Howard Hughes Medical Institute's Landscape Building

Ashburn, Virginia

Julie Thorpe Mechanical Emphasis Architectural Engineering Spring 2006

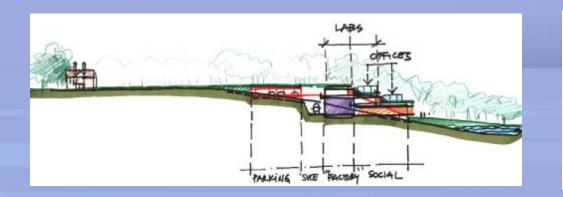
Presentation Outline

- Project Information
- Existing Conditions
- Design Goals
- Mechanical Design
- Lighting Design
- Cost Analysis
- Recommendations
 - & Lessons Learned
- Acknowledgements
- Questions

Julie Thorpe Mechanical Emphasis Landscape Building Spring 2006

Project Information

Janelia Farm Research Campus


- First facility built for HHMI
- Designed to be a world-class biomedical research facility
- Long term goal : to achieve unconstrained scientific research
- Concept: a facility where scientists, engineers, and information technology professions could gather and reside
- There are three buildings on campus,
 - Landscape Building : laboratory
 - Conference Center : short-term stay
 - Townhouses : long-term housing

Julie Thorpe Mechanical Emphasis Landscape Building Spring 2006

Janelia Farm

- Existing modified French-style manor
- Built in 1936 by architect Philip Smith of Boston
- Protected by the National Trust for Historic Preservation
- Protected view from dinning room window to Sugarloaf Mountain in Fredrick Country, Maryland
- Building was designed around historic requirements

Julie Thorpe Mechanical Emphasis Landscape Building Spring 2006

Project Information

- Location
- Size
- Owner
- Architect
- MEP Engineer
- Project Manager
- Dates of Construction
- Total Cost

Ashburn, VA 546,436 SF Howard Hughes Medical Institute (HHMI) Rafael Vinoly Architects PC Burt Hill Jacobs Facilities, INC.

Fall 2002 – Summer 2006

Julie Thorpe Mechanical Emphasis Landscape Building Spring 2006

Landscape Building

Functions

- Laboratory Space
- Support Spaces
- Vivarium
- Offices
- Conference Center
- Data Center
- Kitchen / Cafeteria

Julie Thorpe Mechanical Emphasis Landscape Building Spring 2006

Existing Conditions

Actual Mechanical Design

Air Side

- 15 45,000 cfm AHU
- 1 plenum serves building
- VAV with hot water reheat
- 100% ventilation air

Major Issues:

- Current annual operating cost
- Amount of air required
- Overestimated equipment loads
- Average lighting power density

Water Side

- (7)1,200 ton centrifugal chillers
- (2)50,210 MBH & 1-30,125 MBH boilers
- (7)1,200 ton cooling towers

Julie Thorpe Mechanical Emphasis Landscape Building Spring 2006

Design Goals

Design Goals

Primary goal:

 Modify the existing HVAC system to reduce energy consumption and yearly utility costs for laboratory space.

Secondary goal:

- Reduce lighting power density
- Examine equipment loads
- Reduce life cycle cost
- Reduce first cost
- Utilize existing site

Julie Thorpe Mechanical Emphasis Landscape Building Spring 2006

Mechanical Design

Process

- Case 1 : Actual Design
- Case 2 : Modified Equipment Loads
- Case 3 : Reduced Lighting Loads
- Case 4 : Reduced Equipment & Lighting Loads
- Case 5 : Vertical Ground Loop
- Case 6 : Pond Loop
- Case 7 : Pond Loop and Reduced Loads

Julie Thorpe Mechanical Emphasis Landscape Building Spring 2006

Case 1 : Actual Design

• HAP model based on design data provided by the MEP engineer.

