from y = x)

∴ xy x y dx dy
R

+�� � � = xy x y dy dx
y x

x

x

+
==
�� � �

20

1

= x
xy y

dx
x

x2 3

0

1

2 3 2

+
�
�
�

�
�
	�

= x x
x x x x

dx
2 4 3 6

0

1

2 2 3 3
– –

�
��

�
��

+
�
��

�
��



��
��


��
���

=
5

6 2 3
4

6 7

0

1

x
x x

dx– –
�
��

�
���

=
5
6 5 14 24

5 7 8

0

1
x x x

– –
�
�
�

�
�
	

=
1

6

1

14

1

24

3

56
– – .=

7. Evaluate xy dx dy
R
��  where R is the region bounded by the x-axis, ordinate at x = 2a and

x2 = 4ay.

Solution

When x = 2a and x2 = 4ay

∴ 4a2 = 4ay

⇒ y = a

∴ The point of intersection of

x = 2a and x2 = 4ay is (2a, a)

Now xy dx dy
R
�� = xy dy dx

y

x

a

x

a

==
��

0

4

0

2

2

y = x
2

y = x

X

Y

O

Fig. 3.7

Y

x  = 4ay
2

(2a, 0)

(2a, 0)
X

Fig. 3.8
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= x
y

dx

x

a
a 2

0

4

0

2

2

2

�
�
�
�
�
	�

=
x

a
dx

x

a

a
aa 5

2

6

2
0

2 4

0

2

32 32 6 3
=

×
�
�
�

�
�
	 =�

Type 2. Evaluation of a double integral by changing the order of integration

1. Change the order of integration and hence evaluate x dy dx
axa

2

0

2

0
�� .

Solution y = 2 ax

⇒ y2 = 4ax

when x = a on y2 = 4ax, y2 = 4a2

⇒ y = ± 2a

So, on y = 2 ax , y = 2a  when x = a

The integral is over the shaded region.

Y

y = 2  ax

(a, 2a)

X
O

Y

x =
y
—
4a

2

X

Fig. 3.9 Fig. 3.10

x dy dx
axa

2

0

2

0
�� = x dx dy

x
y

a

a

y

a
2

4

0

2

2

=
=
�� (By changing the order)

=
x

dy
y

a

aa 3

4
0

2

3 2

�
�
�
�
�
	�
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=
a y

a
dy

a 3 6

3
0

2

3 192
–

�
��

�
���

=
a

y
y

a

a3 7

3
0

2

3 192 7
–

×
�
�
�

�
�
	

=
2

3

2

192 7

4 7 4a a
–

×

= a a4 42

3

2

21

4

7
–�

��
�
�� = .

2. Change the order of integration and hence evaluate 
x

x y
dy dx

x

x

2 2

2

0

1
2

+��
–

.

Solution y = 2 2– x

⇒ y2 = 2 – x2

⇒ x2 + y2 = 2

This circle and y = x meet if x2 + x2 = 2

∴ 2x2 = 2 ⇒ x = 1

So, (1, 1) is the meeting point.

Now I =
x

x y
dy dx

x

x

2 2

2

0

1
2

+��
–

=
x

x y
dx dy

x

y

y
2 2

00

2

+==
��

φ� �

where φ ( y) = 
y y

y y

for

for

0 1

2 1 22

≤ ≤
≤ ≤



�
� –

(Note that x = φ ( y) is the R.H.S. boundary of the shaded region)

So, the required integral is

I =
x

x y
dx dy

x

x y
dx dy

x

y

yx

y

y
2 2 2 2

0

2

1

2

00

1
2

+
+

+====
����
–

= x y dy x y dy
y y

2 2

0

2 2

0

2

1

2

0

1 2

+ + +�
��

�
�	�� –

= 2 2
0

1

1

2

y y dy y dy– –� � � �� �+

Y

(0,  2 )
(1, 1)

y = x

x  + y  = 2
2 2

X
O

 Fig. 3.11
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= 2 1
2

2
2

2

0

1 2

1

2

– –� � y
y

y�
�
�

�
�
	 +
�
�
�

�
�
	

=
2 1

2
2 2 1

2

2

1

2

–
– – –+ �

��
�
��� �

= 1
1

2
– .

3. Change the order of integration and hence evaluate 
e

y
dy dx

y

x

–

.
∞∞

��
0

Solution. The region of integration is the portion
of the first quadrant between  y = x and the y-axis. So,
by changing the order of integration.

e

y
dy dx

y

y xx

–

=

∞

=

∞

��
0

=
e

y
dx dy

y

x

y

y

–

==

∞

��
00

=
e

y
x dy

y
y

–

0
0

∞

�

= e dyy–

0

∞

�
= – –e y

0
1

∞
= .

4. Change the order of integration and hence evaluate x y dx dy
x

y

y

+
==
�� � �

1

4

0

3 –

.

Solution x = 4 – y ⇒ x + y = 4

Limits for x are from 1 to 4 – y

when x = 1 on x + y = 4

we have 1 + y = 4 ⇒ y = 3

So, x y dx dy

y

+�� � �
1

4

0

3 –

= x y dy dx

x

x

+��
=

� �
0

4

1

4 –

by changing the order of integration.

= xy
y

dx

x

+
�
�
�

�
�
	�

2

0

4

1

4

2

–

= x x
x

dx4
4

2

2

1

4

–
–� � � �

+
�

�
�
�

�

�
	
	�

y = x

O

Y

X

Fig. 3.12

Y

(1, 3)

x + y = 4

(4, 0)
X

O

Fig. 3.13
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= 8
1

2
2

1

4

– x dx
�
��

�
���

= 8
6

27

2

3

1

4

x
x

–
�
�
�

�
�
	 = ·

5. Change the order of integration and hence evaluate x y dx dy

y

+�� � �
1

4

0

3 –

.

Solution x = 4 – y

⇒ x2 = 4 – y

y = 4 – x2, a parabola.

Here, the limits 1 and 4 – y  are for x, 0 and

3 are for y.

When x = 1, on y = 4 – x2, y = 3

Now, x y dx dy
x

y

y

+
==
�� � �

1

4

0

3 –

= x y dy dx
y

x

x

+
==
�� � �

0

4

1

2 2–

(By changing the order of integration)

= xy y dx
x

+� 2

0

4

1

2

2
2–

= 4 8 4
2

3 2
4

1

2

x x x
x

dx– –+ +
�
��

�
���

= 2
4

8
4

3 10
2

4
3

5

1

2

x
x

x x
x

– –+ +
�
�
�

�
�
	

= 6
15

4
8

28

3

31

10

241

60
– –+ + = ·

Type 3. Evaluation by changing into polars

1. Evaluate e dx dyx y− +
∞∞

�� 2 2

00

� �  by changing to polar coordinates.

Solution. In polars we have x = r cos θ, y = r sin θ
∴ x2 + y2 = r2 and dx dy = r dr dθ

(0,4) (1,3)

y = 4 – x
2

(2,0)O (1,0)

Fig. 3.14
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Since x, y varies from 0 to ∞
r also varies from 0 to ∞
In the first quadrant ‘θ’

varies from 0 to π/2

Thus I = e r dr dr

r

– 2

00

2

θ
θ

π

=

∞

=
��

Put r2 = t ∴ r dr = 
dt

2

t also varies from 0 to ∞

I = e
dt

dt

t

–

2
00

2

θ
θ

π

=

∞

=
��

=
1

2 0
0

2

– –e dt ∞

=
� θ

θ

π

=
–1

–
2

0 1
0

2

� � dθ
π

�

= + �1

2
1

0

2

. dθ
π

=
+1

2 0

2θ π
 = 

+ ⋅ = ⋅1

2 2 4

π π

2. Evaluate y x y dx dy

a ya
2 2

00

2 2

+��
–

 by changing into polars.

Solution I = y x y dx dy
x

a y

y

a
2 2

00

2 2

+
==
��
–

x = a y2 2− or x2 + y2 = a2 is a circle with centre origin and radius a. Since, y varies from 0 to a

the region of integration is the first quadrant of the circle.

In polars, we have x = r cos θ, y = r sinθ
∴ x2 + y2 = r2

i.e., r2 = a2

⇒ r = a

Also x = 0, y = 0 will give r = 0 and hence we can say that r varies from 0 to a. In the first
quadrant θ varies from 0 to π/2, we know that dx dy = r dr dθ

Y

O

r

X

P (x, y)

�

Fig. 3.15
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∴ I = r r r dr d
r

a

sin θ θ
θ

π

==
��

0

2

0

= r dr d
r

a
3

0

2

0

sin θ θ
θ

π

==
��

= r dr
r

a
3

0

2

0

– cos θ π� �
=
�

= – –r dr
r a

aa
3

4

0

4

0

0 1
4 4

� � =
�
�
�
�
�
	 =�

I =
a4

4
.

Type 4. Applications of double and triple integrals
1. Find the area of the circle x2 + y2 = a2 by using double integral.

Solution
Since, the circle is symmetric about the coordi-

nates axes, area of the circle is 4 times the area OAB
as shown in Figure.

For the region OAB, y varies from 0 to

a x2 2–  and x varies from 0 to a.

∴ Area of the circle = 4
00

2 2

dy dx
y

a xa

=
��
–

= 4
0

0

2 2

y dx
y

a x
a

=� –

= 4 2 2

0

a x dx
a

–�
= 4

2 2
2 2

2

0

x
a x

a x

a

a

– sin–1+
�
�
�

�
�
	  = πa2 sq. units

2. Find by double integration the area enclosed by the curve r = a (1 + cos θ) between
θ = 0 and θ = π.

Solution Area = r dr dθ��
where r varies from 0 to a (1 + cos θ) and θ varies from 0 to π

a x
x

a x
a x

a
2 2 2 2

2
1

2 2
− = − + −� sin

Y

B
Q 

y = 0O p A
X

y =   a  – x
2 2

Fig. 3.16
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i.e., A = r dr d
r

a

θ
θ

θ

π

=

+

=
��

0

1

0

cos� �

=
r

d
r

a2

0

1

0
2

�
�
�
�
�
	

=

+

=
�

cos θ

θ

π

θ
� �

=
1

2
12 2

0

a d+� cos θ θ
π

� �

=
a

d
2

2
2

0
2

2
2

cos
θ

θ
π �

��
�
��


��
���

= 2
2

2 4

0

a dcos
θ θ

π �
��
�
���

Put θ/2 = φ, dθ = 2dφ
and φ varies from 0 to π/2

∴ A = 2a2 cos4

0

2

2φ φ
π

⋅� d

= 4 2 4

0

2

a dcos φ φ
π

⋅�
= 4

3

4

1

2 2
2a ⋅ ⋅ ⋅ π

 (by the reduction formula)

Area, A = 3πa2/4 sq. units.

3. Find the value of z dx dy dz���  where V is the hemisphere x2 + y2 + z2 = a2, z ≥ 0.

Solution

Let I = z dx dy dz
V
���

= z dz dy dx
z

a x y

y a x

a x

x a

a

===
���

0

2 2 2

2 2

2 2 – –

– –

–

–

=
y a x

a x

x a

a a x y
z

dy dx

==
�� �

��
�
�	

– –

–

–

– –

2 2

2 2 2 2 2
2

02

1 2
2

2+ =cos cosθ θ
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=
1

2
2 2 2

2 2

2 2

a x y dy dx

y a x

a x

x a

a

– –

–

–

–

� �
= −=
��

=
1

2 3
2 2

3

2 2

2 2

a x y
y

dx
y a x

a x

x a

a

– –
– –

–

–

� �
�
�
�

�
�
	

==
�

=
1

2

4

3
2 2 3 2

. –
–

a x dx
a

a

� ��

=
2

3
2 2 2 3 2

0

. –a x dx
a

� ��
Put x = a sin θ

dx = a cos θ dθ
θ varies from 0 to π/2

=
4

3
2 2 3 2

0

2

a a dcos cosθ θ θ
θ

π

� �
=
�

=
4

3

4
4

0

2
a

dcos θ θ
π

�
=

4

3

3

4

1

2 2

4a
. . .

π
(By applying reduction formula)

=
πa4

4

Thus, I =
πa4

4
·

4. Using multiple integrals find the volume of the ellipsoid 
x

a

y

b

z

c
1.

2

2

2

2

2

2
+ + =

Solution

The volume (V ) is 8 times in the first octant (V1)

i.e., V = 8V1 = 8 dz dy dx���
z varies from 0 to c 1

2

2

2

2
– –

x

a

y

b
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y varies from 0 to (b/a) a x2 2–

x varies from 0 to a

V = 8 81

0

1

00

2

2

2

22 2

V dz dy dx
z

c
x

a

y

b

y

a x

x

a

=
===
���     

– –
–

= 8 1
2

2

2

2
00

2 2

c
x

a

y

b
dy dx

y

b a a x

x

a

– –

/ –

==
��

� �

= 8
1

12
2

2
2

00

2 2

c
b

b
x

a
y dy dx

y

b a a x

x

a

– –

/ – �
��
�
��



��
��


��
��==

��
� �

We shall use α
α α

α
2 2

2 2 2

2 2
–

–
sin–1y dy

y y y= + �
��
�
���

where α2 = b2 {1 – x2/a2} = b2 (a2 – x2)/a2

∴ V =
8 2 2

00

c

b
y dy dx

yx

a

α
α

–
==
��

=
8

2 2

2 2 2

00

c

b

y y y
dx

x

a α α
α

α
−

+ �
��
�
��

�

�
�
�

�

�
	
	

=
� sin–1

=
8

0
2

1 0
2

0

c

b
dx

x

a

+
=
� α

sin – sin–1 –1� � � �

=
8

2

1

2

2

2
2 2

0

c

b

b

a
a x dx

x

a π
. –� �

=
�

=
2

32
2

3

0

bc

a
a x

x
a

π
–

�
�
�

�
�
	

=
2 2

3

4

32

3bc

a

a abcπ π
. =

Thus the required volume (V ) = 
4

3

πabc
 cubic units.
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�
������� ���

1. Evaluate xy dx dy
R

2��  over the region bounded by y = x2, y = 0 and x = 1. Ans.
1

24
�
��

�
�	

2. Evaluate xy x y dx dy
R

+�� � �  taken over the region bounded by the parabolas y2 = x and

y = x2. Ans.
3

28
�
��

�
�	

3. Evaluate x y dx dy
R

2��  over the region bounded by the curves y = x2 and y = x. Ans.
1

35
�
��

�
�	

4. Evaluate xy dx dy
R
��  where R is the region in the first quadrant bounded by the line

x + y = 1. Ans.
1

6
�
��

�
�	

Evaluate the following by changing the order of integration (5 to 9)

5. x y dy dx
x

a

x

aa
2 2

0

+�� � � . Ans.
a a3

28 20
+

�
�
�

�
�
	

6. x dx dy
axa

2

0

2

0
�� . Ans.

4

7

4a�
�
�

�
�
	

7. a x dy dx
a x

a

a

−
−

�� � �
0

2 2

–

. Ans.
πa3

2

�
�
�

�
�
	

8.
y dy dx

y a xax

aa 2

4 2 2
0 –

.�� Ans.
πa2

6

�
�
�

�
�
	

9. xy dy dx
x

a

a xa

2

2

0

−

�� . Ans.
3

8

4a�
�
�

�
�
	

10. Evaluate x dy dx

ax xa
2

0

2

0

2
2−

��  by transforming into polar coordinates. Ans.
5

8

4πa�
�
�

�
�
	

11. Find the area of the cardioid r = a (1 + cos θ) by double integration. Ans.
3

2

2π a�
�
�

�
�
	

12. Find the volume of the region bounded by the cylinder x2 + y2 = 16 and the planes z = 0

and z = 3. Ans.  48π
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3.4 BETA AND GAMMA FUNCTIONS

In this topic we define two special functions of improper integrals known as Beta function and
Gamma function. These functions play important role in applied mathematics.

3.4.1 Definitions

1. The Beta function denoted by B (m, n) or β (m, n) is defined by

β (m, n) = x x dx m nm n− −− >� 1 1

0

1

1 0� � � �, , ...(1)

2. The Gamma function denoted by Γ (n) is defined by

Γ (n) = x e dxn x−
∞

⋅� 1

0

–
...(2)

3.4.2 Properties of Beta and Gamma Functions

1. β (m, n) = β (n, m)

2. β (m, n) =
x

x
dx

x

x
dx

m

m n

n

m n

−

+

∞ −

+

∞

+
=

+� �
1

0

1

01 1� � � � ...(3)

3. β (m, n) = 2 2 1

0

2
2 1sin cosm n d− −�

π

θ θ θ ...(4)

= 2 2 1

0

2

2 1sin cosn m d− −�
π

θ θ θ

4. β
p q+ +�
��

�
�	

1

2

1

2
, = 2

0

2

sin cosp q d

π

θ θ θ�
= 2

0

2

sin cosq p d

π

θ θ θ� ...(5)

5. Γ (n + 1) = n Γ(n) ...(6)

6. Γ (n + 1) = n!, if n is a + ve real number.
Proof 1. We have

β (m, n) = x x dxm n− −−� 1 1

0

1

1� �

= 1 1 1
1 1

0

1

− − −− −� x x dx
m n� � � �
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Since f x dx
a

� �
0
� = f a x dx

a

−� � �
0

= 1 1 1
1 1

0

1

− − +− −� x x dx
m n� � � �

= x x dxn m− −−� 1 1

0

1

1� �

= β (n, m)

Thus, β (m, n) = β (n, m)

Hence (1) is proved.

(2) By definition of Beta function,

β (m, n) = x x dxm n− −−� 1 1

0

1

1� �

Substituting x = 
1

1 + t
 then dx = 

– 1

1
2+ t

dt
� �

 when x = 0, t = ∞ and when x = 1, t = 0.

Therefore,

β (m, n) =
1

1
1

1

1 1

1 10

2+
�
��

�
�	 +
�
��

�
�	 +



��
��


��
��

− −

∞
� t t t

dt

m n

–
–1

� �

=
1

1 1

1

1

1 1

2

0

+
�
��

�
�� +

�
��

�
�� +



��
��


��
��

− −

∞
� t

t

t t
dt

m n
–

� �

=
t

t
dt

n

m n

−

− + − +

∞

+�
1

1 1 2
0 1� �

β (m, n) =
t

t
dt

x

x
dx

n

m n

n

m n

−

+

∞ −

+

∞

+
=

+� �
1

0

1

01 1� � � �

Similarly, β (n, m) =
x

x
dx

m

m n

−

+

∞

+�
1

0 1� �
Since, β (m, n) = β (n, m), we get

β (m, n) =
x

x
dx

x

x
dx

n

m

m

m n

−

+

−

+

∞∞

+
=

+��
1

1

1

00 1 1� � � �
(3) By definition of Beta functions

β (m, n) = x x dxm n− −−� 1 1

0

1

1� �
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Substitute x = sin2 θ then dx = 2 sin θ cos θ dθ
Also when x = 0, θ = 0

when x = 1, θ = 
π
2

∴ β (m, n) = sin sin sin cos2 1

0

2

2 1
1 2θ θ θ θ θ

π

� � � �
m n

d
− −� ⋅ − ⋅

= 2 2 2

0

2
2 1

sin cos sin cosm n
d− −� ⋅

π

θ θ θ θ θ� �

= 2 2 2

0

2
2 2sin cos sin cosm n d− −� θ θ θ θ θ

π

= 2 2 1

0

2

2 1sin cosm n d− −� θ θ θ
π

Since, β (m, n) = β (n, m), we have

β (m, n) = 2 2 1

0

2

2 1sin cosm n d− −� θ θ θ
π

= 2 2 1

0

2
2 1sin cosn m d− −� θ θ θ

π

(4) Substituting  2m –1 = p and 2n – 1 = q

So that m =
p + 1

2
,   n = 

q + 1

2
 in the above result, we have

β p q+ +�
��

�
��

1

2

1

2
, = 2

0

2

sin cosp q dθ θ θ
π

�

= 2
0

2

sin cosq p dθ θ θ
π

�
(1) Substituting q = 0 in the above result, we get

β p +�
��

�
�	

1

2

1

2
, = 2 2

0

2

0

2

sin cosp pd dθ θ θ θ
ππ

= ⋅��
(2) Substituting p = 0 and q = 0 in the above result

β 1

2

1

2
,

�
��

�
�� = 2

0

2

dθ π
π

=�
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(5)  Replacing n by (n + 1) in the definition of gamma function.

Γ (n) = x e dxn x− −
∞

⋅� 1

0

where n = (n + 1)

Γ (n + 1) = x e dxn x⋅ −
∞

�
0

On integrating by parts, we get

Γ (n + 1) = x e e n x dxn x x n⋅ − − ⋅− ∞ − −
∞

�� � � �
0

1

0

–

= 0 1

0

+ − −
∞

�n e x dxx n  = n Γ (n).

since  if  >  0lim ,
x

n

x

x

e
n

→∞
=

�
�
�

�
�
	0

Thus, � (n + 1) = n � (n),   for n > 0

This is called the recurrence formula, for the gamma function.

(6) If n is a positive integer then by repeated application of the above formula, we get

 Γ (n + 1) = n �(n)

= n �(n – 1 + 1)

= n (n – 1) � (n – 1) (using above result)

= n (n – 1) (n – 2) � (n – 2)

.....................................

.....................................

= n (n –1) (n – 2)........1� (1)

= n! � (1)

But � (1) = x e dxx0

0

−
∞

�
= − − ∞

e x

0
 = – (0 – 1) = 1

Hence � (n + 1) = n!, if n is a positive integer.

For example
 � (2) = 1! = 1, � (3) = 2! = 2, � (4) = 3! = 6

If n is a positive fraction then using the recurrence formula Γ (n + 1) = n Γ (n) can be evaluated
as follows.
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(1)  �
3

2
�
��
�
�� = � 1

1

2
+���
�
�� =

1

2
�

1

2
�
��
�
��

(2)  �
5

2
�
��
�
�� = �

3

2
1+�

��
�
�� =

3

2

3

2
 Γ ���

�
��

(3)  �
7

2
�
��
�
�� = �

5

2
1+�

��
�
�� =

5

2

5

2
Γ ���

�
��

=
5

2

3

2

1

2

1

2
⋅ ⋅ ⋅ ���

�
��Γ

=
15

8

1

2
Γ ���

�
�� ⋅

3.4.3 Relationship between Beta and Gamma functions

The Beta and Gamma functions are related by

β (m, n) =
Γ Γ
Γ

m n

m n

� � � �
� �+ ...(7)

Proof. We have  Γ (n) = x e dxn x− −
∞

⋅� 1

0

Substituting x = t2, dx = 2t dt,  we get

� (n) = t e t dt
n t2 1

0

2

2� �
− −

∞

� ⋅

= 2 2 1

0

2

t e dtn t− −
∞

⋅�
� (n) = 2 2 1

0

2

x e dxn x− −
∞

� ...(i)

Replacing n by m, and ‘x’ by ‘y’, we have

� (m) = 2 2 1

0

2

y e dym y−
∞

� –
...(ii)

Hence

� (m) · � (n) = 2 22 1

0

2 1

0

2 2

x e dx y e dyn x m y−
∞

−
∞

� �

��
��


��
��


��
��


��
��

– –

= 4 2 1 2 1

00

2 2

x e y e dx dyn x m y− − − −
∞∞

⋅��
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= 4
2 2

2 1 2 1

00

e x y dx dy
x y n m− + − −

∞∞

�� � �
...(iii)

We shall transform the double integral into polar coordinates.

Substitute x = r cos θ, y = r sin θ then we have dx dy = r drdθ
As x and y varies from 0 to ∞, the region of integration entire first quadrant. Hence, θ varies

from 0 to 
π
2

 and r varies from 0 to ∞ and also x2 + y2 = r2

Hence (iii) becomes,

 Γ Γm n� � � � = 4
2 2 1 2 1

0

2

0

e r r rd drr n m

r

− − −

==

∞

�� ⋅cos sinθ θ θ
θ

π

� � � �

= 4 2 1

0

2 1 2 1

0

2
2

r e dr dm n

r

r n n+ −

=

∞
− − −� �×� � sin cosθ θ θ

π

...(iv)

Substituting r2 = t, in the first integral. We get,

r e drm n

r

r2 1

0

2+ −

=

∞
−� � � =

1

2
1

0

t e dtm n t+ −
∞

−�
=

1

2
Γ m n+� �

and from (iv), sin cos ,2 1 2 1

0

2 1

2
m n d m n− − =� θ θ θ β

π

� �

Therefore (iv) reduces to Γ Γm n� � � �  = Γ m n m n+� � � �β ,

Thus, β (m, n) =
Γ Γ
Γ

m n

m n

� � � �
� �+ ·  Hence proved.

Corollary. To show that Γ 1

2
�
��
�
��  = π

Putting m = n = 
1

2
 in this result, we get

β 1

2

1

2
,

�
��

�
�	 =

Γ Γ

Γ

1
2

1
2

1

�
��
�
�	

⋅ �
��
�
�	

But � (1) = 1

∴ β 1

2

1

2
,

�
��

�
�	 = Γ 1

2

2�
��
�
��


��
��

...(8)
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Now consider β (m,
 
n) = 2 2 1 2 1

0

2

sin cosm n d− −� θ θ θ

π

Now we have from (8), L.H.S.

β 1

2

1

2
,

�
��

�
�	 = 2 20 0

0
2

0

2

sin cosθ θ θ θ π
π

π

d = =�
π = Γ 1

2

2
��
��  ∴ Γ 1

2
�
��
�
�	  = π .

������� ��	� �
�����

1. Evaluate the following:

(i)
Γ
Γ

7

5

� �
� � (ii)

Γ
Γ

5 2

3 2

� �
� � (iii)

Γ
Γ

8 3

2 3

� �
� �

Solution

(i)
Γ
Γ

7

5

� �
� � =

6

4
30

!

!
=

(ii)

Γ

Γ

5

3
2

2

�
��
�
��

�
��
�
��

=

Γ

Γ

Γ

Γ

3
2

3
2

3
2

3
2

+�
��

�
��

�
��
�
��

=

�
��
�
��

�
��
�
��

=
1

3
2 3

2

(iii)

Γ

Γ

8

2
3

3

�
��
�
��

�
��
�
��

=

Γ

Γ

Γ

Γ

5
3

2
3

5
3

2
3

+�
��

�
��

�
��
�
��

=

�
��
�
��

�
��
�
��

1
5
3

=

5
3

1
5
3

2
3

Γ

Γ

Γ

Γ

2
3
2
3

2
3

2
3

+�
��

�
��

�
��
�
��

=
× �

��
�
��

�
��
�
��

=
10

9
.

2. Evaluate:

(i) x e dxx4

0

−
∞

� (ii) x e dxx6 3

0

−
∞

� (iii) x e dxx2 2

0

2−
∞

� .
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Solution

(i) x e dxx4

0

−
∞

� = x e dxx5–1

0

−
∞

= =� Γ 5 4� � !

= 24

(ii) x e dxx6 3

0

−
∞

�
Substituting 3x = t ⇒ x = 

t

3
 then dx = 

dt

3

x e dxx6 3

0

−
∞

� =
t

e
dtt

3 3

6

0

�
��
�
�� ⋅ ⋅−

∞

�
=

1

3

1

37
6

7
7 1

00

t e dt t e dtt t− − −
∞∞

= ��
=

1

3
7

7
Γ � �

=
1

3
6

80

2437
! =

(iii) Substitute 2x2 = t ⇒ x2 = 
t

2
 ⇒ x = 

t

2

Then 2x dx =
dt

2

dx =
dt

x

dt

t4

2

4
=

x e dxx2 2

0

2−
∞

� =
t

e
t

dtt

2

2

4
0

⋅ ⋅−
∞

�
=

2

8

1

2

0

t e dtt
∞

−�
=

2

8

3

2
1

0

t e dtt−
∞

−� � Γ 1

2
�
��
�
�� =

�
��

�
�	

π

=
2

8

3

2
Γ ���

�
��

=
2

8

1

2
1Γ +�

��
�
��  = 

2

8

1

2

1

2
⋅ �

��
�
��Γ

=
2

8

1

2

2

16
⋅ =π π
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3. Evaluate the following:

(i) x e dxx

0

3−
∞

� (ii) x e dxx

0

4 2−
∞

� (iii) x e dx
1

4 x

0

−
∞

�
(iv) x 1 e dx

– 3

2 x

0

− −
∞

� � � (v) 3 dx4x

0

2−
∞

� .

Solution

(i) Substitute x3 = t so that 3x2 dx = dt

where x = t
1
3 , dx = 

dt

t3
2
3

when  x = 0, t = 0 and when x = ∞, t = ∞

Hence, x e dxx−
∞

� 3

0

= t e
dt

t

t
1
6

2

30 3

−
∞

�

=
1

3

1

2

0

t e dtt
−

−
∞

�
=

1

3

1

2
1

0

t e dtt− −
∞

�
=

1

3

1

2

1

3
Γ ���

�
�� = π .

(ii) Substitute, x2 = t   ⇒    x = t
1
2  = t

So that 2x dx = dt  ⇒  dx = 
dt

t2

Hence, x e dxx4

0

2−
∞

� = t e
dt

t
t2

0
2

−
∞

�
=

1

2

3

2

0

t e dtt−
∞

�
=

1

2

5

2
1

0

t e dtt− −
∞

�
=

1

2

5

2
Γ ���

�
��

=
1

2

3

2

1

2

1

2

3

8
⋅ ⋅ �

��
�
�� =Γ π ·
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(iii) Substitute, x  = t ⇒ x = t2, dx = 2t dt

Hence, x e dxx
1

4

0

−
∞

� = t e t dtt1 2

0

2−
∞

�
= 2

3

2

0

t e dtt−
∞

�
= 2

5

2
1

0

t e dtt– −
∞

�
= 2

5

2
Γ ���

�
��

= 2
3

2

1

2

1

2

3

2
⋅ ⋅ �

��
�
�� =Γ π ·

(iv) On integrating by parts, we get

x e dxx
−

−
∞

−�
3

2

0

1� � = 1 2 22

0

2

0

−
�
��

�
��

�

�
�
�

�

�
	
	

−
�
��

�
��

−

∞

−
∞

�e x x e dxx x� � – –
–1 –1

= 0 2 2

0

+ −
∞

� x e dxx
–1

= 2
1

2
1

0

x e dxx− −
∞

�
= 2

1

2
Γ ���

�
��

= 2 π ⋅
(v) Since a = elog a, a > 0, we have

3 4 2− x = e e
x xlog – log3 4 4 3

2 2−
= � �

e dxx−
∞

� 4

0

2

= e dxx−
∞

� 4 3

0

2log� �

Setting (4 log 3) = x2 = t we get,

x2 =
t

4 3log
 ⇒  x = 

t

2 3log

(4 log 3) 2x dx = dt

(4 log 3) 2
2 3

⋅ t
dx

log
= dt
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t dx⋅ 4 3log = dt ⇒ dx = 
1

4 3t
dt

⋅ log

3 4

0

2−
∞

� x dx = e
t

dtt−
∞

⋅
⋅� 1

4 3
0

log

=
1

4 3

1

2

0
log

–t e dtt
−∞

�

=
1

4 3

1

2
1

0
log

–t e dtt−
∞

�
=

1

4 3

1

2log
Γ ���

�
��

3 4

0

2−
∞

� x dx =
π

4 3log

4. Evaluate:

(i) log x dx
4

0

1

� 	� (ii) x log x dx
3

0

1

� 	�
(iii)

dx

log
1

x

0

1

�
��
�
��

� .

Solution
Substitute log x = – t so that x = e+ t

Also
1

x
dx = – dt or dx = – x dt = – e–t dt

when x = 0, t = – log 0 = ∞ and

when x = 1, t = – log 1 = 0 (note that log 0 = – ∞)

(i) Hence log x dx� 	4
0

1� = – – –t e dtt� 	4
0

⋅
∞�

= t e dtt4

0

–
∞

�

= t e dtt5 1

0

−
∞

� –

= �(5) = 4 ! = 24.

(ii) x x dxlog� 	3
0

1� = e t e dtt−

∞
−� 1 30

( ) – –
 �

= −
∞� t e dtt3 4

0

–
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Put 4t = u ⇒ 4dt = du

dt = 
1

4
du

∴ x x dxlog� 	3
0

1

� = – –u
e duu

4

1

4

3�
��
�
�� ⋅ ⋅�

=
– –1

4
4

3

0� 	
u e duu⋅

∞�
=

– –1

256
4 1

0
u e duu−∞�

=
–

–
! –

.
1

256
4

3

256

3

128
Γ� 	 = =

(iii)
1

10

1

log
x

dx
�
��
�
��

� =
– –e dt

t

t

∞�
0

= t e dtt
–1

–2

0

∞�
= t e dtt

1
2

1

0

−∞� –

= Γ 1

2
�
��
�
�� = π.

5. Prove that a dx–bx

0

2∞� = 
π

2 b log a
 where a and b are positive constants.

Solution

Now, a dxbx– 2

0

∞� = e a bxlog –

� 
2

0

∞�  since a = elog a

= e dxb a x– log� 	 2

0

∞�
Substitute (b log a) x2 = t, dx = 

dt

b a xlog� 	 ⋅ 2

So that, x =
t

b alog

∴ dx =
dt

t b a2 log

e dxbx– 2

0

∞� = e
dt

t b a
t–

log0 2

∞� ⋅
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=
1

2
2

0b a
t e dtt

log

–1
–

∞�

=
1

2

1

2
1

0b a
t e dtt

log

– –
∞�

=
1

2

1

2b alog
Γ ���
�
��

=
π

2 b alog
⋅

6. Prove that x e dxm

0

–axn∞�  = 
1

na

m 1

nm

n

+

+�
��

�
��1� 	 Γ , where m and n are positive constants.

Solution

Substitute axn = t so that x = 
t

a

n�
��
�
��

1

Then dx =
1

1

1
1

na

t dt
n

n⋅
–

Therefore,

x e dxm axn–

0

∞� =
t

a
e

t

na

dt
n

m

t
n

n

�
��
�
��

�

�

�
�
�

�

�

�
�
�

⋅
∞�

1

0

1
1

1
–

–

=
1

1 0

1

1

na
t e dt

m n
t

m

n

+

∞
+
−�� 	

� 	

/
–

=
1 1

1na

m

nm n+

+�
��

�
��� 	/ .Γ

7. Prove that x log x dxm n

0

1

� 	�  = 
– 1 n!

m 1

n

n 1

� 	
� 	

⋅

+ + , where n is a positive integer and m > –1.

Solution

Substitute log x = – t or x = e– t

Then dx = – e–t dt

when x = 0, t = ∞ and when x = 1, t = 0.

Therefore,

x x dxm n
log� 	

0

1� = e t e dtt m n t– –– –
 � � 	 
 �⋅
∞�
0
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= – –1 1

0
� 	 � 	n n m tt e dt+∞�

= – –1
1 10

� 	n
n

uu

m
e

du

m+
�
�
�

�
�
�

⋅
+

∞�
since setting  (m + 1) t = u

=
–1 –� 	

� 	

n

n
n u

m
u e du

+ +

∞�1
1 0

=
–1� 	

� 	
� 	

n

n
n u

m
u e du

+ +
+ − −

∞

�1
1

1 1

0

=
–1� 	

� 	
� 	

n

n
m

n
+

++
1

1
1

Γ

=
–1 !� 	

� 	
n

m
n+ +

1
1  where Γ (n + 1) = n!.

8. Prove that

(i) x e cos bx dxn 1 –ax

0

−∞�  = 
Γ n

a b

cos n tan
b

an

2

–1� 	


 �2 2+

���
���

(ii) x e sin bx dxn 1 –ax

0

−∞�  = 
Γ n

a b

n tan
b

an

2

–1� 	


 �2 2+

���
���

sin .

Solution

Consider I = x e e dxn ax ibx−∞� 1

0

–

= x e dxn a ib x− −∞� 1

0

– � 	

Substitute (a – ib) x = t, so that dx = 
dt

a ib−

x =
t

a ib−

Hence, I =
t

a ib
e

dt

a ib

n

t

−
�
�
�

�
�
�

⋅
−

∞�
–

–
1

0

=
1 1

0a ib
t e dt

n
n t

−
−∞�� 	

–

=
1

a ib
nn−� 	
� 	Γ
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I =
a ib n

a b

n

n

+ ⋅

+

� 	 � 	

 �

Γ
2 2

...(1)

Since a + ib = r (cos θ + i sin θ)

where r = a b2 2+  and θ = tan–1 
b

a
�
��
�
��

Hence (1) reduces to,

I =
Γ n r i

a b

n

n

� 	 � 	


 �

cos sinθ θ+

+2 2

Apply De Moivre’s theorem

=
Γ n r n i n

a b

n

n

� 	 � 	


 �

cos sinθ θ+

+2 2

=
Γ n a b n i n

a b

n

n

� 	 
 � � 	


 �

. cos sin2 2 2

2 2

+ +

+

θ θ

=
Γ n

a b
n

� 	

 �2 2 2

+
 (cos n θ + i sin n θ)

On equating the real and imaginary parts, we get

(i) x e bx dxn ax– – cos1

0

∞

� =
Γ n

a b
n

n

� 	

 �2 2 2

+
cos θ

(ii) x e bx dxn ax– – sin1

0

∞

� =
Γ n

a b
n

n

� 	

 �2 2 2

+
sin θ

where θ = tan–1 
b

a
·

9. Evaluate

(i) β (3, 5) (ii) β (3/2, 2) (iii) β (1/3, 2/3).

Solution

Using the relation β (m, n) =
Γ Γ
Γ

m n

m n

� 	 � 	
� 	+

(i) β (3, 5) =
Γ Γ
Γ

3 5

3 5

2 4

7

1

105

� 	 � 	
� 	+

= =! !

!



144 ENGINEERING MATHEMATICS—II

(ii) β 3

2
2,

�
��

�
��

=

Γ Γ

Γ

Γ Γ

Γ

3
2

2

3
2

2

3
2

2

7
2

�
��
�
��

+�
��

�
��

=

�
��
�
��

�
��
�
��

� 	 � 	

=

1
2

1
2

1

5
2

3
2

1
2

1
2

4

15

Γ

Γ

�
��
�
��

�
��
�
��

=
. !

. .

(iii) β 1

3

2

3
,

�
��

�
�� =

Γ Γ

Γ

1
3

2
3

1
3

2
3

�
��
�
��
�
��
�
��

+�
��

�
��

.

= Γ Γ1

3
1

1

3
�
��
�
��
�
��

�
��–

where Γ(n) Γ(1 – n) = 
π

πsin n

=
π

π
sin

3

=
2

3

π
.

10. Evaluate each of the following integrals

(i) x 1 – x dx4 3

0

1


 �� (ii)
x

2 – x
dx

2

0

2

�

(iii) y a – y dy4 2 2

0

a

� (iv)
1 – x

x
dx

0

1

�
(v) 4 – x dx2 3 2

0

2


 ��
Solution

(i) x x dx4 3

0

1

1 –� 	� = β 5 4
5 4

5 4

4 3

8

1

280
,

! !

!
� 	 � 	 � 	

� 	
=

+
= =

Γ Γ
Γ

(ii) Substitute x = 2t

Then dx = 2dt

∴
x

x
dx

2

0

2

2 –� =
4

2 2
2

2

0

1
t

t
dt

–�
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= 4 2 12 1 2

0

1

t t dt–
–� 	�

= 4 2 3
1

2
β ,
�
��

�
��

= 4 2
3

1
2

3
1
2

Γ Γ

Γ

� 	 ���
�
��

+�
��

�
��

= 4 2
3

1
2

7
2

Γ Γ

Γ

� 	 ���
�
��

�
��
�
��

=
64 2

15

(iii) Substitute y2 = a2t

or y = a t

dy =
a

t
dt

2

Given integral becomes,

a t a a t
a dt

t
� �

4 2 2

0

1

2
–� =

a
t t dt

6
3 2 1 2

0

1

2
1 –� 	�

=
a6

2

5

2

3

2
β ,�
��

�
��

=
a a6 6

2

5
2

3
2

5
2

3
2

32

Γ Γ

Γ

�
��
�
��
�
��
�
��

+�
��

�
��

=
.

π
·

(iv)
1

0

1
– x

x
dx� = x x dx– –1 2 1 2

0

1

1� 	�

= β π1

2

3

2

1
2

3
2

1
2

3
2

2
, .

�
��

�
�� =

�
��
�
�� ⋅ ���

�
��

+�
��

�
��

=
Γ Γ

Γ

(v) Substitute x2 = 4t

or x = 2 t
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then dx =
dt

t

Given integral reduces to,

4 4
3 2

0

1

– t
dt

t
� 	� = 8 11 2 3 2

0

1

t t dt– –� 	�
= 8

1

2

5

2
β ,
�
��

�
��

= 8

1
2

5
2

3

Γ Γ

Γ

�
��
�
��
�
��
�
��

� 	

=

8
3

2

1

2

1

2
2

π . . Γ���
�
��

= 3 π.

11. Evaluate each of the following integrals:

(i) sin d6

0

2

θ θ
π

� (ii) cos d4

0

θ θ
π

�

(iii) sin cos d4 5

0

2

θ θ θ
π

� (iv) sin cos d1 2 3 2

0

2

θ θ θ
π

�

(v) tan dθ θ
π

0

2

� .

Solution

From the relation

β p q+ +�
��

�
��

1

2

1

2
, = 2

0

2

sin cosp q dθ θ θ
π

�

∴ sin cosq q dθ θ θ
π

0

2

� =
1

2

1

2

1

2
β p q+ +�
��

�
��

,

(i) Taking p = 6

q = 0

we get sin6

0

2

θ θ
π

d� =
1

2

6 1

2

0 1

2
β + +�
��

�
��

,

=
1

2

7

2

1

2
β ,
�
��

�
��
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=
1

2

7
2

1
2

4

5

32

Γ Γ

Γ

�
��
�
��
�
��
�
��

=
.

.
� 	

π

(ii) cos4

0

θ θ
π

d� = 2 2
1

2

0 1

2

4 1

2
4

0

2

cos . ,θ θ β
π

d� =
+ +�

��
�
��

= β π1

2

5

2

1
2

5
2

3

3

8
, .

�
��

�
��

=

�
��
�
��
�
��
�
��

=
Γ Γ

Γ� 	
(iii) Here p = 4

q = 3 from the above relation

sin cos4 5

0

2

θ θ θ
π

d� =
1

2

4 1

2

5 1

2
β + +�
��

�
��

,

=
1

2

5

2
3β ,

�
��

�
��

=
1

2

5
2

3

11
2

8

315

Γ Γ

Γ

�
��
�
��

�
��
�
��

=
� 	

(iv) Here p =
1

2
, q = 

3

2

sin cos1 2 3 2

0

2

θ θ θ
π

d� =
1

2

1
2

1

2

3
2

1

2
β

+ +�

�

�
�
�

�

�

�
�
�

,

=
1

2

3

4

5

4
β ,
�
��

�
��

=
1

2

3

4

1

4
1

Γ Γ�
��
�
��
�
��
�
��

=
1

8
1

1

4

1

4
Γ Γ–
�
��

�
��
�
��
�
��

=
1

8
4

π
π

sin
where Γ Γn n

n
� 	 � 	1 − =

�
��

�
��

π
πsin

=
2

8

π
.
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(v) tan θ θ
π

d
0

2

� =
sin

cos
sin cos

θ
θ

θ θ θ θ
π π

d d
0

2

1 2 1 2

0

2

� �= −

=
1

2

1
2

1

2
2

1

2

1

2

3

4

1

4
β β

+ +�

�

�
�
�

�

�

�
�
�

= �
��

�
��

,

–1

,

=
1

2

3
4

1
4

1

Γ Γ

Γ

�
��
�
��
�
��
�
��

� 	

=
1

2
1

1

4

1

4
Γ Γ–
�
��

�
��
�
��
�
��

=
1

2
4

2
.
sin

.
π

π
π=

12. Evaluate: (i) 
x dx

1 x6
0

+

∞

�  (ii) 
y dy

1 y

2

4
0

+

∞

� ·

Solution

(i) Let x6 = t or x = t1/6

dx =
1

6
5 6t dt−

The given integral becomes,

t t dt

t

1

6

5

6

0

1
6
1

�
��
�
��

+

−

∞

� =
1

6 1

2

3

0

t

t
dt

−
∞

+�

=
1

6 1

1

3
1

2 3 1 3
0

t

t
dt

−

+

∞

+� � 	

=
1

6

1

3

2

3
β ,
�
��

�
��

Using the relation,   β m, n
x

x
dx

x

x
dx

m

m n

n

m n� 	
� 	 � 	

=
+

=
+

�

�
�
�

�

�
�
�+ +

∞∞

��
– –1 1

00 1 1
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=
1

6

1

3

2

3

1

Γ Γ

Γ

�
��
�
��
�
��
�
��

� 	

=
1

6

1

3
1

1

3
Γ Γ�
��
�
��
�
��

�
��. –

=
1

6
3

3 3
.
sin

.
π

π
π

�
��
�
��

=

(ii) Substituting y4 = t, or y = t1/4

then dy =
1

4

3
4t dt
−

so that,

y dy

y

2

4
0

1 +

∞

� =

t t dt

t

1

4

2 3

4

0

1
4

1

�
��
�
��
�
��
�
��

+

−

∞

�

=
1

4 1

1

4

0

t

t
dt

−
∞

+�

=
1

4
1

3

4
1

3

4

1

40

t

t

dt

−

+

∞

+
�
� 	

=
1

4

3

4

1

4
β ,
�
��

�
��

=
1

4

3
4

1
4

1

Γ Γ

Γ

�
��
�
��
�
��
�
��

� 	

=
1

4
1

1

4

1

4
Γ Γ–
�
��

�
��
�
��
�
��

=
1

4
4

π
π

sin

=
π

2 2
.
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13. Prove that 
d

sin
sin d

00

θ
θ

θ θ π
ππ

× =��
22

.

Solution

L.H.S. sin sin
−

× ��
1

2

1

2

0

2

0

2

θ θ θ θ
ππ

d d

=
1

2

1
2

1

2

0 1

2

1

2

1
2

1

2

0 1

2
β β

–
, ,

+ +
�

�

�
�
�

�

�

�
�
�

×
+ +

�

�

�
�
�

�

�

�
�
�

=
1

4

1

4

1

2

3

4

1

2
β β, ,
�
��

�
��

× �
��

�
��

=
1

4

1
4

1
2

3
4

3
4

1
2

5
4

Γ Γ

Γ

Γ Γ

Γ

�
��
�
��
�
��
�
��

�
��
�
��

�

�

�
�
�
�

�

�

�
�
�
�

�
��
�
��
�
��
�
��

�
��
�
��

�

�

�
�
�
�

�

�

�
�
�
�

=
1

4

1

2

1

4

1

4

1

4

2

Γ Γ

Γ

�
��
�
��

�
�
�

�
�
�
�
��
�
��

�
��
�
��

= π. since Γ 1

2
�
��
�
�� =

�
��

�
��π

14. Prove that 
e

x
dx x e dx

4 2

–x
2 –x

00

2
4

× =
∞∞

�� π
.

Solution

Substituting x2 = t or x = t  in the first integral,

we get dx =
dt

t2

I
1

=
e

t
t

dt
t–

. .
1 2

1

20

1

2

 �

∞

�

=
1

2

3

4

0

t e dtt
−∞

� –

=
1

2

1

4
1

0

t e dtt−
∞

� –

=
1

2

1

4
Γ���
�
��
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Taking x4 = u or x = u1/4 in the second integral, we obtain, dx = 
1

4

3
4u du
−

I
2

= x e dxx2

0

4–
∞

�

= x e u duu1 4 2
3

4

0

1

4

 � . .–

−∞

�

=
1

4

1

4

0

u e duu
−∞

� –

=
1

4

3

4
1

0

u e duu−
∞

� –

=
1

4

3

4
Γ���
�
��

∴ The given integral = I1 × I2

=
1

8

1

4

3

4
Γ Γ�
��
�
��
�
��
�
��

=
1

8

1

4
1

1

4
Γ Γ�
��
�
��
�
��

�
��–

=
1

8
4

4 2
.
sin

π
π

π= ·

15. Prove that 
x

1 – x
dx

dx

1 x 4 2

2

4 4
0

1

0

1

×
+

=�� π
.

Solution. In the first integral setting x2 = sin θ or x = sin θ  we get dx = 
cos

sin

θ
θ

θ
2

d  when

x = 1, θ = 
π
2

, when x = 0, θ = 0.

Therefore,

I
x

x
dx1

2

4
0

1

1
= �

–
=

sin

– sin
.

cos

sin

θ

θ

θ
θ

θ
π

1 22
0

2

d�

=
1

2
0

2
sin

cos
.

cos

sin

θ
θ

θ
θ

θ
π

d�

=
1

2
1 2

0

2

sin θ θ
π

d�



152 ENGINEERING MATHEMATICS—II

=
1

2

1

2

1
2

1

2

0 1

2
. ,β

+ +
�

�

�
�
�

�

�

�
�
�

=
1

4

3

4

1

2
β ,
�
��

�
��

In the second integral substitute x2 = tan θ or x = tan θ  then dx = 
sec

tan
.

2

2

θ θ
θ

d

when x = 0, θ = 0

when x = 1, θ = π/4

Hence, I
2

=
1

1 22

2

0

4

+�
tan

.
sec

tan
.

θ

θ
θ

θ
π

d

=
1

2
0

4
sec

tan

θ
θ

θ
π

d�

=
1

2
0

4
d θ
θ θ

π

sin cos⋅�

=
1

2 1

2
20

4
d θ

θ

π

�
��
�
��

�
sin

=
1

2 2
0

4
d θ

θ

π

sin�
where t = 2θ, dt = 2 · dθ, ⇒ dθ = 

1

2
 dt

θ = 0, t = 0, when θ = 
π
4

, t = 
π
2

=
1

2

1

2
0

2

⋅� dt

tsin

π

=
1

2 2

1

0

2

sin t
dt

π

�

=
1

2 2

1 2

0

2

sin t dt� 	−�
π
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=
1

2 2

1

2
2

1

2

0 1

2
.

–1

,β
+ +

�

�
�
�

�

�
�
�

=
1

4 2

1

4

1

2
β ,
�
��

�
��

∴ The given integral is

I
1
 × I

2
=

1

16 2

3

4

1

2

1

4

1

2
β β, ,
�
��

�
��

⋅ �
��

�
��

=
1

16 2

3
4

1
2

5
4

1
4

1
2

3
4

4 2

Γ Γ

Γ

Γ Γ

Γ

�
��
�
�� ⋅ ���

�
��

�
��
�
��

⋅

�
��
�
�� ⋅ ���

�
��

�
��
�
��

= ⋅π

16. Show that 1 1 2
1 1 1

1

+ = +� x x dx p q
p q p q� 	 � 	 � 	– – –

–1

– , .β

Solution

Substitute: 1 + x = 2t, dx = 2dt

when x = –1, t = 0, when x = 1, t = 1

Given Integral,

= 1 1
1 1

0

1

+� x x dx
p q� 	 � 	– –

– (where x = 2t − 1)

= 2 1 2 1 21 1

0

1

t t dt
p q� 	 � 	– –

– –�
= 2 11 1 1

0

1
p q p q

t t dt+ �– – –
–� 	

= 2p + q – 1 β ( p, q).

17. Show that x a b x dx b a m n
m n m n

a

b

– – – ,
– – –� 	 � 	 � 	 � 	1 1 1= +� β .

Solution

Substitute x – a = (b – a) t

so that dx = (b – a) dt

when x = a, t = 0 and

when x = b, t = 1

∴ x a b x dx
m n

a

b

– –
– –� 	 � 	1 1� = b a t b a b a t b a dt

m n
– – – – –

– –� 	 � 	 � 	1 1

0

1

�
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= b a t t dt
m n m n

– –
– – –� 	 � 	+ �1 1 1

0

1

1

= (b – a)m + n – 1 β (m, n).  Hence proved.

18. Prove that 
x x

x
dx m n

m n

m n

– –

,
1 1

0

1

1

+
+

=+� � 	
� 	β .

Solution

From the relation,

β (m, n) =
x

x
dx

m

m n

– 1

0 1 + +

∞

� � 	

=
x

x
dx

x

x
dx

m

m n

m

m n

– –1 1

10

1

1 1+
+

++ +

∞

�� � 	 � 	
...(1)

In the second integral on R.H.S. of (1)

Substitute x = 1/t so that dx = – dt/t2

when x = 1, t = 1, and

when x = ∞, t = 0

Hence,
x

x
dx

m

m n

– 1

1 1 + +

∞

� � 	
=

1

1
1

1

2
1

0
t

t

dt

t

m

m n

�
��
�
��

+���
�
��

�
��

�
��+�

–

–

= – . .
–

1

1
1 2

1

0

t

t

t

dt

tm

m n

m n

+

++� � 	

=
t

t
dt

n

m n

– 1

0

1

1 + +� � 	

=
x

x
dx

n

m n

– 1

0

1

1 + +� � 	
Therefore from (1), we get

β (m, n) =
x

x
dx

x

x
dx

m

m n

n

m n

– –1

0

1 1

0

1

1 1+
+

++ +� �� 	 � 	

=
x x

x
dx

m n

m n

– –1 1

0

1

1

+
+ +� � 	

  Hence proved.
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19. Prove that 
cos sin

a cos b sin
d

1

2a b
m, n

2m – 1 2n – 1

2 2 m n m n
0

2
θ θ

θ θ
θ β

π

+
=+�


 �
� 	.

Solution. Let I be the given integral,

then I =
cos sin

cos tan

– –2 1 2 1

2 2
0

2 m n

m n
a b

d
θ θ

θ θ
θ

π


 � 
 �
+

+
�

=
tan sec

tan

–2 1 2

2
0

2 n

m n

d

a b

θ θ θ

θ

π

+
+�


 �

Substituting tan θ = t, we get sec2 θ dθ = dt

when θ = 0, t = 0 and

when θ = π/2, t = ∞

Then I =
t

a bt
dt

n

m n

2 1

2
0

+

+

∞

+
�

 �

Now substitute bt2 = ay or t = 
a

b
y

so that dt =
a

b

dy

y2

Limits remain the same.

Hence, I =
a y b

a by

a dy

b y

n

m n

� �
� 	

2 1

0
2

−

+

∞

+� .

=
1

2 1

1

0
a b

y

y
dy

m m

n

m n

–

+ +

∞

� � 	

=
1

2a b
m nm m β ,� 	

where β (m, n) = 
y

y
dy

n

m n

– 1

0 1 + +

∞

� � 	
  Hence proved.
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��������� �	�

1. Evaluate

(1) 
Γ

Γ Γ
7

2 4 3

� 	
� 	 � 	

Ans.  30 (2) 
Γ Γ

Γ

3
3
2

9
2

� 	 ���
�
��

�
��
�
��

Ans.  
16

105
�
��

�
��

(3) Γ Γ Γ1

2

3

2

5

2
�
��
�
��
�
��
�
��
�
��
�
��

Ans.  
3π π

8

�
�
��

�
�
�� (4) 

Γ

Γ

7
3
4
3

�
��
�
��

�
��
�
��

Ans.  
4

3
�
��

�
��

(5) 
Γ Γ

Γ

3
5
2

11
2

� 	 ���
�
��

�
��
�
��

· Ans.  
16

315
�
��

�
��

2. Evaluate

(1) Γ –5

2
�
��
�
��

Ans.  
–8 π

15

�
�
��

�
�
�� (2) Γ –7

2
�
��
�
��

Ans.  
16 π
105

�
�
��

�
�
��

(3) Γ –9

2
�
��
�
��

Ans.  
–32 π

945

�
�
��

�
�
�� (4) Γ –1

3
�
��
�
��

· Ans.  – 3 Γ 2

3
�
��
�
��

�
��

�
��

3. Evaluate

(1) x e dxx5

0

–
∞

� Ans.  120 (2) x e dxx–

0

∞

� Ans.  
π

2

�
�
��

�
�
��

(3) x e dxx3 2

0

–
∞

� Ans.  
3

4

π�
�
��

�
�
�� (4) x e dxx3

0

–2
∞

� Ans.  
3

8
�
��

�
��

(5) x e dxx6

0

–2
∞

� Ans.  
45

8
�
��

�
�� (6) x e dxx5

0

2–
∞

� Ans.  
105

8

π�
�
��

�
�
��

(7) e dxx– 3

0

∞

� Ans.  
1

3
Γ 1

3
�
��
�
��

�
��

�
�� (8) log x dx� 	3

0

1

� Ans.  6–

(9) x x dxlog� 	4
0

1

� Ans.  
94

625
�
��

�
�� (10) log

1
3 2

0

1

x
dx�

��
�
��� Ans.  2– π

(11) 2
2

0

–3x dx
∞

� Ans.  
π

2 3 2log

�

�
�
�

�

�
�
� (12) x

x
dx2

3

0

1
1

log
�
��

�
��� . Ans.

2

27
�
��

�
��
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4. Show that 
e

t
dt

s

st–

=
∞

� π

0

, s > 0.

5. Prove that Γ (n) = log
–

1
1

0

1

x
dx

n�
��

�
��� , n > 0.

6. Prove that Γ (n) = a e x dxn ax n– – .1

0

∞

�

7. Prove that Γ (n) = 2 2 1

0

2

a x e dxn n ax– – .
∞

�
8. Prove that

(1) x ax dx
a

n
nn

n
– cos cos1

0

1

2
= �

��
�
��

∞

� Γ� 	 π

(2) x ax dx
a

n
nn

n
– sin sin1

0

1

2
= �

��
�
�� ⋅

∞

� Γ� 	 π

[Hint. choose a = 0, b = a, in solved example 8.]

9. Evaluate:

(1) β (4, 3) Ans.  
1

60
�
��

�
�� (2) β 3

2

5

2
,

�
��

�
��

Ans.  
6

π�
��

�
��

(3) β 7

2

1

2
,

�
��

�
��

Ans.  
16

5π�
��

�
�� (4) β 1

4

1

2
,

�
��

�
��

Ans.  
1
4

Γ���
�
��

�
�
�

�
�
�

�

�
�
�

�

�
�
�

2

2 π

(5) β 5

6

1

6
, .

�
��

�
�� Ans.  2π

10. Evaluate the following integrals:

(1) x x dx3 2 1 2

0

1

1 –� 	� Ans.  
16

π�
��

�
�� (2) 

x

x
dx

1
0

1

–� Ans.  
2

π�
��

�
��

(3) 
x

x
dx

2

0

2

2 –� Ans.  
15

64 2�
�
��

�
�
�� (4) u u du3 2 5 2

0

4

4 –� 	� Ans.  12π

(5) 
dx

x x3 2
0

3

–
� Ans.  π (6) 

dx

x1 3
0

1

–
� Ans.  

π Γ

Γ

1
3

5
6

�
��
�
��

�
��
�
��

�

�

�
�
�
�

�

�

�
�
�
�
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(7) x x dx3

0

1

1 –� �� Ans.  
1

21
�
��

�
��  (8) x a x dx

a
4 2 2

0

–� Ans.  
32

6πa�
�
��

�
�
��

(9) x x dx8 3 1 3

0

2

–
 �� Ans.  
16

9 3

π�
��

�
�� (10) 1 4

0

1

– x dx� Ans.  
π Γ

Γ

1
4

3
4

�
��
�
��

�
��
�
��

�

�

�
�
�
�

�

�

�
�
�
�

11. Evaluate each of the following integrals:

(1) sin5

0

2

θ θ
π

d� Ans.  
8

15
�
��

�
�� (2) cos7

0

2

θ θ
π

d� Ans.  
16

35
�
��

�
��

(3) sin cos3 4

0

2

θ θ θ
π

d� Ans.  
2

105
�
��

�
�� (4) sin cos1 2 7 2

0

2

θ θ θ
π

d� Ans.  
5 2

64

π�
�
�
�

�
�
�
�

(5) sin cos1 3 1 3

0

2

θ θ θ
π

−� d Ans.  
3

π�
��

�
�� (6) 

dθ
θ

π

cos
0

2

� Ans.  
1

2

Γ

Γ

1
4
3
4

�
��
�
��

�
��
�
��

�

�

�
�
�
�

�

�

�
�
�
�

(7) cot θ θ
π

d
0

2

� Ans.  
2

π�
��

�
�� (8) 

sin

cos

83

0

2
θ
θ

θ
π

d�  
Ans.  

60

13

5
6

1
4

Γ Γ�
��
�
��
�
��
�
��

�

�

�
�
�
�

�

�

�
�
�
�

π

(9) tanq dθ θ
π

0

2

� , 0 < p < 1. Ans.  
π π
2 2

sec
p�
��
�
��

�
��

�
��

12. Evaluate each of the following integrals:

(1) 
dx

x1 4
0

+

∞

� Ans.  
2π

4

�
�
��

�
�
�� (2) 

dx

x x1
0

+

∞

� � 	
Ans.  π

(3) 
x dx

x

2

4 3
0 1 +

∞

�

 �

· Ans.  
5 2

128

π�
�
�
�

�
�
�
�

13. Evaluate:

(1) 
dx

x x– –1 31

3

� 	 � 	� Ans.  π

(2) 7 34

0

7

– –x x� 	 � 	� dx Ans.  

2
1
4

3

2

Γ���
�
��

�
�
�

�
�
�

�

�

�
�
�

�

�

�
�
�π
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14. Show that

(1) x e dx x e dxx x– –2 42

00
16 2

× =
∞∞

�� π

(2) x e dx
e

x
dxx

x
–

–
2

2

00

× =
∞∞

�� π

(3) x e dx e dxx x2

0 0

4 4

8 2
– –

∞ ∞

� �× = π

(4) sin sin .p pd d
P

θ θ θ θ
π

× =
+

+
∞∞

�� 1

00
2 1� 	

15. Prove that 
x

x a
dx

a
m n

n

m n n

–

, .
1

0

1

+
=+

∞

� � 	
� 	β


������
�� �������� ������ ���	
���� ����� ���� �������

1. Evaluate x y dx dy3

0

1 y

0

1
2−

�� .

Solution. We have

I = x y dx dy
x

y

y

3

0

1

0

1
2

=

−

=
��

i.e., I = y
x

dy
x

y

y

4

0

1

0

1

4

2

�
�
�
�
�
�

=

−

=
�

=
1

4
1 2 2

0

1

y y dy
y

−
=
� 
 �

=
1

4
1 2 2 4

0

1

y y y dy
y

− +
=
� 
 �

=
1

4
2 3 5

0

1

y y y dy
y

− +
=
� 
 �

=
1

4 2

2

4 6

2 4 6

0

1
y y y

y

− +
�
�
�

�
�
�

=
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=
1

4

1

2

1

2

1

6
− +�

��
�
��

I =
1

24
·

2. Change the order of integration and hence evaluate dx dy
y

1

0

1

�� .

Solution

Let I = dx dy
x yy ==
��
1

0

1

On changing the order of integration,

x = y  ⇒ x2 = y

I = dy dx
y

x

x ==
��

00

1 2

= y dx x dx
xx

xx
0

2
3

0

1

0

1

0

1
2

3

1

3
= =

�
�
�
�
�
� =

==
��

I =
1

3
·

3. Change the order of integration and evaluate x y dx dy
0

4 y

0

3

+
−

�� � 	 .

Solution. Refer page no. 122. Example 5.

4. Change the order of integration and hence evaluate

xy dy dx
x

4a

2 ax

0

4a

2
�� .

Solution. We have

I = xy dy dx

y
x

a

ax

x

a

=
=
��

2

4

2

0

4

We have
x

a

2

4
= 2 ax or x4 = 64a3x

i.e., x (x3 – 64x3) = 0 ⇒ x = 0 and x = 4a

Y

x = 1

(1, 0)
X

(1, 1)(0, 1)

x =  y

(0, 0)

Fig. 3.1

y = 2  ax

(0, 4a)
(4a, 4a)

y = x /4a
2

(4a, 0)

x = 4a
(0, 0)

Y

X

Fig. 3.2
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From y = 
x

a

2

4
, we get y = 0 and y = 4a.

Thus the points of intersection of the parabola y = 
x

a

2

4
 and y = 2 ax  are (0, 0) and

(4a, 4a) on changing the order of integration we have y varying from 0 to 4a and x varying

from 
y

a

2

4
 to 2 ay .

Thus

I = xy dx dy

x
y

a

ay

y

a

=
=
��

2

4

2

0

4

= y
x

dy
x

y

a

ay

y

a

⋅
�
�
�
�
�
�

==
�

2

4

2

0

4

2 2

=
1

2
4

16

4

2
0

4

y ay
y

a
dy

y

a

−
�
�
�

�
�
�

=
�

=
1

2
4

16
2

5

2
0

4

ay
y

a
dy

y

a

−
�
��

�
��=

�

=
1

2

4

3

1

16 6

3

2

6

0

4
ay

a

y

y

a

− ⋅
�
�
�

�
�
�

=

=
1

2
4

64

3

1

96
4096

3

2
6a

a

a
a

�
��

�
��

−
�

�
�
�

�

�
�
�


 �

=
1

2

256

3

128

3

3 4a a−
�
�
�

�
�
�

=
64

3

4a

I =
64

3

4a
·

5. Find the value of xy x y dx dy+�� � 	  taken over the region enclosed by the curves y = x and

y = x2.

Solution. Refer page no. 118. Example 6.

6. Change the order of integration and hence evaluate x

x y
dy dx

2 2
x

2 x

0

1 2

+

−

�� .

Solution. Refer page no. 120. Example 2.



162 ENGINEERING MATHEMATICS—II

7. Change the order of integration and hence evaluate x y dx dy
x 1

4 y

y 0

3

+
=

−

=
�� � 	 .

Solution. Refer page no. 121. Example 4.

8. With usual notation show that β(m, n) = 
Γ Γ

Γ
m n

m n

� 	 � 	
� 	

⋅
+

·

Solution.  Refer page no. 133.

9. Show that 1 x 1 x dx
p 1 q 1

1

1

+ −− −

−
� � 	 � 	  = 2p + q – 1 β (p, q) .

Solution. Refer page no. 153. Example 16.

10. Using Beta and Gamma functions evaluate sin d
d

sin
00

θ θ
θ

θ

ππ

× ��
22

·

Solution. Refer page no. 150. Example 13.

��������� ��������

1. The area bounded by the curves y2 = x – 1 and y = x – 3 is

(a) 3 (b)
7

2

(c)
9

2
(d )

7

3
· Ans. c

2. The volume of the tetrahedron bounded by the coordinate planes and the plane

x

a

y

b

z

c
+ +  = 1 is

(a)
abc

2
(b)

abc

3

(c)
abc

6
(d )

24

abc
· Ans. c

3. For f x y dx dy
x

,� 	
∞∞

��
0

, the change or order is

(a) f x y dx dy
x

,� 	
0

∞∞

�� (b) f x y dx dy
y

,� 	
∞∞

��
0

(c) f x y dx dy
y

,� 	
00
��

∞

(d ) f x y dx dy
x

,� 	
00
��

∞

. Ans. c
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4. The value of the integral 
dx

x2
2

2

–
�  is

(a) 0 (b) 0.25

(c) 1 (d ) ∞. Ans. d

5. xy dx dy
x

x

2

2

0

1 −

��  is equal to

(a)
3

4
(b)

3

8

(c)
3

5
(d )

3

7
· Ans. b

6. x y dx dy
x

+�� � 	
00

2

= ..........

(a) 4 (b) 3

(c) 5 (d ) None of these. Ans. a

7. dx dy
x

0

1

0

1 −

��  represents.....

Ans. Area of the triangle having vertices (0,  0),  (0,  1),  (1,  0)

8. e dxx– 2

0

∞

�  = ......

(a)
π

2
(b)

π
2

(c)
π
4

(d ) None of these. Ans. a

9. β 1

2

1

2
,

�
��

�
��  = .....

(a) 3.1416 (b) 5.678

(c) 2 (d ) None of these. Ans. a

10. Γ 35.� 	  = ....

(a)
15

8
(b)

15

8
π

(c)
10

7
(d ) None of these. Ans. b
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11. The surface area of the sphere x2 + y2 + z2 + 2x – 4y + 8z – 2 = 0 is

(a) 59 π (b) 60 π

(c) 92 π (d ) None of these. Ans. c

12. xy z dz dy dx2

1

2

1

3

0

2

���  = .....

