This webinar brought to you by the Relion ${ }^{\oplus}$ product family Advanced protection and control IEDs from ABB

Relion. Thinking beyond the box.
Designed to seamlessly consolidate functions, Relion relays are smarter, more flexible and more adaptable. Easy to integrate and with an extensive function library, the Relion family of protection and control delivers advanced functionality and improved performance.

ABB Protection Relay School Webinar Series Disclaimer

ABB is pleased to provide you with technical information regarding protective relays. The material included is not intended to be a complete presentation of all potential problems and solutions related to this topic. The content is generic and may not be applicable for circumstances or equipment at any specific facility. By participating in ABB's web-based Protective Relay School, you agree that ABB is providing this information to you on an informational basis only and makes no warranties, representations or guarantees as to the efficacy or commercial utility of the information for any specific application or purpose, and ABB is not responsible for any action taken in reliance on the information contained herein. ABB consultants and service representatives are available to study specific operations and make recommendations on improving safety, efficiency and profitability. Contact an ABB sales representative for further information.

ABB Protective Relay School Webinar Series, Michael Fleck, July 9, 2013
Symmetrical Components Examples
\& Application
Power System Fundamentals

Profile Michael Fleck, P.E.

> Regional Technical Manager, Midwest USA
$>$ BSEE, Rose-Hulman Inst. of Technology, Indiana
> MSEE, Arizona State University, Arizona
> Professional Engineer (P.E.), Indiana
> IEEE - Power \& Energy Society Member
> Experiences:
\checkmark ABB DA Regional Technical Manager, configuration of products to meet customer applications, customer training
$\checkmark \quad$ Protection and Control Engineer, system modeling, control design, mentoring junior engineers for national consulting company,
\checkmark Transmission and Distribution P\&C engineer, system modelling, system study, design, relay setting, trouble shooting for utility company

Learning Objectives

- What we will discuss
- Overview of converting phase quantities to symmetrical quantities and symmetrical to phase
- Sequence Impedance networks - How do we build one?
- Evaluating a Impedance network - Example Problem
- Insights into the Example Problem
- Why do we use this method?
- Not using it would require writing loop equations for the system and solving. - For simple systems it's not an easy task
- To date it is still the only real practical solution to problems of unbalanced electrical circuits.

Symmetrical Components

- The method of symmetrical components was discovered by Dr Charles Fortescue while investigating problems of a single phase railway system.
- Introduced in 1918 in a classic AIEE transaction "Method of Symmetrical Co-ordinates Applied to Solution of Polyphase Networks".
- The application to the analysis and operation of three phase power systems was broadened by C. F. Wagner, R. D. Evans through a series of articles they published in the Westinghouse magazine "The Electric Journal" that ran from March 1928 through November 1931

Symmetrical Components

- Symmetrical Components is often referred to as the language of the Relay Engineer but it is important for all engineers that are involved in power.
- The terminology is used extensively in the power engineering field and it is important to understand the basic concepts and terminology.
- Used to be more important as a calculating technique before the advanced computer age.
- Is still useful and important to make sanity checks and back-of-an-envelope calculation.

Symmetrical Components

- Balanced load supplied by balanced voltage results in balanced current.
i. This situation results in only positive sequence components
ii. Seldom achievable in real world applications
- Positive Sequence currents produce only positive sequence voltages, Negative sequence currents produce only negative sequence voltages, and zero sequence currents produce only zero sequence voltages
- For unbalanced systems: Positive Sequence currents produce positive, negative and sometimes zero sequence voltages, Negative sequence currents produce positive, negative and sometimes zero sequence voltages, and zero sequence currents produce positive, negative, and zero sequence voltages

Symmetrical Components

-For the General Case of 3 unbalanced voltages

 - $\mathbf{6}$ degrees of freedom
-Can define 3 sets of voltages designated as positive sequence, negative sequence and zero sequence