• Annual Operating Cost : \$970,000

Case 1 Mechanical System								
C	Cooling Heating							
Total Coil Load [ton]	Sensible Coil Load [MBH]	Total Coil Load [MBH]	Peak Load [cfm]					
684	$4,\!635$	2,602	181,933					

Julie Thorpe Mechanical Emphasis Landscape Building Spring 2006

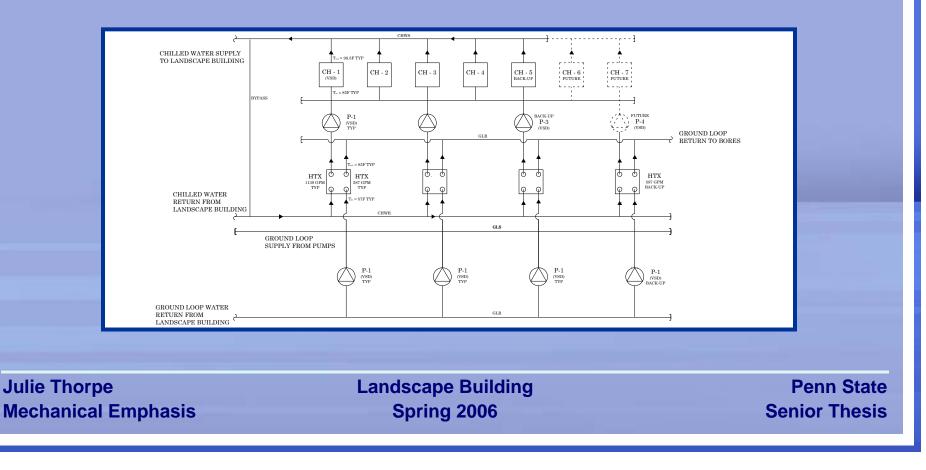
Case 4 : Modified Equipment & Lighting Load

- Reduced equipment estimate from 20W/SF to 4W/SF (labs) and 8W/SF (support rooms) - based on research at LBNL
- Reduced lamp wattage from 188KW to 152KW (- 8.1%)
- Design based on NIH design standards
- Annual Operating Cost : \$727,000
 - 25% reduction from Case 1

Julie Th Mechar

	Case 4 Mechanical System						
	Co	ooling	Heating				
	Total Coil Load [ton]Sensible Coil Load [MBH]		Total Coil Load [MBH]	Peak Load [cfm]			
	492	3,337	1,866	138,726			
ica	pe Il Emphasis	ilding 6	Pe Seni				

Ground-Coupled Heat Pump System

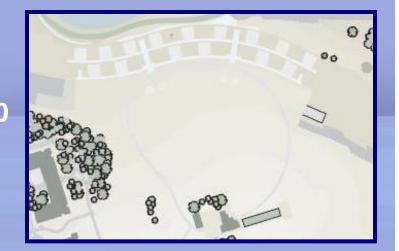

Initially considered but ruled out due to the following:

- Required number of heat pumps excessive
- Boilers and chillers cannot be replaced/downsized
 - Required for specific loads: cold rooms, sterilization, etc.
- Length of piping through the ground and building too great

Julie Thorpe Mechanical Emphasis Landscape Building Spring 2006

Considered Alternative

 Replacing cooling towers by connecting loop into condensing side of chiller with HTXs



Case 5 : Ground Loop

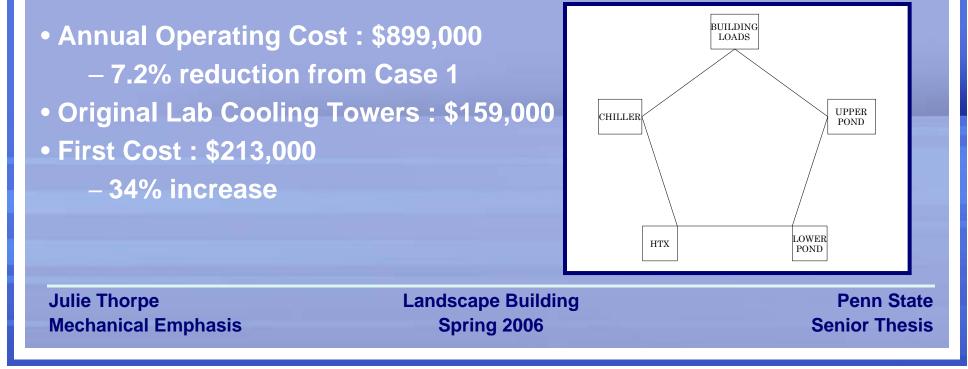
- Standard vertical ground loop configuration
- Required 61,000 FT of piping to meet cooling load
 15 x 34 bore array, 120 ft bores
- Proposed location : Field between building & mansion
- Annual Operating Cost : \$949,000

