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We consider a dynamic combinatorial optimization problem, where at each time step the decision maker selects a subset
of cardinality K from N possible items, and observes a feedback in the form of the index of one of the items in said
subset, or none. Each of the N items is ascribed a certain value (reward), which is collected if the item is chosen. This
problem is motivated by that of assortment selection in online retail, where items are products. Akin to that literature, it
is assumed that the choice of the item given the subset is governed by a Multinomial Logit (MNL) choice model whose
parameters are a priori unknown. The objective of the decision maker is to maximize the expected cumulative rewards
over a finite horizon T , or alternatively, minimize the regret relative to an oracle that knows the MNL choice model
parameters. We formulate this problem as a multi-armed bandit problem that we refer to as the MNL-Bandit problem. We
present a Thompson Sampling based algorithm for this problem and show that it achieves near-optimal regret as well as
attractive empirical performance.
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1. Introduction.

1.1. Overview of the problem. In the canonical stochastic multi-armed Bandit (MAB) problem, at
each time step t= 1, . . . , T a single arm is chosen out of the set {1, . . . ,N}, in response to which a noisy
reward, characteristic of that arm, is observed. The objective is to minimize the gap between the performance
of a policy and that of an oracle that selects the arm with the highest expected reward in each round; this
gap is often referred to as the regret. In many instances of the problem, probably good performance can be
achieved by employing a design principle known as “optimism in the face of uncertainty.” A prime example
is the widely studied family of upper confidence bound policies (UCB), see, e.g., Auer et al. [6], that suitably
balance the exploration-exploitation tension inherent in MAB problems.

In this paper, we consider a combinatorial variant of this problem where at each time step t= 1, · · · , T
the player selects a subset of cardinality K from the index set of N arms, after which s/he either observes
the reward associated with one of the arms in this subset, along with the identity of the arm that generated
the reward or observes no reward at all. One can think of the “no reward” option as feedback that manifests
from a “null arm” that is augmented to each subset.

1

mailto:sa3305@columbia.edu
mailto:vavadhanula18@gsb.columbia.edu
mailto:vg2277@columbia.edu
mailto:assaf@gsb.columbia.edu
https://arxiv.org/pdf/1706.00977.pdf
https://academiccommons.columbia.edu/doi/10.7916/d8-6c67-1n16


Agrawal et al.: Thompson Sampling for the MNL-Bandit
2 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

In our set up, the rewards are deterministic and taken to be the problem primitives, but the identity of
the arm within the chosen subset that yields the reward (or the “null” arm that yields no reward) is drawn
from a probability distribution on the index set of cardinality K + 1 (the K arms plus the “null” arm). In
this paper the distribution is specified by means of a multinomial logit model (MNL) whose parameters are
not known to the player a priori and can only be inferred over time via the revealed indices (and rewards);
the term MNL-Bandit refers to these salient features. The objective, as in the traditional MAB formulation,
is to develop playing strategies that try to come close to the performance of an oracle that solves the full
information offline problem, or in other words, minimize the regret.

The problem as stated above is of central importance in a variety of application domains, notable exam-
ples include display-based online advertising (where one can only displayK ads on a content page, selected
from a typically large universeN of feasible choices), and more generally the design of product recommen-
dation engines (where K limits the number of products that can be displayed to the consumer in response
to a search query). While its mathematical formulation is not new, there is surprisingly little antecedent
literature on this problem; the review below will expound a bit on its history and related strands of work.

1.2. Main contributions. Relying on structural properties of the MNL model, we develop the first
computationally efficient Thompson Sampling (TS) approach to the MNL-Bandit and study its theoretical
properties. TS belongs to a Bayesian class of learning algorithms where a (repeatedly updated) posterior dis-
tribution governs the sampling of actions in each stage; some further context and relevant work is discussed
in the literature review. Its main attractive feature vis-a-vis UCB-type policies, is improved (numerical)
regret performance that stems essentially from more efficient exploration (UCB tends to be conservative
and over-explore). However, for the MNL-bandit problem, TS turns out to be far more difficult to analyze
theoretically, and presents significant computational challenges that hinder efficient implementation. These
stem primarily from the computational demands involved with the calculation of posterior distribution, and
the “closed-loop” structure that links observations, updates, and actions.

The main challenges associated with the analysis of TS algorithms are overcome through several key
components. First, a carefully chosen prior distribution on the parameters of the MNL model is put in place,
and this allows for efficient and tractable posterior updating under the MNL-bandit feedback. A second key
ingredient in our approach is a two-moment approximation of the posterior which is embedded within a
normal family. A fundamental consequence of this embedding is the ability to correlate samples which plays
a central role in the performance of our algorithm. The methods developed in this paper highlight these key
attributes, and present a blueprint to address these issues that we hope will be more broadly applicable and
form the basis for further work in the intersection of combinatorial optimization and machine learning.

Our main theoretical contribution is a worst-case (prior-free) regret bound on the performance of our
proposed algorithm which exhibits an order ofO(

√
NT logTK); the bound is non-asymptotic, the “big oh”

notation is used for brevity and simplicity. This regret bound is independent of the parameters of the MNL
choice model and hence holds uniformly over all problem instances of sizeN,K.Moreover, it is essentially
best possible due to a lower bound of Ω(

√
NT ) established recently by Wang et al. [34] for the MNL-

Bandit. Hence our TS algorithm achieves regret-optimal performance up to logarithmic terms. We note in
passing that this bound is comparable to the existing upper bound of Õ(

√
NT ) obtained in Agrawal et al. [2]

for a UCB-based algorithm for the MNL-Bandit. However, as will be seen in the sequel, numerical results
demonstrate that our TS-based approach significantly outperforms the UCB-based approach of Agrawal
et al. [2] and the results in this paper provide the first theoretical analysis for a TS based approach.

Organization. The remainder of the paper is organized as follows. The current section concludes with a
brief review of related literature that helps place our contributions in context. We provide the mathematical
formulation of our problem in Section 2. In Section 3, we present our Thompson Sampling algorithm for
the MNL-Bandit, and in Section 4, we prove the main result, namely, that our algorithm achieves an
O(
√
NT logTK) regret upper bound. Section 5 demonstrates the empirical efficiency of our algorithm

design.
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1.3. Related work A basic pillar in the MNL-Bandit problem is the MNL choice model, originally
introduced (independently) by Luce [17] and Plackett [25]; see also Train [33], McFadden [19], Ben-Akiva
and Lerman [8] for further discussion and survey of other commonly used choice models. The MNL model
is the most widely used choice model for capturing substitution effects that are a significant element in our
problem. Rusmevichientong et al. [26] and Sauré and Zeevi [31] were the first two papers we are aware of to
consider a dynamic learning problem for the MNL-Bandit in the context of a retail assortment optimization
problem. Both papers are predicated on an “explore first and exploit later” approach and their algorithms
are parameter-dependent. Specifically, assuming knowledge of a “gap” value (between the optimal and the
next-best subsets), Sauré and Zeevi [31] establish an asymptoticO(N logT ) regret bound. (This assumption
is akin to the “separated arm” case in the MAB setting.) In a more recent paper, Agrawal et al. [2] develop a
UCB-like algorithm which does not rely on the a priori knowledge of this gap and show that this algorithm
achieves a worst-case regret bound of O(

√
NT logT ). A regret lower bound of Ω(

√
NT/K) for this

problem is also presented in this work, which was subsequently improved to Ω(
√
NT ) in a recent work by

Wang et al. [34] establishing the near optimality of this UCB algorithm.
Subsequent follow up works, Chen et al. [9, 10, 11], Cheung and Simchi-Levi [12], Saha and Gopalan

[30], Feng et al. [14], Miao and Chao [20, 21] and Oh and Iyengar [22, 23] consider different variants of
the MNL-Bandit problem. The works of Chen et al. [10], Miao and Chao [21] and Oh and Iyengar [22]
considers the more general contextual variant of the MNL-Bandit problem. These papers builds on Agrawal
et al. [2] to develop UCB based approaches and establish worst-case regret bounds of Õ(d

√
T ), where

d is the dimension of contexts. However, the algorithms and regret bounds presented in these papers are
dependent on certain problem parameters. Following an initial conference version of this paper, the works of
Cheung and Simchi-Levi [12], Miao and Chao [20] and Oh and Iyengar [23] developed Thompon Sampling
based approaches for contextual variations of the MNL-bandit problem. These works achieve a Bayesian
regret bound of Õ(d

√
T ) that are dependent on problem parameters. In this work, we provide worst-case

regret bounds that are independent of the problem parameters and hold uniformly overall problem instances
of size N,K. Feng et al. [14] and Saha and Gopalan [30] considers the best arm identification variant of
the MNL-Bandit problem, where the focus is only on exploration to identify the best K items. In this work,
we focus on optimally balancing the exploration-exploitation tradeoffs, a completely different setting from
the aforementioned works. Chen et al. [9] considers the variant of the MNL-Bandit where feedback from
a small fraction of users is not consistent with the MNL choice model. The paper presents a near-optimal
algorithm with a worst-case regret bound of Õ(εK2T +

√
NKT ), where ε is the fraction of users for whom

the feedback is corrupted. However, the algorithm developed by Chen et al. [9] which focuses on robustness
to corruption is sub-optimal in the setting considered in this work (ε= 0).