(a) 26 (b) 28

(c) 30 (d ) 50. Ans. a

13. dx dy
R
��  is

(a) Area of the region R in the Cartesian form

(b) Area of the region R in the Polar form

(c) Volume of a solid

(d ) None of these. Ans. a

14. Γ 1

2
�
��
�
��  is

(a) π (b)
π

2

(c) 2 (d ) None of these. Ans. a

15. Γ – 7

2
�
��
�
��  is

(a)
16

15
(b)

16

315

(c)
16

18
(d ) None of these. Ans. b

16. Γ (n + 1) is

(a) n (b) n + 1

(c) (n + 1) ! (d ) n !. Ans. d

17. β 7

2

1

2
,

–�
��

�
��  is

(a)
– 15

8

π
(b)

15

8

(c)
π
8

(d )
15

8

π
· Ans. a



INTEGRAL CALCULUS 165

18. x e dxx
3

2

0

–
∞

�  is

(a)
3

4
(b)

3

4

π

(c)
π

4
(d ) None of these. Ans. b

19. sin6

0

2

θ θ
π

d�  is

(a)
5

32

π
(b)

5

32

(c)
π
32

(d ) None of these. Ans. a

20. sin cos4 3

0

2

θ θ θ
π

d�  is

(a)
5

32

π
(b)

16

35

(c)
2

35
(d )

6

35
· Ans. c

���
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UNIT ��

Vector Integration and
Orthogonal Curvilinear Coordinates

4.1 INTRODUCTION

In the chapter we shall define line integrals, surface integrals and volume integrals which play very
important role in Physical and Engineering problems. We shall show that a line integral is a natural
generalization of a definite integral and surface integral is a generalization of a double integral.

Line integrals can be transformed into double integrals or into surface integrals and conversely.
Triple integrals can be transformed into surface integrals. The corresponding integral theorems of
Gauss, Green and Stokes are discussed.

The concept of Gradient, Divergence, Curl and Laplacian already discussed in the known
Cartesian system. These will be discussed in a general prospective in the topic orthogonal curvilinear
coordinates.

4.2 VECTOR INTEGRATION

4.2.1 Vector Line Integral

If F  is a force acting on a particle at a point P whose positive vector is r on a curve C then F dr
C

⋅�
represents physically the total work done in moving the particle along C.

Thus, total work done is F dr
C

⋅ =� 0

������� ��	� �
�����

1. If F  = (5xy – 6x2) i  + (2y – 4x) j. Evaluate F dr
C

⋅�  along the curve y = x3 in the x-y

plane from (1, 1) to (2, 8).

Solution. We have F = (5xy – 6x2) i  + (2y – 4x) j  and r  = xi + yj will give

dr = dxi + dyj
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∴ F dr⋅ = (5xy – 6x2) dx + (2y – 4x) dy

Since y = x3 we have dy = 3x2 dx and varies from 1 to 2

F dr
C

⋅� = (5x . x3 – 6x2) dx + (2 . x3 – 4x) . 3x2 dx

= 5 6 6 124 2 5 3

1

2

x x x x dx– –+� � �

= x x x x5 3 6 4

1

2
2 3 35− + − =

2. If F  = (3x2 + 6y) i – 14yz j  + 20 xz2 
�
k . Evaluate F dr

C

⋅�  from (0, 0, 0) to (1, 1, 1) along

the path  x = t, y = t2, z = t3.

Solution F = (3x2 + 6y) i – 14yz j  + 20xz2
�
k .

dr = dxi + dyj + dzk

∴ F dr⋅ = (3x2 + 6y) dx – 14yz dy + 20xz2dz
Since x = t, y = t2, z = t3

we obtain dx = dt, dy = 2t dt, dz = 3t2 dt

∴ F dr⋅ = (3t2 + 6t2) dt – (14t5) 2tdt + (20t7) 3t 2 dt

i.e., F dr⋅ = (9t2 – 28t 6 + 60t9) dt ; 0 ≤ t ≤ 1
∴ t varies from 0 to 1

F dr
C

⋅� = 9 28 602 6 9

0

1

t t t dt
t

– +
=
� � �

=
9

3

28

7

60

10

3 7 10

0

1
t t t− +

�
�
�

�
�
	

= 3 – 4 + 6
= 5.

3. Evaluate: F dr
C

⋅�  where F yz i zx j xyk= + +  and C is given by r t i t j t k 0 t 1= + + ≤ ≤2 3 ; .

Solution F = yz i zx j xyk+ +

r = ti t j t k+ +2 3

∴ dr = dti tdt j t dtk+ +2 3 2

∴ F dr⋅ = yz dt + zx × 2tdt + xy3t2.dt

where r  = ti t j t k+ +2 3 = xi y j zk+ +
∴ x = t,  y = t2,  z = t3
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∴ F dr⋅ = t5 dt + 2t5 dt + 3t5 dt

= (t5 + 2t5 + 3t5) dt

∴ F dr⋅ = 6t5 dt

∴ t varies from 0 to 1

F dr
C

⋅� = 6 5

0

1

t dt�
= 6

6

6

0

1
t�

�
�

�
�
	

= t 6

0

1
 = 1 – 0

= 1.

4. Evaluate F dr
C

⋅�  where F  = x i y j z k2 2 2+ +  and C is given by x = cos t, y = sin t,

z = t, 0 ≤ t ≤ π.

Solution F = x i y j z k2 2 2+ +
Here, x = cos t ⇒ dx = – sin t dt

y = sin t ⇒ dy = cos t dt
z = t ⇒ dz = dt

dr = dxi dy j dzk+ + , 0 ≤ t ≤ π

F dr
C

⋅� = x dx y dy z dz
t

2 2 2

0

+ +
=
� � �
π

= – cos sin sin cos2 2 2

0

t t dt t t dt t dt+ +� 
 �
π

=
cos sin3 3 3

0
3 3 3

t t t+ +
�
�
�

�
�
	

π

= − − + + = −1

3

1

3
0

3

2

3

2 2π π

5. If  F x i xy j= +2 . Evaluate F dr
C

⋅�  from (0, 0) to (1, 1) along (i) the line y = x (ii) the

parabola y = x.

Solution F = x i xy j2 +

dr = dxi dy j+

F dr⋅ = x2dx + xy dy
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(i) Along y = x; we have 0 ≤ x ≤ 1 and dy = dx.

∴ F dr
C

⋅� = x x dx
x

2 2

0

1

+
=
� � �

= 2
2

3

2

3
2

0

1 3

0

1

x dx
x

x=
� =

�
�
�

�
�
	 =

(ii) Along y = x , y2 = x ⇒ 2y dy = dx,  0 ≤ y ≤ 1

F dr
C

⋅� = 2 5 3

0

1

y y dy
y

+
=
� � �

=
y y6 4

0

1

3 4
+

�
�
�

�
�
	

=
1

3

1

4

7

12
+ = ·

6. Use the line integral, compute work done by a force F  = 2y 3 i xz j yz x k+ + + −�  �   when

it moves a particle from the point (0, 0, 0) to the point (2, 1, 1) along the curve x = 2t2, y = t,
z = t3.

Solution Work done = F dr
C

⋅�
where, F = 2 3y i xz j yz x k+ + + −�  � 

Here, x = 2t2 ⇒ dx = 4t dt
y = t ⇒ dy = dt
z = t3 ⇒ dz = 3t2 dt

t varies from 0 to 1   (� y = t)

dr = dx i dy j dzk+ +

= 4 3 2tdt i dt j t dt k+ +

F dr
C

⋅� = 2 3 4 2 2 35 4 2 2

0

1

t t dt t dt t t t dt
t

+ + + −
=
� �  � �� �

= 12 8 6 2 32 4 5 6

0

1

t t t t t dt+ + +� –� �

= 6
8

3

6

5

1

3

3

7
2 3 5 6 7

0

1

t t t t t+ − + +�
��

�
�	

=
288

35
.
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7. Find the work done in moving a particle once around an ellipse C in the xy-plane, if the
ellipse has centre at the origin with semi-major axis 4 and semi-minor axis 3 and if the force field
is given by

F = 3x 4y 2z i 4x 2y 3z j 2xz 4y z k2 2 3− + + + − + − +�  � � � � .

Solution. Here path of integration C is the ellipse whose equation is x y2

2

2

24 3
1+ =  and its

parametric equations are x = 4 cos t, y = 3 sin t. Also t varies from 0 to 2π since C is a curve in
the xy-plane, we have z = 0

∴ F = 3 4 4 2x y i x y j− + +�  � 

and dr = dxi + dyj

F dr⋅ = 3 4 4 2x y i x y j dxi dyj− + + ⋅ +�  � 
F dr⋅ = (3x – 4y) dx + (4x + 2y) dy

x = 4 cos t ⇒  dx = – 4 sin t dt

y = 3 sin t ⇒  dy = 3 cos t dt
∴ t varies from 0 to 2π

F dr
C

⋅� = 12 12 4 16 6 3
0

2

cos – sin – sin cos sin cost t t dt t t t dt� �  � � �+ + ⋅�
π

= 48 30
0

2

−� sin cost t dt� 
π

� sin cos
sin

t t
t=�

��
�
��

2

2

= 48 15 2
0

2

−� sin t dt� 
π

= 48
15

2
2

0

2

t t+�
��

�
�	

cos
π

= 96 π.

8. If F xyi – z j x k2= + .  Evaluate F dr
C

×�  where C is the curve x = t2, y = 2t, z = t3 from

t = 0 to 1.

Solution F = xyi z j x k– + 2  and

dr = dxi dy j dzk+ +

Hence F dr× =

i j k

xy z x

dx dy dz

– 2



VECTOR INTEGRATION AND ORTHOGONAL CURVILINEAR COORDINATES 171

F dr⋅ = – (zdz + x2dy) i  – (xy dz – x2dx) j  + (xydy + zdx) k
where x = t2 ⇒ dx = 2tdt

y = 2t ⇒ dy = 2dt

z = t3 ⇒ dz = 3t2dt

t varies from 0 to 1

= – –3 2 4 4 25 4 5 3 4t t i t j t t k dt+ + +� � � �� �

∴ F dr
C

⋅� = − + + +�� �i t t dt j t dt k t t dt3 2 4 4 25 4 5

0

1

0

1
3 4

0

1

� � � �–

= – –i
t t

j
t

k
t t3

6
2
5

4
6

4
4

2
5

6 5

0

1 6

0

1 4 5

0

1

+
�
�
�

�
�
	

�
�
�
�
�
	 + +

�
�
�

�
�
	

=
–

– .
9

10

2

3

7

5
i j k+

9. If φ = 2xyz2, F xyi z j x k= − + 2  and C is the curve: x = t2, y = 2t, z = t3 from t = 0 to

t = 1 evaluate the following line integrals. (i) φ ⋅� dr
C

 (ii) F dr
C

×� .

Solution dr = dxi dy j dzk+ +
x = t2 ⇒ dx = 2tdt
y = 2t ⇒ dy = 2dt
z = t3 ⇒ dz = 3t2dt

∴ dr = 2 2 3 2ti j t k dt+ +�� ��
φ = 2xyz2

φ = 2.t2.2t.t6 = 4t9

∴ φ ⋅ dr = (8t10 i + 8t9 j + 12t11 k) dt

(i) φ ⋅� d r
C

= 8 8 1210 9 11

0

1

t i t j t k dt
t

+ +
=
� � �

=
8

11

8

10

12

12

11

0

1 10

0

1 12

0

1
t

i
t

j
t

k
�
�
�

�
�
	 +

�
�
�

�
�
	 +

�
�
�

�
�
	

Thus, φ ⋅� dr
C

=
8

11

4

5
i j k+ +

(ii) F = 2 3 3 4t i t j t k− +

F dr× =

i j k

t t t

t t

2
2 2 3

3 3 4

2

–
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= – (3t5 + 2t4) i  – (6t5 –2t5) j  + (4t3 + 2t4) k

= – (3t5 + 2t4) i  – 4t5 j  + (4t3 + 2t4) k

F dr
C

×� = 3 2 4 4 25 4 5 3 4

0

1

t t i t j t t k dt+ + +� � � � �� �–

= –
t t

i
t

j t
t

k
6 5

0

1 6

0

1

4
5

0

1

2

2

5
4

6

2

5
+

�
�
�

�
�
	 −

�
�
�
�
�
	 + +

�
�
�

�
�
	

F dr
C

×� = − +9

10

2

3

7

5
i j k– .

�
������� ���

1. If F  = 3 5 10xyi z j xk– + . Evaluate F dr
C

⋅�  along the curve C given by x = t2 + 1,

y = 2t2, z = t3 from  t = 1 to t = 2. Ans. 303

2. Evaluate F dr
C

⋅�  where F  = 2 3x y i y x j yz k+ + − +�  �   and C is the curve x = 2t2,

y = t, z = t3 from t = 0 to t = 2. Ans.
227

42
�
��

�
�	

3. Evaluate F dr
C

⋅�  where F  = yzi zx j xyk+ +  and C is the portion of the curve

r = a ti b t j ctkcos sin+ +  from t = 0 to t = 
π
2

. Ans. 0

4. Evaluate F dr
C

⋅�  where F  = x i y j z k2 2 2+ +  and C is the arc of the curve r = ti + t2

j + t3 k from t = 0 to t = 1. Ans.1

5. Find the total work done in moving a particle once round a circle C in the xy-plane if the
curve has centre at the origin and radius 3 and the force field is given by

 F  = (2x – y + z) i  + (x + y – z2) j  + (3x – 2y + 4z) k . Ans. 8π

6. If F  = 2yi z j xk− +  and C is the circle x = cos t, y = sin t, z = 2 cos t from t = 0 to

t = 
π
2

 evaluate F d k
C

×� . Ans. 2
4

1

2
– –

π π�
��

�
�� + ���

�
��

�
��

�
�	

i j
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4.3 INTEGRAL THEOREM

4.3.1 Green’s Theorem in a Plane

This theorem gives the relation between the plane, surface and the line integrals.

Statement. If R is a closed region in the xy-plane bounded by a simple closed curve C and
M (x, y) and N (x, y) are continuous functions having the partial derivatives in R then

Mdx Ndy
C

+� =
∂
∂

−
∂
∂

�
��

�
���� N

x

M

y
dx dy

R

.

4.3.2 Surface integral and Volume integral

Surface Integral

An integral evaluated over a surface is called a
surface integral. Consider a surface S and a point P on
it. Let A

→
 be a vector function of x, y, z defined and

continuous over S.

In n^ is the unit outward normal to the surface S
and P then the integral of the normal component of A

→

at P (i.e., A
→

 · n^) over the surface S is called the surface
integral written as

A n ds
S

⋅�� �

where ds is the small element area. To evaluate integral
we have to find the double integral over the orthogonal
projection of the surface on one of the coordinate planes.

Suppose R is the orthogonal projection of S on the XOY plane and n^ is the unit outward normal
to S then it should be noted that n^ · k^ ds (k^ being the unit vector along z-axis) is the projection of
the vectorial area element n^ ds on the XOY plane and this projection is equal to dx dy which being
the area element in the XOY plane. That is to say that n^ · k^ ds = dx dy. Similarly, we can argue
to state that n^ · j^ ds = dz dx and n^ · i^ ds = dy dz. All these three results hold good if we write
n^ ds = dy dz i + dz dx j + dx dy k.

Sometimes we also write

d s n ds dy dz i= = ∑�

Volume Integral

If V is the volume bounded by a surface and if F (x, y, z) is a single valued function defined

over V then the volume integral of F (x, y, z) over V is given by F dv
V
��� . If the volume is divided

into sub-elements having sides dx, dy, dz then the volume integral is given by the triple integral

F x y z dx dy dz, ,� ���  which can be evaluated by choosing appropriate limits for x, y, z.

O

X

Y

Z

k
^

n^

dss

R

dx dy

Fig. 4.1
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4.3.3 Stoke’s Theorem

Statement. If S is a surface bounded by a simple closed curve C and if F  is any continuously
differentiable vector function then

F dr F n ds F n ds
C SS

⋅ = ⋅ = ∇ ×�� �� ⋅� ���� Curl � �

4.3.4 Gauss Divergence Theorem

Statement. If V is the volume bounded by a surface S and F  is a continuously differentiable
vector function then

div F dV F n dS
SV

� ���� = ⋅ �

where n^ is the positive unit vector outward drawn normal to S.

������� ��	� �
�����

1. Verify Green’s theorem in the plane for 3x 8y dx 4y 6xy dy2 2

C

− + −� � � �   where C is the

boundary for the region enclosed by the parabola y2 = x and x2 = y.

Solution. We shall find the points of intersection of the parabolas
y2 = x and x2 = y

i.e., y = x  and y = x2

Equating both, we get

x = x2 ⇒ x = x4

or x – x4 = 0
x (1 – x3) = 0

∴ x = 0, 1
and hence y = 0, 1 the points of intersection are (0, 0) and (1, 1).

Let M = 3x2 – 8y2, N = 4y – 6xy

∂
∂
M

y
= – 16y

∂
∂

=N

x
y– 6

By Green’s theorem,

Mdx Ndy
C

+� =
∂
∂

−
∂
∂

�
��

�
���� N

x

M

y
dx dy

R

L.H.S = Mdx Ndy
C

+�
= M dx N dy M dx N dy I I

AOOA

+ + + = +�� �  �  1 2

Y

y = x  
2

x 

y = x  
2

(1,0)(0,0)

(0,1)

O

A(1,1)

Fig. 4.2
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Along OA: y = x2  dy = 2xdx,
x varies from 0 to 1

I1 = 3 8 4 6 22 4 2 3

0

1

x x dx x x x dx
x

– –� � � �+
=
�

= 3 8 202 3 4

0

1

x x x dx
x

+ −
=
� � �

= x x x3 4 5

0

1
2 4 1+ =– –

Along AO: y2 = x ⇒ dx = 2y dy,
y varies from 1 to 0

I2 = 3 8 2 4 64 2 3

1

0

y y y dy y y dy
y

–� � � �+ −
=
�

= 4 22 63 5

1

0

y y y dy– +� � �

= 2
11

2

5

2
2 4 6

1

0

y y y– +�
��

�
�	

=

Hence, L.H.S. = I1 + I2 = – 1 + 
5

2

3

2
=

Also R.H.S. =
∂
∂

−
∂
∂

�
��

�
���� N

x

M

y
dx dy

R

= – 6 16
20

1

y y dy dx
y x

x

x

+
==
�� � 

= 10
20

1

y dy dx
y x

x

x ==
��

=
10

2

2

0

1

2

y
dx

y x

x

x

�
�
�

�
�
	

==
�

= 5 4

0

1

x x dx
x

−
=
� � �

= 5
2 5

2 5

0

1
x x

x

−
�
�
�

�
�
	

=

= 5
1

2

1

5

3

2
−�

��
�
�	

=

∴ L.H.S. = R.H.S. = 
3

2
.   Hence verified.
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2. Verify Green’s theorem in the plane for xy y dx x dy2 2

C

+ +� � �� �  where C is the closed curve

of the region bounded by y = x and y = x2.

Solution. We shall find the points of intersection of
y = x and y = x2.

Equating the R.H.S.
∴ x = x2 ⇒ x – x2 = 0

x (1 – x) = 0
x = 0, 1

∴ y = 0, 1 and hence (0, 0), (1, 1) are the points
of intersection.

We have Green’s theorem in a plane,

M dx N dy
C

+� =
∂
∂

− ∂
∂

�
��

�
���� N

x

M

y
dx dy

R

The line integral,

xy y dx x dy
C

+ +� 2 2� � = xy y dx x dy xy y dx x dy
OA AO

+ + + + +� �2 2 2 2� �� � � �� �

= I1 + I2

Along OA, we have y = x2, ∴ dy = 2x dx and x varies from 0 to 1.

I1 = x x x dx x x dx
x

⋅ + + ⋅
=
� 2 4 2

0

1

2� �

= 3 3 4

0

1

x x dx
x

+
=
� � �

=
3

4 5

3

4

1

5

19

20

4 5

0

1
x x+
�
�
�

�
�
	 = + =

Along AO, we have y = x ∴ dy = dx
x varies from 1 to 0

I2 = x x x dx x dx⋅ + +� 2 2

1

0

� �

= 3 12 3

1

0

1

0

x dx x= =� –

Hence, L.H.S. = I1 + I2 =
19

20
1

1

20
–

–=

Also R.H.S. =
∂
∂

−
∂
∂

�
��

�
���� N

x

M

y
dx dy

R

y

A 

o 
x 

(1, 0)(0, 0)

(0, 1)

y =
 x 

 

y = x  
2

(1, 1)

Fig. 4.3
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where N = x2 M = xy + y2

∂
∂
N

x
= 2x

∂
∂
M

y = x + 2y

R is the region bounded by y = x2 and y = x

∂
∂

− ∂
∂

�
��

�
���� N

x

M

y
dx dy

R

= 2 2
20

1

x x y dy dx
y x

x

x

– –� 
==
��

= x y dy dx
y x

x

x

−
==
�� 2

20

1

� 

= xy y dx
y x

x

x

−
=

=
� 2

0

1

2

= x x x x dx
x

2 2 3 4

0

1

− −
=
� � � � �–

= x x dx
x

4 3

0

1

−
=
� � �

=
x x5 4

0

1

5 4

1

5

1

4

1

20
−

�
�
�

�
�
	 = − = –

∴ L.H.S. = R.H.S. = 
–

.
1

20
  Hence verified.

3. Apply Green’s theorem in the plane to evaluate 2x y dx x y dy2 2 2 2

C

− + +� � � � �  where C is

the curve enclosed by the x-axis and the semicircle x2 + y2 = 1.

Solution. The region of integration is bounded by AB
and the semicircle as shown in the figure.

By Green’s theorem,

Mdx Ndy
C

+� =
∂
∂

− ∂
∂

�
��

�
���� N

x

M

y
dx dy

R

 ...(1)

Given 2 2 2 2 2x y dx x y dy
C

− + +� � � � �

where M = 2x2 – y2, N = x2 + y2

∂
∂
M

y
= – 2y

∂
∂
N

x
= 2x

Fig. 4.4
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From the equation (1),

2 2 2 2 2x y dx x y dy
C

–� � � �+ +�  = 
2 2x y dx dy

R

+�� � 

In the region, x varies from – 1 to 1 and y varies from 0 to 1 2− x

= 2
0

1

1

1
2

x y dy dx
y

x

x

+
==
�� � 
–

–

= 2
2

2

0

1

1

1
2

xy
y

dx
y

x

x

+
�
�
�

�
�
	

=

−

=
�

–

= 2 1
1

2
12 2

1

1

x x x dx
x

− + −�
��

�
�	=

� � �
–

Since, x x1 2−  is odd and (1 – x2) is even function

= 0 2 1 2

0

1

+ −� x dx� �

= 2
3

3

0

1

x
x−

�
�
�

�
�
	

=
4

3
.

4. Evaluate xy x dx x y dy2 2

C

− +� � �  where C is the closed curve formed by y = 0, x = 1 and

y = x (i) directly as a line integral (ii) by employing Green’s theorem.

Solution

(i) Let M  = xy – x2, N = x2y

Fig. 4.5

Mdx Ndy
C

+�  = Mdx Ndy Mdx Ndy Mdx Ndy
OA AB BO

+ + + + +� � ��  �  � 
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(a) Along OA: y = 0 ⇒ dy = 0 and x varies from 0 to 1.

(b) Along AB: x = 1 ⇒ dx = 0 and y varies from 0 to 1.

(c) Along BO: y = x ⇒ dy = dx and x varies from 1 to 0.

∴ M dx N dy
C

+� �  = – x dx y dy x dx
xyx

2 3

1

0

0

1

0

1

+ +
===
���

= –
x y x3

0

1 2

0

1 4

1

0

3 2 4

�
�
�
�
�
	 +
�
�
�
�
�
	 +
�
�
�
�
�
	

= – –
1

3

1

2

1

4

1

12
+ = −

Thus xy x dx x ydy
C

− + =� 2 2 1

12
� � –

(ii) We have Green’s theorem,

Mdx Ndy
C

+� �  =
∂
∂

− ∂
∂

�
��

�
���� N

x

M

y
dx dy

R

R.H.S. = 2xy x dx dy
R

−�� � 

= 2
00

1

xy x dy dx
y

x

x

–� 
==
��  (from the figure)

= xy xy
y

x

x

2

0
0

1

–
=

=
�

= x x dx
x

3 2

0

1

–
=
�

=
x x4 3

0

1

4 3
−

�
�
�

�
�
	

=
1

4

1

3

1

12
− = –

∴ R.H.S. =
–

.
1

12

5. Verify Stoke’s theorem for the vector F  = (x2 + y2) i – 2xyj taken round the rectangle
bounded by x = 0, x = a, y = 0, y = b.

Solution

By Stoke’s theorem : F dr
C

⋅�  = ∇ ×�� �� ⋅�� F n dS
S
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F = (x2 + y2) i – 2xyj

dr = dxi + dyj

F dr⋅ = (x2 + y2) dx – 2xy dy

(1) Along OP: y = 0, dy = 0, x varies from 0 to a

F dr
OP

⋅� = x dx
a

a
2

3

0
3

=�
(2) Along PQ: x = a, dx = 0 ; y varies from 0 to b

F dr
PQ

⋅� = 2 2

0

ay dy ab
b

=�
(3) Along QR: y = b, dy = 0; x varies from a to 0

F dr
QR

⋅� = x b dx
x

b x ab
a

aa

2 2
3

2

0

2
30

3 3
− =

�
�
�

�
�
	 = −� � � –

(4) Along RO: x = 0, dx = 0 ; x varies from b to 0

F dr
RO

⋅� = 0 0 0–�  dy =�
L.H.S. = F dr

C

⋅� =
a

ab ab
a3

2 2
3

3 3
0+ + − +

= 2ab2

Now, curl F =

i j k

x y z
x y xy

y k
∂
∂

∂
∂

∂
∂

−

=

2 2 2 0

4

For the surface, S n⋅ = k

∴ curl F n⋅ � = 4y

R.H.S. = curl F n dS
S

⋅�� � = 4
00

y dy dx
ba

��
= 4

2

2

00

y
dx

ba �
�
�
�
�
	�

= 2 2

0

b dx
a

�
= 2ab2

L.H.S. = R.H.S.
Hence, the Stoke’s theorem is verified.

R

Y

x = 0

o y = 0 p
X

x = a

Q  
y = b

Fig. 4.6
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6. Verify Stoke’s theorem for the vector field F  = 2x – y i yz j y zk2 2�  − −  over the upper half

surface of x2 + y2 + z2 = 1 bounded by its projection on the xy-plane.

Solution F dr
C

⋅� = curl F n dS
S

⋅�� � (Stoke’s theorem)

C is the circle: x2 + y2 = 1, z = 0 (xy-plane)
i.e., x = cos t, y = sin t, z = 0

r = xi y j+  where 0 ≤ θ ≤ 2π

dr = dxi dy j+

where, F = 2 2 2x y i yz j y zk–�  − −

∴ F dr⋅ = (2x – y) dx (� z = 0)

L.H.S. = F dr
C

⋅� = 2x y dx
C

−� � 

= 2
0

2

cos – sin – sint t t dt�  � 
π

�
= sin – cos sin2

0

2

2t t t dt� �
π

�
= sin – sin2

0

2

2t t dt� �
π

�
=

1

2
1 2 2

0

2

– cos – sint t dt� ���
����

π

=
t t t

2

2

4

2

2 0

2

− +�
��

�
�	

sin cos
π

=
1

2

1

2
0–

�
��

�
�� + − =π π� 

Hence, F dr⋅ = π ...(1)

Also, curl F = ∇ × F  = 

i j k

x y z
x y yz y z

∂
∂

∂
∂

∂
∂

−2 2 2– –

= i yz yz j k– –2 2 0 0 1+ + +�  �  � 
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= k

∴ dS = �ndS

= dydz i + dzdx j + dxdy k

Hence, R.H.S. = curl F ndS dx dy
S

⋅ =�� ���

= π ...(2)

� dx dy��  represents the area of the circle x2 + y2 = 1 which is π.

Thus, from (1) and (2) we conclude that the theorem is verified.

7. If F  = 3yi xz j yz k2− +  and S is the surface of the paraboloid 2z = x2 + y2 bounded by

z = 2, show by using Stoke’s theorem that curl F n ds 20
S

⋅ =�� � .π

Solution. If z = 0 then the given surface becomes x2 + y2 = 4.

   Hence, C is the circle x2 + y2 = 4 in the plane z = 2

i.e., x = 2 cos t, y = 2 sin t, 0 ≤ t ≤ 2π
Hence by Stoke’s theorem, we have

F dr
C

⋅� = curl F n dS
S

⋅�� �

L.H.S. put F = 3 2yi xz j yz k dr dxi dy j dzk− + = + +,

∴ F dr
C

⋅� = 3 2y dx xz dy yz dz
C

– +� � �

where z = 2, dz = 0

∴ F dr
C

⋅� = 3 2y dx x dy
C

–� �
x = 2 cos t ⇒ dx = – 2 sin t dt

y = 2 sin t ⇒ dy = 2 cos t dt

∴ F dr
C

⋅� = 6 4 2
2

0

sin –2 sin – cos cost t dt t t dt�  � 
π
�

Since, the surface S lies below the curve C

= − +� 12 82 2

2

0

sin cost t dt� �
π

= 12 82 2

0

2

sin cost t dt+� � �
π
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= 48 322 2

0

2

0

2

sin cost dt t dt+ ��
ππ

= 48
4

32
4

20⋅ + ⋅ =π π π

∴ = curl F n dS
S

⋅ =�� � 20 π

Hence proved.

8. Using divergence theorem, evaluate F ndS
S

⋅�� � where F  = 4xzi y j yzk2− +  and S is the

surface of the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.

Solution. We have divergence theorem:

div F dV
V
��� = F n dS

S

⋅�� �

Now div F = ∇ ⋅ F

= i
x

j
y

k
z

xzi y j yzk
∂
∂

+ ∂
∂

+ ∂
∂

�
��

�
�� +4 2–� �

=
∂
∂

+ ∂
∂

+ ∂
∂x

xz
y

y
z

yz4 2�  � � � –

= 4z – 2y + y
= 4z – y

Hence, by divergence theorem, we have

F n dS
S

⋅�� � = div F dV
V

⋅���
= 4

0

1

0

1

0

1

z y dz dy dx
zyx

–� 
===
���

= 2 2

0

1

0

1

0

1

z yz dy dx
z

yx

–
=

==
��

= 2
0

1

0

1

−
==
�� y dy dx

yx

� 

= 2
2

2

0

1

0

1

y
y

dx
x

−
�
�
�

�
�
	

=
�
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= 2
1

2
0

1

−�
��

�
�	=

� dx
x

=
3

2
0

1

dx
x =
�

=
3

2

3

20

1
x = ·

9. Using divergence theorem, evaluate F n dS
S

⋅�� � where F x i y j z k2= + +2 2 and S is the

surface of the solid cut off by the plane x + y + z = a from the first octant.

Solution. Now div F = ∇ ⋅ = ∂
∂

+ ∂
∂

+ ∂
∂

F
x

x
y

y
z

z2 2 2� � � � � �
= 2x + 2y + 2z
= 2 (x + y + z)

Hence, by divergence theorem, we have

F ndS
S

⋅�� � = div F dV
V

⋅���
= 2 x y z dV

V

+ +��� � 

= 2
000

x y z dz dy dx
z

a x y

y

a x

x

a

+ +
=

− −

=

−

=
��� � 

= 2
1

2
2

000

x y z z dy dx
z

a x y

y

a x

x

a

+ +�
��

�
�	 =

− −

=

−

=
�� � 

= 2
1

2
2 2

00

a x y dy dx
y

a x

x

a

− +
=

−

=
�� � 

= a y
x y

dx
x

a

y

a x

2
3

0 0
3

−
+�

�
�
�

�

�
	
	= =

−

� � 

=
1

3
2 33 2 3

0

a a x x dx
x

a

− +
=
� � �

=
1

3
2 3

2 4
3 2

2 4

0

a x a
x x

a

– +
�
�
�

�
�
	

F n dS
S

� ⋅�� =
1

4
4a .
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10. Using divergence theorem, evaluate F n dS
S

⋅�� �  where F  = x3i + y3j + z3k and S is the

surface of the sphere x2 + y2 + z2 = a2.

Solution. div F =
∂
∂

+ ∂
∂

+ ∂
∂x

x
y

y
z

z3 3 3� � � � � �
= 3x2 + 3y2 + 3z2

= 3 (x2 + y2 + z2)
∴by divergence theorem, we get

F n d S
S

⋅�� � = div F dV
V
���

= 3 2 2 2x y z dx dy dz
V

+ +��� � � ...(1)

Since, V is the volume of the sphere we transform the above triple integral into spherical polar
coordinates (r, θ, φ).

For the spherical polar coordinates (r, θ, φ), we have

x2 + y2 + z2 = r2 and dx dy dz = dV

∴ dV = r2 sin θ dr dθ d φ
Also, 0 ≤ r ≤ a, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π
Therefore (1) reduces to,

F n dS
S

⋅�� � = 3 2 2

0

2

00

r r dr d d
r

a

� � sinθ θ φ
φ

π

θ

π

===
���

= 3 4

0

2

00

r dr d d
r

a

× ×
===
��� sinθ θ φ

φ

π

θ

π

= 3
5

5

0
0 0

2×
�
�
�
�
�
	 × ×

=
= =

r

r

a

– cosθ φθ
π

φ
π

=
3

5
1 2

5a × + ×– cosπ π� 

=
12

5
5πa ·

11. Evaluate yzi zxj xyk n dS
S

+ + ⋅�� �  � where S is the surface of the sphere x2 + y2 + z2 = a2

in the first octant.

Solution. The given surface is x2 + y2 + z2 = a2, we know that ∇φ is a vector normal to the
surface φ (x, y, z) = c.

Taking φ (x, y, z) = x2 + y2 + z2
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=
3

2
2 2

0

x a x dx
a

−� � �

=
3

2 2 4

2 2 4

0

a x x
a

−
�
�
�

�
�
	

=
3

2 2 4

4 4a a−
�
�
�

�
�
	

=
3

8

4a

Thus  yzi zxj xyk ndS
S

+ + ⋅�� �  � =
3

8

4a
.

12. Evaluate axi byj czk n d S
S

+ + ⋅�� �  � where S is the surface of the sphere x2 + y2 + z2 = 1.

Solution. Let F = axi + byj + czk

we have F n dS
S

⋅�� � = div F dV
V

⋅���
div F⋅  = ∇ ⋅ F = i

x
j

y
k

z
axi byj czk

∂
∂

+ ∂
∂

+ ∂
∂

�
��

�
�� + +� 

=
∂

∂
+ ∂

∂
+ ∂

∂x
ax

y
by

z
cz�  �  � 

= (a + b + c)

∴ F n dS
S

⋅�� � = a b c dV
V

+ +��� � 

= (a + b + c) V ...(1)

where V is the volume of the sphere with unit radius and V = 
4

3
πr3 for a sphere of radius r.

Here, since we have r = 1, V =
4

3
π

Thus, F n dS
S

⋅�� � =
4

3

π
a b c+ +� .
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�
������� ���

1. If F  = axi + byj + czk and S is the surface of the sphere x2 + y2 + z2 = 1 by using

divergence theorem. Evaluate F n dS
S

⋅�� � .
Ans.

4

3
π�

��
�
�	

2. Evaluate F n dS
S

⋅�� �  where F xyi yz j xzk= + −4  and S is the surface of the cube bounded

by the planes x = 0, x = 2, y = 0, y = 2, z = 0, z = 2. Ans. 32

3. If F  = y2z2i + z2x2j + x2y2k, evaluate F n dS
S

⋅�� �  where S is the part of the sphere

x2 + y2 + z2 = 1 above the xy-plane and bounded by this plane.
Ans.

π
12

�
��

�
�	

4. Use Gauss divergence theorem to evaluate F n dS
S

⋅�� �  where F  = (x2 – z2) i + 2xyj

+ ( y2 + z2) k where S is the surface of the cube bounded by x = 0, x = 1, y = 0, y = 1,

z = 0, z = 1. Ans. 3

5. Verify Green’s theorem in plane for 3 8 4 62 2x y dx y xy dy
C

– – ,� � � +�  where C is the bound-

ary of the triangle formed by the lines x = 0, y = 0 and x + y = 1.
Ans.

5

3
�
��

�
�	

6. Verify Green’s Theorem in the plane for x y dx xy dy
C

2 2 2+ −� � � , where C is the rectangle

bounded by the lines x = 0, y = 0, x = a, y = b. Ans. – 2 2ab

7. Using Green’s theorem, evaluate cos sin sin cosx y xy dx x y dy
C

− +� �  , where C is the

circle x2 + y2 = 1. Ans. 0

8. Evaluate by Stoke’s theorem yzdx xzdy xydz
C

+ +� �  , where C is the curve x2 + y2 = 1,

z = y2. Ans. 0

9. Verify Stoke’s theorem for the function F  = zi + xj + yk, where C is the unit circle in the

xy-plane bounding the hemisphere Z = 1 2 2− −x y . Ans. π
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10. If  F  = yi + z3xj – y3zk and C is the circle x2 + y2 = 4 in the plane z = 
3

2
. Evaluate F dr

C

⋅�
by Stoke’s theorem. Ans.

19

2

π�
��

�
�	

11. Evaluate F dr
C

⋅� by Stoke’s theorem F  = y2i + x2j – (x + 2) k and C is the boundary of

the triangle with vertices (0, 0, 0) (1, 0, 0) and (1, 1, 0). Ans.
1

3
�
��

�
�	

4.4 ORTHOGONAL CURVILINEAR COORDINATES

4.4.1 Definition

Let the coordinates (x, y, z) of any point be expressed as functions of (u1, u2, u3), so that
x = x (u1, u2, u3), y = y (u1, u2, u3), z = z (u1, u2, u3) then u, v, w can be expressed in terms of

x, y, z, as u1 = u (x, y, z), u2 = v (x, y, z) and u3 = w (x, y, z). And also if 
∂

∂
≠

x y z

u u u

, ,

, ,

� 
� 1 2 3

0  then the

system of coordinates (u1, u2, u3) will be an alternative specification of the Cartesian system (x, y,
z) and (u1, u2, u3) are called the curvilinear coordinates of the point.

If one of the coordinates is kept constant say u1 = c, then

and the locus of (x, y, z) is a surface which is called a coordinate surface. Thus, we have three
families of coordinate system corresponding to u1 = c, u2 = c, u3 = c.

Suppose u1 = c, u2 = c and u3 ≠ c in that case locus obtained is called a coordinate curve and
also there are such families.

The tangent to the coordinate curves at the point p
and the three coordinate axes of the curvilinear systems.

The direction of these axes vary from point to point
and hence the unit associated with them are not constant.

When the coordinate surfaces are mutually perpen-
dicular to each other, the three curves define an orthogonal
system and (u, v, w) = (u1, u2, u3) are called orthogonal
curvilinear coordinates.

4.4.2 Unit Tangent and Unit Normal Vectors

The position vector of point p (x, y, z) is r
→

 = xi1 + yi2 + zi3 where i1, i2, i3 are unit vectors along
the tangent to the three coordinate curves.

∴ i1 . i2 = i3 . i2 = i3 . i1 = 0

and i1 × i2 = i3, i2 × i3 = i1, i3 × i1 = i2

∴ r  (u1, u2, u3) = x (u1, u2, u3) i1 + y (u1, u2, u3) i2 + z (u1, u2, u3) i3

P

Fig. 4.7
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∴ dr =
∂
∂

+ ∂
∂

+ ∂
∂

r

u
du

r

u
du

r

u
du

1
1

2
2

3
3

Then r  (u1, u2, u3) is a vector point, function of variables u, v, w.

The unit tangent vector i1 along the tangent to u-curve at P is

i1 =

∂
∂

∂
∂

r

u

r
u

1

1

If 
∂
∂

r

u1
 = h1 which is called scalar factor, then 

∂
∂

r

u1
 = h1i1.

Similarly, unit tangent vectors along v-curve and w-curves are

i2 =

∂
∂

∂
∂

=

∂
∂

r

u

r
u

r

u

h
2

2

2

2

∴
∂

∂
r

u2
= h2 i2

i3 =

∂
∂

∂
∂

=

∂
∂

r

u

r
u

r

u

h
3

3

3

3

∴
∂
∂

r

u3
= h3 i3

∴ dr =
∂
∂

+ ∂
∂

+ ∂
∂

r

u
du

r

u
du

r

u
du

1
1

2
2

3
3

= h1du1i1 + h2du2i2 + h3du3i3

Then length of the arc dS is given by

dS2 = dr dr⋅  = h du h du h du1
2

1
2

2
2

2
2

3
2

3
2+ +

Example 1. Find the square of the element of arc length in cylindrical coordinates and deter-
mine the corresponding Lommel constants.

Solution. The position vector, r  is cylindrical coordinates is

r = r i r j zkcos sinθ θ+ +
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Then dr =
∂
∂

+ ∂
∂θ

+ ∂
∂

r

r
dr

r
d

r

z
dzθ

= cos sin – sin cosθ θ θ θ θi j dr r i r j d k dz+�� �� + +�� �� +

= cos sin sin cosθ θ θ θ θ θ θdr r d i d r d j k dz− + + +� � � �
From the relation,

dS2 = dr dr⋅ = h du h du h du1
2

1
2

2
2

2
2

3
2

3
2+ +

we have,

dS2 = dr dr⋅ = (cosθ dr – r sinθ dθ)2 + (sinθ dr + r cosθ dθ)2 + dz2

= (dr)2 + r2(dθ)2 + dz2

The Lommel’s constant, also called scale factors are h1 = 1, h2 = r, h3 = 1.

Example 2. Find the volume element dv in cylindrical coordinates.

Solution. The volume element in orthogonal curvilinear coordinates u1, u2, u3 is given by

u1 = r, u2 = θ, u3 = z,

In cylindrical coordinates h1 = 1, h2 = r, h3 = 1.

Then dv = h1h2h3du1du2du3

u1 = r ⇒ du1= dr,

u2 = θ ⇒ du2= dθ,

u3 = z1 ⇒ du3 = dz,

∴ dv = (1).(r) · (1). dr dθ dz

Then, dv = r dr dθ dz.

4.4.3 The Differential Operators

In this section, we shall express the gradient, divergence and curl in terms of orthogonal curvilinear
coordinates u1, u2, u3. Then, the Laplacian can be expressed as the divergence of a gradient by the
chain rule, we have

∂
∂

f
x

=
∂
∂

∂
∂

+ ∂
∂

⋅
∂
∂

+ ∂
∂

⋅
∂
∂

f

u

u

x

f

u

u

x

f

u

u

x1

1

2

2

3

3

∂
∂

f
y

=
∂
∂

⋅
∂
∂

+ ∂
∂

⋅
∂
∂

+ ∂
∂

⋅
∂
∂

f

u

u

y

f

u

u

y

f

u

u

y1

1

2

2

3

3

∂
∂

f
z

=
∂
∂

⋅
∂
∂

+ ∂
∂

⋅
∂
∂

+ ∂
∂

⋅
∂
∂

f

u

u

z

f

u

u

z

f

u

u

z1

1

2

2

3

3

In rectangular Cartesian coordinate system

∇f =
∂
∂

+ ∂
∂

+ ∂
∂

f

x
i

f

y
j

f

z
k
�

where f is a scalar function. In engineering problems this f is usually a potential link
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Velocity potential or electric potential or gravitational potential.

Using chain rule this becomes,

∇ f =
∂
∂

∂
∂

+
∂
∂

+
∂
∂

�
�	



��

f

u

u

x
i

u

y
j

u

z
k

1

1 1 1

+ ∂
∂

∂
∂

+ ∂
∂

+ ∂
∂

�
�	



��

f

u

u

x
i

u

y
j

u

z
k

2

2 2 2

∂
∂

∂
∂

+
∂
∂

+
∂
∂

�
�	



��

f

u

u

x
i

u

y
j

u

z
k

3

3 3 3

=
∂
∂

∇ + ∂
∂

∇ + ∂
∂

∇f

u
u

f

u
u

f

u
u

1
1

2
2

3
3

But ∇u1 =
1

1h
e� ,  �u2 = 

1

2
2h

e� ,  �u3 = 
1

3
3h

e� .

Then the gradient of f, in orthogonal curvilinear coordinates, is

�f =
1 1 1

1 1
1

2 2
2

3 3
3h

f

u
e

h

f

u
e

h

f

u
e

∂
∂

+ ∂
∂

+ ∂
∂

 .

������� ��	� �
�����

1. Show that 
∂
∂

∂
∂

∂
∂

�

�
	
	




�
�
�

r

u
,

r

u
,

r

u1 2 3

 = h1 h2 h3 = 
1

u , u , u1 2 3∇ ∇ ∇
.

Solution. By definition of unit vectors,

�e1 =
1

1 1h

r

u

∂
∂

, �e2  = 
1

2 2h

r

u

∂
∂

,  �e3  = 
1

3 3h

r

u

∂
∂

...(1)

we also know that

�u1 =
1

1
1h

e� , �u2 = 
1

2
2h

e� ,  �u3 = 
1

3
3h

e� ...(2)

Then using (1), we have

∂
∂

∂
∂

∂
∂

�

�
	
	




�
�
�

r
u

r
u

r
u1 2 3

, , = h e h e h e1 1 2 2 3 3� , � , �

= h h h e e e1 2 3 1 2 3� � �

= h1h2h3 ...(3)
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Similarly from (2), we have

∇ ∇ ∇u u u1 2 3, , =
1 1 1

1
1

2
2

3
3h

e
h

e
h

e� , � , �
�
�
	



�
�

=
1 1

1 2 3
1 2 3

1 2 3h h h
e e e

h h h
� , � , � = ...(4)

From (3) and (4), we obtain

∂
∂

∂
∂

∂
∂

�
�	



��

r

u

r

u

r

u1 2 3

, , = h h h
u u u1 2 3

1 2 3

1
=

∇ ∇ ∇, ,

as the required solution.

2. Find the �r m.

Solution. The position vector of a point (x, y, z) from 
m

2
, the origin is

r = xi + yj + zk

r = x y z2 2 2+ +

Then �rm = mr
r

r
mrm m⋅

�

�

�

�
� = −

2
2

r = mr m–2 (xi + yj + zk).

3. Find the gradient of f = x2y + zy2 + xz2 in curvilinear coordinates.

Solution. In curvilinear coordinates (u1, u2, u3) the given function f takes the form

f = u u u u u u1
2

2 3 2
2

1 3
2+ +

∂
∂

f

u1

= 2 1 2 3
2u u u+ , 

∂
∂

f
u2

 = 2 3 2 1
2u u u+

∂
∂

f
u3

= u u u2
2

1 32+

The gradient formula is

�f =
1 1 1

1 1
1

2 2
2

3 3
3h

f

u
e

h

f

u
e

h

f

u
e

∂
∂

+ ∂
∂

+ ∂
∂

� � �

Sub.
∂
∂

∂
∂

f

u

f

u1 2

,  and 
∂

∂
f

u3
, we get

�f =
1

2
1

2
1

2
1

1 2 3
2

1
2

1
2

3 2 2
3

2
2

1 3 3h
u u u e

h
u u u e

h
u u u e+ + + + +� � � � � �� � �

which is the required gradient.
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�
������� ���

1. Find the gradient of the following functions in cylindrical polar coordinates.

(i) xy + yz + zx,

(ii) x (y + z) – y (z – x) + z (x + y),

(iii) exp (x2 + y2 + z2).

Ans. ( ) sin sin cos � – sin cos sin �

sin cos �.

( ) sin cos � cos cos sin �

cos sin �

i r z z e r z z e

r z

ii r z e r z e

r e

r

r

z

2

2

2 2 1

2

2

θ θ θ θ θ θ

θ θ

θ θ θ θ θ

θ θ

θ

θ

+ + + + −

+ +

+ + + − +

+ +

�

�

	
	
	
	
	
	




�

�
�
�
�
�
�

� � � �
� �

� � � � � �
� �

                                                            

        

                                                  

2. Find �f in spherical polar coordinates

when  (i) f = xy + yz + zx

(ii) f = x ( y + z) + y (z – x) + z (x + y)

Ans. ( ) sin sin sin cos sin cos cos �

sin cos sin cos sin cos cos �

sin cos cos cos cos sin � .

( ) sin � cos � cos sin cos cos sin �

i r r e

r e

r r e

ii r e e e

r

r

y

r

θ θ θ θ θ θ θ

θ θ θ θ θ θ θ

θ θ θ θ θ θ

θ θ θ θ θ θ θθ θ

2 2 2

2 2 2

2

2 2 2

+ +

+ + +

+ + −

+ + + −

�

�

	
	
	
	
	
	




�

�
�
�
�
�
�

� �
� �
� �
� �� � � �

              

              

          

4.4.4. Divergence of a Vector

We now derive the expression for the divergence of a vector. In this orthogonal curvilinear coordinate

system (u1, u2, u3) the unit vector F  can be expressed as

F = F e F e F e1 1 2 2 3 3� � �+ + ...(1)

By the vector equation can be written as

F = h2h3 F1 (�u2 × �u3) + h3h1 F2(�u3 × �u1) +

h1h2F3 (�u1 × �u2) ...(2)

Then the divergence of F  is

∇⋅ F = ∇ . [h2h3F1(�u2 × �u3)] + � · [h3h1F2 (�u3 × �u1)]

+ �u3 [h1h2F3 (�u1 × �u2)]

= �(h2h3F1) . (�u2 × �u3) + �(h1h2F2) . (�u3 × �u1)

+ �(h3h1F2) . (�u1 × �u2)

= (h2h3F1) � . (�u2 × �u3)+ h3h1F2 � . (�u3 × �u1)

+ h1h2F3 � . (�u1 × �u2)

� . (�u × �V ) =  �V . (� × �u) – �u . (� × �V ) = 0
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Using (1) and A A B⋅ ×�� ��  = 0 for any pair of vectors, we have

∇ ⋅ F =
∂

∂
∇ ⋅ ∇ × ∇

u
h h F u u u

1
2 3 1 1 2 3� � � �

+ ∂
∂

∇ ⋅ ∇ × ∇
u

h h F u u u
2

3 1 2 2 3 1� � � �

+ ∂
∂

∇ ⋅ ∇ × ∇ ⋅
u

h h F u u u
3

1 2 2 3 1 2� � � �

But � � �e e e1 2 3⋅ ×� � = � � � � � �e e e e e e2 3 1 3 1 2⋅ × = ⋅ ×� � � �
= h1h2h3 �u1 (�u2 × �u3) = h1h2h3 �u2 (�u3 × �u1)
= h1h2h3 �u3 · (�u1 × �u2) = 1

∴ �.F
→

=
1

1 2 3 1
2 3 1

2
3 1 2

3
1 2 3h h h u

h h F
u

h h F
u

h h F
∂

∂
+ ∂

∂
+ ∂

∂
�
�	



��

� � � � � �

������� ��	� �
�����

1. If f and g are continuously differentiable show that ∇f × ∇g is a solenoidal.

Solution. A vector F  is solenoidal if ∇ ⋅ F  = 0. To show that �f × �g is solenoidal. First

we show that �f × �g can be expressed as a curl of a vector. We can show this using the identity.
 � × (f � g) = �f × �g + f � + �g

= �f × �g (� curl glad is zero)
Operating divergence on this and using the identity

� × �(f � g) = 0 (� div curl of any vector is zero)
This gives �.(�f × �g) = 0
Hence, �f × �g is solenoidal and hence proved.

2. Find �.(� rm)

Solution. Let r  = xi + yj + zk be the positive vector so that r = x y z2 2 2
1

2+ +� �

This gives �r m = mr rm−2

∴  �.�r m =
∂

∂
+ ∂

∂
+ ∂

∂
− − −

x
mr x

y
mr y

z
mr zm m m2 2 2� � � � � � ...(1)

Differentiating by part, we get

∂
∂

−

x
mr xm 2� � = m m r

r

x
x mrm m− ⋅ ∂

∂
+− −2 2 2� �

But
∂
∂

r

x
=

1

2
22 2 2

1

2x y z x+ +
−

� �



196 ENGINEERING MATHEMATICS—II

= x x y z2 2 2
1

2+ +
−

� �

=
x

r

Similarly,
∂
∂

⋅−

x
mr xm 2� � = m(m – 2)r m – 4 x2 + mr m–2

∂
∂

−

y
mr ym 2� � = m(m – 2) r m – 4 y2 + mr m – 2

∂
∂

−

z
mr zm 2� � = m(m – 2) r m – 4 z2 + mr m – 2

Equation (1) becomes, then

�.(�rm) = m(m – 2) r m – 4 r2 + 3mr m – 2

= m(m + 1) r m – 2.

�
������� ���

1. Show that

(i) ∇ ⋅ r  = 3 (ii) ∇ ⋅ ×��
�
�r a  = 0

(iii) ∇ ⋅ ×��
�
�a r  = 0 (iv) ∇ ⋅ ×��

�
�x y  = y x x y⋅ ∇ − ⋅ ∇ ×

2. Prove that

(i) � .�f = 
∂
∂

+ ∂
∂

+ ∂
∂

2

2

2

2

2

2

f

x

f

y

f

z
(ii) ∇ ⋅ ∇ × F  = 0

4.4.5 Curl of a Vector

Let F = F e F e F e1 1 2 2 3 3� � �+ +
= h1F1�u1 + h2F2�u2 + h3F3�u3

Then, ∇ × F = � × (h1F1�u1) + � × (h2F2�u2) + � × (h3F3 �u3)

= � (h1F1) × �u1 + h1F1� × �u1 × �(h2F2) × �u2 + h2F2�

+� �u2 + �(h3F3) × �u3 + h3F3 � × �u3
But curl of a gradient is zero

∇ × F = �(h1F1) × �u1 + �(h2F2) × �u2 + �(h3F3) × �u3 ...(1)

But �(h1F1) × �u1 =
∂

∂
⋅ + ∂

∂
+ ∂

∂
�
�	



��

⋅
u

h F
e

h u
h F

e

h u
h F

e

h

e

h1
1 1

1

2
2 2

2

2 3
3 3

3

3

1

1

� � � � � �� � � �
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Using the fact that � , �e e1 2  and �e3  are the orthogonal unit vectors, we have

�(h1F1) × �u1 =
1 1

1 3 3
1 1 2

1 2 2
1 1 2h h u

h F e
h h u

h F e
∂

∂
∂

∂
� � � �� – �

Similarly, we can show that

�(h2F2) × �u2 =
1 1

1 2 1
2 2 3

2 3 1
2 2 1h h u

h F e
h h u

h F e
∂

∂
⋅ ∂

∂
⋅� � � �� – �

and �(h3F3) × �u3 =
1 1

2 3 2
3 3 3

1 3 2
3 3 2h h u

h F e
h h u

h F e
∂

∂
⋅ ∂

∂
⋅� � � �� – �

Then the equation (1) becomes

∇ × F =
1 1

1 3 2
3 3

3
2 2 1

1 3 3
1 1

1
1 1h h u

h F
u

h F e
h h u

h F
u

h F
∂

∂
∂

∂
�
�	



��

+ + ∂
∂

− ∂
∂

�
�	



��

� � � � � � � �– �

+ ∂
∂

− ∂
∂

�
�	



��

1

1 2 1
2 2

2
1 1 3h h u

h F
u

h F e� � � � �

=
1

1 2 3

1 1 2 2 3 3

1 2 3

1 1 2 2 3 3

h h h

h e h e h e

u u u
h F h F h F

� � �

∂
∂

∂
∂

∂
∂

������� ��	� �
�����

1. Show that ∇ × = ∇ × + ∇ ×f F Q F f f
� � �

� � .

Solution. By definition

∇ × f F
�

� � = �i
x

f F× ∂
∂∑

�

� �

=
�i

x
f F f

F

x
× ∂

∂
�
�

�
� + ∂

∂

�

�
	
	




�
�
�∑

= � �i
f F

x
i f

F

x
×

∂
∂

+ × ∂
∂∑∑

= � �i
f

x
F i

F

x
f

∂
∂

× + × ∂
∂

�

�
	
	




�
�
�∑∑

= ∇ × + ∇ ×f F f F.
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2. Show that ∇ × ×�
�

�
� = ∇ ⋅ ∇ ⋅ + ⋅ ∇ ⋅ ∇A B A B B A B A A B– – .

Solution. By definition

∇ × ×
� �
A B� � = �i A

B

x

A

x
B× × ∂

∂
+ ∂

∂
×∑

� �
�

= � – � �i
B

x
A i A

B

x
i B

A

x
⋅ ∂

∂
�
�
	



�
� ⋅ ⋅ ∂

∂
+ ⋅ ∂

∂∑∑∑
�

� �
�

�
�

� � � �

– � – �i
A

x
B i

B

x

∂
∂

�
�

�
��

⋅ ⋅ ∂
∂
�
�
�
��∑ ∑

�
�

− ⋅ ∂
∂
�
�
�
��

+ ⋅ ∂
∂

∂
∂∑∑∑ � � – �.i

A

x
B i B

A

x
i A

B

x

�
� �

�
�

�

� � � �

=
� � � � � � � �
A B B B A B A A B∇ ⋅ ∇ ⋅ + ⋅ ∇ ⋅ ∇– – –

3. Show that ∇ × ∇ =r 0m .

Solution. We know that

∇rm = m r x i y j z km – � � � .2 + +� �  Then

∇ × ∇r m =

� � �

– – –

i j k

x y z
mr x mr y mr zm m m

∂
∂

∂
∂

∂
∂

2 2 2

The coefficient of �i  in this determinant

=
∂
∂

∂
∂y

mr z
z

mr ym m– ––2 2� � � �

= m m r
yz

r
m m r

zy

r
m m– – –– –2 2 03 3� � � � =

Hence, ∇ × ∇r m = 0.

�
������� ���

1. If 
�
F x y i j x y k= + + + +1� � � �� � – �  then show that 

� �
F F⋅ ∇ × = 0.

2. If 
�
F  = ∇ (x3 + y3 + z3 – 3xyz), then find ∇ × F.

3. Show that ∇ × =�
r 0  and ∇ × × =� � �

r a a� � – 2  when 
�
r  is the position vector and 

�
a  is

constant vector.

4. Show that ∇ × × × = ×� � � � �
r a b b a� � 2 .
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4.4.6. Expression for Laplacian ∇∇∇∇∇2 ψψψψψ

We now consider the expression for the Laplacian ∇2 ψ. We know that

∇2 ψ = ∇. (∇ ψ)

This, using the expression for gradient and divergence, becomes,

∇2 ψ =
1

1 2 3 1

2 3

1 1 2

3 1

2 2 3

1 2

3 3h h h u

h h

h u u

h h

h u u

h h

h u

∂
∂

∂ψ
∂

�
�

�
��

+ ∂
∂

∂ψ
∂

�
�

�
��

+ ∂
∂

∂ψ
∂

�
�

�
��

�
�
	
	



�
�
�

...(1)

4.4.7. Particular Coordinate System

In many practical applications we need differential operator in a particular coordinate system. Some
of them will be discussed in this section.

(1) Cartesian Coordinates

The Cartesian coordinate system form a particular case of the orthogonal curvilinear coordinates
(u1 u2 u3) in which u1 = x, u2 = y, u3 = z such that

∂
∂

�
r

u1

=
∂
∂

+ + =
x

xi yj zk i� � � �� �

Similarly,
∂
∂

�
r

u2

=
∂
∂

=r

y
j�  and

∂
∂

�
r

u3

=
∂
∂

=r

z
k�

Then, for Cartesian coordinates system

h1 =
∂
∂

= =
�
r

u
i

1

1� ,

h2 =
∂
∂

= =
�
r

u
j

2

1� ,

and h3 =
∂
∂

=
�
r

u3

1

So that, the unit tangent (or base) vectors, becomes

e^1 = i^

e^2 = j^

and e^3 = k
^

Note that e^1 . e^2 = i^ . j^ = 0 and so on

and e^1 × e^2 = i^ × j^ = k
^
 = e^3 and so on.

Hence the Cartesian coordinate system is a right hand orthogonal coordinate system.

Then the arc length in this system is

dr2 = dx2 + dy2 + dz2
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and the volume element is

dr = dx dy dz

The area element in the yz-plane perpendicular to the x-axis is dy dz, in the zx perpendicular
to the y-axis is dz dx and in the xy-plane perpendicular to z-axis is dx dy.

(2) Cylindrical Polar Coordinates

Let (r, θ, z) be the cylindrical coordinates of the point p.
The three surfaces through p : r = u1, = constant = c1;
θ = u2 = constant = c2 and z = u3 = constant = c3 are
respectively, the cylinder through p coaxial with oz, half
plane through oz making an angle θ with the coordinate
plane xoz; and the planes perpendicular to oz and distance
z from it.

The coordinates (r, θ, z) are related to the Cartesian
coordinates (x, y, z) through the relation x = r cos θ,
y = r sin θ, z = z.

The coordinate surface for any set of constants C1,
C2 and C3 are orthogonal. Therefore, the cylindrical sys-
tem is orthogonal.

Here, u1 = r

u2 = θ
u3 = z and

position vector 
�
r  in this is

�
r = r cos θ i^ + r sin θ j^ + z k

^

Hence,
∂
∂

�
r

u1
=

∂
∂

= ∂
∂

�
r

r r
 (r cos θ i^ + r sin θ j ^ + z k

^ 
)

= cos θ i^ + sin θ j^

∂
∂

�
r

u2
=

∂
∂θ

�
r

 = – r sin θ i^ + r cos θ j^

∂
∂

�
r

u3

=
∂
∂

=
�
r

z
k�

Then the Lommel constants in this case

h1 =
∂
∂

= ∂
∂

= + =r

u

r

r1

2 2 1 2
1

�

cos sinθ θ� �

h2 =
∂

∂
= ∂

∂θ
r

u

r

2

�

 = (r2 sin2 θ + r2 cos2 θ)1/2 = r

h3 =
∂
∂

= ∂
∂

=
� �
r

u

r

z3

1

�

r

e^
�

X

z

p(r, , z)�

e^z

e^r

Z
O

Fig. 4.8
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In this case the unit vector e^r, e
^
θ and e^z in the increasing direction of (r, θ, z) are respectively

take the form:

e^r =
1

1 1h

r

u

r

r

∂
∂

= ∂
∂

� �

 = cos θ i^ + sin θ j^

e^θ =
1 1

22 2h

r

u

r∂
∂

= ∂
∂θ

� �

 = – sin θ i^ + cos θ j^

e^z =
1

3h

r

u

r

z
k

∂
∂

= ∂
∂

=
� �

3

�

From these, it follows that

e^r · e^θ = e^θ · e^z = e^z · e^r = 0

e^r × e^θ = (cos θ i^ + sin θ j) × (– sin θ i^ + cos θ j^ )

= (cos2 θ + sin2 θ) k^ = k^ = e^z

e^r × e^z = (sin θ j^ + cos θ i^ ) = e^r

e^z × e^r = (cos θ j^ – sin θ i^ ) = e^θ

The element of arc dl in cylindrical coordinates will be

dl2 = dr2 + r2 dθ2 + dz2.

The conditions for e^r, e^θ, and e^z show that the cylindrical polar coordinates system is a right
handed orthogonal coordinate system.

The differential operators in this coordinate system take the form

∇Q =
∂
∂

+ ∂
∂θ

+ ∂
∂

Q

r
e

r

Q
e

Q

z
er z� � �

1
θ

∇ ⋅
�
F =

1 1

r r
rF

r

F F

zr
z∂

∂
+ ∂

∂θ
+ ∂

∂
� � θ

∇ ×
�
F =

1

r

F F

z
e

F

z

F
ez

r
r r∂

∂θ
∂
∂

�
�

�
�� + ∂

∂
∂
∂θ

�
�

�
�� +– � – �θ

θ

1 1

r r
rF

r

F
er∂

∂
∂
∂θ

�
�

�
��θ θ� � – �

Area elements on the coordinate surfaces and the volume elements in this coordinate systems
are

dSr = rdθ dz, dSθ = dz dr

dSz = rdr dθ, dr = rdr dθ dz.

(iii) Spherical Polar Coordinates

If (r, θ, Q) are the spherical polar coordinates,
then in this system

x = r sin θ cos θ
y = r sin θ sin θ
z = r cos θ

�

r

X

z

Y

e^ r

e^Q

e^
�

r�

Z

Fig. 4.9
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with 0 ≤ r, 0 ≤ θ ≤ π and 0 ≤ Q ≤ 2π.

Here, u1 = r

u2 = θ
u3 = Q and

�
r  = r sin θ cos φ i^ + r sin θ cos φ j^ + r cos θ k

^

Then
∂
∂

r

u1

=
∂
∂

�
r

r
 = sin θ cos φ i^ + sin θ sin φ j^ + cos θ k

^

∂
∂

r

u2
=

∂
∂θ

�
r

 = r sin θ cos φ i^ + r cos θ sin φ j^ – sin θ k
^

∂
∂

r

u3
=

∂
∂φ

�
r

 = r sin θ sin φ i^ + r sin θ cos φ j^

In this case the formed constants are

h1 =
∂
∂

= ∂
∂

� �
r

u

r

r1
 = [sin2 θ (cos2 φ + sin2 φ) + cos2 θ]1/2 = 1

h2 =
∂
∂

= ∂
∂

� �
r

u

r

2 θ  = r [cos2 θ (cos2 φ + sin2 φ) + sin2 φ]1/2 = r

h3 =
∂
∂

= ∂
∂φ

� �
r

u

r

3

 = r sin θ (cos2 φ + sin2 φ)1/2 = r sin θ

Then the unit vectors are

e^r =
1

1 1h

r

u

r

r

∂
∂

= ∂
∂

� �

 = sin θ cos φ  i^ + sin θ sin φ j^ + cos k
^

êθ =
1 1

2 2h

r

u r

r∂
∂

= ∂
∂θ

� �

 = cos θ cos φ i^ + cos θ sin φ j^ – sin θ k
^

e^φ =
1 1

3 3h

r

u r

r∂
∂

= ∂
∂φ

�

sinθ
 = – sin φ i^ + cos φ j

^

From these, we have

ê r . êθ = sin θ cos θ (cos2 φ + sin2 φ) – cos θ sin θ = 0

e^θ . e^φ = cosθ (– sin φ cos φ + sin φ cos φ) = 0

ê φ . ê r = sinθ (– sin φ cos φ + cos φ sin φ) = 0.

Also

e^r × e^θ = cos θ (sin2 θ + cos2 θ) j – sin φ (sin2 θ + cos2 θ) i

= êφ

ê θ × ê φ = cosθ (cos2 φ + sin2 φ) k
^
 + sin θ sin φ j^ + sin θ cos φ i^ = ê r

e^φ × e^r = – sinθ (sin2 φ + cos2 φ) k 
^
 + sin φ cosθ j^ + cos θ cos φ i^ = e^θ.
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These conditions show that the spherical polar coordinates system is a right handed orthogonal
system.

The element of arc length dl is

dl 2 = dr 2 + r 2 dθ2 + r 2 sin2 θ dφ2

The differential operators are given by

∇ ψ =
∂ψ
∂

+ + ∂ψ
∂θ

+ ∂ψ
∂φr

e
r

e
r

er� �
sin

�
1 1

θ φθ

∇ . F =
1 1 1
2

2

r r
r F

r
F

r

F
r

∂
∂

+ ∂
∂θ

+
∂
∂φ

� � � �
sin

sin
sinθ

θ
θφ

φ

∇2 ψ =
∂
∂

∂ψ
∂

+ ∂ψ
∂θ

+ ∂
∂φ

2

2 2 2 2

2

2

2 1 1ψ
θ

θ
θ

θ
r r r r r

. .
sin

. sin
sin

∇ × F
→

=
1

r
F

F
ersin

sin – �
θ

θ φ
θ∂

∂θ
∂
∂φ

�
�	



��

+� �

1 1

r

F

r
rF er

sin
– �

θ φ θ
∂
∂φ

∂
∂

�
�
	



�
� +� �

1

r r
rF

F
ez

∂
∂

∂
∂θ

�
�	



��θ

θ� � – �

������� ��	� �
�����

1. Verify the equations

(i) ∇θ + ∇ × (R log r) = 0

(ii) ∇ log r + ∇ × Rθ = 0

for cylindrical coordinates.

