THREE-DIMENSIONAL FORCE SYSTEMS

Today's Objectives:

Students will be able to solve 3-D particle equilibrium problems by
a) Drawing a 3-D free body diagram, and,
b) Applying the three scalar equations (based on one vector equation) of equilibrium.

QUIZ

1. Particle P is in equilibrium with five (5) forces acting on it in 3-D space. How many scalar equations of equilibrium can be written for point P ?
A) 2
B) 3
C) 4
D) 5
E) 6
2. In 3-D, when a particle is in equilibrium, which of the following equations apply?
A) $\left(\Sigma \mathrm{F}_{\mathrm{x}}\right) i+\left(\Sigma \mathrm{F}_{\mathrm{y}}\right) j+\left(\Sigma \mathrm{F}_{\mathrm{z}}\right) k=0$
B) $\Sigma F=0$
C) $\Sigma \mathrm{F}_{\mathrm{x}}=\Sigma \mathrm{F}_{\mathrm{y}}=\Sigma \mathrm{F}_{\mathrm{z}}=0$
D) All of the above.
E) None of the above.

APPLICATIONS

The weights of the electromagnet and the loads are given.

Can you determine the forces in the chains?

APPLICATIONS

(continued)

The shear leg derrick is to be designed to lift a maximum of 500 kg of fish.

What is the effect of different offset distances on the forces in the cable and derrick legs?

THE EQUATIONS OF 3-D EQUILIBRIUM

When a particle is in equilibrium, the vector sum of all the forces acting on it must be zero ($\Sigma F=0$).
This equation can be written in terms of its x , y and z components. This form is written as follows.

$$
\left(\Sigma \mathrm{F}_{\mathrm{x}}\right) i+\left(\Sigma \mathrm{F}_{\mathrm{y}}\right) j+\left(\Sigma \mathrm{F}_{\mathrm{z}}\right) k=0
$$

This vector equation will be satisfied only when

$$
\begin{aligned}
& \Sigma \mathrm{F}_{\mathrm{x}}=0 \\
& \Sigma \mathrm{~F}_{\mathrm{y}}=0 \\
& \Sigma \mathrm{~F}_{\mathrm{z}}=0
\end{aligned}
$$

These equations are the three scalar equations of equilibrium. They are valid at any point in equilibrium and allow you to solve for up to three unknowns.

EXAMPLE \#1

Given: F_{1}, F_{2} and F_{3}.
Find: The force F required to keep particle O in equilibrium.

Plan:

1) Draw a FBD of particle O.
2) Write the unknown force as

$$
F=\left\{\mathrm{F}_{\mathrm{x}} i+\mathrm{F}_{\mathrm{y}} j+\mathrm{F}_{\mathrm{z}} k\right\} \mathrm{N}
$$

3) Write F_{1}, F_{2} and F_{3} in Cartesian vector form.
4) Apply the three equilibrium equations to solve for the three unknowns $\mathrm{F}_{\mathrm{x}}, \mathrm{F}_{\mathrm{y}}$, and F_{z}.

EXAMPLE \#1

(continued)

$$
\begin{aligned}
& F_{1}=\{400 j\} \mathrm{N} \\
& F_{2}=\{-800 k\} \mathrm{N}
\end{aligned}
$$

$$
\begin{aligned}
F_{3} & =\mathrm{F}_{3}\left(r_{B} / \mathrm{r}_{\mathrm{B}}\right) \\
& =700 \mathrm{~N}\left[(-2 i-3 j+6 k) /\left(2^{2}+3^{2}+6^{2}\right)^{1 / 2}\right] \\
& =\{-200 i-300 j+600 k\} \mathrm{N}
\end{aligned}
$$

EXAMPLE \#1

(continued)

Equating the respective i, j, k components to zero, we have

$$
\begin{array}{ll}
\Sigma \mathrm{F}_{\mathrm{x}}=-200+\mathrm{F}_{\mathrm{x}}=0 ; & \text { solving gives } \mathrm{F}_{\mathrm{x}}=200 \mathrm{~N} \\
\Sigma \mathrm{~F}_{\mathrm{y}}=400-300+\mathrm{F}_{\mathrm{y}}=0 ; & \text { solving gives } \mathrm{F}_{\mathrm{y}}=-100 \mathrm{~N} \\
\Sigma \mathrm{~F}_{\mathrm{z}}=-800+600+\mathrm{F}_{\mathrm{z}}=0 ; & \text { solving gives } \mathrm{F}_{\mathrm{z}}=200 \mathrm{~N}
\end{array}
$$

Thus, $F=\{200 i-100 j+200 k\} \mathrm{N}$
Using this force vector, you can determine the force's magnitude and coordinate direction angles as needed.