Symmetrical Components Positive Sequence

- 2 degrees of freedom

-a is operator $\mathbf{1 / 1 2 0}{ }^{\mathbf{0}}$

Symmetrical Components
 Negative Sequence

-2 degrees of freedom

$.120^{\circ}$

$$
\begin{aligned}
& \cdot \mathrm{V}_{\mathrm{A} 2}=\mathrm{V}_{\mathrm{A} 2} \\
& \cdot \mathbf{V}_{\mathrm{B} 2}=\mathrm{aV}_{\mathrm{A} 2} \\
& \cdot \mathrm{~V}_{\mathrm{C} 2}=\mathrm{a}^{2} \mathrm{~V}_{\mathrm{A} 2}
\end{aligned}
$$

-a is operator $\mathbf{1 / 1 2 0}{ }^{\mathbf{0}}$

Symmetrical Components Zero Sequence

-2 degrees of freedom

$$
\cdot V_{\mathrm{A} 0}=\mathrm{V}_{\mathrm{B} 0}=\mathrm{V}_{\mathrm{C} 0}
$$

Symmetrical Components

-Reforming the phase voltages in terms of the symmetrical component voltages:

$$
\begin{aligned}
& \mathbf{V}_{\mathrm{A}}=\mathbf{V}_{\mathrm{A} 0}+\mathbf{V}_{\mathrm{A} 1}+\mathbf{V}_{\mathrm{A} 2} \\
& \mathbf{V}_{\mathbf{B}}=\mathbf{V}_{\mathbf{B} 0}+\mathbf{V}_{\mathbf{B} 1}+\mathbf{V}_{\mathbf{B} 2} \\
& \mathbf{V}_{\mathrm{C}}=\mathbf{V}_{\mathrm{C} 0}+\mathbf{V}_{\mathrm{C} 1}+\mathbf{V}_{\mathrm{C} 2}
\end{aligned}
$$

-What have we gained? We started with 3 phase voltages and now have 9 sequence voltages. The answer is that the 9 sequence voltages are not independent and can be defined in terms of other voltages.

Symmetrical Components

Rewriting the sequence voltages in term of the Phase A sequence voltages:

$$
\begin{array}{ll}
\mathbf{V}_{\mathrm{A}}=\mathbf{V}_{\mathrm{A} 0}+\mathbf{V}_{\mathrm{A} 1}+\mathbf{V}_{\mathrm{A} 2} \\
\mathbf{V}_{\mathrm{B}}=\mathbf{V}_{\mathrm{A} 0}+\mathbf{a}^{2} \mathbf{V}_{\mathrm{A} 1}+\mathbf{a} \mathbf{V}_{\mathrm{A} 2} & \stackrel{\operatorname{Drop} \mathrm{~A}}{\longrightarrow} \\
\mathbf{V}_{\mathrm{C}}=\mathbf{V}_{\mathrm{A} 0}+\mathbf{a} \mathbf{V}_{\mathrm{A} 1}+\mathbf{a}^{2} \mathbf{V}_{\mathrm{A} 2} & \mathbf{V}_{\mathrm{B}}=\mathbf{V}_{0}+\mathbf{V}_{1}+\mathbf{a}_{2} \\
\mathbf{V}_{\mathrm{C}}=\mathbf{V}_{0}+\mathbf{a}+\mathbf{a} \mathbf{V}_{1}+\mathbf{a}^{2} \mathbf{V}_{2}
\end{array}
$$

Suggests matrix notation:

$$
\begin{aligned}
& \left(\begin{array}{c}
\mathbf{V}_{A} \\
\mathbf{V}_{B} \\
\mathbf{V}_{\mathrm{C}}
\end{array}\right]\left(\begin{array}{ccc}
\mathbf{1} & \mathbf{1} & \mathbf{1} \\
\mathbf{1} & \mathbf{a}^{2} & \mathbf{a} \\
\mathbf{1} & \mathbf{a} & \mathbf{a}^{2}
\end{array}\right)
\end{aligned}\left(\begin{array}{c}
\mathbf{V}_{0} \\
\mathbf{V}_{1} \\
\mathbf{V}_{2}
\end{array}\right]
$$