The basic idea of Thompson Sampling for MAB was introduced by Thompson [32]. TS starts with a prior
on the underlying parameter space and as each arm is pulled and observations are collected, a posterior is
updated and further actions are determined using draws from this posterior. Several recent studies (Oliver
and Li [24], Graepel et al. [16], May et al. [18]) have demonstrated that TS significantly outperforms state
of the art learning algorithms in practice, and over the past few years, TS has received renewed interest both
in theoretical studies as well as a plethora of implementations. At the same time, TS based algorithms are
notoriously difficult to analyze and theoretical work on TS is limited. To the best of our knowledge, Agrawal
and Goyal [3] is the first work on TS in a traditional MAB setting that provides a finite-time worst-case
regret bound independent of problem parameters; see also work by Russo and Van Roy [28] for Bayesian
regret bounds.

A naive translation of the MNL-Bandit problem to the basic MAB problem setting would create
(
N
K

)
“arms” (one for each offer set of sizeK). Managing such an exponentially large arm space is prohibitive for
obvious reasons. Popular extensions of MAB for “large scale” problems include the linear bandit (e.g., Auer
[5], Rusmevichientong and Tsitsiklis [27]) for which Agrawal and Goyal [4] present a TS-based algorithm
and provide finite time regret bounds. However, these approaches do not apply directly to our problem,
since the revenue corresponding to each chosen subset is not linear in problem parameters. Gopalan et al.
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[15] consider a variant of MAB where one can play a subset of arms in each round and the expected reward
is a function of rewards of the arms played. This setting is similar to the MNL-Bandit, though the regret
bounds they develop are dependent on the instance parameters as well as the number of possible actions,
which can be large in our combinatorial problem setting. Russo et al. [29] presents efficient heuristics to
approximate the TS algorithm considered in Russo and Van Roy [28], however, it is not immediately clear
if these approximate TS-based approaches facilitate theoretical analysis.

2. Problem Formulation. To formally state our problem, consider an option space containing N
distinct elements, indexed by 1, . . . ,N and their values, denoted by r1, . . . , rN , with r being the mnemonic
for reward, though we will also use the term revenue in this context. We append the option space by an
additional element indexed by “0”, in order to represent the alternative available to the user of not selecting
any of the options presented. We assume that for any offer set, S ⊂ {1, . . . ,N}, the user selects only one
of the offered alternatives or item 0, according to a Multinomial Logit (MNL) choice model. Under this
model, given the offer set S, the probability that the user chooses item i∈ S is given by,

pi(S) =

{ vi
v0 +

∑
j∈S vj

, if i∈ S ∪{0}

0, otherwise,
(1)

where v0, ..., vN are parameters of the MNL model. Without loss of generality, we can assume that v0 = 1.
The expected reward or revenue corresponding to the offer set S, R(S,v) is given by

R(S,v) :=
∑
i∈S

ripi(S) =
∑
i∈S

rivi
1 +

∑
j∈S vj

. (2)

We consider a setting where the decision maker can select at most K products in the offer set.

S∗ := max{R(S,v)||S| ≤K}. (3)

Such a cardinality constraint arises naturally in many applications. For instance, a publisher/retailer is
constrained by the space for advertisements/products and has to limit the number that can be displayed
simultaneously.

We can now formulate the MNL-bandit problem as follows. The problem proceeds in discrete sequential
rounds t = 1, . . . , T for some predetermined time horizon T. In each round t, the decision maker offers
a K-cardinality subset of items St ⊆ {1, . . . ,N} and observes the user’s choice ct ∈ S ∪ {0}. The prob-
ability distribution of ct is given by the MNL choice model as described in (1). The MNL choice model
parameters v1, . . . , vN are apriori fixed but unknown to the decision maker. The objective is to design an
algorithm that selects a (non-anticipating) sequence of offer sets in a path-dependent manner (namely, based
on past choices and observed responses) to maximize cumulative expected reward over said horizon or,
alternatively, minimize the regret defined as

Reg(T,v) =E
[∑T

t=1R(S∗,v)−R(St,v)
]
, (4)

where R(S,v) is the expected reward when the offer set is S, and is as defined in (2). Here we make
explicit the dependence of regret on the time horizon T and the parameter vector v of the MNL model, that
determines the user preferences and choices.

3. Algorithm. In this section, we describe our posterior sampling (aka Thompson Sampling) based
algorithm for the MNL-Bandit problem. The basic structure of Thompson Sampling involves maintaining a
posterior on the unknown problem parameters, which is updated every time new feedback is obtained. At the
beginning of every round, a sample set of parameters is generated from the current posterior distribution, and
the algorithm selects the best offer set according to these sample parameters. In the MNL-Bandit problem,
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there is one unknown parameter vi associated with each item. To adapt the TS algorithm for this problem, we
would need to maintain a joint posterior for (v1, . . . , vN). However, updating such a joint posterior is non-
trivial since the feedback observed in every round is a choice sample from the multinomial distribution. This
depends on the subset S offered in that round. In particular, even if we initialize with an independent prior
from a popular analytical family such as multivariate Gaussian, the posterior distribution after observing
the MNL choice feedback will have a complex description. As a first step in addressing this challenge,
we attempt to design a Thompson Sampling algorithm with independent priors. In particular, we leverage
a sampling technique introduced in Agrawal et al. [2] that allows us to decouple individual parameters
from the MNL choice feedback and provide unbiased estimates of these parameters. We can utilize these
unbiased estimates to efficiently maintain independent conjugate Beta priors for the parameters vi for each
i. We present the details in Algorithm 1 below.

3.1. A TS algorithm with independent conjugate Beta priors Here we present the first version of
our Thompson sampling algorithm, which will serve as an important building block for our main algorithm
in Section 3.2. In this version, we maintain a Beta posterior distribution for each item i= 1, . . . ,N , which
is updated as we observe users’ choice of items from the offered subsets. A key challenge here is to choose
priors that can be efficiently updated on observing user choice feedback, to obtain increasingly accurate
estimates of parameters {vi}. To address this, we use the sampling technique introduced in Agrawal et al.
[2] to decouple estimates of individual parameters from the complex MNL feedback. The idea is to offer a
set S multiple times; in particular, a chosen set S is offered repeatedly until the “outside option” is picked
(in the online advertising application discussed earlier, this corresponds to displaying the same subset of
ads repeatedly until we observe a user who does not click on any of the displayed ads). Proceeding in this
manner, due to the structure of the MNL model, the average number of times an item i is selected provides
an unbiased estimate of parameter vi. Moreover, as derived in Agrawal et al. [2], the number of times an item
i is selected is also independent of the displayed set and is a geometric distribution with success probability
1/(1 + vi) and mean vi. This observation is used as the basis for our epoch based algorithmic structure and
our choice of prior/posterior, as a conjugate to this geometric distribution.

Epoch based offerings: Our algorithm proceeds in epochs `= 1,2, . . .. An epoch is a group of consecutive
time steps, where a set S` is offered repeatedly until the outside option is picked in response to offering S`.
The set S` to be offered in epoch ` is picked at the beginning of the epoch based on the sampled parameters
from the current posterior distribution; the construction of these posteriors and choice of S` is described in
the next paragraph. We denote the group of time steps in an epoch as E`, which includes the time step at
which an outside option was preferred.

The following lemmas provide important building blocks for our construction. Their proofs have been
deferred to the appendix.

Lemma 1 (Agrawal et al. [2]) Let ṽi,` be the number of times an item i ∈ S` is picked when the set S` is
offered repeatedly until the outside option is picked. Then, ṽi,` forall `, i are i.i.d geometric random variables
with success probability 1

1+vi
, and expected value vi.

Lemma 2 (Conjugate Priors) For any α > 3, β > 0 and Yα,β ∼ Beta(α,β), let Xα,β = 1
Yα,β−1

and fα,β
denote the probability distribution of random variable Xα,β . If the prior distribution of vi is fα,β , then after
observing ṽi,`, a geometric random variable with success probability 1

vi+1
, the posterior distribution of vi

is given by,
P
(
vi

∣∣∣ṽi,` =m
)

= fα+1,β+m(vi).

Construction of conjugate prior/posterior: From Lemma 1, we have that for any epoch ` and for any
item i ∈ S`, the estimate ṽi,`, the number of picks of item i in epoch ` is geometrically distributed with
success probability 1/(1 + vi). Therefore, if we use the distribution of 1/Beta(1,1)− 1 as the initial prior
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for vi, and then, in the beginning of epoch `, from Lemma 2 we have that the posterior is distributed as
1

Beta(ni(`),Vi(`))
− 1, with ni(`) being the number of epochs the item i has been offered before epoch ` (as

part of an assortment), and Vi(`) being the number of times it was picked by the user.

Selection of subset to be offered: To choose the subset to be offered in epoch `, the algorithm samples a set
of parameters µ1(`), . . . , µN(`) independently from the current posteriors and finds the set that maximizes
the expected revenue as per the sampled parameters. In particular, the set S` to be offered in epoch ` is
chosen as:

S` := argmax
|S|≤K

R(S,µµµ(`)), (5)

where the reward function R(., .) is given in (2). There are efficient polynomial time algorithms available to
solve this optimization problem (e.g., Davis et al. [13], Avadhanula et al. [7] and Rusmevichientong et al.
[26]).

The details of the above procedure are provided in Algorithm 1.

