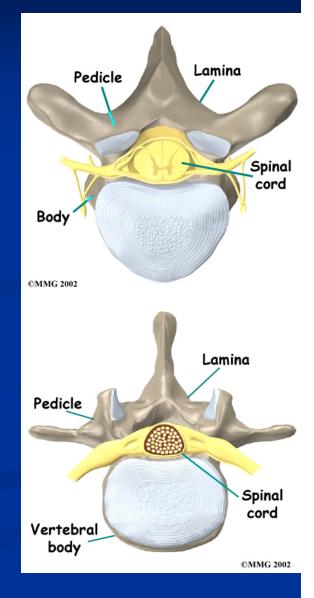
Thoracolumbar and Lumbar Burst Fractures

Sussan Salas, MD Thomas Jefferson University Hospital Department of Neurological Surgery Thoracolumbar/Lumbar Burst Fractures: Overview

- Epidemiology
- Anatomy
- Initial Assessment
- Imaging
- Injury Mechanism/Biomechanics
- Fracture Classification
- Treatment Options: Operative vs. Nonoperative Management

Epidemiology

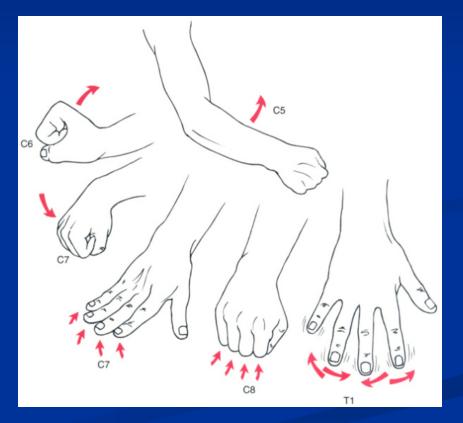
- 79,000 spinal fractures in U.S. each year 72.5% involve thoracic or lumbar spine ^[1,2]
- Most common site of injury is thoracolumbar junction
 - Mechanical transition zone between rigid thoracic and more mobile lumbar spine ^[3-5]
- Lumbar spine more prone to injury
 - Absence of ribs, transition from kyphotic to lordotic posture, sagitally oriented facet joints ^[6]
- Operative versus non-operative mgmt: controversy


Anatomy

- Vertebral column: 29 vertebrae organized in 4 curves:
 - 2 primary curves present at birth: thoracic and sacral (kyphosis)
 - 2 compensatory curves - result of adaptation to upright posture: cervical and lumbar (lordosis)

Anatomy

- T spine: made rigid by ribcage articulations (ligamentous support); facet joints in coronal plane limit flexion/extension
- L spine: facet joints in sagittal plane increase flexion/extension but decrease lateral bending/rotation
- TL junction: facet joints in oblique orientation; provide support and resistance to 35-45% of torsional and shear forces on spine

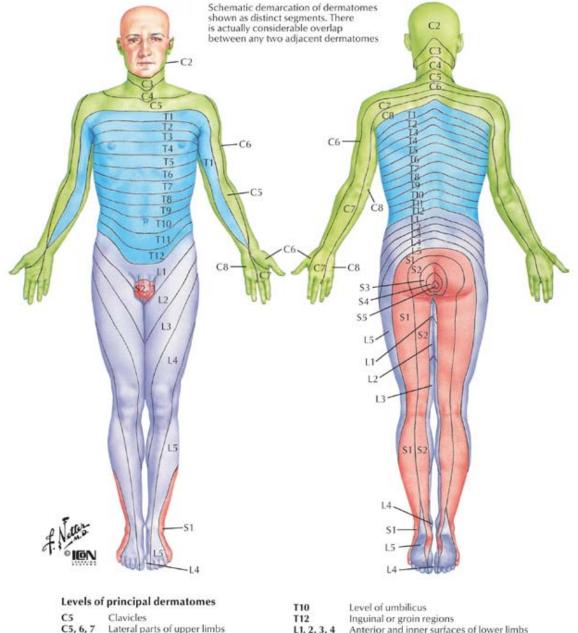


Initial Assessment

- ABCs & Immobilization: patients should be immobilized until stability of fracture can be assessed adequately – avoid loss/worsening of neurological deficits ^[4]
- Neurological exam: performed as soon as the patient is hemodynamically stable: motor, sensation, DTRs, digital rectal exam ^[10]
- Neurologic deficits from TL fxs can involve spinal cord or cauda equina
- 70% of thoracolumbar injuries do not have associated neurologic deficits ^[2]