 2.0% reduction from Case 1

 Original Lab Cooling Towers : \$159,000
 First Cost : \$1.13M
 - 7x actual first cost

Julie Thorpe Mechanical Emphasis Landscape Building Spring 2006

Case 6 : Pond Loop


- Brainstorm : Use existing ponds!
 - Two ponds built for aesthetic purposes between Landscape Building & Conference Housing
- Upper Pond :
 - Depth : 18ft
 - Area : 1.1 Million SF
- Lower Pond:
 - Depth : 12ft
 - Area : 590,000 SF

- Designed to maintain constant water height
- Existing circulation pumps to prevent freezing

Julie Thorpe Mechanical Emphasis Landscape Building Spring 2006

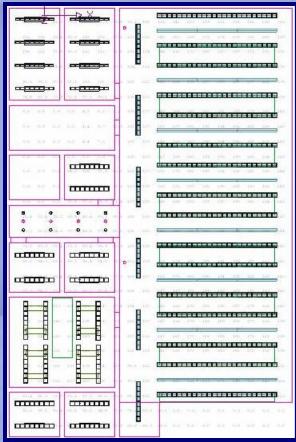
Case 6 : Pond Loop

- Smaller pumps required than Case 5 due to less head
- Extra pumps needed between ponds
- Uses existing mechanical spaces for new equipment
- Minimal site work to install piping required

Case 7 : Pond Loop & Reduced Loads

Resize pond loop system for reduced loads

- Annual Operating Cost : \$683,000
 - 29.5% reduction from Case 1
- Original Lab Cooling Towers & Lighting -\$189,000
- First Cost : \$234,000
 - 24% increase


Julie Thorpe Mechanical Emphasis Landscape Building Spring 2006

Lighting Design

Lighting Design

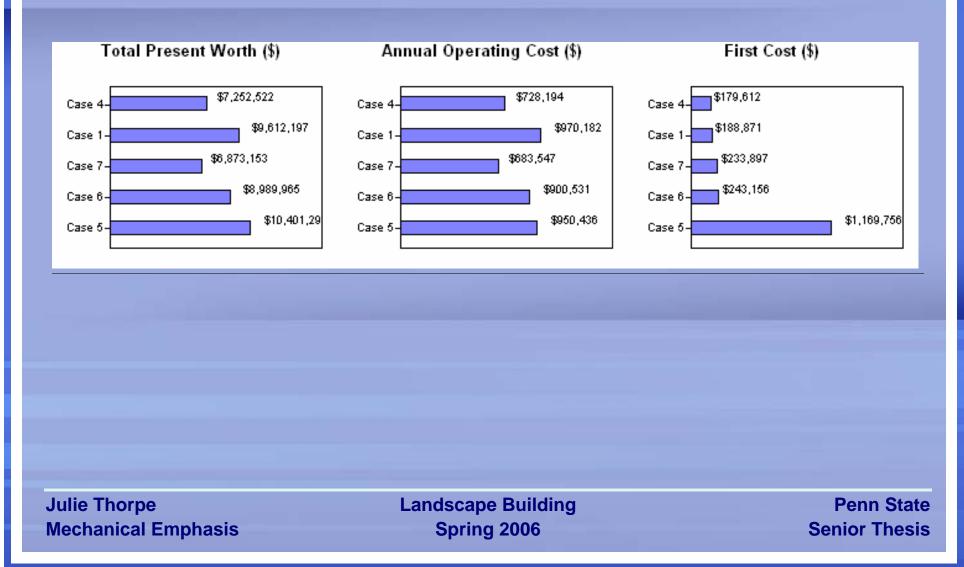
- Current labs have between 1 & 5.9 W/SF
- IES Handbook recommends 50-200 f.c. for hospitals
- Lamps selected based on lumems/watt to increase amount of light on work surfaces & to decrease required power