Algorithm 1 A TS algorithm for MNL-Bandit with Independent Beta priors
Initialization: For each item i= 1, · · · ,N , Vi = 1, ni = 1.
t= 1, keeps track of the time steps
`= 1, keeps count of total number of epochs
while t≤ T do

(a) (Posterior Sampling) For each item i= 1, · · · ,N , sample θi(`) from the Beta(ni, Vi) and compute
µi(`) = 1

θi(`)
− 1

(b) (Subset Selection) Compute S` = argmax
|S|≤K

R(S,µµµ(`)) =
∑
i∈S riµi(`)

1+
∑
j∈S µj(`)

(c) (Epoch-based offering)
repeat

Offer the set S`, and observe the user choice ct;
Update E` = E` ∪ t, time indices corresponding to epoch `; t= t+ 1

until ct = 0

(d) (Posterior update)
For each item i∈ S`, compute ṽi,` =

∑
t∈E`

I(ct = i), number of picks of item i in epoch `.
Update Vi = Vi + ṽi,`, ni = ni + 1, `= `+ 1.

end while

Algorithm 1 presents some unique challenges for theoretical analysis. A worst-case regret analysis of
Thompson Sampling-based algorithms for MAB typically relies on showing that the best-arm is optimistic
at least once every few steps, in the sense that the parameter sampled from the posterior is better than the
true parameter. Due to the combinatorial nature of our problem, such a proof approach requires showing that
every few steps, all the K items in the optimal offer set have sampled parameters that are better than their
true counterparts. However, Algorithm 1 samples the posterior distribution for each parameter independently
in each round. This makes the probability of being optimistic exponentially small in K. In Section 3.2, we
modify Algorithm 1 to address these challenges and in a manner amenable to theoretical analysis.

3.2. A TS algorithm with posterior approximation and correlated sampling We address the chal-
lenge associated with the combinatorial nature of the MNL-Bandit by employing correlated sampling across
items. To implement correlated sampling, we find it useful to approximate the Beta posterior distribution by
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a Gaussian distribution with approximately the same mean and variance as the former; what was referred
to in the introduction as a two-moment approximation. This allows us to generate correlated samples from
the N Gaussian distributions as linear transforms of a single standard Gaussian random variable. Under
such correlated sampling, we can guarantee that the probability of all K optimal items are simultaneously
optimistic is constant, as opposed to being exponentially small (in K) in the case of independent sampling.
However, such correlated sampling reduces the overall variance of the maximum of N samples severely,
thus inhibiting exploration. We “boost” the variance by taking K samples instead of a single sample of the
standard Gaussian. The resulting variant of Thompson Sampling, therefore has three main modifications,
posterior approximation through a Gaussian distribution; correlated sampling; and taking multiple samples
(for “variance boosting”). We elaborate on each of these changes below.

Posterior approximation: First, we present the following result that helps us in approximating the poste-
rior. Proof of the result has been deferred to the appendix.

Lemma 3 (Moments of the Posterior Distribution) If X is a random variable distributed as Beta(α,β),
then

E
(

1
X
− 1
)

= β
α−1

, and Var
(

1
X
− 1
)

=
β
α−1( β

α−1+1)
α−2

.

We approximate the posterior distributions used in Algorithm 1 for each MNL parameter vi, by a Gaus-
sian distribution with approximately the same mean and variance given in Lemma 3. In particular, let

v̂i(`) :=
Vi(`)

ni(`)
, σ̂i(`) :=

√
50v̂i(`)(v̂i(`) + 1)

ni(`)
+ 75

√
logTK

ni(`)
, `= 1,2, . . . (6)

where ni(`) is the number of epochs item i has been offered before epoch `, and Vi(`) being the number of
times it was picked by the user. We will use N (v̂i(`), σ̂

2
i (`)) as the posterior distribution for item i in the

beginning of epoch `. The Gaussian approximation of the posterior facilitates efficient correlated sampling
from posteriors that plays a key role in avoiding the theoretical challenges in analyzing Algorithm 1.

Correlated sampling: Given the posterior approximation by Gaussian distributions, we correlate the sam-
ples by using a common standard normal variable and constructing our posterior samples as an appropriate
transform of this common standard normal. More specifically, in the beginning of an epoch `, we generate a
sample from the standard normal distribution, θ∼N (0,1) and the posterior sample for item i, is generated
as v̂i(`) + θσ̂i(`). Intuitively, this allows us to generate sample parameters for i= 1, . . . ,N that are either
simultaneously large or simultaneously small, thereby, boosting the probability that the sample parameters
for all the K items in the best offered set are optimistic (i.e., the sampled parameter values are higher than
the true parameter values).

Multiple (K) samples: The correlated sampling decreases the joint variance of the sample set. More specif-
ically, if θi were sampled independently from the standard normal distribution for every i, then for any
epoch `, we have that

Var

(
max

i=1,··· ,N
{v̂i(`) + θσ̂i(`)}

)
≤Var

(
max

i=1,··· ,N
{v̂i(`) + θiσ̂i(`)}

)
.

In order to boost this joint variance and ensure sufficient exploration, we modify the procedure to generate
multiple sets of samples. In particular, in the beginning of an epoch `, we now generate K independent
samples from the standard normal distribution, θ(j) ∼N (0,1), j = 1, . . . ,K. And then for each j, a sample
parameter set is generated as:

µ
(j)
i (`) := v̂i(`) + θ(j)σ̂i(`), i= 1, . . . ,N,
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Then, we use the largest valued samples

µi(`) := max
j=1,··· ,K

µ
(j)
i (`),∀i,

to decide the assortment to offer in epoch `,

S` := arg max
S∈S
{R(S,µµµ(`))}

We describe the details formally in Algorithm 2.

Algorithm 2 A TS algorithm for MNL-Bandit with Gaussian approximation and correlated sampling
Input parameters: α= 50, β = 75
Initialization: t= 0, `= 0, ni = 0 for all i= 1, · · · ,N .
for each item, i= 1, · · · ,N do

Offer item i to users until the user selects the “outside option”. Let ṽi,1 be the number of times item i
was offered. Update: Vi = ṽi,1− 1, t= t+ ṽi,1, `= `+ 1 and ni = ni + 1.

end for
while t≤ T do

(a) (Correlated Sampling) for j = 1, · · · ,K
Sample θ(j)(`) from the distributionN (0,1) and let θmax(`) = max

j=1,··· ,K
θ(j)(`); update v̂i = Vi

ni
.

For each item i≤N , compute µ(j)
i (`) = v̂i + θmax(`) ·

(√
αv̂i(v̂i+1)

ni
+ β

√
logTK
ni

)
.

end

(b) (Subset selection) Same as step (b) of Algorithm 1.
(c) (Epoch-based offering) Same as step (c) of Algorithm 1.
(d) (Posterior update) Same as step (d) of Algorithm 1.

end while

Intuitively, the second-moment approximation provided by Gaussian distribution and the multiple sam-
ples taken in Algorithm 2 may make the posterior converge slowly and increase exploration. However,
the correlated sampling may compensate for these effects by reducing the variance of the maximum of N
samples, and therefore reducing the overall exploration. In Section 5, we illustrate some of these insights
through numerical simulations. Here, correlated sampling is observed to provide significant improvements
as compared to independent sampling, and while posterior approximation by Gaussian distribution has little
impact.

4. Regret Analysis We prove an upper bound on the regret of Algorithm 2 for the MNL-Bandit prob-
lem, under the following assumption.

Assumption 1 For every item i∈ {1, . . . ,N}, the MNL parameter vi satisfies vi ≤ v0 = 1.

This assumption is equivalent to the outside option being more preferable compared to any other item. This
assumption holds for many applications including display advertising, where users do not click on any of
the displayed ads more often than not. Our main theoretical result is the following upper bound on the regret
of Algorithm 2.



Agrawal et al.: Thompson Sampling for the MNL-Bandit
Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 9

Theorem 1 For any instance v = (v0, · · · , vN) of the MNL-Bandit problem withN products, ri ∈ [0,1], and
satisfying Assumption 1, the regret of Algorithm 2 in time T is bounded as,

Reg(T,v)≤C1

√
NT logTK +C2N log2 TK,

where C1 and C2 are absolute constants (independent of problem parameters).

4.1. Proof Outline. In this section, we provide a proof sketch for Theorem 1. We break down the
expression for total regret

Reg(T,v) :=E

[
T∑
t=1

R(S∗,v)−R(St,v)

]
,

into regret per epoch, and rewrite it as follows:

Reg(T,v) =E

[
L∑
`=1

|E`| (R(S∗,v)−R(S`,µµµ(`)))

]
︸ ︷︷ ︸

Reg1(T,v)

+E

[
L∑
`=1

|E`| (R(S`,µµµ(`))−R(S`,v))

]
︸ ︷︷ ︸

Reg2(T,v)

, (7)

where |E`| is the number of periods in epoch `, and S` is the set repeatedly offered by our algorithm in
epoch `. We bound the two terms: Reg1(T,v) and Reg2(T,v) separately.

Since S` is chosen as the optimal set for the MNL instance with parametersµµµ(`), the first term Reg1(T,v)
is essentially the difference between the optimal revenue of the true instance and the optimal revenue of the
sampled instance. This term contributes no regret if the revenues corresponding to the sampled instances
are optimistic, i.e., ifR(S`,µµµ(`))≥R(S∗,v). Unlike optimism under uncertainty approaches such as UCB,
this property is not directly ensured by our Thompson Sampling-based algorithm. To bound this term, we
utilize the anti-concentration properties of the posterior, as well as the dependence between samples for
different items. In particular, we use these properties to prove that at least one of the K sampled instances
is optimistic “often enough.”