Solution. (i) In cylindrical coordinates

∇r = e^1

∇θ =
1

r
er�

Then ∇ × (R log r) = (∇ log r) × R

=
1

r
 ∇r × R

=
1

r
 ê 1 × k
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=
–1

r
 ê 2 = – ∇θ

∴ ∇ × R log r + ∇θ = 0

Hence the result.

(ii) By definition,

∇ log r =
1 1

1r
r

r
e∇ = ��
�
�� �

Similarly, ∇ × (R θ) = ∇ θ × R

=
1

r
 e^2 × R

=
–

�
1

1r
e  = –∇ log r

∴ ∇ log r + ∇ × kθ = 0

Hence proved.

Example 2. Determine the scale factors for spherical coordinates. Also find the arc and volume
elements.

Solution. For spherical coordinates

x = r sin θ cos φ
y = r sin θ sin φ
z = r cos θ

Hence, dx = dr sin θ cos φ + d θ r cos θ cos φ – d φ r sin θ sin φ ...(1)

dy = dr sin θ sin φ + d θ r cos θ sin φ + d φ r sin θ cos φ ...(2)

and dz = dr cos θ – d θ r sin θ ...(3)

Squaring and adding (1), (2) and (3), we have

dx2 + dy2 + dz2 = ds2 = dr2 + r2 d θ2 + r2 sin2 θ d φ2

Hence, h1
2 = 1, ⇒ h1 = 1, h2 = r, h3 = r sin θ

or hr = 1, hθ = r, hϕ = r sin θ
The arc element

ds = dr r d r d2 2 2 2 2 2+ +θ θ φsin

Similarly the volume element

dV = h1 h2 h3 du1 du2 du3

= r2 sin θ dr d θ dz.

Example 3. Prove that the spherical coordinate system is orthogonal.

Solution. If R  be the position vector of a point P (x, y, z), then

R = x i y j z k+ +
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Substituting the values of x, y, z we have

R = r sin θ cos φ i  + r sin θ sin φ j  + r cos θ k

∴
∂
∂

R

r
= sin θ cos φ i  + sin θ sin φ j  + cos θ k

∴ e1 = er

=

∂
∂
∂
∂

= + +

R

r

R

r

i j ksin cos cos sin cosθ φ θ φ θ ...(1)

Similarly, e2 = eθ

=

∂
∂
∂
∂

= +

R

R
i j k

φ

θ

θ φ θ φ θcos cos cos sin – sin ...(2)

e e3 = ϕ =

∂
∂
∂
∂

= − +

R

R
i j

θ

φ

φ φsin cos ...(3)

From (1), (2) and (3)

e e1 2⋅ = e e e e2 3 3 1 0⋅ = ⋅ =
Hence the spherical system is orthogonal in which case

er = E e Er , θ θ=  and e Eϕ ϕ= .

Example 4. Obtain expression for grad α, Div A  and curl A  in spherical coordinates.

Solution. For spherical coordinates

u1 = r, u2 = θ, u3 = φ, h1 = 1, h2 = r, h3 = r sin θ

Let A = A e A e A e1 1 2 2 3 3  + +

(i) Expression for grad α,

grad α =
e

h u

e

h u

e

h u
1

1 1

2

2 2

3

3 3

∂
∂

+
∂
∂

+
∂
∂

α α α

Substituting for h1 h2 h3 and u1, u2, u3 we have

grad α = e
r

e

r

e

r
r

∂
∂

+
∂
∂

+
∂
∂

α α
θ θ

α
φ

θ φ

sin
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(ii) Expression for Div A
—

Div A
—

= ∆ · A
—

=
1

1 2 3 1
1 2 3

2
2 3 1

3
3 1 2h h h u

A h h
u

A h h
u

A h h
∂

∂
+ ∂

∂
+ ∂

∂
�
�
	



�
�� � � � � �

=
1

2
1

2
2 3r r

A r A r A r
sin

sin sin
θ

θ
θ

θ
φ

∂
∂

+ ∂
∂

+ ∂
∂

�
�
	



�
�� � � � � �

=
1

2 1
2

2
3

r r
A r r A r

A

sin
sin sin

θ
θ

θ
θ

φ
∂

∂
+ ∂

∂
+

∂
∂

�
�
	



�
�� � � �

(iii) Expression for curl A
—

curl A
—

=
1 1

1 2 3

1 1 2 2 3 3

1 2 3

1 1 2 2 3 3

2

1 2 3

h h h

h e h e h e

u u u
A h A h A h

r

e r e r e

r
A A r A r

r

∂
∂

∂
∂

∂
∂

= ∂
∂

∂
∂

∂
∂sin

sin

sin
θ

θ

θ φ
θ

θ φ

Example 5. Show that for spherical polar coordinates (r, θ, φ) curl (cos θ grad φ) = grad
1

r
�
�
�
�� ⋅

Solution. We know curl (φ A
— 

) = φ curl A
—

 + grad φ × A
—

. Hence curl {(cos θ) (grad φ)} =
cos θ curl grad φ + grad (cos θ) × grad φ.

But curl grad φ = 0

∴ L.H.S. = grad (cos θ) × grad φ

We know grad α =
e

h u

e

h u

e

h u
1

1 1

2

2 2

3

3 3

∂
∂

+
∂
∂

+
∂
∂

α α α

For spherical coordinates

u1 = r, u2 = θ u3 = φ,  h1 = 1, h2 = r, h3 = sin θ

∴ grad (cos θ) = e
r

e

r

e

r
1

2 3∂
∂

+
∂

∂
+

∂
∂

cos cos
sin

cosθ
θ

θ
θ φ

θ� � � � � �

= – sin
e

r
2 θ ...(1)

Since
∂

∂ r
cos θ� � =

∂
∂

=
φ

θcos� � 0
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Similarly, grad φ = e
r

e

r

e

r
1

2 3∂
∂

+ ∂
∂

+ ∂
∂
�
�

�
��

φ
θ

φ
θ φ

φ� � � �
sin

=
e

r
3

sinθ
...(2)

Hence L.H.S. on using (1) and (2) gives

– sin
sin

e

r

e

r
2 3θ

θ
× = –

e

r

1

2

Since e e2 3× = e1

Similarly R.H.S. = grad
1

r
�
�
�
��

              e
r r

e
r

e

r r

e

r
1 2

3 1

2

1 1 1∂
∂
�
�
�
�� +

∂
∂

+
∂

∂
�
�
�
�� =

θ θ φsin

–

∴ L.H.S. = R.H.S.

Example 6. Find J 
x, y, z

u ,u ,u1 2 3

�
�

�
��  in spherical coordinates.

Solution. For spherical coordinates u1 = r, u2 = θ, u3 = φ and x = r sin θ cos φ, y = r sin φ
sin φ,

 z = r cos θ
Hence,

J
x y z

u u u

, ,

, ,1 2 3

�
�

�
�� = J

x y z

r

, ,

, ,θ φ
�
�

�
��

=

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

x

r

y

r

z

r
x y z

x y z

r r r

r r
θ θ θ

φ φ φ

θ φ θ φ φ
θ φ θ φ θ
θ φ θ φ

sin cos sin cos cos

cos cos cos sin – sin

– sin sin sin cos 0

= sin θ cos φ (r2 sin2 θ cos φ) – sin θ sin φ (– r2 sin2 θ sin φ)

+ cos θ (r2 sin θ cos θ cos2 φ + r2 cos θ sin θ sin2 φ)

= r2 sin3 θ cos2 φ + r2 sin3 θ sin2 φ + cos2 θ sin θ r2

= r2 sin3 θ + r2 sin θ cos2 θ
= r2 sin θ.
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�
������� ���

1. Represent A
—

 = z i x j y k− +2  in cylindrical coordinates. Hence obtain its components in

that system. Ans. A z r A z r A rr z= = =cos – sin , – sin – cos , sinθ θ θ θ θθ2 2 2

2. Prove that for cylindrical system 
d

dt
eθ  = 

d

dt
er

θ
.

3. Obtain expression for velocity v  and acceleration a  in cylindrical coordinates.

[Hint : r  = x i y j z k+ + . Substitute for x, y, z and i j k, , ⋅

V  = 
dr

dt
 and a = 

d

dt

ν

 a  = � � � �r r e r r e z er z− + + ′′ + ′′θ θ θ θ
2 2� � � � Ans.V r e r e z er z= + +� � �θ θ

Where dots denote differentiation with respect to time t.

4. Obtain an expression for ∆2 χ in (i) cylindrical (ii) spherical systems.

Ans. ( )

( ) sin sin
sin

i
r r

r
x

r r z

ii
r r

r
r r r

1 1

1 1 1

2

2

2

2

2

2
2

2 2 2

2

2

∂
∂

∂
∂

�
�

�
��

+ ∂
∂

+
∂
∂

�
�
	
	

∂
∂

∂
∂

�
�

�
��

+ ∂
∂

∂
∂

�
�

�
��

+
∂
∂


�
�
�

χ
θ

χ

χ
θ

θ
θ

χ
θ θ

χ
φ

5. For spherical coordinates prove that

(i) ′er  = � sin �θ θ φθ φe e+

(ii) ′eθ  = − ′ +θ θ φ φe er cos �

(iii) e ′φ  = – sin � cos �θ φ θ φ θe er −

����	������ �������

1. Verify Green’s theorem for xy y dx x dy
c

+ +� 2 2� �  where C is the closed curve of the region

bounded by the line y = x and the parabola y = x2.

Solution. Refer page no. 176, Example 2.

2. Using the divergence theorem evaluate F n ds
S

⋅�� �  where F  = x3 i + y3 j + z3 k and S is

the surface of the sphere x2 + y2 + z2 = a2.

Solution. Refer page no. 185, Example 10.

3. Prove that Cylindrical coordinate system is orthogonal.

Solution. Refer page no. 200.
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4. Evaluate xy dx xy dy by2

C

+�  Stoke’s theorem where C is the square in the x – y plane with

vertices (1, 0), (– 1, 0), (0, 1), (0, – 1).

Solution. We have Stoke’s theorem

F dr
C

⋅� = curl F ds
S

⋅��
From the given integral it is evident that

F = xy i xy j� �+ 2

since, dr = dx i dy j dz k� � �+ +

Hence, xy dx xy dy
C

+� 2
= F dr

C

⋅�
Which is to be evaluated by applying Stoke’s theorem.

Now, curl F F= ×∆ =

� � �i j k

x y z
xy xy

∂
∂

∂
∂

∂
∂

2 0

i.e., Curl F = y x k2 −� � � , on expanding the determinant

Further ds = dy dz i dz dx j dx dy k� � �+ +

∴ curl F ds
S

⋅�� = y x dx dy2 −�� � �

It can be clearly seen from the figure that – 1 ≤ x ≤ 1 and – 1 ≤ y ≤ 1

Now, curl F ds
S

⋅�� = y x dy dx
yx

2

1

1

1

1

−
==
�� � �

––

=
y

xy dx
yx

3

1

1

1

1

3
−

�
�
	



�
�

==
�

––

=
1

3

1

3
1 1

1

1

+�
�

�
�� − +�

�	


��=

� x dx
x

� �
–

 = 
2

3
2

1

1

−�
�

�
��

=
� x dx

x –

=
2

3
2

1

1

x x
x

−�
�	



�� = −

=
2

3
1 1 1 1+ − −� � � �  = 

4

3

Thus, xy dx x dy
C

+� 2
=

4

3

B (0, 1)

A

(1, 0)

C

(–1, 0)

D (0, –1)

Fig. 4.10
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�����	���� ����	����

1. If F t� �  has a constant magnitude then

(a)
d

dt
F t� � = 0 (b) F t

d F t

dt
� � � �⋅ = 0

(c) F t
d F t

dt
� � � �

× = 0 (d ) F t
d F t

dt
� � � �

– = 0 Ans. b

2. A unit vector normal to the surface xy3z2 = 4 at the point (– 1, – 1, 2) is

(a) –
1

11
3i j k+ −�� �� (b)

1

11
3i j k+ −�� ��

(c) –
1

11
3i j k+ +�� �� (d )

1

11
3i j k− +�� �� Ans. a

3. The greatest rate of increase of u = x2 + yz2 at the point (1, – 1, 3) is

(a) 79 (b) 2 79

(c) 89 (d ) 4 7 Ans. c

4. The vector grad φ at the point (1, 1, 2) where φ is the level surface xy2 z2 = 4 is along

(a) normal to the surface at (1, 1, 2) (b) tangent to the surface at (1, 1, 2)

(c) Z-axis (d ) i j k+ + 2 Ans. a

5. Directional derivative is maximum along

(a) tangent to the surface (b) normal to the surface

(c) any unit vector (d ) coordinate ones Ans. b

6. If for a vector function F F, div = 0  then F  is called

(a) irrotational (b) conservative

(c) solenoidal (d ) rotational Ans. c

7. For a vector function F , there exists a scalar potential only when

(a) div F = 0 (b) grad div 0F�
�

�
� =

(c) curl 0F = (d ) F Fcurl = 0 Ans. c

8. If a  is a constant vector and r x i y j z k= + + , then ∆ × ×�
�

�
�a r  is equal to

(a) 0 (b) a

(c) 2 a (d ) – 2 a Ans. c
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9. Which of the following is true

(a) curl curl curlA B A B⋅�
�

�
� = + (b) div curl A A= ∇

(c) div div divA B A B⋅�
�

�
� = . (d ) div curl A = 0 Ans. d

10. Using the following integral, work done by a force F  can be calculated:

(a) Line integral (b) Surface integral

(c) Volume integral (d ) None of these Ans. a

11. If F  is the velocity of a fluid particle then F dr
C

⋅�  represents

(a) work done (b) circulation

(c) flux (d ) conservative field Ans. b

12. The well-known equations of poisson and Laplace hold good for every

(a) rotational field (b) solenoidal field

(c) irrotational field (d ) compressible field Ans. c

13. If the vector functions F  and G  are irrotational, then F G×  is

(a) irrotational (b) solenoidal

(c) both irrotational and solenoidal (d ) none of these Ans. b

14. The gradient of a differentiable scalas field is

(a) irrotational (b) solenoidal

(c) both irrotational and solenoidal (d ) none of these Ans. a

15. Gauss Divergence theorem is a relation between

(a) a line integral and a surface integral

(b) a surface integral and a volume integral

(c) a line integral and a volume integral

(d ) two volume integrals Ans. b

16. Green’s theorem in the plane is applicable to

(a) xy-plane (b) yz-plane

(c) zx-plane (d ) all of these Ans. d

17. If all the surfaces are closed in a region containing volume V then the following theorem is
applicable

(a) Stoke’s theorem (b) Green’s theorem

(c) Gauss divergence theorem (d ) only (a) and (b) [Ans. c]
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18. The value of 2 3x y dx x y dy
C

− + +� � � � �  where C : x2 + 4y2 = 4 is

(a) 0 (b) 4

(c) 2π (d ) 4π Ans. d

19. The magnitude of the vector drawn in a direction perpendicular to the surface

x2 + 2y2 + z2 = 7 at the point (1, – 1, 2) is

(a)
2

3
(b)

3

2

(c) 3 (d ) 6 Ans. d

20. A unit normal to the surface z = 2xy at the point (2, 1, 4) is

(a) 2i + 4j – k (b) 2j + 4j + k

(c)
1

21
2 4i j k+ −� � (d )

1

21
4 2i j k+ −� � Ans. c

21. The maximum value of the directional derivative φ = x2 – 2y2 + 4z2 at the point (1, 1, – 1)
is

(a)
7

3
(b) 84

(c) 6
7

3
(d ) 3

3

7
Ans. c

22. The unit normal to the surface x2 + y2 + z2 = 1 at the point 
1

2

1

2
0, ,

�
�

�
��  is

(a)
1

2
i j−�� �� (b)

1

2
– i j+�� ��

(c)
1

2
i j+�� �� (d ) None of these Ans. c

23. The unit vector tangent to the curve x = t, y = t2, z = t3 at the point (– 1, 1, – 1) is

(a)
1

14
2 3i j k+ +� � (b)

1

14
2 3i j k– +� �

(c)
1

3
i j k+ +� � (d )

1

3
i j k– +� � Ans. a

24. The value of curl (grad f ), where f = 2x2 – 3y2 + 4z2 is

(a) 4x – 6y + 8z (b) 4xi – 6yj + 8zk

(c) 0 (d ) 3 Ans. c

25. The curl of the gradient of a scalar function � is

(a) 1 (b) ∆2 �

(c) ∇ � (d ) 0 Ans. d
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26. A force field F  is said to be conservative if

(a) curl F = 0 (b) grad F = 0

(c) div F = 0 (d ) curl grad F�� �� = 0 Ans. d

27. The value of the line integral grad x y z dr+ −� � �  from (0, 1, – 1) to (1, 2, 0) is

(a) – 1 (b) 3

(c) 0 (d ) No obtainable Ans. b

28. A necessary and sufficient condition that line integral A dr
C

⋅ =� 0  for every closed curve C

is that
(a) div A = 0 (b) curl A = 0

(c) div A ≠ 0 (d ) curl A ≠ 0 Ans. b

29. The value of the line integral y dx x dy
C

2 2+� � �  where C is the boundary of the square

– 1 ≤ x ≤ 1, – 1 ≤ y ≤ 1 is
(a) 0 (b) 2 (x + y)

(c) 4 (d )
4

3
Ans. a

30. The value of the surface integral yz dy dz zx dzdx xy dx dy
S

+ +�� � �  where S is the surface of

the sphere x2 + y2 + z2 = 1 is

(a)
4

3

π
(b) 0

(c) 4π (d ) 12π Ans. b

31. Let S be a closed orientable surface enclosing a unit volume. Then the magnitude of the

surface integral r n ds
S

⋅� � ,  where r = x i y j z k� � �+ +  and �n  is the unit normal to the surface

S, equals.
(a) 1 (b) 2

(c) 3 (d ) 4 Ans. c

32. If f ax i by j cz k= + + , a, b, c constants then f dS⋅��  where S is the surface of a unit

sphere, is

(a) 0 (b)
4

3
π a b c+ +� �

(c)
4

3
2π a b c+ +� � (d ) None of these Ans. b

���



UNIT �

Differential Equations-I

5.1 INTRODUCTION

We have studied methods of solving ordinary differential equations of first order and first degree, in
chapter-7 (Ist semester). In this chapter, we study differential equations of second and higher orders.
Differential equations of second order arise very often in physical problems, especially in connection
with mechanical vibrations and electric circuits.

5.2 LINEAR DIFFERENTIAL EQUATIONS OF SECOND AND HIGHER
ORDER WITH CONSTANT COEFFICIENTS

A differential equation of the form

d y

dx
a

d y

dx
a

d y

dx

n

n

n

n

n

n
+ +1

1

1 2

2

2

–

–

–

–
 + ... + an y = X ...(1)

where X is a function of x and a1, a2 ..., an are constants is called a linear differential equation of
nth order with constant coefficients. Since the highest order of the derivative appearing in (1) is n,
it is called a differential equation of nth order and it is called linear.

Using the familiar notation of differential operators:

D =
d

dx
,  D2 = 

d

dx

2

2
,  D

d

dx
D

d

dx
n

n

n
3

3

3
= =...,

Then (1) can be written in the form

{Dn + a1 Dn – 1 + a2 Dn – 2 + ... an} y = X

i.e., f (D) y = X ...(2)

where f (D) = Dn + a1 Dn – 1 + a2 Dn – 2 + ... an.

Here f (D) is a polynomial of degree n in D

If x = 0, the equation

f (D) y = 0

is called a homogeneous equation.

If x ≠ 0 then the Eqn. (2) is called a non-homogeneous equation.

214
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5.3
SOLUTION OF A HOMOGENEOUS SECOND ORDER LINEAR
DIFFERENTIAL EQUATION

We consider the homogeneous equation

d y

dx
p

dy

dx
qy

2

2
+ + = 0 ...(1)

where p and q are constants

(D2 + pD + q) y = 0 ...(2)

The Auxiliary equations (A.E. ) put D = m

m2 + pm + q = 0 ...(3)

Eqn. (3) is called auxiliary equation (A.E.) or characteristic equation of the D.E. eqn. (3) being
quadratic in m, will have two roots in general. There are three cases.

Case (i): Roots are real and distinct

The roots are real and distinct, say m1 and m2 i.e., m1 ≠ m2

Hence, the general solution of eqn. (1) is

y = C1 em1x + C2 em2x

where C1 and C2 are arbitrary constant.

Case (ii): Roots are equal

The roots are equal i.e., m1 = m2 = m.

Hence, the general solution of eqn. (1) is

y = (C1 + C2 x) emx

where C1 and C2 are arbitrary constant.

Case (iii): Roots are complex

The Roots are complex, say α ± iβ
Hence, the general solution is

y = eαx (C1 cos β x + C2 sin β x)

where C1 and C2 are arbitrary constants.

Note. Complementary Function (C.F.) which itself is the general solution of the D.E.

������� ��	� �
�����

1. Solve 
d y

dx
– 5

dy

dx
6y 0

2

2
+ = .

Solution. Given equation is (D2 – 5D + 6) y = 0

A.E. is m2 – 5m + 6 = 0

i.e., (m – 2) (m – 3) = 0

i.e., m = 2, 3

∴ m1 = 2, m2 = 3

∴ The roots are real and distinct.
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∴ The general solution of the equation is

y = C1 e2x + C2 e3x.

2. Solve 
d y

dx
–

d y

dx
– 4

dy

dx
4y 0

3

3

2

2
+ = .

Solution. Given equation is (D3 – D2 – 4D + 4) y = 0

A.E. is m3 – m2 – 4m + 4 = 0

m2 (m – 1) – 4 (m – 1) = 0

(m – 1) (m2 – 4) = 0

m = 1, m = ± 2

m1 = 1, m2 = 2, m3 = – 2

∴ The general solution of the given equation is

y = C1 ex + C2 e2x + C3 e–2x.

3. Solve 
d y

dx
–

dy

dx
– 6y 0

2

2
= .

Solution. The D.E. can be written as

(D2 – D – 6) y = 0

A.E. is m2 – m – 6 = 0

∴ (m – 3) (m + 2) = 0

∴ m = 3, – 2

∴ The general solution is

y = C1 e3x + C2 e–2x.

4. Solve d y

dx
8

dy

dx
16y 0

2

2
+ + = .

Solution. The D.E. can be written as

(D2 + 8D + 16) y = 0

A.E. is m2 + 8m + 16 = 0

∴ (m + 4)2 = 0

(m + 4) (m + 4) = 0

m = – 4, – 4

∴ The general solution is

y = (C1 + C2 x) e– 4x.

5. Solve 
d y

dx
w y 0

2

2
2+ = .

Solution. Equation can be written as

(D2 + w2) y = 0

A.E. is m2 + w2 = 0
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m2 = – w2 = w2i2 (i2 = – 1)

m = ± w i

This is the form α ± iβ where α = 0, β = w.

∴ The general solution is

y = e0t (C1 cos wt + C2 sin wt)

∴ y = C1 cos wt + C2 sin wt.

6. Solve d y

dx
4

dy

dx
13y 0

2

2
+ + = .

Solution. The equation can be written as

(D2 + 4D + 13) y = 0

A.E. is   m2 + 4m + 13 = 0

m =
– –4 16 52

2

±

= – 2 ± 3i (of the form α ± iβ)

∴ The general solution is

y = e–2x (C1 cos 3x + C2 sin 3x).

7. Solve d y

dx
–

dy

dx
0

2

2
=  given y′(0) = 0, y(0) = 1.

Solution. Equation is (D2 – D) y = 0

A.E. is m2 – m = 0

m (m – 1) = 0

⇒ m = 0, 1

∴ The general solution is

y = C1 e0x + C2 ex

i.e., y = C1 + C2 ex

when x = 0, y = 0 (Given)

y (0) = 0

⇒ 0 = C1 + C2 ...(1)

y′(x) = C2e
x

Given, when x = 0, y′ = 1

y (0) = 1

⇒ 1 = C2 e0

⇒ C2 = 1 ...(2)

From (1) and (2) ⇒ C1 = –1.

∴ The general solution is y = ex – 1.
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8. Solve (4D4 – 4D3 – 23D2 + 12D + 36) y = 0.

Solution. A.E. is 4m4 – 4m3 – 23m2 + 12m + 36 = 0

If m = 2, 64 – 32 – 92 + 24 + 36 = 0

⇒ m = 2 is a root of inspection.

By synthetic division,

2

4 4 23 12 36

8 8 30 36

4 4 15 18 0

– –

– –

– –

i.e.,4m3 + 4m2 – 15m – 18 = 0

If m = 2

32 + 16 – 30 – 18 = 0

Again m = 2 is a root.

By synthetic division

2

4 4

8 24 18

4 12 9 0

–1 5 –1 8

4m2 + 12m + 9 = 0

(2m + 3)2 = 0

m =
–

,
–3

2

3

2

∴ The roots of the A.E. are 2, 2, 
–

,
–

.
3

2

3

2

Thus, y = (C1 + C2 x) e2x + (C3 + C4 x) e–3x/2.

9. Solve (D5 – D4 – D + 1) y = 0.

Solution. A.E. is m5 – m4 – m + 1 = 0

i.e., m4(m – 1) – 1 (m – 1) = 0

(m – 1) (m4 – 1) = 0

(m – 1) (m2 – 1) (m2 + 1) = 0

(m – 1) (m – 1) (m + 1) (m2 + 1) = 0

∴ The roots of the A.E. are 1, 1, –1, ± i.

Thus y = (C1 + C2 x) ex + C3 e–x + (C4 cos x + C5 sin x).

10. Solve y″ + 4y′ + 4y = 0 given that y = 0, y′ = –1 at x = 1.

Solution. We have (D2 + 4D + 4) y = 0

A.E. is m2 + 4m + 4 = 0
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∴ (m + 2)2 = 0

⇒ m = – 2, – 2

Hence, y = (C1 + C2 x) e– 2x ...(1)

y′ = (C1 + C2 x) (– 2 e– 2x) + C2 e– 2x ...(2)

Consider y = 0 at x = 1

Hence, Eqn. (1) becomes

0 = (C1 + C2) e– 2

i.e., 0 = (C1 + C2) 
1
2e

�
��
�
��

⇒ C1 + C2 = 0

Also y′ = 1 at x = 1

Hence, Eqn. (2) becomes

– 1 = (C1 + C2) (– 2 e– 2) + C2 e– 2

But C1 + C2 = 0
i.e., – 1 = C2 e–2

or C2 = – e+ 2

∴ C1 = – C2 = e2

Substituting these values in Eqn. (1), we get

y = e2 (1 – x) e– 2x = (1 – x) e2 (1 – x).

�
������� ���

Solve the following differential equations:

1.
d y

dx

dy

dx
y

2

2
2 3 0– .+ = Ans. y C e C ex x= +1

3
2

–

2. 6y″ – y′ – y = 0. Ans. y C e C e
x x

= +
�
�
	
	



�
�
�

−
1

1

2
2

1

3

3. (2D2 – D – 6) y = 0. Ans. y C e C ex x
= +

�
�
	
	



�
�
�

−
1

2
2

3

2

4. (D2 + 4D + 4) y = 0. Ans. y C C x e x= +1 2 � –2

5. 9y″ – 6y′ + y = 0. Ans. y C C x e
x

= +
�
�
	
	



�
�
�1 2

1

3 �

6. y″ + 9y = 0. Ans. y C x C x= +1 23 3cos sin

7. (D2 – 2D + 2) y = 0. Ans. y e C x C xx= +1 2cos sin �
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8. (D2 + D + 1) y = 0. Ans. y e C x C x
x

= +
�
��

�
��

�
�
	
	



�
�
�

−
1

2
1 2

3

2

3

2
cos sin

9. y″ + 4y′ + 5y = 0. Ans. y e C x C xx= +−2
1 2cos sin �

10. (D3 – 8) y = 0. Ans. y C e e C x C xx x= + +1
2

2 23 3– cos sin� �

11. (D3 + 6D2 + 11D + 6) y = 0. Ans. y C e C e C ex x x= + +1 2 3
– –2 –3

12. (D3 – 4D2 + 5D – 2) y = 0. Ans. y C C x e C ex x= + +1 2 3
2 �

13. (D3 + 6D2 + 12D + 8) y = 0. Ans. y C C x C x e x= + +1 2 3
2� � –2

14. (D4 – 2D3 + 5D2 – 8D + 4) y = 0. Ans. y C C x e C x C xx= + + +1 2 3 42 2 � cos sin

15. (D4 – 4D3 + 8D2 – 8D + 4) y = 0. Ans. y e C C x x C C x xx= + + +1 2 3 4 �  �cos sin

16. (D4 – D3 – 9D2 – 11D – 4) y = 0. Ans. y C C x C x e C ex x= + + +1 2 3
2

4
4� � –

5.4 INVERSE DIFFERENTIAL OPERATOR AND PARTICULAR INTEGRAL

Consider a differential equation

f (D) y = x ...(1)

Define 
1

f D �  such that

f D
f D

x �  �
1�

�
��

�
�
��

= x ...(2)

Here f (D) is called the inverse differential operator. Hence from Eqn. (1), we obtain

y =
1

f D
x � ...(3)

Since this satisfies the Eqn. (1) hence the particular integral of Eqn. (1) is given by Eqn. (3)

Thus, particular Integral (P.I.) = 
1

f D
x �

The inverse differential operator 
1

f D �  is linear.

i.e.,
1

1 2f D
ax bx � � �+ = a

f D
x b

f D
x

1 1
1 2 �  �+

where a, b are constants and x1 and x2 are some functions of x.
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5.5 SPECIAL FORMS OF X

Type 1: P.I. of the form 
e

f D

ax

 �
We have the equation f (D) y = eax

Let f (D) = D2 + a1 D + a2

We have D (eax) = a eax, D2 (eax) = a2 eax and so on.

∴ f (D) eax = (D2 + a1 D + a2) eax

= a2 eax + a1 . aeax + a2 eax

= (a2 + a1 . a + a2) eax = f (a) eax

Thus f (b) eax = f (a) eax

Operating with 
1

f D( )
 on both sides

We get, eax = f a
f D

eax �  �. .
1

or P.I. =
1

f D
e

e

f D
ax

ax

 �  �=

In particular if f (D) = D – a, then using the general formula.

We get,
1

D a
eax

–
=

e

D a D D a

e

a

ax ax

– –
. �  �  �φ φ

= 1

i.e.,
e

f D

ax

 � =
1

1
1

φ φa
e d x

a
x eax ax

 �  �. .=� …(1)

∴ f′(a) = 0 + φ (a)

or f′(a) = φ (a)

Thus, Eqn. (1) becomes

e

f D

ax

 � = x
e

f D

ax

.
′ �

where f (a) = 0

and f′ (a) ≠ 0

This result can be extended further also if

f′(a) = 0, 
e

f D

ax

 � = x
e

f a

ax
2 .

′′ �  and so on.

Type 2: P.I. of the form 
sin

,
cosax

f D

ax

f D �  �
We have D (sin ax) = a cos ax
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D2 (sin ax) = – a2 sin ax

D3 (sin ax) = – a3 cos ax

D4 (sin ax) = a4 sin ax

= (– a2)2 sin ax and so on.

Therefore, if f (D2) is a rational integral function of D2 then f (D2) sin ax = f (– a2) sin ax.

Hence 
1

2

2

f D
f D ax

� �
� �� �sin  = 

1
2

2

f D
f a ax

� �
� �– sin

i.e., sin ax = f (– a2) 
1

2f D� �
 sin ax

i.e.,
1

2f D
ax

� �
sin =

sin

–

ax

f a2� �
Provided f (– a2) ≠ 0 ...(1)

Similarly, we can prove that

1
2f D

ax
� �

cos =
cos

–

ax

f a 2� �
if f (– a2) ≠ 0

In general,
1

2f D
ax

� �
cos =

cos

–

ax

f a2� �
if f (– a2) ≠ 0 ...(2)

1
2f D

ax b
� �

 �sin + =
1

2f a
ax b

–
sin

� �
 �+

and
1

2f D
ax b

� �
 �cos + =

1
2f a

ax b
–

cos
� �

 �+

These formula can be easily remembered as follows.

1
2 2D a

ax
+

sin =
x

ax dx
x

a
ax

2 2
sin

–
cos=�

1
2 2D a

ax
+

cos =
x

ax ax
x

a
ax

2 2
cos sin .=�

Type 3: P.I. of the form 
φ x

f D

 �
 �  where φ (x) is a polynomial in x, we seeking the polynomial

Eqn. as the particular solution of

f (D)y = φ (x)

where φ (x) = a0 xn + a1 xn – 1 + ... an – 1 x + an

Hence P.I. is found by divisor. By writing φ (x) in descending powers of x and f (D) in
ascending powers of D. The division get completed without any remainder. The quotient so obtained
in the process of division will be particular integral.
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Type 4: P.I. of the form 
e V

f D

ax

 �
 where V is a function of x.

We shall prove that 
1 1

f D
e V e

f D a
Vax ax

 �  �=
+

.

Consider D (eax V ) = eax DV + Va eax

= eax (D + a) V

and D2 (eax V ) = eax D2 V + a eax DV + a2 eax V + a eax DV

= eax (D2 V + 2a DV + a2 V )

= eax (D + a)2 V

Similarly, D3 (eax V ) = eax (D + a)3 V and so on.

∴ f (D) eax V = eax f (D + a) V …(1)

Let f (D + a) V = U, so that V = 
1

f D a
U

+ �
Hence (1) reduces to

f (D) eax 
1

f D a
U

+ � = eax U

Operating both sides by 
1

f D �  we get,

e
f D a

Uax 1

+ � =
1

f D
e Uax

 �

i.e.,
1

f D
e Uax

 � = e
f D a

Uax 1

+ �
Replacing U by V, we get the required result.

Type 5: P.I. of the form 
x V

f D

x V

f D

n

 �  �,  where V is a function of x.

By Leibniz’s theorem, we have

Dn (x V ) = x Dn V + n·1 Dn – 1·V

= x Dn V + 
d

dD
D Vn���
���

∴ f (D) x V = x f (D) V + f ′ (D) V ...(1)

Eqn. (1) reduces to

x V

f D � = x
f D

f D

V

f D
–

′�
�
		



�
��

 �
 �  � ...(2)

This is formula for finding the particular integral of the functions of the xV. By repeated
application of this formula, we can find P.I. as x2 V, x3 V ...... .
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������� ��	� �
�����

Type 1

1. Solve 
d y

dx
– 5

dy

dx
6y e

2

2
5x+ = .

Solution. We have

(D2 – 5D + 6) y = e5x

A.E. is m2 – 5m + 6 = 0

i.e., (m – 2) (m – 3) = 0

⇒ m = 2, 3

Hence the complementary function is

∴ C.F. = C1 e2x + C2 e3x

Particular Integral (P.I.) is

P.I. =
1

5 62
5

D D
e x

– +
 (D → 5)

=
1

5 5 5 6 62
5

5

– × +
=e

ex
x

·

∴ The general solution is given by

y = C.F. + P.I.

= C1 e2x + C2 e3x + 
e x5

6
·

2. Solve 
d y

dx
3

dy

dx
2y 10e

2

2
3x− + = .

Solution. We have

(D2 – 3D + 2) y = 10 e3x

A.E. is m2 – 3m + 2 = 0

i.e., (m – 2) (m – 1) = 0

m = 2, 1

C.F. = C1 e2x + C2 ex

P.I. =
1

3 2
10

2
3

D D
e x

– +
(D → 3)

=
1

3 3 3 2
10

2
3

– × +
e x

P.I. =
10

2

3e x

∴ The general solution is

y = C.F. + P.I.

= C1 e2x + C2 ex + 
10

2

3e x

.
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3. Solve d y

dx
– 4

dy

dx
4y e

2

2
2x+ = .

Solution. Given equation is

(D2 – 4D + 4)y = e2x

A.E. is m2 – 4m + 4 = 0

i.e., (m – 2) (m – 2) = 0

m = 2, 2

C.F. = (C1 + C2) e2x

P.I. =
1

4 42
2

D D
e x

– +
(D = 2)

=
1

2 4 2 42
2

–  � +
e x

(Dr = 0)

Differentiate the denominator and multiply ‘x’

= x
D

e x.
–

1

2 4
2 (D → 2)

= x e x.
–

1

2 2 4
2

 � (Dr = 0)

Again differentiate denominator and multiply ‘x’

= x e x2 21

2

P.I. =
x e x2 2

2

y = C.F. + P.I. = (C1 + C2 x) e2x + 
x e x2 2

2
·

4. Solve d x

dt
4x cosh t

4

4
+ = .

Solution. We have

(D4 + 4) x = cosh t

A.E. is m4 + 4 = 0

i.e., (m2 + 2)2 – 4m2 = 0

or [(m2 + 2) – 2m] [m2 + 2 + 2m] = 0

m2 – 2m + 2 = 0; m2 + 2m + 2 = 0

∴ m =
2 4 8

2

± –
; m = 

– –2 4 8

2

±

m =
2 2

2

± i
; m = 

– 2 2

2

± i
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m = 1 ± i, m = – 1 ± i

C.F. = et (C1 cos t + C2 sin t) + e–t (C3 cos t + C4 sin t)

P.I. =
cosh t

D4 4+

where cos h t = 
e et t+ –

2

=
1

2 44

e e

D

t t+
+

�
�
	



�
�

–

=
1

2 4

1

2 4

1 1

4 4

e

D

e

D

D D

t t

+
�
�
	



�
� +

+
�
�
	



�
�

→ →

–

–

=
1

2 5 5

1

5

1

2

1

5

e e
e e h t

t t
t t+

�
�
	



�
� = + =

–
–. cos� �

y = C.F. + P.I.

= et (C1 cos t + C2 sin t) + e–t (C3 cos t + C4 sin t) + 
1

5
 cos ht.

5. Solve d y

dx
– y e 1

3

3
x 2

= +� � .

Solution. Given equation can be written as

(D3 – 1) y = e2x + 2ex + 1

A.E. is m3 – 1 = 0

i.e., (m – 1) (m2 + m + 1) = 0

Hence, m = 1

D =
– 1 3

2

± i

C.F. = C e e C x C xx x

1

1

2
2 3

3

2

3

2
+ +

�
��

�
��

−
cos sin

P.I. =
1

13D –
 (e2x + 2ex + 1)

=
1

1

1

1
2

1

13
2

3 3
0

D
e

D
e

D
ex x

– – –
+ +

= P.I.1 + P.I.2 + P.I.3

P.I.1 =
e

D

x2

3 1–
D → 2
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=
e ex x2

3

2

2 1 7–
=

P.I.2 =
1

1
2

3D
ex

–
(D → 1)

=
1

1 1
2

3 –
ex

(Dr = 0)

Differentiate the Dr and multiply x

=
2

3 2

xe

D

x

(D → 1)

P.I.2 = x
ex

⋅ 2

3

P.I.3 =
1

13
0

D
e

–
(D → 1)

= – 1

P.I. =
e x ex x2

7

2

3
1+ –

∴ The general solution is

y = C.F. + P.I.

= C e e C x C x
e

x ex x x
x

1

1

2
2 3

23

2

3

2 7

2

3
1+ +

�
�
		



�
��

+ +
−

cos sin –

6. Solve (D3 + 2D2 – D – 2) y = 2 cos h x.

Solution. Given equation is

(D3 + 2D2 – D – 2) y = 2 cosh x

A.E. is m3 + 2m2 – m – 2 = 0

m2 (m + 2) – 1 (m + 2) = 0

(m + 2) (m2 – 1) = 0

(m + 2) (m + 1) (m – 1) = 0

m = – 2, – 1, 1

C.F. = C1 e–2x + C2 e–x + C3 ex

P.I. =
1

2 23 2D D D+ – –
 2 cos h x where cos h x

e ex x

= +�
��

�
��

−

2

=
2

2 2 23 2D D D

e ex x

+
+�

��
�
��– –

–

=
e

D D D

e

D D D

x x

3 2 3 22 2 2 2+
+

+– – – –

–

= P.I.1 + P.I.2
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P.I.1 =
e

D D D

x

3 22 2+ – –
(D → 1)

=
1

1 2 1 1 23 2+  � – –
ex

(Dr = 0)

=
x e

D D

x

3 4 12 + –
(D → 1)

=
x ex

6

P.I.2 =
1

2 23 2D D D
e x

+ – –
–

(D → – 1)

=
1

1 2 1 1 2
3 2

– – – – –

–

 �  �  �+
e x

(Dr = 0)

=
x

D D
e x

3 4 12 + –
–

(D → – 1)

=
– –x e x

2

P.I. =
x e x ex x

6 2
–

−

∴ y = C.F. + P.I.

= C1 e–2x + C2 e–x + C3 ex + 
x e x ex x

6 2
–

−

⋅

Type 2

1. Solve (D2 + 9) y = cos 4x.

Solution. Given equation is (D2 + 9) y = cos 4x

A.E. is m2 + 9 = 0

i.e., m = ± 3i

C.F. = C1 cos 3x + C2 sin 3x

P.I. =
1

9
4

2D
x

+
cos (D2 → – 42 = – 16)

=
1

16 9
4

1

7
4

–
cos – cos

+
=x x

∴ The general solution is

y = C.F. + P.I.

= C1 cos 3x + C2 sin 3x –
1

7
 cos 4x.
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2. Solve (D2 + D + 1) y = sin 2x.

Solution. The A.E. is

m2 + m + 1 = 0

i.e., m =
– – –1 1 4

2

1 3

2

±
=

± i

Hence the C.F. is

C.F. = e C x C x
x

−
+

�
�
		



�
��

2
1 2

3

2

3

2
cos sin

P.I. =
1

1
2

2D D
x

+ +
sin (D2 → – 22)

=
1

2 1
2

2–
sin

+ +D
x

=
1

3
2

D
x

–
sin

Multiplying and dividing by (D + 3)

=
D x

D

+ 3 2

92

 � sin

–

=
D x

x x
+

= +
3 2

2 9

1

13
2 2 3 2

2

 �  �sin

– –

–
cos sin

∴ y = C.F. + P.I. = e C x C x
x−

+
�
�
		



�
��

2
1 2

3

2

3

2

1

3
cos sin –  (2 cos 2x + 3 sin 2x).

3. Solve (D2 + 5D + 6) y = cos x + e–2x.

Solution. The A.E. is

m2 + 5m + 6 = 0

i.e., (m + 2) (m + 3) = 0

m = – 2, – 3

C.F. = C1 e–2x + C2 e–3x

P.I. =
1

5 62D D+ +
⋅  [cos x + e–2x]

=
cos –2x

D D

e

D D

x

2 25 6 5 6+ +
+

+ +

= P.I.1 + P.I.2

P.I.1 =
cos x

D D2 5 6+ +
(D2 = – 12)

=
cos

–

cosx

D

x

D1 5 6 5 52 + +
=

+
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=
1

5

1

1 1

cos –

–

x D

D D

 �
 �  �+

=
1

5

1

12

D x

D

– cos

–

 �

=
1

5 1 12

– sin – cos

– –

x x

=
– sin cos

–

1

5 2

x x+

=
1

10
sin cosx x+ �

P.I.2 =
e

D D

x– 2

2 5 6+ +
(D → – 2)

=
e x–2

– –2 5 2 6
2 � + × +

(Dr = 0)

Differential and multiply ‘x’

=
x e

D

x–2

2 5+
(D → – 2)

=
x e x e

x e
x x

x
–2 –2

–2

–2 2 5 1 � + = =

P.I. =
1

10
 (sin x + cos x) + x e– 2x

∴ The general solution is

y = C.F. + P.I.

y = C1 e–2x + C2 e–3x + 
1

10
 (sin x + cos x) + x e–2x.

4. Solve (D2 + 3D + 2) y = cos2 x.

Solution. The A.E. is

m2 + 3m + 2 = 0

i.e., (m + 1) (m + 2) = 0

∴ m = – 1, – 2

C.F. = C1 e–x + C2 e–2x

P.I. =
1

3 22
2

D D
x

+ +
. cos

where cos2 x =
1 2

2

+ cos x
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=
1

3 2

1 2

22D D

x

+ +
+�

�	


��

cos

=
1

2

1

3 2

1

3 2
2

2
0

2D D
e

D D
xx

+ +
+

+ +
�
�
	



�
�cos

=
1

2 1 2P.I. P.I.+

P.I.1 =
e

D D

x0

2 3 2+ +
(D → 0)

=
e x0

2

1

2
=

P.I.2 =
cos 2

3 22

x

D D+ +
(D2 →  – 22)

=
cos

–

2

2 3 22

x

D+ +

=
cos

–

2

3 2

3 2

3 2

x

D

D

D
×

+
+

=
3 2 2

9 42

D x

D

+ � cos

–
(D2 → – 22)

=
– sin cos

– –

3 2 2 2 2

9 2 4
2

x x⋅ + �
 �

=
– sin cos

–

6 2 2 2

40

x x+

=
6 2 2 2

40

3 2 2

20

sin – cos sin – cosx x x x=

P.I. =
1

2

1

2

3 2 2

20
+�

�	


��

sin – cosx x

=
1

4

3 2 2

40
+ sin – cosx x

y = C.F. + P.I.

= C1 e–x + C2 e–2x + 
1

4

1

40
+  (3 sin 2x – cos 2x).
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5. Solve (D3 + D2 – D – 1) y = cos 2x.

Solution. The A.E. is

m3 + m2 – m – 1 = 0

i.e., m2 (m + 1) – 1 (m + 1) = 0

(m + 1) (m2 – 1) = 0

m = – 1, m2 = 1

m = – 1, m = ± 1

∴ m = – 1, – 1, 1

C.F. = C1 ex + (C2 + C3 x) e–x

P.I. =
1

1
2

2D D D
x3 + – –

cos (D2 → – 22)

=
1

1 1
2

2D D
x

+ � � �–
cos

=
1

1 2 1
2

2D
x

+ � � �– –
cos

=
–

cos
1

5

1

1
2

D
x

+

=
– cos –

–

1

5

2

1

1

1

x

D

D

D+
×

=
– – cos

–

1

5

1 2

12

D x

D

 �
(D2 → – 22)

=
– – sin – cos

– –

1

5

2 2 2

2 12

x x�
�
	



�
�

=
– 1

25
 (2 sin 2x + cos 2x)

∴ The general solution is

y = C.F. + P.I.

= C1 ex + (C2 + C3 x) e–x – 
1

25
 (2 sin 2x + cos 2x).

6. Solve (D3 + 1) y = sin 3x – cos2 (1/2) x.

Solution. The A.E. is

m3 + 1 = 0

i.e., (m + 1) (m2 – m + 1) = 0

m + 1 = 0, m2 – m + 1 = 0

m = – 1
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m =
1 1 4

2

± –

m =
1 3

2

± i

C.F. = C1 e–x + ex/2 C x C x2 3
3

2

3

2
cos sin+

�
�
		



�
��

P.I. =
1

1
3

1

23
2

D
x x

+
�
��

�
��sin – cos

=
1

1
3

1

23D
x

x

+
+�

��
�
��sin –

cos

=
1

1
3

1

2

1

1

1

2

1

13 3
0

3D
x

D
e

D
xx

+ + +
sin – . – cos

= P.I.1 – P.I.2 – P.I.3

P.I.1 =
1

1
3

3D
x

+
sin

=
1

1
3

2D D
x

⋅ +
sin (D2 → – 32)

=
1

9 1
3

–
sin

D
x

+

=
1

1 9
3

1 9

1 9–
sin

D
x

D

D
×

+
+

=
1 9 3

1 81 2

+ D x

D

 � sin

–
(D2 → – 32)

=
sin cos

– –

3 27 3

1 81 32

x x+

� �

P.I.1 =
1

730
 (sin 3x + 27 cos 3x)

P.I.2 =
1

2 1

0

3

e

D

x

+
(D → 0)

=
1

2

P.I.3 =
1

2

1

13D
x

+
. cos

=
1

2

1

12D D
x

⋅ +
cos (D2 → – 12)
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=
1

2

1

1–
cos

D
x

+

=
1

2

1

1

1

1–
cos

D
x

D

D
×

+
+

=
1

2 1 2

cos – sin

–

x x

D

�
�
	



�
� (D2 → – 12)

=
1

2 2

cos – sinx x

P.I.3 =
1

4
 (cos x – sin x)

P.I. =
1

730
 (sin 3x + 27 cos 3x) − 1

2

1

4
–  (cos x – sin x).

7. Solve: (D2 + 4) y = sin2 x.

Solution. The A.E. is

m2 + 4 = 0

i.e., m2 = – 4

m = ± 2i

C.F. = C1 cos 2x + C2 sin 2x

P.I. =
1

42
2

D
x

+
sin

where sin2 x = 
1 2

2

– cos x

=
1

4

1 2

22D

x

+
�
�	



��

– cos

=
1

2

1

42D +
 (1 – cos 2x)

=
1

2 4

2

4

0

2 2

e

D

x

D

x

+ +
�
�
	



�
�–

cos

=
1

2
P.I. – P.I.1 2

P.I.1 =
e

D

x0

2 4+
(D → 0)

=
1

4

P.I.2 =
1

4
2

2D
x

+
cos (D2 → – 22)

=
1

2 4
2

2–
cos

+
x (Dr = 0)
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Differentiate the Dr and multiplying by ‘x’

=
1

2
2

D
x x

D

D
cos ×

=
– sinx x

D

2 2

2 2

⋅
(D2 → – 22)

=
– sin

–

2 2

2 22

x x

� �

=
2 2

8

2

4

x x x xsin sin=

P.I. =
1

2

1

4

2

4
–

sinx x�
�	



��

=
1

8

2

8
–

sinx x

∴ The general solution is

y = C.F. + P.I.

y = C1 cos 2x + C2 sin 2x + 
1

8 8
–

x
 sin 2x.

8. Solve y″ + 9y = cos 2x · cos x.

Solution. We have

(D2 + 9) y = cos 2x cos x

A.E. is m2 + 9 = 0

m2 = – 32

m = ± 3i

C.F. = C1 cos 3x + C2 sin 3x

P.I. =
cos cos2

92

x x

D

⋅
+

where cos 2x · cos x = 1/2 (cos x + cos 3x)

=
1

2

3

92

cos cosx x

D

+
+

�
�
	



�
�

=
1

2 9

1

2

3

92 2

cos cosx

D

x

D+
+

+

= P.I.1 + P.I.2

P.I.1 =
1

2 92

cos x

D +
(D2 → –12)
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=
1

2 8

1

16

cos
cos

x
x=

P.I.2 =
1

2

3

92

cos x

D +
(D2 → – 32)

=
1

2

3

3 92

cos

–

x

+
(Dr = 0)

Differentiate the Dr and multiplying by ‘x’

=
1

2

3

2

x x

D

D

D

cos ×

=
1

2

3 3

2 2

x x

D

– sin � ⋅
(D2 → – 32)

=
– sin

–3

3 3

4 2

x x

� �

=
– sin

–

3 3

36

x x

P.I.2 =
x xsin 3

12

∴ P.I. =
1

16

1

12
3cos sinx x x+

∴ The general solution is
y = C.F. + P.I.

= C1 cos 3x + C2 sin 3x + 
1

16
 cos x + 

1

12
x sin 3x.

�
������� ���

Solve the following equations:

1. (D2 + 1) y = sin 2x. Ans. y C x C x x= +�
�	



��1 2

1

3
2cos sin – sin

2. (D2 – 4) y = sin 2x + cos 3x.
Ans. y C e C e x xx x= + −�
�	



��1

2
2

1

8
2

1

13
3–2 – sin cos

3. (D2 + 9) y = sin 3x.
Ans. y C x C x

x
x= +�

�	


��1 23 3

6
3cos sin – cos

4. (D2 + 16) y = cos 4x.
Ans. y C x C x

x
x= + +�

�	


��1 24 4

8
4cos sin sin

5. (D2 + 1) y = sin x sin 2x.
Ans. y C x C x x x x= + + +�
�	



��1 2

1

16
4 3cos sin sin cos �



DIFFERENTIAL EQUATIONS–I 237

6. (D2 – 2D – 8) y = 4 cos 2x. Ans. y C e C e x xx x= + +�
�	



��1

4
2

1

10
3 2 2–2 – cos sin �

7. (D2 + 5D + 6) y = sin x + e–2x. Ans. y C e C e xe x xx x x= + + −�
�	



��1 2

1

10
–3 –2 –2 – cos sin �

8. (D2 + 3D + 2) y = 4 cos2 x. Ans. y C e C e x xx x= + + + −�
�	



��1 2 1

1

10
3 2 2– –2 sin cos �

9. (D2 – 4) y = cos x cos 2x. Ans. y C e C e x xx x= + +�
��

�
��

�
�	



��1

2
2

1

2

1

13
3

1

5
–2 – cos cos

10. (D2 – 4D + 4) y = sin 2x + cos 2x. Ans. y C C x e x xx= + + −�
�	



��1 2

2 1

8
2 2 �  �cos sin

11. (D2 + 8D + 25) y = 48 cos x – 16 sin x. Ans. y e C x C x xx= + +–4 cos sin cos1 23 3 2 �

12. (D3 + D2 + D + 1) y = sin 3x.

Ans. y C e C x C x x xx= + + + −�
�	



��1 2 3

1

80
3 3 3– cos sin cos sin �

13. (D4 – 2D2 + 1) y = cos x. Ans. y C C x e C C x e xx x= + + + +�
�	



��1 2 3 4

1

4
 �  � – cos

14. (D3 + 8) y = sin 2x. Ans. y C e e C x C x x xx x= + + + +�
�	



��1 2 33 3

1

16
2 2–2 cos sin cos sin� �  �

15. (D4 – 16) y = sin x cos x. Ans. y C e C e C x C x x xx x= + + + +�
�	



��1

2
2 3 42 2

1

64
2–2 cos sin cos

16. (D – 1)3 y = cos2 x. Ans. y C C x C x e x xx= + + −�
�	



��1 2 3

2 1

2

1

250
2 2 11 2� �  �– – sin cos

17. (D3 – 3D + 2) y = sin 2x. Ans. y C C x e C e x xx x= + + + +�
�	



��1 2 3

1

100
7 2 2 �  �–2 cos sin

18. (D2 + 1)(D2 + 4) y = cos 2x + sin x.

Ans. y C x C x C x C x x x x x= + + +�
�	



��1 2 3 42 2

1

12
2

1

6
cos sin cos sin – sin – cos

19.
d y

dx

3

3  + y = 65 cos (2x + 1) + e–x.

Ans. y C e e C x C x x x xex
x

x= + +
�
��
��

�
��
��

+ + + +
�
�
	
	



�
�
�1

2
2 3

3

2

3

2
2 1 8 2 1

1

3
– –cos sin cos – sin �  �
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Type 3

1. Solve y″ + 3y′ + 2y = 12x2.

Solution. We have (D2 + 3D + 2) y = 12x2

A.E. is m2 + 3m + 2 = 0

i.e., (m + 1) (m + 2) = 0

⇒ m = –1, – 2

C.F. = C1e
–x + C2e–2x

P.I. =
12

3 2

2

2

x

D D+ +

We need to divide for obtaining the P.I.

6x2 – 18x + 21

2 + 3D + D2 12x2

12x2 + 36x + 12

– 36x – 12

– 36x – 54

42

42

0

Hence, P.I. = 6x2 – 18x + 21

∴ The general solution is

y = C.F. + P.I.

y = C1e
–x + C2e

–2x + 6x2 – 18x + 21.

2. Solve d y

dx
2

dy

dx
y 2x x .

2

2
2+ + = +

Solution. We have (D2 + 2D + 1) y = 2x + x2

A.E. is m2 + 2m + 1 = 0

i.e., (m + 1)2 = 0

i.e., (m + 1) (m + 1) = 0

⇒ m = – 1, – 1

C.F. = (C1 + C2 x) e– x

P.I. =
2

2 1

2

1 2

2

2

2

2

x x

D D

x x

D D

+
+ +

=
+

+ +

Note:
3D(6x2) = 36x

D2(6x2) = 12
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x2 – 2x + 2

1 + 2D + D2 x2 + 2x

x2 + 4x + 2

– 2x  – 2

– 2x  – 4

2

2

0

∴ P.I. = x2 – 2x + 2

∴ y = C.F. + P.I.

= (C1 + C2 x) e–x + (x2 – 2x + 2).

3. Solve 
d y

dx
5

dy

dx
6y x

2

2
2+ + = .

Solution. We have

(D2 + 5D + 6) y = x2

A.E. is m2 + 5m + 6 = 0

(m + 2) (m + 3) = 0

i.e., m = – 2, – 3

C.F. = C1e
–2x + C2e

–3x

P.I. =
x

D D

x

D D

2

2

2

25 6 6 5+ +
=

+ +

P.I. is found by division method

x x2

6

5

18

19

108
– +

6 + 5D + D2 x2

x
x2 5

3

1

3
+ +

– –
5

3

1

3

x

−5

3

25

18

x
–

19

18

19

18

0

5
6

5

3

2

D
x x�
��
�
��

=

D
x2

2

6

1

3

�
��
�
��

=

5
5

18

25

18
D

x– –�
��

�
�� =
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∴ P.I. =
x x2

6

5

18

19

108
– +

=
1

108
 (18x2 – 30x + 19)

∴ y = C.F. + P.I.

= C1 e– 2x + C2 e– 3x + 
1

108
 (18x2 – 30x + 19).

4. Solve (D3 + 2D2 + D) y = x3.

Solution. A.E. is

m3 + 2m2 + m = 0

i.e., m (m2 + 2m + 1) = 0

i.e., m (m + 1)2 = 0

⇒ m = 0, –1, –1

C.F. = C1 + (C2 + C3 x) e– x

P.I. =
x

D D D

x

D D D

3

3 2

3

2 32 2+ +
=

+ +

x4/4 – 2x3 + 9x2 – 24x

D + 2D2 + D3 x3

x3 + 6x2 +  6x

– 6x2 –   6x

– 6x2 – 24x – 12

   18x + 12

   18x + 36

  – 24

– 24

0

∴ P.I. =
x4

4
 – 2x3 + 9x2 – 24x

∴ y = C.F. + P.I.

= C1 + (C2 + C3 x) e–x + 
x4

4
 – 2x3 + 9x2 – 24x.

Note:
x

D

3

= x dx
x3

4

4
=�

2
4

2
4

D
x�
��
�
�� = 6x2

D
x3

4

4

�
��
�
�� = 6x

– 6 2x

D
= – 6 2x dx�  = – 2x3

18x

D
= 18 9 2x dx x=�

– 24

D
= – –24 24 � dx x=�
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�
������� ���

Solve the following equations:

1. (D2 – 9) y = 2x – 1. Ans. y C e C e xx x= +�
�	



��1

3
2

3 1

9
2 1– – – �

2. (D2 + 4) y = x2 – x. Ans. y C x C x x x= + +�
�	



��1 2

22 2
1

8
2 2 1cos sin – –� �

3. (D2 – 4D + 4) y = x2. Ans. y C C x e x xx= + + + +�
�	



��1 2

2 21

8
2 4 3 � � �

4. (D2 + D – 6) y = x. Ans. y C e C e xx x= + +�
�	



��1

2
2

3 1

36
6 1– –  �

5. (D2 + 2D + 1) y = x2 + 2x. Ans. y C C x e x xx= + + +1 2
2 2 2 � – –

6. (D2 – 2D + 3) y = x2. Ans. y e C x C x x xx= + + + +�
�	



��1 2

22 2
1

27
9 12 2cos sin� � � �

7. (D2 – 5D + 6) y = x2 + x – 2. Ans. y C e C e x xx x= + + +�
�	



��1

2
2

3 21

54
9 24 1–� �

8. (D3 + 1) y = x3. Ans. y C e e C x C x xx x
= + +

�
��

�
��

+
�
�
	
	



�
�
�1

2
2 3

33

2

3

2
6– cos sin –

9. (D3 – D2) y = x2 – 3x + 1. Ans. y C C x C e
x

xx= + +
�
�
	



�
�1 2 3

3

12
2– – �

10. (D3 + 8) y = x4 + 2x + 1.

Ans. y C e e C x C x x xx x= + + + +�
�	



��1

2
2 3

43 3
1

8
1– cos sin –� � � �

Type 4

1. Solve 
d y

dx
2

dy

dx
– 3y e cos x

2

2
x+ = .

Solution. We have

(D2 + 2D – 3) y = ex cos x

A.E. is m2 + 2m – 3 = 0

i.e., (m + 3) (m – 1) = 0

i.e., m = – 3, 1

C.F. = C1 e– 3x + C2 ex

P.I. =
1

2 32D D
e xx

+ –
cos

Taking ex outside the operator and changing D to D + 1
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= e
D D

xx 1

1 2 1 3
2+ + + �  � –

cos

= e
D D

xx 1

42 +
cos (D2 → – 12)

= e
D

xx 1

1 4–
cos

+

= e
x

D

D

D
x cos

–4 1

4 1

4 1
×

+
+

�
�	



��

= e
x x

D
x – sin cos

–

4

16 12

+�
�
	



�
� (D2 → – 12)

= e
x xx – sin cos

–

4

17

+�
�	



��

=
ex

17
 (4 sin x – cos x)

∴ y = C.F. + P.I.

y = C1 e–3x + C2 ex + 
ex

17
 (4 sin x – cos x).

2. Solve (D3 + 1) y = 5ex x2.

Solution. A.E. is

m3 + 1 = 0

i.e., (m + 1) (m2 – m + 1) = 0

(m + 1) = 0, m2 – m + 1 = 0

m = – 1

m =
1 3

2

± i

C.F. = C e e C x C xx
x

1
2

2 3
3

2

3

2
– cos sin+ +

�
��

�
��

P.I. =
1

1
5

3
2

D
e xx

+

Taking ex outside the operator and changing D to D + 1

= e
D

xx 1

1 1
5

3
2

+ +
⋅

 �

= e
x

D D D
x 5

3 3 2

2

3 2+ + +
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=
5

2

2

2 3 3

2

2 3

e x

D D D

x

+ + +
�
�
	



�
�

(For a convenient division we have multiplied and divided by 2)

x2 – 3x + 
3

2

2 + 3D + 3D2 + D3 2x2

2x2 + 6x + 6

– 6x – 6

– 6x – 9

3

3

0

∴ P.I. = x x
ex

2 3
3

2

5

2
− +�

�
�
� ⋅

=
5

4

ex

 (2x2 – 6x + 3)

y = C.F. + P.I.

= C e e C x C xx
x

1
2

2 3
3

2

3

2
– cos sin+ +

�
��
��

�
��
��

+
5

4

ex

(2x2 – 6x + 3).

3. Solve (D2 – 4D + 3) y = e2x sin 3x.

Solution. A.E. is
m2 – 4m + 3 = 0

i.e., (m – 1) (m – 3) = 0
m = 1, 3

C.F. = C1 ex + C2 e3x

P.I. =
1

4 3
3

2
2

D D
e xx

–
sin

+
Taking e2x outside the operator and changing D to D + 2

= e
D D

xx2
2

1

2 4 2 3
3

+ + +
⋅

 �  �–
sin

= e
D

xx2
2

1

1
3

–
sin

�
�
	



�
� (D2 → – 32)

= – sin
1

10
32e xx

y = C.F. + P.I.

= C1 ex + C2 e3x –
1

10
 e2x sin 3x.
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4. Solve 
d y

dx
4y 2e sin x

2

2
x 2+ = .

Solution. We have

(D2 + 4) y = 2ex sin2 x

A.E. is m2 + 4 = 0

i.e., m2 = – 4

m = ± 2i

C.F. = C1 cos 2x + C2 sin 2x

P.I. =
1

4
2

2
2

D
e xx

+
sin

where sin2 x = 
1 2

2

– cos x

=
1

42D +
 ex (1 – cos 2x)

=
1

42D +
 (ex – ex cos 2x)

=
e

D

e x

D

x x

2 24

2

4+ +
–

cos

= P.I.1 – P.I.2

P.I.1 =
1

42D
ex

+
(D → 1)

=
ex

5

P.I.2 =
e x

D

x cos 2

42 +
Taking ex outside the operator and changing D to D + 1

= e
D

xx 1

1 4
2

2+ + �
cos

= e
D D

xx 1

2 1 4
2

2 + + +
�
�
	



�
� cos

= e
D D

xx 1

2 5
2

2 + +
�
�
	



�
� cos (D2 → – 22)

= e
D

xx 1

2 2 5
2

2–
cos

+ +

= e
D

x
D

D
x . cos

–

–

1

2 1
2

2 1

2 1+
×
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= e
x x

D
x – sin – cos

–

4 2 2

4 12

�
�
	



�
� (D2 → – 22)

= e
x xx – sin – cos

–

4 2 2

17

�
�	



��

=
ex

17
 (4 sin 2x + cos 2x)

∴ y = C.F. + P.I.

y = C1 cos 2x + C2 sin 2x + 
ex

17
 (4 sin 2x + cos 2x).

5. Solve (D2 – 4D + 3) y = 2x e3x.

Solution. A.E. is

m2 – 4m + 3 = 0

i.e., (m – 1) (m – 3) = 0

i.e., m = 1, 3

C.F. = C1 ex + C2 e3x

P.I. =
1

4 3
2

2
3

D D
x e x

– +

Taking e3x outside the operator and changing D → D + 3

= e
x

D D

x3
2

2

3 4 3 3
.

–+ + + �  �

= e
x

D D
x3

2

2

2+
�
�
	



�
�

By division method

x2/2 – x/2

2D + D2 2x

2x + 1

– 1

– 1

0

P.I. = e
x xx3

2

2 2
–

�
��

�
��

y = C.F. + P.I.

= C1 ex + C2 e3x + e
x xx3

2

2 2
–

�
��

�
�� ·

Note:
2

2

x

D
= x dx

x=�
2

2

– 1

2D
=

– 1

2 2
dx

x
= −�



246 ENGINEERING MATHEMATICS—II

Type 5

1. Solve 
d y

dx
4y x sin x

2

2
+ = .

Solution. We have

(D2 + 4) y = x sin x

A.E. is m2 + 4 = 0

m2 = – 4

m = ± 2i

C.F. = C1 cos 2x + C2 sin 2x

P.I. =
1

42D
x x

+
sin

Let us use
xV

f D � = x
f D

f D

V

f D
–

′�
�
		



�
��

 �
 �  �

x x

D

sin
2 4+

= x
D

D

x

D
–

sin2

4 42 2+
�
�
	



�
�

+
(D2 → – 12)

=
x x

D

D x

D

sin
–

sin
2 2 24

2

4+ +

 �
� �

(D2 → – 12)

=
x x xsin

–
cos

3

2

32

=
x x xsin

–
cos

3

2

9

P.I. =
1

9
 (3x sin x – 2 cos x)

y = C.F. + P.I.

= C1 cos 2x + C2 sin 2x + 
1

9
 (3x sin x – 2 cos x).

2. Solve (D2 + 2D + 1) y = x cos x.

Solution. A.E. is

m2 + 2m + 1 = 0

i.e., (m + 1)2 = 0

m = – 1, – 1

C.F. = (C1 + C2 x) e–x

P.I. =
x x

D D

cos
.

2 2 1+ +
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Let us we have
xV

f D � = x
f D

f D

V

f D
– .

′�
�
		



�
��

 �
 �  �

= x
D

D D

x

D D
– .

cos2 2

2 1 2 12 2

+
+ +

�
�
	



�
�

+ +

=
x x

D D

D x

D D

cos
–

cos
2 2 22 1

2 2

2 1+ +
+

+ +

 �
� �

= P.I.1 – P.I.2

P.I.1 =
x x

D D

cos
2 2 1+ +

(D2 → – 12)

=
x x D

D D

cos ×
×2

=
– sinx x

D2 2 (D2 → – 12)

P.I.1 =
x

x
2

sin

P.I.2 =
2 2

2 12 2

D x

D D

+

+ +

 �
� �

cos
(D2 → – 12)

=
– sin cos2 2

2
2

x x

D

+

 �

=
– sin cos2 2

4 2

x x

D

+
(D2 = – 12)

=
2 2

4

sin cosx x−

=
1

2
 (sin x – cos x)

P.I. =
1

2

1

2
x xsin –  (sin x – cos x)

=
1

2
 (x sin x – sin x + cos x)

y = C.F. + P.I.

y = (C1 + C2 x) e– x + 
1

2
 (x sin x – sin x + cos x).
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3. Solve 
d y

dx
– y

2

2
 = x ex sin x.