Symmetrical Components

[$\left.\mathbf{V}_{\mathbf{P}}\right]=$ Phase Voltages
$\left[\mathrm{V}_{\mathrm{s}}\right]=$ Sequence Voltages
$[\mathbf{A}]=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & \mathrm{a}^{2} & \mathrm{a} \\ 1 & \mathrm{a} & \mathrm{a}^{2}\end{array}\right) \quad\left[\mathbf{V}_{\mathbf{P}}\right]=[\mathbf{A}]\left[\mathbf{V}_{\mathbf{S}}\right]$
Pre-multiplying by $[A]^{-1}$
$[A]^{-1}\left[\mathbf{V}_{\mathbf{P}}\right]=[A]^{-1}[\mathbf{A}]\left[\mathbf{V}_{\mathbf{S}}\right]=[I]\left[\mathbf{V}_{\mathrm{S}}\right]$
$\left[\mathbf{V}_{\mathrm{S}}\right]=[\mathrm{A}]^{-1}\left[\mathrm{~V}_{\mathrm{P}}\right]$
$[\mathbf{A}]^{-1}=1 / 3\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & a & a^{2} \\ 1 & a^{2} & a\end{array}\right) \quad\left[\mathbf{V}_{\mathbf{S}}\right]=[\mathbf{A}]^{-1}\left[\mathbf{V}_{\mathbf{P}}\right]$

Symmetrical components \& Fault Analysis
Impedance Networks

Symmetrical Components

Typical System Parameter used in Symmetrical Component Analysis

- Transmission Lines
- Transformers
- Generators

Symmetrical Components - Line Constants

Transmission Line Impedance

- Size and type of phase and ground conductors
- Geometric configuration of the transmission line
- Transpositions over the length of the line
- Shunt capacitance is generally neglected for fault studies

Transmission Line Models

The general models for transmission lines

Positive and Negative Sequence

-Zero Sequence

Transmission Line Models

Positive \& Negative Sequence ($Z_{1}=Z_{2}$)

- $\mathbf{Z}_{\mathbf{1}}=\mathrm{R}_{\mathbf{1}}+\mathrm{j} \mathrm{X}_{1}$
- $\mathrm{R}_{1}=r / n$ for n conductors per phase:
- r can be found in lookup tables showing cable resistance

Note skin effect: $r_{\text {dc }}<r_{60 H z}$

- X_{1} can be found from the general equation for inductance

$$
L_{1}=2 \times 10^{-7} \ln \frac{D_{E Q}}{D_{S L}} \text { Henries/meter }
$$

Transmission Line Models

$$
\begin{aligned}
& X_{1}=2 \pi f L_{1}=.1213 \ln \frac{D_{E Q}}{D_{S L}} \quad \Omega \text { per mile for } 60 \mathrm{~Hz} \\
& D_{E Q}=\left(D_{a b} \times D_{b c} \times D_{c a}\right)^{\frac{1}{3}}
\end{aligned} \text { a }
$$

Transmission Line Models

How to calculate D_{SL}
If there are \mathbf{n} conductors per phase, D_{SL} is the distance from every conductor in the bundle to every other conductor to the $1 / \mathrm{n}^{2}$
.For 3 conductor bundle $\quad D_{s L}=[(d)(d)(g m r)(d)(g m r)(d)(g m r)(d)(d)]^{1 / 9}$

$$
D_{S L}=\left[(g m r) d^{2}\right]^{1 / 3}
$$

For a 1-conductor bundle: $D_{S L}=g m r$
For a 2-conductor bundle: $D_{s L}=\sqrt{g m r \times d}$
For a 3-conductor bundle: $D_{S L}=\sqrt[3]{g m r \times d^{2}}$
For a 4-conductor bundle: $D_{s L}=1.091 \times \sqrt[4]{g m r \times d^{3}}$

Transmission Line Models

Example:

Find the positive sequence model for 20 mile of transmission line with 2conductor bundle 2156 KCM ACSR Conductors (Bluebird) and the following conductor configuration:
Found from cable lookup table:
Diameter $=1.762 \mathrm{in}$. Radius $=0.881 \mathrm{in} .=0.0734 \mathrm{ft}$.
$\mathrm{gmr}=0.0586 \mathrm{ft}$. Resistance $=0.0515 \Omega / \mathrm{mile}$
Find: Positive and Negative Sequence Impedance for a 20 mile line
$\rightarrow \quad \leftarrow 18$ "