The second term Reg2(T,v) captures the difference in reward from the offered set S` when evaluated
on sampled parameters in comparison to the true parameters. We bound this by utilizing the concentration
properties of the posterior distributions. It involves showing that for the sets that are played often, the
posterior will converge quickly so that revenue on the sampled parameters will be close to that on the true
parameters.

In what follows, we will first highlight three key results involved in proving Theorem 1. In Section 4.2
we will combine these properties and follow the above outline to prove Theorem 1.

Structural properties of the optimal revenue. The first step in our regret analysis is to leverage the
structure of the MNL model to establish two key properties of the optimal expected revenue. These proper-
ties project the non-linear reward function of the MNL choice into its parameter space and help us focus on
analyzing the posterior distribution of the parameters. In the first property, which we refer to as restricted
monotonicity, we note that the optimal expected revenue is monotone in the MNL parameters. The second
property, is a Lipschitz property of the expected revenue function that bounds the difference between the
expected revenue corresponding to two different MNL parameters in terms of the difference in individual
parameters. Lemma 4 provides the precise statement.

Lemma 4 (Properties of the Optimal Revenue) For any v ∈ Rn+, let S∗ be an optimal assortment for
MNL instance with parameters v, i.e. S∗ = argmax

S:|S|≤K
R(S,v). Then, for any w ∈Rn+, we have:

1. (Restricted Monotonicity) If vi ≤wi for all i= 1, · · · ,N . Then, R(S∗,w)≥R(S∗,v).
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2. (Lipschitz Property) |R(S∗,v)−R(S∗,w)| ≤
∑

i∈S∗ |vi−wi|
1 +

∑
j∈S∗ vj

.

Proof. We will first prove the restricted monotonicity property and extend the analysis to prove the
Lipschitz property.

Restricted Monotonicity. We prove the result by first showing that for any j ∈ S∗, we have R(S∗,wj) ≥
R(S∗,v), where wj is vector v with the jth component increased to wj , i.e. wji = vi for all i 6= j and
wjj = wj . We can use this result iteratively to argue that increasing each parameter of MNL to the largest
possible value increases the value of R(S,w).

If there exists j ∈ S such that rj <R(S), then removing the product j from assortment S yields higher
expected revenue contradicting the optimality of S. Therefore, we have

rj ≥R(S) forall j ∈ S.

Multiplying by (vj −wj)(
∑

i∈S/j wi + 1) on both sides of the above inequality and re-arranging terms, we
can show that R(S∗,wj)≥R(S∗,v).

Lipschitz. Following the above analysis, we define sets I(S∗) and D(S∗) as

I(S∗) = {i|i∈ S∗ and vi ≥wi}
D(S∗) = {i|i∈ S∗ and vi <wi} ,

and vector u as,

ui =

{
wi if i∈D(S∗),
vi otherwise.

By construction of u, we have ui ≥ vi and ui ≥ wi for all i. Therefore from the restricted monotonicity
property, we have

R(S∗,v)−R(S∗,w)≤R(S∗,u)−R(S∗,w)

≤

∑
i∈S∗

riui

1 +
∑
j∈S∗

uj
−

∑
i∈S∗

riwi

1 +
∑
j∈S∗

uj
,

≤

∑
i∈S∗

(ui−wi)

1 +
∑
j∈S∗

uj
≤
∑

i∈S∗ |vi−wi|
1 +

∑
j∈S∗ vj

.

The Lipschitz property in Lemma 4 follows from the definition of ui. This completes the proof. �

Concentration of the posterior distribution. The next step in the regret analysis is to show that
as more observations are made, the posterior distributions concentrate around their means, which in turn
concentrate around the true parameters. More specifically, we have the following two results.

Lemma 5 (Bounds on Gaussian Distribution) For any `≤ T and i∈ {1, · · · ,N}, we have for any r > 0,

P
(
|µi(`)− v̂i(`)|> 4σ̂i(`)

√
log rK

)
≤ 1

r4K3
,

where σ̂i(`) is as defined in (6).

Lemma 6 (Multiplicative Chernoff Bound) If vi ≤ 1 for all i = 1, · · · ,N , then for any m,ρ > 0, ` ∈
{1,2, · · · } and i∈ {1, · · · ,N} we have,
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1. P

(
|v̂i(`)− vi|> 4

√
v̂i(`)(v̂i(`) + 1)m log (ρ+ 1)

ni(`)
+

24m log (ρ+ 1)

ni(`)

)
≤ 5

ρm
.

2. P

(
|v̂i(`)− vi| ≥

√
12vim log (ρ+ 1)

ni(`)
+

24m log (ρ+ 1)

ni(`)

)
≤ 4

ρm
.

The above results indicate that for any item i and at the beginning of any epoch `, the difference between
the sample from the posterior distribution µi(`) and the true parameter vi is bounded and is decreasing over
time. Lemma 5 follows from the properties of the Gaussian distribution and Lemma 6 is an adaptation of
Chernoff bounds for our setting. For the sake of continuity, we defer the proof of these concentration results
to Appendix A.1. Leveraging the Lipschitz property of the optimal revenue, this concentration of sample
parameters around their true values will help us prove that the difference between the expected revenue of
the offer set S` corresponding to the sampled parameters, µµµ(`), and the true parameters, v also becomes
smaller with time. In particular, we have the following result.

Lemma 7 (Towards Reg2(T,v) Bound) For any epoch `, if S` = argmax
S:|S|≤K

R(S,µµµ(`))

E

{
(1 +

∑
j∈S`

vj) [R(S`,µµµ(`))−R(S`,v)]

}
≤E

[
C1

∑
i∈S`

√
vi logTK

ni(`)
+C2

logTK

ni(`)

]
,

where C1 and C2 are absolute constants (independent of problem parameters).

The concentration property of the posterior distribution allows us to bound the second term, Reg2(T,v) in
(7). Therefore to bound the regret, it suffices to bound the difference between the optimal revenue R(S∗,v)
and the expected revenue of the offer set corresponding to sampled parameters R(S`,µµµ(`)).

Anti-Concentration of the posterior distribution. We refer to an epoch ` as optimistic if the expected
revenue of the optimal set corresponding to the sampled parameters is higher than the expected revenue
of the optimal set corresponding to true parameters, i.e., R(S∗,µµµ(`)) ≥ R(S∗,v). Any epoch that is not
optimistic is referred to as a non-optimistic epoch. Since S` is an optimal set for the sampled parameters,
we haveR(S`,µµµ(`))≥R(S∗,µµµ(`)). Hence, for any optimistic epoch `, the difference between the expected
revenue of the offer set corresponding to sampled parametersR(S`,µµµ(`)) and the optimal revenueR(S∗,v)
is bounded by zero. This suggests that as the number of optimistic epochs increases, the term Reg1(T,v)
decreases.

The central technical component of our analysis is showing that the regret over non-optimistic epochs is
“small.” More specifically, we prove that there are only a “small” number of non-optimistic epochs. From
the restricted monotonicity property of the optimal revenue (see Lemma 4), we have that an epoch ` is
optimistic if every sampled parameter, µi(`) is at least as high as the true parameter vi for every item i in the
optimal set S∗. Recall that each posterior sample µ(j)

i (`), is generated from a Gaussian distribution, whose
mean concentrates around the true parameter vi. We can use this observation to conclude that any sampled
parameter will be greater than the true parameter with constant probability, i.e. µ(j)

i (`) ≥ vi. However, to
show that an epoch is optimistic, we need to show that sampled parameters for all the items in S∗ are larger
than the true parameters. This is where the correlated sampling feature of our algorithm plays a key role. We
use the dependence structure between samples for different items in the optimal set, and variance boosting
(by a factor of K) to prove an upper bound of roughly 1/K on the number of consecutive epochs between
two optimistic epochs. More specifically, we have the following result.

Lemma 8 (Spacing of optimistic epochs) Let EAn(τ) denotes the set of consecutive epochs between an
optimistic epoch τ and the subsequent optimistic epoch τ ′. For any p∈ [1,2], we have,

E1/p
[∣∣EAn(τ)

∣∣p]≤ e12

K
+ 301/p.
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Proof. Note that for any non-negative discrete random variable, X , we have E(X) =
∑

xP (X ≥ x).
Hence, we will first establish a lower bound on the probability P

{∣∣EAn(τ)
∣∣p ≥ q} and use the preceding fact

to obtain a bound on the moments of the number of non-optimistic epochs.
For the sake of brevity, let r= bq1/pc and z =

√
log (rK + 1). Hence, we have,

P
{∣∣EAn(τ)

∣∣p ≥ q}= P{|E(τ)| ≥ r} .

By definition, [EAn(τ)< r] implies that one of the epochs τ +1, · · · , τ +r is optimistic. More specifically
we have,

P
{∣∣EAn(τ)

∣∣> r}= 1−P
({
{µi(`)≥ vi for all i∈ S∗} for some `∈ (τ, τ + r]

})
,

≤ 1−P
({
{µi(`)≥ v̂i(`) + zσ̂i(`)≥ vi for all i∈ S∗} for some `∈ (τ, τ + r]

})
.