Solution. We have the equation (D2 – 1) y = x ex sin x

A.E. is m2 – 1 = 0

m2 = 1

m = + 1, – 1

C.F. = C1e
x + C2e

–x

P.I. =
1

12D
x e xx

–
sin

Taking ex outside the operator and changing D → D + 1

= e
D

x xx 1

1 1
2+� � –

sin

= e
x x

D D
x sin

2 2+
�
�
�

�
�
�

Let us use
xV

f D� � = x
f D

f D

V

f D
–

′�
�
��

�
�
��

� �
� � � �

= e x
D

D D

x

D D
x – .

sin2 2

2 22 2

+
+

�
�
�

�
�
�

+
(D2 → – 12)

= e
x x

D

D

D D
xx sin

–
– sin

2 1

2 1

22 2

+

+

	

�
��


��
��

� �
� �

= e
x D x

D

D

D D
xx 2 1

4 1

2 1

1 4 42 2

+ +

+ +

	

�
��


��
��

� � � �
� �

sin

–
–

–
sin

= e
x x x x D D

D
xx 2

5

2 1 4 3

16 92

cos sin

–

–

–
sin

+
+

+	


�


�
�

� � � �

= e x x x D D xx –
cos sin – – sin

1

5
2

2

25
4 32+ +	
�

��� � � �

= e x x x x x xx –
cos sin – – sin cos – sin

1

5
2

2

25
4 3+ +�

��
	
�

��
� �

P.I. =
– 1

25
e x

 {(5x – 14) sin x + 2 (5x + 1) cos x}

∴ The general solution is

y = C.F. + P.I.

= C1e
x + C2 e–x –

1

25
ex

 {(5x – 14) sin x + 2 (5x + 1) cos x}.
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4. Solve d y

dx
– 4

dy

dx
4y

2

2
+  = 3x2 e2x sin 2x.

Solution. We have

(D2 – 4D + 4) y = 3x2 e2x sin 2x

A.E. is m2 – 4m + 4 = 0

i.e., (m – 2)2 = 0

m = 2, 2

C.F. = (C1 + C2 x) e2x

P.I. =
1

2
2

D –� �
 . 3x2 e2x sin 2x

Taking e2x outside the operator and changing D to D + 2

= 3
1

22
2

2e
D

x xx sin

We shall find 
1

2D
 x2 sin 2x Integrating twice

1

D
 (x2 sin 2x) = x x dx2 2sin�

Applying Integration by parts

= x
x

x
x x2 2

2
2

2

4
2

2

8

– cos
–

– sin cos�
��

�
��

�
��

�
�� + �

��
�
��

=
– cos sin cosx x x x x2 2

2

2

2

2

4
+ +

Hence,
1

2
2

2

D
x xsin� � =

–
cos sin cos

1

2
2

1

2
2

1

4
22x x dx x x dx x dx+ +�� �

=
– sin

–
– cos – sin1

2

2

2
2

2

4
2

2

8
2x

x
x

x x�
��

�
�� + �

��
�
��

�
��

�
��

+ �
��

�
��

�
��

�
��

�
��

�
��

+1

2

2

2
1

2

4

1

4

2

2
x

x x x– cos
–

– sin
.
sin

=
– 1

8
 (2x2 sin 2x + 4x cos 2x – 3 sin 2x)

∴ P.I. =
– 3

8
2e x

 (2x2 sin 2x + 4x cos 2x – 3 sin 2x)

∴ The general solution is

y = C.F. + P.I.

= (C1 + C2 x) e ex x2 23

8
–  (2x2 sin 2x + 4x cos 2x – 3 sin 2x).
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5. Solve d y

dx
– 2

dy

dx
y

2

2
+  = x ex sin x.

Solution. We have

(D2 – 2D + 1) y = xex sin x

A.E. is m2 – 2m + 1 = 0

i.e., (m – 1)2 = 0

m = 1, 1

C.F. = (C1 + C2 x) ex

P.I. =
1

2 12D D
x e xx

–
sin

+

=
1

1
2

D
x e xx

–
sin

� �
(D → D + 1)

= e
D

x xx 1
2

sin

Now
1

2D
x xsin� � =

1

D
x x dx⋅ � sin

Since 
1

D
 is the Integration

=
1

1
D

x x x– cos – – sin� � � �

On integration by parts

=
1

D
 (– x cos x + sin x)

= – cos sinx x dx x dx+ ��
= – sin – – cos – cosx x x x1 � �� �
= – x sin x – 2 cos x

= – (x sin x + 2 cos x)

Hence P.I. = – ex (x sin x + 2 cos x).

∴ The complete solution is

y = C.F. + P.I.

= (C1 + C2x) ex – ex (x sin x + 2 cos x).
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��������� �	


Solve the following equations:

1. (D2 + 9) y = x cos x. Ans. y C x C x x x x= + + +�
��

�
��1 23 3

1

32
4cos sin cos sin� �

2. (D2 – 2D + 1) y = x sin x. Ans. y C C x e x xx= + + +�
��

�
��1 2

1

2
1� � � �– sin cos –

3. (D2 – 1) y = x sin 3x. Ans. y C e C e x x xx x= + +�
��

�
��1 2

1

50
5 3 3 3– – sin cos� �

4. (D2 – 3D + 2) y = x cos 2x.

Ans. y C e C e x x x x xx x= + + +�
��

�
��1 2

2 1

20
3 2 2

1

200
7 2 24 2– ( sin cos ) – sin cos� �

5.
d y

dx
a y

2

2
2+  = x cos ax. Ans. y C ax C ax

a
ax ax x ax= + + +�

��
�
��1 2 2

21

4
cos sin sin cos� �

6.
d y

dx
y

2

2
–  = x2 cos x. Ans. y C e C e x x x xx x= +�

��
�
��1 2

21

2
1 2– – – cos – sin� �

7. (D2 – 4D + 4) y = 4x2 e2x cos 2x.

Ans. y C C x e e x x x xx x= +�
��

�
��1 2

2 2 21

2
2 3 2 4 2� � � �– – cos – sin

8.
d y

dx
y

4

4
–  = x sin x.

Ans. y C x C x C e C e x x x xx x= + + + + +�
��

�
��1 2 3 4

21

8
2 5 3cos sin cos – sin– � �

5.6 METHOD OF UNDETERMINED COEFFICIENTS

Here we consider a method of finding the particular integral of the equation f (D) y = φ(x). When
φ(x) is of some special forms. In this method first we assume that the particular integral is of certain
form with some coefficients. Then substituting the value of this particular integral in the given
equation and comparing the coefficients, we get the value of these “undetermined” coefficients.
Therefore, the particular integral can be obtained. This method is applicable only when the equation
is with constant coefficients.

In the following cases we give the forms of the particular integral corresponding to a special
form of φ(x).

Case (i): If φ(x) is polynomial of degree n

i.e., φ(x) = a0 + a1 x + ....... an xn

Then particular integral is of the form

yp = a0 + a1 x + a2 x2 + ........ + an xn
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Example: φ (x) = 3x2

yp = a + bx + cx2

Case (ii): If φ (x) = emx then the particular

integral is yp = a emx

Example: 5ex is the φ (x)

∴ φ (x) = 5ex

∴ Particular Integral yp = a ex.

Case (iii): If φ (x) = sin ax or cos ax or p sin ax + q cos ax

then P.I. is of the form yp = A cos ax + B sin ax

Example 1: φ (x) = 2 sin 5x

∴ yp = a cos 5x + b sin 5x

Example 2: φ (x) = 3 cos 2x

∴ yp = a cos 2x + b sin 2x

Case (iv): If φ (x) = emx sin bx

or φ (x) = emx cos bx

or φ (x) = emx (a sin bx + b sin bx) then

Particular Integral of the form

yp = emx (a sin bx + b cos bx)

Example: φ (x) = 2e2x cos 3x

yp = e2x (a cos 3x + b sin 3x).

������ ���� ��������

1. Solve by the method of undetermined coefficients,

y″ – 3y′ + 2y = x2 + x + 1.

Solution. For the given equation is (D2 – 3D + 2) y = x2 + x + 1

A.E. is m2 – 3m + 2 = 0

i.e., (m – 1) (m – 2) = 0

m = 1, 2

C.F. = C1 ex + C2 e2x

Here φ (x) = x2 + x + 1 and 0 is not a root of the A.E.

We assume for P.I. in the form

yp = a + bx + cx2 ...(1)

We have to find a, b and c such that

y″p – 3y′p + 2yp = x2 + x + 1 ...(2)
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From Eqn. (1) y′p = b + 2cx

y″p = 2c

Now Eqn. (2) becomes

2c – 3 (b + 2cx) + 2 (a + bx + cx2) = x2 + x + 1

(2c – 3b + 2a) + (– 6c + 2b) x + (2c) x2 = x2 + x + 1

Equating the coefficients

2c – 3b + 2a = 1 ...(3)

– 6c + 2b = 1 ...(4)

2c = 1 ...(5)

Eqn. (5) ⇒ c =
1

2

Eqn. (4) ⇒
– 6

2
2+ b = 1

2b = 1 + 3

b = 2

Eqn. (3) ⇒
2

2
 – 3 × 2 + 2a = 1

2a = 1 – 1 + 6

a = 3

Eqn. (1) becomes

P.I. = yp = 3 + 2x + 
1

2
x2

∴ The general solution is

y = C.F. + P.I.

y = C1 ex + C2 e2x + 3 2
1

2
2+ +�

��
�
��x x ·

2. Solve by the method of undetermined coefficients

y″ – 2y′ + 5y = e2x.

Solution. We have

(D2 – 2D + 5) y = e2x

A.E. is m2 – 2m + 5 = 0

m = 1 ± 2i

C.F. = ex (C1 cos 2x + C2 sin 2x)

Here φ (x) = e2x and 2 is not a root of the A.E.

We assume for P.I. in the form yp = ae2x ...(1)

We have to find ‘a’ such that

y″p – 2y′p + 5yp = e2x ...(2)
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From Eqn. (1) y′p = 2a e2x

y″p = 4a e2x

Eqn. (2) ⇒ 4a e2x – 4a e2x + 5a e2x = e2x

5a e2x = e2x

Equating the coefficients

5a = 1

a =
1

5

Eqn. (1), yp =
1

5
2e x

∴ y = C.F. + P.I.

y = ex (C1 cos 2x + C2 sin 2x) + 
1

5
2e x

·

3. Solve using the method of undetermined coefficients

y″ – 5y′ + 6y = sin 2x.

Solution. We have

(D2 – 5D + 6) y = sin 2x

A.E. is m2 – 5m + 6 = 0

i.e., (m – 2) (m – 3) = 0

m = 2, 3

∴ C.F. = C1 e2x + C2 e3x

φ (x) = sin 2x and 0 is not a root of the A.E.

We assume for P.I. in the form

yp = a cos 2x + b sin 2x ...(1)

We have to find ‘a’ and ‘b’ such that

y″p – 5y′p + 6yp = sin 2x ...(2)

From Eqn. (1), y′p = – 2a sin 2x + 2b cos 2x

y″p = – 4a cos 2x – 4b sin 2x

Eqn. (2) becomes

– 4a cos 2x – 4b sin 2x – 5 (– 2a sin 2x + 2b cos 2x) + 6 (a cos 2x + b sin 2x) = sin 2x

(10a + 2b) sin 2x + (2a – 10b) cos 2x = sin 2x

Comparing the coefficients, we get

10a + 2b = 1

and 2a – 10b = 0

Solving we get, a =
5

52

b =
1

52
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Eqn. (1) becomes

P.I. = yp = 
5

52
 cos 2x + 

1

52
 sin 2x

y = C.F. + P.I. = C1 e2x + C2 e3x + 
1

52
 (cos 2x + sin 2x).

4. Solve by the method of undetermined coefficients

y″ + y′ – 2y = x + sin x.

Solution. We have
(D2 + D – 2) y = x + sin x

A.E. is m2 + m – 2 = 0
i.e., (m – 1) (m + 2) = 0, m = 1, – 2

C.F. = C1e
x + C2e– 2x

φ (x) = x + sin x and 0 is not root of the A.E.
We assume for P.I. in the form

yp = a + bx + c cos x + d sin x. ...(1)
We have to find a, b, c, and d such that

y″p + y′
p – 2yp = x + sin x ...(2)

From (1),
y′p = b – c sin x + d cos x
y″p = – c cos x – d sin x

Eqn. (2), becomes
– cos x – d sin x + b – c sin x + d cos x – 2 (a + bx + c cos x + d sin x) = x + sin x

(– 2a + b) – 2bx + (– 3c – d ) sin x + (c – 3d ) cos x = x + sin x
Comparing the coefficients, we get

– 2a + b = 0, – 2b = 1, – 3c – d = 1, c – 3d = 0

Solving, we get

a =
–1

4
, b = 

–1

2
, c = 

–3

10
, d = 

–1

10

Eqn. (1), becomes

yp = − − − −1

4

1

2

3

10

1

10
x x xsin cos

= − + − +1

4
2 1

1

10
3x x x� � � �sin cos

∴ The general solution is

y = C.F. + P.I.

= C e C e x x xx x
1 2

1

4
2 1

1

10
3+ + +–2 – – sin cos� � � � .
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5. Solve by the method of undetermined coefficients

y″ + 4y = x2 + e–x.

Solution. We have (D2 + 4) y = x2 + e–x

A.E. is m2 + 4 = 0

i.e., m2 = – 4

i.e., m = ± 2i

C.F. = C1 cos 2x + C2 sin 2x

φ (x) = x2 + e–x

where 0 and – 1 is not a root of the A.E.

We assume for P.I. in the form

yp = a + bx + cx2 + de–x ...(1)

We have to find a, b, c, and d such that

y″p + 4yp = x2 + e–x ...(2)

From (1), y′p = b + 2cx – de–x

y″p = 2c + de–x

Eqn. (2) ⇒ 2c + de–x + 4(a + bx + cx2 + de–x) = x2 + e–x

(2c + 4a) + 4bx + 4cx2 + 5de–x = x2 + e–x

Equating the coefficients

2c + 4a = 0, 4b = 0, 4c = 1, 5d = 1

Solving we get

a =
–1

8
, b = 0, c = 

1

4
, d = 

1

5
Equation (1) becomes

P.I. = yp = 
–1

8

1

4

1

5

1

8
2 1

1

5
2 2+ + = − +− −x e x ex x� �

∴ The general solution is
y = C.F. + P.I.

= c x c x x e x
1 2

22 2
1

8
2 1

1

5
cos sin .+ + − + −� �

6. Solve by the method of undetermined coefficients

y″ + y′ – 4y = x + cos 2x.

Solution. We have
(D2 – D – 4) y = x + cos 2x

A.E. is m2 – m – 4 = 0

∴ m =
+ ± +

=
±1 1 4

2

1 5

2

∴ C.F. =
1 5

2

1 5

2

+
,

–



DIFFERENTIAL EQUATIONS–I 257

C.F. = C e C e
x x

1

1 5

2
2

1 5

2

+�
��

�
��

�
��

�
��+

–

We assume for P.I. in the form

yp = a + bx + c cos 2x + d sin 2x ...(1)

Since 0, ± i are not roots of the A.E.

We have to find a, b, c and d such that

y″p – y′p – 4yp = x + cos 2x ...(2)

From Eqn. (1)

y′p = b – 2c sin 2x + 2d cos 2x

y″p = – 4c cos 2x – 4d sin 2x

Now Eqn. (2) becomes,

– 4c cos 2x – 4d sin 2x – (b – 2c sin 2x + 2d cos 2x) – [4 (a + bx + c cos 2x + d sin 2x)]

= x + cos 2x

Comparing the coefficients, we have

– 4a – b = 0, – 4b = 1 and

– 8c – 2d = 1, 2c – 8d = 0

Solving these we get,

a =
1

16

1

4

2

17

1

34
, , ,b c d= − = − = −

Therefore

P.I. =
1

16

1

4

2

17
2

1

34
2− − −x x xcos sin

=
1

16
1 4

1

34
4 2 2− − +x x x� � � �cos sin

Hence the complete solution is

y = C.F. + P.I.

= C e C e x x x
x x

1

1 5

2
2

1 5

2 1

16
1 4

1

34
4 2

+�
��

�
��

−�
��

�
��+ + − − +� � � �cos sin .

7. Solve by the method of undetermined coefficients

(D2 + 1) y = sin x.

Solution. Here A.E. is

m2 + 1 = 0 and its roots are m = ± i

Hence C.F. = C1cos x + C2 sin x

Note that sin x is common in the C.F. and the R.H.S. of the given equation.

 (± i is the root of the A.E.)

Therefore P.I. is y the form

yp = x (a cos x + b sin x) ...(1)

Since ± i is root of the A.E.
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We have to find a and b such that

y″p + yp = sin x ...(2)

From Eqn. (1) y′p = x (– a sin x + b cos x) + (a cos x + b sin x)

y″p = x (– a cos x – b sin x) + (– a sin x + b cos x) – a sin x

+ b cos x

= x (– a cos x – b sin x) – 2a sin x + 2b cos x

Then the given equation reduces to using the Eqn. (1)

x (– a cos x – b sin x) – 2a sin x + 2b cos x + x (a cos x + b sin x) = sin x

Equating the coefficients, we get

i.e., – 2a sin x + 2b cos x = sin x

– 2a = 1, 2b = 0

a =
–1

2
, b = 0

Thus P.I. is yp =
–1

cos
2

x x

∴ y = C.F. + P.I.

= C x C x x x1 2
1

2
cos sin – sin+ .

8. Solve by the method of undetermined coefficients

(D2 + 1) y = 4x – 2 sin x.

Solution. A.E. is

m2 + 1 = 0  ⇒  m = ± i

∴ C.F. = C1cos x + C2sin x

φ (x) = 4x – 2 sin x. We assume for P.I in the form

yp = a + bx + x (c cos x + d sin x) ...(1)

Since 0 is not the root of the A.E. and ± i is the root of A.E.

We have to find a and b such that

y″p + yp = 4x – 2sin x ...(2)

From Eqn. (1) y′p = b + x (– c sin x + d cos x) + (c cos x + d sin x)

y″p = x (– c cos x – d sin x) + (– c sin x + d cos x)

+ (– c sin x + d cos x)

Eqn. (2), becomes

x (– c cos x – d sin x) + (– c sin x + d cos x) + (– c sin x + d cos x) a + bx

+ x (cos x + d sin x) = 4x – 2 sin x

i.e.,a + bx + (– 2c sin x + 2d cos x) = 4x – 2 sin x

Comparing the coefficients, we get,

a = 0, b = 4, – 2c = – 2, 2d = 0

i.e., a = 0, b = 4,  c = 1,  d = 0
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Therefore the required P.I. (using Eqn. (1)

From Eqn. (1) ⇒ P.I. = 4x + x cos x

∴ y = C.F. + P.I.

= C1 cos x + C2 sin x + 4x + x cos x.

9. Solve by the method of undetermined coefficients

y″ + 3y′ + 2y = x2 + ex.

Solution. A.E. is

m2 – 3m + 2 = 0

i.e., (m – 1) (m – 2) = 0 ⇒ m = 1, 2

∴ C.F. = C1e
x + C2e

2x

φ(x) = x2 + ex

with reference to the form x2 we assume the P.I. in the form a + bx + cx2. Since 0 is not a root of
the A.E. and with reference to ex. We assume the P.I. to be d xex, since Eqn. (1) is a root of the A.E.

We assume for P.I. in the form

yp = a + bx + cx2 + d xex ...(1)

We have to find a, b, c and d such that

y″p – 3y′p+ 2yp = x2 + ex ...(2)

From Eqn. (1) y′p = b + 2cx + d (xex + ex)

y″p = 2c + d (xex + 2ex)

Now Eqn. (2) becomes,

 (2c + dxex + 2dex) – 3 (b + 2cx + dxex + dex) + 2 (a + bx + cx2 + dxex) = x2 + ex

i.e., (2a – 3b + 2c) + (2b – 6c) x + 2cx2 – dex = x2 + ex

Comparing the coefficients, we get,

2a – 3b + 2c = 0, 2b – 6c = 0, 2c = 1, – d = 1

∴ d = – 1, c = 
1

2
,  b = 

3

2
, a = 

7

4

Hence from Eqn. (1) yp =
7

4

3

2

1

2
2+ +x x xex–

∴ P.I. = yp =
1

4
7 6 2 42+ +x x xex–� �

∴ y = C.F. + P.I.

y = C1e
x + C2e

2x + 
1

4
(7 + 6x + 2x2 – 4xex).

10. Solve by the method of undetermined coefficients

(D2 + 1) y = 4x cos x – 2 sin x.

Solution.  A.E. is

m2 + 1 = 0

m = ± i
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C.F. = C1cos x + C2 sin x

Note that both cos x and sin x are common in the C.F. and the R.H.S. of the given equation.
Now P.I. corresponding to 4x cos x is of the form

y1 = x {(a + bx) cos x + (c + dx) sin x}

and P.I. corresponding to 2 sin x is

y2 = x {e cos x + f sin x}

Hence, we take P.I. in the form

yp = y1 + y2

= (ax + xe + bx2) cos x + (cx + fx + dx2) sin x

= {(a + e) x + bx2} cos x + {(c + f ) x + dx2} sin x

P.I. must be of the form a + e = c1, b = c2

c + f = c3, d = c4

yp = (c1x + c2x
2) cos x + (c3x + c4x

2) sin x ...(1)

Differentiating, we get

y′p = (c1x + c2x2) (– sin x) + cos x (c1 + 2xc2) + (c3x + c4x
2) cos x

+ sin x (c3 + 2xc4)

y″p = (c1x + c2x
2)(– cos x) + (– sin x) (c1 + 2xc2) + cos x (2c2)

+ (c1 + 2xc2) (– sin x) + (c3x + c4x
2) (– sin x)

+ (cos x) (c3 + 2xc4) + sin x (2c4) + (c3 + 2xc4) cos x

y″p = [(– 2c1 + 2c4) + (– 4c2 – c3) x – c4x
2] sin x + [(2c2 + 2c3)

+ (4c4 – c1) x – c2x2] cos x

Substituting these values in the given equation and simplifying, we get

{(2c2 + 2c3) + 4c4x}cos x + {(– 2c1 + 2c4) – 4c2x} sin x

= 4x cos x – 2 sin x

Comparing the coefficients, we obtain,

2c2 + 2c3 = 0, 4c4 = 4, 2c1 + 2c4 = – 2, 4c2 = 0

Solving we get c2 = 0, c4 = 1 and hence

c3 = 0, c1 = 2

From Eqn. (1), the required P.I. is

yp = (2x + 0) cos x + (0x + x2) sin x = 2x cos x + x2 sin x

= 2x cos x + x2 sin x

∴ The general solution is

y = C.F. + P.I.

= C1 cos x + C2 sin x + 2x cos x + x2 sin x.

11. Solve by the method of undetermined coefficients

(D3 + 3D2 + 2D)y = x2 + 4x + 8.

Solution. A.E. is

m3 + 3m2 + 2m = 0

i.e., m(m2 + 3m + 2) = 0
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m(m + 1)(m + 2) = 0

Hence the roots are m = 0, – 1, – 2

∴ C.F. = C1 + C2e
–x + C3e–2x

Since the constant term appears in both C.F. and the R.H.S. of the given equation we take P.I.
in the form,

yp = x (a0 + a1x + a2x
2)

= a0x + a1x2 + a2x
3 ...(1)

We have to find a0, a1, and a2 such that

y′″p + 3y″p + 2y′p = x2 + 4x + 8 ...(2)

From Eqn. (1) ⇒ y′p = a0 + a1(2x) + 3x2a2

y″p = 2a1 + 6a2x

′′′yp = 6a2

Eqn. (2) becomes,

6a2 + 3 (2a1 + 6a2x) + 2 (a0 + 2a1x + 3a2x2) = x2 + 4x + 8

i.e., 6a2x2 + (4a1 + 18a2) x + 2a0 + 6a1 + 6a2 = x2 + 4x + 8

Comparing the coefficients, we get

6a2 = 1, 4a1 + 18a2 = 4, 2a0 + 6a1 + 6a2 = 8

Solving these equations, we get

a0 =
11

4

1

4

1

61 2, ,a a= =

Eqn. (1) becomes

yp = x x x
11

4

1

4

1

6
2+ +�

��
�
��

∴ The general solution is
y = C.F. + P.I.

= C C e C e x
x xx x

1 2 3

2 311

4 4 6
+ + + + +− –2 .

12. Solve by the method of undetermined coefficients;

(D3 + 2D2 – D –2) y = x2 + ex.

Solution. A.E. is

m3 + 2m2 – m – 2 = 0

i.e., (m + 2) (m – 1)(m + 1) = 0

So that m = ± 1, – 2

Hence C.F. is
C.F. = C1e

x + C2e
–x + C3e

–2x

Note that ex is common in C.F. and the R.H.S. of the given equation.

Therefore P.I. is of the form

yp = a + bx + cx2 + dxex ...(1)

We have to find a, b, c and d such that

′′′+ ′′ ′ −y y y yp p p p2 2– = x2 + ex ...(2)
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Eqn. (1), we get

y′p = b + 2cx + dxex + dex

y″p = 2c + dxex + dex + dex

= 2c + dxex + 2dex

′′′yp = dxex + dex + 2dex

= dxex + 3dex

Substituting these values is in the eqn. (2) we get

(– 2a – b + 4c) – 2 (b + c) x – 2cx2 + 6dex = x2 + ex

Comparing the coefficients, we get

– 2a – b + 4c = 0, – 2 (b + c) = 0,

– 2c = 1, 6d = 1

Solving these equations, we get,

a =
−5

4
, b = 

1

2
, c = 

−1

2 , d = 
1

6
Using these values in Eqn. (1), we get required P.I.. is

yp = − + − +5

4

1

2

1

2

1

6
2x x x ex

Therefore, y = C.F. + P.I.

= C x C e C e x x xex x x
1 2 3

21

4
2 2 5

1

6
+ + − + +− –2 –� � .

��������� �	�

Solve the following equations by the method of undetermined coefficients:

1. y″ + 9y = x2. Ans. y C x C x x= + + −�
��

�
��1 2

23 3
1

81
9 2cos sin � �

2. y″ + 4y′ = x2 + x. Ans. y C e C e x xx x= + + +�
��

�
��1

2
2

21

8
2 2 1–2 – � �

3. y″ – 6y′+ 10y = x2. Ans. y e C x C x x xx= + + + +�
��

�
��

3
1 2

21

50
5 6 35cos sin� � � �

4. y″ – 2y′ + y = x2 – 1. Ans. y C C x e x xx= + + + +1 2
2 4 5� �

5. y″ + 4y = e–2x. Ans. y C x C x e x= + +�
��

�
��1 22 2

1

8
cos sin –2

6. y″ + y′ – 12y = e2x. Ans. y C e C e ex x x= +�
��

�
��1

3
2

4 21

6
– –
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7. y″ + y′ – 6y = e–3x. Ans. y C e C e xex x x= +�
��

�
��1 2

1

5
–3 –2 –3–

8. y″ + 3y′ + 2y = e–2x. Ans. y C e C e xex x x= +1 2
– –2 –2–

9. y″ + 4y′ + 4y = x2 + ex. Ans. y C C x e x x ex x= + + − + +�
��

�
��1 2

21

8
2 4 3

1

9
� � � �–2

10. y″ – 5y′ + 6y  = x + e2x. Ans. y C e C e x xex x x= + + +�
��

�
��1

2
2

3 21

36
6 5� � –

11. y″ + y = x2 + e2x. Ans. y C x C x x x e x= + + − +�
��

�
��1 2

2 22
1

5
cos sin � �

12. y″ + 25y = cos 2x. Ans. y C x C x x= + +�
��

�
��1 25 5

1

21
2cos sin cos

13. y″ + 4y′ + 4y = sin x. Ans. y C C x e x xx= +�
��

�
��1 2

1

25
4 3� � � �–2 – cos – sin

14. y″ + 4y′ – 3y = sin 3x. Ans. y C e C e x xx x= + +�
��

�
��1 2

1

30
3 2 3–3 – cos sin� �

15. y″ + 9y = sin 3x. Ans. y C x C x x x= +�
��

�
��1 23 3

1

6
3cos sin – cos

16. y″ – y = 10 sin2 x. Ans. y C e C e xx x= + +1 2 5 2– – cos

17. y″ + y′ – 2y = x + cos x. Ans. y C e C e x x xx x= + + −�
��

�
��1 2

1

4
2 1

1

10
3–2 – – sin cos� � � �

18. y″ – 2y′ – 3y = e–x + 5 cos 2x. Ans. y C e C e xe x xx x x= + +�
��

�
��1 2

3 1

4

1

5
4 2 7 2– –– – sin cos� �

19. y″ + 4y = x2 + sin 2x. Ans. y C x C x x x x= + +�
��

�
��1 2

22 2
1

8
2 1

1

4
2cos sin – – cos� �

20. y″ + 3y′ + 2y = x2 + cos x.

Ans. y C e C e x x x xx x= + + + + +�
��

�
��1 2

21

4
2 6 7

1

10
3– –2 – sin cos� � � �

21. y″ + y′ – 6y = cos 2x + e2x. Ans. y C e C e x x xex x x= + + +�
��

�
��1

2
2

21

52
2 5 2

1

5
–3 sin – cos� �
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22. y″ + 2y′ + y = ex cos 2x. Ans. y C C x e e xx x= +�
��

�
��

−
1 2

1

8
2� � – cos

23. y″ + y = xe2x. Ans. y C x C x x e x= + + −�
��

�
��1 2

21

2
1cos sin � �

24. y″ – 2y′ = ex sin x. Ans. y C C e e xx x= +�
��

�
��1 2

2 1

2
– sin

25. y″ – 2y′ + 3y = x3 + sin x.

Ans. y e C x C x x x x x xx= + + + + + +�
��

�
��1 2

3 23 3
1

27
9 18 6 8

1

4
cos sin – sin cos� � � � � �

26. (D3 – 3D + 2) y = x2 + e–2x.
Ans. y C e C C x e e x xx x x= + + + + +�
��

�
��

− −
1

2
2 3

21

2

1

4
2 6 9� � � �–

27. (D3 + 2D2 – D – 2) y = ex + x2.

Ans. y C e C e C e e x xx x x x= + + + − − +�
��

�
��

− −
1 2 3

21

6

1

4
2 2 9–2 � �

28. (D3 + 2D2 + 1) y = e2x + sin 2x.

Ans. y C C C x e
e

x xx
x x

= + + + + −
�

�
�
�

�

�
�
�

−
1 2 3

2

18

1

50
3 2 4 2� � � �cos sin

29. (D3 – D2 – D + 1) y = x2 + 1.
Ans. y C C x e C e x xx x= + + + + +−

1 2 3
2 2 5� � � �

30. (D3 – D2 + 3D + 5) y = ex cos 2x.

Ans. y C e e C x C x xe x xx x x= + + + −�
��

�
��1 2 32 2

1

16
2 2– cos sin sin cos� � � �

31. (D3 – 6D2 + 11D – 6) y = 2xe–x. Ans. y C e C e C e x ex x x x= + + +�
��

�
��1 2

2
3

3 1

144
12 13– –� �

32. (D3 – D2 – 2D) y = x2 + x + 1. Ans. y C C e C e x xx x= + + +�
��

�
��1 2 3

2 21

6
6– – � �

5.7 SOLUTION OF SIMULTANEOUS DIFFERENTIAL EQUATIONS

Let us suppose that x and y are functions of an independent variable ‘t’ connected by a system of

first order equation with D = 
d

dt
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f1(D) x + f2(D) y = φ1(t) ...(1)

g1(D) x + g2(D) y = φ2(t) ...(2)

By solving a system of linear algebraic equations in cancelling either of the dependent variables
(x or y) operating (1) with g1 (D) and (2) with f1 (D), x cancels out by subtraction. We obtain a second
order differential equation in y. Which can be solved x can be obtained independently by cancelling
y or by substituting the obtained y (t) in a suitable equation.

������ ���� ��������

1. Solve 
dx

dt
7x y− +  = 0, 

dx

dt
2x 5y− −  = 0.

Solution. Taking D = 
d

dt
, we have the system of equations

(D – 7) x + y = 0 ...(1)

– 2x + (D – 5) y = 0 ...(2)

Multiply (1) by 2 and operate (2) by (D – 7)

i.e., 2 (D – 7) x + 2y = 0

– 2 (D – 7) x + (D – 5) (D – 7) y = 0

Adding [(D – 5)(D – 7) + 2] y = 0 or

(D2 – 12D + 37) y = 0

A.E. is m2 – 12m + 37 = 0

or (m – 6)2 + 1 = 0

⇒ m – 6 = ± i

m = 6 ± i

Thus y = e6t (C1 cos t + C2 sin t) ...(3)

By considering  
dy

dt
x y− −2 5 = 0, we get

x =
1

2
5

dy

dt
y−�

��
�
��

∴ x =
1

2
56

1 2
6

1 2
d

dt
e C t C t e C t C tt tcos sin cos sin+ − +	
�

��� � � �

=
1

2
66

1 2
6

1 2e C t C t e C t C tt t– sin cos cos sin+ + +� � � ��
– cos sin5 6

1 2e C t C tt +� ��

x =
1

2
6

1 2
6

1 2e C t C t e C t C tt t– sin cos cos sin+ + +� � � �� �

Thus x =
1

2 1 2
6

2 1
6C C e t C C e tt t+ + −� � � �� �cos sin ...(4)

(3) and (4) represents the complete solution of the given system of equations.
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2. Solve: 
dx

dt
 = 2x – 3y, 

dy

dt
 = y – 2x given x (0) = 8 and y (0) = 3.

Solution. Taking D = 
d

dt
 we have the system of equations.

Dx = 2x – 3y ; Dy = y – 2x

i.e., (D – 2) x + 3y = 0 ...(1)

2x + (D – 1) y = 0 ...(2)

Multiplying (1) by 2 and (2)  by (D – 2), we get

2 (D – 2) x + 6y = 0

2 (D – 2) x + (D – 1) (D – 2) y = 0

Subtracting, we get (D2 – 3D – 4) y = 0

A.E. is m2 – 3m – 4 = 0

or (m – 4) (m + 1) = 0 ⇒ m = 4, – 1

∴ y = C1 e
4t + C2 e–t ...(3)

By considering 
dy

dt
 = y – 2x, we get

x =
1

2
y

dy

dt
−	
�

��

i.e., x =
1

2
41

4
2 1

4
2C e C e C e C et t t t+ − −– –� ��  

=
1

2
3 21

4
2– –C e C et t+� � ...(4)

We have conditions x = 8, y = 3 at t = 0

Hence (3) and (4) become C1 + C2 = 3 and − 3

2
1C

 + C2 = 8.

Solving these equations, we get C2 = 5, C1 = –2

Thus x = 3e4t + 5e–t

y = – 2e4t + 5e–t is the required solution.

3. Solve: 
dx

dt
2y−  = cos 2t, 

dy

dt
2x+  = sin 2t given that x = 1, y = 0 at t = 0.

Solution. Taking D = 
d

dt
 we have the system of equations

Dx – 2y = cos 2t ...(1)

2x + Dy = sin 2t ...(2)

Multiplying (1) by D and (2) by 2, we have
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D2x – 2Dy = D(cos 2t) = – 2 sin 2t

4x + 2Dy = 2 sin 2t

Adding, we get (D2 + 4) x = 0

A.E. is m2 + 4 = 0 ⇒ m = ± 2i

∴ x = C1 cos 2t + C2 sin 2t ...(3)

By considering
dx

dt
y− 2 = cos 2t, we get

y =
1

2
2

dx

dt
t−�

��
�
��

cos

i.e., y =
1

2
2 2 21 2

d

dt
C t C t tcos sin cos+ −�

��
�
��� �

=
1

2
2 2 2 2 21 2− + −C t C t tsin cos cos

y = − + −�
��

�
��C t C t1 22

1

2
2sin cos ...(4)

Equation (3) and (4) represents the general solution

Applying the given conditions x = 1 at t = 0

Hence (3) becomes, 1 = C1 + 0 ⇒ C1 = 1

y = 0 at t = 0

Hence (4) becomes, 0 = 0
1

22+ −�
��

�
��C ⇒ C2 = 

1

2

Substituting these values in (3) and (4), we get

x = cos sin2
1

2
2t t+

y = – sin 2t

Which is the required solution.

��������� �	�

1. Solve 
dx

dt
y t

dy

dt
x t+ = − − =2 2sin , cos .

Ans. sin cos cos

cos sin sin

x C t C t t

y C t C t t

= − + −
= + −

�
��

�
��

1 2

1 2

2 2

2 2

2. Solve 
dx

dt
y e

dy

dt
x et t+ = − = −, .

Ans. sin cos sin

cos sin sin

x C t C t h t

y C t C t h t

= − + +
= + +

�
��

�
��

1 2

1 2

3. Solve 
dx

dt
x y e

dy

dt
y xt+ − = + − =, 0.

Ans. x C C e e

y C C e e

t t

t t

= + +

= − +

�
�
�
�

�
�
�
�

−

−
1 2

2 3

1 2
2 3

2
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����������� ��������� ������ ���	
���� ����� ���� �������

1. Solve (D3 –1) y = (ex + 1)2.

Solution. Refer page no. 226. Example 5.

2.
d y

dx
4

dy

dx
12y

2

2
+ −  = e2x – 3 sin 2x.

Solution. We have

(D2 + 4D – 12) y = e2x – 3 sin 2x

A.E. is m2 + 4m – 12 = 0

(m + 6) (m – 2) = 0 ⇒ m = – 6 and 2

∴ C.F. = C1 e
–6x + C2 e

2x

P.I. =
e

D D

x

D D

x2

2 24 12

3 2

4 12+ −
−

+ −
sin

= P.I.1 – P.I.2

Now, P.I.1 =
e

D D

ex x2

2

2

24 12 2 4 2 12+ −
=

+ ⋅ −
(D → 2) Dr = 0

Differential denominator and multiply ‘x’

=
x e

D

x e x ex x x2 2 2

2 4 2 2 4 8+
=

⋅ +
= (D → 2)

P.I.2 =
3 2

4 122

sin x

D D+ −
(D2 → – 22 = – 4)

P.I.2 =
3 2

4 4 12

3 2

4 4

4

4

sin

–

sinx

D

x

D

D

D+ −
=

−
× +

+� �

=
3 4 2

4 162

D x

D

+

−
� �
� �

sin

=
3 2 2 4 2

4 20

cos sinx x+
−

� �
� � (D2 → – 4)

∴ P.I.2 =
3 2 2 2

40

cos sin

–

x x+� �

∴ The general solution: y = C.F. + P.I.

y = C e C e
x e x xx x

x

1 2
2

2

8

3 2 2 2

40
–6 cos sin

+ + +
+� �

3. Solve (D2 + 5D + 6) y = cos x + e–2x.

Solution. Refer page no. 229. Example 3.
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4. Solve 
d y

dx
7

dy

dx
6y

3

3
− + = 1 – x + x2.

Solution. We have

(D3 – 7D + 6) y = 1 – x + x2

A.E. is m3 – 7m + 6 = 0

m = 1 is a root by inspection.

We now apply the method of synthetic division.

1 1 0 7 6

0 1 1 6

1 1 6 0

−

−

−

m2 + m – 6 = 0 or (m + 3) (m – 2) = 0

  ⇒   m = – 3, 2

m = 1, 2, – 3 are the roots of A.E.

∴ C.F. = C1 e
x + C2 e2x + C3 e–3x

P.I. =
1

7 6

1

6 7

2

3

2

3

− +
− +

= − +
− +

x x

D D

x x

D D

P.I. is found by division

x x2

6

2

9

23

54
+ +

6 – 7D + D3 x2 –  x   +  1

x2 – 
7

3

x
 +  0

      
4

3

x
 +  1

      
4

3

x
 – 

14

9

              
23

9

              
23

9

               0

∴ P.I. =
x x2

6

2

9

23

54

1

54
+ + =  (9x2 + 12x + 23)

∴The general solution is y = C.F. + P.I.

y = C e C e C e x xx x x
1 2

2
3

21

54
9 12 23+ + + + +–3 � �
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5. Solve 
d y

dx
4y

2

2
+  = x2 + cos 2x + 2–x.

Solution. We have

(D2 + 4) y = x2 + cos 2x + 2–x

A.E. is m2 + 4 = 0 ⇒ m = ± 2i

∴ C.F. = C1 cos 2x + C2 sin 2x

P.I. =
x

D

x

D D

x2

2 2 24

2

4

2

4+
+

+
+

+
cos –

P.I. = P.I.1 + P.I.2 + P.I.3

∴ P.I.1 =
x

D

2

2 4+
P.I.1 is found by division

x2

4

1

8
−

4 + D2 x2

x2 + 
1

2
P.I.1 =

x4

4

1

8
−

    –
1

2
=

1

8
2 12x −� �

    –
1

2

      0

∴ P.I.1 =
1

8
2 12x −� �

P.I.2 =
cos2

42

x

D +
(D2 → – 22 = – 4) (Dr = 0)

Differentiate the denominator and multiply ‘x’

= x
x

D

D

D

cos2

2
×

=
x x

D

– sin2 2

2 2

� � ⋅
(D2 → – 4)

P.I.2 =
x xsin2

4

P.I.3 =
2

4 4 42

2

2

2

2

−
−

⋅

+
=

+
=

+

x
x

x

D

e

D

e

D

log – log� �
� �

 = 
e x– log

– log

2

2
2 4

⋅

+� �
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P.I.3 =
2

2 4
2

–

– log

x

� � +

∴The general solution is y = C.F. + P.I.

y = C1 cos 2x + C x x
x x x

2
2

3
2

1

8
2 1

4

2

2 4
sin

sin

log

–

+ − + +
−

⋅� �
� �

6. Solve 
d y

dx
4

dy

dx
4y

2

2
− +  = e2x + cos 2x + 4.

Solution. We have

(D2 + 4D + 4) y = e2x + cos 2x + 4

A.E. is m2 – 4m + 4 = 0

i.e., (m – 2)2 = 0 ⇒ m = 2, 2

∴ C.F. = (C1 + C2x) e2x

P.I. =
e

D D

x

D D D D

x2

2 2 24 4

2

4 4

4

4 4− +
+

− +
+

− +
cos

∴ = P.I.1 + P.I.2 + P.I.3

Now, P.I.1 =
e

D D

x2

2 4 4− +
(D → 2)

=
e x2

4 8 4− +
(Dr = 0)

=
x e

D

x2

2 4−
(Dr = 0 as D → 0)

P.I.1 =
x e x2 2

2

P.I.2 =
cos2

4 42

x

D D− +
(D2 → – 22 = – 4)

=
cos

–

2

4

x

D

D

D
×

=
– sin2 2

4 2

x

D

⋅
(D2 → – 4)

∴ P.I.2 =
– sin2

8

x

P.I.3 =
4

4 4

0

2

⋅
− +

e

D D

x

(D → 0)
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=
4

0 0 4

4

4
1

0e x

– +
= =

∴The general solution is y = C.F. + P.I.

∴ y = C C x e
x e xx

x

1 2
2

2 2

2

2

8
1+ + − +� � sin
.

7. Solve 
d y

dx

d y

dx
4

dy

dx
4y

3

3

2

2
+ + +  = x2 – 4x – 6.

Solution. We have

(D3 + D2 + 4D + 4) y = x2 – 4x – 6

A.E. is m3 + m2 + 4m + 4 = 0

m2 (m + 1) + 4 (m + 1) = 0

(m + 1) (m2 + 4) = 0

m = – 1, m = ± 2i

∴ C.F. = C1 e–x + C2 cos 2x + C3 sin 2x

P.I. =
x x

D D D

2

3 2

4 6

4 4

− −
+ + +

P.I. is found by division

x x2

4

3

2

1

8
− −

4 + 4D + D2 + D3 x2 – 4x –  6

x2 + 2x + 
1

2

    – 6x – 
13

2
    – 6x –  6

          – 
1

2

          – 
1

2

            0

Hence, P.I. =
x x2

4

3

2

1

8
− −

=
1

8
2 12 12x x− −� �

∴The general solution is y = C.F. + P.I.

y = C e C x C x x xx
1 2 3

22 2
1

8
2 12 1– cos sin –+ + + −� �.
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8. Solve 
d y

dx
– 6

dy

dx
25y

2

2
+  = e2x + sin x + x.

Solution. We have

(D2 – 6D + 25) y = e2x + sin x + x

A.E. is m2 – 6m + 25 = 0

m =
6 36 100

2

6 8

2
3 4

± −
= ± = ±i

i

C.F. = e3x (C1 cos 4x + C2 sin 4x)

P.I. =
e

D D

x

D D

x

D D

x2

2 2 26 25 6 25 6 25− +
+

− +
+

− +
sin

P.I. = P.I.1 + P.I.2 + P.I.3

P.I.1 =
e

D D

x2

2 6 25− +
(D → 2)

=
e ex x2

2

2

2 6 2 25 17− +
=

� �

P.I.2 =
sin x

D D2 6 25− +
(D → – 12 = – 1)

=
sin

–

sin sinx

D

x

D

x

D

D

D1 6 25 24 6 6 4

4

4− +
=

−
=

−
× +

+� �

=
4

6 42 2

+

−

D x

D

� �
� �

sin
(D2 = – 1)

=
4

6 17

sin cosx x+
� �

∴ P.I.2 =
4

102

sin cosx x+

∴ P.I.3 =
x

D D25 6 2− +
P.I.3 is found by division.

x

25

6

625
+

25 – 6D + D2 x

x – 
6

25

     
6

25

     
6

25

      0
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P.I.3 =
x

25

6

625
+

= 625 (25x + 6)

∴ The general solution is y = C.F. + P.I.

y = e3x C x C x
e x x

x
x

1 2

2

4 4
17

4

102

1

625
25 6cos sin

sin cos+ + + + + +� � � �.

9. Solve 
d x

dt
4x

4

4
+  = cos ht.

Solution. Refer page no. 225. Example 4.

10. Solve the differential equation 
d y

dx
5

dy

dx
6y

2

2
− +  = e2x + sin x by the method of undetermined

coefficients.

Solution. We have

(D2 – 5D + 6) y = e2x + sin x

A.E. is m2 – 5m + 6 = 0

(m – 2) (m – 3) = 0

⇒ m = 2 and 3

∴ C.F. = C1 e
2x + C2 e

3x

Let φ (x) = e2x + sin x and we assume the P.I. in the form

yp = ax e2x + b cos x + c sin x ...(1)

Since 2 is root of the A.E.

We have to find a, b, c such that

′′′ − ′ +y y yp p p5 6 = e2x + sin x ...(2)

From (1), we obtain

y ′p = a (2xe2x + e2x) – b sin x + c cos x

′′yp = a (4xe2x + 4e2x) – b cos x – c sin x

Now (2) becomes

(4ax e2x + 4ae2x – b cos x – c sin x) – (10ax e2x + 5a e2x – 5b sin x + 5c cos x)

+ (6axe2x + 6b cos x + 6c sin x) = e2x + sin x

i.e., – ae2x + (5b – 5c) cos x + (5c + 5b) sin x = e2x + sin x

⇒ – a = 1, 5b – 5c = 0, 5c + 5b = 1

∴ a = – 1, b = c, 5c + 5b = 1

∴ a = – 1, b = 
1

10
, c = 

1

10
 by solving using these values in (1)

we have yp = – cos sinxe x xx2 1

10
+ +� �
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Complete solution is y = C.F. + yp

y = C e C e xe x xx x x
1

2
2

3 2 1

10
+ − + +cos sin� �.

11. Using the method of undetermined coefficients solve 
d y

dx
2

dy

dx
4y

2

2
+ +  = 2x2 + 3e–x.

Solution. We have (D2 + 2D + 4) y = 2x2 + 3e–x

A.E. is m2 + 2m + 4 = 0

∴ m =
– – –12 –2 4 16

2

2

2

2 2 3

2

± −
=

±
=

± i

∴ m = – 1 ± i 3

∴ C.F. = e C x xx– cos sin1 3 3� � � �� ��  +

Let φ (x) = 2x2 + 3e–x and we assume for P.I. of the form

yp = a + bx + cx2 + de–x

Now, ′y p = b + 2cx – de–x

′′yp = 2c + de–2x

We find a, b, c, d such that

′′ + ′ +y y yp p p2 4 = 2x2 + 3e–x

i.e., (2c + de–x) + (2b + 4cx – 2de–x) + (4a + 4bx + 4cx2 + 4de–x) = 2x2 + 3e–x

� (2c + 2b + 4a) + (4c + 4b) x + 4cx2 + 3de–x = 2x2 + 3e–x

Comparing both sides, we have

2c + 2b + 4a = 0 or 2a + b + c = 0

4c + 4b = 0 or b + c = 0

4c = 2 ∴ c = 
1

2

3d = 3 ∴ d = 1

Hence, we also obtain a = 0, b = 
– 1

2
 using the values of a, b, c, d in (1), we have

yp =
– –1

2

1

2
2x x e x+ +

∴ The complete solution is

y = C.F. + yp

= e C x C x
x

x ex x− + + − +1 23 3
2

1cos sin –� � � ��  � � .
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12. Using the method of undetermined coefficients solve 
d y

dx
– 2

dy

dx
3y

2

2
+  = x2 + cos x.

Solution. We have

(D2 – 2D + 3) y = x2 + cos x

A.E. is m2 – 2m + 3 = 0

∴ m =
2 4 1 2

2

2

2
1 2

± −
= ± = ±– 8

i

∴ C.F. = e C x C xx– cos sin1 22 2+� �
φ (x) = x2 + cos x and we assume for P.I. in the form

yp = a + bx + cx2 + d cos x + e sin x ...(1)

We have to find a, b, c, d, e such that

′′ − ′ +y y yp p p2 3 = x2 cos x ...(2)

From (1), we obtain

′y p = b + 2cx – d sin x + e cos x

′′yp = 2c – d cos x – e sin x

Hence (2) becomes,

(2c – d cos x – e sin x) – (2b + 4cx – 2d sin x + 2e cos x)

+ (3a + 3bx + 3cx2 + 3d cos x + 3e sin x) = x2 + cos x

Comparing both sides, we obtain

2c – 2b + 3a = 0 ...(3)

– 4c + 3b = 0 ...(4)

3c = 1 ...(5)

2d – 2e = 1 ...(6)

2d + 2e = 0 ...(7)

Solving these equations, we get

c =
1

3
, d = 

1

4
, e = 

– 1

4
, a = 

2

27
, b = 

4

9
·

Substituting these values in (1), we get

yp =
2

27

4

9

1

3

1

4

1

4
2+ + + −x x x xcos sin

∴The complete solution is

y = C.F. + P.I.

y = e C x C xx− +1 22 2cos sin� � +
1

27
2 12 9

1

4
2+ + +x x x x� � � �cos – sin .
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1. The solution of a differential equation which is not obtained from the general solution is
known as

(a) Particular solution (b) Singular solution

(c) Complete solution (d ) Auxiliary solution Ans. b

2. The differential equation formed by y = a cos x + b sin x + 4 where a and b are arbitrary
constants is

(a)
d y

dx
y

2

2
0+ = (b)

d y

dx
y

2

2
0– =

(c)
d y

dx
y

2

2
4+ = (d )

d y

dx
y

2

2
4= + Ans. c

3. The differential equation representing the family given by r = a + b cos θ is

(a) r3 + r1 = 0 (b) r1 = r2 cot θ

(c) r2 = r1 cot θ (d ) r r2
2

1
2 2= tan θ Ans. c

4. The differential equation 
dy

dx
y= 2

 is

(a) Linear (b) Non-linear

(c) Quasilinear (d ) None of these Ans. b

5. xdx + ydy + zdz = 0 is the first order differential equation of a

(a) Sphere (b) Right circular cone

(c) Cylinder (d ) Ellipsoid Ans. a

6. y = ce dx
−

+
1

 is a solution of 
dy

dx

y

x
=

2
, when

(a) c = 1, d = 0 (b) c = 2, d = 0

(c) c = 1, d = 1 (d ) c = 2, d = 2 Ans. b

7. For the differential equation (y + 3x) dx + xdy = 0, the particular solution when x = 1, y =
3 is

(a) 3y2 + 2xy = 9 (b) 3x2 + 2y2 = 21

(c) 3x2 + 2y = 9 (d ) 3x2 + 2xy = 9 Ans. d

8. The expression (xdy – ydx)/(x2 + y2) is equal to

(a) d
x

y
tan–1 �

��
�
��

(b) d
y

x
tan–1 �

��
�
��

(c) d
x y

1
2 2+

�

�
�
�

�

�
�
�� �

(d ) d
y

x
cot –1 �

��
�
�� Ans. b
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9. The general solution of an nth order differential equation contains

(a) At least n independent constants (b) At most n independent constants

(c) Exactly n independent constants (d ) Exactly n dependent constants Ans. c

10. The particular integral of 
d y

dx
y x

2

2
+ = cos  is

(a)
1

2
sin x (b)

1

2
cos x

(c)
1

2
x xcos (d )

1

2
x xsin Ans. d

11. The general differential equation (D2 + 1)2 y = 0 is

(a) C1 cos x + C2 sin x

(b) (C1 + C2 x) cos x + (C3 + C4 x) sin x

(c) C1 cos x + C2 sin x + C3 cos x + C4 sin x

(d ) (C1 cos x + C2 sin x) (C3 cos x + C4 sin x) Ans. b

12. The particular integral of the differential equation (D2 + D + 1) y = sin 2x is

(a)
2 2 3 2

13

sin cosx x+
(b)

2 2 3 2

13

cos sin

–

x x+

(c)
2 2 3 2

13

cos sin

–

x x+
(d )

2 2 3 2

13

cos – sinx x
Ans. b

13. The roots of 
d y

dx

d y

dx
y

4

4

2

2
10 25 0+ + =  is

(a) ± i 5 (b) 5

(c) ± 10 (d ) + −5 5, Ans. d

14. The particular integral of (D2 – 4) y = sin 2x is

(a)
x

x
2

2sin (b)
–

cos
x

x
4

2

(c)
x

x
2

2cos (d ) None of these Ans. d

15. The particular integral of (D3 + 2D2 + D) y = e2x is

(a)
1

18
ex

(b)
1

9
2e x

(c)
1

18
2e x

(d )
e x2

3
Ans. c

16. The particular integral of (D2 – 2D + 1) y = x2 is

(a) x2 + 4x + 6 (b) x3 + 4x2 + 6

(c) x2 – 4x – 6 (d ) None of these Ans. a
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17. The complementary function of 
d y

dx
y

2

2
4 5+ =  is

(a) C1 sin 2x + C2 sin 3x (b) C1 cos 2x + C2 sin 2x

(c) C1 cos 2x – C2 sin 2x (d ) None of these Ans. b

18. By the method of undetermined coefficients ′′ + ′ + =y y y x3 2 12 2, the yp is

(a) a + bx + cx2 (b) a + bx

(c) ax + bx2 + cx3 (d ) None of these Ans. a

19. The particular integral of ′′′ =x t x t� � � �– 8 1 is

(a)
1

8
(b)

1

4

(c)
– 1

8
(d )

1

10
Ans. c

20. The particular integral of 
d y

dx
y x

2

2
9 3+ = cos  is

(a)
cos x

8
(b)

cos x

16

(c)
cos3

9

x
(d ) None of these Ans. b

���



UNIT ��

Differential Equations-II

6.1 METHOD OF VARIATION OF PARAMETERS

Consider a linear differential equation of second order

d y

dx
a

dy

dx
a y

2

2 1 2+ + = φ(x) ...(1)

where a1, a2 are functions of ‘x’. If the complimentary function of this equation is known then we
can find the particular integral by using the method known as the method of variation of parameters.

Suppose the complimentary function of the Eqn. (1) is

C.F. = C1 y1 + C2 y2 where C1 and C2 are constants and y1 and y2 are
the complementary solutions of Eqn. (1)

The Eqn. (1) implies that

′′+ ′ +y a y a y1 1 1 2 1 = 0 ...(2)

′′ + ′ +y a y a y2 1 2 2 2 = 0 ...(3)

We replace the arbitrary constants C1, C2 present in C.F. by functions of x, say A, B respec-
tively,

∴ y = Ay1 + By2 ...(4)

is the complete solution of the given equation.

The procedure to determine A and B is as follows.

From Eqn. (4) y′ = Ay By A y B y′ + ′ + ′ + ′1 2 1 2� � � � ...(5)

We shall choose A and B such that

A′y1 + B′y2 = 0 ...(6)

Thus Eqn. (5) becomes y′1 = Ay By′ + ′1 2 ...(7)

Differentiating Eqn. (7) w.r.t. ‘x’ again, we have

y″ = Ay Ay A y B y′′+ ′′ + ′ ′ + ′ ′1 2 1 2� � � � ...(8)

280
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Thus, Eqn. (1) as a consequence of (4), (7) and (8) becomes

′ ′ + ′ ′A y B y1 2 = φ(x) ...(9)

Let us consider equations (6) and (9) for solving

′ + ′A y B y1 2 = 0 ...(6)

′ ′ + ′ ′A y B y1 2 = φ(x) ...(9)

Solving A′ and B′ by cross multiplication, we get

A′ =
–

,
y x

W
B

y x

W
2 1φ φ� � � �

′ = ...(10)

Find A and B

Integrating, A = –
( )y x

W
dx k2

1
φ� +

B =
y x

W
dx k1

2
φ( )� +

where W = 
y y

y y
y y y y1 2

1 2
1 2 2 1′ ′

= ′ ′–

Substituting the expressions of A and B

y = Ay1 + By2 is the complete solution.

������� ��	� �
�����

1. Solve by the method of variation of parameters

d y

dx
y

2

2
+ = cosec x.

Solution. We have

(D2 + 1) y = cosec x

A.E. is m2 + 1 = 0 ⇒ m2 = – 1 ⇒ m = ± i

Hence the C.F. is given by

∴ yc = C1 cos x + C2 sin x ...(1)

y = A cos x + B sin x ...(2)

be the complete solution of the given equation where A and B are to be found.

The general solution is y = Ay1 + By2

We have y1 = cos x and y2 = sin x

y ′1 = – sin x and ′y2  = cos x

W = y y y y1 2 2 1′ − ′
= cos x . cos x + sin x . sin x = cos2x + sin2x = 1
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A′ =
–

,
y x

W
2 φ� �

B′ = 
y x

W
1 φ� �

=
– sin cos

,
x x⋅ ec

1 B′ = 
cos x x⋅ cosec

1

= – sin
sin

,x
x

⋅ 1
B′ = cos

sin
x

x
⋅ 1

A′ = – 1, B′ = cot x
On integrating, we get

A = –1� � dx C+� 1 , i.e., A = – x + C1

B = cot x dx C+� 2 , i.e., B = log sin x + C2

Hence the general solution of the given Eqn. (2) is

y = (– x + C1) cos x + (log sin x + C2) sin x

i.e., y = C1 cos x + C2 sin x – x cos x + sin x log sin x.

2. Solve by the method of variation of parameters

d y

dx
4y

2

2
+ = 4 tan 2x.

Solution. We have

(D2 + 4) y = 4 tan 2x

A.E. is m2 + 4 = 0 

where φ(x) = 4 tan 2x.

i.e., m2 = – 4

i.e., m = ± 2i

Hence the complementary function is given by

yc = C1 cos 2x + C2 sin 2x

y = A cos 2x + B sin 2x ...(1)

be the complete solution of the given equation where A and B are to be found

We have y1 = cos 2x and y2 = sin 2x

′y1 = – 2 sin 2x and ′y2  = 2 cos 2x

Then W = y y y y1 2 2 1′ − ′

= cos 2x . 2 cos 2x + 2 sin 2x . sin 2x

= 2 (cos22x + sin22x)

= 2
Also, φ(x) = 4 tan 2x

A′ =
– y x

W
2 φ� �

  and B′ = 
y x

W
1φ� �
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A′ =
– sin tan

,
2 4 2

2

x x⋅
 B′ = 

– cos tan2 4 2

2

x x⋅

A′ =
– sin

cos
,

2 2

2

2 x

x
 B′ = 2 sin 2x

On integrating, we get

A = –
sin

cos
,2

2

2

2 x

x
dx� B = 2 2sin x dx�

= –
cos

cos
2

1 2

2

2−� x

x
dx

= − −�2 2 2sec cosx x dx� �

= – log sec tan – sin2
1

2
2 2

1

2
2x x x+���

	
�� �
A = – log (sec 2x + tan 2x) + sin 2x + C1

B = 2 2sin x dx�
=

2 2

2 2

– cos x
C

� �
+

B = – cos 2x + C2
Substituting these values of A and B in Eqn. (1), we get

y = C1 cos 2x + C2 sin 2x – cos 2x log (sec 2x + tan 2x)
which is the required general solution.

3. Solve by the method of variation of parameters

d y

dx
a y

2

2
+ 2 = sec ax.

Solution. We have

(D2 + a2) y = sec ax

A.E. is m2 + a2 = 0 ⇒  m = ± ai

C.F. = yc = C1 cos ax + C2 sin ax

y = A cos ax + B sin ax ...(1)

be the complete solution of the given equation where A and B are to be found.

We have, y1 = cos ax,  y2 = sin ax

′y1 = – a sin ax, ′y2  = a cos ax

W = y y y y1 2 2 1′ − ′ = a. Also, φ (x) = sec ax

A′ =
–

,
y x

W
2 φ� �

  and B′ = 
y x

W
1 φ� �

A′ =
– sin sec

,
ax ax

a

⋅
B′ = 

cos secax ax

a

⋅
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A′ =
– tan

,
ax

a
B′ = 

1

a

B = 
1

2a
dx c+�

A = – tan ,
1

1a
ax dx C+� B = 

x

a
C+ 2

A =
– log secax

a
C

� �
2 1+

Substituting these values of A and B in Eqn. (1), we get

Thus, y = C1 cos ax + C2 sin ax – 
cos log (sec ) sinax ax

a

x ax

a2
+ ⋅

4. Solve by the method of variation of parameters

d y

dx
2

dy

dx
2y

2

2
+ + = e–x sec3x.

Solution. We have

(D2 + 2D + 2) y = e–x sec3x

A.E. is m2 + 2m + 2 = 0

i.e., m =
– 2 4 8

2

± −

m = – 1 ± i
∴The complementary function (C.F.) is

C.F. = yc = e–x(C1cos x + C2 sin x)

∴ y = C1 e
–x cos x + C2 e–x sin x

⇒ y = A e–x cos x + B e–x sin x ...(1)

Thus y1 = e–x cos x and y2 = e–x sin x

′y1 = – e– x(sin x + cos x) ′y2  = e–x (cos x – sin x)

W = y y y y1 2 2 1′ ′–  = e–2x

Also, φ(x) = e–x sec3x

A′ =
–

,
y x

W
2 φ� �

 B′ = 
– y x

W
1 φ� �

=
– sin sec

– tan sec
– –e x e x

e
x x

x x

x

⋅ =−

3

2
2

A = – tan secx x dx2�
A = – tan

1

2
2

1x C+

and B′ =
y x

W
1 φ� �
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=
e x e x

e

x x

x

– cos sec⋅ −

−

3

2

B′ = sec2 x

B = sec2 x dx�
B = tan x + C2

Substituting these values of A and B in Eqn. (1), we get

y =
–

tan cos tan sin–1

2
2

1 2x C e x x C e xx x+���
	
�

+ +− � �

= e C x C x e x xx x– cos sin sin sec1 2
21

2
+ + −� �

This is general solution of the given solution.

5. Solve by the method of variation of parameters

d y

dx
– y

2

2 =
2

1 ex+
.

Solution. We have

(D2 – 1) y =
2

1 + ex

A.E. is m2 – 1 = 0

i.e., m2 = 1 ⇒ m = ± 1

Hence C.F. is yc = C1 e
x + C2 e

–x

y = Aex + Be–x ...(1)

be the complete solution of the given equation where A and B are to be found

We have y1 = ex and y2 = e–x

′y1 = ex ′y2 = – e–x

W = y y y y1 2 2 1′ − ′ also φ(x) = 
2

1 + ex

= ex (– e–x) – e–x – e–x. ex – x = e0 = 1
= – 1 – 1 = – 2 e–x + x = e0 = 1

A′ =
– y x

W
2 φ� �

=

–

–

–e
e e

e

x
x x

x

⋅
+ = +

+

−
2

1

2 1
 = 

1

1e ex x+� 

A′ =
1

1e ex x+� 

A =
1

1
1

e e
dx C

x x+
+� � 

�
��

�
��
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Substitute ex = t, then ex dx = dt

dx = 
dt

t

Hence, A =
1

12 1
t t

dt C
+

+� � �

=
1 1 1

12 1
t t t

dt C– ,+
+

�
��

�
��

+� using partial fractions.

= – – log log ( )
1

1 1t
t t C+ + +

A = – e–x – x + log (1 + ex) + C1

B′ =
y x

W
1 φ� �

=

e
e e

e

x
x x

x

⋅
+ =

+

2

1

2 1–
–

B = –
e

e
dx C

x

x1
2+

+�
B = – log (1 + ex) + C2

Substituting these values of A and B in eqn. (1), we get

y = – log – log –e x e C e e C ex x x x x− − + + + + + +1 11 2�  � 
= C1 e

x + C2 e–x – 1 – xex + ex log (1 + ex) – e–x log (1 + ex)

= C1 e
x + C2 e–x – 1 – xex + (ex – e–x) log (1 + ex)

This is the complete solution of the given equation.

6. Solve by the method of variation of parameters

y″ + y = tan x.

Solution. We have (D2 + 1) y = tan x

A.E. is m2 + 1 = 0

i.e., m2 = – 1

i.e., m = ± i

C.F. is C.F. =  yc = C1cos x + C2 sin x

∴ y = A cos x + B sin x ...(1)

be the complete solution of the given equation where A and B are to be found

We have y1 = cos x and y2 = sin x

′y1 = – sin x ′y2  = cos x

W = y y y y1 2 2 1′ − ′

= cos x . cos x + sin x . sin x = cos2 x + sin2 x  = 1
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Also, φ (x) = tan x

A′ =
– y x

W
2 φ� �

=
– sin tanx x⋅

1

A′ =
– sin

cos

2 x

x

A = –
sin

cos

2

1
x

x
dx C+�

= –
cos

cos

1 2

1
− +� x

x
dx C

= – sec cosx x dx C− +� � � 1

A = – [log (sec x + tan x) – sin x] + C1

B′ =
y x

W
1 φ� �

=
cos tanx x⋅

1
B′ = sin x

B = sin x dx C+� 2

B = – cos x + C2

Substitute these values of A and B in Eqn. (1), we get

y = {– log (sec x + tan x) + sin x + C1} cos x + {– cos x + C2} sin x

y = C1 cos x + C2 sin x – cos x log (sec x + tan x)

This is the complete solution.

7. Solve by the method of variation of parameters

d y

dx
– 2

dy

dx
2y

2

2
+ = ex tan x.

Solution. We have (D2 – 2D + 2) y = ex tan x

A.E. is m2 – 2m + 2 = 0

i.e., m =
2 4 8

2

± −

m = 1 ± i

Therefore C.F. is

 yc = ex (C1 cos x + C2 sin x)

∴ y = ex (A cos x + B sin x) ...(1)

be the complete solution of the given equation
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where A and B are to be found

We have y1 = ex cos x and y2 = ex
 sin x

. ′y1 = ex (cos x – sin x), ′y2 = ex (sin x + cos x)

W = y y y y1 2 2 1′ − ′  = e2x Also, φ(x)= ex tan x

A′ =
– y x

W
2 φ� �

=
– sin tane x e x

e

x x

x

⋅
2

A′ =
– sin

cos

2 x

x

A = –
sin

cos
–

cos

cos

2 21x

x
dx

x

x
dx� �= −

= – sec cosx x dx−� � �
A = – log (sec x + tan x) + sin x + C1

B′ =
y x

W
1 ⋅ φ� �

=
e x e x

e

x x

x

cos tan⋅
2

B′ = sin x

B = sin x dx C+� 2

B = – cos x + C2

Substituting these values of A and B in Eqn. (1), we get

y = {– log (sec x + tan x) + sin x + C1}ex cos x + {– cos x + C2} ex sin x

y = ex (C1 cos x + C2 sin x) – ex cos x log (sec x + tan x)

This is the complete solution of the given equation.