EXAMPLE \#2

Given: A 100 Kg crate, as shown, is supported by three cords. One cord has a spring in it.

Find: Tension in cords AC and AD and the stretch of the spring.

Plan:

1) Draw a free body diagram of Point A. Let the unknown force magnitudes be $\mathrm{F}_{\mathrm{B}}, \mathrm{F}_{\mathrm{C}}, \mathrm{F}_{\mathrm{D}}$.
2) Represent each force in the Cartesian vector form.
3) Apply equilibrium equations to solve for the three unknowns.
4) Find the spring stretch using $\mathrm{F}_{\mathrm{B}}=\mathrm{K} * \mathrm{~S}$.

EXAMPLE \#2 (continued)

FBD at A

$$
F_{B}=\mathrm{F}_{\mathrm{B}} \mathrm{~N} i
$$

$$
F_{C}=\mathrm{F}_{\mathrm{C}} \mathrm{~N}\left(\cos 120^{\circ} i+\cos 135^{\circ} j+\cos 60^{\circ} k\right)
$$

$$
=\left\{-0.5 \mathrm{~F}_{\mathrm{C}} i-0.707 \mathrm{~F}_{\mathrm{C}} j+0.5 \mathrm{~F}_{\mathrm{C}} k\right\} \mathrm{N}
$$

$$
F_{D}=\mathrm{F}_{\mathrm{D}}\left(r_{A D} / \mathrm{r}_{\mathrm{AD}}\right)
$$

$$
=\mathrm{F}_{\mathrm{D}} \mathrm{~N}\left[(-1 i+2 j+2 k) /\left(1^{2}+2^{2}+2^{2}\right)^{1 / 2}\right]
$$

$$
=\left\{-0.3333 \mathrm{~F}_{\mathrm{D}} i+0.667 \mathrm{~F}_{\mathrm{D}} j+0.667 \mathrm{~F}_{\mathrm{D}} k\right\} \mathrm{N}
$$

EXAMPLE \#2 (continued)

The weight is $W=(-\mathrm{mg}) k=\left(-100 \mathrm{~kg} * 9.81 \mathrm{~m} / \mathrm{sec}^{2}\right) k=\{-981 k\} \mathrm{N}$
Now equate the respective i, j, k components to zero.
$\sum \mathrm{F}_{\mathrm{x}}=\mathrm{F}_{\mathrm{B}}-0.5 \mathrm{~F}_{\mathrm{C}}-0.333 \mathrm{~F}_{\mathrm{D}}=0$
$\sum \mathrm{F}_{\mathrm{y}}=-0.707 \mathrm{~F}_{\mathrm{C}}+0.667 \mathrm{~F}_{\mathrm{D}}=0$
$\sum \mathrm{F}_{\mathrm{z}}=0.5 \mathrm{~F}_{\mathrm{C}}+0.667 \mathrm{~F}_{\mathrm{D}}-981 \mathrm{~N}=0$
Solving the three simultaneous equations yields
$\mathrm{F}_{\mathrm{C}}=813 \mathrm{~N}$
$\mathrm{F}_{\mathrm{D}}=862 \mathrm{~N}$
$\mathrm{F}_{\mathrm{B}}=693.7 \mathrm{~N}$
The spring stretch is (from $\mathrm{F}=\mathrm{k} * \mathrm{~s}$)

$$
\mathrm{s}=\mathrm{F}_{\mathrm{B}} / \mathrm{k}=693.7 \mathrm{~N} / 1500 \mathrm{~N} / \mathrm{m}=0.462 \mathrm{~m}
$$

Solving using Matrix Methods

If $A X=B, X=A^{-1} B$, where A, X, and B are matrices.

Need to create solving structure
$F_{B}-0.5 F_{C}-0.333 F_{D}=0$
$0.707 F_{C}+0.667 F_{D}=0$
$0.5 F_{C}+0.667 F_{D}-981=0$

$$
\begin{aligned}
& F_{B}-0.5 F_{C}-0.333 F_{D}=0 \\
& 0 F_{B}+0.707 F_{C}+0.667 F_{D}=0 \\
& 0 F_{B}+0.5 F_{C}+0.667 F_{D}=981
\end{aligned}
$$

$$
\left[\begin{array}{ccc}
1 & -0.5 & -0.333 \\
0 & 0.707 & 0.667 \\
0 & 0.5 & 0.667
\end{array}\right]\left[\begin{array}{l}
F_{B} \\
F_{C} \\
F_{D}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
981
\end{array}\right]
$$