Transmission Line Models

Jode word	Aluminum area, cmil	Stranding Al/St	Layers of aluminum	Outside diameter, in	Resistance			$\begin{aligned} & \mathrm{GMR}=\gamma^{-} \\ & D_{s}, \mathrm{ft} \end{aligned}$	Reactance 1-ft spacin
					Ac, 60 Hz				
					$\begin{aligned} & \mathrm{D} 0,20^{\circ} \mathrm{C}, \\ & \Omega / 1,000 \mathrm{ft} \end{aligned}$	$\begin{aligned} & 20^{\circ} \mathrm{C}, \\ & \Omega / \mathrm{mi} \end{aligned}$	$\begin{aligned} & 50^{\circ} \mathrm{C}, \\ & \Omega / \mathrm{mi} \end{aligned}$		Inductive $X_{a}, \Omega / \mathrm{mi}$
Naxwing sartridge)strich Merlin innet)riole כhickadee bis 'elican licker Iawk Ien)sprey 'arakeet)ove took irosbeak rake 'ern ail ardinal rtolan luejay inch ittern hessant obolink lover apwing alcon luebird	266.800	18/1	2						
	266,800	26/7	2	0.609 0.642	0.0646 0.0640	0.3488	0.3831	0.0198	0.476
	300,000	26/7	2	0.642 0.680	0.0640 0.0569	0.3452	0.3792	0.0217	0.465
	336.400	18/1	2	0.684	0.0569 0.0512	0.3070 0.2767	0.3372	0.0229	0.458
	336.400	26/7	2	0.684 0.721	0.0512 0.0507	0.2767 0.2737	0.3037	0.0222	0.462
	336,400	30/7	2	0.741	0.0507 0.0504	0.2737 0.2719	0.3006	0.0243	0.451
	397,500	18/1	2	0.743	0.0504 0.0433	0.2719 0.2342	0.2987	0.0255	0.445
	397,500 477,000	26/7	2	0.783	0.0433 0.0430	0.2342 0.2323	0.2572 0.2551	0.0241	0.452
	477,000 477,000	18/1	2	0.814	0.0361	0.1957	0.2551 0.2148	0.0264	0.441
	477,000 477,000	$24 / 7$ $26 / 7$	2	0.846	0.0359	0.1943	0.2134	0.0264 0.0284	0.441 0.432
	477,000	$26 / 7$ $30 / 7$	2	0.858	0.0357	0.1931	0.2120	0.0289	0.432 0.430
	556,500	$30 / 7$ $18 / 1$	2	0.883 0.879	0.0355	0.1919	0.2107	0.0304	0.424
	556,500	18/17	2	0.879 0.914	0.0309	0.1679	0.1843	0.0284	0.432
	556,500	26/7	2	0.914 0.927	0.0308 0.0307	0.1669	0.1832	0.0306	0.423
	636,000	24/7	2	0.927 0.977	0.0307 0.0269	0.1663 0.1461	0.1826	0.0314	0.420
	636,000	26/7	2	0.977 0.990	0.0269 0.0268	0.1461 0.1454	0.1603	0.0327	0.415
	795,000	26/7	2	1.108	0.0268 0.0215	0.1454 0.1172	0.1596 0.1284	0.0335	0.412
	795,000	45/7	3	1.063	0.0217	0.1188	0.1284 0.1302	0.0373	0.399
	954,000 954,000	45/7	3	1.165	0.0181	0.0997	0.1092	0.0386	0.406
	954,000 $1,033,500$	54/7	3	1.196	0.0180	0.0988	0.1082	0.0402	0.395
	1,033,500	$45 / 7$ $45 / 7$	3	1.213	0.0167	0.0924	0.1011	0.0402	0.390 0.390
	1,113,000	54/19	3 3	1.259	0.0155	0.0861	0.0941	0.0415	0.386
	1,272,000	45/7	3	1.293 1.345.	0.0155	0.0856	0.0937	0.0436	0.380
	1,272,000	54/19	3 3	1.345 1.382	0.0136 0.0135	0.0762	0.0832	0.0444	0.378
	1,431,000	45/7	3	1.382 1.427	0.0135 0.0121	0.0751	0.0821	0.0466	0.372
	1,431,000	54/19	3	1.427 1.465	0.0121 0.0120	0.0684 0.0673	0.0746	0.0470	0.371
	1,590,000	45/7	3	1.465 1.502	0.0120 0.0109	0.0873 0.0823	0.0735	0.0494	0.365
	1,590,000	54/19	3	1.545	0.0108	0.0623 0.0612	0.0678 0.0667	0.0498	0.364
	2,156,000	84/19	4	1.762	0.0080			0.0523 0.0586	0.358 0.344