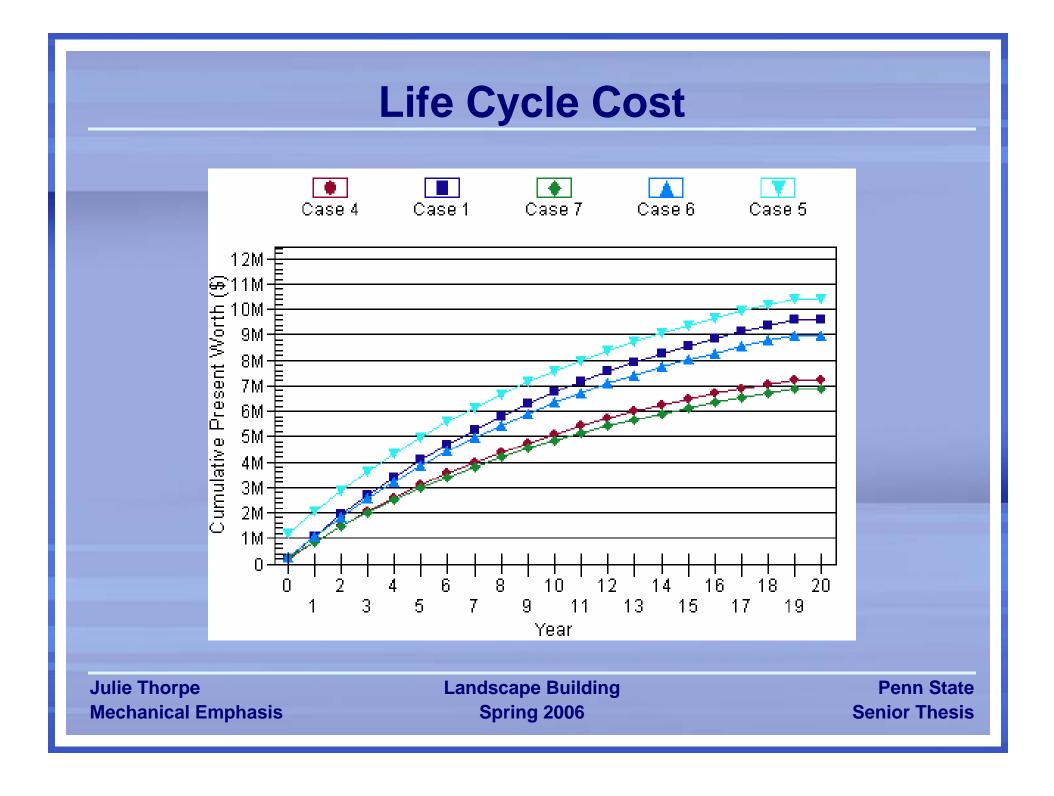
Layout Comparison								
	Number of Fixtures	Total Lumens	Total Watts					
Original	186	1,153,960	13,376					
New	114	945,060	10,100					
Difference	-72	-208,900	-3,276					

Julie Thorpe Mechanical Emphasis Landscape Building Spring 2006

Lighting Design

Julie Thorpe Mechanical Emphasis Landscape Building Spring 2006




Simple Payback

Simple Payback								
	Case 1	Case 4	Case 5	Case 6	Case 7			
Relative First Cost	188,871	179,612	1,169,759	243,156	233,897			
Change in First Cost	0	-9,259	980,888	54,285	45,026			
Annual HVAC Operating Cost	968,542	727,465	948,796	898,891	682,818			
Annual Lighting Maintanance Cost	1,640	729	1,640	1,640	729			
Total Annual Cost	970,182	728,194	950,436	900,531	683,547			
Chance in Annual Cost	0	-241,987	-19,746	-69,651	-286,634			
Simple Payback [years]		0.0	49.7	0.8	0.2			