F_{B}	F_{C}	F_{D}	
1	-0.5	-0.333	0
0	0.707	0.667	0
0	0.5	0.667	981

CONCEPT QUIZ

1. In 3-D, when you know the direction of a force but not its magnitude, how many unknowns corresponding to that force remain?
A) One
B) Two
C) Three
D) Four
2. If a particle has 3-D forces acting on it and is in static equilibrium, the components of the resultant force $\left(\Sigma \mathrm{F}_{\mathrm{x}}, \Sigma \mathrm{F}_{\mathrm{y}}\right.$, and $\Sigma \mathrm{F}_{\mathrm{z}}$) \qquad .
A) have to sum to zero, e.g., $-5 i+3 j+2 k$
B) have to equal zero, e.g., $0 i+0 j+0 k$
C) have to be positive, e.g., $5 i+5 j+5 k$
D) have to be negative, e.g., $-5 i-5 j-5 k$

GROUP PROBLEM SOLVING

Given: A 150 Kg plate, as shown, is supported by three cables and is in equilibrium.

Find: Tension in each of the cables.

Plan:

1) Draw a free body diagram of Point A. Let the unknown force magnitudes be $\mathrm{F}_{\mathrm{B}}, \mathrm{F}_{\mathrm{C}}, \mathrm{F}_{\mathrm{D}}$.
2) Represent each force in the Cartesian vector form.
3) Apply equilibrium equations to solve for the three unknowns.

GROUP PROBLEM SOLVING (continued)

$$
\begin{aligned}
W & =\text { load or weight of plate }=(\text { mass }) \text { (gravity) } \\
& =150(9.81) k=1472 k \mathrm{~N} \\
F_{B} & =\mathrm{F}_{\mathrm{B}}\left(r_{A B} / \mathrm{r}_{\mathrm{AB}}\right)=\mathrm{F}_{\mathrm{B}} \mathrm{~N}(4 i-6 j-12 k) \mathrm{m} /(14 \mathrm{~m}) \\
F_{C} & =\mathrm{F}_{\mathrm{C}}\left(r_{A C} / \mathrm{r}_{\mathrm{AC}}\right)=\mathrm{F}_{\mathrm{C}}(-6 i-4 j-12 k) \mathrm{m} /(14 \mathrm{~m}) \\
F_{D} & =\mathrm{F}_{\mathrm{D}}\left(r_{A D} / \mathrm{r}_{\mathrm{AD}}\right)=\mathrm{F}_{\mathrm{D}}(-4 i+6 j-12 k) \mathrm{m} /(14 \mathrm{~m})
\end{aligned}
$$

GROUP PROBLEM SOLVING (continued)

The particle A is in equilibrium, hence
$F_{B}+F_{C}+F_{D}+W=0$
Now equate the respective i, j, k components to zero (i.e., apply the three scalar equations of equilibrium).

$$
\begin{aligned}
& \sum \mathrm{F}_{\mathrm{x}}=(4 / 14) \mathrm{F}_{\mathrm{B}}-(6 / 14) \mathrm{F}_{\mathrm{C}}-(4 / 14) \mathrm{F}_{\mathrm{D}}=0 \\
& \sum \mathrm{~F}_{\mathrm{y}}=(-6 / 14) \mathrm{F}_{\mathrm{B}}-(4 / 14) \mathrm{F}_{\mathrm{C}}+(6 / 14) \mathrm{F}_{\mathrm{D}}=0 \\
& \sum \mathrm{~F}_{\mathrm{z}}=(-12 / 14) \mathrm{F}_{\mathrm{B}}-(12 / 14) \mathrm{F}_{\mathrm{C}}-(12 / 14) \mathrm{F}_{\mathrm{D}}+1472=0
\end{aligned}
$$

Solving the three simultaneous equations gives
$\mathrm{F}_{\mathrm{B}}=858 \mathrm{~N}$
$\mathrm{F}_{\mathrm{C}}=0 \mathrm{~N}$
$\mathrm{F}_{\mathrm{D}}=858 \mathrm{~N}$

QUIZ

1. Four forces act at point A and point A is in equilibrium. Select the correct force vector P.
A) $\{-20 i+10 j-10 k\} l b$
B) $\{-10 i-20 j-10 k\} \mathrm{lb}$

C) $\{+20 i-10 j-10 k\} \mathrm{lb}$
D) None of the above.
2. In 3-D, when you don't know the direction or the magnitude of a force, how many unknowns do you have corresponding to that force?
A) One \quad B) Two \quad C) Three \quad D) Four