Transmission Line Example

Diameter $=1.762 \mathrm{in}$. Radius $=0.881 \mathrm{in} .=0.0734 \mathrm{ft}$. $\mathrm{gmr}=0.0586 \mathrm{ft}$. Resistance $=0.0515 \Omega / \mathrm{mile}$

$$
\begin{gathered}
r_{1}=\frac{.0515}{2}=.0258 \Omega / m i \\
D e q=[(30)(30)(60)]^{1 / 3}=(54,000)^{1 / 3}=37.8 \mathrm{ft} \\
D_{s L}=[(1.5)(.0586)]^{1 / 2}=0.296 \mathrm{ft} \\
x_{1}=.1213 \ln \frac{37.8}{.296} \Omega / \mathrm{mi}
\end{gathered}
$$

Transmission Line Example

$$
\begin{gathered}
Z_{1}=Z_{2}=\left(r_{1}+x_{1}\right) \text { Line }_{\text {lengh }} \\
Z_{1}=Z_{2}=0.52+j 11.8 \Omega=11.81 \angle 87.57^{\circ}
\end{gathered}
$$

$$
11.81 \angle 87.57^{\circ}
$$

Transmission Line Models Z0

- If la $+\mathrm{lb}+\mathrm{lc} \neq 0$ there will be neutral current flow
- If the neutral is grounded all of part of the neutral current will flow in the ground
- Need to determine the impedance to the flow of this current: Z0
- Made possible by Carson's work which shows that earth can be modeled by one or more equivalent conductors
- We will use one equivalent conductor below the earth's surface for each real conductor.

Transmission Line Models Z0

Earth Surface

Just one OHGW to simplify work but showing principal

Transmission Line Models Z0 - Carson's Formula
$D_{k^{\prime} k^{\prime}}=D_{k k}=g m r$ of the overhead conductor
$D_{k k^{\prime}}=658.5 \sqrt{\rho / f}$ Meters
$\rho=$ earth resistively in ohm-meters
$R_{k^{\prime}}=9.869 * 10^{-7} f$ Ohms / meter
where: $\mathrm{f}=$ frequency in Hz

Transmission Line Models - Z0

Z_{0} is much more difficult to find and depend on:

- Ground resistance
- Conductor height above ground
- Distance from phase conductors to overhead ground wires (OHGW)
- Characteristics of OHGW
- Z0 > Z1 due to mutual coupling between phases. Mutual coupling to adjacent circuits must be considered
- Rule of Thumb: $2 Z 1<Z 0<4 Z 1$

Transformer Constants

- Factors to Consider
- Polarity
- Three Phase Connections
- Number of Windings
- Core Design