Julie Thorpe Mechanical Emphasis Landscape Building Spring 2006

Life Cycle Cost

Recommendations & Lessons Learned

Recommendations & Lessons Learned

Recommendations

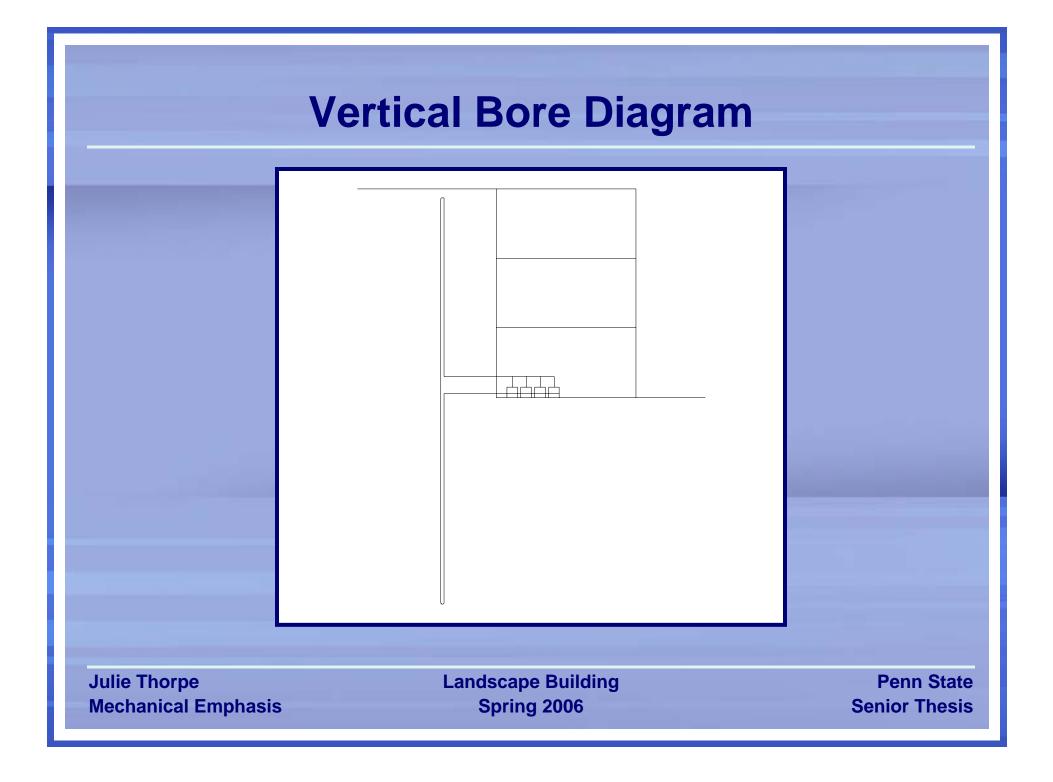
- Case 7 best achieved goal to reduce annual energy cost.
- It can be incorporated into Landscape Building without extensive alterations and cost.

Lessons Learned

- The biggest cost savings came from carefully designing the system to actual loads and design standards.
- The Landscape Building was designed well. While the mechanical system could have been "tweaked" before construction, the building itself was designed to be adaptable.

Julie Thorpe Mechanical Emphasis Landscape Building Spring 2006

Acknowledgements


- I would like to thank my mom for raising me a Nittany Lion and for teaching me that my school work should never interfere with my college education.
- Secondly, I would like to thank the love of my life Nate Patrick for being with me every step of the way. I love you!
- Thanks to Roni, Pappy, and "SENK" have truly made going to school every day something to look forward to. I wish y'all luck in the future.
- A special thanks to Moses who has blessed me with insight into everything from the building industry to faith.
- Scott Suktis and John Lecker for providing me with information.
- Thanks to the AE faculty.
- Thank you Class of 2006.
- Lastly, I would like to give God all the credit for guiding me into the AE program and for giving me the endurance and ability to succeed.

Julie Thorpe Mechanical Emphasis Landscape Building Spring 2006

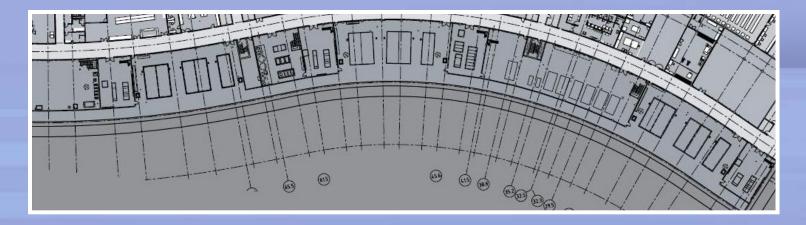
"It is a building about nature. Nature is the centerpiece of research at Janelia Farm, and the building follows that idea." - Rafael Vinoly, Architect

Emissions

Emissions : Case 1						
CO2 [lb]	17,767,460					
SO2 [kg]	43,968					
NOx [kg]	25,863					