8. Solve by the method of variation of parameters

d y

dx
– 2

dy

dx
y

2

2
+ = ex log x.

Solution. We have (D2 – 2D + 1) y = ex log x

A.E. is m2 – 2m + 1 = 0

i.e., (m – 1)2 = 0

i.e., m = 1, 1

Hence C.F. is

 yc = (C1 + C2 x) ex = C1 e
x + C2 x ex

∴ y = Aex + Bxex ...(1)
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We have y1 = ex and  y2 = xex

′y1 = ex, ′y2  = xex + ex

W = y y y y1 2 2 1′ − ′  = xe2x + e2x – xe2x = e2x

Also φ(x) = ex log x

A′ =
–

,
y x

W
2 φ� �

B′ =
– y x

W
1 φ� �

=
– log logxe e x

e

e e x

e

x x

x

x x

x

⋅ = ⋅
2 2

A′ = – x . log x, B′ = log x

A = – log x x dx⋅�
Integrating both these terms by parts, we get

A = – log –x
x x

x
dx C⋅ ⋅

�
�
�

�
�
� +�

2 2

12 2

1
B = log –x x x

x
dx C⋅ ⋅ +� 1

2

A =
– logx x x

C
2 2

12 4
+ + , B = x log x – x + C2

Substituting these values of A and B in Eqn. (1), we get

y =
– log

log
x x x

C e x x x C xex x
2 2

1 22 4
+ +

�
�
�

	


�

+ − +� �

y = C C x e
x e x x e

x x e x ex
x x

x x
1 + + +2

2 2
2 2

2 4
� � –

log
log –

= C C x e
x x e

x ex
x

x
1 2

2
2

2

3

4
+ + ⋅� � log

–

Thus, y = C C x e
x e

xx
x

1 2

2

4
2 3+ +� � � �log – .

9. Solve by the method of variation of parameters

y″ + 4y′ + 4y = 4
e

x

–2x

+ ⋅

Solution. We have (D2 + 4D + 4) y = 4
–2

+ e

x

x

A.E. is m2 + 4m + 4 = 0
i.e., (m + 2)2 = 0

m = – 2, – 2
C.F. is yc = e–2x (C1 + C2 x)
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y = C1e
–2x + C2x e–2x

∴ y = Ae–2x + Bxe–2x ...(1)

be the complete solution of the given equation where A and B are to be found

We have y1 = e–2x and y2 = xe–2x

′y1 = – 2e–2x ′y2 = e–2x (1 – 2x)

W = y y y y1 2 2 1′ − ′
= e–2x · e–2x (1 – 2x) + xe–2x · 2 · e–2x

W = e–4x Also, φ (x) = 4
–2

+ e

x

x

A′ =
– y x

W
2 φ� �

B′ = 
– y x

W
1 φ� �

=
– xe

e

x
e

x
x

x

−
−

−

⋅ +
�
��

�
��

2
2

4

4
= 

e
e

x

e

x
x

x

–2
–2

–4

⋅ +
�
��

�
��4

A′ = – (4xe2x + 1) , B′ = e
e

x
x

x
2 4 +

�
��

�
��

–2

On integrating, we get

A = – 4 12
1xe dx Cx + +� �  , B = e

e

x
dx Cx

x
2

24 +
�
��

�
��

+�
–2

A = − ⋅ − ⋅
�
�
�

�
�
� +4

2
4

4

2 2

1x
e e

x C
x x

– , = 4
12

2e
x

dx Cx +�
��

�
�� +�

A = – 2xe2x + e2x – x + C1 B = 2e2x + log x + C2

Substituting these values of A and B in Eqn. (1), we get

y = (– 2x e2x + e2x – x + C1) e–2x + (2e2x + log x + C2) xe–2x

= (C1 + C2x) e–2x – 2x + 1 – xe–2x + 2x + xe–2x log x

y = (C1 + C2x) e–2x + 1 + xe–2x(log x – 1).

10. Solve by the method of variation of parameters

y″ + 2y′ + 2y = e–x sec3x.

Solution. We have (D2 + 2D + 2) y = e–x sec3x

A.E.. is m2 + 2m + 2 = 0

i.e., m =
–

–
2 4 8

2
1

± −
= ± i

∴ C.F. is yc = e–x (C1cos x + C2 sin x)

∴ y = Ae–x cos x + Be–x sin x ...(1)

be the complete solution of the given equation where A and B are functions of x to be found
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We have y1 = e–x cos x and y2 = e–x sin x

′y1 = – e–x (sin x + cos x) ′y2 = e–x (cos x – sin x)

W = y y y y1 2 2 1′ − ′

= e–2x

Also, φ(x) = e–x sec3x

A′ =
– y x

W
2 φ� �

B′ = 
– y x

W
1 φ� �

A′ =
– sin sec

–

e x e x

e

x x

x

− −⋅ 3

2 B′ = 
e x e x

e

x x

x

− −⋅cos sec
–

3

2

A′ = – tan x sec2x, B′ = sec2x

A = – tan secx x dx C2
1+� ,

A = –
tan2

12

x
C+ , B = sec2

2x dx C+�
  B = tan x + C2

Substituting these values of A and B in Eqn. (1), we get

y = –
tan

cos tan sin–
2

1 22

x
C e x x C e xx x+

�
��

�
��

+ +− � �

= e C x C x
e x x

e x xx
x

x–
–

–cos sin –
tan sin

tan sin1 2 2
+ +� �

Thus,

y = e C x C x
e x xx

x
–

–

cos sin
tan sin

1 2 2
+ +� �

This is complete solution of the given equation.

�
������� ���

Solve the following equations by the method of variation of parameters:

1.
d y

dx
y

2

2
+  = tan2 x. Ans. y C x C x x x x= + + +1 2 2cos sin sin log sec tan –� �

2.
d y

dx
y

2

2
+  = x sin x. Ans. y C x C x x x x x= + +�

��
�
��1 2

21

2

1

4
cos sin sin – cos

3.
d y

dx

dy

dx
y

2

2
5 6– ⋅ +  = e4 x. Ans. y C e C e ex x x= + +�

��
�
��1

2
2

3 41

2

4.
d y

dx
y

2

2
4+  = 4 sec2 2x. Ans. y C x C x x x x= + + + −1 22 2 2 2 2 1cos sin sin log sec tan� �

5. (D2 + D) y = x cos x. Ans. y C C e x x x x xx= + + − + +�
��

�
��1 2

1

2
2– sin cos cos sin� �
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6. (D2 + a2) y = cosec ax. Ans. y C ax C ax
a

x ax
a

ax ax= + +�
��

�
��1 2 2

1 1
cos sin – cos sin log sin

7. (D2 + 1) y = sec x tan x. Ans. y C x C x x x x x x= + + − +1 2cos sin cos sin sin log sec

8. (D2 + 2D + 1) y = e–x log x. Ans. y C C x e x e xx x= + + −�
��

�
��

−
1 2

21

4
2 3� � � �– log

9. (D2 – 3D + 2) y = 
1

1+ e x–
.

Ans. y C e C e xe e e e ex x x x x x x= + − + + + +1 2
2 21 1log log –�  � 

10. (D2 – 6D + 9) y = 
e

x

x3

2
. Ans. y C C x e e xx x= +1 2

3 3� � – log

11. (D2 – 2D + 1) y = x2 e3x. Ans. y C C x e x x ex x= + + − +�
��

�
��1 2

3 2 31

8
2 4 3� � � 

12. (D2 + 1) y = log cos x.  Ans. y C x C x x x x x= + + + + −1 2 1cos sin sin log sec tan logcos� �

13. (D2 + 1) y = 
1

1+ sin
.

x
Ans. y C x C x x x x x= + + +1 2 1 1cos sin – cos sin log sin –� �

14. (D2 – 2D + 1) y = 
e

x

x

. Ans. y C C x e xe xx x= + +1 2� � log

15. (D2 + 6D + 9) y = 
e

x

x–3

.
5

Ans. y C C x e x ex x= + +�
��

�
��1 2

1

12
� � –3 –3 –3

6.2 SOLUTION OF CAUCHY’S HOMOGENEOUS LINEAR EQUATION AND
LENGENDRE’S LINEAR EQUATION

A linear differential equation of the form

x
d y

dx
a x

d y

dx
a x

d y

dx
a x

dy

dx
a y xn

n

n
n

n

n
n

n

n n n+ ⋅ + + ⋅⋅ ⋅ + ⋅ + =−
−

−
−

−

− −1
1

1

1 2
2

2

2 1 φ( ) ...(1)

Where a1, a2, a3 ...an are constants and φ(x) is a function of x is called a homogeneous linear
differential equation of order n.

The equation can be transformed into an equation with constant coefficients by changing the
independent variable x to z by using the substitution x = ez or z = log x

Now z = log x  ⇒  
dz

dx x
= 1
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Consider
dy

dx

dy

dz

dz

dx
= ⋅ =

1

x

dy

dz
⋅

∴ x 
dy

dx
=

dy

dz
Dy=

where D = 
d

dz
.

Differentiating w.r.t. ‘x’ we get,

x
d y

dx

dy

dx

2

2
1+ ⋅ =

d y

dz

dz

dx

2

2
⋅

i.e., x
d y

dx

2

2 =
d y

dz x

dy

dx

2

2

1⋅ –

=
1 12

2x

d y

dz x

dy

dz
⋅ ⋅–

i.e., x
d y

dx
2

2

2 =
d y

dz

dy

dz

2

2
−

i.e., x
d y

dx
2

2

2 = (D2 – D) y = D (D – 1) y

Similarly, x
d y

dx
3

3

3 = D (D – 1) (D – 2) y

.............................................................

.............................................................

x
d y

dx
n

n

n = D (D – 1) ... (D – n + 1) y

Substituting these values of x
dy

dx
x

d y

dx
x

d y

dx
n

n

n
, 2

2

2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  in Eqn. (1), it reduces to a linear

differential equation with constant coefficient can be solved by the method used earlier.

Also, an equation of the form,

ax b
d y

dx
a ax b

d y

dx
any x

n
n

n

n
n

n
+ ⋅ + + ⋅ + =−

−

−� � � �1
1

1

1
... ( ) ...(2)

where a1, a2 .....an are constants and φ (x) is a function of x is called a homogeneous linear differential
equation of order n. It is also called “Legendre’s linear differential equation”.

This equation can be reduced to a linear differential equation with constant coefficients by using
the substitution.

ax + b = ez or z = log (ax + b)

As above we can prove that

ax b
dy

dx
+ ⋅� � = a Dy
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ax b
d y

dx
+ ⋅� �2

2

2 = a2 D (D – 1) y

.............................................................

.............................................................

ax b
d y

dx

n
n

n
+ ⋅� � = an D (D – 1)(D – 2) ..... (D – n + 1) y

The reduced equation can be solved by using the methods of the previous section.

������� ��	� �
�����

1. Solve x
d y

dx
2x

dy

dx
4y2

2

2
− − = x4.

Solution. The given equation is

x
d y

dx
x

dy

dx
y2

2

2
2 4− − = x4 ...(1)

Substitute x = ez or z = log x

So that x
dy

dx
= Dy, x

d y

dx
2

2

2 = D (D – 1) y

The given equation reduces to

D (D – 1) y – 2Dy – 4y = (ez)4

[D (D – 1) – 2D – 4] y = e4z

i.e., (D2 – 3D – 4) y = e4z ...(2)

which is an equation with constant coefficients

A.E. is m2 – 3m – 4 = 0

i.e., (m – 4) (m + 1) = 0

∴ m = 4, –1

C.F. is C.F. = C1e
4z + C2e–z

P.I. =
1

3 42
4

D D
e z

− −
D → 4

=
1

4 3 4 4
2

4

� � � �– −
e z

Dr = 0

=
1

2 3
4

D
ze z

− D → 4

=
1

2 4 3
4

( ) � � −
ze z

=
1

5
4ze z
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∴ The general solution of (2) is
y = C.F. + P.I.

y = C1 e
4z + C2 e

–z + 
1

5
4ze z

Substituting ez = x or z = log x, we get

y = C x C x x x1
4

2
41

5
+ +–1 log � 

y = C x
C

x

x
x1

4 2
4

5
+ + log

is the general solution of the Eqn. (1).

2. Solve x
d y

dx
3x

dy

dx
4y2

2

2
− + = (x + 1)2.

Solution. The given equation is

x
d y

dx
x

dy

dx
y2

2

2
3 4− + = (x + 1)2 ...(1)

Substituting x = ez or z = log x

Then x
dy

dx
= Dy, x

d y

dx
2

2

2 = D (D – 1) y

∴ Eqn. (1) reduces to

D (D – 1) y – 3 Dy + 4y = (ez + 1)2

i.e., (D2 – 4D + 4) y = e2z + 2ez + 1

which is a linear equation with constant coefficients.

A.E. is m2 – 4m + 4 = 0

i.e., (m – 2)2 = 0

∴ m = 2, 2

C.F. = (C1 + C2z) e2z

P.I. =
1

2
2 1

2
2

D
e ez z

−
+ +

� �
�  ...(2)

=
e

D

e

D

e

D

z z z2

2 2

0

2
2

2

2 2– – –� � � � � �
+ +

= P.I.1 + P.I.2 + P.I.3

P.I.1 =
e

D

z2

2
2–� �

(D → 2)

=
e z2

2
2 2–� �

(Dr = 0)

=
ze

D

z2

2 2–� � (D → 2)
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=
ze z2

2 2 2−� � (Dr = 0)

P.I.1 =
z e z2 2

2

P.I.2 =
2

2
2

e

D

z

−� �
(D → 1)

=
2

1
2

ez

−� �
P.I.2 = 2ez

P.I.3 =
e

D

z0

2
2−� �

(D → 0)

=
e z0

4

1

4
=

P.I. =
z

e ez z
2

2

2
2

1

4
+ +

The general solution of Eqn. (2) is
y = C.F. + P.I.

y = C C z e
z e

ez
z

z
1 2

2
2 2

2
2

1

4
+ + + +� �

Substituting ez = x or z = log x, we get

y = C C x x
x x

x1 2
2

2 2

2
2

1

4
+ + + +log

log� � � �

is the general solution of the equation (1).

3. Solve x
d y

dx
2x

dy

dx
12y2

2

2
+ − = x2 log x.

Solution. The given Eqn. is

x
d y

dx
x

dy

dx
y2

2

2
2 12+ − = x2 log x ...(1)

Substituting x = ez or z = log x, so that

x
dy

dx
= Dy, and x

d y

dx
2

2

2  = D (D – 1) y

Then Eqn. (1) reduces to

D (D – 1) y + 2 Dy – 12y = e2zz

i.e., (D2 + D – 12) y = ze2z ...(2)

which is the Linear differential equation with constant coefficients.

A.E. is m2 + m – 12 = 0
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i.e., (m + 4) (m – 3) = 0

∴ m = – 4, 3

C.F. = C1e
–4z + C2e3z

P.I. =
1

122
2

D D
ze z

+ –

= e
z

D D

z2
2

2 2 12+ + + −� � � � (D → D + 2)

= e
z

D D
z2

2 5 6+ −
�
�
�

�
�
�

− −1

6

5

36
z

– 6 + 5D + D2 z

z –
5

6

5

6

5

6

0

P.I. = e
z e

zz
z

2
2

6

5

36 6

5

6
− −�
��

�
��

= +�
��

�
��

–

∴ General solution of Eqn. (2) is
y = C.F. + P.I.

y = C e C e
e

zz z
z

1
4

2
3

2

6

5

6
− + +�

��
�
��–

Substituting ez = x or z = log x, we get

y = C x C x
x

x1
4

2
3

2

6

5

6
– – log+ +�

��
�
��

y =
C

x
C x

x
x1

4 2
3

2

6

5

6
+ +�

��
�
��– log

which is the general solution of Eqn. (1).

4. Solve x
d y

dx
– x

dy

dx
y2

2

2
+ = 2 log x.

Solution. The given equation is

x
d y

dx
x

dy

dx
y2

2

2
– + = 2 log x ...(1)
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Substitute x = ez or z = log x,  in Eqn. (1)

Then x
dy

dx
= Dy, and x

d y

dx
2

2

2 = D (D – 1) y

Eqn. (1) reduces to,

D (D – 1) y – Dy + y = 2z

i.e., (D2 – 2D + 1) y = 2z ...(2)

which is an equation with constant coefficients

A.E. is m2 – 2m + 1 = 0

i.e., (m – 1)2 = 0

∴ m = 1, 1

C.F. = (C1 + C2z) ez

P.I. =
1

2 1
2

2D D
z

− +
⋅

2z + 4

1 – 2D + D2 2z
2z – 4

4
4

0

P.I. = 2z + 4
∴ The general solution of Eqn. (2) is

y = (C1 + C2z) ez + 2z + 4
Hence the general solution of Eqn. (1) is

y = (C1 + C2 log x) · x + 2 log x + 4.

5. Solve x
d y

dx
– 4x

dy

dx
6y2

2

2
+ = cos (2 log x).

Solution. The given equation is

x
d y

dx
x

dy

dx
y2

2

2
– 4 6+ = cos (2 log x) ...(1)

Substituting x = ez or z = log x, we have

x
dy

dx
= Dy, and x

d y

dx
2

2

2 = D (D – 1) y

∴ Eqn. (1) reduces to

D(D – 1)y – 4Dy + 6y = cos 2z

i.e., (D2 – 5D + 6) y = cos 2z ...(2)

A.E. is m2 – 5m + 6 = 0
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i.e., (m – 2) (m – 3) = 0

∴ m = 2, 3

C.F. = C1e
2z + C2e

3z

P.I. =
1

5 6
2

2D D
z

− +
cos D2 → – 22

=
1

2 5 6
2

2–
cos

− +D
z

=
1

5 2
2

–
cos

D
z

+

=
1

2 5
2

2 5

2 5–
cos

D
z

D

D
×

+
+

=
2 2 10 2

4 25 2

cos sinz z

D

−
−

D2 → – 22

=
2 2 10 2

104

cos sinz z−

P.I. =
1

52
2 5 2cos – sinz z� �

The general solution of Eqn. (2) is
y = C.F. + P.I.

= C e C e z zz z
1

2
2

3 1

52
2 5 2+ + −cos sin� �

Hence the general solution is

y = C x C x x x1
2

2
3 1

52
2 5 2+ + cos log – sin log� � � � .

6. Solve x
d y

dx
x

dy

dx
2y x cos log x2

2

2
+ + = � � .

Solution. The given equation is

x
d y

dx
x

dy

dx
y2

2

2
+ + 2 = x cos (log x) ...(1)

Substitute x = ez or z = log x,

Then we have x
dy

dx
= Dy and x

d y

dx
2

2

2
= D (D – 1) y

∴ Eqn. (1) reduces to

D (D – 1) y + Dy + 2y = ez cos z

i.e., (D2 + 2) y = ez cos z ...(2)

A.E. is m2 + 2 = 0

i.e., m2 = – 2;



300 ENGINEERING MATHEMATICS—II

i.e., m2 = 2i2  ⇒  m = ± 2 i

C.F. = C z C z1 22 2cos sin+

P.I. =
1

22D
e zz

+
cos (D → D + 1)

= e
D

zz 1

1 2
2+ +� �

cos

= e
D D

zz 1

2 32 + +
cos (D2 → –12)

= e
z

D
z cos

–12 2 3+ +
�
�
�

�
�
�

= e
z

D
z cos

2 2+
�
��

�
��

=
e z

D

D

D

z

2 1

1

1

cos

+
×

−
−

�
��

�
��

=
e z z

D

z

2 12

– sin cos−
−

�
�
�

�
�
� (D2 → –12)

=
e z zz

2 2

– sin cos

–

−�
��

�
��

=
e

z z
z

4
sin cos+� �

∴ General solution of Eqn. (2) is
y = C.F. + P.I.

= C z C z
e

z z
z

1 22 2
4

cos sin sin cos+ + +� �
∴ The general solution of Eqn. (1), as

y = C x C x
x

x x1 22 2
4

cos log sin log sin log cos log+ + +� � � � .

7. Solve 2x
d y

dx
3

dy

dx
–

y

x

2

2
+ = 5 –

sin log x

x2

� �
·

Solution. Multiplying throughout the equation by x, we get

2 32
2

2
x

d y

dx
x

dy

dx
y+ − = 5x

x

x
–

sin log� �
...(1)

Substitute x = ez  or  z = log x, in Eqn. (1)
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Then we obtain,

{2D (D – 1) + 3D – 1} y = 5ez – e–z sin z

i.e., (2D2 + D – 1) y = 5ez – e–z sin z ...(2)

A.E. is 2m2 + m – 1 = 0

i.e., (m + 1) (2m – 1) = 0

∴ m = – 1, 
1

2

C.F. = C e C e
z

1
2

2

1
2−

�
��

�
��+

P.I. =
1

2 1
5

2D D
e e zz z

+ −
− – sin� 

=
1

2 1
5

1

2 12 2D D
e

D D
e zz z

+ − +
–

–
sin–

= P.I.1 – P.I.2

P.I.1 =
5

2 12

e

D D

z

+ –
(D → 1)

=
5

2

ez

P.I.2 =
1

2 12D D
e zz

+ −
– sin (D → D – 1)

= e
D D

zz−

− + − −
1

2 1 1 1
2� � � �

sin

= e
z

D D
z−

−
�
�
�

�
�
�sin

2 32
(D2 → – 12)

= e
z

D

z−

−

�

�
�
�

�

�
�
�

sin

–12 32� 

= e
z

D
z−

−
sin

– 2 3

= −
+

�
��

�
��

−e
z

D
z sin

3 2

= –
sin

e
z

D

D

D
z−

+
×

−
−

�
��

�
��3 2

3 2

3 2

= –
cos sin

e
z z

D
z− −

−
�
�
�

�
�
�3 2

9 42 2 (D2 → –12)
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= –
cos sin

–
e

z zz− −�
��

�
��

3 2

13

=
e

z z
z−

−
13

3 2cos sin� �

P.I. =
5

2

1

13
3 2e e z zz z+ −− cos sin� �

Complete solution of Eqn. (2) is

y = C.F. + P.I.

y = C e C e e e z zz
z

z z
1 2

1
2 5

2

1

13
3 2−

�
��

�
��+ + + −– cos sin� �

∴ The general solution of Eqn. (1) is

y =
C

x
C x x

x
x x1

2
5

2

1

13
3 2+ + + cos log – sin log� � � � .

8. Solve x
d y

dx
2x

d y

dx
2y 10 x

1

x
3

3

3
2

2

2+ + = +�
��

�
�� ·

Solution. The given equation

x
d y

dx
x

d y

dx
y3

3

3
2

2

2
2 2+ + = 10

1
x

x
+�

��
�
�� ...(1)

Substitute x = ez or z = log x

Hence, x
dy

dx
= Dy, x

d y

dx
2

2

2 = D (D – 1) y

x
d y

dx
3

3

3
= D (D – 1)(D – 2) y

Eqn. (1) reduces to linear differential equation as

[D (D – 1)(D – 2) + 2D (D –1) + 2] y = 10
1

e
e

z
z

+�
��

�
��

i.e., (D3 – D2 + 2) y = 10 e ez z+ −� 
which is linear differential equation with constant coefficients

A.E. is m3 – m2 + 2 = 0

i.e., (m + 1) (m2 – 2m + 2) = 0

Hence m = – 1, 1 ± i

Therefore, C.F. = C1e
–z + ez (C2 cos z + C3 sin z)

P.I. =
1

2
10

3 2D D
e ez z

–
–

+
+� 
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= 10
1

2

1

23 2 3 2D D
e

D D
ez z

− +
+

− +
⋅

�
�
�

	


�

–

= 10 [P.I.1 + P.I.2]

P.I.1 =
1

23 2D D
ez

− +
D → 1

=
ez

2

P.I.2 =
1

23 2D D
e z

− +
– D → –1

=
1

1 2
3 2

–1 –� � � �− +
−e z Dr = 0

=
1

3 22D D
ze z

−
− D → – 1

=
ze z–

–1 –13 22� � � �−

P.I.2 =
ze z–

5

P.I. = 10
2 5

e zez z

+
�
�
�

	


�

–

Hence the complete solution is
y = C.F. + P.I.

= C e e C z C z
e zez z

z z

1 2 3 10
2 5

– cos sin+ + + +
�
�
�

�
�
�

−

� �

Substituting ez = x or z = log x

We get y =
C

x
x C x C x x

x

x
1

2 3 5
2+ + + + ⋅cos log sin log

log� � � �� �

9. Solve x
d y

dx
2x

d y

dx
– x

dy

dx
xy sin log x4

3

3
3

2

2
2+ + = � � .

Solution. Dividing throughout the equation by ‘x’, we get

x
d y

dx
x

d y

dx
x

dy

dx
y3

3

3
2

2

2
2+ +– =

sin log x

x

� �
...(1)

Now substitute x = ez and z = log x

x
dy

dx
= Dy, x

d y

dx
2

2

2  = D (D – 1) y,
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x
d y

dx
3

3

3
= D (D – 1)(D – 2) y

Eqn. (1) reduces to

[D (D – 1)(D – 2) + 2D (D –1) – D + 1] y = 
sin z

ez

i.e., (D3 – D2 – D + 1) y = e–z sin z

A.E. is m3 – m2 – m + 1 = 0

⇒ m2 (m – 1) – 1 (m – 1) = 0

⇒ (m2 – 1) (m – 1) = 0

⇒ m2 – 1 = 0, m – 1 = 0

⇒ m = ± 1, 1   ⇒ m = – 1, + 1, + 1

C.F. = (C1 + C2 Z.) ez + C3 e–z and

P.I. =
1

1 1
2

D D
e zz

− +� � � �
– sin

Taking e–z outside and replacing (D → D – 1)

= e
D D

zz– sin
1

2
2−� �

= e
D D D

zz–

–
sin

1

4 42 +� 

= e
z

D D D
z– sin

–3 24 4+
(D2 → –12)

= e
z

D D
z– sin

− + +4 4

= e
z

D

D

D
z– sin –

4 3

4 3

4 3+
×

−

= e
z z

D
z– cos – sin4 3

16 92 −
�
�
�

�
�
� (D2 → –12)

= e
z zz– cos – sin

–

4 3

25

=
–

cos sin–1

25
4 3e z zz −� �

∴ The complete solution is
y = C.F. + P.I.

= C C z e C e e z zz z z
1 2 3

1

25
4 3+ + + −� � � �– – sin cos
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z = log x x = ez

= C C x x
C

x x
x x1 2

3 1

25
4 3+ ⋅ + +log sin log – cos log� � � � � � .

10. Solve 3x 2
d y

dx
3 3x 2

dy

dx
36y

2
2

2
+ ⋅ + + −� � � � = 3x2 + 4x + 1.

Solution. The given equation is

3 2 3 3 2 36
2

2

2
x

d y

dx
x

dy

dx
y+ ⋅ + + −� � � � = 3x2 + 4x + 1 ...(1)

Substitute 3x + 2 = ez or z = log (3x + 2)

So that 3 2x
dy

dx
+( ) = 3Dy

3 2
2

2

2
x

d y

dx
+� � = 32 D (D – 1) y

Also, x =
ez – 2

3
Substituting these values in Eqn. (1), we get

32 D (D – 1) y + 3.3 Dy – 36y = 3
2

3
4

2

3
1

2
e ez z– –�

��
�
��

+
�
��

�
��

+

9 (D2 – 4) y =
e z2 1

3

−

i.e., (D2 – 4) y =
1

27
12e z −�  ...(2)

Which is a linear differential equation with constant coefficients

Now the A.E. m2 – 4 = 0

Whose roots are m2 = 4

m = ± 2

C.F. = C1e
2z + C2e

– 2z and

P.I. =
1

4

1

27
1

2
2

D
e z

−
−� 

=
1

27 2 2

1

4

2

2

e

D D D
e

z
oz

− +
−

−

�
�
��

�
�
��� �� �

=
1

27 1 2P.I. P.I.−

P.I.1 =
e

D D

z2

2 2− +� �� � (D → 2)

(Dr = 0)
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=
ze

D

z2

2
(D → 2)

=
ze z2

4

P.I.2 =
ze

D

oz

2 4− (D  → 0)

=
1

4−

P.I. =
1

27

1

4

1

4
2ze z +�

��
�
��

P.I. =
1

108
12ze z +� 

General solution is
y = C.F. + P.I.

= C e C e zez z z
1

2
2

21

108
1+ + +–2 � 

y = C x C x x x1
2

2
2

3 2 3 2
1

108
3 2 3 2 1+ + + + + + +� � � � � � � �–2

log .

�
������� ���

Solve the following equations:

1. x
d y

dx
y2

2

2
+  = 3x2. Ans. y x C x C x x=

�
��

�
��

+
�
��

�
��

�
�
�
�

�
�
�
�

+
�

�
�
�

�

�
�
�1 2

23

2

3

2
cos log sin log

2. x
d y

dx
x

dy

dx
y2

2

2
5 4+ +  = x4. Ans. y x C C x

x= + +
�
�
�

�
�
�−2

1 2

4

36
log� �

3. x
d y

dx
x

dy

dx
y2

2

2
2 20+ –  = (x + 1)2. Ans. y C x C x

x x= + + +
�
�
�

�
�
�

�
�
�
�

�
�
�
�1 2

4
2

14 9

1

20
–5 –

4. x
d y

dx
x

dy

dx
y2

2

2
2– +  = x sin (log x).

Ans. y x C x C x
x

x x= +�
��

�
��1 2 2

cos log sin log – log cos log� � � � � �

5. x
d y

dx
x

dy

dx
y2

2

2
3+ +  = x

x
+ 1

. Ans. y x C C x
x x x

= + + +
�

�
�
�

�

�
�
�

−1
1 2

2

4 2
log

log–1� �
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6. x
d y

dx
x

dy

dx
y2

2

2
4 2+ +  = ex. Ans. y C x C x e x= + −

1 2
2–1

7. x
d y

dx
x

dy

dx
y2

2

2
4– +  = cos (log x) + x sin (log x).

Ans. y x C x C x x x
x

x= + + − +�
��

�
��1 23 3

1

13
3 2

2
cos log sin log cos log sin log sin log� � � � � � � � � �

8. x
d y

dx
x

dy

dx
y2

2

2
3 5– +  = x2 sin (log x).

Ans. y x C x C x
x

x x= +
�
�
�

�
�
�2

1 2

2

2
cos log sin log – log cos log� � � � � �

9. x2y″ – xy′ + y = log x. Ans. y C C x x x= + + +1 2 2log log� �

10. x
d y

dx
x

d y

dx
x

dy

dx
xy4

3

3
3

2

2
22+ +–  = 1. Ans. y x C C x C x x x= + + +�

��
�
��1 2 3

1

4
log log–1 –1� �

11. x
d y

dx
x

dy

dx
y2

2

2
5 4+ +  = x log x. Ans. y x C C x

x
x= + + �

��
�
��

�
��

�
��

–2 log log –1 2 9

2

3
� �

12. x
d y

dx
x

d y

dx
x

dy

dx
y3

3

3
2

2

2
3 8+ + +  = 65 cos (log x).

Ans. y C x x C x C x x x= + + +�
��

�
��1 2 23 3 8–2 cos log sin log cos log – sin log� � � � � � � �

13. x
d y

dx
x

dy

dx
y2

2

2
3 5– + = x2 sin (log x).

Ans. y x C x C x
x

x x= +
�
�
�

�
�
�2

1 2

2

2
cos log sin log – log cos log� � � � � �

14. 1 1
2

2

2
+ + + +x

d y

dx
x

dy

dx
y� � � �  = 4 cos log (1 + x).

Ans. y C x C x x x= + + + + + +1 21 1 2 1 1cos log sin log log sin log� � � � � � � �

15. 2 1 2 2 1 12
2

2

2
x

d y

dx
x

dy

dx
y+ ⋅ +� � � �– –  = 16x.

Ans. y C x C x x= + + − − + +�
��

�
��1

3
22 1 2 1

3

16
2 1

1

4
� � � � � �–1

16. 2 1 2 1 2
3

3

3
x

d y

dx
x

dy

dx
y– –� � � �+ +  = 0.

Ans. y x C C x C x= − + − + −
�
�
�
�

�
�
�
�

�

�
�
�

�

�
�
�

2 1 2 1 2 11 2

3

2 2

3

2� � � � � �
–
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6.3 SOLUTION OF INITIAL AND BOUNDARY VALUE PROBLEMS

The differential equation in which the conditions are specified at a single value of the independent
variable say x = x0 is called an Initial Value Problem (IVP).

If y = y(x), the initial conditions usually will be of the form.

y(x0) = x0, y′(x0) = y1, ... y(n –1) (x0) = yn–1

The differential equation in which the conditions are specified for a given set of n values of the
independent variables is called a Boundary Value Problem (BVP).

If y = y(x) the n boundary conditions will be

y (x1) = y1 , y(x2) = y2 , y(x3) = y3 ...

y(xn) = yn .

We can also have problems involving a system of d.e. (simultaneous de.s) with these type of
conditions.

������� ��	� �
�����

1. Solve the initial value problem 
d x

dt
5

dx

dt
6x

2

2
+ + = 0, given that

x (0) = 0, 
dx

dt
0� �  = 15.

Solution. We have (D2 + 5D + 6) y = 0

A.E.. m2 + 5m + 6 = 0

(m + 2) (m + 3) = 0

⇒ m = – 2, – 3

Therefore general solution is

x =  x (t) = C1e
–2t + C2e–3t ...(1)

This is the general solution of the given equation

Now, consider, x (0) = 0

Eqn. (1), becomes  x (0) = C1(1) + C2(1)

i.e., C1 + C2 = 0 ...(2)

Also we have from Eqn. (1),

dx

dt
= – 2C1e

–2t– 3C2e–3t

Applying the conditions,
dx

dt
0� � = 15

We obtain

– 2C1 – 3C2 = 15 ...(3)

Solving equations (2) and (3), we get C1 = 15, C2 = – 15

thus x (t) = 15 (e–2t – e–3t).
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2. Solve d y

dx
4

dy

dx
3y

2

2
+ + = e–x subject to the conditions y(0) = y′(0).

Solution. We have (D2 + 4D + 3) y = e–x

A.E. m2 + 4m + 3 = 0

or (m + 1) (m + 3) = 0

m = – 1, – 3

C.F. = C1e
–x + C2e–3x

P.I. =
e

D D

x–

2 4 3+ +
D → – 1

=
e x–

–1 –1� � � �2 4 3+ +
Dr = 0

=
x e

D

x–

2 4+ D → – 1

=
x e x–

2
y = C.F. + P.I.

y = C e C e
x ex x

x

1 2 2
– –3

–

+ + ...(1)

y′ =
dy

dx
C e C e x e ex x x x= + + −– – –– –3 –

1 23
1

2
�  ...(2)

Consider the conditions y(0) = 1 and y′(0) = 1

Eqn. (1) and (2) become,

1 = C1 + C2 and 1 = – – .C C1 23
1

2
+

By solving these equations we get,

C1 =
7

4
 and C2 = 

– 3

4

Thus y =
7

4

3

4 2
e e

x ex x
x

– –3− +
−

 is the particular solution.

3. A particle moves along the x-axis according to the law
d x

dt
6

dx

dt
25x

2

2
+ +  = 0. If the particle

is started at x = 0 with an initial velocity of 12 ft/sec to the left, determine x in terms of t.

Solution. We have (D2 + 6D + 25) x = 0

From the given data, the initial conditions x = 0 when t = 0 and 
dx

dt
 = – 12 when t = 0
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A.E. m2 + 6m + 25 = 0

m = – 3 ± 4i

∴ x = x(t) = e–3t (C1 cos 4t + C2 sin 4t) ...(1)

Now x′(t) = + 3e–3t (– C1 sin 4t · 4 + 4 C2 cos 4t)

= – 12 e–3t (C1 cos 4t – C2 sin 4t) ...(2)

Consider x (0) = 0 and x′(0) = – 12

Eqns. (1) and (2) become,

0 = C1 and – 12 = 4C2 – 3C1

∴ C = 0 and C2 = – 3

x (t) = – 3e–3t sin 4t.

�
������� ���

Solve the following initial value problems:

1.
d y

dx

dy

dx
y

2

2
6 9+ +  = 12e–3x2

= y (0) =0, = y ′ (0) Ans. y e xx= ⋅–3 4

2.
d y

dx
y

4

4
–  = 0; y (0) = 1 and y′(0) = 0 = y″(0) = ′′′y ( ).0 Ans. y h x x= +�

��
�
��

1

2
cos cos� �

3. ′′′ + ′y t y t( ) � �  = e2t, y(0) = 0 = y′(0) = ′′′y ( ).0 Ans. y e t tt= + +�
��

�
��

1

10
5 4 22– cos – sin� 

����	������ �������� ������ ���	
���� ����� ���� �������

1. Using the method of variation of parameters solve: 
d y

dx
y

2

2
+  = 

1

1 sin x+

Solution. We have (D2 + 1) y = 
1

1+ sin x

A.E. is m2 + 1 = 0 and hence m = ± i

∴ C.F. = C1 cos x + C2 sin x

y = A(x) cos x + B(x) sin x ...(1)

be the complete solution of the given d.e. where A(x) and B(x) are to be found.

We have y1 = cos x y2 = sin x

′y1 = – sin x ′y2 = cos x

W = y y y y1 2 2 1 1′ − ′ =    Also φ(x) =
1

1 + sin x
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Now, A′ =
– y x

W
2 φ� �

and B′ =
y x

W
1 φ� �

i.e., A′ =
– sin

sin

x

x1 + and B′ =
cos

sin

x

x1 +

consider A′ =
– sin

sin
–1

sin

1 1

1

1+ −
+

= +
x

x x

� �

A = –1
sin

+
+

�
��

�
��

+� 1

1 1x
dx k

= –
sin

cos
x

x

x
dx k+ − +� 1

2 1

= – sec sec tanx x x x dx k+ − +� 2
1� 

A = – x + tan x – sec x + k1 ...(2)

Also, ′B =
cos

sin

cos sin

cos

sin

cos

x

x

x x

x

x

x1

1 1
2+

=
+

= −� �

B =
1

2
− +� sin

cos

x

x
dx k

= sec tanx x dx k− +� � � 2

= log (sec x + tan x) + log (cos x) + k2

= log
sin

cos
log cos

1
2

+�
��

�
�� + +x

x
x k� �

= log (1 + sin x) – log (cos x) + log (cos x) + k2

B = log (1 + sin x) + k2 ...(3)

Using Equations (2) and (3) in (1), we have

y = [– x + tan x – sec x + k1] cos x + [log (1 + sin x) + k2] sin x

i.e., y = k1 cos x + k2 sin x – x cos x + sin x – 1 + sin x log (1 + sin x)

The term sin x can be neglected in view of them k2 sin x present in the solution

Thus, y = k1 cos x + k2 sin x – (x cos x + 1) + sin x log (1 + sin x).

2. Solve by the method of variation of parameters 
d y

dx
4y

2

2
+  = 4 tan 2x.

Solution. Refer page no. 282. Example 2.

3. Solve 
d y

dx
2

dy

dx
2y

2

2
− +  = ex tan x using the method of variation of parameters

Solution. Refer page no. 287, Example 7.
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4. Solve 
d y

dx
a y

2

2
2+  = tan ax.

Solution. We have (D2 + a2) y = tan ax

A.E. is m2 + a2 = 0 ⇒ m = ± ia

C.F. : = C1 cos ax + C2 sin ax

be the complete solution of the d.e. where A and B are functions of x to be found.

We have y1 = cos ax y2 = sin ax

′y1 = – a sin ax ′y2 = a cos ax

W = y y y y a1 2 2 1′ − ′ =     Also φ(x) = tan ax

A′ =
– y x

W
2 φ� �

B′ =
y x

W
1 φ� �

A′ =
– sin

cos

1 2

a

ax

ax
B′ =

cos tanax ax

a

A′ =
– cos

cos

1 1 2

a

ax

ax

−� 
B′ =

sin ax

a

⇒ A =
1

1a
ax ax dx kcos sec− +� � � , B =

sin ax

a
dx k+� 2

⇒ A =
1
2 1

a
ax ax ax ksin log sec tan− + +

B = –
cosax

a
k

2 2+

Substituting these values in Eqn. (1), we get

y =
1
2 1 2 2

a
ax ax ax k ax

ax

a
k axsin log sec tan cos –

cos
sin− + +���

	
�
+ +���

	
�� �

Thus y = k ax k ax
a

ax ax ax1 2
2

1
cos sin log sec tan cos+ − +� � .

5. Using the method of variation of parameters find the solution of 
d y

dx
2

dy

dx
y

e

x

2

2

x

− + =  ·

Solution. We have (D2 + 2D + 1) y = 
e

x

x

A.E. is m2 – 2m + 1 = 0 ⇒ (m – 1)2 = 0

m = 1, 1 are the roots of A.E.

∴ C.F. = (C1 + C2 x) ex

y = (A + Bx) ex ...(1)

where A = A(x), B = B(x)

be the complete solution of the d.e. and we shall find A, B, we have

y1 = ex, y2 = x ex
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∴ ′y1 = ex ′y2 = (x + 1) ex

W = y y y y e x
1 2 2 1

2′ − ′ =   Also φ(x) =
e

x

x

Further, we have

′A =
– y x

W
2 φ� �

        and ′B =
y x

W
1 φ� �

′A =
– xe

e

x
e

x
x

x

⋅
2 ′B =

e
e

x
e

x
x

x

⋅
2

i.e., ′A = – 1 ′B =
1

x

⇒ A = –1⋅ +� dx k1 B =
1

2x
dx k+�

i.e., A = – x + k1 B = log x + k2.

Using these values in Eqn. (1), we have

y = (– x + k1) ex + (log x + k2) x ex

i.e., y = (k1 + k2 x) ex + (log x – 1) x ex

The term – xex can be neglected in view of the term k2 xex present in the solution.

Thus y = (k1 + k2 x) ex + x log x ex.

6. Solve x
d y

dx
x

d y

dx
x

dy

dx
y3

3

3
2

2

2
3 8+ + +  = 65 cos (log x).

Solution. Put t = log x or x = et

Thus, we have xy ′ = Dy, n y2 ′′  = D (D – 1) y

x y3 ′′′ = D (D – 1) (D – 2) y where D = 
d

dt
Hence, the given d.e. becomes

[D (D – 1) (D – 2) + 3D (D – 1) + D + 8] y = 65 cos t

i.e., = (D3 – 3D2 + 2D + 3D2 – 3D + D + 8) y = 65 cos t

or (D3 + 8) y = 65 cos t

A.E. : m3 + 8 = 0 ⇒ m3 – 23 = 0

(m + 2) (m2 – 2m + 4) = 0

m = – 2 and m2 – 2m + 4 = 0

By solving m2 – 2m + 4 = 0, we have

m =
2 4 16

2

2 2 3

2
1 3

± − = ± = ±i
i

C.F. = C e e C t C tt t
1 2 33 3–2 cos sin+ +� �
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Also P.I. =
65

83

cos t

D +
D2 → –12 =  –1

P.I. =
65

8

65 8

64 2

cos

–

cost

D

D t

D+
=

+
−

� � , D2 → –1

=
65 8

65

cos sint t−� �

P.I. = 8 cos t – sin t

Complete solution : y = C.F. + P.I. with t = log x,

et = x

=
C

x
x C x C x1

2 33 3+ +cos log sin log� � � � !
+ 8 cos (log x) – sin (log x).

7. Solve x
d y

dx
3x

d y

dx

dy

dx
2

3

3

2

2
+ +  = x2 log x.

Solution. Multiplying the equation by x, we have

x
d y

dx
x

d y

dx
x

dy

dx
3

3

3

2

2
3+ + = x3 log x ...(1)

put t = log x or x = et

then xy ′ = Dy, x y2 ′′ = D (D – 1) y

x y3 ′′′ = D (D – 1) (D – 2) y

Hence Eqn. (1) becomes

[D (D – 1) (D – 2) + 3D (D – 1) + D] e3t . t

i.e., D3y = 0

A.E. : m3 = 0 and hence m = 0, 0, 0

∴ C.F. = (C1 + C2 t + C3 t2) eot

C.F. = C1 + C2 t + C3 t2

P.I. =
e t

D
e

t

D

t
t

3

3
3

23
=

−� �
, D → D + 3

= e
t

D D D
t3

3 29 27 27+ + +
P.I.3 is found by division

t

27

1

27
−

27 + 27D + 9D2 + D3 t
t + 1

– 1
– 1

0



DIFFERENTIAL EQUATIONS–II 315

P.I. = e
tt3 1

27
⋅

−� �

The complete solution : y = C.F. + P.I.

with t = log x and x = et

Thus y = C C x C x
x

x1 2 3
2

3

27
1+ + + −log log log� � ! � � .

8. Solve 2x 3
d y

dx
2x 3

dy

dx
12y+ − + −� � � �2

2

2
 = 6x.

Solution. Put t = log (2x + 3) or et = 2x + 3

Hence x =
1

2
3et −� 

Also, we have 2 3x y+ ′� � = 2Dy

and 2 3 2x y+ ′′� � = 22 D (D – 1) y

Hence, the given d.e. becomes

[4D (D – 1) – 2D – 12] y = 6
1

2
3⋅ −et� 

i.e., 2 (2D2 – 2D – D – 6) y = 3 (et – 3)

i.e., (2D2 – 3D – 6) y =
3

2
3et −� 

A.E. is 2m2 – 3m – 6 = 0

m =
3 9 48

4

3 57

4

± + = ±

∴ C.F. = C e C e
t t

1

3 57

4
2

3 57

4

+ +

+
� � � �

∴ C.F. = e C e C e
t

t t
3

4
1

57

4
2

57

4+
�

�
�
�

�

�
�
�

−

Also P.I. =
3

2 2 3 6

9

2 2 3 62 2

e

D D

e

D D

t ot

− −
−

− −�  � 

=
3

2 2 3 6

9

2 0 0 6

e et ot

− −
−

− −� � � �

P.I. = − +3

14

3

4

et

Complete solution y = C.F. + P.I.

with t = log (2x + 3), et = 2x + 3
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Thus, y = e C e C e e
t

t t
t

3

4
1

57

4
2

57

4
3

14

3

4
+

�
�"
�"

	

"
�"

− +
–

where t = log (2x + 3) and et = 2x + 3.

9. Solve the initial value problem: 
d y

dx
4

dy

dx
5y 2cos hx

2

2
+ + +  = 0, given y = 0, 

dy

dx
1 at x 0= = .

Solution. We have (D2 + 4D + 5) y = – 2 cos hx

i.e., (D2 + 4D + 5) y = – (ex + e–x)

A.E. is m2 + 4m + 5 = 0

m =
–

–
4 16 20

2
2

± −
= ± i

∴ C.F. = e–2x (C1 cos x + C2 sin x)

P.I. =
– –e

D D

e

D D

x x

2 24 5 4 5+ +
−

+ +

=
– –e ex x

1 4 5 1 4 5+ +
−

+ +

=
– –e ex x

10 2
−

P.I. = –
–e ex x

10 2
+

�
�
�

�
�
�

Complete solution: y = C.F. + P.I.

y = e C x C x
e ex

x x
–2

–

cos sin1 2 10 2
+ − +

�
��

�
��� � ...(i)

Now, we apply the given initial conditions, y = 0, 
dy

dx
 = 1 at x = 0

From Eqn. (i), we get

dy

dx
= e C x C x e C x C xx x–2 –2– sin cos – cos sin1 2 1 22+ +� � � � − +e ex x

10 2

–

...(ii)

Using y = 0 at x = 0, Eqn. (i) becomes

0 = C1
1

10

1

2
– +�
��

�
�� or C1 = 

3

5

Using
dy

dx
= 1 at x = 0, Eqn. (ii) becomes

1 = C C2 12
1

10

1

2
− − + or C C2 12−  = 

3

5
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Using C1 =
3

5
, we get  C2 = 

9

5
Thus, the required particular solution from Eqn. (i) is given by

y =
3

5
3

10 2
e x x

e ex
x x

–2
–

cos sin+ − +
�
��

�
��� � ·

10. Solve 
d y

dx
– 4

dy

dx
5y 0

2

2
+ = . Subject to the conditions 

dy

dx
 = 2, y = 1 at x = 0.

Solution. We have (D2 – 4D + 5) y = 0

A.E. : m2 – 4m + 5 = 0

m =
4 16 20

2

4 2

2
2

± − = ± = ±i
i

∴ C.F. = e2x (C1 cos x + C2 sin x)

∴ y = e2x (C1 cos x + C2 sin x) ...(1)

Also
dy

dx
= e2x (– C1 sin x + C2 cos x) + 2e2x (C1 cos x + C2 sin x) ...(2)

Consider y = 1 at x = 0, Eqn. (1) becomes

1 = 1 (C1 + 0) ∴ C1 = 0

Also by the condition 
dy

dx
 = 2 at x = 0, Eqn. (2) becomes

2 = C2 + 2C1

Using C1 = 1, we get C2 = 0

Thus y = e2x (cos x) is the particular solution.

11. Solve the initial value problem 
d y

dx
y

2

2
+  = sin (x + a) satisfying the condition y = (0) = 0,

′y 0� �  = 0.

Solution. We have (D2 + 1) y = sin (x + a)

A.E. : m2 + 1 = 0 and hence m = ± i

∴ C.F. = C1 cos x + C2 sin x

P.I. =
sin x a

D

+
+

� �
2 1

D2 → – 12 = – 1

The denominator becomes zero

P.I. = x
x a

D

D

D

sin +
×

� �
2

=
x x a

D2 2 2

cos +� �
D2 → – 12 = – 1

P.I. =
– cosx x a+� �

2
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∴ The complete solution is y = C.F. + P.I.

y = C x C x
x x a

1 2 2
cos sin

– cos
+

+� �
...(1)

Now, ′y = – C x C x
x x a x a

1 2 2 2
sin cos

sin cos
+

+
−

+� � � �
...(2)

Using y (0) = 0, ′y (0) = 0 in Eqns. (1) and (2) respectively, we have

C1 = 0 and C2 = 
cos a

2
Thus by using these values in Eqn. (1), we get the particular solution,

y =
cos

sin –
cosa

x
x x a

2 2

+� �

=
1

2
cos sin cosa x x x a− +� �

12. Solve the initial value problem

d x

dt
4

dx

dt
29x

2

2
+ +  = 0, given x(0) = 0, 

dx

dt
0� �  = 15 .

Solution. We have (D2 + 4D + 29) y = 0

A.E. : m2 + 4m + 29 = 0

m =
– –

–
4 16 116

2

4 10

2
2 5

± −
=

±
= ±

i
i

∴ x(t) = e–2t (C1 cos 5t + C2 sin 5t) ...(1)

Now,
dx

dt
 = x′(t) = e–2t (– 5C1 sin 5t + 5C2 cos 5t) – 2e–2t (C1 cos 5t + C2 sin 5t) ...(2)

Let us consider x(0) = 0 and x′(0) = 15

Equations (1) and (2) respectively becomes

0 = C1 and 15 = 5C2 – 2C1

∴ C1 = 0 and C2 = 3

Thus, x(t) = 3e–2t sin 5t is the required particular solution.

�����	���� ����	����

1. Match the following and find the correct alternative

I. Cauchy’s equation (i) x
d y

dx
x

dy

dx
y+ + + + =2 2 5

2
2

2� � � �

II. Bernoulli’s equation (ii) x
d y

dx
x

d y

dx
ex2

3

3

2

2
⋅ =–
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III. Method of variation of parameters (iii)
dy

dx
xy x+ = 2

(iv)
dy

dx
xy x y+ = 2 2

(v) y dx2 – x dy2 = 0

(vi) (D2 + a) y = tan x

(vii)
dy

dx

y x

y x
= −

+
(a) I (i), II (iii), III (vii) (b) I (ii), II (iii), III (v)

(c) I (i), II (iv), III (vi) (d) I (ii), II (iv), III (vi) Ans. d

2. The homogeneous linear differential equation whose auxillary equation has roots 1, 1 and
– 2 is

(a) (D3 + D2 + 2D + 2) y = 0 (b) (D3 + 3D – 2) y = 0

(c) (D3 + 3D + 2) y = 0 (d) (D + 1)2 (D – 2) y = 0. Ans. c

3. The general solution of (x2 D2 – xD), y = 0 is

(a) y = C1 + C2 ex (b) y = C1 + C2 x

(c) y = C1 + C2 x
2 (d) y = C1 x + C2 x

2. Ans. c

4. Every solution of ′′ + ′ +y ay by  = 0, where a and b are constants approaches to zero as
x → α provided.

(a) a > 0, b > 0 (b) a > 0, b < 0

(c) c < 0, b < 0 (d) a < 0, b > 0. Ans. a

5. By the method of variation of parameters ′′ +y a y2  = sec ax, the value of A is

(a)
– log secax

a
k

� �
2 1+ (b)

– logsecax

a
k+ 1

(c)
logsecax

a
k

3 1+ (d) None. Ans. a

6. By the method of variation of parameters, the value of W is called

(a) The Demorgan’s function (b) Euler’s function

(c) Wronskian of the function (d) Robert’s function. Ans. c

7. The method of variation of parameters, the formular for ′A  is

(a)
y x

W
1φ� �

(b)
y x

W
2φ � �

(c)
– y x

W
2φ� �

(d) None. Ans.  c
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8. The equation a0 (ax + b)2 ′′ + + ′ +y a ax b y a y1 2� �  = φ(x) is called

(a) Legendre’s linear equation (b) Method of undetermined coefficients

(c) Cauchy’s linear equation (d) Simultaneous equation Ans. a

9. The D.E. (ax + b)2 y″ is

(a) a3 D (D – 1) (D – 2) y (b) a2 D (D – 1) y

(c) D · Dy (d) None. Ans. b

10. The equation a0 x2 y″ + a1 xy′ + a2y = φ(x) is called

(a) Legendre’s linear equation (b) Cauchy’s linear equation
(c) Simultaneous equation (d) Method of undetermined coefficients.

Ans. b

11. If t = log x, the value of x is

(a) et (b) ex

(c) xet (d) ext. Ans. a

12. The initial value problem, d x

dt

dx

dt
x

2

2
5 6+ +  = 0 x(0) = 0 is

(a) C1 – C2 = 0 (b) C1 + C2 = 0

(c) C1 = 0 (d) C2 = 0 Ans. b

13.
d y

dx

dy

dx
y e x

2

2
4 3+ + = – . Subject to the condition y (0) = 1 is

(a) C1 + C2 = 1 (b) C1 + C2 = 0

(c) C1 = 0 (d) C2 = – 1 Ans. a

���
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UNIT ���

Laplace Transforms

7.1I INTRODUCTION

The Laplace transform method is used for solving the differential equations with initial and boundary
conditions. The advantage of this method is that it solves the differential equations with initial
conditions directly without the necessity of first finding the general solution and then evaluating the
arbitrary constants using the initial conditions. In particular, this method is used in problems where
the driving force (mechanical or electrical) has discontinuities for a short time or is periodic.

In this unit we study the basic concepts of Laplace transforms and its applications to solve the
differential equations arising in mechanics, electrical circuits and bending of beams.

7.2 DEFINITION

Let f (t) be a real valued function defined for all t ≥ 0. Then the Laplace transform of f (t) denoted
by L{ f (t)} is defined by

L { f (t)} = e f t dtst– � �
0

∞

� ...(1)

where s is a real or a complex number.

In the integral on the right hand side (1) exists, it is a function of s and is usually denoted by
F (s). Here s is called the parameter.

Thus,

F (s) = L { f (t)} = e f t dtst– � �
0

∞

�

7.3 PROPERTIES OF LAPLACE TRANSFORMS

If f (t) and g (t) are two functions defined for all positive values of t and k is a constant then

(1) L {k f (t)} = k L { f (t)}

(2) L { f (t) + g (t)}= L { f (t)} + L {g (t)}
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Proof: (1) we have L{ f (t)} = e f t dtst– � �
0

∞

�
Therefore,

L {k f (t)} = e k f t dtst– � �
0

∞

�

= k e f t dtst– � �
0

∞

�
= k L { f (t)}

 (2) Consider

L { f (t) + g (t)} = e f t g t dtst– � � � �� �+
∞

�
0

= e f t dt e g t dtst st– –� � � �+
∞∞

��
00

= L { f (t)} + L {g (t)}.

7.3.1 Laplace Transforms of Some Standard Functions

1. Laplace transform of a constant

Let f (t) = a, where a is constant. Then from the definition of Laplace transform, we get

L (a) = e a dtst–

0

∞

�
= a e dtst–

0

∞

�

= a
e

s

st–

–

�
�
�

	


�

∞

0

=
–

– ,–a

s
e e∞ 0

since e–∞ = 0

e0 = 1

=
a

s

Hence L (a) =
a

s
...(2)

In particular cases, L (1) =
1

s
.
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2. Laplace transform of eat

Substituting f (t) = eat in the definition of Laplace transform, we get

L (eat) = e e dtst at–

0

∞

�

= e dts a t– +
∞

� � �

0

=
e

s a

s a t–

–

− ∞

−

�
�
�
�

	


�
�

� �

� �
0

=
–

––1 0

s a
e e

−
∞

=
1

s a−  if s > a > 0

∴ L (eat) =
1

s a−
, s > a > 0 ...(3)

Replacing a by – a, we get

L (e–at) =
1

s a
s a

+
> −, . ...(4)

3. Laplace transform of sin h at

We have sin h at =
e eat at− –

2

Substituting f (t) = sin
– –

h at
e eat at

=
2

L (sin h at) = L
e e

L e L e
at at

at at– –
–

2

1

2

�

�

�
�
�

= −� � � �

=
1

2

1 1

s a s a−
−

+
�

�

�
�
�

 By using, Eqns. (3) and (4)

=
a

s a2 2−
, if s > a

Hence L (sin h at) =
1

2 2s a
s a

−
>, ...(5)
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4. Laplace transform of cos h at

We have cos h at =
e eat at+ –

2

Then L (cos h at) = L
e eat at+�


�

�
�
�

–

2

=
1

2
L e L eat at� � � �� �+ –

=
1

2

1 1

s q s a−
+

+
��

���
using eqns. (3) and (4)

=
s

s a2 2−
if s > a

Thus, L (cos h at) =
s

s a2 2−
 , s > a. ...(6)

5. Laplace transform of sin at and cos at
We know by Euler’s formula that,

eiat = cos at + i sin at
∴ L (cos at + i sin at) = L {eiat}

i.e., L (cos at) + i L (sin at) =
1

s ia−
, Replacing a by ia in (3)

=
s ia

s ia s ia

+
− +� � � �

=
s ia

s a

+
+2 2

=
s

s a
i

a

s a2 2 2 2+
+

+
On equating the real and imaginary parts, we obtain

L (cos at) =
s

s a2 2+
...(7)

L (sin at) =
a

s a2 2+
·

6. Laplace transform of t n

Let f (t) = tn, where n is a non-negative real number or n is a negative non-integers. Then from
the definition,

L (tn) = e t dtst n–

0

∞

�
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Substitute st = x, so that dt = 
dx

s
 and

t =
x

s
When t = 0, x = 0 and

t = ∞, x = ∞

∴ L (tn) = e
x

s

dx

s
x

n
– �

��
�
��

∞

�
0

,

=
1

1
0

s
e x dx

n
x n

+
−

∞

⋅�
=

1
1

1s
n

n + +Γ � �

Thus, L (tn) =
Γ n

sn

+
+

1
1

� �
...(8)

In particular if n is a non-negative integers, we have

Γ  (n + 1) = n!

Hence, L (tn) =
n

sn

!
+ 1 ...(9)

where n is a non-negative integer.

Laplace transforms of some Standard Functions

f (t) L { f (t)} = F (s) f (t) L { f (t)} = F (s)

1. a
a

s
s, > 0 5. cos h at

s

s a
s a

2 2−
>,

2. eat 1
0

s a
s

−
>, 6. sin at

a

s a
s

2 2
0

+
>,

3. e–at
1

s a
s a

+
>, – 7. cos at

s

s a
s

2 2
0

+
>,

4. sin h at
a

s a
s a

2 2–
, > 8. tn

n

s
sn

!
,+ >1 0

n = 1, 2, 3.......

������� ��	� �
�����

1. Find the Laplace transform of the following functions:

(1) 2t2 + 3t + 4 (2) 2e–3t – 4e5t (3) sin2 at

(4) cos3at (5) sin 5t cos 3t (6) cos h2at

(7) at (8) cos t cos 2t cos 3t.
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Solution

(1) Now L (2t2 + 3t – 4) = 2L (t2) + 3L (t) + 4L (1)

= 2
2

3
1

4
1

3 2
⋅ + +!

s s s

=
4 3 4 2

3

+ +s s

s
(2) L (2e–3t – 4e5t ) = 2L (e–3t ) – 4L (e+5t )

= 2
1

3
4

1

5s s+ −
–

=
– 2 11

3 5

s

s s

+
+ −

� �
� � � �

(3) L (sin2 at) = L
at1 2

2

−�
��

�
��

cos

=
1

2
1 2L at− cos� �

=
1

2
1 2L L at� � � �− cos

=
1

2

1

22 2s

s

s a
−

+

�

�
�
�

	



�
�� �

=
1

2

4

4

2 2 2

2 2

s a s

s s a

+ −
+

�

�
�
�

	



�
�� �

=
2

4

2

2 2

a

s s a+� �
(4) we know that cos 3at = 4 cos3 at – 3 cos at

∴ cos3at =
1

4
3 3cos cosat at+� �

Thus, L (cos3 at) = L at at
1

4
3 3cos cos+�

��
	

�� �

=
1

4
3 3L at L atcos cos� � � �+

=
1

4 3

3
2 2 2 2

s

s a

s

s a+
+

+

�

�
�
�

	



�
�� �

=
s s a

s a s a

2 2

2 2 2 2

7

9

+

+ +

� �
� � � �

.
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(5) Since, sin 5t cos 3t = 
1

2
5 3 5 3sin sint t t t+ + −� � � �

=
1

2
8 2sin sint t+

Therefore, L (sin 5t cos 3t) = L t t
1

2
8 2sin sin+��

���

=
1

2
8 2L t L tsin sin� � � �� �+

=
1

2

8

8

2

22 2 2 2s s+
+

+
�
�
�

	


�

=
5 16

64 4

2

2 2

s

s s

+

+ +

� �
� � � �

(6) We have, cos h 2at = 2 cos h2 at – 1

So that, cos h2 at =
1

2
1 2+ cosh at� �

Hence, L [cos h2 at] =
1

2
1 2L L h at� �� �+ cos

=
1

2

1

22 2s

s

s a
+

−

�
�
��

�
��
��� �

=
s a

s s a

2 2

2 2

2

4

−
−� �

·

(7) we have at  = et log a, a > 0

Hence, L (at ) = L e
s a

t alog

log
� � =

−
1

·

(8) We have cos t cos 2t cos 3t =
1

2
5cos cos cost t t+� �

=
1

2
5 2cos cos cost t t+

=
1

2

1

2
6 4

1

2
1 2cos cos cost t t+ + +�

��
	

�� � � �

=
1

4
6 4

1

4
1 2cos cos cost t t+ + +� � � �

=
1

4
1 2 4 6+ + +cos cos cost t t
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Therefore,

L (cos t cos 2t cos 3t) =
1

4
1 2 4 6L L t L t L t� � � � � � � �+ + +cos cos cos

=
1

4

1

2 4 62 2 2 2 2 2s

s

s

s

s

s

s
+

+
+

+
+

+
�
�
�

	


�.

2. Find the Laplace transforms of the functions,

(1) t (2)
1

t
(3) t t .

Solution

(1) We have L (tn) = 
Γ n

sn

+
+

1
1

� �

∴ L t L t�  =
�
��

�
��

1

2
=

Γ 1
2

1

1
1

2

+�
��

�
��

+s

=

1
2

1
2

3
2

Γ �
��

�
��

s

 = 
π

2
3

2s

Since Γ (n + 1) = n Γ (n) and Γ 1

2
�
��

�
��  = π .

(2) Now L
t

L t
1

1

2
�
��

�
�� =

�
��

�
��

−
 = 

Γ –1
2

1

1

2
1

+�
��

�
��

− +
s

=

Γ 1
2

1

2

�
��

�
��

s

 = 
π
s

(3) L t t L t�  =
�
��

�
��

3

2  = 

Γ 3
2

1

3
2

1

+�
��

�
��

+
s

=

3
2

1
2

1
2

5
2

⋅ �
��

�
��Γ

s

=
3

4
5

2

π

⋅ s

·
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3. If  f (t) = 
2, 0 t 3

t, t 3

< <
>

�� , find L { f (t)}.

Solution. Now, L { f (t)} = e f t dtst– � �
0

∞

�
= e dt e t dtst st– –⋅ + ⋅

∞

�� 2
30

3

= 2 1
0

3

2

3

e

s
t

e

s

e

s

st st st– – –

– – –

�
�
�

	


� + − ⋅

�

�
�
�

	



�
�

∞

� �

=
–2

– ––3
–2 –3

s
e

e

s

e

s
s

s s

− + −
�
�
�

	


�1 0

3
2

=
2 1

2
3

s

s

s
e s+ + ⋅ – .

4. If  f (t) = 

1, 0 t 2

t, 2 t 4

t , t 42

< <
< <

>

�
�

��
, find L { f (t)}.

Solution. We have,

L { f (t)} = e f t dtst– � �
0

∞

�
= e dt e t dt e t dtst st st– – –⋅ ⋅ + ⋅ + ⋅ ⋅

∞

��� 1 2

42

4

0

2

=
e

s

t e

s

e

s
t

e

s
t

e

s

e

s

st st st st st st−
∞�

�
�

	


� + −

�

�
�
�

	



�
�

+ − +
�

�
�
�

	



�
�– – – – – –

– – – – –

0

2

2

2

4

2
2 3

4

2 2
� � � � � �

=
–

––2 –4 –2 –41
1

4 1 2 1 16 8 2
2 2 2 3s

e e
s s

e
s s

e
s s s

s s s s− +�
��

�
�� + +�

��
�
�� + + +�

��
�
��� �

=
1 1 1 12 7 2

2 2 3s s s
e

s s s
es s+ +�

��
�
�� + + +�

��
�
��

–2 –4 .

5. If  L { f (t)} = F (s). Prove that L { f (at)} =
1

a
F

s

a
�
��

�
�� .

Solution. Now, L{ f (at)} = e f at dtst– � �
0

∞

�
Substitute at = u or t = 

u

a
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Hence, dt =
du

a
When, t = 0, u = 0 and t = ∞, u = ∞

∴ L{ f (at)} = e f u
du

a

su

a

–

0

∞

� ⋅ ⋅� �

=
1

0
a

e f u du
su

a

–

⋅
∞

� � �

=
1

0
a

e f u du

s

a
u

–�
��

�
��

∞

⋅� � �

=
1

a
F

s

a
�
��

�
�� ⋅

�
������� ���

Find the Laplace transforms of the following functions:

1. 2t2 + 3 Ans.  
3 42

3

s

s

+�
�
�

	


� 2. 4t2 – 5t + 6. Ans.  

8 5 6 2

3

– s s

s

+�
�
�

	


�

3. (2t – 3)2 Ans.  
8 12 9 2

3

– s s

s

+�
�
�

	


� 4. (2t –1)3. Ans.  

1
48 24 6

4
2 3

s
s s s− + −�

��
	

�

5. 5t. Ans.  
1

5s −
�
��

	

�log 6. (1 + et)2.