Transformer Models

The general models for transformer lines

$$
j X_{1}=j X_{2}=j X_{0}
$$

The one exception to this is when we have a three phase core-type transformer

Positive and Negative Sequence Connections

Zero Sequence
 Dependant on Transformer winding connections

Transformer Connections for Zero Sequence

$I_{a}+I_{b}+I_{c}$ is not necessarily 0 if we only look at Low Voltage circuit But we know $\mathrm{I}_{\mathrm{L}}=\mathrm{nl}_{\mathrm{H}}: \mathrm{I}_{\mathrm{a}}=\mathrm{nI}_{\mathrm{A}} \mathrm{I}_{\mathrm{b}}=\mathrm{nI}_{\mathrm{B}}$ and $\mathrm{I}_{\mathrm{C}}=\mathrm{nl}_{\mathrm{C}}$ Since $I_{A}+I_{B}+I_{C}=0, I_{a}+I_{b}+I_{c}=0$ and $I_{0}=0$

$$
\mathrm{L}_{0}-\mathrm{Z}_{0}=\mathrm{Z}_{\mathrm{L}}+\mathrm{Z}_{\mathrm{H}} \quad \mathrm{H}_{0} \quad \begin{aligned}
& \text { No zero sequence current } \\
& \text { flow through transformer }
\end{aligned}
$$

Transformer Connections for Zero Sequence

$I_{a}+I_{b}+I_{c}$ is not necessarily 0 and $I_{A}+I_{B}+I_{C}$ is not necessarily. Therefore I_{0} is not necessarily 0 ,
I_{0} can flow through the transformer.

Transformer Connections for Zero Sequence

$I_{a}+I_{b}+I_{c}$ is not necessarily 0 and $I_{A} / n+I_{B} / n+I_{C} / n$ is not necessarily 0

Transformer Connections for Zero Sequence

$I_{a}+I_{b}+I_{c}=0 \quad I_{A} / n+I_{B} / n+I_{C} / n$ is not necessarily 0, but $I_{A}+I_{B}+I_{C}=0$
-No zero sequence current flow

Transformer Connections for Zero Sequence

No zero sequence current flow

Rotating Machine Sequence Networks

Rotating Machine Sequence Networks

$$
\begin{aligned}
& {\left[E_{S g}\right]=[A]^{-1}\left[E_{P g}\right]=\frac{1}{3}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a & a^{2} \\
1 & a^{2} & a
\end{array}\right]\left[\begin{array}{c}
E \\
a^{2} E \\
a E
\end{array}\right]=\left[\begin{array}{c}
0 \\
E \\
0
\end{array}\right] \begin{array}{c}
0 \\
1
\end{array}}
\end{aligned}
$$

-Therefore, only the positive sequence system has a generator voltage source.

Rotating Machine Sequence Networks

-Generator sequence circuits are uncoupled

Generator Terninal Voltages

Symmetrical Components- Gen Constants

Internal Machine Voltages and Reactances

X_{d} " - Subtransient Reactance

- $E_{t} \quad X_{d}{ }^{\prime}$ - Transient Reactance
X_{d} - Synchronous Reactance

Example Problem

A Generator is connected to a power system through a 22 kV delta to 230 kV grounded wye transformer rated at 100MVA and with a series reactance of 0.14 pu. The generator is rated at 100 MVA and 22 kV and has X " $\mathrm{d}=\mathrm{X}_{2}=$ 0.16 pu . The generator neutral is not grounded. A bolted single line to ground fault occurs at 50 miles down the line on the 230 kV terminals of the transformer on Phase A. Assume transmission line is the same 2156KCM Bluebird conductor and arrangement, which was evaluated earlier

Find:

The fault current in Phase a, b, and c in pu and primary current
The phase voltages at the point of the fault in pu and primary voltage
The fault current in Phase a, b, and c in pu and primary current on 22 kV side

Example Problem

Find:
The fault current in Phase a, b, and c in pu and primary values

Found earlier that Bluebird conductor characteristics at 60 Hz was

$$
r_{1}=\frac{.0515}{2}=.0258 \Omega / m i
$$

$$
x_{1}=.1213 \ln \frac{37.8}{.296} \Omega / m i
$$

Example Problem

Find:
The fault current in Phase a, b, and c in pu and primary values

$$
\begin{gathered}
\begin{array}{l}
\mathrm{S}=100 \mathrm{MVA} \\
\mathrm{~V}=22 \mathrm{kV}
\end{array} \\
Z_{\text {BASE }}=\frac{k V_{\text {BASE }}^{2}}{M V A_{\text {BASE }}}=\frac{230^{2}}{100}=529 \Omega \\
Z_{\text {PU 50MILES }}=\frac{1.29+j 29.41 \Omega}{529}=0.056 \angle 87.5^{\circ} \mathrm{pu}
\end{gathered}
$$