Initial Assessment: Motor Examination

Upper extremity
C5-shoulder abduction
C6-wrist extension
C7-wrist flexion
C8-finger flexion
T1-finger abduction



Initial Assessment: Motor Examination

Lower extremity
L1-hip flexion
L2-hip adduction
L3-knee extension
L4-ankle dorsiflexion
L5-toe extension

Initial **Assessment:** Dermatomes

- Anterior and inner surfaces of lower limbs L1, 2, 3, 4
 - L4, 5, S1 Foot

14

S1

- Medial side of great toe
- S1, 2, L5 Posterior and outer surfaces of lower limbs
 - Lateral margin of foot and little toe
- \$2, 3, 4 Perineum

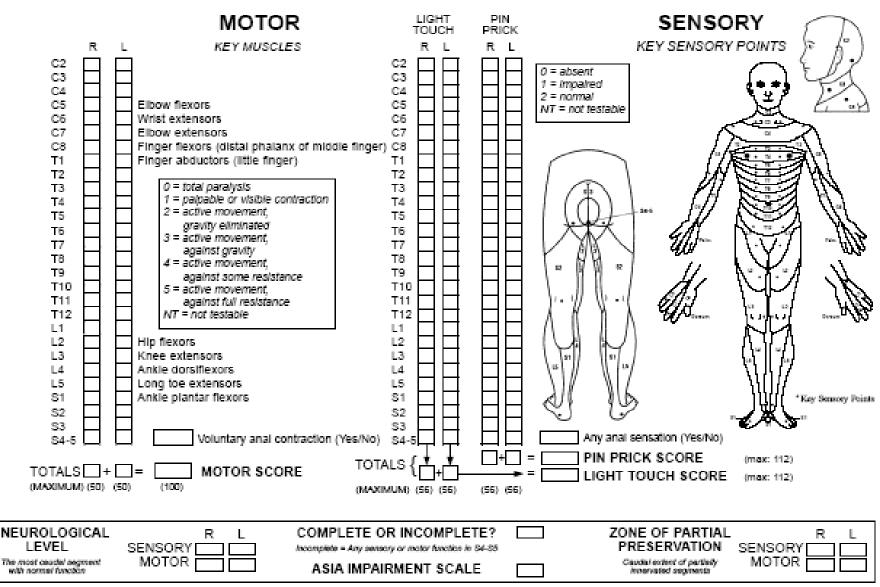
C6, 7, 8 Hand

C8, T1

C6

C8 Ring and little fingers **T4**

Thumb


Medial sides of upper limbs

Level of nipples

Initial Assessment: Classification of injury

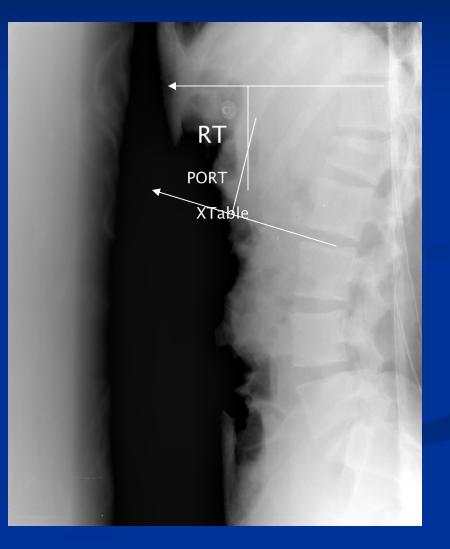
American Spinal Injury Association (ASIA)
A = Complete – No Sacral Motor / Sensory
B = Incomplete – Sacral sensory sparing
C = Incomplete – Motor Sparing (<3)
D = Incomplete – Motor Sparing (>3)
E = Normal Motor & Sensory

STANDARD NEUROLOGICAL CLASSIFICATION OF SPINAL CORD INJURY

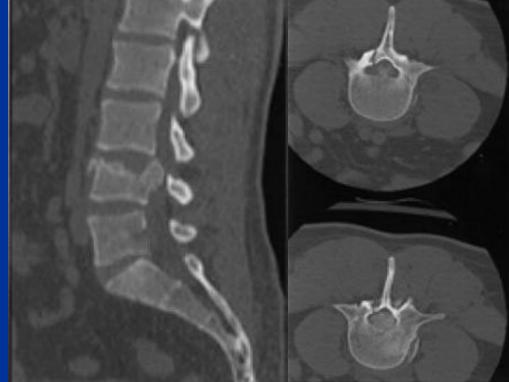
This form may be copied freely but should not be altered without permission from the American Spinal injury Association.