For the sake of brevity, let A` denote the event that the sampled parameter for every item in the optimal set
is larger than z standard deviations away from the mean of the posterior distribution. Furthermore, let B`
denote the event that the true parameter of every item in the optimal set is smaller than mean of the posterior
distribution plus z times the standard deviation of the posterior distribution. More specifically we have,

A` = {µi(`)≥ v̂i(`) + zσ̂i(`) for all i∈ S∗} ,
B` = {v̂i(`) + zσ̂i(`)≥ vi for all i∈ S∗} .

Therefore we have,

P
{∣∣EAn(τ)

∣∣≥ r}≤ P

(
τ+r⋂
`=τ+1

Ac` ∪Bc
`

)
,

≤ P

(
τ+r⋂
`=τ+1

Ac`

)
+

τ+r∑
`=τ+1

P(Bc
`),

≤ P

(
τ+r⋂
`=τ+1

Ac`

)
+
∑
i∈S∗

P (v̂i(`) + zσ̂i(`)< vi) .

(8)

where the last two inequalities follow from the union bound. Note that from the concentration property of
the posterior distribution (see Lemma 6), the probability of every event in the above inequality is small. In
particular, substituting m= 3.1 and ρ= rK in Lemma 6 and using the fact that rK ≤ TK we obtain,

P (v̂i(`) + zσ̂i(`)< vi)≤
1

(rK)3.1
. (9)

We will now use the tail bounds for Gaussian random variables to bound the probability P(Ac`). For any
Gaussian random variable, Z with mean µ and standard deviation σ, we have,

Pr(Z >µ+xσ)≥ 1√
2π

x

x2 + 1
e−x

2/2.

Note that by design of Algorithm 2, µi(`) = v̂i(`) + σ̂i(`) max
j≤K

θ(j)(`), where θ(j)(`) are i.i.d standard

normal random variables. Therefore, we have

P

(
τ+r⋂
`=τ+1

Ac`

)
= P
(
θ(j)(`)≤ z for all `∈ (τ, τ + r] and for all j = 1, · · · ,K

)
,

(a)

≤
[
1−

(
1√
2π

√
log rK

log rK + 1
· 1√

rK

)]rK
,

(b)

≤ exp

(
− r

1/2

√
2π

2
√

log rK

4 log rK + 1

)
,

(c)

≤ 1

(rK)2.2
for any r≥ e12

K
,

(10)
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where inequality (a) follows from the tail bounds, inequality (b) follows from the fact that 1− x≤ e−x for
all x≥ 0 and inequality (c) follows from the fact that exp

(
−
√
x/2π logx

)
≤ 1/x2.2 for any x≥ e12.

Hence from (8), (9), and (10) we have ,

P
{∣∣EAn(τ)

∣∣≥ r}≤ 1

(rK)2.1
+

1

(rK)2.2
for any r≥ e12

K
.

The result follows from the above inequality, definition of r and the fact that
∑∞

x=1
1
xy

is constant for any
y > 1. This completes the proof. �.

4.2. Putting it all together: Proof of Theorem 1 In this section, we will utilize the above properties
and follow the outline discussed in Section 4.1 to complete the proof of Theorem 1. For the sake of brevity
we will use the following notation for the rest of this section.
• For any offer set S, V (S) :=

∑
i∈S vi

• For any `, τ ≤L, define ∆R` and ∆R`,τ in the following manner

∆R` := (1 +V (S`)) [R(S`,µµµ(`))−R(S`,v)]
∆R`,τ := (1 +V (Sτ )) [R(S`,µµµ(`))−R(S`,µµµ(τ))]

• Let A0 denote the complete set Ω and for all `= 1, . . . ,L, define events A` as

A` =

{
|v̂i(`)− vi| ≥

√
24vi log (`+ 1)

ni(`)
+

48 log (`+ 1)

ni(`)
for some i= 1, · · · ,N

}
We bound the regret by bounding both the terms in (7). We first focus on bounding the second term,

Reg2(T,v) and then extend the analysis to bound, Reg1(T,v).

Bounding Reg2(T,v): Note that conditioned on S`, the length of the `th epoch, |EAl| is a geometric random
variable with probability of success p0(S`) = 1/(1 +V (S`)). Therefore using conditional expectations, we
can reformulate Reg2(T,v) as,

Reg2(T,v) =E

{
L∑
`=1

∆R`

}
. (11)

Noting that A` is a “low probability” event, we analyze the regret in two scenarios: one on A`, and another
on Ac`. More specifically, for any `

E (∆R`) =E
[
∆R` ·1(A`−1) + ∆R` ·1(Ac`−1)

]
,

≤ K + 1

`2
+E

[
∆R` ·1(Ac`−1)

]
,

(12)

where the last inequality follows from Lemma 6 and the fact that bothR(S`,µµµ(`)) andR(S`,v) are bounded
by 1 and V (S`)≤K. Therefore from Lemma 4 it follows that,

E
[
∆R`1(Ac`−1)

]
≤E

[∑
i∈S`

|µi(`)− vi| ·1(Ac`−1)

]
.

≤E

[∑
i∈S`

|µi(`)− v̂i(`)|

]
+E

[√
24vi log (`+ 1)

ni(`)
+

48 log (`+ 1)

ni(`)

]
,

(13)

where the last inequality follows from the definition of event A` and triangle inequality.
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Using Lemma 5 we show that the first term in above inequality, which is difference between the sampled
parameter and the mean of the posterior distribution is bounded (see Corollary 6). Therefore, from (11),
(12), (13), Corollary A.1 and Lemma 6, we have,

Reg2(T,v)≤C1E

(
L∑
`=1

∑
i∈S`

√
vi logTK

ni(`)

)
+C2E

(
L∑
`=1

∑
i∈S`

logTK

ni(`)

)
, (14)

where C1 and C2 are absolute constants. If Ti denote the total number of epochs product i is offered, then
we have,

Reg2(T,v)
(a)

≤ C2N log2 TK +C1E

(
n∑
i=1

√
viTi logTK

)
,

(b)

≤ C2N log2 TK +C1

N∑
i=1

√
vi log (TK)E(Ti).

(15)

Inequality (a) follows from the observation that L≤ T , Ti ≤ T ,
Ti∑

ni(`)=1

1√
ni(`)

≤
√
Ti and

Ti∑
ni(`)=1

1

ni(`)
≤

logTi, while Inequality (b) follows from Jensen’s inequality.
Since that expected epoch length conditioned on the event S = S` is 1 + V (S`), we have,

∑
viE(Ti)≤

T. To obtain the worst case upper bound, we maximize the bound in Equation (15) subject to the above
condition. Therefore, we have

Reg2(T,v)≤C1

√
NT logTK +C2N log2 TK). (16)

We now focus on the first term in (7), Reg1(T,v).

Bounding Reg1(T,v): Let T denote the set of optimistic epochs. Recall that EAn(`) is the set of non-
optimistic epochs between `th epoch and the subsequent optimistic epoch. Therefore, we can reformulate
Reg1(T,v) as,

Reg1(T,v) =E[
L∑
`=1

1(`∈ T ) ·
∑

τ∈EAn(`)

|Eτ |(R(S∗,v)−R(Sτ ,µµµ(τ)))]

Note that for any `, by design S` is the optimal set for the sampled parameters, i.e., R(S`,µµµ(`)) ≥
R(S∗,µµµ(`)). From the restricted monotonicity property, for any ` ∈ T , we have R(S∗,µµµ(`)) ≥ R(S∗,v).
Therefore, it follows that,

Reg1(T,v)≤ E

 L∑
`=1

1(`∈ T )
∑

τ∈EAn(`)

|Eτ |(R(S`,µµµ(`))−R(Sτ ,µµµ(τ)))

 ,
(a)

≤ E

 L∑
`=1

1(`∈ T )
∑

τ∈EAn(`)

|Eτ |(R(S`,µµµ(`))−R(S`,µµµ(τ)))

 ,
(b)

≤ E

 L∑
`=1

∑
τ∈EAn(`)

∆R`,τ


(17)
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where inequality (a) follows from the fact Sτ is the optimal assortment for the sampled parameters µµµ(τ)
and inequality (b) follows from the observation that the expected length of the τ th epoch conditioned on
event S = Sτ is 1 +V (Sτ ). Following the approach of bounding Reg2(T,v), we analyze the first term,
Reg1(T,v) in two scenarios, one on A` and one on Ac`. More specifically,

E

 ∑
τ∈EAn(`)

∆R`,τ

=E

 ∑
τ∈EAn(`)

∆R`,τ1(A`−1) + ∆R`,τ1(Ac`−1)

 ,
(a)

≤ (K + 1)E[|EAn(`)|1(A`−1)] + ∆R`,τ1(Ac`−1)],
(b)

≤ (K + 1)E[|EAn(`)|1(A`−1)] +E[1(Ac`−1)
∑

τ∈EAn(`)

∑
i∈S`

|µi(`)−µi(τ)|],

(c)

≤ (K + 1)E[|EAn(`)|1(A`−1)] +E

1(Ac`−1)
∑

τ∈EAn(`)

∑
i∈S`

|µi(`)− vi|+ |µi(τ)− vi|

 ,
(18)

where, inequality (a) follows from the fact thatR(S`,µµµ(`)) andR(S`,µµµ(τ)) are bounded by 1 and V (Sτ )≤
K; inequality (b) follows from Lemma 4; and inequality (c) follows from the triangle inequality.