Ans.  
2 2 4 1

1 2

2s s

s s s

− +

− −

�

�
�
�

	



�
�

� �
� � � �

7. cos2 at. Ans.  
s a

s s a

2 2

2 2

2

4

+
+

�

�
�
�

	



�
�� � 8. sin3 at. Ans.  

6

9

3

2 2 2 2

a

s a s a+ +

�

�
�
�

	



�
�� � � �

9. sin h2 at.
Ans.  

2

4

2

2 2

a

s s a−

�

�
�
�

	



�
�� � 10. sin 3t cos 2t. Ans.  

s

s s

2

2 2

15

25 1

+
+ +

�

�
�
�

	



�
�� � � �

11. cos 5t cos 2t. Ans.  
s s

s s

2

2 2

29

49 9

+

+ +

�

�
�
�

	



�
�

� �
� � � �

12. sin 6t sin 4t. Ans.  
48

4 1002 2

s

s s+ +

�

�
�
�

	



�
�� � � �
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13. cos 8t sin 2t. Ans.  
2 60

100 36

2

2 2

s

s s

−

+ +

�

�
�
�

	



�
�

� �
� � � �

14. cos (at + b). Ans.  
s b a b

s a

cos – sin
2 2+

�
�
�

	


�

15. sin t sin 2t sin 3t. Ans.  
1

2

1

4

3

36

2

162 2 2s s s+
−

+
+

+
�
�
�

	


�

�
�
�
�

	


�
�

Find L{f (t)}, in each of the following functions:

1. f (t) = 
5 0

0 3

3,

,

<
>

��
<t

t
. Ans.  

2 1 – –3e

s

s� ��

�
�
�

	



�
�

2. f (t) = 
1 0

2

2,

,

<
>

��
<t

t t
. Ans.  

1 1
1

2s s
s e s+ +�

��
	

�� � –2

3. f (t) = 

1 0 2

2 2 4

3 4

,

,

,

< <
< <

>

�
�

��

t

t

t

. Ans.  
1

1
s

e es s+ +�
��

	

�

–2 –4� �

4. f (t) = 
e t

t

t ,

,

0

0 1

1<
>

�

�

<
. Ans.  

e

s

s1 1

1

− −
−

�
�
�

	


�

5. f (t) = 

0 0 1

1 2

0 2

,

,

,

< <
< <

>

�
�

��

t

t t

t
.

Ans.  
1

1 2 1
2s

s e s es s+ +�
��

	

�� � � �� �– –2–

6. f (t) = 
cos ,

,

at t

t

0

0

≤ ≤

>

�
�
��

π

π
. Ans.  

s s a a a e

s a

s+ +
+

�
�
�
�

	


�
�

– cos sin –π π π� �
2 2

7. f (t) = 
cos ,

,

t t

t

−�
��

�
�� >

< <

�

��

�
��

2

3

2

3

0 0
2

3

π π

π . Ans.  
s e

s

s– 2

3

2 1

π

+

�

�

�
�
�

	




�
�
�

7.3.2 Laplace Transforms of the form eat f (t)

If the Laplace transform of f (t) is known, then the Laplace transform of eat f (t) where a is a constant
can be determined by using the shifting property.
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Shifting property:

If L{ f (t)} = F (s) then

L (eat f (t)} = F (s – a)

Proof: We have L { f (t)} = e f t dt F sst– � � � �
0

∞

� =

Therefore, L {eat f (t)} = e e f t dtst at– � �
0

∞

�
= e f t dt F s as a t– .−

∞

= −� � � � � � �
0

Replacing a by – a,

We get, L {e–at f (t)} = F (s + a)

In view of the shifting property we can find the Laplace transform of the standard functions
discussed in the preceeding section multiplied by eat or e–at

1. L (sin bt) =
b

s b2 2+
, L (eat sin bt) =

b

s a b− +� �2 2

2. L (cos bt) =
s

s b2 2+
, L (eat cos bt) =

s a

s a b

−
− +� �2 2

3. L (sin h bt) =
b

s b2 2−
, L (eat sin h bt) =

b

s a b−� �2 2–
.

4. L (cos h bt) =
s

s b2 2–
, L (eat cos h bt) =

s a

s a b

−
− −� �2 2

.

5. L (tn) =
Γ n

sn

+
+

1
1

� �
, L (eat tn) =

Γ n

s a
n

+

− +

1
1

� �
� �

,  for n = 0.

������� ��	� �
�����

1. If f (t) = 
cos t

2

3
, t

2

3

0, 0 t
2

3

−�
��

�
�� >

< <

�

��

�
��

π π

π
,  find L { f (t)}.

Solution

⇒ We have,  L (cos t) =
s

s2 1+
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By using shifting Rule a =
2

3

π

L { f (t)} = e
s

s

s e

s

s
s

–2
–2

π
π

3
2

3

21 1
⋅

+
=

+
·

2. Find the Laplace transform of the following functions

(1) t2 e2t (2) e–3t sin 2t (3) e4t cos h 3t

(4) e–t cos23t (5) e3t sin3 2t (6) t et .

Solution

(1) We have L (t2) = 
2
3s

By using the shifting property, we get

L (t2 e2t) =
2

2
3

s −� � (s → s – 2)

(2) Since, L (sin 2t) = 
2

22 2s +

L (e–3t sin 2t) =
2

3 4
2

s + +� �
(s → s + 3)

=
2

6 132s s+ +

(3) L (cos h 3t) = 
s

s2 23−

L (e4t cos h 3t) =
s

s

−

− −

4

4 9
2� �

(s → s – 4)

=
s

s s

−
− +

4

8 72
.

(4) Consider L (cos2 3t) = L
t1 6

2

+�
��

�
��

cos

=
1

2
1 6L L t� � � �+ cos

=
1

2

1

62 2s

s

s
+

+
�
�
�

	


�

=
s

s s

2

2

18

36

+
+� �
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∴ L (e–t cos2 3t) =
s

s s

+ +

+ + +

1 18

1 1 36

2

2

� �
� � � �

(s → s + 1)

=
s s

s s s

2

2

2 19

1 2 37

+ +
+ + +� � � �

.

(5) We have sin3A =
1

4
3 3sin – sinA A� �

Hence sin3 2t =
1

4
3 2 6sin – sint t� �

L (sin3 2t) =
1

4
3 2 6L t L tsin sin� � � �−

=
1

4
3

2

2

6

62 2 2 2
⋅

+
−

+
�
�
�

	


�

s s

=
48

4 362 2s s+ +� � � �
By using shifting Rule, we get, s → s – 3

L {e3t sin3 2t} =
48

3 4 3 36
2 2

s s− + − +� � � �

=
48

6 13 6 452 2s s s s− + − +� � � �

(6) Now L t�  =

Γ Γ
1
2

1 1
2

1
2

2
1
2

1
3
2

3
2

+�
��

�
��

= =
+

s s s

π

Hence L t et�  =
π

2 1
3

2s −� �
· (s → s + 1)

3. If L {f (t)} = F (s),

Prove that (1) L {cosh at f (t)} = 
1

2
F s a F s a− + +� � � �

(2) L {sin h at f (t)} = 
1

2
F s a F s a− − +� � � �

Solution

(1) Consider L {cosh at f (t)} = L
e e

f t
at at+�

�
�

	


�

�
�
��

�
��
��

−

2
( )
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=
1

2
L e f t L e f tat at� �� � � �� �+ −

By using shifting property

=
1

2
F s a F s a− + +� � � � .

(2) Consider, L {sin h at f (t)} = L
e e

f t
at at–

( )
−�

�
�

	


�

�
�
��

�
��
��2

=
1

2
L e f t L e f tat at� �� � � �� �– –

=
1

2
F s a F s a− − +� � � � .

�
������� ���

Find the Laplace transforms of the following functions:

1. te–2t. Ans.
1

s +

�

�
�
�

	



�
�2

2� �
2. (t2 + 4) e3t.

Ans.
2 2 – 12 + 192s s

s

� �
� �−

�

�
�
�

	



�
�3

2

3. e2t sin 3t.
Ans.

3

s s2 4 13− +
�
�
�

	


�

4. e4t cos 4t. Ans.
s – 4

s s2 8 32− +
�
�
�

	


�

5. e–2t sin h 3t. Ans.
3

s s2 4 5+
�
�
�

	


�

–
6. e5t cos h 2t. Ans.

s

s s

– 5
2 10 21− +

�
�
��

	


��

7. et sin2 t.
Ans.

2

s s s− − +

�

�
�
�

	



�
�1 2 52� � � � 8. e–4t cos2 t. Ans.

s s

s s s

2 + 8 + 18

+ + +

�

�
�
�

	



�
�4 8 202� � � �

9. e2t sin3 t. Ans.
6

s s s s2 24 5 4 13− + +

�

�
�
�

	



�
�� � � �–

10. e2t cos 5t sin 2t. Ans.
2 – 4 – 172s s

s s s s

�  
�  �  2 24 53 4 13– –+ +

�

�
�
�

	



�
�

11.
e

t

t

. Ans.
π

s −

�

�

�
�
�

	




�
�
�1

1
2� �

12. eat cos2 bt. Ans.
s a b

s a s a b

− +

− − +

�

�

�
�
�

	




�
�
�

� �
� � � �

2 2

2 2

2
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7.3.3 Laplace Transforms of the form t n f (t) where n is a positive integer

In this section we shall find the Laplace transforms of the functions of the form tn f (t) where
n is a positive integer if the Laplace transform of f (t) is known.

Theorem: If L { f (t)} = F (s) then

L {tn f (t)} = – 1� � � �� �n
n

n

d

ds
F s

Proof: We shall prove the theorem for n = 1

i.e., L {t f (t)} = –
d

ds
F s� �� �

We have, F (s) = L f t e f t dtst� �� � � �=
∞

� –

0

Differentiating w.r.t. ‘s’, we get

d

ds
F s� �� � =

d

ds
e f t dtst– � �� �

0

∞

�
In the R.H.S., we shall apply Leibnitz rule for differentiation under the integral sign,

= e t f t dtst– –� � � �
0

∞

�

= −
∞

� e t f t dtst– � �� �
0

.

= – L {t f (t)}

∴ L {t f (t)} =
– –d

ds
F S

d

ds
L f t� �� � � �� �=

Further, L {t2 f (t)} = L t t f t
d

ds
L t f t� �! " � �� �= –

=
– –d

ds

d

ds
L f t� �� ��

��
	

�

= – 1
2

2

2� � � �� �d

ds
L f t

= – 1
2

2

2� � � �� �d

ds
F s

By repeated this process of the above theorem, we get

L {tn f (t)} = – .1� � � �� �n
n

n

d

ds
F s⋅
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7.3.4 Laplace Transforms of 
f t

t
� �

If L f (t) is known then we can find the Laplace transform of 
f t

t

� �
 by using the following.

Theorem: If L { f (t)} = F (s) and t

f t

t→ 0
lim � �

 exists then

L
f t

t

� ��

�

�
�
�

= F s ds
s

� �
∞

� ...(1)

Proof: We have, F (s) = L { f (t)} = e f t dtst– � �
0

∞

�
On integrating both sides w.r.t. s from s to ∞, we get

F s ds
s

� �
∞

� = e f t dt dsst

s

– � �
0

∞∞

�� �

�
�
�

	



�
�

...(2)

= e ds f t dtst

s

– ,
∞∞

�� �

�
�
�

	



�
�

� �
0

...(3)

(By changing the order of integration.)

Now e ds
e

t
st

st

ss

–
––

–
=

�
�
�

	


�

∞∞

� =
–

–– –
–1

t
e e

e

t
st

st
∞ = +

(e–∞ = 0)

∴ Eqn. (3) gives,

F s ds
s

� �
∞

� =
e

t
f t dt L

f t

t

st–

� � � �
=

�

�

�
�
�

∞

�
0

∴ F s ds
s

� �
∞

� = L
f t

t

� ��

�

�
�
�

This completes the proof.

������� ��	� �
�����

1. Find the Laplace transforms of the following functions:

(1) t sin at (2) t cos at (3) t sin h at

(4) t cos h at (5) t2 cos at (6) t et sin h t

(7) te–2t cos 2t (8) t3 sin t.

Solution

(1) L {t sin at} = 
–

sin
d

ds
L at� �
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=
– d

ds

a

s a2 2+
�

�

�
�
�

=
2

2 2 2

as

s a+
⋅

� �

(2) L {t cos at} = 
–

cos
d L

ds
at� �

=
– d

ds

s

s a2 2+
�

�

�
�
�

=
s a

s a

2 2

2 2 2

−

+� �
·

(3) L {t sin h at} = 
–

sin
d

ds
L h at� �

=
–

–

d

ds

a

s a2 2

�

�

�
�
�

=
2

2 2 2

as

s a−� �
·

(4) L {t cos h at} = 
–

cos
d

ds
L h at� �

=
–

–

d

ds

s

s a2 2

�

�

�
�
�

=
s a

s a

2 2

2 2 2

+

−

� �
� �

.

(5) L (t2 cos at)  = – cos1
2

2

2� � � �� �⋅ d

ds
L at

= +
+

�

�

�
�
�

1
2

2 2 2

d

ds

s

s a

=
– 2 3 2 2

2 2 3

s a s

s a

−

+

� �
� �

L {t2 cos at} = 
–

.
2 3 2 2

2 2 3

s a s

s a

−

+

� �
� �
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(6) L {t sin h t} = 
–

sin
d

ds
L h t � �� �

=
–

–

d

ds s

1

12

�

�

�
�
�

=
2

12 2

s

s –� �

L (et t sin h t) =
2 1

1 1
2 2

s

s

−

− −

� �
� �

s → s – 1

=
2 1

22 2

s

s s

−

−
⋅

� �
� �

(7) From Eqn. (2) above with a = 2, we have

L (t cos 2t) = 
s

s

2

2 2

4

4

−

+� �
Hence by using shifting Rule, we get s → s + 2

L {e–2t t cos 2t} =
s

s

+

+ +

2 4

2 4

2

2 2

� �
� �

–

=
s s

s s

+

+ +

4

4 82 2

� �
� �

·

(8) we have L (sin t) = 
1

12s +

∴ L (t3 sin t) = – 1
1

1

3
3

3 2� � ⋅
+

�

�

�
�
�

d

ds s

=
24 1

1

2

2 4

s s

s

−

+

� �
� �

·

2. Prove that e t sint dt–3t

0

∞

�  = 
3

50
.

Solution

⇒ We have e t t dtst– sin
0

∞

� = L (t sin t) = F (s)

Now, F (s) = L (t sin t) =
–

sin
d

ds
L t� �� �
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=
– d

ds s

1

12 +
�

�

�
�
�

=
2

12 2

s

s +� �

∴ e t t dtt– sin3

0

∞

� = F 3
2 3

3 1

6

100

3

502 2� �
� �

=
+

= =.
.

3. Prove that t e sin t dt– t2

0

3
∞

�  = 
12

169
.

Solution:

⇒ We have e t t dtst– sin 3
0

∞

� = L (t sin 3t) = F (s)

Now, F (s) = L (t sin 3t) =
–

sin
d

ds
L t3� �� �

=
– d

ds s

3

92 +
�

�

�
�
�

=
6

92 2

s

s +� �
Given the integral,

F (2) =
6 2

2 9

12

1692 2

.
.

+
=

�  
4. Find the Laplace transforms of the following functions:

(1)
sin at

t
(2)

1 e

t

at−
(3)

1 at

t

− cos

(4)
cos at cos bt

t

−
(5)

e – e

t

–at –bt

(6)
sin h at

t
·

Solution

(1) Now lim
sin

t

at

t→ 0
 = a � lim

sin
t

at

at
a a

→

�
��

�
�� ⋅ =

�
��

	

�0

 and

L (sin at) =
a

s a2 2+

L
at

t

sin��
��� =

a

s a
ds

s
2 2+

∞

�
= tan–1 s

a s

�
��

�
��

�
��

	

�

∞
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= tan – tan–1 –1∞ �
��

�
��

s

a

=
π
2

− �
��

�
��tan–1 s

a

= cot .–1 s

a
�
��

�
��

(2) Now lim
t

ate

t→

−
0

1
 = lim

–
–

t

atae
a

→
=

0 1
(By using L’ Hospital Rule)

Also, L (1 – eat) = L (1) – L (eat)

=
1 1

s s a
–

−

L
e

t

at1 −�

�

�
�
� =

1 1

s s a
ds

s

−
−

�
��

�
��

∞

�
= log – logs s a

s
−

∞� �

= log
s

s a
s

−
�
��

�
��

�
�
��

	


��

∞

= log
1

1 − �
��

�
��

�

�

�
�
��

�

�

�
�
��

�

�

�
�
�
�

	




�
�
�
�

∞

a

s
s

= log – log1
1

1− �
��

�
��

�

�

�
�
�
�

	




�
�
�
�

a
s

= – log
s

s a−

= log
s a

s

−�
��

�
�� ·

(3) Consider lim
cos

t

at

t→

−
0

1
 = lim

sin
t

a at
→

=
0 1

0 (By using L’ Hospital Rule)

We have L (1 – cos at) = L (1) – L (cos at)

=
1

2 2s

s

s a
−

+

L
at

t

1 −��
���

cos
=

1
2 2s

s

s a
ds

s

−
+

�
��

�
��

∞

�
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= log logs s a
s

− +�
��

�
��

∞
1

2
2 2� �

=
1
2

2

2 2
log

s

s a
s

+
�
�
�

∞

=
1

2

1

1
2

2

log

+

�

�

�
�
�
�

∞

a

s s

=
1

2
1

1

1
2

2

log – log

+

	


��

�
�
�


�
��

�
�
�

a

s

=
–

log log .
1

2

1

2

2

2 2

2 2

2

s

s a

s a

s+
= +

(4) Let f (t)  = cos at – cos bt

Now, lim
t

f t

t→ 0

� �
= lim

cos – cos
t

at bt

t→ 0

= lim
– sin sin

t

a at b bt
→

+
0 1

(Using L’ Hospital Rule)
= 0

Now L {cos at – cos bt} =
s

s a

s

s b2 2 2 2+ +
–

L
at bt

t

cos cos−	
�
�� =

s

s a

s

s b
ds

s
2 2 2 2+ +

�
�
�

�
�
�

∞

� –

=
1

2

1

2
2 2 2 2log – logs a s b

s

+ +�
��

�
��

∞

� � � �

=
1

2

2 2

2 2
log

s a

s b
s

+
+

�
�
�

∞

=
1

2

1

1

2

2

2

2

log
+

+

�

�

�
�
�
�

∞
a

s
b

s s
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=
1

2
1

1

2

1

1

2

2

2

2

log – log
+

+

a

s
b

s

= – log
1

2

2 2

2 2

s a

s b

+
+

=
1

2

2 2

2 2
log .

s b

s a

+
+

(5) Let f (t)  = e–at – e–bt

Now, lim
t

f t

t→ 0

� �
= lim

–
lim

–– – – –

t

at bt

t

at bte e

t

ae be
→ →

= +
0 0 1

(Using L’ Hospital Rule)

= b – a, which is finite.

Now L { f (t)} = L {e–at – e–bt}

=
1 1

s a s b+
−

+

L f t L
e e

t

at bt

� �� � =
	


�


�
�

– ––
=

1 1

s a s b
ds

s
+ +

�
��

�
��

∞

� –

= log – logs a s b
s

+ +
∞� � � �

= log
s a

s b
s

+
+

�
��

∞

= log
1

1

+

+

�

�

�
�
�

∞
a

s
b

s s

= log – log1
1

1

+

+

a

s
b

s

= – log
s a

s b

+
+

= log
s b

s a

+
+

·
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(6) Let f (t)  = sin h at

Now, lim
t

f t

t→ 0

� �
= lim

sin
t

h at

t→ 0

= lim
– –

t

at ate e

t→ 0 2

= lim
–

t

at atae ae
→

+
0 2

(Using L’ Hospital Rule)

= a, which is finite.

We have, L (sin h at) =
a

s a2 2−

L
h at

t

sin	
�
�� =

a

s a
ds

s
2 2−

∞

�

=
a s a

s a
s

2
log

−
+

�
��

∞

=
a s a

s a2
1log log− −

+
�
��

�
��

�
�
��

�
�
��

=
a s a

s a2
– log

−
+

�
��

�
��

�
�
��

�
�
��

=
a s a

s a2
log .

+
−

5. If  L{ f (t)} = F (s) then prove that 
f t

t
dt F s ds

s0

� � � �=
∞∞

��  provided both the integrals exist.

Hence prove that 
sin t

t
dt

2
0

=
∞

� π
.

Solution. We have,

L
f t

t

� �	


�


�
�

= F s ds
s

� �
∞

�
i.e., e

f t

t
dtst– � �	



�


�
�

∞

�
0

= F s ds
s

� �
∞

�
Taking the limits on both sides as s → 0+, we get

f t

t
dt

� �
0

∞

� = F s ds
s

� �
∞

�
This completes the proof of the example.
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Let f (t) = sin t, then F (s) = L t
s

sin� � =
+
1

12

∴
sin t

t
dt

0

∞

� =
1

12
0 0

s
ds s

+
=

�

�
�
�

∞ ∞

� tan–1

= tan–1 ∞ – tan–1 0

=
π
2

·

��������� �	


Find the Laplace transform of the following functions:

1. t cos2 t. Ans.
s s

s s

4 2

2 2 2

2 8

4

+ +

+

�

�
�
�
�

�

�
�
�
�� �

2. t sin2 t. Ans.
2 3 + 42s

s s

� �
� �2 2 2

4+

�

�
�
�
�

�

�
�
�
�

3. t sin3 t. Ans.
24 5

1 9

2

2 2 2 2

s s

s s

+

+ +

�

�
�
�
�

�

�
�
�
�

� �
� � � �

4. t cos3 t. Ans.
1

4

9

9

3 1

1

2

2 2

2

2 2

s

s

s

s

−

+
+

−

+

�

�
�
�
�

�

�
�
�
�

�

�

�
�
�

�

�

�
�
�� �

� �
� �

5. t sin 3t cos t. Ans.
2 3 48 288

16 4

4 2

2 2 2 2

s s s

s s

+ +

+ +

�

�
�
�
�

�

�
�
�
�

� �
� � � �

6. t2 sin at. Ans.
2 –2 2a s a

s a

� �
� �2 2 2

+

�

�
�
�
�

�

�
�
�
�

7. t2 cos h at. Ans.
2s + 32 2s a

s a

� �
� �2 2 3

−

�

�
�
�
�

�

�
�
�
�

8. te–2t sin 3t. Ans.
6 +  2s

s s

� �
� �2 2

4 13+ +

�

�
�
�
�

�

�
�
�
�

9. t et cos 2t
Ans.

s s

s s

2 – 2 – 3
2 2

2 5– +

�

�
�
�
�

�

�
�
�
�� �

Evaluate the following:

1. e t t dtt–2 sin .⋅
∞

� 4
0

Ans.
1

25
�
��

�
�� 2. te t dtt−

∞

� 3

0

2cos . Ans.
5

169
�
��

�
��

3. t e t dtt2

0

cos .
∞

� Ans.1 4. t e t dtt2

0

2– sin .
∞

� Ans.
– 12

25
�
��

�
��

5. t e t dtt3

0

– cos .
∞

� Ans.
– 3

2
�
��

�
�� 6. t e t dtt3 2

0

sin .
∞

� Ans.
– 24

625
�
��

�
��
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Find the Laplace transforms of the following functions:

1.
1− e

t

t

. Ans. log
s

s

– 1�
��

�
�� 2.

sin
.

2t

t
Ans. cos–1 s

2
�
��

�
��

3.
e t

t

t sin
. Ans. cos ––1 s 1� � 4.

sin
.

2 t

t
Ans.

1

4

42

2
log

s

s

+�
�
�

�
�
�

5.
2 3 5sin cos

.
t t

t
Ans. tan – tan–1 –1s s

2 8
�
��

�
�� 6.

cos – cos
.

h at ht

t
Ans.

1

2

2 2

2 2
log

s b

s a

−
−

�
�
�

�
�
�

Prove the following:

1.
cos cos

log .
6 4 3

2
0

t t

t
dt

− =
∞

�

2.
e e

t
dt

t t– –3

log .
− =

∞

�
0

3

3.
e t

t
dt

t– sin
.

0
4

∞

� = π

7.4 LAPLACE TRANSFORMS OF PERIODIC FUNCTIONS

A function f (t) is said to be periodic function with period α > 0, if f (t + α) = f (t).

Theorem: If f (t) is a periodic function of period α > 0, then

L { f (t)} =
1

1
0

− �e
e f t dt

s
st

–
–

α

α

� � ...(1)

Proof: We have, L { f (t)} = e f t dtst– � �
0

∞

�
= e f t dt e f t dt e f t dtst st st– – –� � � � � �+ + + ⋅ ⋅ ⋅���

2

32

0 α

α

α

αα

...(2)

Substitute, t = u + α in the second integral
Then dt = du
When t = α, u = 0, and t = 2α, u = α.

Hence e f t dtst– � �
α

α2

� = e f u dus u– + +� α
α

α� � � �
0

Since f (u + α) = f (u)
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= e e f u dus su– –α
α

� �
0
�

= e e f t dts st– –α
α

� �
0
� (replacing u by t)

Similarly by substituting t = u + 2α in the 3rd integral, we get,

e f t dtst– � �
2

3

α

α

� = e e f t dts st–2 –α
α

� �
0
�

and so on.
∴ Equation (2) reduces to

L { f (t)} = e f t dt e e f t dt e e f t dtst s st s st– – – ( )� � � �+ + + ⋅ ⋅ ⋅− −��� α α
ααα

2

000

= 1
2

0

+ + + ⋅ ⋅ ⋅�
��

�
�� �e e e f t dts s st– – –α α

α

� � � �

=
1

1
0

− �e
e f t dt

s
st

–
–

α

α

� �

Since, 1 + r + r2 + ... to  ∞ =
1

1 – r
 and

| r | = e s– α < 1.

Thus, L { f (t)} =
1

1
0

– –
–

e
e f t dt

s
st

α

α

� ��
This completes the proof of the theorem.

������ ���� ��������

1. If  f (x) = 
3t, 0 t 2

6, 2 t 4

< <
< <

	
�
 and  f (t) = f (t + 4), find L { f (t)}.

Solution. Since f (t) is a periodic function with period α = 4 from (1),  we get

L { f (t)} =
1

1
0

4

− �e
e f t dt

s
st

–4
– � � ...(1)

Now, e f t dtst– � �
0

4

� = e t dt e dtst st– –⋅ + ⋅�� 3 6
2

4

0

2

= 3 1 6
2

0

2

2

4

t
e

s

e

s

e

s

st st st

⋅ − ⋅
�

�
�
�

�

�
�
�

+
�
�
�

�
�
�

– – –

– – –� �
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= 3 2 3 0
1 6

2 2
– – – – –

–2 –2
–4 –2e

s

e

s s s
e e

s s
s s−

�
�
�

�
�
� �

��
�
�� � �

=
3 3 6
2 2s

e

s

e

s

s s

− −
–2 –4

=
3

1 2
2s

e s es s– –2 –4−� �
Therefore from (1), we get

L { f (t)} =
3 1 2

12

– –

–

–2 –4

–4

e s e

s e

s s

s

� �
� �

·

2. If  A periodic function f (t) of period 2a is defined by

 f (t) =
a for t a

a for a t a

0

2

≤ <
≤ ≤

	
� –

Show that L { f (t)} = 
a

s
tan h

as

2
�
��

�
�� .

Solution. Since f (t) is a periodic function with period 2a, we have from Eqn. (1),

L { f (t)} =
1

1
0

2

− �e
e f t dt

as
st

a

–2
– � � ...(1)

Now e f t dtst
a

– � �
0

2

� = e a dt e a dtst st

a

aa
– – –⋅ + �� � �

2

0

=
ae

s

ae

s

st a st

a

a– –

– –

�
�
�

�
�
� +

−�
�
�

�
�
�

0

2

=
– – –2 –a

s
e

a

s
e eas as as− + −1� �

=
a

s
e eas as1 2– – –2+� �

=
a

s
e as1

2
− –� �

Therefore from (i), we obtain,

L { f (t)} =
a

s

e

e

as

as
⋅

−

−

1

1

2–

–2

� �
� �

=
a

s

e

e e

as

as as

1

1 1

2
−

− +

–

– –

� �
� � � �
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=
a

s

e

e

as

as
⋅

+
1

1

– –

–

=
a

s

e e

e e

as as

as as

2 2

2 2

−

+

	

�

��


��

��

–

–

Multiplying numerator and denominator by 
e

as

2

=
a

s
h

as
tan

2
�
��

�
�� ⋅

3. If f (t) = t2, 0 < t < 2 and f (t + 2) = f (t) for t > 2, find L {f (t)}.

Solution. Here f (t) is a periodic function with period 2. Therefore from eqn. (1), we have

L { f (t)} =
1

1 2
2

0

2

−
⋅− �e

e t dt
s

st–
...(1)

Consider, e t dtst– 2

0

2

� = t
e

s
t

e

s

e

s

st st st
2

2 3

0

2

2 2
– – –

– – –
− +

�

�
�
�

�

�
�
�� � � �

On Integrating by parts,

=
–

– – ––2
–2

–4 4 2 2
2 3

2
3s

e
e

s s
e

s
s

s
s−

	


�


�
�

	
�
��

=
2

4 4 2
3 3

2

s

e

s
s s

s

− + +
–2

� �

=
2

1 2 2 1
3

2

s
s s e s− + +� � –2

Therefore from (i), we get

L { f (t)} =
2

1
1 2 2 1

3

2

s e
s s e

s

s

−
− + +

–2

–2

� �
� �

4. A periodic function of period 
2π
ω is defined by

f (t) =
E sin t, 0 t

0, t 2

ω π
ω

π
ω

π
ω

≤ <

≤ <

	


�

�
�

where E and ω are constants.

Show that, L { f (t)} =
E

s e
s

ω

ω
π

ω2 2 1+ −
�
��

�
��

� �
–

.
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Solution. We have a periodic function f (t)

L { f (t)} =
1

1
0

− �e
e f t dt

s
st

–
–

α

α

� �

Hence α =
2π
ω

=
1

1
2

0

2

–
–

–

e

e f t dts
st

π
ω

π
ω

� ��

=
1

1

0
2

0

2 2

–

sin
–

– –

e

e E t dt e dt
s

st st
π

ω

π
ω

π
ω

π
ω

ω + ⋅

�

�

�
�
�
�

�

�

�
�
�
�

� �

=
1

1
2

0–

sin
–

–

e

e E t dts
st

π
ω

π
ω

ω� ...(1)

Consider = e E t dtst– sin ω

π
ω

0
�

= E e t dtst– sin ω

π
ω

0
�

= E
e

s
s t t

st–

–
– sin – cos

� �
� �2 2

0
+

�

�
�
�

�

�
�
�ω

ω ω ω

π
ω

=
–

sin cos
E

s
e s t tst

2 2 0+
+ +−

ω
ω ω ω

π ω� �

=
–

sin cos – sin cos
–

E

s
e s e s

s

2 2
0 0 0

+
+ +

�
�
�
�

�
�
�
�ω

π ω π ω
π

ω � � � �

=
–

– –
–

E

s
e

s

2 2
0 1

+
+

�
�
�
�

�
�
�
�ω

ω ω
π

ω � �� �

=
–

–
–

E

s
e

s

2 2+
−

�
�
�
�

�
�
�
�ω

ω ω
π

ω

=
E

s
e

sω
ω

π
ω

2 2
1

+
+

�
��

�
��

–
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Hence from Eqn. (1), we get

=
1

1

1
2 2 2

–
–

–

e

E

s
e

s

s

π
ω

π
ωω

ω
⋅

+
+

�
��

�
��

L { f (t)} =

E e

s e e

s

s s

ω

ω

π
ω

π
ω

π
ω

1

1 12 2

+
�
��

�
��

+ −
�
��

�
��

+
�
��

�
��

–

– –

� �

L { f (t)} =
E

s e
s

ω

ω
π

ω2 2 1+ −
�
��

�
��

� �
–   Hence proved.

��������� �	


Find the Laplace transforms of the following periodic functions:

1. f (t) = t, 0 < t < 2 and f (t + 2) = f (t). Ans.
1 2

12s

e

s e

s

s
–

–2

–2−

�

�
�
�

�

�
�
�� �

2. f (t) = t2, 0 < t < 3 and f (t + 3) = f (t). Ans.
1

1
2 9 6 2

3
2

s e
s s e

s

s

–
–

–3
–3

� �
� �+ +

�

�
�
�

�

�
�
�

3. f (t) = a – t, 0 < t < a and f (t + a) = f (t). Ans.
as e

s e

as

as

− +
−

�

�
�
�

�

�
�
�

1

12

–

–� �

4. f (t)  = e– t. 0 < t < 1 and f (t + 1) = f (t). Ans.
1 –

+ 1 1

– + 1e

s e

s

s

� �

� � � �−

�

�
�
�

�

�
�
�–

5. f (t) = 
1 0 1

1 1 2

,

– ,

< ≤
< ≤

	
�
t

t  and f (t + 2) = f (t). Ans.
1

2s
h

s
tan

�
��

�
��

�
��

�
��

6. f (t) = 
1 0 1

0 1 2

,

,

< ≤

≤ <

	

�
��

t

t
 and f (t + 2a) = f (t). Ans.

1

1s e s+

�

�
�
�

�

�
�
�–� �

7. f (t) = 
t t a

a t a t a

,

– ,

0

2 2

≤ <

< ≤

	

�
��

 and f (t + 2) = f (t). Ans.
1

22s
h

as
tan �

��
�
��

�
��

�
��
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8. f (t) = 
t t

t

,

,

0 1

1 1 2

< <
≤ <

	
�
 and f (t + 2) = f (t). Ans.

1

12

−�

�
�
�

�

�
�
�

e s e

s e

s s

s

– –2

–2

–

–� �

9. f (t) = 
t t

t

,

,

0 1

0 1 2

< <
< <

	
�
 and f (t + 2) = f (t). Ans.

1 – + 1s e

s e

s

s

� �
� �

–

–22 1 −

�

�
�
�

�

�
�
�

7.5
LAPLACE TRANSFORMS OF UNIT STEP FUNCTION AND UNIT
IMPULSE FUNCTION

Unit Step Function (Heaviside function)

The unit step function or Heaviside function u (t – a) is defined as follows

u (t – a) =
0, when

1, when

t a

t a

≤
>

	
�
...(1)

where a ≥ 0
The graph of this function is as shown in the below.

u (t – a)

1

O a

Fig. 7.1

where a is the +ve constant.

7.5.1 Properties Associated with the Unit Step Function

(i) L u (t – a) = 
e

s

as–

(ii) L { f (t – a) u (t – a)} = e–as F (s) = e–as L {f (t)}.

Proof: (i) Using the definition of Laplace transform, we have

L {u (t – a)} = e u t a dtst– −
∞

� � �
0

= e u t a dt e u t a dtst st

a

a
– – ( )−( ) + −

∞

��
0

= e dt e dtst st

a

a
– –⋅ + ⋅

∞

�� 0 1
0
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= 0 +
�
�
�

∞
e

s

st

a

–

–

=
–

–– –
–1

s
e e

e

s
as

as
∞ =

Thus, L {u (t – a)} =
e

s

as–

(ii) Heaviside Shifting Theorem:

If L { f (t)} = F (s) then

L { f (t – a) u (t – a)} = e–as F (s) = e–as L {f (t)}

where u (t – a) is the unit step function.

Proof: By definition, we have

L { f (t – a) u (t – a)} = e f t a u t a dtst– − −
∞

� � � � �
0

= e f t a u t a dt e f t a u t a dtst st

a

a
– –− − + − −

∞

�� � � � � � � � �
0

= e f t a dt e f t a dtst st

a

a
– –− + − ⋅

∞

�� � � � � � �0 1
0

= e f t a dtst

a

– −
∞

� � �

Substitute t – a = x so that dt = dx,

When t = a, x = 0   and

t = ∞, x = ∞ ,  t = a + x

Hence,

L { f (t – a) u (t – a)} = e f x dxs a x– +
∞

� � � � �
0

= e e f x dxsa sx– – � �
0

∞

�
= e e f t dtas st– – � �

0

∞

� change x to t

= e–as L { f (t)}

= e–as F (s).  Hence proved.
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7.5.2 Laplace Transform of the Unit Impulse Function

Unit Impulse Function

Definition: The unit impulse function denoted by δ (t – a) is defined as follows

δ (t – a) = lim ,
ε εδ

→
−

0
t a� �  a ≥ 0 ...(1)

Where δε (t – a) =

0
1

0

,

,

,

if t a

if a t a

if t a

<

< < +

> +

	


�

�
� ε

ε

ε
...(2)

The graph of the function δε(t – a) is as shown below:

�
�
 (t – a)

1
—
�

tO a       a + � �

Fig. 7.2

Laplace transform of the unit impulse function

Consider L {δε (t – a)} = e t a dtst– δε −
∞

� � �
0

= e dt e dt e dtst st st

aa

aa
– – –0

1
0

0

� � � �+ +
+

∞+

��� ε
ε

ε

=
1 1

ε ε

εε

e dt
e

s
st

st

a

a

a

a

–
–

–
=

�
�
�

�
�
�

++

�
= − −+1

ε
ε

s
e es a as– –� �

= e
e

s
as

s
–

–1 −�
�
�

�
�
�

ε

ε

Taking the limits on both sides as ε → 0, we get,

lim
ε εδ

→
⋅ −

0
L t a� �� � = e

e

s
as

s
–

–

lim
–

ε

ε

ε→

�
�
�

�
�
�

0

1

i.e., L {δ (t – a)} = e–as (Using L’ Hospital Rule)

If a = 0 then L {δ (t)} = 1
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1. Find the Laplace transforms of the following functions:

(1) (2t – 1) u (t – 2) (2) t2 u (t – 3)

(3) (t2 + t + 1) u (t – 1) (4) e3t u (t – 2)

(5) sin t cos t u t
2

+ −�
��

�
��� � π

.

Solution

(1) Now 2t – 1 = 2 (t – 2) + 3

∴ Using Heaviside shift theorem, we get

L {(2t – 1) u (t – 2)} = L {[2 (t – 2) + 3] u (t – 2)}

= e–2s L {2t + 3} Replacing t – 2 by t

= e–2s {2 L (t) + L (3)}

= e
s s

s–2 2 3
2

+	
�
�� ·

(2) Now, t2  = [(t – 3) + 3]2

= (t – 3)2 + 6 (t – 3) + 9

Then L {t2 u (t – 3)} = L {[(t – 3)2 + 6 (t – 3) + 9] u (t – 3)}

Replacing t – 3 by t

= e–3s L{t2 + 6t + 9}

Using Heaviside shift theorem

= e–3s {L (t2) + 6 L (t) + 9 L (1)}

= e
s s s

s–3 2 6 9
3 2

+ +	
�
��

⋅

(3) Now t2 + t + 1 = (t – 1)2 + 3t

= (t – 1)2 + 3 (t – 1) + 3

Then  L {(t2 + t + 1) u (t – 1)}= L {[(t – 1)2 + 3 (t – 1) + 3] u (t – 3)}

Replacing t – 1 by t

= e–s L {t2 + 3t + 3}

= e
s s s

s– 2 3 3
3 2

+ +	
�
��

(4) Now, e3t = e3(t – 2) + 6 = e6 . e3 (t – 2)

Hence L {e3t u (t – 2)} = L {e6 e3(t – 2) u (t – 2)}

Replacing t – 2 by t
= e6 . e–2s L {e3t}

=
e e

s

e

s

s s6 3

3 3

⋅
−

=
−

−–2 –2

.
� �
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(5) Now sin t + cos t = cos sin
π π
2 2

−�
��

�
�� + −�

��
�
��t t

= cos – – sint t
π π
2 2

�
��

�
�� −�

��
�
��

∴ L t t u tsin cos –+ �
��

�
��

	
�
��

� � π
2

= L t t u tcos sin−�
��

�
�� − −�

��
�
��

�
��

�
��

−�
��

�
��

	


�


�
�

π π π
2 2 2

Replacing t − π
2

 by t.

 e
s−���

�
��

π
2 L {cos t – sin t}

Using Heaviside function

= e L t L t

s–

cos – sin
π

2
�
��

�
�� � � � �� �

= e
s

s s

s
–π
2

2 21

1

1

�
��

�
�� ⋅

+
−

+
	


�


�
�

=
e s

s

s−���
�
�� ⋅ −

+

π
2

2

1

1

� �
.

2. Express the following functions in terms of the Heaviside’s unit step function and hence find
their Laplace transforms.

(1) f (t) = 
t , 0 t 2

4t, t 2

2 < <
>

	


�

(2) f (t) = 
3t, 0 t 4

5, t 4

< <
>

	
�

(3) f (t) = 
e 0 t 3

0, t 3

–t ,
.

< <
>

	


�

Solution. (1) Given function f (t) can be expressed in terms of the Heaviside’s unit step function as

f (t) = t2 + (4t – t2) u (t – 2)

Taking Laplace transform on both sides, we get,

L { f (t)} = L (t2) + L {(4t – t2) u (t – 2)}

=
2

4 2
3

2

s
L t t u t– – –� � � ��  

=
2

2 4 2
3

2

s
L t u t– – –� � � ��  −

=
2

4
3

2

s
e L ts– – ––2 � �

(Using Heaviside shifting theorem.)
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=
2

4 1
3

2

s
e L t Ls– – ––2 � � � ��  

=
2 2 4
3 3s

e
s s

s– .–2 −	
�
��

(2) In terms of the Heaviside step function

We have

f (t) = 3t + (5 – 3t) u (t – 4)

∴ L [ f (t)] = 3 L (t) + L {(5 – 3t) u (t – 4)}

=
3

3 4 7 4
2s

L t u t+ – – – –� � � �� �

=
3

3 7
2s

e L ts+ –4 – –� �� �

=
3 3 7
2 2s

e
s s

s+ −	
�
��

–4 –

=
3 3 7
2 2s s s

e s– .–4+	
�
��

(3)  Now, f (t) = e–t +[0 – e–t] u (t – 3)

∴ = e–t – e–t u (t – 3)

= e–t – e– (t – 3) u (t – 3) e–3

L { f (t)} = L (e–t) – e–3 L {e– (t – 3) u (t – 3)}

=
1

1s
e e L es t

+
– –3 –3 –� �

=
1

1

1

1
1

s
e

s
s

+
⋅

+
+– –3� �

=
1

1

1– –3e

s

s +

+

� �
·

3. Express f (t) in terms of the Heavisides unit step function and find its Laplace transform:

f (t) = 

t , 0 t 2

4t, 2 t 4

8, t 4

2 < <
< <

>

	

�

��
⋅

Solution. We get

f (t) = t2 + (4t – t2) u (t – 2) + (8 – 4t) u (t – 4)

f (t) = t2 + [4 – (t – 2)2] u (t – 2) + [– 4 (t – 4) – 8] u (t – 4)
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Taking Laplace transform on both sides, we get,

L { f (t)} = L (t2) + L {[4 –(t – 2)2 ] u (t – 2)} + L {[– 4 (t – 4) – 8] u (t – 4)}

=
2

4 4 8
3

2

s
e L t e L ts s+ +–2 –4– – –� � � �

Using Heaviside shift theorem.

=
2 4 2 4 8
3 3 2s

e
s s

e
s s

s s+ −�
��

�
�� + �

��
�
��

–2 –4 –
–

=
2

2
2 1

4
1 2

3 3 2s
e

s s
e

s s
s s+ −�
��

�
�� +�

��
�
��

–2 –4– .

4. Find L 2 (t 1) 3 t 2 4 t 3δ δ δ− + −( ) + +( ) .

Solution. We have

= 2L δ (t – 1) + 3L δ (t – 2) + 4L δ (t + 3)

= 2e–s + 3e–2s + 4e3s. Since L δ (t – a) = e–as

5. Find  L [cos h 3t δ (t – 2)].

Solution

cos h 3t δ (t – 2) =
1

2
23e e tt t+ –3 –� � � �δ

L [cos h 3t δ (t – 2)] =
1

2
2 23 3L e t L e tt tδ δ− + −−� � � ��  

= shifting s – 3 → s
s + 3 → s

=
1

2
2 2

3 3
L t L t

s s s s
δ δ– –

–
� � � ��  → → +

+

=
1

2 3 3

e es

s s

s

s s

–2

–

–2� � � �
→

+	
�
��→ +

=
1

2
3 3e es s–2 –2− ++� � � ��  

=
e

e e
s–2

–6

2
6 +� �

L [cosh 3t δ (t – 2)] = cosh 6 e– 2s
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��������� �	�

Find the Laplace transforms of the following functions:

1. (2t + 3) u (t –1). Ans. e
s s

s– 2 5
2

+�
��

�
��

�
��

�
��

2. t2 u (t – 2). Ans. e
s s s

s– 2
3 2

2 4 4+ +�
��

�
��

�
��

�
��

3. (t2 + 2t – 1) u (t – 3). Ans. e
s s s

s–2 2 8 14
3 2

+ +�
��

�
��

�
��

�
��

4. e3t u (t – 1). Ans.
e

s

– s 3−

−

�
�
�
�

�
�
�
�

� �

3

5. (1 – e2t) u (t – 2). Ans.
e

s s

s–2

+
�
�
��

�
�
��1� �

Express the following functions in terms of the Heaviside’s unit step function and hence find
their Laplace transformation.

1. f (t) =  
2 0 1

3 1

,

,

< <
>

	
�
t

t
.

Ans.
2 +�

�
�

�
�
�e

s

s–

2. f (t) = 
3 0 2

2

,

,

< <
>

	
�
t

t t .
Ans.

3 1 1
2s

e
s s

s+ −�
��

�
��

�
��

�
��

–2

3. f (t) = 
4 0 3

32

,

,

< <

>

	

�
��

t

t t
.

Ans.
4 2 6 5

3 2s
e

s s s
s+ + +�
��

�
��

�
��

�
��

–3

4. f (t) = 
4 0 2

22

t t

t t

,

,

< <
>

	
�
. Ans.

4 2 4
2 3s

e
s s

s+ �
��

�
��

�
��

�
��

–2 –

5. f (t) = 
e t

t

t2 0 1

2 1

,

,

< <
>

	


�

.
Ans.

1

2

2

1

2

s
e

s

e

s
s

−
+

−
�
��

�
��

�
�
�
�

�
�
�
�

– –

6. f (t) = 
sin ,

cos ,
.

t t

t t

0
2

2

< <

>

	


�

�
�

π

π
Ans.

1

1

1

12
2

2s
e

s

s

s

+
+
+

	


�


�
�

�

�
�
�

�

�
�
�

�
��

�
��–

–π

7. f (t) = 

1 0 1

1 3

32

,

,

,

< <
< <

>

	

�

��

t

t t

t t

.
Ans.

1 2 5 6
2

3
3 2s

e

s
e

s s s

s
s+ + + +�
��

�
��

�
�
�

�
�
�−

–
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8. f (t) = 

cos ,

cos ,

cos ,

.

t t

t t

t t

0

2 2

3 2

< <
< <

>

	

�

��

π
π π

π

Ans.
s

s
e

s

s

s

s

se

s s

s
s

2 2 2 2 21 4 1

5

4 9+
+

+
+

+
	


�


�
�

+
+ +

�

�
�
�

�

�
�
�

−π
π–2

� � � �

9. f (t) = 

cos ,

,

sin ,

.

t t

t

t t

0

1 2

2

< ≤
< ≤

>

	

�

��

π
π π

π

Ans.
s

s s

s

s
e

s s
es s

2 2 21

1

1

1 1

1+
+ +

+
	


�


�
� +

	


�


�
�

�
�
�
�

�
�
�
�

– –2– –π π

10. f (t) = 

t t

t

t

2 0 2

4 2 4

0 4

,

,

,

.

< <
< <

>

	

�

��
Ans.

2 2 4 4
3 3 2s s s

e
s

es s– ––2 –4+
	


�


�
�

�
�
�
�

�
�
�
�

����������� ��������� ������ ���	
���� ����� ���� �������

1. Find the Laplace transforms of:

2t + 
cos 2t cos 3t

t

−
 + t sin t

Solution. The given function be denoted by f (t) and let

f (t) = F (t) + G (t) + H (t)

where F (t) = 2t, G (t) = 
cos cos2 3t t

t

− ,

H (t) = t sin t

∴ L [f (t)] = L [F (t)] + L [G (t)] + L [H (t)] ...(1)

Now L [F (t)] = L [2t] = L [elog2 . t ] = 
1

2s − log

L [G (t)] = L
t t

t

cos cos2 3−�
��

�
��

= L t t ds
s

cos cos2 3−
∞� � �

=
s

s

s

s
ds

s 2 24 9+
−

+
�
��

�
��

∞�
=

1

2
4

1

2
92 2log logs s

s

+ − +�
��

�
��

∞

� � � �

= log
s

s
s

2

2

4

9

+
+

�

�
�
�

�

�
�
�

∞
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= log log
1 4

1 9

4

9

2

2

2

2

+
+

�

�
�
�

�

�
�
�

− +
+

= ∞

s

s

s

s
s

= log log1
9

4

2

2
− +

+
s

s

L [G (t)] = log
s

s

2

2

9

4

+
+

Further H (t) = t sin t

L [H (t)] =
− = −

+
�
��

�
��

d

dt
L t

d

ds s
sin� � 1

12

Hence L [H (t)] =
2

12 2

s

s +� �
Thus the required L f (t) is given by

=
1

2

9

4

2

1

2

2 2 2s

s

s

s

s−
+ +

+
+

+log
log

� �
2. Find the Laplace transforms of t2 e–3t sin 2t.

Solution. We shall first find L (t2 sin 2t)

we have L [t2 (sin 2t )] = (–1)2 
d

ds

2

2  L (sin 2t)

L (t2 sin 2t) =
d

ds

d

ds s

2

42 +
�
��

�
��

=
d

ds

s

s

−

+

�

�
�
�
�

�

�
�
�
�

4

42 2
� �

=
s s s s

s

2 2 2

2 4

4 4 4 2 4 2

4

+ − + ⋅ + ⋅

+

� � � � � �
� �

L (t2 sin 2t) =
4 3 4

4

2

2 3

s

s

−

+

� �
� �

Thus L (e–3t t2 sin 2t) =
4 3 3 4

3 4

2

2 3

s

s

+ −

+ +

� �

� �
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3. (i) Evaluate: L {t (sin3 t – cos3 t)}

Solution

sin3 t – cos3 t =
1

4
 (3 sin t – sin 3t) – 

1

4
 (3 cos t + cos 3t)

L (sin3 t – cos3 t) =
1

4

3

1

3

9

1

4

3

1 92 2 2 2s s

s

s

s

s+
−

+
	
�

��
−

+
+

+
	
�

��

Using the property: L [t f (t)] = 
−d

ds
f s� � , we have

L [t (sin3 t – cos3 t)] =
− −

+
+

+

�

�
�
�
�

�

�
�
�
�

3

4

2

1

2

92 2 2 2

s

s

s

s� � � �
+

+ −

+
+ + −

+

�

�
�
�
�

�

�
�
�
�

1

4

3 1 2

1

9 2

9

2 2

2 2

2 2

2 2

s s

s

s s

s

� �
� � � �

=
3

2

1

1

1

92 2 2 2

s

s s+
−

+

�

�
�
�
�

�

�
�
�
�� � � �

+ ⋅ −

+
+ −

+

�

�
�
�
�

�

�
�
�
�

1

4
3

1

1

9

9

2

2 2

2

2 2

s

s

s

s� � � �
(ii) Using Laplace transforms:

Evaluate e t t dtt−∞� sin2

0
3 .

Solution. We shall first find L (t sin2 3t)

sin2 3t =
1

2
 (1 – cos 6t)

L (sin2 3t) =
1

2

1

362s

s

s
−

+
�
��

�
��

L (t sin2 3t) =
1

2

1

362
⋅ − −

+
�
��

�
��

d

ds s

s

s

=
− − −

+ −

+

�

�
�
�
�

�

�
�
�
�

1

2

1 36 2

36
2

2 2

2 2s

s s

s

� �
� �

∴ L (t sin2 3t) =
1

2

1 36

36
2

2

2 2s

s

s
+ −

+

�

�
�
�
�

�

�
�
�
�� �

Using the basic definition in LHS, we have

e t t dtst−∞� sin2

0
3 =

1

2

1 36

36
2

2

2 2s

s

s
+ −

+

�

�
�
�
�

�

�
�
�
�� �
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Thus by putting s = 1, we get

e t t dtt−∞� sin2

0
3 =

1

2
1

35

372
+�

��
�
��  = 

702

1369

4. Find the Laplace transform of:

(i) e2t cos2 t (ii) 
1 cos 3t

t

−

Solution. (i) Let f (t) = e2t cos2 t = e2t · 
1

2
(1 + cos 2t)

L [f (t)] =
1

2
[L (e2t) + L (e2t cos 2t)]

=
1

2

1

2
2

2s
L t

s s−
+�

��
�
��→ −

cos� �� �

=
1

2

1

2 42
2s

s

s s s−
+

+
	
�

��
�
��

�
��→ −

=
1

2

1

2

2

4 82s

s

s s−
+ −

− +
�
��

�
��

Thus L (e2t cos2 t) =
1

2

1

2

2

4 82s

s

s s−
+ −

− +
�
��

�
��

(ii) Let f (t) = 1 – cos 3t

∴ f
—

(s) = L [f (t)] = 
1

92s

s

s
−

+

We have the property: L
f t

t
f s ds

s

� � � �=
∞�

i.e., L
t

t

1 3−�
��

�
��

cos
=

1

92s

s

s
ds

s
−

+
�
��

�
��

∞�
= log logs s

s

− +�
��

�
��

∞
1

2
92� �

= log
s

s s
2 9+

�
�
�
�

�
�
�
�

∞

= log log
s

s s

s

s
s

1 9 92

0

2+

�

�
�
�

�

�
�
� −

+
= ∞

= log log log1
9

9
2

2

−
+

= +s

s

s

s

L
t

t

1 3−�
��

�
��

cos
= log

s

s

2 9+�

�
�
�

�

�
�
�
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5. Find the Laplace transform of the full wave rectifier f (t) = E sin wt, 0 < t < π/w having
period π/w.

Solution. Refer page No. 349. Example 3.

6. Express the followiong functions interms of Heaviside’s unit step function and hence find its
Laplace transform where

f (t) = 
t , 0 t 2

4t, t 2

2 < ≤
>

	


�

Solution. (1) Refer page No. 356. Example 2.

7. Express the function.

f (t) = 
π π

π
− < ≤

>
	
�

t, 0 t

sin t, t

in terms of unit step function and hance find its laplace transform.

Solution. f (t) = (π – t) + [sin t – (π – t)] u (t – π)

by standard property.

i.e., f (t) = (π – t) + [sin t – π + t] u (t – π) ...(1)

L [f (t)] = L (π – t) + L {[sin t – π + t] u (t – π)}

Taking F (t – π) = sin t – π + t, we have

F (t) = sin (t + π) – π + (t + π)

i.e., F (t) = – sin t + t

∴ F
—

(s) = L [F (t)] = 
−
+

+1

1

1
2 2s s

Also L [F (t – π) u (t – π)] = e–πs F
—

(s)

∴ L [(sin t – π + t) u (t – π)] = e–πs 
1 1

12 2s s
−

+
�
��

�
�� ...(2)

Thus by using (2) in (1) with

L (π – t) =
π
s s

− 1
2

we get

L [ f (t)] =
π π

s s
e

s s
s−�

��
�
�� + −

+
�
��

�
��

−1 1 1

12 2 2

8. Find (i) L [t2 u (t – 3)], (ii) L [e3t u (t – 2)].

Solution. (2) & (4) Refer page No. 355. Example 1.

9. Define Heaviside unit step function. Using unit step function find the laplace transform of:

f (t) = 

sin t, 0 t

sin 2t, t 2

sin 3t, t 2

≤ <
≤ <
>

	

�

��

π
π π

π
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Solution. The given f (t) can be written in the following form by a standard property.

f (t) = sin t + [sin 2t – sin t] u (t – π) + [sin 3t – sin 2t] u (t – 2π)

Now L [f (t)] = L (sin t) + L {[sin 2t – sin t] u (t – π)}

+ L {[sin 3t – sin 2t] u (t – 2π)}  ...(1)

Consider L [sin 2t – sin t] u (t – π)

Let F (t – π) = sin 2t – sin t

⇒ F (t) = sin 2 (t + π) – sin (t + π)

F (t) = sin (2π + 2t) – sin (π + t)

or F (t) = sin 2t + sin t

∴ F
—

(s) = L [F (t)] = 
2

4

1

12 2s s+
+

+
But L [F (t – π) u (t – π)] = e–πs F

—
(s)

i.e., L {[sin 2t – sin t] u (t – π)} = e
s s

s−

+
+

+
�
��

�
��

π 2

4

1

12 2 ...(2)

Also G (t – 2π) = sin 3t – sin 2t

i.e., G (t) = sin 3 (t + 2π) – sin 2 (t + 2π)

i.e., G (t) = sin 3t – sin 2t

∴ L [G (t)] = G
—

(s) = 
3

9

2

42 2s s+
−

+
But L [G (t – 2π) u (t – 2π)] = e–2πs G

—
(s)

i.e., L {(sin 3t – sin 2t] u (t – 2π)} = e–2πs
3

9

2

42 2s s+
−

+
�
��

�
�� ...(3)

Thus (1) as a result of (2) and (3) becomes

L [f (t)] =
1

1

2

4

1

12 2 2s
e

s s
s

+
+

+
+

+
�
��

�
��

+−π e–2πs
3

9

2

42 2s s+
−

+
�
��

�
�� ·

���������� ���������

1. Laplace transform of tn e+at is:

(a) 
n

s a
n

!

+� �
(b) 

n

s a
n

+

+ +

1
1

� �
� �

!

(c) 
n

s a
n

!

− +� � 1 (d) 
n

s a
n

+

+ +

1
1

� �
� �

!
[Ans. c]
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2. Laplace transform of f (t) = te at sin (at), t > 0.

(a) 
2

2 2
2

a s a

s a a

−

− +

� �
� �

(b) 
a s a

s a a

−

− +
� �

� �2 2

(c) 
s a

s a a

−
− −� �2 2

(d) 
s a

s a a

−

− +
� �

� �

2

2 2
[Ans. a]

3.
The Laplace transform of te–t cos h 2t is:

(a) 
s s

s s

2

2 2

2 5

2 3

+ +

+ −� �
(b) 

s s

s s

2

2 2

2 5

2 3

− +

+ −� �

(c) 
4 4

2 32 2

s

s s

+

+ −� �
(d) 

4 4

2 32 2

s

s s

−

+ −� �
[Ans. a]

4. L
t

t

sin�
��

�
��

=

(a) 
1

12s +
(b) cot–1 s

(c) cot–1 (s – 1) (d) tan–1 s [Ans. b]

5. The relation between unit step function and unit impulse function is:

(a) L [u (t – a)] = L [δ (t)] (b) L [u′ (t – a)] = L [δ (t – a)]

(c) L [u (t)] = L [δ′ (t – a)] (d) None of these [Ans. b]

6. The laplace transform of sin2 3t is:

(a) 
3

362s +
(b) 

6

362s s +� �

(c) 
18

362s s +� �
(d) 

18

362s +
[Ans. c]

7. L [t2 et] =

(a) 
2

2
2

s −� �
(b) 

2

2
3

s −� �

(c) 
1

2
3

s −� �
(d) 

1

1
3

s −� �
[Ans. b]

8. L [e–t sin h t] =

(a) 
1

1 1
2

s + +� �
(b) 

1

1 1
2

s − +� �

(c) 
1

2s s +� � (d) 
s

s

−
− +

1

1 1
2� �

[Ans. c]
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9. L (e–3t cos 3t) =

(a) 
s

s s

−
− −

3

6 182 (b) 
s

s s

+
+ +

3

6 182

(c) 
s

s s

+
− +

3

6 182 (d) 
s

s s

−
+ −

3

6 182 [Ans. b]

10. L [(t2 + 1) u (t – 1)] =

(a) 2e–s (1 + s + s2)/s3 (b) e–s (1 + s + s2)/s3

(c) 2es (1 + s + s2)/s3 (d) None of these [Ans. a]

11. Laplace transform of (t sin t) is:

(a) 
2

12 2

s

s +� �
(b) 

s

s + 1

(c) 
2

12

s

s +
(d) 

2

12 2

s

s −� �
[Ans. a]

12. Laplace transform of f (t): t ≥ 0 is defined as:

(a) e f t dtst−� � �
0

1
(b) e f t dtst−∞� � �

0

(c) f t dt� �
0

2� (d) None of these [Ans. b]

13. A unit step function is defined as:

(a) u (t – a) = 
0

1
0

,

,

t a

t a
a

<
≥

	
�
≥ (b) t – a = 0

(c) u (t – a) = 
0

1

,

,

t a

t a

>
≥

	
�
(d) None of these [Ans. a]

14. L (e2t sin t) is:

(a) 
1

52s +
(b) 

1

42s s−

(c) 
1

4 52s s− +
(d) None of these [Ans. c]

15. L (et) =

(a) 
1

2s − log
(b) 

1

2s + log

(c) 
1

2s +
(d) None of these [Ans. a]

16. L (e–t t k ) is:

(a) 
k

s
k

!

+ +
1

1� �
(b) 

s

s
k

!

+ +
1

1� �

(c) 
k

s
k

!

− +
1

1� �
(d) None of these [Ans. a]
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17. L (cos3 4t) =

(a) 
1

3

1

162s

s

s
+

−
�
��

�
�� (b) 

1

2

1

162s

s

s
+

−
�
��

�
��

(c) 
1

2

1

162s

s

s
−

+
�
��

�
�� (d) None of these [Ans. b]

18. Laplace transform of the unit impulse function δ (t – a) is:

(a) e–as (b) eas

(c) e–t (d) None of these [Ans. a]

19. L [cos (2t + 3)] =

(a) 
s

s

cos sin3 2 3

42

−
+

(b) 
s

s

2

2

3 2 3

4

cos sin−
−

(c) 
s

s

cos sin3 2 3

42

+
−

(d) None of these [Ans. a]

20. L [e at] is:

(a) 
1

s a+
(b) 

1

s

(c) 
1

s a− (d) None of these [Ans. c]

21. L [ f ′ (t)] is:

(a) S L [f (t)] – f (0) (b) F (s)

(c) S L [f (t)] (d) None of these [Ans. a]

22. L f (t) u (t – a) is:

(a) eas Lf (t) (b) e–as L [f (t + a)]

(c) f (t + a) (d) None of these [Ans. b]

23. The Laplace transform of t3 δ (t – 4) is:

(a) 43 e–4s (b) 34 e3s

(c) e4s 32 (d) None of these [Ans. a]

24. L [eiat] is:

(a) 
1

s ia+
(b) 

1

s ia−

(c) 
1

s
(d) None of these [Ans. b]

25. The Laplace transform of (1 + cos 2t) is:

(a) 
1

42s

s

s
+

+
(b) 

1

42s

s

s
−

−

(c) 
1 1
2s s

+ (d) None of these [Ans. a]

���
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UNIT ����

Inverse Laplace Transforms

8.1 INTRODUCTION

If L { f (t)} = F (s), then f (t) is called the Inverse Laplace Transform of F (s) and symbolically, we
write f (t) = L–1 { F (s)}. Here L–1 is called the inverse Laplace transform operator.

For example,

(i) L (e at ) =
1

s a–
, s > a, L

s a
–1

–

1�
�
�

�
�
�

 = e at

(ii) L (t) =
1
2s

, L
s

–1 1
2

���
���  = t

8.2 INVERSE LAPLACE TRANSFORMS OF SOME STANDARD FUNCTIONS

1. Since L (1) =
1

s
, L

s
–1 1���

���  = 1.

2. L (eat ) =
1

s a–
, s > a, L

s a
–1

–

1�
�
�

�
�
�

 = eat.

Replacing a by –a, we get L
s a

e at–1 – .
1

+
�
�
�

�
�
�

=

3. L (sin at) =
a

s a2 2+
, L

a

s a
–1

2 2+
�
�
�

�
�
�

 = sin at.

L
s a

–1 1
2 2+

�
�
�

�
�
�

=
sin at

a
⋅

4. L (cos at) =
s

s a2 2+
, L

s

s a
–1

2 2+
�
�
�

�
�
�

 = cos at.
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5. L (sin h at) =
a

s a2 2–
, L

a

s a
–1

–2 2

�
�
�

�
�
�

= sin h at.

L
s a

–1

–

1
2 2

�
�
�

�
�
�

=
sin h at

a
⋅

6. L (cos h at) =
s

s a2 2–
, L

s

s a
–1

–2 2

�
�
�

�
�
�

 = cos h at.

7. L (t n) =
n

sn

!
+ 1  where n is a positive integer, we get

L
n

sn
–1 !

+
���

���1 = t n

L
sn

–1 1
1+

���
��� =

t

n

n

!
·

Replacing n by n – 1, we get L
s

t

nn

n
–1

–

– !

1

1

1���
���

= � �

In particular, L
s

–1 1���
��� = 1

L
s

–1 1
2

���
��� =

t
t

2 1

2 1

–

( – ) !
=

L
s

–1 1
3 =

t t3 1 2

3 1 2

–

– !� � =

Since, L (t n) =
Γ n

sn

+
+

1
1

� � , L
sn

–1 1
1+

���
���  = 

t

n
n

n

Γ +
>

1
1� �

, – .

The following table gives list of the Inverse Laplace Transform of some standard functions.

S.No. F (s) f (t) = L– 1 {F (s)} S.No. F (s) f (t) = L– 1 {F (s)}

1.
1

s a–
e at 6.

s

s a2 2–
cos h at

2.
1

s a+
e– at 7.

1

s
1

3.
1

2 2s a+
sin at

a
8.

1
2s

t

4.
s

s a2 2+
cos at 9.

1
1 2

s
n

n
, , , ...=

t

n

n –

– !

1

1� �

5.
1

2 2s a–

sinh at

a
10.

1
11s

nn + >, –
t

n

n

Γ + 1� �
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Following properties immediately follow from the corresponding properties of the Laplace
transform.

Properties of inverse Laplace transform

1. Linearity Property

If a and b are two constants then

L–1 {a F (s) + b G (s)} = a L–1{F (s)} + b L–1 {G (s)}

This result can be extended to more than two functions. This shows that like L, L–1 is also a
linear operator.

Example: L
s

s

s s
–1

–
–

–

2

3

3

16

4

92 2+
+

�
�
�

�
�
�

= 2
1

3
3

4
4

1

32 2 2 2
L

s
L

s

s
L

s
–1 –1 –1

–
–

–

�
�
�

�
�
� +

�
�
�

�
�
�

+
�
�
�

�
�
�

= 2 e3t – 3 cos 4t + 4 
sin h t3

3
·

2. Shifting Property

If L–1{F (s)} = f (t), then

L–1 {F (s – a)} = e at f (t) = eat L–1 {F (s)}

This follows immediately from the result.

If L { f (t)} = F (s), then L {e at f (t)} = F (s – a)

Replacing a by – a, we get

L–1 {F (s + a)} = e– at f (t) = e– at L–1 {F (s)}.
Examples:

(i) L
s s

–1

–

1

2 52 +
�
�
�

�
�
�

= L
s

–1

–

1

1 2
2 2� � +

�
�	
�	

�
�	
�	

= e L
s

t –1 1

22 2+
�
�
�

�
�
�

= e
tt sin 2

2

=
1

2
2e tt sin .

(ii) L
s

s s
–1 –

–

3

6 132 +
�
�
�

�
�
�

= L
s

s

–1 –

–

3

3 2
2 2� � +

�
�	
�	

�
�	
�	

= e L
s

s
t3

2 22
–1

+
�
�
�

�
�
�

= e3t cos 2t.
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������� ��	� �
�����

1. Find the inverse Laplace transforms of the following functions:

(i)
1

2s – 3
(ii)

1

4s 5+
(iii)

1

s 92 +
(iv)

s

s – 162

(v)
s

9s 42 +
(vi)

1

16s – 92 (vii)
s 2

s

3

6

+� �
(viii)

2s 18

s 252

+
+

(ix)
8 – 6s

16s 92 +
(x)

1

s3 2
⋅

Solution

(i) L
s

–1

–

1

2 3

�
�
�

�
�
�

= L
s

L
s

e
t–1 –1

– –

1

2
3
2

1

2

1
3
2

1

2

3

2



��


��

�
�	

�	

�
�	

�	
= �

�	
�	

�
�	
�	

= .