2000 Rev.

Imaging: X-Rays


AP and lateral: AP view: pedicles, VBs, disc spaces, spinous processes Lateral view: VB heights, disc space relations, VB alignment, paraspinal swelling

Imaging: X-ray


In the presence of injury, the entire spine should be imaged to rule out noncontiguous injuries

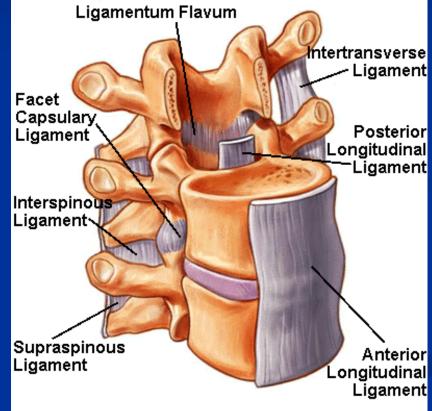
 Degree of kyphosis can be measured using Cobb Measurement.

Imaging: CT

CT yields more diagnostic information than plain radiographs regarding extent of bony injury ^[6,12]

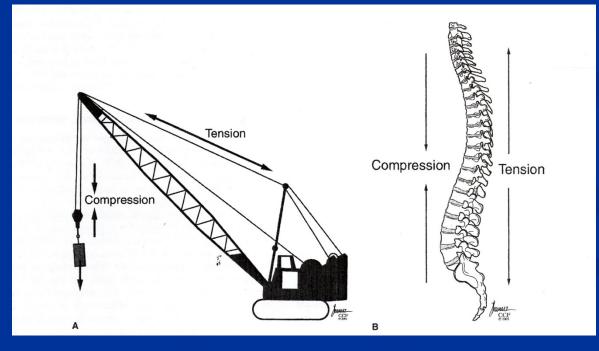
Imaging: MRI

MRI allows visualization of soft tissue components of spinal injuries ^[6] ■ Useful at thoracolumbar junction due to variable location of conus medullaris


Injury Mechanism/Biomechanics

- Gravity exerts continual axial load on the vertebral column
- Body's center of gravity is approx 4cm anterior to first sacral vertebra – results in ventral bending vector acting on spinal column **Posterior ligamentous complex** acts as dorsal tension band to counteract these forces - net sum of vectors acting on spine equal zero Essential to prevent change in spine's sagittal alignment

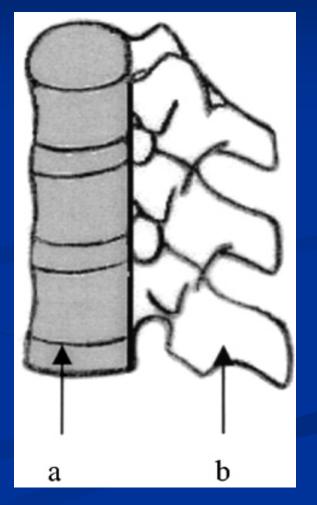
Injury Mechanism/Biomechanics


 PLC: interspinous ligaments and ligamentum flavum

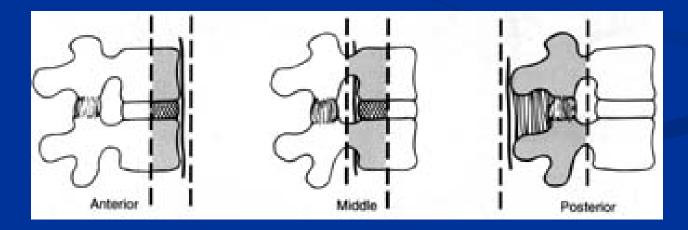
 Trauma resulting in spinal ligament/osseous structure disruption may change net vector sum acting on spine from zero, resulting in potential for spinal imbalance

Injury Mechanism/Biomechanics

- Whiteside ^[9]: analogy of construction crane
- Failure of the cable leads to the crane falling forward – in spine, illustrated by characteristic kyphotic deformity seen with unstable burst fxs