Following the approach of Bounding Reg2(T,v), specifically along the lines of (13) and Corollary A.1,
we can show that

1(Ac`−1)|µi(`)− vi| ≤C1

√
vi logTK

ni(`)
+

logTK

ni(`)
.

Since τ ≥ ` we have ni(`) ≤ ni(τ). Therefore, from (17), (18) and Lemma 6 we obtain the following
inequality.

Reg1(T,v)≤E

[∑
`∈T

|EAn(`)|
∑
i∈S`

(
C1

√
vi logTK

ni(`)
+C2

logTK

ni(`)

)]
, (19)

for some absolute constants C1 and C2. If |EAn(.)| is constant, then bounding the above inequality is similar
to bounding Reg1(T,v) (see (14)). In the remainder of this section, we will show how to utilize Lemma 8
to bound Reg1(T,v). From Cauchy-Schwarz inequality, we have

E

[∑
`∈T

∑
i∈S`

|EAn(`)|C1

√
vi logTK

ni(`)

]
≤C1

∑
`

∑
i∈S`

E1/2
[
|EAn(`)|2

]
·E1/2

[
vi logTK

ni(`)

]
,

E

[∑
`∈T

∑
i∈S`

|EAn(`)|C2

logTK

ni(`)

]
≤C2

∑
`

∑
i∈S`

E1/2
[
|EAn(`)|2

]
E1/2

[
log2 TK

n2
i (`)

]
.

Therefore from Lemma 8 for some absolute constant C, we have,

Reg1(T,v)≤ C

K

(∑
`

∑
i∈S`

E1/2

[
vi logTK

ni(`)

]
+
∑
`

∑
i∈S`

E1/2

[
log2 TK

n2
i (`)

])
,

≤C
K

√√√√TKE

[∑
`

∑
i∈S`

vi logTK

ni(`)

]
+

√√√√TKE

[∑
`

∑
i∈S`

log2 TK

n2
i (`)

] ,

(20)

where the last inequality follows Cauchy-Schwarz inequality. Since vi ≤ 1 for all i, we have,∑
`

∑
i∈S`

vi logTK

ni(`)
≤

N∑
i=1

Ti∑
ni(`)=1

logTK

ni(`)
≤N logTK · logT,
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and ∑
`

∑
i∈S`

log2 TK

n2
i (`)

=
N∑
i=1

Ti∑
ni(`)=1

log2 TK

ni(`)
≤ 4N log2 TK,

Therefore by substituting preceeding two inequalities in (20), we obtain that

Reg1(T,v)≤C
√
NT

K
,

for some constant C. The result follows from this inequality and (16).

5. Empirical study In this section, we test the various design components of our Thompson Sampling
approach through numerical simulations. The aim is to isolate and understand the effect of individual fea-
tures of our algorithm like Beta posteriors vs. Gaussian approximation, independent sampling vs. correlated
sampling, and single sample vs. multiple samples, on the practical performance.

We simulate an instance of the MNL-Bandit problem with N = 1000, K = 10 and T = 2× 105, when
the MNL parameters {vi}i=1,...,N are generated randomly from Unif[0,1]. And, we compute the average
regret based on 50 independent simulations over the randomly generated instance. In Figure 1, we report
performance of following different variants of TS:
i) Algorithm 1: Thompson Sampling with independent Beta priors, as described in Algorithm 1.
ii) TSIID Gauss: Algorithm 1 with Gaussian posterior approximation and independent sampling. More specif-

ically, for each epoch ` and for each item i, we sample a Gaussian random variable independently with
the mean and variance equal to the mean and variance of the Beta prior in Algorithm 1 (see Lemma 6).

iii) TSGauss Corr: Algorithm 1 with Gaussian posterior approximation and correlated sampling. In particular,
for every epoch `, we sample a standard normal random variable. Then for each item i, we obtain a
corresponding sample by multiplying and adding the preceding sample with the standard deviation and
mean of the Beta prior in Algorithm 1 (see Step (a) in Algorithm 2). We use the values α= β = 1 for
this variant of Thompson Sampling.

iv) Algorithm 2: Algorithm 1 with Gaussian posterior approximation with correlated sampling and boosting
by using multiple (K) samples. This is essentially the version with all the features of Algorithm 2. We
use the values α= β = 1 for this variant of Thompson Sampling.

For comparison, we also present the performance of UCB approach presented in [2]. The performance of all
the variants of TS is observed to be better than the UCB approach in our experiments, which is consistent
with the other empirical evidence in the literature.

Figure 1 shows the performance of the TS variants. Among the TS variants, the performance of
Algorithm 1, i.e., Thompson Sampling with independent Beta priors is similar to TSIID Gauss, the version
with independent Gaussian (approximate) posteriors; indicating that the effect of posterior approximation
is minor. The performance of TSGauss Corr, where we generate correlated samples from the Gaussian distri-
butions, is significantly better than the other variants of the algorithm. This is consistent with our remark
earlier that to adapt the Thompson sampling approach of the classical MAB problem to our setting, ideally,
we would like to maintain a joint prior over the parameters {vi}i=1,...,N and update it to a joint poste-
rior using the Bandit feedback. However, since this can be quite challenging, and intractable in general,
we use independent priors over the parameters. The superior performance of TSGauss Corr demonstrates the
potential benefits of considering a joint (correlated) prior/posterior in settings with a combinatorial struc-
ture. Finally, we observe that the performance of Algorithm 2, where an additional “variance boosting” is
provided through K independent samples, is worse than TSGauss Corr. Note that while “variance boosting”
facilitates theoretical analysis, it also results in a longer exploration period explaining the observed degra-
dation of performance in comparison to the TS variant without “variance boosting.” However, Algorithm 2
performance significantly better than the independent Beta posterior version Algorithm 1. Therefore, signif-
icant improvements in performance due to the correlated sampling feature of Algorithm 2 compensate for
the slight deterioration caused by boosting.
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FIGURE 1. Regret growth with T for various heuristics on a randomly generated MNL-Bandit instance with N = 1000,K = 10.

6. Conclusion. In this paper, we consider a combinatorial variant of the traditional multi-armed Bandit
problem, MNL-Bandit, and present a TS-based policy for this problem. Focusing on designing a compu-
tationally efficient algorithm that facilitates theoretical analysis, we highlight several challenges involved
in adaptive TS-based approaches for the MNL-Bandit problem and discuss algorithm design choices to
address them. To the best of our knowledge, the idea of correlated sampling for combinatorial arms is novel
and potentially useful for further combinatorial dynamic learning.

Appendix A: Unbiased Estimate ṽi,` and Conjugate priors Lemma 1 establishes that the estimate
obtained from epoch based offerings, ṽi,` in Algorithm 1 is an unbiased estimate and is distributed geomet-
rically with probability of success 1

vi+1
. This result is adapted from Agrawal et al. [2] and we provide the

proof for completeness.
Proof of Lemma 1: We prove the result by computing the moment generating function, from which

we can establish that ṽi,` is a geometric random variable with parameter 1
1+vi

. More specifically, we show
that the moment generating function of estimate conditioned on S`, v̂i, is given by,

E
(
eθṽi,`

∣∣∣S`)=
1

1− vi(eθ− 1)
, for all θ≤ log

1 + vi
vi

, for all i= 1, · · · ,N,

thereby also establishing that ṽi,` are unbiased estimators of vi.
We focus on proving the above result. From (1), we have that the probability of the no purchase event

when assortment S` is offered is given by

p0(S`) =
1

1 +
∑

j∈S`
vj
.

Let n` be the total number of offerings in epoch ` before a no purchased occurred, i.e., n` = |E`| − 1.
Therefore, n` is a geometric random variable with probability of success p0(S`). And, given any fixed value
of n`, ṽi,` is a binomial random variable with n` trials and probability of success given by

qi(S`) =
vi∑
j∈S`

vj
.

In the calculations below, for brevity we use p0 and qi respectively to denote p0(S`) and qi(S`). Hence, we
have

E
(
eθṽi,`

)
=En`

{
E
(
eθṽi,`

∣∣n`)} .
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Since the moment generating function for a binomial random variable with parameters n,p is
(peθ + 1− p)n, we have

E
(
eθṽi,`

∣∣n`)=En`
{(
qie

θ + 1− qi
)n`} .

For any α, such that, α(1− p)< 1 n is a geometric random variable with parameter p, we have

E(αn) =
p

1−α(1− p)
.

Note that for all θ < log 1+vi
vi

, we have (qie
θ + (1− qi)) (1− p0) = (1− p0) + p0vi(e

θ − 1)< 1. Therefore,
we have

E
(
eθṽi,`

)
=

1

1− vi(eθ− 1)
for all θ < log

1 + vi
vi

.

This concludes the proof. �
Building on this result. We will prove Lemma 2 that helped construct Algorithm 1. Recall in Lemma 2,

we show that the distribution of ṽi,` has a conjugate prior.
Proof of Lemma 2: The proof of the lemma follows from the following result on the probability density

function of the random variable Xα,β . Specifically, we have for any x> 0

fα,β(x) =
1

B(α,β)

(
1

1 +x

)α+1(
x

x+ 1

)β−1

, (21)

where B(a, b) = Γ(a)Γ(b)

Γ(a+b)
and Γ(a) is the gamma function. Since we assume that the parameter vi’s prior

distribution is same as that of Xα,β , we have from (21) and Lemma 1,

P
(
vi
∣∣ṽi,` =m

)
∝
(

1

1 + vi

)α+2(
vi

vi + 1

)β+m−1

.