(ii) L
s

–1 1

4 5+
�
�
�

�
�
�

= L
s

–1 1

4
5

4
+


��

��

�
�	

�	

�
�	

�	

=
1

4

1
5

4

L
s

–1

+

�
�	
�	

�
�	
�	

 = 
1

4

5
4e

t–


��


��

.

(iii) L
s

–1 1

92 +
�
�
�

�
�
�

= L
s

–1 1

32 2+
�
�
�

�
�
�

=
1

3
 sin 3t.

(iv) L
s

s
–1

–2 16

�
�
�

�
�
�

= L
s

s
–1

–2 24

�
�
�

�
�
�

= cos h 4t.

(v) L
s

s
–1

9 42 +
�
�
�

�
�
�

=
1

9
L–1 s

s2
22

3
+ 

��


��

�
�	

�	

�
�	

�	

=
1

9

2

3
cos t



��


�� ·

(vi) L
s

–1

–

1

16 92

�
�
�

�
�
�

= L–1 1

16
9

16
2s –



��


��

�
�	

�	

�
�	

�	

=
1

16
L–1 1

3
4

2
2

s – 

��


��

�
�	

�	

�
�	

�	
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=
1

16

1
3
4

3

4

��


��



��


��. sin h t

=
1

12

3

4
sin h t



��


�� ·

(vii) L
s

s
–1 +�
�	
�	

�
�	
�	

2
3

6

� �
= L

s s s

s
–1

3 2

6

6 12 8+ + +�
�
�

�
�
�

= L
s s s s

–1 1 6 12 8
3 4 5 6

+ + +���
���

= L
s

L
s

L
s

L
s

–1 –1 –1 –11
6

1
12

1
8

1
3 4 5 6

���
���

+ ���
���

+ ���
���

+ ���
���

=
t t t t2 3 4 5

2
6

3
12

4
8

5! ! ! !
+ + +

=
t

t
t t2

3
4 5

2 2 15
+ + + ⋅

(viii) L
s

s
–1 2 18

252

+
+

�
�
�

�
�
�

= 2
25

18
1

252 2
L

s

s
L

s
–1 –1

+
�
�
�

�
�
�

+
+

�
�
�

�
�
�

= 2
5

18
1

52 2 2 2
L

s

s
L

s
–1 –1

+
�
�
�

�
�
�

+
+

�
�
�

�
�
�

= 2 cos 5t + 
18

5
 sin 5t.

(ix) L
s

s
–1 –8 6

16 92 +
�
�
�

�
�
�

= 8
1

16 9
6

16 92 2
L

s
L

s

s
–1 –1–

+
�
�
�

�
�
� +

�
�
�

�
�
�

= 8
1

16
9

16

6
16

9

16
2 2

L
s

L
s

s

–1 –1–
+


��

��

�
�	

�	

�
�	

�	
+


��

��

�
�	

�	

�
�	

�	

=
8

16

1

3
4

6

16 3
4

2
2

2
2

L

s

L
s

s

–1 –1

+ 

��


��

�
�	

�	

�
�	

�	
−

+ 

��


��

�
�	

�	

�
�	

�	

=
2

3

1
3
4

3

4

3

8

3

4

��


��



��


��



��


��sin – cost t

=
8

9

3

4

3

8

3

4
sin cost t



�


� − 


�

� ⋅
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(x) L
sn

–1 1
1+ =

t

n

n

Γ + 1� �

or L
sn

–1 1���
��� =

t

n

n – 1

Γ � �

we have, L
s

–1 1
3 2

���
��� =

t 3 2 1

3
2

−



��


��Γ

 = 
t1 2

1
2

1Γ +

��


��

= 
t1 2

1
2

1
2

Γ 

��


��

= 
2 t

π
where Γ 1

2


��


�� =


��

��π

2. Find the inverse Laplace transforms of the following functions:

(i)
3

s – 2
4� �

(ii)
1

s 4s 202 + +
(iii)

s 2

s 8s 252

+
+ +

(iv)
2s – 3

s 2s 52 − +
(v)

s

4s 12s 52 + +
(vi)

s 3

4s 4s 92

+
+ +

·

Solutions. Using the shifting rule, we have

(i) L
s

–1

–

3

2
4� �

�
�	
�	

�
�	
�	

= 3
12
4

e L
s

t –1 ���
��� s → s – 2

= 3
3 2

2
3 3 2

e
t t et

t

.
!

= ·

(ii) L
s s

–1 1

4 202 + +
�
�
�

�
�
�

= L
s

–1 1

2 4
2 2+ +

�
�	
�	

�
�	
�	� �

= e L
s

t–2 –1 1

42 2+
�
�
�

�
�
�

= e– 2t 
1

4
 sin 4t

=
1

4
 e– 2t sin 4t.

(iii) L
s

s s
–1 +

+ +
�
�
�

�
�
�

2

8 252 = L
s

s

–1 –+

+ +

�
�	
�	

�
�	
�	

4 2

4 3
2 2

� �
� �

s → s + 4

= e L
s

s
t– –1 –4

2 2

2

3+
�
�
�

�
�
�

= e L
s

s
L

s
t– –1 –1–4

2 2 2 23
2

1

3+
�
�
�

�
�
� +

�
�
�

�
�
�

�
�
�
�

�
�
�
�

= e t tt– cos – sin .4 3
2

3
3�

��
�
��
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(iv) L
s

s s
–1 –

–

2 3

2 52 +
�
�
�

�
�
�

= L
s

s

–1 – –

–

2 1 1

1 2
2 2

� �
� � +

�
�	
�	

�
�	
�	

(s – 1 → s)

= e L
s

s
t –1 –2 1

22 2+
�
�
�

�
�
�

= e L
s

s
L

s
t 2

2

1

22 2 2 2
–1 –1–

+
�
�
�

�
�
� +

�
�
�

�
�
�

�
�
�
�

�
�
�
�

= e t tt 2 2
1

2
2cos – sin .

�
��

�
��

(v) L
s

s s
–1

4 12 52 + +
�
�
�

�
�
�

= L
s

s s

–1

4 3
5
4

2 + +

��


��

�
�	

�	

�
�	

�	

=
1

4 3
5

4
2

L
s

s s

–1

+ +

�
�	
�	

�
�	
�	

Now, s2 + 3s + 5/4 = s s2 2
3

2

9

4

5

4

9

4
+ ⋅ ⋅ +


��

�� + –

= s +

��


��

3

2
1

2

–

∴ L
s

s s
–1

4 12 52 + +
�
�
�

�
�
�

=
1

4

3
2

3
2

3
2

1
2

L
s

s

–1
–

–

+

��


��

+

��


��

�

�
		

�
	
	

�

�
		

�
	
	

=
1

4

3
2
1

3 2
2

e L
s

s
t– –1

–

–
� �

�
�
	

�
	

�
�
	

�
	

=
1

4 1

3

2

1

1
3 2

2 2
e L

s

s
L

s
t– –1 –1

–
–

–
� � �

�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

=
1

4

3

2
3 2e h t htt– cos – sin .� �  �

��
�
��

(vi) L
s

s s
–1 +

+ +
�
�
�

�
�
�

3

4 4 92 = L
s

s s

–1 +

+ +

��


��

�
�	

�	

�
�	

�	

3

4
9
4

2

=
1

4

3
9

4
2

L
s

s s

–1 +

+ +

�
�	
�	

�
�	
�	
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Now, s2 + s + 
9

4
= s s2

2

2
1

2

1

2

9

4

1

4
+ ⋅ ⋅ + 


��

��

�
�
�
�

�
�
�
�

+ –

= s +

��


�� +1

2
2

2

∴
1

4

3

1
2

2
2

L
s

s

–1 +

+

��


�� +

�

�
		

�
	
	

�

�
		

�
	
	

=
1

4

1
2

5
2

1
2

2
2

2
L

s

s

–1
+


��

�� +

+

��


�� +

�

�
		

�
	
	

�

�
		

�
	
	� �

=
1

4

5
2

2

1 2

2 2
e L

s

s

t– –1� �

� �

+

+

�
�
	

�
	

�
�
	

�
	

=
1

4 2

5

2

1

2

1 2

2 2 2 2
e L

s

s
L

s

t– –1 –1� �

� � � �+

�
�	
�	

�
�	
�	

+
+

�
�	

�	

�
�	

�	

�

�

�
�
�

�

�

�
�
�

=
1

4
2

5

2 2
21 2e t tt– cos sin� � +�

��
�
��

.

8.3 INVERSE LAPLACE TRANSFORMS USING PARTIAL FRACTIONS

In this method we first resolve the given rational function of s into partial fractions and then find the
inverse Laplace transform of each fraction.

3. Find the inverse Laplace transforms of the following functions:

(i)
2s – 1

s – 5s 62 +
(ii)

s

2s – 1 3s – 1� � � �

(iii)
2s – 3

s – 1 s – 2 s – 3� � � � � � (iv)
4s 5

s – 1 s 2
2

+

+� � � �
(v)

3s – 1

s – 3 s 42� � � �+
(vi) s

s 4 s 9
.

2

2 2+ +� � � �
Solution

(i) Let
2 1

5 62

s

s s

–

– +
=

2 1

2 3 2 3

s

s s

A

s

B

s

–

– – – –� � � � = +

2s – 1 = A (s – 3) + B (s – 2)

Put s = 3, B = 5

Put s = 2, A = – 3

∴
2 1

5 62

s

s s

–

– +
= –

– –

3

2

5

3s s
+
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Then L
s

s s
–1 –

–

2 1

5 62 +
�
�
�

�
�
�

= –
– –

–1 –13
1

2
5

1

3
L

s
L

s

�
�
�

�
�
�

+
�
�
�

�
�
�

= – 3e 2t + 5e 3t.

(ii) Let
s

s s2 1 3 1– –� � � � =
A

s

B

s2 1 3 1– –
+

s = A (3s – 1) + B (2s – 1)

Put s =
1

2
, A = 1, and s = 

1

3
, B = – 1

s

s s2 1 3 1– –� � � � =
1

2 1

1

3 1s s–
–

–

∴ L
s

s s
–1

– –2 1 3 1� � � �
�
�	
�	

�
�	
�	

= L
s

L
s

–1 –1

–
–

–

1

2 1

1

3 1

�
�
�

�
�
�

�
�
�

�
�
�

= L
s

L
s

– –1

–
–

–

1 1

2
1

2

1

3
1

3


��


��

�
�	

�	

�
�	

�	


��


��

�
�	

�	

�
�	

�	

=
1

2

1
1

2

1

3

1
1

3

L
s

L
s

–1 –1

–
–

–

�
�	
�	

�
�	
�	

�
�	
�	

�
�	
�	

=
1

2

1

3

1

2

1

3e e
t t

– .

(iii) Let
2 3

1 2 3

s

s s s

–

– – –� � � � � � =
A

s

B

s

C

s– – –1 2 3� � � � � �+ +

2s – 3 = A (s – 2) (s – 3) + B (s – 1) (s – 3) + C (s – 1) (s – 2)

Put s = 1, ⇒ A = 
– 1

2

s = 3, ⇒ C = 
3

2

s = 2, ⇒ B = – 1

Thus,
2 3

1 2 3

s

s s s

–

– – –� � � � � � =
–

–
–

– –

1
2
1

1

2

3
2

3s s s
+

L
s

s s s
–1 –

– – –

2 3

1 2 3� � � � � �
�
�	
�	

�
�	
�	

=
–

–
–

– –
– – –1

2

1

1

1

2

3

2

1

3
1 1 1L

s
L

s
L

s

�
�
�

�
�
�

�
�
�

�
�
�

+
�
�
�

�
�
�

=
–

– .
1

2

3

2
2 3e e et t t+
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(iv) Let
4 5

1 2
2

s

s s

+

+–� � � �
=

A

s

B

s

C

s– –1 1 22
+ +

+� �
4s + 5 = A (s – 1) (s + 2) + B (s + 2) + C (s – 1)2

Put s = 1,   ⇒ B = 3

s = – 2, ⇒ C = 
– 1

3
To find A, put s = 0,

Then 5 = – 2A + 2B + C

This gives A =
1

3
Thus the partial fraction is

4 5

1 2
2

s

s s

+

+–� � � �
=

1
3

1

3

1

1
3

22s s s– –
–+

+� � � �

∴ L
s

s s

–1

–

4 5

1 2
2

+
+

�
�	
�	

�
�	
�	� � � �

=
1

3

1

1
3

1

1

1

3

1

22
L

s
L

s
L

s
–1 –1 –1

– –
–

�
�
�

�
�
�

+
�
�	
�	

�
�	
�	 +

�
�
�

�
�
�� �

=
1

3
3

1 1

32
e e L

s
et t t+ ���

���
�
��

�
��

–1 –2–

=
1

3
3

1

3
2e e t et t t+ ⋅ – –

=
1

3
3

1

3
2e t e et t t+ – – .

(v) Let
3 1

3 42

s

s s

–

–� � � �+
=

A

s

Bs C

s– 3 42
+

+
+

Then 3s – 1 = A (s2 + 4) + (Bs + C) (s – 3)

Put s = 3 A = 
8

13
Now, 3s – 1 = (A + B) s2 + (– 3B + C ) s + (4A – 3C )

Comparing the coefficients, we get

A + B = 0, – 3B + C = 3, 4A – 3C = – 1

A =
8

13
, B = 

– 8

13
, C = 

15

13

∴
3 1

3 42

s

s s

–

–� � � �+
=

8

13
3

8

13

15

13
42s

s

s–

–

+
+

+

=
8

13

1

3

1

13

8 15

42
⋅

+s

s

s–
–

–
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∴ L
s

s s

–1 –

–

3 1

3 42� � � �+

�
�	
�	

�
�	
�	

=
8

13

1

3

1

13

8 15

42
L

s
L

s

s
–1 –1

–
–

–�
�
�

�
�
� +

�
�
�

�
�
�

=
8

13

1

13
8

4
15

1

4
3

2 2
e L

s

s
L

s
t – ––1 –1

+
�
�
�

�
�
� +

�
�
�

�
�
�

�
�
�
�

�
�
�
�

=
8

13

1

13
8

2
15

1

2
3

2 2 2 2
e L

s

s
L

s
t – ––1 –1

+
�
�
�

�
�
� +

�
�
�

�
�
�

�
�
�
�

�
�
�
�

=
8

13

1

13
8 2

15

2
23e t tt – cos – sin

�
��

�
�� .

(vi) Let s2 = x, then

x

x x+ +4 9� � � � =
A

x

B

x+
+

+4 9

x = A (x + 9) + B (x + 4)

Put x = – 4, A = 
– 4

5

x = – 9, B = 
9
5

∴
x

x x+ +4 9� � � � =

−

+
+

+

4
5

4

9
5

9x x

i.e.,
s

s s

2

2 24 9+ +� � � �
=

−

+
+

+

4

5
4

9

5
92 2s s

L
s

s s

–1
2

2 24 9+ +

�
�	
�	

�
�	
�	� � � �

=
– –1 –14

5

1

4

9

5

1

92 2
L

s
L

s+
�
�
�

�
�
�

+
+

�
�
�

�
�
�

=
– –1 –14

5

1

2

9

5

1

32 2 2 2
L

s
L

s+
�
�
�

�
�
�

+
+

�
�
�

�
�
�

=
–

sin sin
4

5

1

2
2

9

5

1

3
3⋅ + ⋅t t

=
–

sin sin .
2

5
2

3

5
3t t+

4. Find the inverse Laplace transforms of the following functions:

(i)
s 2s – 4

s 2s s

2

4 3 2

+
+ +

(ii)
s

s s 14 2+ +
.
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Solution

(i) Now
s s

s s s

2

4 3 2

2 4

2

+
+ +

–
=

s s

s s s

s s

s s

2

2 2

2

2 2

2 4

2 1

2 4

1

+
+ +

=
+

+

– –

� � � �

s s

s s

2

2 2

2 4

1

+

+

–

� �
=

A

s

B

s

C

s

D

s
+ +

+
+

+2 21 1� �
Hence, s2 + 2s – 4 = A (s) (s + 1)2 + B (s + 1)2 + C s2 (s + 1) + D s2

Put s = 0, B = – 4

s = – 1, D = – 5

Now, s2 + 2s – 4 = (A + C ) s3 + (2A + B + C + D) s2 + (A + 2B) s + B

Comparing the coefficient, we get

A + C = 0, 2A + B + C + D = 1, A + 2B = 2, B = – 4

Hence A = 10, C = – 10

∴
s s

s s s

2

4 3 2

2 4

2

+
+ +

–
=

10 4 10

1

5

1
2 2s s s s

– – –
+ +� �

L
s s

s s s
–1 –2

4 3 2

2 4

2

+
+ +

�
�
�

�
�
� = 10

1
4

1
10

1

1
5

1

1
2 2

L
s

L
s

L
s

L
s

–1 –1 –1 –1– – –
���

���
���

��� +
�
�
�

�
�
� +

�
�	
�	

�
�	
�	� �

= 10.1 – 4 . t – 10e– t – 5e– t L
s

–1 1
2

���
���

= 10 – 4t – 10e– t – 5t e– t.

(ii) Since, s4 + s2 + 1 = (s2 + 1)2 – s2

= (s2 + 1 – s) (s2 + 1 + s)

We have,
s

s s4 2 1+ +
=

s

s s s s2 21 1+ + +–� � � �

=
1

2

1 1

1 1

2 2

2 2

s s s s

s s s s

+ + +

+ + +

� � � �
� � � �

– –

–

=
1

2

1

1

1

12 2s s s s–
–

+ + +
�
�
�

�
�
�

=
1

2

1

1
2

3
4

1

1
2

3
4

2 2

s s–

–


��


�� + +


��

�� +

�

�

�
�
�

�

�

�
�
�

Hence, L
s

s s
–1

4 2 1+ +
�
�
�

�
�
�

=
1

2
 L

s

L

s

–1 –1

–

–
1

1
2

3
4

1

1
2

3
4

2 2

��


�� +

�
�	

�	

�
�	

�	
+


��

�� +

�
�	

�	

�
�	

�	

�

�

�
�
�

�

�

�
�
�
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=
1

2
e L

s

e L

s

t t( / ) –1 –1–1 2

2

2
1 2

2

2

1

3
2

1

3
2

+


��


��

�
�	

�	

�
�	

�	
+


��


��

�
�	

�	

�
�	

�	

�

�

�
�
�

�

�

�
�
�

−� �

=
1

2

2

3

3

2

2

3

3

2
1 2 1 2e t e tt t� � � �sin – sin–�

�
��

�
�
��

=
1

3

3

2
1 2 1 2e e tt t� � � �− − sin .

5. Show that e dx
2

– x

0

2

= ⋅
∞� π

Solution

Let f (t) = e dxtx– 2

0

∞�
∴ L { f (t)} = e e dx dtst tx– –

0 0

2∞ ∞� ���� �
��

= e e dt dxst tx– –⋅�
��

�
��

∞∞ �� 2

00

Since, L e tx– 2

� � =
1

1 2+ x

=
1 1

20 2 20s x
dx

s x
dx

+
=

+

∞ ∞� �
� �

=
1 1

0s

x

s
tan–�

��
�
��

∞

=
π

2 s

Hence, f (t) =
π
2

1
L

s
–1 ���

���

=
π
2 1

2

1

2
1

t
–

Γ
��

��

Since, L
sn

–1 1���
��� =

t

n

n – 1

Γ � �

e dxtx– 2

0

∞� =
π

π2

1
2t

−
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=
π

2

1
⋅

t
Taking t = 1, We get

e dxx– 2

0

∞� =
π

2
·

�
������� ���

Find the inverse Laplace transforms of the following functions:

1.
2
3s
. Ans. t 2 2.

1

162s +
. Ans.

1

4
4sin t

�
��

�
��

3.
s

s2 9+
. Ans. cos 3t 4.

1

42s –
. Ans.

1

2
2sin h t

�
��

�
��

5.
s

s2 3–
. Ans. cos h t3 6.

1

6s +
. Ans. e t– 6

7.
1

2 1s –
. Ans.

1

2
1 2e t� ��

��
�
�� 8.

1

4 92s +
. Ans.

1

6

3

2
sin t

�
��

�
��

9.
2 1

252

s

s

–
.

+
Ans. 2 5

1

5
5cos – sint t

�
��

�
�� 10.

24 30
4

–
.

s

s
Ans. 4

163 5 2t t–
π

�
��

�
��

11.
5 4

3

s

s

+
. Ans. 5 2 2t t+ 12.

8 6

16 92

–
.

s

s +
Ans.

2

3

3

4

3

8

3

4
sin – cos

t t�
��

�
��

13.
2 3

4 202

s

s

+
+

. Ans.
1

2
5

3

4 5
5cos sint t+

�
��

�
��

14.
3 4

4 12

s

s

–

–
. Ans.

3

4 2
2

2
cos – sinh

t
h

t�
��

�
��

15.
1 3

4 92

–
.

s

s +
Ans.

1

6

3

2

3

4

3

2
sin – cos

t t�
��

�
��

Find the inverse Laplace transforms of the following functions:

1.
1

3
3

s –� �
· Ans.

1

2
2 3t e t�

��
�
��

2.
s

s s2 6 7+ –
· Ans. e h t h tt– cos – sin3 4

3

4
4


��

��

�
��

�
��

3.
2 3

4 402

s

s s

+
+–

· Ans. e t tt2 2 6
7

6
6cos sin+


��

��

�
��

�
��

4.
1

2 1
2

s –� �
· Ans.

1

4
1 2t e t� ��

��
�
��
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5.
2 3

4 4 172

s

s s

–

+ +
· Ans.

1

2
2 21 2e t tt– cos – sin� � � ��

��
�
��

6.
s

s s3 2 52 – –
· Ans.

1

3

4

3

1

4

4

3
1 3e h t h tt� � cos – sin�

��
�
��

�
��

�
��

7.
1

2 3s +
· Ans.

1

2
3 2 1 2

π
e et− −�

�
��

�
�
��

.

8.
s

s s

+
+ +

1

12
. Ans.

e
t t

t–

cos sin
1 2

3
3

3

2

3

2

� �
+

�
�
��

�
�
��

�
�
�
�

�
�
�
�

9.
1

4
5 2

s +� �
. Ans.

4

3

3 2 4t e t–

π

�
�
��

�
�
��

10.
7 4

4 4 92

s

s s

+
+ +

. Ans. e t tt− +
�
�
��

�
�
��

�
�
�
�

�
�
�
�

2 7

4
2

1

8 2
2cos sin

Find the inverse Laplace transforms of the following functions:

1.
2 1

1 3

s

s s

+
– –

.� � � �
Ans.

– 3

2

7

2
3e et t+�

��
�
��

2.
s

s s

–

–
.

1

62 +
Ans.

1

5

4

5
2 3e et t+�

��
�
��

–

3.
1

42s s–
. Ans.

1

4
14e t –� ��

��
�
��

4.
s

s s

–

–
.

4

2 1 3 1+� � � �
Ans.

1

5
9 112 3e et t−�

��
�
��

–

5.
5

1 3 5s s s– – –
.� � � � � �

Ans.
1

8

3

4

5

8
3 5e e et t t– +�

��
�
��

6.
2 4

1 2 3

2s

s s s

–

– –
.

+� � � � � �
Ans.

–
––1

6

4

3

7

2
2 3e e et t t+�

��
�
��

7.
3 2

2 1
2

s

s s

–

–
.

� � � �+
Ans.

4

9

4

9

5

3
2e e

t
et t t– – –+�

��
�
��

8.
s

s s

2

22 4+� � � �–
. Ans.

3

4

1

4
2 2 2e t e et t t– –– +�

��
�
��

9.
2 1

42

s

s s

–

–
.

� �
Ans.

7

16

7

16

1

4
4e et t– +�

��
�
��

10.
3 1

1 12

s

s s

+
+–

.
� � � �

Ans. 2 2e t tt – cos sin+
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11.
2 1

2 42

s

s s

–

+ +� � � �
· Ans.

–
cos sin–5

8

5

8
2

3

8
22e t tt + +�

��
�
��

12.
5 3

1 2 52

s

s s s

+
+ +–

.
� � � �

Ans. e e t tt t– cos – sin– 2
3

2
2�

��
�
��

�
��

�
��

13.
2 1

1 4

2

2 2

s

s s

–
.

+ +� � � �
Ans. – sin sint t+�
��

�
��

3

2
2

14.
5 15 11

1 2

2

3

s s

s s

– –

–
.

+� � � �
Ans. – – – ––1

3

7

2
4

1

3
2 2e e t tt t �

��
�
��

�
��

�
��

15.
s s

s s s s

2

2 2

2 3

2 2 2 5

+ +
+ + + +� � � �

. Ans.
1

3
2e t tt– sin sin+�

��
�
��� �

16.
2 5 4

2

2

3 2

s s

s s s

+
+

–

–
. Ans. 2 2+ e et t– –

17.
1

1 4 82 2s s s+ + +� � � �
. Ans. – cos sin cos sin– –4

65

7

65

4

65
2

1

130
22 2t t e t e tt t+ + +�

��
�
��

8.4
INVERSE LAPLACE TRANSFORMS OF THE FUNCTIONS OF THE

FORM 
F s

s
� �

We have proved that

if L { f (t)} = F (s)

then L f t dt
t

� �
0���� ��� =

F s

s

� �

Hence, L
F s

s
–1 � ��

�
�

�
�
�

= f t dt
t

� �
0� ...(1)

������� ��	� �
����

1. Evaluate

(i) L
1

s s a
–1

+
�
�	
�	

�
�	
�	� �

(ii) L
1

s s a

–1

2 2+

�
�	
�	

�
�	
�	� �

(iii) L
s 2

s s 3
–1

2

+
+

�
�	
�	

�
�	
�	� �

(iv) L
1

s s 1

–1

3 2 +

�
�	
�	

�
�	
�	� �

(v) L
1

s
log 1

1

s
–1

2
+


��

��

���
���
.
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Solution

(i) Consider L
s a

–1 1

+
�
�
�

�
�
�

= e– at

Using the equation (1), we get

L
s s a

–1 1

+
�
�	
�	

�
�	
�	� � = e dt

e

a a
eat

t at t

at–
–

–

–
–

0
0

1
1� =

�
�
�

�
�
� = � � .

(ii) We have L
s a

–1 1
2 2+

�
�
�

�
�
�

=
1

a
atsin

∴ Using the equation (1), we get

L
s s a

–1 1
2 2+

�
�	
�	

�
�	
�	� �

=
1

0 a
at dt

t
sin�

=
1

0
a

at

a

t
– cos� ��

�
�

�
�
�

=
1
2a

 (1 – cos at).

(iii) By partial fractions

s

s s

+
+
2

3� � =
A

s

B

s
+

+ 3

(s + 2) = A (s + 3) + B (s)

Put s = 0, A = 
2

3

s = – 3, B = 
1

3

s

s s

+
+
2

3� � =

2
3

1
3

3s s
+

+

L
s

s s
–1 +

+
�
�
��

�
�
��

2

3� � =
2

3

1 1

3

1

3
L

s
L

s
–1 –1���

���
+

+
�
�
�

�
�
�

=
2

3
1

1

3
3⋅ + e t–

=
2

3

1

3
3+ e t–

∴ From (1), we get

L
s

s

s s
–1 1 2

3
⋅ +

+
�
�	
�	

�
�	
�	� � =

2

3

1

3
3

0
+


��

��� e dtt

t
–
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=
2

3

1

9
3

0

t e t
t

– –�
��

�
��

=
2

3

1

9

1

9
3t e t– – +

(iv) L
s

–1 1

12 +
�
�
�

�
�
�

= sin t

Hence by equation (1), we get

L
s s

–1 1

12 +

�
�	
�	

�
�	
�	� �

= sin – cost dt t
t

=� 1
0

L
s s

–1 1

12 2 +

�
�	
�	

�
�	
�	� �

= 1
0

– cos – sint dt t t
t

� � =�

and L
s s

–1 1

13 2 +

�
�	
�	

�
�	
�	� �

= t t dt
t

– sin� �
0�

=
t

t

t2

0
2

+
�
�
�

�
�
�cos

=
t

t
2

2
1+ cos – .

(v) Let L
s

–1 log 1
1
2

+

��


��

���
���

= f (t)

log 1
1
2

+

��


��s

= L { f (t)} = F (s)

Now
d

ds
F s� �� � =

d

ds
s slog – log2 21+� �

=
2

1

2
2

s

s s+
–

= – –2
1

12s

s

s +
�
�
�

�
�
�

L
d

ds
F s–1 � �� ��

��
�
�� = – ––1 –12

1

12
L

s
L

s

s



��


�� +



��


��

�
�
�
�

�
�
�
�

= – 2 (1 – cos t)

i.e., – t f (t) = – 2 (1 – cos t)
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or f (t) =
2 1 – cos t

t

� �

L
s

–1 log 1
1
2

+

��


��

���
���

=
2 1 – cos t

t

� �

∴ L
s s

–1 log
1

1
1
2

+

��


��

���
���

= 2
1

0

– cos t

t
dt

t� .

�
������� ���

Find the inverse Laplace transforms of the following functions:

1. log
–

.
s a

s
Ans.

1 – e

t

at�
�
�

�
�
� 2. cot .–1 s

a
Ans.

sin at

t
�
��

�
��

3. log .
s a

s b

2 2

2 2

1 2
+
+



��


��

Ans.
cos – cosat bt

t
�
��

�
�� 4.

a s a

s a2
log

–
.

+

��


�� Ans.

sin h at

t
�
��

�
��

Find the inverse Laplace transforms of the following functions:

1.
1

2 2s s a–
.

� �
Ans.

1
1

2a
h atcos –� ��

��
�
�� 2.

1
2s s a–

.
� �

Ans.
1�

��
�
��a

e atat
2

1– –� �

3.
1

2 2 2s s a+� �
. Ans.

– sin
–

1
2a

at

a
t



��


��

�
��

�
�� 4.

1

1
3

s s +� �
. Ans. e t

tt – – –1
2

2�
�
�

�
�
�

5.
1

13 2s s –
.

� �
Ans. cos – –h t

t 2

2
1

�
�
�

�
�
� 6.

1

s

s a

s
log

–
. Ans.

1
0

– e

t
dt

att��
�
�

�
�
�

7.
1 1

s

s

a
cot .– Ans.

sin t

t
dt

t

0��
��

�
��

Evaluate:

1. L
s a

s a

–1 –2 2

2 2 2
+

�
�	

�	

�
�	

�	� �
 given that L

s

s a
at–1 cos .

2 2+
�
�
�

�
�
�

= Ans. t atcos

2. L
s a

s a

–1

–

2 2

2 2 2

+
�
�	

�	

�
�	

�	� �
 given that L

s

s a
h at–1

–
cos .

2 2

�
�
�

�
�
�

= Ans. t h atcos

3. L
s

s s

–1 +

+ +

�
�	

�	

�
�	

�	
2

4 52 2
� �

 given that L
s

t–1 sin .
1

12 +
�
�
�

�
�
�

= Ans.
1

2
2t e tt– sin

�
��

�
��
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8.5 CONVOLUTION THEOREM

If L– 1 {F (s)} = f (t) and L– 1{G (s)} = g(t)

then L– 1{F (s) G (s)} = f u g t u du
t

� � � �–
0� ...(1)

Proof. Since L– 1 F (s) = f (t) and L– 1 {G (s)} = g (t)

we have F (s) = L { f (t)} = e f t dtst– � �
0

∞�
and G (s) = L {g(t)} = e g t dtst– � �

0

∞�
To prove (1), it is sufficient to prove that

L f u g t u du
t

� � � �–
0���� ��� = F (s) G (s) ...(2)

Consider

L f u g t u du
t

� � � �–
0���� ��� = e f u g t u du dtst

t
– –� � � �

00 �� ���
���

∞

= e f u g t u du dtst

u

t

t

– –� � � �
==

∞ �� 00
...(3)

u

u = t

t = 0
t = �

O u = 0 t

u

u = �

t = u
t = �

O u = 0 t

Fig. 8.1 Fig. 8.2

The domain of integration for the above double integral is from u = 0 to u = t and t = 0 to
t = ∞ which is as shown in Fig. 8.1.

The double integral given in the R.H.S. of equation (3) indicates that we integrate first parallel
to u-axis and then parallel to t-axis.

We shall now change the order of integration parallel to t-axis the limits being t = u to t = ∞
and parallel to u-axis the limits being u = 0 to u = ∞.

∴ From equation (3), we get

L f u g t u du
t

� � � �–
0���� ��� = f u e g t u dt dust

u
� � � �– –

∞∞ �� ���
���0

= f u e e g t u dt dusu s t u

u
� � � �� �– – – –

∞∞ �� ���
���0
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Substitute t – u = v so that dt = dv

when t = u, v = 0, and when t = ∞, v = ∞

L f u g t u du
t

� � � �–
0���� ��� = f u e e g v dv dusu sv� � � �– –

00

∞∞ �� ���
���

= f u e G s dusu� � � �–

0

∞�
= G s e f u dusu� � � �–

0

∞�
= G (s) � F (s)

∴ L– 1 {F (s) G (s)} = f u g t u du
t

� � � �–
0�

This completes the proof of the theorem.

������� ��	� �
�����

1. Using Convolution theorem find the inverse Laplace transforms of the following functions:

(i)
1

s s 12 2+� �
(ii)

1

s 1 s 12+ +� � � �
(iii)

s

s 1 s 1
2 2+ +� � � �

(iv)
s

s a2 2 2
+� �

(v)
s

s 42 2
+� �

(vi) s

s a

2

2 2 2
+� �

(vii)
s

s a s b

2

2 2 2 2+ +� � � �
.

Solution

(i) Let F (s) =
1

1
2

s +� �
, G (s) = 

1
2s

Then L– 1 {F (s)} = L
s

–1 1

1
2+

�
�	
�	

�
�	
�	� �

 = t e– t = f (t) (say)

L– 1 {G (s)} = L
s

–1 1
2

���
���  = t = g (t) say

Then by Convolution theorem, we have

L– 1 {F (s) G (s)} = f u g t u du
t

� � � �–
0�

L
s s

–1 1

12 2+

�
�	
�	

�
�	
�	� �

= u e t u duu
t

– –� �
0�

= ut u e duu
t

– –2

0
� ��
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By integration by parts

= ut u e t u e eu u u
t

– – – – – –– – –2

0
2 2� � � � � � � � � � � �+

= t e– t + 2 e– t + t – 2
Verification:

L {t e–t + 2 e–t + t – 2} = L {t e– t} + 2 L (e– t) + L (t) – 2 L (1)

=
1

1

2

1

1 2
2 2

s s s s+
+

+
+

� �
–

=
s s s s s s

s s

2 2 2 2

2 2

2 1 1 2 1

1

+ + + + +

+

� � � � � �
� �

–

=
1

12 2
s s +� �

.

(ii) Here F (s) G (s) =
1

1 12s s+ +� � � �

Let F (s) =
1

12s +
, G (s) = 

1

1s +

L– 1 {F (s) = L
s

–1 1

12 +
�
�
�

�
�
�

 = sin t = f (t)

L– 1 {G (s)} = L
s

e g tt–1 1

1+
�
�
�

�
�
�

= = ( )−

Let t = u,

f (u) = sin u and g (u) = e– u

Then by Convolution theorem, we obtain

L
s s

–1 1

1 12+ +

�
�	
�	

�
�	
�	� � � �

= L– 1 {F (s) G (s)} = f u g t u du
t

� � � �–
0�

= sin – –u e dut u
t

⋅� � �
0

= e e u dut u
t

– sin
0�

= e
e

u ut
u t

– sin – cos
2

0

� ��
�
�

�
�
�

Using the formula e bx dx
e

a b
ax

ax

sin =
+� 2 2

 (a sin bx – b cos bx) + c

=
1

2

1

2
sin – cos .–t t e t� � +
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(iii) Here F (s) G (s) =
s

s s

s

s s+ +
=

+
⋅

+1 1 1

1

1
2 2 2 2� � � � � �

Let F (s) =
s

s2 1+
, G (s) = 

1

1
2

s +� �

L– 1 {F (s)} = L
s

s
–1

2 1+
�
�
�

�
�
�

 = cos t = f (t)

L– 1 {G (s)} = L
s

–1 1

1
2+

�
�	
�	

�
�	
�	� �

 = t e– t = g (t)

t = u, g (u) = u e– u, f (u) = cos u

Hence by Convolution theorem,

L
s

s s

–1

2 2
1 1+ +

�
�	
�	

�
�	
�	� � � �

= f u g t u du
t

� � � �–
0�  = L– 1 {F (s) G (s)}

= cos – – –u t u e dut u
t

� � � �
0�

= e t u u e dut u
t

– – cos� �
0�

Since, e u duu cos� =
eu

2
 (cos u + sin u)

Integrating by parts, we get

= e t u
e

u u
e

u u dut
u t ut

– – sin cos – sin cos –� � � � � � � �
2 2

1
0

0
+

�
�
�

�
�
�

+
�

�
�
�

�

�
�
��

= e t e u u dut u
t

– – sin cos0
1

2

1

2 0
+ +�

��
�
��� � �

= e t e ut u
t

– – sin
1

2

1

2 0

+�
��

�
��

= e t e tt t– – sin
1

2

1

2
+�

��
�
��

=
1

2
 (t e– t + sin t).

(iv) Here F (s) G (s) =
s

s a

s

s a s a2 2 2 2 2 2 2

1

+
+

+
⋅

+� � � � � �

Let F (s) =
s

s a2 2+
, G (s) = 

1
2 2s a+
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Then L– 1 {F (s)} = L
s

s a
–1

2 2+
�
�
�

�
�
�

 = cos at = f (t)

L– 1 {G (s)} = L
s a a

at g t–1 sin
1 1

2 2+
�
�
�

�
�
�

= = � �

t = u, f (u) = cos au, g (u) = 
1

a
 sin au.

Using Convolution theorem, we have

L– 1 {F (s) G (s)} = f u g t u du
t

� � � �–
0�

i.e., L
s

s a

–1

2 2 2
+

�
�	

�	

�
�	

�	� �
= cos sin –au

a
a t u du

t 1
0

� ��
=

1
0a

au a t au du
t
cos sin –� ��

=
1

2
2

0a
at at au du

t
sin sin –+� � �

=
1

2

1

2
2

0
a

u at
a

at au

t

sin –
–

cos –� ��
��

�
��

=
1

2a
 t sin at.

(v) Substituting a = 2, in (iv) we get the required inverse Laplace transform.

(vi) Here, F (s) � G (s) =
s

s a

s

s a

s

s a

2

2 2 2 2 2 2 2
+

=
+ +� �

.

Let F (s) =
s

s a2 2+
and G (s) = 

s

s a2 2+

Hence, L– 1 {F (s)} = L
s

s a
–1

2 2+
�
�
�

�
�
�

 = cos at = f (t)

L– 1 {G (s)} = L
s

s a
–1

2 2+
�
�
�

�
�
�

 = cos at = g (t)

i.e., f (t) = g (t) = cos at

f (u) = g (u) = cos au
Using Convolution theorem, we have

L– 1 {F (s) G (s)} = cos cos –au a t u du
t

⋅� � �
0

i.e., L
s

s a

–1
2

2 2 2
+� �

= cos – cosat au au du
t

� �
0�
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=
1

2
2

0
cos cos –at at au du

t
+� � �

=
1

2

1

2
2

0

u at
a

at au
t

cos sin− −�
��

�
��� �

=
1

2

1
t at

a
atcos sin+�

��
�
�� ·

(vii) Let F (s) =
s

s a2 2+
and G (s) = 

s

s b2 2+

Then L– 1 F (s) = L
s

s a
–1

2 2+
�
�
�

�
�
�

 = cos at = f (t)

and L– 1 G (s) = L
s

s b
–1

2 2+
�
�
�

�
�
�

 = cos bt = g (t)

Therefore using Convolution theorem, we get

L– 1 {F (s) G (s)} = f u g t u du
t

� � � �–
0�

i.e., L
s

s a s b

–1
2

2 2 2 2+ +

�
�	
�	

�
�	
�	� � � �

= cos cos –au b t u du
t

� �
0�

=
1

2 0
cos – cos –a b u bt a b u bt du

t

� � � ��  + + +�
=

1

2
0

sin –

–

sin –a b u bt

a b

a b u bt

a b

t

� � � �+
+

+
+

�
�	
�	

�
�	
�	

=
a at b bt

a b

sin – sin

–2 2
, a ≠ b.

2. Using Convolution theorem, evaluate L
s

s 4

–1

2 3
+

�
�	

�	

�
�	

�	
⋅

� �
Solution

Let F (s) =
1

42s +
and G (s) = 

s

s2 2
4+� �

Now, L– 1 {F (s)} = L
s

t–1 sin
1

4

1

2
2

2 +
�
�
�

�
�
�

=

Hence L
s

s

–1 – 2

42 2
+

�
�	

�	

�
�	

�	� �
= – sint t⋅ 1

2
2

Since, L– 1 {F ′ (s)} = – t f (t)
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i.e., L
s

s

–1

2 2
4+

�
�	

�	

�
�	

�	� �
=

1

4
2t tsin

i.e., {G (s)} =
1

4
2t tsin

Therefore using Convolution theorem, we have

L– 1 {F (s) G (s)} = f t u g u du
t

–� � � �
0�

i.e., L
s

s

–1

2 3
4+

�
�	

�	

�
�	

�	� �
=

1

2
2

1

4
2

0
sin – sint u u u du

t

� � ⋅�
=

1

8
2 2 2

0
u t u u du

t
sin – sin� ��

=
1

16
2 4 2

0
u t u t du

t
cos – – cos� ��

=
1

16
2 4 2

00
u t u du t u du

tt
cos – – cos� � ����� �

��

=
1

64
 (t sin 2t – 2t2 cos 2t).

3. Find f (t) in the following equations:

(i) f (t) = t e f t – u du– u

0

t
+ � � � (ii) f (t) = t 2 cos t – u f u du

0

t
+ � � � � �

(iii) f′ (t) = f u t u du
t

� � � �cos –
0� , if f (0) = 1.

Solution

(i) Taking Laplace transforms on both sides of the given equation, we get

L { f (t)} = L t L e f t u duu
t

! " � �+ ���
���� – –

0

Using Convolution theorem, we have

L { f (t)} =
1
2s

L e L f tt+ –� � � �� �

i.e., F (s) =
1 1

12s s
F s+

+
� �

i.e., F s
s

� � 1
1

1
–

+
�
��

�
��

=
1
2s

F (s) =
s

s

+ 1
3

i.e., L { f (t)} =
1 1
2 3s s

+
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Hence, f (t) = L
s

L
s

–1 –11 1
2 3



��


�� + 


��

��

f (t) = t
t+

2

2
·

(ii) Taking Laplace transforms on both sides, we get

L { f (t)} = L t L t u f u du
t

� � � � � �+ ���
����2

0
cos –

Using Convolution theorem, we have

=
1
2s

 + 2 L (cos t) L { f (t)}

i.e., F (s) =
1 2

12 2s

s

s
F s+

+
� �

i.e., L { f (t)} = F s
s

s s
� �

� �
=

+2

2 2

1

1–

s

s s

2

2 2

1

1

+
–� �

=
2 1 2

1
2

1
2 2s s s s

+ +–
– –� �

∴ f (t) = L
s s s s

–1 –
– –

2 1 2

1

2

1
2 2+ +

�
�	
�	

�
�	
�	� �

= 2 + t – 2 et + 2 t et

f (t) = 2 + t + 2 (t – 1) et.
(iii) From the given equation, we have

L { f ′ (t)} = L f u t u du
t

� � � �cos –
0���� ���

By using Convolution theorem, we get
s L { f (t)} – f (0) = L { f (t)} · L (cos t)

s F (s) – 1 = F s
s

s
� � ⋅

+2 1

F s s
s

s
� � –

2 1+
�
�
�

�
�
� = 1

F (s) =
s

s

2

3

1+

i.e., L { f ′ (t)} = F s
s

s s s
� � = + = +

2

3 3

1 1 1

f (t) = L
s s

–1 1 1
3

+�
��

�
��

f (t) = 1
2

2

+ t
.
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��������� �	


Verify Convolution theorem:

L { f (t)} L {g (t)} = L f u g t u du
t
� � � �–

0���� ��	
for the following functions:

1. f (t) = 1,  g (t) = cos t. 2. f (t) = t,  g (t) = et.

3. f (t) = sin t,  g(t) = e– t. 4. f (t) = t,  g (t) = t e– t.

5. f (t) = sin 2t,  g (t) = cos 2t.

Using Convolution theorem find the inverse Laplace transforms of the following functions:

1.
1

4 5s s–
.� � � �+ Ans.

1

9
4 5e et t– –
 ��

�
�
��

2.
1

s s2 2–
.

� � Ans.
1

4

1

2

1

4
2e tt – –

�
�

�
��

3.
1

92 2s s +
 �
. Ans.

1

9

1

3
3t t– cos

�
��

�
��

�
�

�
��

4.
1

22 2
s s +� �

. Ans.
1

1
1

4
12

t
t e tt+ +�

�
�
��� � � �– –

5. s

s s2 24 9+ +
 � 
 �
. Ans.

1

5
2 3cos – cost t� ��

�
�
��

6.
1

2 2
2

s s–
.

� � � �+
Ans.

1

16
4 12 2e t et t– –+�

�
�
��� �

7.
1

4 12 2
s s+ +
 � � �

. Ans.
e

e t t
t

t
–

– – sin cos
50

10 3 2 4 2+
�

�

�
�
�� �

8.
1

13 2s s +
 �
. Ans.

1

2
12t t+�

�
�
��

cos –

9.
s

s a s b2 2 2 2+ +
 � 
 �
. Ans.

cos – cos

–

bt at

a b2 2

�

�

�
�
�

10.
1

+s2 3
1
 �

. Ans.
1

8
3 32– sin – cost t t t
 ��

�
�
��

11.
4 5

1 2
2

s

s s

+

+–
.

� � � �
Ans. 3

1

3

1

3
2t e e et t t+�

�
�
��

–
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Find f (t) in the following integral equations:

1. f (t) = t t u f u du
t

+ �1

6
3

0
– .� � � � Ans. f t t h t� � � �= +�

�
�
��

1

2
sin sin

2. f (t) = sin sin – .t f u t u du
t

+ �5 0
� � � � Ans.

1

2
2sin h t

�
�

�
��

3. f (t) = t e f t u duu
t

2

0
– – .� �� Ans. t t2 31

3
–�

�
�
��

4.
f u

t u
du

t � �
� �–

1 30�  = t (1 + t). Ans.
3

4

3
3 21 3

π
t t +

�

��

�
�
��

� �

5. f ′ (t) = t f t u u du
t

+ � – cos� �
0

, if f (0) = 4. Ans. f t t t� � = + +�
�

�
��

4
5

2

1

24
2 4

6. ′ + �f t t u f u du
t

� � � � � �5 2
0

cos –  = 10, if f (0) = 2.

Ans. f t t t t� � � �= + + +�
�

�
��

1

27
24 120 30 50 3cos sin

8.6 LAPLACE TRANSFORMS OF THE DERIVATIVES

If the Laplace transform of f (t) is known then by using the following results we can find the Laplace

transforms of the derivatives f ′ (t),  f ′′ (t), ... f n (t) and f t dt
t

� �
0� .

Laplace transforms of the derivatives: Functions of exponential order.

A continuous function f (t), t > 0 is said to be of exponential order

if lim
t → ∞

 e– st f (t) = 0

Theorem: If f (t) is of exponential order and f ′ (t) is continuous then
L { f ′ (t)} = s L { f (t)} – f (0) ...(1)

Proof: By the definition of Laplace transform, we have

L f ′ (t) = e f t dtst– ′
∞� � �
0

Apply integration by parts

= e f t f t e s dtst st– –– –� � � � � �
0 0

∞ ∞�
= 0 0

0
– –f s e f t dtst� � � �+

∞�
= – –f s e f t dtst0

0
� � � �+

∞�
= – f (0) + s L { f (t)}
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L { f ′ (t)} = sL { f (t)} – f (0)

Laplace transform of f ′′ (t)
L { f ′′ (t)} = s2 L { f (t)} – s f (0) – f ′ (0) ...(2)

Let f ′ (t) = g (t) so that f ′′ (t) = g′ (t)

Consider L f ′′ (t) = L {g′ (t)}

= sL {g (t)} – g (0), using (2)

= sL { f ′ (t)} – f ′ (0)

= s [sL { f (t)} – f (0)] – f ′ (0)

L { f ′′ (t)} = s2L { f (t)} – s f (0) – f ′ (0)

Similarly, L { f ′′′ (t)} = s3L { f (t)} – s2 f (0) – s f ′ (0) – f ′′ (0) ...(3)

L { f n (t)} = snL { f (t)} – sn – 1 f (0) – sn – 2 f (0) ... f n – 1(0) ...(4)

If f (t) = y then (4) can be written in the form

L ( yn) = sn L ( y) – sn – 1 y (0) – sn – 2 y′ (0) – ... – yn – 1 (0)

where y ′, y ′′, ...... y(n) denoted the successive derivatives.

8.7 SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS

One of the important applications of Laplace transforms is to solve linear differential equations with
constant coefficients with initial conditions. For example, consider a second order linear differential
equation

d y

dx
a

dy

dx
a y

2

2 0 1+ + = f (t)

i.e., y′′ + a0 y′ + a1 y = f (t)

where a0, a1 are constants with initial conditions y (0) = A and y′ (0) = B.

Taking Laplace transforms on both sides of the above equation and using the formulae on Laplace
transforms of the derivatives y′ and y′′.

We recall the formulae for immediate reference.

L ( y′) = s L ( y) – y (0)

L ( y′′) = s2 L ( y) – s y (0) – y′(0)

L ( y′′′) = s3 L ( y) – s2 y (0) – s y′ (0) – y ′′ (0)

and so on.

������ ���� ��������

1. Solve using Laplace transforms.

d y

dt
– 3

dy

dt
2y

2

2
+ = e3t

given that y (0) = 0 and y′ (0) = 0.
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Solution. Given equation is y″ – 3y′ + 2y = e3t

Taking Laplace transforms on both sides, we get

L ( y″) – 3 L ( y′) + 2 L( y) = L(e3t)

i.e., s2 L ( y) – s y (0) – y′ (0) – 3 [s L ( y) – y (0)] + 2 L ( y) = 
1

3s –

where y (0) = 0 and y′ (0) = 0

i.e., (s2 – 3s + 2) L ( y) =
1

3s –
 using the initial conditions

i.e., L ( y) =
1

3 2 32s s s– –+
 � � �

=
1

1 2 3s s s– – –� � � � � �

∴ y = L
s s s

–1

– – –

1

1 2 3� � � � � �
�

��

�
�
��

= L
s s s

–1

–
–

1
2

1

1

2

1
2

3−
+

−

�


�
�

�

�
�
�  using partial fractions,

=
1

2

1

1

1

2

1

2

1

3
1 1L

s
L

s
L

s
–1

−
�
�
�

�
�
	

−
−

�
�
�

�
�
	

+
−

�
�
�

�
�
	

− −

y =
1

2

1

2
2 3e e et t t− +

This is the required solution.

2. Solve using Laplace transforms

d y

dt
3

dy

dt
2y

2

2
− + = 4e2t

given that y (0) = – 3 and y′ (0) = 5.

Solution. Given equation is

y′′ – 3y′ + 2y = 4e2t

Taking Laplace transforms on both sides, we get

L ( y″) – 3 L ( y′) + 2 L ( y) = 4 L (e2t)

s2L ( y) – sy (0) – y′ (0) – 3 [sL ( y) – y (0)] + 2L ( y) =
4

2s −
where y (0) = – 3 and y′ (0) = 5

i.e., s2L ( y) + 3s – 5 – 3 [sL ( y) – 3] + 2L ( y) =
4

2s −



400 ENGINEERING MATHEMATICS—II

i.e., (s2 – 3s + 2) L ( y) =
4

2
3 14

s
s

−
− +

=
4 3 14 6 28

2

2− + + −
−

s s s

s

=
− + −

−
3 20 24

2

2s s

s

∴ L ( y) =
− + −
− − +
3 20 24

2 3 2

2

2

s s

s s s� � 
 �
By using partial fraction

=
− + −

− −

3 20 24

1 2

2

2

s s

s s� � � �

L ( y) =
−
−

+
−

+
−

7

1

4

2

4

2
2s s s� �

Hence, y = L
s s s

–1 −
−

+
−

+
−

�


�
�

�

�
�
�

7

1

4

2

4

2
2� �

= −
−

�
��

�
�� +

−
�
�

�
��

+
−

�


�
�

�

�
�
�

− −7
1

1
4

1

2
4

1

2

1 1
2

L
s

L
s

L
s

–1

� �
y = – 7et + 4e2t + 4e2t � t

This is the required solution.

3. Solve using Laplace transforms, 
d y

dt
y t

2

2
+ =

Given y (0) = 1 and y′′ (0) = – 2.

Solution. Given equation is y′′ + y = t.

Taking Laplace transforms on both sides

L ( y″) + L ( y) = L (t)

i.e., s2L ( y) – s y (0) – y′ (0) + L ( y) =
1
2s

where y (0) = 1 and y′ (0) = – 2

i.e., s2 L ( y) – s + 2 + L ( y) =
1
2s

L ( y) (s2 + 1) – s + 2 =
1
2s

L ( y) (s2 + 1) =
1

2
2s

s+ −
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L ( y) =
1

1

2

12 2 2s s

s

s+
+ −

+
 �

i.e., L ( y) =
1 1

1 1

2

12 2 2 2s s

s

s s
–

+
+

+
−

+

=
1

1

3

12 2 2s

s

s s
+

+
−

+

Hence, y = L
s

L
s

s
L

s
− − −���

��	
+

+
�
�
�

�
�
	

−
+

�
�
�

�
�
	

1
2

1
2

1
2

1

1
3

1

1

y = t + cos t – 3 sin t

This is the required solution.

4. Solve using Laplace transforms 
d y

dt
5

dy

dt
6y sin t

2

2
− + = ,

given y (0) = 
1

10
and y′ (0) = 

21

10
·

Solution. Given equation is

y″ – 5y + 6 = sin t.

Taking Laplace transforms on both sides, we get

L ( y″) – 5 L ( y′) + 6 L ( y) = L (sin t)

i.e., s2 L ( y) – s y (0) – y′ (0) – 5 [s L ( y) – y (0)] + 6 L ( y) = 
1

12s +

where y (0) = 
1

10
 and y′ (0) = 

21

10

i.e., s L y
s

s L y L y
s

2
210

21

10
5

1

10
6

1

1
� � � � � �− − − −�

�
�
��

+ =
+

(s2 – 5s + 6) L ( y) =
1

1

1

10
16

2s
s

+
+ +� �

L ( y) =
1

1 5 6

1

10

16

5 62 2 2s s s

s

s s+ − +
+ +

− +
 � 
 � 
 �

i.e., L ( y) =
1

1 3 2

1

10

16

2 32s s s

s

s s+ − −
+ ⋅ +

− −
 � � � � � � � � �

=

1

10
1

1

5
2

1

10
3

1

10

18

2

19

32s s s s s+
+

−

−
+

−
+

−
+

−
�
�

�
��

–

By using partial fractions

=
−
−

+
−

+
+

+
+

�

�

�
�
�2

2

2

3

1

10 1

1

12 2s s

s

s s
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Therefore, y = L
s s

s

s s
–1 −

−
+

−
+

+
+

+
�

�

�
�
�

�
��
��

�
��
	�

2

2

2

3

1

10 1

1

12 2

y = −
−

�
�
�

�
�
	

+
−

�
�
�

�
�
	

+− −2
1

2
2

1

3
1 1L

s
L

s

1

10 1

1

1
1

2
1

2
L

s

s
L

s
− −

+
�
�
�

�
�
	

+
+

�
�
�

�
�
	

�

�
�

�
�
�
�

= – 2e2t + 2e3t + 
1

10
 (cos t + sin t)

which is the required solution.

5. Solve using Laplace transforms

y″ + 2y′ + 5y = 8 sin t + 4 cos t

given that y (0) = 1 and y (π) = e– π.

Solution. Given equation is

y″ + 2y′ + 5y = 8 sin t + 4 cos t

Taking the Laplace transforms on both sides, we get

L ( y″) + 2 L ( y′) + 5 L ( y) = 8 L (sin t) + 4 L (cos t)

i.e., s2 L ( y) – s y (0) – y′ (0) + 2 [sL ( y) – y (0)] + 5 L ( y) = 
8

1

4

12 2s

s

s+
+

+

Since y (0) = 1 and assuming y′ (0) = A, we get

(s2 + 2s + 5) L ( y) – s – A – 2 =
4 2

12

s

s

+
+
� �

(s2 + 2s + 5) L ( y) =
4 2

1
2

2

s

s
s A

+
+

+ + +
� �

∴ L ( y) =
4 2

1 2 5

2

2 52 2 2

s

s s s

s A

s s

+

+ + +
+

+ +
+ +

� �

 � 
 �

= 2
1

1

1

2 5

1 1

2 52 2 2s s s

s A

s s+ + +
�

�

�
�
� +

+ + +
+ +

–
� �

= 2
1

1

1

1 2

1 1

1 2
2 2 2 2 2s s

s A

s+ + +

�


�
�

�

�
�
�

+
+ + +

+ +
–
� �

� �
� �

Therefore, y = 2
1

1

1

1 2

1
2

1
2 2

L
s

L
s

− −

+
�
�
�

�
�
	

−
+ +

�
��
��

�
��
	�

�


�
�

�

�
�
�� �

+ +
+ +

�
��
��

�
��
	�

+ +
+ +

�
��
��

�
��
	�

− −L
s

s
L

A

s

1
2 2

1
2 2

1

1 2

1

1 2� � � �

= 2
1

2
2 1

2
sin sin cos

sin
t e t e t A e

tt t t−�
�

�
��

+ + +− − −� �
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y = e– t cos 2t + 2 sin t + 
1

2
 (A – 1) e– t sin 2t

Since y (π) = e– π, we get

e– π = e– π cos 2π + 2 sin π + 
1

2
 (A – 1) e– π sin 2π = e– π.

This shows that for any value of A the given condition y (π) = e– π holds good. Hence this gives the
solution of the equation the initial conditions.

6. Solve using Laplace transforms,

y″ + 2y′ + y = 6t e– t

given y (0) = 0, y′ (0) = 0.

Solution
y″ + 2y′ + y = 6t e– t

Taking the Laplace transforms on both sides of the given equation, we get

L ( y″) + 2 L ( y′) + L ( y) = 6 L (t e– t)

s2 L ( y) – s y (0) – y′ (0) + 2 [s L ( y) – y (0)] + L ( y) = 
6

1
2

s +� �
Since y (0) = 0,  y′ (0) = 0

i.e., s2 L ( y) + 2s L ( y) + L ( y) =
6

1
2

s +� �

(s2 + 2s + 1) L ( y) =
6

1
2

s +� �

∴ L ( y) =
6

1 2 1
2 2s s s+ + +� � 
 �

=
6

1 1
2 2

s s+ +� � � �

L ( y) =
6

1
4

s +� �

∴ y = 6
1

1

1
4

L
s

−

+

�
��
��

�
��
	�� �

= 6
11
4

e L
s

t− − ���
��	

= 6
3

3

e
tt− ⋅

!

y = t3 e– t

This is the required solution.
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7. Solve using Laplace transforms,

y′′′ – 3y″ + 3y′ – y = t2 et given y (0) = 1, y′ (0) = 0, y′′′ (0) = – 2.

Solution

y″′ – 3y″ + 3y′ – y = t2 et

Taking Laplace transforms on both sides, we get

L ( y″′) – 3 L ( y″) – 3L ( y′) – L ( y) = L (t2 et )

i.e., [s3 L ( y) – s2 y (0) – sy′ (0) – y″ (0)] – 3 [s2 L ( y) – sy (0) – y′ (0)]

+ 3 [sL ( y) – y (0)] – L ( y) = 
2

1
3

s −� �
·

Since, y′ (0) = 0, y (0) = 1, y″ (0) = – 2

s3 L ( y) – s2 + 2 – 3 [s2 L ( y) – s] + 3 [sL ( y) – 1] – L ( y) =
2

1
3

s −� �

i.e., (s3 – 3s2 + 3s – 1) L ( y) + 3s – s2 – 1 =
2

1
3

s −� �

(s3 – 3s2 + 3s – 1) L ( y) =
2

1
3 1

3
2

s
s s

−
+ − +

� �

i.e., (s – 1)3 L ( y) =
2

1
3 1

3
2

s
s s

−
+ − +

� �

i.e., L ( y) =
2

1 1

3 1

1
3 3

2

3
s s

s s

s− −
+ − +

−� � � � � �

=
2

1

2 1

1
6

2

3
s

s s s

s−
+

− + −

−� � � �

=
2

1

1 1 1

1
6

2

3
s

s s

s−
+

− − − −

−� �
� � � �

� �

=
2

1

1

1

1

1

1

1
6

2

3 3 3
s

s

s

s

s s−
+

−

−
−

−

−
−

−� �
� �
� �

� �
� � � �

L ( y) =
2

1

1

1

1

1

1

1
6 2 3

s s s s−
+

−
−

−
−

−� � � � � �

y = L
s

L
s

L
s

L
s

− − − −

−

�
��
��

�
��
	�

+
−

�
�
�

�
�
	

−
−

�
��
��

�
��
	�

−
−

�
��
��

�
��
	�

1
6

1 1
2

1
3

2

1

1

1

1

1

1

1� � � � � �

=
t e

e t e t e
t

t t t
5

2

60

1

2
+ − −

which is the required solution.
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8. Solve the D.E. y″ + 4y′ + 3y = e–t with y(0) = 1 = y′(0) using Laplace transforms.

Solution. Taking Laplace transform on both sides of the given equation, we have

L [ y″(t)] + 4L [ y′(t)] + 3L[ y(t)] = L[e–t ]

i.e., {s2 L y (t) – s y (0) – y′(0)} + 4 {s L y (t) – y (0)} + 3 L y (t) =
1

1s +
Using the given initial condition, we obtain

(s2 + 4s + 3) L y (t) – s – 1 – 4 =
1

1s +

i.e., (s2 + 4s + 3) L y (t) = (s + 5) + 
1

1s +� �

(s + 1) (s + 3) L y (t) =
s s

s

2 6 6

1

+ +
+

∴ L [ y (t)] =
s s

s s

2

2

6 6

1 3

+ +
+ +� � � �

∴ y (t) = L
s s

s s

− + +
+ +

�


�
�

�

�
�
�

1
2

2

6 6

1 3� � � �

Let
s s

s s

2

2

6 6

1 3

+ +
+ +� � � �

=
A

s

B

s

C

s+
+

+
+

+1 1 32� � � �
Multiplying by (s + 1) (s + 3), we get

s2 + 6s + 6 = A (s + 1) (s + 3) + B (s + 3) + C (s + 1)2 ...(1)

Put s = – 1; 1 = B (2) ⇒ B = 
1

2

Put s = – 3; – 3 = C (4) ⇒ C = − 3

4

Equating the coefficient of s2 on both sides of (1), we get

1 = A + C � A =�
��

�
��

7

4

Hence, L
s s

s s

− + +
+ +

�


�
�

�

�
�
�

1
2

2

6 6

1 3� � � �
=

7

4

1

1

1

2

1

1

3

4

1

3
1 1

2
1L

s
L

s
L

s
− − −

+
�
��

�
�� +

+

�


�
�

�

�
�
�

−
+

�
��

�
��� �

∴ y (t) =
7

4

1

2

3

4
3e e t et t t− − −+ ⋅ − .
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Solution of Simultaneous Differential Equations

9. Solve the simultaneous equations using Laplace transforms, 
dx

dt
 = 2x – 3y, 

dy

dt
 = y – 2x subject

to x (0) = 8 and y (0) = 3.

Solution. We have,

x′ (t) – 2x (t) + 3y (t) = 0

2x (t) + y′ (t) – y (t) = 0

Taking Laplace transforms on both sides of these, we get

L [x′ (t)] – 2L [x (t)] + 3L [ y (t)] = 0

2L [x (t)] + L [ y′ (t)] – L [ y (t)] = 0

i.e., sL x (t) – x (0) – 2L x (t) + 3L y (t) = 0

2Lx (t) + sLy (t) – y(0) – Ly (t) = 0

Using initial values,

Since, x (0) = 8, and y (0) = 3, we get

(s – 2) L x (t) + 3L y (t) = 8 ...(1)

2L x (t) + (s – 1) L y (t) = 3 ...(2)

Solving the Eqns. (1) and (2)

Multiplying (s – 1) in the Eqn. (1) and Multiplying 3 by (2)

(s – 1) (s – 2) L x (t) + 3 (s – 1) L y (t) = 8 (s – 1)

6L x (t) + 3 (s – 1) L y (t) = 9

Subtracting, we get (s2 – 3s – 4) L x (t) = 8s – 17

∴ L x (t) =
8 17

3 42

s

s s

−
− −

∴ x (t) = L
s

s s
− −

− +
�

��

�
�
��

1 8 17

4 1� � � �

Let,
8 17

4 1

s

s s

−
− +� � � � =

A

s

B

s−
+

+4 1

8s – 17 = A (s + 1) + B (s – 4)

Put s = 4, A = 3

s = – 1, B = 5

∴ x (t) = 3
1

4
5

1

1
1 1L

s
L

s
− −

−
�
�

�
��

+
+

�
�

�
��

x (t) = 3e4t + 5e– t ...(3)

Consider,
dx

dt
= 2x – 3y

∴ y =
1

3
2

1

3
2x

dx

dt
x t

dx

dt
−�

�
�
��

= −�
�

�
��� �
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dx

dt
= 12e4t – 5e– t

∴ y (t) =
1

3
2 3 5 12 54 4e e e et t t t+ − −− −
 � 
 �

=
1

3
6 154− + −e et t
 �

y (t) = 5e– t – 2e4t ...(4)

Equations (3) and (4) represent the solution of the given equations.

10. Solve by using Laplace transforms

dx

dt
2y−  = cos 2t, 

dy

dt
2x+  = sin 2t, x = 1, y = 0, at t = 0.

Solution. We have a system of equations,

x′ (t) – 2y (t) = cos 2t ...(1)

2x (t) + y′ (t) = sin 2t ...(2)

where we have x (0) = 1 and y (0) = 0

Taking Laplace transforms on both sides of Eqns. (1) and (2), we have

L [x′ (t)] + 2L [ y (t)] = L (cos 2t)

2 L [x (t)] + L [ y′ (t)] = L (sin 2t)

i.e., {sL x (t) – x (0)} – 2L y (t) =
s

s2 4+

2L x (t) + {sL y (t) – y (0)} =
2

42s +

Using the given initial values, we have

sL x (t) – 2L y (t) =
s

s2 4
1

+
+ ...(3)

2L x (t) + sL y (t) =
2

42s +
...(4)

Let us multiply Eqn. (3) by s and Eqn. (4) by 2

s2L x (t) – 2sL y (t) =
s

s
s

2

2 4+
+

4L x (t) + 2sL y (t) =
4

42s +

Adding, we get (s2 + 4) Lx (t) =
s

s s
s

2

2 24

4

4+
+

+
+

= s + 1

i.e., (s2 + 4) Lx (t) = s + 1
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∴ Lx (t) =
s

s

+
+

1

42

∴ x(t) = L
s

s
L

s
− −

+
�

�

�
�
� +

+
�

�

�
�
�1

2 2
1

2 22

1

2

Thus x (t) = cos 2t + 
1

2
 sin 2t ...(5)

To find y(t), let us consider,

dx

dt
y− 2 = cos 2t

∴ y =
1

2
2

dx

dt
t−�

�
�
��

cos

∴ y (t) =
1

2
2

dx

dt
t−�

�
�
��

cos

where 
dx

dt
 = – 2 sin 2t + cos 2t.