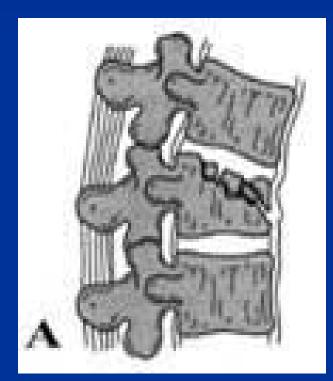

Fracture Classification

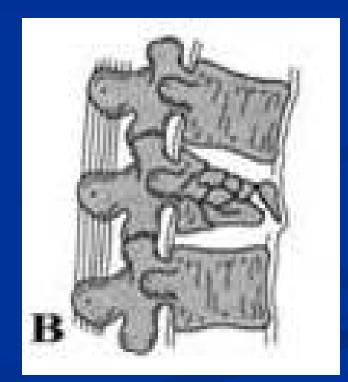
Fracture classification allows organization and treatment of fractures through protocols developed to maximize patient outcomes


Most classification schemes based on criteria for describing stability

Fracture Classification: Holdsworth

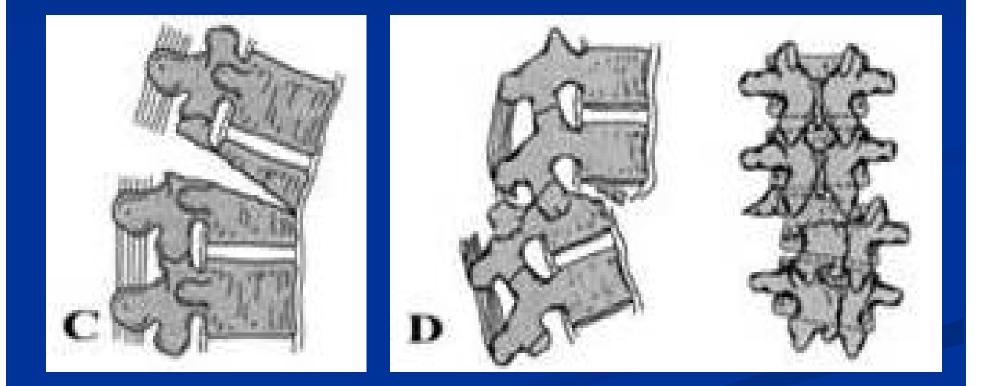
■ <u>Holdsworth</u> ^{[15]:} two-column model of spine stability (1960s). Separated spine into anterior weight-bearing column (a) and posterior tension-bearing column (b) Burst fractures unstable if PLC is disrupted


- Denis [3]: three-column classification of spinal fractures (1980s). Injury to middle column was necessary and sufficient to create instability
- Based classification on results of biomechanical studies demonstrating that isolated rupture of PLC is insufficient to create instability



- Divides spinal fractures into minor and major injuries
 - Minor injuries: fractures of transverse process, pars interarticularis, spinous process
 - Major injuries:

Fracture type	Column		
	Anterior	Middle	Posterior
Compression	Compression	Intact	Intact , or distraction
Burst	Compression	Compression	Intact
Seat-belt type	Intact	Distraction	
Fracture dislocation	Compression, rotation , shear	Distraction, rotation, shear	


Compression Fracture Burst Fracture

Seat-belt type

Fracture dislocation

Denis' 3 types of instability:

- Mechanical (1st degree) may result in late kyphotic deformity. Require external or operative stabilization.
 Neurologic (2nd degree) retropulsion of bone fragments predispose patients to increased risk for neurologic injury. Controversy re: operative stabilization.
- Mechanical/neurologic (3rd degree) develop after burst fx w/neuro deficit or fracture/dislocation.
 Highly unstable > require operative decompression and stabilization.