�
Given the pdf of the posterior in (21), it is possible to compute the mean and variance of the posterior

distribution. We show that they have simple closed form expressions. Now we will prove Lemma 3, which
provides the moments of the aforementioned posterior distribution.

Proof of Lemma 3 We prove the result by relating the mean of the posterior to the mean of the Beta
distribution. Let X̂ = 1

X
− 1. From (21), we have

E(X̂) =
1

B(α,β)

∫ ∞
0

x

(
1

1 +x

)α+1(
x

x+ 1

)β−1

dx,

Substituting y= 1
1+x

, we have

E(X̂) =
1

B(α,β)

∫ 1

0

yα−2(1− y)βdx=
B(α− 1, β+ 1)

B(α,β)
=

β

α− 1
.

Similarly, we can derive the expression for the Var(X̂). This concludes the proof. �

A.1. Some concentration bounds In this section, we prove bounds on how fast our estimate v̂i con-
verges to the true mean The concentration bounds we prove in the section are similar to Chernoff bounds,
but for the fact that ni(`) is a random variable. Hence, we use a self-normalized martingale technique to
derive concentration bounds. We will then utilize the large deviation properties of Gaussian distribution to
show that the posterior distributions concentrate around their means.
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Lemma 9 Let δi, i= 1, · · · ,N be arbitrary random variables. If vi ≤ 1, for all i= 1, · · · ,N , then we have,
for all i= 1, · · · ,N ,
1.

P (v̂i(`)> (1 + δi)vi)≤
(
E
[
exp

(
− viδ

2
i ni(`)

2(1 + δi)(1 + vi)2

)]) 1
2

,

and
2.

P (v̂i(`)< (1− δi)vi)≤E 1
2

[
exp

(
− viδ

2
i ni(`)

6(1 + vi)2

(
3− 2δivi

1 + vi

))]
.

Proof. Fix i∈ {1, ldots,n}. We have

v̂i(`) =
1

ni(`)

∑̀
τ=1

ṽi,τ1(i∈ Sτ ).

Therefore, bounding P (v̂i(`)> (1 + δi)vi) and P (v̂i(`)< (1− δi)vi) is equivalent to bounding
P
(∑`

τ=1 ṽi,τ1(i∈ Sτ )> (1 + δ)vini(`)
)

and P
(∑`

τ=1 ṽi,τ1(i∈ Sτ )< (1− δ)vini(`)
)

. We will bound
the first term and then follow a similar approach for bounding the second term to complete the proof.

Bounding P (v̂i(`)> (1 + δi)vi): From Markov Inequality, we have for any λ> 0,

P

(∑̀
τ=1

ṽi,τ1(i∈ Sτ )> (1 + δi)vini(`)

)
= P

{
exp

(
λ
∑̀
τ=1

ṽi,τ1(i∈ Sτ )

)
> exp (λ(1 + δi)vini(`))

}
,

= P

{
exp

(
λ
∑̀
τ=1

ṽi,τ1(i∈ Sτ )−λ(1 + δi)vini(`)

)
> 1

}
,

≤E

[
exp

(
λ
∑̀
τ=1

ṽi,τ1(i∈ Sτ )−λ(1 + δi)vini(`)

)]
.

(22)

For notational brevity, denote by f(λ, vi) the function,

f(λ, vi) =− log (1− vi(e2λ− 1))

2
.

We have,

E

[
exp

(
λ
∑̀
τ=1

ṽi,τ1(i∈ Sτ )−λ(1 + δi)vini(`)

)]

=E

[
exp

(∑̀
τ=1

(λṽi,τ − f(λ, vi)) ·1(i∈ Sτ )

)
· exp

(
−λ(1 + δi)vi(1− f(λ, vi))ni(`)

)]
,

≤

(
E

[
exp

(∑̀
τ=1

(2λṽi,τ − 2f(λ, vi)) ·1(i∈ Sτ )

)]
·E
[
exp

(
− 2λ(1 + δi)vi(1− f(λ, vi))ni(`)

)]) 1
2

,

(23)

where the above follows from Cauchy-Schwartz inequality. Let Fτ be the filtration corresponding to the
history until epoch τ . Note that for any τ , 1(i ∈ Sτ ) is measurable on Fτ and {ṽi,τ |Fτ} is a geometric
random variable. From the proof of Lemma 1, for all τ ≥ 1 and for any 0<λ< 1

2
log 1+vi

vi
, we have,

E
(
e2λṽi,τ1(i∈Sτ )

∣∣Fτ)=

(
1

1− vi(e2λ− 1)

)1(i∈Sτ )

.
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Therefore, it follows that

E
(
e(2λṽi,τ−2f(λ,vi))·1(i∈Sτ )

∣∣Fτ)≤ 1, (24)

and

E

[
exp

(∑̀
τ=1

(2λṽi,τ − 2f(λ, vi))1(i∈ Sτ )

)]
=E [E{exp ((2λṽi,τ − 2f(λ, vi))1(i∈ Sτ ))|F`}]

=E

[
`−1∏
τ=1

exp ((2λṽi,τ − 2f(λ, vi))1(i∈ Sτ ))E
(
e(2λṽi,`−2f(λ,vi))1(i∈S`)

∣∣F`)]

≤E

[
`−1∏
τ=1

exp ((2λṽi,τ − 2f(λ, vi))1(i∈ Sτ ))

]
,

where the inequality follows from (24). Similarly by conditioning with F`−1, · · · ,F1, we obtain,

E

[
exp

(∑̀
τ=1

(2λṽi,τ − 2f(λ, vi))1(i∈ Sτ )

)]
≤ 1.

From (22) and (23), we have

P

(∑̀
τ=1

ṽi,τ1(i∈ Sτ )> (1 + δi)vini(`)

)
≤
(
E
[
exp

(
− 2λ(1 + δi)vi(1− f(λ, vi))ni(`)

)]) 1
2

.

Therefore, we have

P

(∑̀
τ=1

ṽi,τ1(i∈ Sτ )> (1 + δi)vini(`)

)
≤
(
E
[
min
λ∈Ω

exp
(
− 2λ(1 + δi)vi(1− f(λ, vi))ni(`)

)]) 1
2

, (25)

where Ω = {λ | 0< λ < 1
2

log 1+vi
vi
} is the range of λ for which the moment generating function in (24) is

well definred. Taking logarithm of the objective in (25), we have,

argmin
λ∈Ω

{
e−2λ(1+δi)vi(1−f(λ,vi))·ni(`) = argmin

λ∈Ω

− 2(1 + δi)λni(`)vi−ni(`) log
(
1− vi(e2λ− 1)

)}
. (26)

Noting that the right hand side in the above equation is a convex function in λ, we obtain the optimal λ by
solving for the first order conditions. Specifically, at optimal t, we have

e2λ =
(1 + δi)(1 + vi)

1 + vi(1 + δi)
.

Substituting the above expression in (25), we obtain the following bound.

P (v̂i(`)> (1 + δi)vi)≤E 1
2

[(
1− δi

(1 + δi)(1 + vi)

)ni(`)vi(1+δi)
(

1 +
δivi

1 + vi

)ni(`)]
. (27)

For notational brevity, we will use n to denote the random variable ni(`) and focus on bounding the right
hand term in the above equation. From Taylor series of log (1−x), we have that

nvi(1 + δi) log

(
1− δi

(1 + δi)(1 + vi)

)
≤− nδivi

1 + vi
− nδ2

i vi
2(1 + δi)(1 + vi)2

,
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and similarly for log (1 +x), we have

n log

(
1 +

δivi
1 + vi

)
≤ nδivi

(1 + vi)
.

Note that if δi > 1, we can use the fact that log (1 + δix)≤ δi log (1 +x) to arrive at the preceding result.
Substituting the preceding two equations in (27), we have

P (v̂i(`)> (1 + δi)vi)≤E 1
2

[
exp

(
− nδ2

i vi
2(1 + δi)(1 + vi)2

)]
. (28)

Bounding P (v̂i(`)< (1− δi)vi): Now to bound the other one sided inequality, we use the fact that for
any λ> 0,

E
(
e−λṽi,τ1(i∈Sτ )

∣∣Fτ)=

(
1

1− vi(e−λ− 1)

)1(i∈Sτ )

.

and follow a similar approach. More specifically, from Markov inequality, for any λ> 0 and 0< δi < 1, we
have

P

(∑̀
τ=1

ṽi,τ1(i∈ Sτ )< (1− δi)vini(`)

)
= P

{
exp

(
−λ
∑̀
τ=1

ṽi,τ1(i∈ Sτ )

)
> exp (−λ(1− δi)vini(`))

}
,

= P

{
exp

(
−λ
∑̀
τ=1

ṽi,τ1(i∈ Sτ ) +λ(1− δi)vini(`)

)
> 1

}
,

≤E

[
exp

(
−λ
∑̀
τ=1

ṽi,τ1(i∈ Sτ ) +λ(1− δi)vini(`)

)]
.

(29)

For notational brevity, denote f(λ, vi) by the function,

f(λ, vi) =− log (1− vi(e−2λ− 1))

2
.