Emissions : Case 4						
CO2 [lb]	13,454,910					
SO2 [kg]	33,316					
NOx [kg]	19,590					

Emissions : Case 7							
CO2 [lb]	12,357,992						
SO2 [kg]	30,600						
NOx [kg]	17,993						


Julie Thorpe								
Mechanical	Emphasis							

Landscape Building Spring 2006

Acoustical Analysis

Conclusions from transmission loss calculations:

- Wall assembly for mechanical room with 7 chillers is adequate.
- Wall assembly for mechanical room with 7 chillers plus 4 new pumps is adequate.
- The mechanical room is isolated from all critical spaces by service corridor, other mechanical rooms, and service rooms.

Julie Thorpe Mechanical Emphasis Landscape Building Spring 2006

Acoustical Analysis

	Noise Reduction & Transmission Loss : Actual Design [dB]							
	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz		
Likely Noise in the Mech Room	93	95	96	98	105	98		
Likely Noise in the Corridor	66	72	77	74	68	60		
Required NR	27	23	19	24	37	38		
Minus 10 log a2/S	-6	-7	-7	-6	-6	-6		
Required TL	33	30	26	30	43	44		
Actual Wall Assembly TL, 8" Concrete, painted	34	40	44	49	59	64		
	Nois	e Reduction	& Transmiss	sion Loss : A	ctual Design	[dB]		
	Nois 125 Hz	e Reduction 250 Hz	& Transmiss 500 Hz	sion Loss : A 1000 Hz	ctual Design 2000 Hz	[dB] 4000 Hz		
Likely Noise in the Mech Room					<u> </u>			
Likely Noise in the Mech Room Likely Noise in the Corridor	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz		
	125 Hz 93	250 Hz 95	500 Hz 97	1000 Hz 99	2000 Hz 105	4000 Hz 98		
Likely Noise in the Corridor	125 Hz 93 66	250 Hz 95 72	500 Hz 97 77	1000 Hz 99 74	2000 Hz 105 68	4000 Hz 98 60		
Likely Noise in the Corridor Required NR	125 Hz 93 66 27	250 Hz 95 72 23	500 Hz 97 77 20	1000 Hz 99 74 25	2000 Hz 105 68 37	4000 Hz 98 60 38		

Julie Thorpe Mechanical Emphasis Landscape Building Spring 2006

Electrical System

Description	Load [VA] Brk. Trip LP 1			Brk. Trip	L	oad [VA	\]	Description					
Description	Α	В	С	[A]	Cond. Size	Ck	t.#	Cond. Size	[A]	Α	В	С	Description
Lab 285	4320			20	#12	1	2	#12	20	3,697			Lab Support 285
Lab 275		4320		20	#12	3	4	#12	20		3,697		Lab Support 275
Lab 255			4320	20	#12	5	6	#12	20			3,697	Lab Support 255
Lab Support 245	3,697			20	#12	7	8	#12	20	4320			Lab 245
Lab Support 225		3,697		20	#12	9	10	#12	20		4320		Lab 225
Lab Support 215			3,697	20	#12	11	12	#12	20			4320	Lab 215
Lab 270	1464			20	#12	13	14	#12	20	1253			Lab Support 270
Lab 265		1464		20	#12	15	16	#12	20		1253		Lab Support 265
Lab 240			1464	20	#12	17	18	#12	20			1253	Lab Support 240
Lab Suport 235	1253			20	#12	19	20	#12	20	1464			Lab 235
Lab Support 210		1525		20	#12	21	22	#12	20		1783		Lab 210
Lab Support 295			1754	20	#12	23	24	#12	20			2049	Lab 295
						25	26						
						27	28						
						29	30						
						31	32						
						33	34						
						35	36						
						37	38						
						39	40						
						41	42						

Total Load on Phase A	21468	[VA]
Total Load on Phase B	22059	[VA]
Total Load on Phase C	22554	[VA]
Load on Panel	82600	[kVA Demand]
Load on Panel	124.25	[A]
Voltage	277	[V]
Main Breaker	125	[A]
Feeder Size	(4) 1/0 @	@125A, 2"
Panel Size	125	[A]

Julie Thorpe Mechanical Emphasis Landscape Building Spring 2006