Fracture Classification: McCormack

- <u>McCormack</u> ^[17]: load-sharing classification, designed specifically for thoracolumbar burst fxs (1994)
- Uses point system: grades amount of VB comminution, displacement of fracture fragments, degree of kyphosis (1-9 points)

Score	1 point	2 points	3 points
Sagittal collapse	30%	>30%	60%
Shift	1mm	2mm	>2mm
Correction	3 degrees	9 degrees	10 degrees

Fracture Classification: McCormack

- With McCormack, patients with >6 points have a large void or gap, resulting in least supportive anterior and middle columns and predisposing posterior instrumentation for failure
- Original goal was to predict failure of shortsegment posterior fixation for burst fxs – prescribes that injuries with high scores should undergo supplemental anterior column support

Fracture Classification: TLICS

■ <u>TLICS system</u> ^[13] designed by the Spine Trauma Study Group (2008). Based on 3 aspects: morphology of the injury ■ integrity of the PLC neurological status of the patient

Injury morphology	
Compression	1
Burst	1
Translation rotation	3
Distraction	4
PLC integrity	
Intact	0
Indeterminate	2
Disrupted	3
Neurological status	
Intact	0
Nerve root injury	2
Complete	2
Incomplete	3

Fracture Classification: TLICS

TLICS determination for surgery: Solution \blacksquare >5 points usually require surgical intervention \blacksquare = 4 points can be treated w/or w/o surgery TLICS determination of surgical approach: ■ Incomplete + anterior compression = ANT ■ Incompetent PLC = POST Neurological deficit + incompetent PLC = ANT + POST

Treatment Options

Controversy regarding operative vs. nonoperative management, surgical approach

Treatment based on maximizing neurologic recovery and preventing neurologic decline – identify unstable fractures

Non-operative Management

- Most fractures in thoracolumbar/lumbar region consist of compression, burst fractures, and isolated dorsal column fractures – stable fxs
- Compression fxs: stable if PLC, along with dorsal vertebral body, is not disrupted (Denis) – bracing
- Burst fxs: stable if no PLC injury/dorsal element fx. Neurologically intact patient > bracing

Non-operative Management

SPINE Volume 18, Number 8, pp 955–970 ©1993, J. B. Lippincott Company

Thoracolumbar Burst Fractures

The Clinical Efficacy and Outcome of Nonoperative Management

Joe Mumford, MD, James N. Weinstein, DO, Kevin F. Spratt, PhD, and Vijay K. Goel, PhD

Mumford et al

- 41 pts with thoraco-lumbar burst fxs w/o neurological deficit treated conservatively
- At injury, canal compromise averaged 37% at 2 years f/u, 2/3 resolution of fragments occluding canal
- Outcome evaluation: 49% patients reported excellent outcomes relative to pain and function
- Progression of body collapse on imaging averaged 8%
- I pt developed neurologic deterioration prompting surgery – all other pts remained neurologically intact

Non-operative Management

SPINE Volume 18, Number 8, pp 971–976 ©1993, J. B. Lippincott Company

Nonoperative Management of Stable Thoracolumbar Burst Fractures With Early Ambulation and Bracing

Jeffrey B. Cantor, MD, Nathan H. Lebwohl, MD, Timothy Garvey, MD, and Frank J. Eismont, MD

Cantor et al

- Is neurologically intact patients with burst fxs w/o PLC disruption – treated with early ambulation w/bracing
- Kyphosis: 19 degrees at time of injury, 20 degrees at f/u
 VB height loss: 36% on presentation, max change 5% at f/u
- At f/u15 pts rated their pain as little or none, 17 pts had little or no restriction of activity.
- CT scan 1 yr after injury in 8 pts showed >50% resorption of retropulsed bone
- No patient had deterioration of neurological function.

Surgical Treatment

Surgical Treatment – 3 components:
 Neural Decompression
 Stabilization
 Fusion

Surgical treatment: Decompression

- TL and Lspine fx w/ neuro deficit have significantly higher recovery rate when treated with surgery.
 Primary goal: decompression of the spinal canal ^[4,7]
- Anterior, compared to posterior and posterolateral decompression has a higher rate of neurologic improvement (88% vs. 64%) and recovery of B&B function (69% vs. 33%).^[8,18]
- Anterior decompression via corpectomy: maximal degree of canal decompression
- Treatment of low lumbar (L3-5) burst fx require posterior approach

Surgical treatment: Decompression

Timing of surgery in patients w/burst fxs w/neurologic deficit is unclear

- Most clinical studies have shown no correlation b/w timing and amount of neurologic recovery ^[7,11]
- One study (Mirza et al, 1999) showed improved neurologic recovery w/surgery within 72 hrs vs. 10-14 days ^[16]