We have,

E

[
exp

(
−λ
∑̀
τ=1

ṽi,τ1(i∈ Sτ ) +λ(1− δi)vini(`)

)]

=E

[
exp

(∑̀
τ=1

(−λṽi,τ − f(λ, vi))1(i∈ Sτ )

)
exp

(
λ(1− δi)vi(1 + f(λ, vi))ni(`)

)]
,

≤

(
E

[
exp

(∑̀
τ=1

(−2λṽi,τ − 2f(λ, vi))1(i∈ Sτ )

)]
E
[
exp

(
2λ(1− δi)vi(1 + f(λ, vi))ni(`)

)]) 1
2

,

(30)

where the above inequality follows from Cauchy-Schwartz inequality. LetFτ be the filtration corresponding
to the history until epoch τ . Note that for any τ , 1(i∈ Sτ ) conditioned on Fτ is a constant and {ṽi,τ |Fτ} is
a geometric random variable. Therefore, for all τ ≥ 1 and for any λ> 0, we have,

E
(
e−2λṽi,τ1(i∈Sτ )

∣∣Fτ)=

(
1

1− vi(e−2λ− 1)

)1(i∈Sτ )

.

Therefore, it follows that

E
(
e(−2λṽi,τ−2f(λ,vi))1(i∈Sτ )

∣∣Fτ)≤ 1, (31)
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and

E

[
exp

(∑̀
τ=1

(−2λṽi,τ − 2f(λ, vi))1(i∈ Sτ )

)]
=E

[
E

{
exp

(∑̀
τ=1

(−2λṽi,τ − 2f(λ, vi))1(i∈ Sτ )

)∣∣∣∣∣F`
}]

,

=E

[
`−1∏
τ=1

exp ((−2λṽi,τ − 2f(λ, vi))1(i∈ Sτ ))E
(
e(−2λṽi,`−2f(λ,vi))1(i∈S`)

∣∣F`)] ,
=E

[
`−1∏
τ=1

exp ((−2λṽi,τ − 2f(λ, vi))1(i∈ Sτ ))

]
,

where the inequality follows from (31). Similarly by conditioning with F`−1, · · · ,F1, we obtain,

E

[
exp

(∑̀
τ=1

(−2λṽi,τ − 2f(λ, vi))1(i∈ Sτ )

)]
≤ 1.

From (29) and (30), we have

P

(∑̀
τ=1

ṽi,τ1(i∈ Sτ )< (1− δi)vini(`)

)
≤
(
E
[
exp

(
2λ(1− δi)vi(1 + f(λ, vi))ni(`)

)]) 1
2

.

Therefore, we have

P (v̂i(`)< (1− δi)vi)≤
(
E
[
min
λ>0

exp
(

2λ(1− δi)vi(1 + f(λ, vi))ni(`)
)]) 1

2

.

Following similar approach as in optimizing the previous bound (see (25)) to establish the following result.
For notational brevity, we will use n to denote the random variable ni(`).

P (v̂i(`)< (1− δi)vi)≤E 1
2

[(
1 +

δi
(1− δi)(1 + vi)

)nvi(1−δi)(
1− δivi

1 + vi

)n]
.

Now we will use Taylor series for log (1 +x) and log (1−x) in a similar manner as described for the other
bound to obtain the required result. In particular, since 1− δi ≤ 1, we have for any x > 0 it follows that
(1 + x

1−δi
)(1−δi) ≤ (1 +x) . Therefore, we have

P (v̂i(`)< (1− δi)vi)≤
(
E
[(

1 +
δi

1 + vi

)nvi(
1− δivi

1 + vi

)n]) 1
2

. (32)

Note that since ṽi,τ ≥ 0 for all i, τ , we have a zero probability event if δi > 1. Therefore, without loss of
generality, we assume δi < 1 and from Taylor series for log (1−x), we have

n log

(
1− δivi

1 + vi

)
≤− nδivi

1 + vi
,

and from Taylor series for log (1 +x), we have

n log

(
1 +

δivi
1 + vi

)
≤ nδi

(1 + vi)
− nδ2

i vi
6(1 + vi)2

(
3− 2δivi

1 + vi

)
.

Therefore, substituting the preceding equations in (32), we have,

P (v̂i < (1− δi)vi)≤ exp

(
− nδ2

i vi
6(1 + vi)2

(
3− 2δiµ

1 + vi

))
. (33)

The result follows from (28) and (33). �
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Proof of Lemma 6. Let δi =
√

4(vi+2)m log (ρ+1)

vini(`)
. We analyze the cases δi ≤ 1

2
and δi ≥ 1

2
separately.

Case 1: δi ≤ 1
2

: For any vi ≤ 1 and δi ≤ 1/2, we have,

viδ
2
i ni(`)

2(1 + δi)(1 + vi)2
≥ viδ

2
i ni(`)

6(1 + vi)
≥m log (ρ+ 1),

and
viδ

2
i ni(`)

6(1 + vi)2

(
3− 2δivi

1 + vi

)
≥ viδ

2
i ni(`)

6(1 + vi)
≥m log (ρ+ 1).

Therefore, substituting δi =
√

4(vi+2)m log (ρ+1)

vini(`)
in Lemma 9, we have,

P (2v̂i(`)≥ vi)≥ 1− 1

ρm
,

P

{
|v̂i(`)− vi|<

√
4vi(vi + 2)m log (ρ+ 1)

ni(`)

)
≥ 1− 2

ρm
.

(34)

From the above three results, we have,

P

{
|v̂i(`)− vi|<

√
16v̂i(`) (v̂i(`) + 1) log (ρ+ 1)

ni(`)

)
≥ P

{
|v̂i(`)− vi|<

√
4vi(vi + 2) log (ρ+ 1)

ni(`)

)
≥ 1− 3

ρm
. (35)

By assumption, vi ≤ 1. Therefore, we have vi(vi + 2)≤ 3vi and,

P

{
|v̂i(`)− vi|<

√
12vi log (ρ+ 1)

ni(`)

)
≥ 1− 3

ρm
.

Case 2: δi > 1
2

: Now consider the scenario, when
√

4(vi+2)m log (ρ+1)

vini(`)
> 1

2
. Then, we have,

δ̄i : =
8(vi + 2)m log (ρ+ 1)

vini(`)
≥ 1

2
,

which implies for any vi ≤ 1,

nviδ̄
2
i

2(1 + δ̄i)(1 + vi)2
≥ nviδ̄i

12(1 + vi)
,

nδ̄2
i vi

6(1 + vi)2

(
3− 2δ̄ivi

1 + vi

)
≥ nviδ̄i

12(1 + vi)
.

Therefore, substituting the value of δ̄i in Lemma 9, we have

P
{
|v̂i(`)− vi|>

24m log (ρ+ 1)

n

)
≤ 2

ρm
.

This completes the proof. �
Proof of Lemma 5: Note that we have µi(`) = v̂i(`) + σ̂i(`) · max

j=1,··· ,K
{θ(j)(`)}. Therefore, from union

bound, we have,

P
{
|µi(`)− v̂i(`)|> 4σ̂i(`)

√
log rK

∣∣∣v̂i(`)}= P

(
K⋃
j=1

{
θj(`)> 4

√
log rK

})

≤
K∑
j=1

P
(
θj(`)> 4

√
log rK

)
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The result follows from the above inequality and the following anti-concentration bound for the normal
random variable θ(j)(`) (see formula 7.1.13 in Abramowitz and Stegun [1]).

1

4
√
π
· e−7z2/2 < P

(
|θ(j)(`)|> z

)
≤ 1

2
e−z

2/2.

�

Corollary A.1 For any item i and any epoch `, we have

E (|µi(`)− v̂i(`)|)≤ 4σ̂i(`)
√

logTK.

Proof. In Lemma 5, we show that for any r > 0 and i= 1, · · · ,N , we have,

P
(
|µi(`)− v̂i(`)|> 4σ̂i(`)

√
log rK

)
≤ 1

r4K3
,

where σ̂i(`) =
√

50v̂i(v̂i+1)

ni
+ 75

√
logTK
ni

. Since S` ⊂ {1, · · · ,N}, we have for any i∈ S` and r > 0, we have

P
(
|µi(`)− v̂i(`)|> 4σ̂i(`)

√
log rK for any i∈ S`

)
≤ P

(
N⋃
i=1

|µi(`)− v̂i(`)|> 4σ̂i(`)
√

log rK

)
,

≤ N

r4K3
.

(36)

Since |µi(`)− v̂i(`)| is a non-negative random variable, we have

E(|µi(`)− v̂i(`)|) =

∫ ∞
0

P{|µi(`)− v̂i(`)| ≥ x}dx,

=

∫ 4σ̂i(`)
√

logTK

0

P{|µi(`)− v̂i(`)| ≥ x}dx+

∫ ∞
4σ̂i(`)

√
logTK

P{|µi(`)− v̂i(`)| ≥ x}dx,

≤ 4σ̂i(`)
√

logTK +
∞∑
r=T

∫ 4σ̂i(`)
√

log (r+1)K

4σ̂i(`)
√

log rK

P{Y ≥ x}dx,

(a)

≤ 4σ̂i(`)
√

logTK +
∞∑
r=T

N
√

log (rK + 1)−N
√

log rK

r4K3
,

≤ 4σ̂i(`)
√

logTK for any T ≥N,

(37)

where the inequality (a) follows from (36).
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