∴ y (t) =
1

2
 [– 2 sin 2t + cos 2t – cos 2t]

∴ y (t) = – sin 2t ...(6)

∴ Eqns. (5) and (6) represent the required solution.

11. Solve the following system of equations using Laplace transforms,

dx

dt
y− = et,

dy

dt
x+  = sin t

given that x = 1, y = 0 at t = 0.

Solution

We have x′ (t) – y (t) = et ...(1)

x (t) + y′ (t) = sin t ...(2)

where we have x (0) = 1, y (0) = 0

Taking Laplace transforms on both sides of Eqns. (1) and (2)

L [x′ (t)] – L [ y (t)] = L [et]

L [x (t)] + L [ y′ (t)] = L (sin t)

i.e., sL x (t) – x (0) – L y (t) =
1

1s −

L x (t) + sL y (t) – y (0) =
1

12s +
Using the given initial values, we have

sL x (t) – 1 – L y (t) =
1

1s −
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⇒ sL x (t) – L y (t) =
1

1
1

s −
+ ...(3)

⇒ L x (t) + sL y (t) =
1

12s +
...(4)

Let us multiplying 5 by Eqn. (3) and adding Eqn. (4), we get

(s2 + 1) L x (t) = s
s

s s
+

−
+

+1

1

12

∴ L x (t) =
s

s

s

s s s
2 2 2 21 1 1

1

1+
+

− +
+

+� � 
 � 
 �

x (t) = L
s

s
L

s

s s
L

s

− − −

+
�

�

�
�
� +

− +

�


�
�

�

�
�
� +

+

�


�
�
�

�

�
�
�
�

1
2

1
2

1

2 21 1 1

1

1� � 
 � 
 �
...(5)

Let
s

s s− +1 12� � 
 �
=

A

s

Bs C

s−
+ +

+1 12

s = A (s2 + 1) + (Bs + C ) (s – 1)

Put s = 1, ∴ A = 
1

2

s = 0, C = 
1

2

Equating the coefficient of s2 on both sides, we get

0 = A + B ∴ B = − 1

2

Now, L
s

s s

−

− +

�


�
�

�

�
�
�

1

21 1� � 
 �
=

1

2

1

1

1

2 1

1

2

1

1
1 1

2
1

2
L

s
L

s

s
L

s
− − −

−
�
�

�
��

−
+

�

�

�
�
� +

+
�

�

�
�
�

=
1
2

 (et – cos t + sin t) ...(6)

Further, we have

L
s a

−

+
1

2 2 2

1


 �
=

1

2 3a
 (sin at – at cos at)

∴ L
s

−

+

�


�
�
�

�

�
�
�
�

1

2 2

1

1
 �
=

1

2
 (sin t – t cos t) ...(7)

Equation (5) as a consequence of Eqns. (6) and (7) becomes,

x (t) = cos t + 
1

2
 (et – cos t + sin t) + 

1

2
 (sin t – t cos t)
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x (t) =
1

2
 (et + cos t + 2 sin t – t cos t) ...(8)

Also from Eqn. (1), y (t) = 
dx

dt
et−

dx

dt
=

1

2
 (et – sin t + 2 cos t + t sin t – cos t)

∴ y (t) =
1

2
 (et – sin t + 2 cos t + t sin t – cos t) – et

y (t) =
1

2
 (t sin t + cos t – sin t – et ) ...(9)

Eqns. (8) and (9) represent the solution of the given equations.

��������� �	�

Using Laplace transforms method solve the following differential equations under the given
conditions.

1. y′ – 5t = e5t, y (0) = 2. Ans. y t e t= +2 5� �

2. y′ + 3y = 2, y (0) = – 1. Ans. y e t= −�
�

�
��

2

3

5

3
3

3. y′ + y = sin t, y (0) = 1. Ans. y e t tt= − +�
�

�
��

−3

2

1

2

1

2
cos sin

4. y′ – 2y = t, y (0) = 
7

4
· Ans. y e tt= + −�

�
�
��

−2
1

2

1

4
2

5. y′ – y = cos 2t, y (0) = 
4

5
· Ans. y e t tt= + − +�

�
�
��

1

5
2 2 2cos sin� �

6. y″ + y = 0, y (0) = 1, y′ (0) = – 1. Ans. y t t= −cos sin

7. y″ + 3y′ + 12y = 0, y (0) = 7, y′ (0) = – 11. Ans. y e et t= +− −3 4 2

8. y″ – 7y′ + 12y = 0, y′ (0) = 9, y′ (0) = 2. Ans. y e et t= +4 53 2

9. y″ + 3y′ – 4y = 12e2t, y (0) = 4, y′ (0) = 1. Ans. y e e et t t= + +− 4 22

10. y″ – 3y′ + 2y = 1 – e2t, y (0) = 1, y′ (0) = 0. Ans. y e tet t= − −�
�

�
��

1

2

1

2
2 2

11. y″ + 5y′ + 6y = 5e2t, y (0) = 2, y′ (0) = 1. Ans. y e e et t t= − +�
�

�
��

− −23

4
4

1

4
2 3 2

12. y″ + 9y = cos 2t, y (0) = 1, y
π
2
�
��
�
��  = –1. Ans. y t t t= + +�

�
�
��

4

5
3

4

5
3

1

5
2cos sin cos
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13. y″ – 3y′ + 2y = e3t, y (0) = 1, y′ (0) = – 1. Ans. y e e et t t= − +�
�

�
��

7

2
3

1

2
2 3

14. y″ + 2y′ + 5y = e– t sin t, y (0) = 0, y′ (0) = 1. Ans. y e t tt= +�
�

�
��

−1

3
2sin sin� �

15. y″ + 4y = 9t, y (0) = 0, y′ (0) = 7. Ans. y t t= +3 2sin

16. y″ – 3y′ + 2y = 4t + 12e– t, y (0) = 6, y′ (0) = 1.

Ans. y e e t et t t= − + + + −3 2 2 3 22

17. y″ – 4y′ + 5y = 12t2, y (0) = 0 = y′ (0) = 0.

Ans. y t t e t tt= + + + −25 40 22 2 2 112 2 sin cos� �

18. y″ + y = 8 cos t,  y (0) = 1, y′(0) = – 1. Ans. y t t t t= − +cos sin cos4 4

19. y″ + 9y = 18t, y (0) = 0, y
π
2
�
��
�
��  = 0. Ans. y t t= +2 3π sin

20. y″ + 2y′ + 5y = 10 sin t, y (0) = 0, y′ (0) = –1. Ans. y t t= −cos cos 2

Using Laplace transforms method solve the following simultaneous equations:

1. x′ = x + y, y′ = 4x – 2y given x (0) = 0, y (0) = 5.

Ans. x e e y e et t t t= − + = +− −3 2 3 24;

2. x′ + 2x + y = 0, x + y′ + 2y, given x (0) = 1, y (0) = 3.

Ans. x e e y e et t t t= − + = +− − − −2 23 3;

3. x′ + y′ + 2x + y = 0, y′ + 5x + 3y = 0 given x (0) = 0,  y (0) = 4.

Ans. x t y t t= = − +8 12 4sin ; sin cos

4. x′ + 5x – 2y = t, y′ + 2x + y = 0 given x (0) = y (0) = 0.

Ans. x t t e y t t et t= + − + = − − +�
�

�
��

− −1

27
1 3

1

27
1 6

2

27
2 3

2

27
2 33 3� � � � � � � �;

5. x′ – y = et, y′ + x = sin t, given x (0) = 1, y (0) = 0.

Ans. x e t t t t y t t e t tt t= + + − = − + −�
�

�
��

1

2
2

1

2
cos sin cos ; sin cos sin
 � 
 �

6. x″ + 3x – 2y = 0, x″ + y″ – 3x + 5y = 0 given x = 0, y = 0, x′ = 3, y′ = 2 when t = 0.

Ans. x t t y t t= + = −�
�

�
��

11

4

1

12
3

11

4

1

4
3sin sin ; sin sin

8.8 APPLICATIONS OF LAPLACE TRANSFORMS

In this section we shall consider some applications of the Laplace transforms to solve the problems on
vibrations, LRC circuits and bending beams.
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������ ���� ��������

1. A particle moves along the x-axis according to the law d x

dt
6

dx

dt
25x 0.

2

2
+ + =  If the particle is

started at x = 0, with an initial velocity of 12 ft/sec to the left, determine x in terms of t using Laplace
transform method.

Solution. The given equation is

x″ (t) + 6x′ (t) + 25 x (t) = 0 ...(1)

and x = 0 at t = 0, 
dx

dt
 = – 12 at t = 0, By data

i.e., x (0) = 0, x′ (0) = – 12 are the initial conditions.

Now taking Laplace transform on both sides of (1) we have

L [x″ (t)] + 6 L [x′ (t) + 25 L [x (t)] = L (0)

i.e., {s2 L x (t) – s x (0) – x′ (0)} + 6 {s L x (t) – x (0)} + 25 L x (t) = 0

Using the initial conditions we obtain,
(s2 + 6s + 25) L x (t) = – 12

⇒ L x (t) =
−

+ +
12

6 252s s

x (t) = −
+ +

�
�

�
��

−12
1

6 25
1

2
L

s s

= −
+ +

�


�
�

�

�
�
�

−12
1

3 4

1
2 2

L
s� �

= −
+

�
�

�
��

− −12
1

4
3 1

2 2
e L

s
t

= − −12
4

4
3e

tt sin

Thus, x (t) = – 3e–3t sin 4t.

2. A particle is moving with damped motion according to the law 
d x

dt
6

dx

dt
25x 0

2

2
+ + = . If the

initial position of the particle is at x = 20 and the initial speed is 10, find the displacement of the particle
at any time t using Laplace transforms.

Solution. We have

x″ (t) + 6x′ (t) + 25x (t) = 0

Initial conditions x (0) = 20, x′ (0) = 10

Taking Laplace transforms on both sides,

we get L [x″ (t)] + 6L [x′ (t)] + 25L [x (t)] = L (0)
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i.e., {s2 L x (t) – s x (0) – x′ (0)} + 6{sL x (t) – x (0)} + 25L x (t) = 0

i.e., (s2 + 6s + 25) L x (t) – 20s – 10 – 120 = 0

L x (t) =
20 130

6 252

s

s s

+
+ +

x (t) = L
s

s

− +
+ +

�


�
�

�

�
�
�

1
2

20 130

3 16� �

= L
s

s

− + +

+ +

�


�
�

�

�
�
�

1
2 2

20 3 70

3 4

� �
� �

= e L
s

s
t− − +

+
�

�

�
�
�3 1

2 2

20 70

4

= e t tt− +�
�

�
��

3 20 4
70

4
4cos sin

∴ x (t) = 10 2 4
7

4
43e t tt− +�

��
�
��cos sin ·

3. The current i and charge q in a series circuit containing an inductance L, capacitance C e.m.f

E satisfy the D.E. L
di

dt

q

C
E+ = , i

dq

dt
= · Express i and q in terms of t given that L, C, E are con-

stants and the value of i, q are both zero initially.

Solution

Since i =
dq

dt
the D.E. becomes,

L
d q

dt

q

C

2

2
+ = E

or

⇒
d q

dt

q

LC

2

2
+ =

E

L

i.e., q″ (t) + λ2 q (t) = µ

where λ2 = 
1

LC
 and µ = 

E

L
.

Taking Laplace transforms on both sides, we get

L [q″ (t)] + λ2 L [q (t)] = L [µ]

{s2 L q (t) – s q (0) – q′ (0)} + λ2 L q (t) =
µ
s

But i = 0, q = 0 at t = 0

i.e., q (0) = 0, q′ (0) = 0

∴ (s2 + λ2) L q (t) =
µ
s
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L q (t) =
µ

λs s2 2+
 �

Hence, q (t) = L
s s

−

+

�
��
��

�
��
	�

1
2 2

µ
λ
 �

1
2 2 2s s + λ
 �

=
1 1
2 2 2λ λs

s

s
−

+
�

�

�
�
�  By partial fractions

= L
s s

L
s

s

s
− −

+

�


�
�

�

�
�
� = −

+
�

�

�
�
�1

2 2 2
1

2 2

1µ
λ

µ
λ λ
 �

∴ q (t) =
µ
λ2  (1 – cos λt)

where λ = 
1

LC
 and µ = 

E

L

∴ q (t) = EC
LC

t1
1−

�
��
��

�
��
	�

⋅cos

4. A resistance R in series with inductance L is connected with e.m.f. E(t). The current is given by

L
di

dt
Ri+  = E (t). If the switch is connected at t = 0 and disconnected at t = a, find the current i in terms

of ‘t’.

Solution. We have i = 0 at t = 0

i.e., i (0) = 0

and E (t) =
E in t a

if t a

0

0

< <
≥

���
By date Li′ (t) + R i (t) = E (t)

Taking Laplace transforms on both sides

L L [i′ (t)] + R L [i (t)] = L [E (t)]

L{sL i (t) – i (0)} + RL i (t) = L [E (t)]

L i (t) [Ls + R] = L [E (t)] ...(1)

Now to find L [E (t)]

We have by definition,

L [E (t)] = e E t dt e E dt e dtst st st

a

a− − −∞∞
= ⋅ + ��� � �

00

= E
e

s

E

s
e

st a

as
−

−

−
�

�

�
�
� = − −

0

1
 �

=
E

s
e as1 − −
 �
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Using R.H.S. of Eqn. (1), we have

L i (t) [Ls + R] =
E

s
e as1 − −
 �

L i (t) =
E e

s Ls R

as1 −

+

−
 �
� �

=
E

s Ls R

E e

s Ls R

as

+
−

+

−

� � � �

i (t) = L
E

s Ls R
L

E e

s Ls R

as
− −

−

+
�

��

�
�
��

−
+

�

��

�
�
��

1 1

� � � � ...(2)

Now, let
E

s Ls R+� � =
A

s

B

Ls R
+

+
(Partial fractions)

E = A (Ls + R) + Bs

Put s = 0, A = 
E

R

s =
− R

L
, B = 

– EL

R

Thus,
E

s Ls R+� � =
E

R s

EL

R Ls R
⋅ − ⋅

+
1 1

L
E

s Ls R
−

+
�

��

�
�
��

1

� � =
E

R
L

s

E

R
L

s
R
L

− −�
�
�
��

−
+���
�
��

�


�
��

�

�
�
��

1 11 1

=
E

R
e

Rt

L1 −
�
��

�
��

−

...(3)

Further we have the property of the unit step function

L [ f (t – a) u (t – a)] = e– as f s� �

where f s� �  = L f t� �

Taking f s� � =
E

s Ls R+� �

Then L f s−1 � � = L
E

s Ls R
−

+
�

��

�
�
��

1

� �

i.e., f (t) =
E

R
e Rt L1 − −
 � By Eqn. (3)

Also L e f sas− −1 � � = f (t – a) u (t – a)
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i.e., L e
E

s Ls R
as− −

+
�

��

�
�
��

1

� � =
E

R
e u t aR t a L1 − −( )− −� �

But u (t – a) =
0 0

1

in t a

if t a

< <

≥

�
��
��

∴ L e
E

s Ls R
as− −

+
�

��

�
�
��

1

� � =
E

R
e R t a L1 − − −� �

...(4)

when t ≥ a = 0 in 0 < t < a

Using the results Eqns. (3) and (4) in Eqn. (2), we have

i (t) =
E

R
e Rt L1 − − in 0 < t < a ...(5)

Also, i (t) =
E

R
e

E

R
eRt L R t a L1 1− − −− − −� �

when t ≥ a

i.e., i (t) =
E

R
e eR t a L Rt L− − −−� � ...(6)

when t ≥ a

Thus Eqns. (5) and (6) represent the required i (t) in terms of t.

��������� �	�

1. A particle undergoes forced vibrations according to the equation 
d x

dt

2

2
25+  = 21 cos 2t. If the

particle starts from rest at t = 0, find the displacement at any time t > 0.

Ans. x t t= −cos cos2 5

2. A particle moves along a line so that its displacement x from a fixed point o at any time t is
given by
x″ + 2x′ + 5x = 52 sin 3t. If at t = 0 the particle is at rest at x = 0. Find the displacement at any

time t > 0. Ans. x e t t t tt= + − +− 6 2 9 2 2 3 3 2 3cos sin cos sin� � � �
3. A particle of mass m moves along a line so that its displacement x at time t is given by

mx″ + kx = f (t), where x (0) = a, x′ (0) = 0.

Find x if

(i) f (t) = f0 H (t – T ) where H (t – T ) is the Heaviside unit step function.

Ans.     if

              

if

where

x af t t T

af t f k t T

t T

k m

= <

= + − −

>

=

�



�
�
�
�
�

�

�

�
�
�
�
�

0

0 0

2

1

cos

cos cos

µ

µ µ

µ

� � � �� �
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(ii) f (t) = f0 δ (t – T) (Direct delta function).

Ans. x af t t T

af t f t T t T

= <
= + − >

�

�

�
�
�0

0 0

cos

cos sin

µ
µ µ µ

if

if� � � �

4. A particle is moving with damped motion according to the equation 
d x

dt

dx

dt
x

2

2
6 25 0+ + = .  If

the initial position of the particle is at x = 20 and the initial speed is 10 find the displacement of

the particle at any time t > 0. Ans. x e t tt= +−10 2 4 43 cos sin� �

����������� ��������� ������ ���	
���� ����� ���� �������

1. Find the Inverse Laplace transform of  
s 1

s 1 s
2

+
− +� � � �2

·

Solution. Let
s

s s

+
− +

1

1
2� � � �2

=
A

s

B

s

C

s−
+

−
+

+1 1 22� � � �
or s + 1 = A (s – 1) (s + 2) + B (s + 2) + C (s – 1)2

Put s = 1 ∴ B = 
2

3

Put s = – 2 ∴ C = 
–1

9

Equating the coefficient of s2 on both sides

We have 0 = A + C ∴ A = 
1

9

Now, L
s

s s

–1 +
− +

�


�
�

�

�
�
�

1

1 22� � � �
=

1

9

1

1

2

3

1

1

1

9

1

22
L

s
L

s
L

s
–1 –1 –1

−
�
�

�
��

+
−

�


�
�

�

�
�
�

−
+

�
�

�
��� �

=
1

9

2

3

1 1

92
e e L

s
et t t+ �

�
�
��

−–1 –2

=
1

9

2

3

1

9
e e t et t t+ ⋅ − –2

Thus L
s

s s

–1 +
− +

�


�
�

�

�
�
�

1

1 22� � � �
=

1

9

2

3

1

9
e e t et t t+ ⋅ − –2 .
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2. Evaluate L
1

s 3

s 3

s 6s 13

1

s 2

–1
2 3+

+ +
+ +

−
−

�


�
�

�

�
�
�� �

·

Solution

We have L
s

L
s

s s
L

s

–1 –1
2

–1
3

1

3

3

6 13

1

2+
�
�

�
��

+ +
+ +

�
�

�
��

−
−

�


�
�

�

�
�
�� �

L
s

–1 1

3+
�
�

�
�� = e–3t

L
s

s
s s

–1 +
+ +

�


�
�

�

�
�
�

+ →

3

3 4
2

3
� � = e L

s

s
t–3 –1

2 22−
�
�

�
��

= e–3t cos 2t

L
s

–1 1

2 3−

�


�
�

�

�
�
�� �

= e L
s

t2
3

1–1 �
�
�
�� = e

tt2
2

2!

= 
e tt2 2

2

Thus the required inverse Laplace transform is given by e e t
e tt t

t
–3 –3 cos+ −2

2

2 2

·

3. Find the inverse Laplace transform of

(i)
2s 1

s 2s 172

−
+ +

(ii)
e

s 3

–2s

2−� � ·

Solution

(i)
2 1

2 172

s

s s

−
+ +

=
2 1

1 4

2 1 3

1 4
2 2 2 2

s

s

s

s

−
+ +

=
+ −

+ +� �
� �
� �

L
s

s s
–1 2 1

2 172

−
+ +

�
�

�
�� = L

s

s

–1 2 1 3

1 42 2

+ −

+ +

�


�
�

�

�
�
�

� �
� �

= e L
s

s
t– –1 2 3

42

−
+

�
�

�
��

= e L
s

s
L

s
t– –1 –12

4
3

1

42 2 2+
�
�

�
��

−
+

�
��

�
��

���
��	

Thus L
s

s s
–1 2 1

2 172

−
+ +

�
�

�
�� = e t tt– cos sin2 4

3

4
4−�

��
�
�� ·
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(ii) L
s

–1 1

3 2−

�
��
��

�
��
	�� �

= e L
s

e t f tt t3
2

31–1 �
��
�
�� = =� � � �

Now, L
e

s

s
–1

−

−

�
�
�

�
�
�

2

23� �
= f (t – 2) u (t – 2)

Thus, L
e

s

s
–1

−

−

�
�
�

�
�
�

2

23� �
= e t u tt3 2 2 2− − −� �� �� � � � .

4. Using Convolution theorem, find the inverse Laplace transform of 
s

s 2 s 92+ +� � 
 �
·

Solution. Let f
—

 (s) =
1

2s + ; g
—

(s) = 
s

s2 23+

∴ L f s– 1 � � = f (t) = e–2t

L g s– 1 � � = g
—

 (t) = cos 3t

We have Convolution theorem

L f s g s– 1 � � � �⋅ = f u g t u du
u

t

� � � �−
=
�

0

L
s

s s

–1

+ +

�


�
�

�

�
�
�2 32 2� � 
 �

= e t u duu

u

t
–2 cos 3 3

0

−
=
� � �

R.H.S. =
e

t u t u
u

u

t–2

– cos sin
4 9

2 3 3 3 3 3
0

+
− − −

�

�

�
�
�

=

� � � �� �

=
1

13
2 2 3 3 3e t tu–2 – – cos sin� � � �� �− −

Thus L
s

s s

–1

+ +

�


�
�

�

�
�
�2 92� � 
 �

=
1

13
2 3 3 3 2 2cos sint t e u+ − −
 �

5. Using Laplace transform method, solve 
d y

dt
3

d y

dt
3

dy

dt
y

3

3

2

2
− + −  = t2 et given y (0) = 1,

y′(0) = 0, y′′(0) = –2.

Solution. The given equation is

′′′ − ′′ + ′ −y t y t y t y t� � � � � � � �3 3 = t2 et

Taking Laplace transform on both sides, we have

′′′ − ′′ + ′ − =y t L y t L y t L y t L e tt� � � � � � � �3 3 2
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s L y t s y s y y s L y t s y y3 2 20 0 0 3 0 0� � � � � � � �� � � � � � � �� �− − ′ − ′′ − − − ′ +

3 0
2

1
3

s L y t y L y t
s

� � � �� � � �
� �

− =
−

–

Using the given initial conditions, we have

= (s3 – 3s2 + 3s – 1) L y (t) – s2 + 2 + 3s – 3 = 
2

1
3

s −� �

i.e., (s – 1)3 L y (t) = (s2 – 3s + 1) + 
2

1
3

s −� �

L y (t) =
s s

s s

2

3 6

3 1

1

2

1

− +

−
+

−


 �
� � � �

...(1)

Now, L
s s

s

–1
2

3

3 1

1

− +
−

�


�
�

�

�
�
�� �

= L
s s s

s

–1
− + − − +

−

�



�
�
�

�

�

�
�
�

1 2 1 3 1

1

2

3

� �� �
� �

L
s s

s

–1 − −

−

�


�
�

�

�
�
�

1

1

2

3

� �
� �

= L
s s

s
s s

–1 − − − −

−

�


�
�

�

�
�
�

− →

1 1 1

1

2

3

1

� � � �
� �

= e L
s s

s
t+ − −�


�

�
�
�–1

2

3

1

= e L
s

L
s

L
s

t –1 –1 –11 1 1
2 3

�
��
�
�� − �

��
�
�� − �

��
�
��

∴ L
s s

s

− − +
−

�


�
�

�

�
�
�

1
2

3

3 1

1� �
= e t

tt 1
2

2

− −
�
��

�
��

Also L
s

–1 2

1 6−

�


�
�

�

�
�
�� �

= 2
2

2
56

5

e L
s

e
tt t–1

!
�
��
�
�� =

=
e tt 5

60
·

Thus by using these results in the R.H.S. of (1), we have

y (t) = e t
t tt 1
2 60

2 5

− − +
�
�
�

�
�
	

·

6. Solve using Laplace transform, the differential equation 
d y

dx
3

dy

dx
2y

2

2
− +  = 1 – e2x given that

y (0) = 1 and 
dy

dx
 = 1 at x = 0.
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Solution. We have to solve

′′ − ′ +y x y x y x� � � � � �3 2 = 1 – e2x

Subject to the conditions y (0) = 1 and ′y 0� �  = 1

Taking Laplace transforms on both sides of the given equations, we have

L y x L y x L y x′′ − ′ +� � � � � �3 2  = L [1 – e2x]

i.e., {s2 L y (x) – s y (0) – y′ (0)} – 3 {s L y (x) – y (0)} + 2L y (x) = 
1 1

2s s
−

−
Using the given initial conditions, we have

(s2 – 3s + 2) L y (x) – s – 1 + 3 = −
−
2

2s s� �

(s2 – 3s + 2) L y (x) = (s – 2) – 
2

2s s −� �
 

i.e., (s – 1) (s – 2) L y (x) = (s – 2) – 
2

2s s −� �

L y (x) =
1

1

2

1 2s s s s−
−

− −� � � �

∴ y (x) = L
s

L
s s s

–1 –11

1

2

1 2 2−
�
�

�
��

−
− −

�


�
�

�

�
�
�� � � �

...(1)

Let
2

1 2
2

s s s− −� � � �
=

A

s

B

s

C

s

D

s
+

−
+

−
+

−1 2 2
2� �

or 2 = A (s – 1) (s – 2)2 + B s (s – 2)2 + C s (s – 1) (s – 2)

+ D s (s – 1)

Put s = 0, A = 
– 1

2

s = 1, B = 2

s = 2, D = 1

Also by equating the coefficients of s3 on both sides, we get

0 = A + B + C ∴ C = 
– 3

2

Now L
s s s

–1 2

1 2 2− −

�


�
�

�

�
�
�� � � �

= – –– –1 –1 –11

2

1
2

1

1

3

2

1

2

1

2

1
2

L
s

L
s

L
s

L
s

�
��
�
�� +

−
�
��

�
�� −

�
��

�
�� +

−

�
�
�

�
�
�� �

=
– 1

2
1 2

3

2
2 2⋅ + − + ⋅e e e xx x x
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Hence (1) becomes

y (x) = e e e e xx x x x+ + ⋅1

2
2

3

2
2 2– –

Thus, y (x) =
1

2

3

2
2 2– –e e xex x x+ is the required solution.

���������� ���������

1. L
s s

–1 1

12 +
 �
 is

(a) 1 – cos t (b) 1 + cos t

(c) 1 – sin t (d ) 1 + sin t Ans. a

2. The inverse Laplace transform of 
e

s

s–3
 �
3

 is

(a) (t – 3) u
3
 (t) (b) (t – 3)2 u

3
 (t)

(c) (t – 3)3 u3 (t) (d ) (t + 3) u3 (t) Ans. d

3. If Laplace transform of a function f (t) equals 
e e

s

s s–2 –−
 �
, then

(a) f (t) = 1, t > 1

(b) f (t) = 1, when 1 < t < 2 and 0 otherwise

(c) f (t) = –1, when 1 < t < 3 and 0 otherwise

(d ) f (t) = –1, when 1 < t < 2 and 0 otherwise Ans. d

4. Inverse Laplace transform of 1 is

(a) 1 (b) δ(t)

(c) δ(t – 1) (d ) u (t) Ans. d

5. The inverse Laplace transform of 
ke

s k

as–

2 2+
 is

(a) sin kt (b) cos kt

(c) u (t – a) sin kt (d ) none of these Ans. d

6. For L
sn

–1 1�
�
�
��

(a) n > –1 (b) n ≥ 1

(c) n = 1, 2, .... (d ) n < 1 Ans. c
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7. L
t

t

sin�
�

�
��  =

(a)
1

12s +
(b) cot –1 s

(c) cot –1 (s – 1) (d ) tan–1 s Ans. b

8. Given L
s a

at

a
–1 sin

,
1

2 2+

�


�
�

�

�
�
� =


 �
 then L

s

s a
–1

2 2+
�
�

�
��

 =

(a) cos at (b)
cosat

a

(c) sinat

a
�
��

�
��

2

(d )
sinat

a
Ans. a

9. L
s e

s
–1

–3π

2 9+
�

�

�
�
� =

(a) cos 3t u (t – π) (b) – cos 3t u (t – π)

(c) cos3
3

t u
t −�
��

�
��

π
(d ) none of these Ans. b

10. The Laplace inverse of t  is

(a)
π
s

(b)
1

2

π
s

(c)
π

2
3

2s
(d ) none of these Ans. c

11. A function f (t) is said to be exponential order if

(a) f (t) = et (b) f (t) . ekt = 1

(c) f t beat� � ≤ (d ) f t beat� � > Ans. c

12. The Laplace transform of a function f (t) exists of

(a) it is uniformly continuous

(b) it is piecewise continuous

(c) it is uniformly continuous and of exponential order

(d ) it is piecewise continuous of exponential order Ans. d

13. If L [ f (t)] = f s� � , then L[e–at f t� � ] is

(a) – a f s� � (b) f s a−� �
(c) e f sas– � � (d ) f s a+� � Ans. d
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14. Inverse Laplace transform of (s + 2)–2 is

(a) t e–2t (b) t e2t

(c) e2t (d ) none of these Ans. a

15. Inverse Laplace transform of 
1

4 132s s+ +
 �
 is

(a)
1

2
3e tt–3 sin (b)

1

3
3e tt–2 sin

(c)
1

4
3e tt–2 sin (d )

1

2
33e tt sin Ans. b

16. Laplace transform of f ′(t) is

(a) s f s f� � � �− 0 (b) s f s f� � � �+ 0

(c) s f s f s� � � �– (d ) none of these Ans. a

17. L
s

–1 1

3 5+

�


�
�

�

�
�
�� �

 is

(a)
e tt–3 4

24
(b)

e tt2 2

3

(c)
e t3

24
(d ) none of these Ans. a

18. L
sn

–1 1�
��
�
��  is possible only when n is

(a) zero (b) –ve integer

(c) +ve integer (d ) negative rational Ans. c

19. L
s s

s
–1

2

3

3 7+ +�

�

�
�
�  is

(a) 1 3
7

2

2

+ +t
t

(b) 13
2

2

t
t+

(c) 1 – 3t + 7t2 (d ) none of these Ans. a

20. If L { f (t)} = f s� � ; then L
f s

s
–1 � ��
��
��

�
��
	�

 is

(a) f t dt
t

� �
0
� (b) e f t dtst– � �

0

∞

�

(c) e f t dtt– � �
0

∞

� (d ) none of these Ans. a
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21. If L–1 [φ (s)] = f (t), then L–1 [e–as φ (s)] is

(a) f (t + a) u (t – a) (b) f (t – a) u (t – a)

(c) f (t – a) (d ) none of these Ans. b

22. L
s a

–1 1
2 2+
�
�

�
��  is

(a)
sinat

a
(b)

cosat

a

(c)
1

s
(d ) none of these Ans. a

23. L
s

–1 π
π2 2+

�
�

�
��  is

(a) sin t (b) sin πt

(c) cos πt (d ) none of these Ans. b

24. L
s

s a

–1
2

2 2 2
+

�


�
�
�

�

�
�
�
�
 �

 is

(a)
1

2a
at at atsin cos+� � (b)

1

2a
at at atsin – cos� �

(c)
1

a
at a atsin – cos� � (d ) none of these Ans. a

25. The inverse Laplace transform of 
1

2 7s −  is

(a)
1

2

7

2e
s

(b)
1

2

3

2e
s

(c)
1

2

7
2e

t
(d ) none of these Ans. c

26. L
s

s
–1

2 9+
�
�

�
��

 is

(a) cos 3t (b) sin 3t

(c) e–3t (d ) none of these Ans. a

27. L
s

s a
–1

–2 2

�
�

�
��

 is

(a) cos h at (b) sin h at

(c)
1

a
atsin (d ) eat f (t) Ans. a
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28. L
s

s
–1

2 1+
�
�

�
��

 is

(a) cos t (b) sin t

(c) sin ht (d ) none of these Ans. a

29. L
s

–1 1

12 +
�
�

�
��  is

(a) cos t (b) sin t

(c) cos ht (d ) none of these Ans. b

30. L–1 [F (s)] is

(a)
–1 –1

t
L

d

ds
F s� ��

�
�
�� (b) L

d

ds
F s–1 � ��

�
�
��

(c) –t L–1 [F (s)] (d ) none of these Ans. a

���



MODEL QUESTION PAPER–I
06 MAT 21

Second Semester B.E. Degree Examination
Engineering Mathematics–II

Time : 3 hrs Max. Marks : 100

Note: 1. Answer any five full questions selecting at least two questions from each part.

2. Answer all objective type questions only in first and second writing pages.

3. Answer for objective type questions shall not be repeated.

PART A

1. (a) (i) Lagranges mean value theorem is a special case of: (a) Rolle’s theorem (b) Cauchy’s
mean value theorem (c) Taylor’s theorem (d ) Taylor’s series. [Ans. b]

(ii) The result, “If f ′ (x) = 0 V— x in [a, b] then f (x) is a constant in [a, b]” can be obtained
from: (a) Rolle’s theorem (b) Lagrange’s mean value theorem (c) Cauchy’s mean
value theorem (d ) Taylor’s theorem [Ans. b]

(iii) The rate at which the curve is called: (a) Radius of curvature (b) Curvature (c) Circle
curvature (d ) Evolute [Ans. b]

(iv) The radius of curvature of r = a cos θ at (r, θ) is: (a) a (b) 2a (c) 1/2a (d ) a2

[Ans. d] (04 marks)

(b) Find the radius of curvature at the point 
3

2

3

2

a a
,

�
��

�
��  of the folium x3 + y3 = 3axy.

[VTU, Jan. 2009] (04 marks)

Solution. Refer Unit I.

(c) State and prove Cauchy’s mean value theorem. [VTU, Jan. 2009] (06 marks)

Solution. Refer Unit I.

(d ) If f (x) = log (1 + ex), using Maclaurin’s theorem, show that

log (1 + ex) = log 2 + 
x x x

2 8 192

2 4

+ − + ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ [VTU, Jan. 2008] (06 marks)

2. (a) (i) The value of lim
cos

logx

x

x x→

−
+0

1

1� �  is

(a) 1/2 (b) 1/4
(c) ∞ (d ) None of these. [Ans. a]

(ii) The value of lim cos
x

x
x

→0

1 2

� �  is

(a) 
−1

2
(b)

1

e

(c) e (d ) e . [Ans. b]

427



428 ENGINEERING MATHEMATICS—II

(iii) The necessary conditions for f (x, y) = 0 to have extremum are

(a) fxy = 0, fyx = 0 (b) fxx = 0, fyy = 0,

(c) fx = 0, fy = 0 (d ) fx = 0, fy = 0 and fxx > 0 fyy > 0. [Ans. c]

(iv) The point (a, b) is called a stationary point and the value f (a, b) is called

(a) Stationary point (b) Stationary value

(c) Maximum value (d ) Minimum value. [Ans. b] (04 marks)

(b) Evaluate (i) lim cos
x

x
x

→0

1 2

� � ,   (ii) lim
sinx x x→

−	

�

�
�0

1 1
· [VTU, Jan. 2009] (04 makrs)

Solution

(i) Let k = lim cos
x

x
x

→0

1 2

� � [1∞] form

Taking logarithm on both sides, we get

⇒ loge k = lim
log cos

x

x

x→0 2

� � 0

0
	

�
�
�

 form

Applying L’ Hospital Rule,

loge k = lim
sin cos

x

x x

x→

−
0 2

=
− = −

→

1

2

1

2
1

0
lim

tan
.

x

x

x
� lim

tan
x

x

x→
=�

��
�
��0

1

loge k =
−1

2
k = e–1/2

Thus k =
1

e

(ii) Let k = lim
sinx x x→

−	

�

�
�0

1 1
[∞ – ∞] form

= lim
sin

sinx

x x

x x→

−	


�

�

�

0

0

0
	

�
�
�  form

By L’ Hospital Rule

= lim
cos

cos sinx

x

x x x→

−
+

	

�

�
�0

1 0

0
	

�
�
�  form

Again Applying L’ Hospital Rule

= lim
sin

sin cos cosx

x

x x x x→ − + +
	

�

�
�

=
+

=
0

0

0 2
0

Thus k = 0.



(c) Expand f (x, y) = tan–1 ( y/x) in powers of (x – 1) and ( y – 1) upto second degree terms.

[VTU, Jan. 2009] (06 marks)

Solution. Refer Unit II.

(d ) Discuss the maxima and minima of f (x, y) = x3 y2 (1 – x – y)

[VTU, Jan. 2009] (06 marks)

Solution. Refer Unit II.

3. a. (i) xy dx dy
x

x

2

2

0

1 −

��  is equal to:

(a) 
3

4
(b)

3

8

(c) 
3

5
(d )

3

7
. [Ans. b]

(ii) dx dy
x

0

1

0

1 −

��  represents .......

(a) Area of the triangle vertices (0, 0), (0, 1), (1, 0)

(b) Area of the triangle vertices (0, 0), (0, 1)

(c) Both (a) and (b)

(d ) None of these. [Ans. a]

(iii) β 1

2

1

2
, ............

	

�

�
�

=

(a) 3.1416 (b) 2.1416

(c) 1.1416 (d ) 4.236. [Ans. a]

(iv) xy z dz dy dx2

1

2

1

3

0

2
=��� ...............

(a) 28 (b) 26

(c) 30 (d ) 42. [Ans. b] (04 marks)

(b) Evaluate the integral by changing the order of integration, xe dy dxx y
x −∞

�� 2

00
.

[VTU, Jan. 2009] (04 marks)

Solution I = xe dy dxx y

y

x

x

−

==

∞

�� 2

00

o
x

Y = 0

Y = x
x = 0

Y
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The region is as shown in the figure. On changing the order of integration we must have
y = 0 to ∞, x = y to ∞

I = xe dx dyx y

x yy

−

=

∞

=

∞

�� 2

0

Put
x

y

2

= t ∴ 
2x

y
dx  = dt

x dx = ydt/2

Also when x = y, t = y and

When x = ∞, t = ∞

∴ I = e
y

dt dyt

t yy

−

=

∞

=

∞

�� 2
0

=
y

e dyt

t y
y

2
0

−
=

∞

=

∞

�

=
1

2
0

ye dyy

y

−

=

∞

�
Applying Bernoulli’s rule,

=
1

2
1

0 0
y e ey

y

y

y
− −���

���
−

=

∞ −

=

∞
� � � � � �

=
1

2
0 0 1− −� �

I =
1

2
·

(c) Find the volume of the sphere x2 + y2 + z2 = a2 using triple integration

[VTU, Jan. 2009] (06 marks)

Solution. Here, it is convenient to employ spherical polar coordinates (r, θ, φ). In terms of
these coordinates, the equation of the given sphere is r2 = a2 or r = a.

o
Y

z

r = a

x



In this sphere,

r varies from 0 to a,

θ varies from 0 to π and

φ varies from 0 to 2π.

Hence, the required volume is

V = r dr d d
v

2 sinθ θ φ���

= r dr d d
r

a
2

0

2

00

sinθ θ φ
φ

π

θ

π

===
���

= r dr d d
a

2

0

2

00

× × ��� sin θ θ φ
ππ

=
1

3
 a3 × (– cos π + cos 0) × 2π

=
4

3
3π

a ·

(d ) Express the following integrals in terms of Gamma functions.

[VTU, Jan. 2009] (06 marks)

(i) 
dx

x1 40

1

−� (ii) x

c
dx

c

x0

∞

�
Solution

⇒ (i) I =
dx

x1 40

1

−�
Put x2 = sin θ, i.e., x = sin1/2 θ

So that dx =
1

2
sin–1/2 θ cos θdθ

When x = 0, θ = 0

When x = 1, θ = 
π
2

∴ I =
1

2 1

1 2

20

2
⋅

−

−

� sin cos

sin

θ θ θ

θ

π d

=
1

2
1 2

0

2
sin−� θ θ

π
d

=
1

2 2

1
2

1

1
2

2

2

π ⋅
− +	

�

�
�

− +	




�
�
�

�



�
�
�

Γ

Γ

MODEL QUESTION PAPER—I 431



432 ENGINEERING MATHEMATICS—II

=
π

4

1
4
3
4

⋅

�
��
�
��

�
��
�
��

Γ

Γ

(ii) I =
x

c
dx

c

x0

∞

�
=

x

e
dx

c

x clog0

∞

�
I = e x dxx c c−∞

� log

0

Put x log c = t so that dx = 
dt

clog

x =
t

clog

∴ I = e
t

c

dt

c
t

c

−∞ �
��

�
��� log log0

=
1

1 0log c
t e dtc

c t

� � +
−∞

�

=
Γ c

c
c

+
+

1
1

� �
� �log

·

4. (a) (i) If F  (t) has a constant magnitude then:

(a) 
d

dt
F t� � = 0 (b) F t

d F t

dt
� �

� �
⋅ = 0

(c) F t
d F t

dt
� � � �× = 0 (d ) F t

d F t

dt
� � � �− = 0 . [Ans. b]

(ii) Use the following integral work done by a force F  can be calculated:

(a) Line integral (b) Surface integral

(c) Volume integral (d ) None of these. [Ans. a]

(iii) Green’s theorem in the plane is applicable to:

(a) xy-plane (b) yz-plane

(c) zx-plane (d ) All of these. [Ans. d]

(iv) If all the surfaces are closed in a region containing volume V then the following
theorem is applicable:

(a) Stoke’s theorem (b) Green’s theorem

(c) Gauss Divergence theorem (d ) Only (a) and (b). (04 marks) [Ans. c]



(b) Use the line integral, compute work done by a force F = (2y + 3) i + xz j + ( yz – x)

k  when it moves a particle from the point (0, 0, 0) to the point (2, 1, 1) along the curve
x = 2t2, y = t, z = t3. [VTU, Jan. 2009] (04 marks)

Solution. Refer Unit IV.

(c) Verify Green’s theorem for xy y dx x dy
c

+ +� 2 2� �  where c is bounded by y = x and

y = x2 [VTU, Jan. 2009] (06 marks)
Solution. Refer Unit IV.

(d ) Prove that the cylindrical coordinate system is orthogonal.

[VTU, Jan. 2009] (06 marks)

Solution. Refer Unit IV.

PART B

5. (a) (i) The differential equation 
dy

dx
y= 2  is:

(a) Linear (b) Non-linear (c) Quasilinear (d ) None of these [Ans. b]

(ii) The particular integral of 
d y

dx
y x

2

2
+ = cos  is:

(a) 
1

2
 sin x (b) 

1

2
 cos x (c) 

1

2
x  cos x (d ) 

1

2
x  sin x [Ans. d]

(iii) The general solution of the D.E. (D2 + 1)2 y = 0 is:

(a) c1 cos x + c2 sin x

(b) (c1 + c2 x) cos x + (c3 + c4 x) sin x

(c) c1 cos x + c2 sin x + c3 cos x + c4 sin x

(d ) (c1 cos x + c2 sin x) (c3 cos x + c4 sin x) [Ans. b]

(iv) The set of linearly independent solution of the D.E. 
d y

dx

d y

dx

4

4

2

2
0− =  is:

(a) {1, x, ex, e–x} (b) {1, x, e–x, xe–x}

(c) {1, x, ex, xex} (d ) {1, x, ex, xe–x} [Ans. a] (04 marks)

(b) Solve d y

dx

d y

dx

dy

dx

3

3

2

2
2+ +  = e–x + sin 2x [VTU, July, 2008] (04 marks)

Solution. Here, the A.E. is m3 + 2m2 + m = 0

⇒ m (m2 + 2m + 1) = 0

⇒ m (m + 1)2 = 0

whose roots are 0, –1, –1

∴ C.F. = C1 e0x + (C2 + C3 x) e–x

∴ C.F. = C1 + (C2 + C3 x) e–x
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Also P.I. =
1

23 2D D D+ +
 (e–x + sin 2x)

=
e

D D D

x

D D D

x−

+ +
+

+ +3 2 3 22

2

2

sin

P.I. = P.I.1 + P.I.2

∴ P.I.1 =
e

D D D

x−

+ +3 22
(D → –1)

=
e x−

− + − + −1 2 1 1
3 2� � � � � �

(Dr = 0)

Diefferentiate the denominator and multiply ‘x’, we get

∴ P.I.1 =
xe

D D

x−

+ +3 4 12 (D → –1)

=
xe x−

− + − +3 1 4 1 1
2� � � �

(Dr = 0)

Again differentiate and multiply x.

∴ P.I.1 =
x e

D

x2

6 4

−

+
(D → –1)

P.I.1 =
x e x2

2

−

−

⇒ P.I.2 =
sin2

23 2

x

D D D+ +
(D2 → – 22 = – 4)

=
sin2

4 8

x

D D− − +

=
sin 2

3 8

x

D− −

= −
+

× −
−

sin 2

3 8

3 8

3 8

x

D

D

D

= −
−
−

6 2 8 2

9 642

cos sinx x

D

� �
(D2 → – 22)

∴ P.I.2 =
1

100
 (6 cos 2x – 8 sin 2x)

∴ The general solution is

y = C.F. + P.I.

y = C1 + (C2 + C3 x) e–x – 
1

2
 x2 e–x + 

1

50
 (3 cos 2x – 4 sin 2x)



(c) Solve 
d y

dx
y

2

2
4−  = cos h (2x – 1) + 3x [VTU, Jan. 2009] (06 marks)

Solution. We have

(D2 – 4) y = cos h (2x – 1) + 3x

A.E. is m2 – 4 = 0 or (m – 2) (m + 2) = 0

⇒ m = 2, – 2

∴ C.F. = C1 e2x + C2 e–2x

P.I. =
cos h x

D

x2 1 3

42

− +
−

� �

=
1

2 4 4

3

4

2 1

2

2 1

2 2

e

D

e

D D

x x x− − −

−
+

−

	



�
�

�


�
�

+
−

� �

= P.I.1 + P.I.2 + P.I.3

P.I.1 =
1

2 4

1

2 2 4

2 1

2

2 1

2

e

D

ex x− −

−
=

−
(Dr = 0)

=
1

2 2

1

2 4

1

8

2 1 2 1
2 1x e

D

x e
x e

x x
x

− −
−= =

P.I.2 =
1

2 4

2 1

2

e

D

x− −

−

� �
(D → – 2)

=
1

2 2 4

2 1

2

e x− −

− −

� �

� �
(Dr = 0)

=
1

2 2

2 1x e

D

x− −� �
(D → – 2)

P.I.2 =
−x

8
 e– (2x – 1)

P.I.3 =
3

4 42

3

2

x

D

e

D

x

−
=

−

log� �

(D → log 3)

=
e

xlog

log

3

23 4

� �

� � −

=
3

3 4
2

x

log� � −

Complete solution:

y = C.F. + P.I.

= C1 e2x + C2 e–2x + 
x

8
 e2x – 1 – 

x

8
 e– (2x – 1) + 

3

3 4
2

x

log� � −
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(d) Solve by the method of undetermined coefficients; (D2 + 1) y = sin x.

[VTU, July 2008] (06 marks)

Solution. Refer Unit V.

6. (a) (i) The homogeneous linear differential equation whose auxillary equation has roots 1, 1
and – 2 is:

(a) (D3 + D2 + 2D + 2) y = 0 (b) (D3 + 3D – 2) y = 0

(c) (D3 – 3D + 2) y = 0 (d ) (D + 1)2 (D – 2) y = 0 [Ans. c]

(ii) The general solution of (x2 D2 – xD) y = 0 is :

(a) y = C1 + C2 ex (b) y = C1 + C2 x

(c) y = C1 + C2 x2 (d ) y = C1 x + C2 x2 [Ans. c]

(iii) Every solution of y′′ + ay′ + by = 0 where a and b are constants approaches to zero
as x → ∞ provided.

(a) a > 0, b > 0 (b) a > 0, b < 0

(c) a < 0, b < 0 (d ) a < 0, b > 0 [Ans. a]

(iv) By the method of variation of parameters the W is called.

(a) Work done (b) Wronskian

(c) Euler’s (d ) None of these [Ans. b] (04 marks)

(b) Solve (1 + x)2 y″ + (1 + x) y′ + y = 2 sin [log (1 + x)].

[VTU, Jan. 2009] (04 marks)

Solution

Put t = log (1 + x) or et = 1 + x

Then we have

(1 + x) 
dy

dx
= 1·Dy

(1 + x)2 
d y

dx

2

2 = 12·D (D – 1) y

Hence the given D.E. becomes

[D (D – 1) y + D + 1] y = 2 sin t

i.e, (D2 + 1) y = 2 sin t

A.E. is m2 + 1 = 0 ⇒ m = ± i

∴ C.F. = C1 cos t + C2 sin t

P.I. =
2

12

sin t

D +
(D2 → –12 = –1)

=
2

1 1

sin t

− + (Dr = 0)

=
2

2

2

2

sin t

D

D

D
×



=
4

4 2

cos t

D
(D2 → –12 = –1)

=
4

4

cos t

−
∴ P.I. = – cos t

∴ The complete solution is y = C.F. + P.I.

y = C1 cos t + C2 sin t – cos t

where t = log (1 + x)

y = C1 cos [log (1 + x)] + C2 sin [log (1 + x)] – cos [log (1 + x)]

(c) Solve x
d y

dx
x

d y

dx
y x

x
3

3

3
2

2

2
2 2 10

1
+ + = +���

�
�� · [VTU, Jan. 2009] (06 marks)

Solution. Refer Unit VI.

(d) Solve, by the method of variation of parameters 
d y

dx
y

2

2
+  = tan x.

Solution. Refer Unit VI.

7. (a) (i) The Laplace transform of t2 et is :

(a) 
2

2
2

s −� �
(b)

2

2
3

s −� �

(c) 
1

2
3

s −� �
(d )

1

1
3

s −� �
[Ans. b]

(ii) L [e–t sin ht] is:

(a) 
1

1 1
2

s + +� �
(b)

1

1 1
2

s − +� �

(c) 
1

2s s +� �
(d )

s

s

−
− +

1

1 1
2� �

[Ans. c]

(iii) L [e–3t cos 3t] =

(a) 
s

s s

−
− −

3

6 182
(b)

s

s s

+
+ +

3

6 182

(c) 
s

s s

+
− +

3

6 182 (d )
s

s s

−
+ −

3

6 182 [Ans. b]

(iv) L
t

t

sin	

�

�
�

=

(a) 
1

12s +
(b) cot–1 s

(c) cot–1 (s – 1) (d ) tan–1 s [Ans. b] (04 marks)
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(b) Find the Laplace transform of

2
2 3t t t

t
+ − ⋅cos cos

[VTU, Jan. 2009] (04 marks)

Solution. Refer Unit VII.

Put a = 2, b = 3

Ans. 
1

2

1

2

3

2

2 2

2 2s

s

s−
+ +

+log
log

(c) Find the Laplace transform of the periodic function with period 
2π
w

f (t) = 
sin ,

,

wt t
w

w
t

w

 

       

0

0
2

< <

< <

�

�
��

�
�
�

π

π π
. [VTU, Jan. 2009] (06 marks)

Solution. Refer Unit VII.

(d) Express f (t) = 

cos ,

cos ,

cos ,

t t

t t

t t

0

2 2

3 2

< <
< <

>

�
�
�

��

π
π π

π
. [VTU, Jan. 2009] (06 marks)

Solution. f (t) = cos t + (cos 2t – cos t) u (t – π) + (cos 3t – cos 2t) u (t – 2π)

L [f (t)] = L (cos t) + L [(cos 2t – cos t) u (t – π)] +

L [(cos 3t – cos 2t) u (t – 2π)] ...(1)

Let F (t – π) = cos 2t – cos t

G (t – 2π) = cos 3t – cos 2t

⇒ F (t) = cos 2 (t + π) – cos (t + π)

and G (t) = cos 3 (t + 2π) – cos 2 (t + 2π)

i.e., F (t) = cos 2t + cos t

G (t) = cos 3t – cos 2t

∴ F s� � =
s

s

s

s2 24 1+
+

+

G s� � =
s

s

s

s2 29 4+
−

+

But L [F (t – π) u (t – π)] = e–πs F s� �

and L [G (t – 2π) u (t – 2π)] = e–2πs G s� �

i.e., L [(cos 2t – cos t) u (t – π)] = e
s

s

s

s
s−

+
+

+
	

�

�
�

π
2 24 1

and L [(cos 3t – cos 2t) u (t – 2π)] = e
s

s

s

s
s−

+
−

+
	

�

�
�

2
2 29 4

π



Hence (1) becomes

L [f (t)] =
s

s
e

s

s

s

s
e

s

s

s

s
s s

2 2 2
2

2 21 4 1 9 4+
+

+
+

+
	

�

�
�

+
+

−
+

	

�

�
�

− −π π

Thus L [f (t)] =
s

s
s e

s s

s e

s s

s
s

2 2 2

2

2 21

1

4

1

1

5

4 9+
+

+
+

+
	

�

�
�

−
+ +

−
−

π
π

� � � �

8. (a) (i) Given L
s a

at

a
−

+
	

�

�
�

=1
2 2

1 sin
 then L

s

s a
−

+
	

�

�
�

1
2 2

 is:

(a) cos at (b)
cos at

a

(c) sin at

a
�
��

�
��

2

(d )
sin at

a
[Ans. a]

(ii) L
e

s

s
−

−	



�
�


�1

3  is:

(a) u (t – 1) 
t − 1

2

2� �
(b) u (t – 1) 

t − 1

6

3� �

(c) u (t)
t 2

2
(d ) None of these [Ans. a]

(iii) L
s e

s

s
−

−

+
	



�

�


�1

2 9

π
 is:

(a) cos 3t u (t – π) (b) – cos 3t u (t – π)

(c) cos 3t u (t – π)/3 (d ) e–as L [f (t – a)] [Ans. b]

(iv) The Laplace inverse of t  is:

(a) 
π
s

(b)
1

2

π
s

(c) 
π

2 3 2s
(d ) Does not exist [Ans. c] (04 marks)

(b) Find L
s a

s b
− +

+
�
��

�
��

	

�

�
�

1 log . [VTU, Jan. 2009] (04 marks)

Solution. Let F s� � = log
s a

s b

+
+

�
��

�
��  = log (s + a) – log (s + b)
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− ′F s� � = −
+

−
+

�
�
�

�
�
�

1 1

s a s b

Now L F s− − ′	

�

�
�

1 � � = L
s b

L
s a

− −

+
	

�

�
�

−
+

	

�

�
�

1 11 1

i.e., t f (t) = e–bt – e–at

Thus, f (t) =
e e

t

bt at− −−
·

(c) Apply Convolution theorem to evaluate L
s

s a

−

+

	




�
�
�

�



�
�
�

⋅1

2 2 2
� �

[VTU, Jan. 2009] (06 marks)

Solution. Refer Unit VIII.

(d) Solve the differential equation by Laplace transform onethod, y″ + 4y′ + 3y = e–t and the
initial conditions y (0) = y′ (0) = 1. [VTU, Jan. 2009] (06 marks)

Solution. Refer Unit VIII.
���



MODEL QUESTION PAPER–II
06 MAT 21

Second Semester B.E. Degree Examination
Engineering Mathematics–II

Time : 3 hrs Max. Marks : 100

Note: 1. Answer any five full questions selecting at least two questions from each part.

2. Answer all objective type questions only in first and second writing pages.

3. Answer for objective type questions shall not be repeated.

PART A

1. (a) (i) The radius of curvature of y = e–x2 at (0, 1) is
(a) 1 (b) 2

(c) 
1

2
(d )

1

3
[Ans. c]

(ii) The radius of curvature of the circle of curvature is
(a) 1 (b) ρ

(c) 
1

ρ
(d ) ρ2 [Ans. b]

(iii) The first three non-zero terms in the expansion of ex tan x is

(a) x + x2 + 
1

3
 x3 (b) x

x
x+ +

3
5

3

2

5

(c) x x x+ +2 35

6
(d ) x

x
x+ +

3
5

3

1

6
[Ans. c]

(iv) The radius of curvaluve r = a sin θ at (r, θ) is

(a) 1 (b) 0

(c) 2 (d ) None of these [Ans. d ] (04 marks)

(b) Find the radius of curvature at x = 
πa

4
 on y = a sec x

a
�
��
�
��

.

[VTU, July 2008] (04 marks)
Solution. Refer Unit I.

(c) Verify Rolle’s theorem for the function f (x) = (x – a)m (x – b)n in [a, b] where m > 1
and n > 1. [VTU, Jan. 2008] (06 marks)

Solution. Refer Unit I.

(d ) Expand esin x up to the term containing x4 by Maclaurin’s theorem. [VTU, Jan. 2008]

(06 marks)

Solution. Refer Unit I.
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2. (a) (i) The value of lim
x→0  x log x is

(a) 1 (b) 0

(c) 2 (d ) ∞ [Ans. b]

(ii) The value of lim
x a→  log 2 − ���

�
��

	

�

�
�

x

a
 cot (x – a) is

(a) 
−1

a
(b) 1

(c) 2 (d) None of these [Ans. a]

(iii) If f (x, y) has derivatives upto any order with in a neighbourhood of a point (a, b) then
f (x, y) can be extended to the

(a) Finite series (b) Infinite series

(c) Some extension limits (d) None of these [Ans. b]

(iv) If AC – B2 < 0 then f has neither a maximum nor a minimum at (a, b) the point
(a, b) is called :

(a) Saddle point (b) Maximum at (a, b)

(c) Minimum at (a, b) (d ) Both (a) and (b) [Ans. a] (04 marks)

(b) Evaluate lim cot
x x

x
→

−�
��

�
��0 2

21
. [VTU, Jan. 2005] (04 marks)

Solution. Refer Unit II.

(c) Expand ex log (1 + y) by Maclaurin’s theorem up to the third degree term.

[VTU, Jan. 2008] (06 marks)

Solution. Refer Unit II.

(d ) Determine the maxima/minima of the function sin x + sin y + sin (x + y).

[VTU, Jan. 2005] (06 makrs)

Solution. Refer Unit II.

3. (a) (i) For f x y dx dy
x

,� �
∞∞

��0 , the change of order is

(a) f x y dx dy
x

,� �
0

∞∞

�� (b) f x y dx dy
x

,� �
∞∞

��0
(c) f x y dx dy

y
,� �

00 ��
∞

(d ) f x y dx dy
x

,� �
00 ��

∞
[Ans. c]

(ii) The value of the integral 
dx

x22

2

−�  is

(a) 0 (b) 0.25

(c) 1 (d ) ∞ [Ans. d ]
(iii) The volume of the tetrahedron bounded by the coordinate planes and the plane

x

a

y

b

z

c
+ + = 1  is



(a) 
abc

2
(b)

abc

3

(c) 
abc

6
(d )

24

abc
[Ans. c]

(iv)
Γ
Γ

7

5

� �
� �

 is

(a) 30 (b) 42

(c) 48 (d ) 17 [Ans. a] (04 marks)

(b) Find the value of xy x y dx dy+�� � �  taken over the region enclosed by the curve y = x

and y = x2. [VTU, Jan. 2008, July 2008] (04 marks)

Solution. Refer Unit III.

(c) Using the multiple integrals find the volume of the ellipsoid 
x

a

y

b

z

c

2

2

2

2

2

2
1+ + = .

[VTU, Jan. 2008] (06 marks)

Solution. Refer Unit III.

(d ) With usual notation show that β (m, n) = 
Γ Γ
Γ
m n

m n

� � � �
� �

. .

+
[VTU, Jan, 2008] (06 marks)

4. (a) (i) If all the surfaces are enclosed in a region containing volume V then the following
theorem is applicable.

(a) Stoke’s theorem (b) Green’s theorem

(c) Gauss divergence theorem (d ) Only (a) and (b) [Ans. c]

(ii) The component of ∇φ in the direction of a unit vector a  is ∇φ · a  and is called

(a) The directional derivative of φ in the direction a .

(b) The magnitude of φ in the direction a .

(c) The normal of φ in the direction a .

(d ) None of these [Ans. a]

(iii) For a vector function F , there exists a scalar potential only when

(a) div F  = 0 (b) gred (div F ) = 0

(c) cur F  = 0 (d ) F  curl F  = 0 [Ans. c]

(iv) Which of the following is true:

(a) curl A B⋅��
�
�  = curl A  + curl B

(b) div curl A  = ∇ A
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(c) div A B⋅��
�
�  = div A  div B

(d ) div cur A  = 0 [Ans. d ] (04 marks)

(b) Evaluate F dr⋅�0  where F  = x2 i + y2 j + z2 k and c is given by x = cos t, y = sin t,

z = t, 0 ≤ t ≤ π. [VTU, Jan. 2006] (04 marks)

Solution. Refer Unit IV.

(c) Evaluate xy x dx x y− +� 2 2� � dy where c is the closed formed by y = 0, x = 1 and

y = x (a) directly as a line integral (b) by employing Green’s theorem.

[VTU, Jan. 2007] (06 marks)

Solution. Refer Unit IV.

(d ) If f and g are continuously differentiable show that ∇f × ∇g is a solenoidal.

Solution. Refer Unit IV.

PART B

5. (a) (i) The general solution of the differential equation (D4 – 6D3 + 12D2 – 8D) y = 0 is

(a) y = c1 + [c2 + c3 x + c4 x2) e2x

(b) y = (c1 + c2
 x + c3 x2) e2x

(c) y = c1 + c2 x + c3 x2 + c4 x4

(d) y = c1 + c2 x + c3 x2 + c4 e2x [Ans. a]

(ii) The particular integral of 
d y

dx

dy

dx

2

2
+  = x2 + 2x + 4 is

(a) 
x

x
2

3
4+ (b) 

x3

3
4+

(c) 
x

x
3

3
4+ (d) 

x
x

3
2

3
4+ [Ans. c]

(iii) The particular integral of (D2 + a2) y = sin ax is

(a) 
−x

a
ax

2
cos (b) 

x

a
ax

2
cos

(c) 
−ax

ax
2

cos (d) 
ax

ax
2

cos [Ans. a]

(iv) The solution of the differential equation (D2 – 2D + 5)2 y = 0 is

(a) y = e2x {(c1 + c2 x) cos x + (c3 + c4 x) sin x}

(b) y = ex {(c1 + c2 x) cos 2x + (c3 + c4 x) sin 2x}

(c) y = (c1 ex + c2 e2x) cos x + (c3 ex + c4 e2x) sin x

(d) y = ex {4 cos x + c2 cos 2x + c3 sin x + c4 sin 2x} [Ans. b] (04 marks)



(b) Solve:

d y

dx
y

3

3
−  = (ex + 1)2 [VTU, July 2007] (04 marks)

Solution. Refer Unit V.
(c) Solve :

d y

dx

dy

dx
y

2

2
4 4− + = 3x2 e2x sin 2x [VTU, July 2007] (06 marks)

Solution. Refer Unit V.

(d ) Solve by the method of undetermined coefficients

y″ – 3y′ + 2y = x2 + ex [VTU, Jan. 2008] (06 marks)

Solution. Refer Unit V.

6. (a) (i) The general solution of (x2 D2 – xD) y = 0 is

(a) y = c1 + c2 e
x (b) y = c1 + c2 x2

(c) y = c1 + c2 x2 (d ) y = c1 x + c2 x2 [Ans. c]

(ii) For the variation of parameters the value of W is

(a) y y y y1 2 2′ − ′ (b) y y y y2 2 1 2′ − ′

(c) y y y y2 1 2 2′ − ′ (d ) y y y y2 1 2 1′ − [Ans. a]

(iii) The DE in which the conditions are specified at a single value of the independent
variable say x = x0 is called

(a) Initial value problem (b) Boundary value problem

(c) Final value (d ) Both (a) and (b) [Ans. a]

(iv) The DE in which the conditions are specified for a given set of n values of the
independent variable is called a

(a) Intial value problem (b) Boundary value problem

(c) Final value (d ) Both (a) and (b) [Ans. b] (04 marks)
(b) Solve by the method of variation parameters y″ + y = tan x.

[VTU, Jan. 2008] (04 marks)
Solution. Refer Unit VI.
(c) Solve:

x
d y

dx
x

dy

dx
y2

2

2
2+ +  = x cos (log x). [VTU, July 2008] (06 marks)

Solution. Refer Unit VI.
(d) Solve:

d y

dx

dy

dx
y

2

2
4 3+ + = e–x subject to the conditions is y (0) = y′ (0).

[VTU, Jan. 2008] (06 marks)
Solution. Refer Unit VI.
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7. (a) (i) The Laplace transform of sin2 3t is:

(a) 
3

362s +
(b)

6

362s s +� �

(c) 
18

362s s +� �
(d )

18

362s +
[Ans. c]

(ii) L [e–3t cos 3t] is:

(a) 
s

s s

−
− −

3

6 182 (b)
s

s

+
+ +

3

65 182

(c) 
s

s s

+
+ +

3

6 182 (d )
s

s s

−
+ −

3

6 182 [Ans. b]

(iii) L [(t2 + 1) u (t – 1)]

(a) 2
1 2

3
e

x s

s
s–

+ +� �
(b) e

s s

s
s–

1 2

3

+ +� �

(c) 2
1 2

3
e

s s

s
s

+ +� �
(d ) None of these [Ans. a]

(iv) The Laplace transform of a function f (t) exists of

(a) It is uniformly continuous

(b) It is piecewise continuous

(c) It is uniformly continuous and of exponential order

(d ) It is piecewise continuous of exponential order [Ans. d ] (04 marks)

(b) Prove that

e t t dtt–3 sin
0

∞

�  = 
3

50
· [VTU, Jan. 2006] (04 marks)

Solution. Refer Unit VII.
(c) A periodic function f (t) of period 2a is defined by

f (t) = 
a t a

a a t a

for

for

0

2

≤ <
≤ ≤

�
�
� –

show that L {f (t)} = 
a

s
b

as
tan

2
�
��
�
�� . [VTU, July 2008] (06 marks)

Solution. Refer Unit VII.
(d ) Express f (t) in terms of the Heavisides unit step function and find its Laplace transforms

f (t) =  

t t

t t

t

2 0 2

4 2 4

8 4

,

,

,

< <
< <

>

�

�
�

�
�

[VTU, Jan. 2006] (06 marks)

Solution. Refer Unit VII.



8. (a) (i) L
s

–1 1

32 2+
	

�

�
�

 is:

(a) 
1

3
3sin t (b) sin h 3t

(c) 
1

3
3sin h t (d )

1

3
3cos t [Ans. a]

(ii) L
sn

–1 1
1+

	

�

�
�

 is:

(a) 
t

n

n

Γ � � (b)
t

n

n−1

Γ � �

(c) 
t

n

n+

+

1

1Γ � � (d )
t

n

n−

−

1

1Γ � � [Ans. b]

(iii) Laplace transform of f ″ (t) is

(a) s2 L {f (t)} – s f (0) – f ′ (0) (b) s2 L {f (t)} – f ′ (0)

(c) s2 L {f (t)} + s f (0) + f (0) (d ) None of these [Ans. a]

(iv) For L
sn

− 	

�
�
�

1 1
 is:

(a) n > –1 (b) n ≥ –1

(c) n = 1, 2, .... (d ) n < 1 [Ans. c] (04 marks)

(b) Find the inverse Laplace transform of 
2 1

5 62

s

s s

−
− +

· [VTU, Jan. 2006] (04 marks)

Solution. Refer Unit VIII.

(c) By employing convolution theorem; evaluate

 L
s

s a s b

–1
2

2 2 2 2+ +

	



�
�

�


�
�� �� � · [VTU, Jan. 2008] (06 marks)

Solution. Refer Unit VIII.

(d ) Solve using Laplace transforms

d y

dt

dy

dt
y

2

2
3 2− +  =  4e2t

given that y (0) = –3 and y′ (0) = 5. [VTU, July 2008] (06 marks)

Solution. Refer Unit VIII.

���
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