Example Problem

Find:
The fault current in Phase a, b, and c in pu and primary values

Create our Positive and Negative Sequence networks

Example Problem

Find:
The fault current in Phase a, b, and c in pu and primary values

Create our Positive and Negative Sequence networks

Example Problem

Find:

The fault current in Phase a, b, and c in pu and primary values

-Create Zero Sequence, For Simplicity Assume Z0 = $3 \times$ Z1 for Transmission Line
-Zero Sequence configuration for a transformer that is delta grounded wye is shown once again below.
-Remembering this we Can Draw the Zero Sequence network for this problem

Example Problem

Find:
The fault current in Phase a, b, and c in pu and primary values

Example Problem

Find:
The fault current in Phase a, b, and c in pu and primary values

Example Problem

$$
I_{P U}=\frac{V_{P U}}{Z_{P U}}=\frac{1 \angle 0^{\circ}}{j 0.356+j 0.356+0.307 \angle 88.7^{\circ}}
$$

$$
I_{P U}=1 \angle-89.6^{\circ} p u
$$

$$
\left[\mathbf{I}_{\mathbf{P}}\right]=[\mathbf{A}]\left[\mathbf{I}_{\mathbf{S}}\right]
$$

$$
\left[\mathbf{I}_{\mathbf{P}}\right]=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \mathrm{a}^{2} & \mathrm{a} \\
1 & \mathrm{a} & \mathrm{a}^{2}
\end{array}\right)\left(\begin{array}{c}
-\mathrm{j} 1 \\
-\mathrm{j} 1 \\
-\mathrm{j} 1
\end{array}\right)
$$

$$
\left[\mathbf{I}_{\mathbf{P}}\right]=\left(\begin{array}{c}
-\mathrm{j} 3 \\
0 \\
0
\end{array}\right) \begin{array}{cc}
\mathrm{A} & \\
\mathrm{C} & \mathrm{pu}
\end{array}
$$

Example Problem

The phase voltages at the point of the fault

$$
\left(\begin{array}{l}
\mathrm{V}_{0} \\
\mathrm{~V}_{1} \\
\mathrm{~V}_{2}
\end{array}\right)=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \cdot\left(\begin{array}{ccc}
\mathrm{j} 0.307 & 0 & 0 \\
0 & \mathrm{j} 0.356 & 0 \\
0 & 0 & \mathrm{j} 0.356
\end{array}\right)\left(\begin{array}{l}
-\mathrm{j} 1 \\
-\mathrm{j} 1 \\
-\mathrm{j} 1
\end{array}\right)=\left(\begin{array}{c}
-0.307 \\
0.644 \\
-0.356
\end{array}\right)
$$

Example Problem

The phase voltages at the point of the fault

$$
\left(\begin{array}{l}
\mathrm{V}_{0} \\
\mathrm{~V}_{1} \\
\mathrm{~V}_{2}
\end{array}\right)=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)-\left(\begin{array}{ccc}
\mathrm{j} 0.307 & 0 & 0 \\
0 & \mathrm{j} 0.356 & 0 \\
0 & 0 & \mathrm{j} 0.356
\end{array}\right)\left(\begin{array}{l}
-\mathrm{j} 1 \\
-\mathrm{j} 1 \\
-\mathrm{j} 1
\end{array}\right)=\left(\begin{array}{c}
-0.307 \\
0.644 \\
-0.356
\end{array}\right)
$$