Patients w/progressive deficit need emergent decompression

Surgical Treatment: Stabilization

- Primary role of surgical instrumentation: restore immediate stability and correct acute deformities
- Anterior stabilization:
 - Advantage: limits fusion to level above and below injury
 - Disadvantage: risk of vascular and visceral injury

Surgical Treatment: Stabilization

- Options for posterior stabilization: rods secured by screws, hooks, or wires
- Pedicle screw system: instrument two levels above and below injury
- Short segment stabilization (one level above and below) has high rate of construct failure. If spinal flexibility is priority, can be combined w/anterior instrumentation ^[17,19]

Surgical Treatment: Fusion

Long term goal of instrumentation: maintain proper spinal alignment and stability until bone fusion occurs ^[9,19]

- Without solid fusion, metallic implants eventually break
- In order for fusion to occur, bone graft or graft replacement must have:
 - Osteogenicity
 - Osteoinductivity
 - Osteoconductivity

Surgical Treatment: Fusion

Anterior fusion:

Autograft (Iliac crest) ■ Allograft (Femoral or humeral shaft) ■ Synthetic cage Posterior fusion: ■ Decortication of exposed bone elements Implantation of bone fragment or bone matrix

Thoracolumbar/Lumbar Burst Fractures: Overview

- Epidemiology
- Anatomy
- Initial Assessment
- Imaging
- Injury Mechanism/Biomechanics
- Fracture Classification
- Treatment Options: Operative vs. Nonoperative Management

References

- [1] Tran NT, Watson NA, Tender AF, et al. Mechanism of the burst fracture in the thoracolumbar spine. Spine 1995; 20:1984-8.
- [2] Hu R, Mustard CA, Burns C. Epidemiology of incident spinal fracture in a complete population. Spine 1996;21:492-9.
- [3] Denis F. The three column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine 1983;8:817-31.
- [4] Bohlman HH. Treatment of fractures and dislocations of the thoracic and lumbar spine. J Bone Joint Surg Am 1985;67:165-9.
- [5] Magerl F, Aebi M, Gertzbein SD, et al. A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 1994;3:184-201.
- [6] Flanders AE. Thoracolumbar trauma imaging overview. Inst Course Lect 1999;48:429-31.
- [7] Benzel EC, Larson SJ. Functional recovery after decompressive operation for thoracic and lumbar spine fractures. Neurosurgery. 1986;19:772–8.
- [8] Bradford DS, McBride GG. Surgical management of thoracolumbar spine fractures with incomplete neurologic deficits. Clin Orthop. 1987;218:201–16.
- [9] Whitesides TE. Traumatic kyphosis of the thoracolumbar spine. Clin Orthop. 1977;128:78– 92.
- [10] Holdsworth F. Fractures, dislocations, and fracture-dislocations of the spine. J Bone Joint Surg Am. 1970;52:1534–51.

References

- [11] Bradford DS, Akbarnia BA, Winter RB, et al. Surgical stabilization of fracture and fracture dislocations of the thoracic spine. Spine. 1977;2:185–96.
- [12] McCulloch PT, France J, Jones DL, et al. Helical computer tomography alone compared with plain radiographs with adjunct computed tomography to evaluate the cervical spine after high-energy trauma. J Bone Joint Surg Am. 2005;87:2388–94.
- [13] Rihn JA, Anderson DT, Vaccaro A, et al. A review of the TLICS system: a novel, userfriendly thoracolumbar trauma classification system. Acta Orthopaedica 2008; 79 (4): 461-6.
- [14] Keenen TL, Anthony J, Benson DR. Dural tears associated with lumbar burst fractures. J Orthop Trauma. 1990;4:243–5.
- [15] Holdsworth FW. Fractures, dislocations and fracture-dislocations of the spine. J Bone Joint Surg Br. 1963;45:6–20.
- [16] Mirza SK, Krengel WF, Chapman JR, et al. Early versus delayed surgery for acute cervical spinal cord injury. Clin Orthop. 1999;359:104–14.
- [17] McCormack T, Karaikovic E, Gaines R. The load sharing classification of spine fractures. Spine. 1994;19:1741–44.
- [18] Gertzbein SD. Scoliosis Research Society: multicenter spine fracture study. Spine.
 1992;17:528–40.
- [19] McLain RF, Sparling E, Benson DR. Early failure of short-segment pedicle instrumentation for thoracolumbar fractures: a preliminary report. J Bone Joint Surg Am. 1993;75:162–7