$$
\begin{gathered}
{\left[\mathbf{V}_{\mathbf{P}}\right]=[\mathbf{A}]\left[\mathbf{V}_{\mathbf{S}}\right]} \\
{\left[\mathbf{V}_{\mathbf{P}}\right]=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \mathrm{a}^{2} & \mathrm{a} \\
1 & \mathrm{a} & \mathrm{a}^{2}
\end{array}\right)\left(\begin{array}{c}
-0.307 \\
0.644 \\
-0.356
\end{array}\right)=\left(\begin{array}{c}
0 \\
0.976 @-117.5 \\
0.976 @ 117.5
\end{array}\right) \quad \mathrm{pu}} \\
V_{\text {PHASE }}=V_{B A S E} \times V_{P U} \\
{\left[\mathbf{V}_{\mathbf{P}}\right]=\left(\begin{array}{c}
0 \\
224.5 @-87.5 \mathrm{kV} \\
224.5 @ 147.5 \\
\mathrm{kV}
\end{array}\right)}
\end{gathered} \begin{array}{cc}
\mathrm{A} \\
\mathrm{~B} \\
\mathrm{C} & \text { Actual }
\end{array}
$$

Phase-to-ground Fault

Phase Quantities
Symmetrical Components

Phase-to-ground Fault Voltage Profile

These magnitudes assume $\mathbf{Z 1}=\mathbf{Z 2}=\mathbf{Z 0}$

Example Problem

The fault current in Phase a, b, and c in pu and primary current on 22 kV side

Found Earlier our phase and sequence quantities in pu on the 230 kV side of Transformer

$$
\begin{aligned}
{\left[\mathbf{I}_{\mathbf{P}}\right] } & {[\mathbf{A}]\left[\mathbf{I}_{\mathbf{S}}\right] } \\
{\left[\mathbf{I}_{\text {sprimary }}\right] } & =\left(\begin{array}{c}
-\mathrm{j} 1 \\
-\mathrm{j} 1 \\
-\mathrm{j} 1
\end{array}\right] \begin{array}{l}
\text { Zero } \\
\text { Positive } \\
\text { Negative }
\end{array}
\end{aligned}
$$

Knowing this information we can find Phase currents on the 22 kV side of Transformer

Example Problem

The fault current in Phase a, b, and c in pu and primary current on 22 kV side

Looking back Zero Sequence current has no path to flow on the 22 kV side

$$
\left[\mathbf{I}_{\text {Ssecondary }}\right]=\left(\begin{array}{c}
0 \\
1 @-120 \\
1 @-60
\end{array}\right) \begin{aligned}
& \text { Zero } \\
& \text { Positive } \\
& \text { Negative }
\end{aligned}
$$

How do these differ from currents on the 230 kV side?

Example Problem

The fault current in Phase a, b, and c in pu and primary current on 22 kV side
1:n
$I_{A}=4540 A$

$$
I_{\text {sec } _a c t}=\frac{753 x \frac{220 k V}{22 k V}}{\sqrt{3}}=4540 \quad I_{\text {base }}=\frac{S_{B A S E}}{\sqrt{3} x V_{B A S E}}=\frac{100 \times 10^{6}}{\sqrt{3} \times 22 \times 10^{3}}=2624 \mathrm{~A}
$$

$$
\left[\mathbf{I}_{\mathbf{P s e c o n d a r y}}\right]=\left(\begin{array}{c}
-\mathrm{j} 4540 \mathrm{~A} \\
\mathrm{j} 4540 \mathrm{~A} \\
0
\end{array}\right) \begin{aligned}
& A \\
& B \\
& C
\end{aligned} \quad \text { Actual }
$$

Example Problem

The fault current in Phase a, b, and c in pu and primary current on 22 kV side

What has this taught us?

Phase-to-phase Fault

Phase Quantities

Symmetrical Components

Waveforms from SLG fault

Symmetrical Components Learned Objectives

- What we will discuss
- Overview of converting phase quantities to symmetrical quantities and symmetrical to phase
- Sequence Impedance networks - How do we build one?
- Evaluating a Impedance network - Example Problem
- Insights into the Example Problem
- Why do we use this method?
- Not using it would require writing loop equations for the system and solving. - For simple systems it's not an easy task
- To date it is still the only real practical solution to problems of unbalanced electrical circuits.

Power and productivity for a better world ${ }^{\text {TM }}$

Thank you for your participation

Shortly, you will receive a link to an archive of this presentation.
To view a schedule of remaining webinars in this series, or for more information on ABB's protection and control solutions, visit:
www.abb.com/relion

