

Three kinds of lies- a brief introduction to statistics

Dr Richard Mead Kenneth A Snowman - MND Association Lecturer Dept. Neuroscience, University of Sheffield

"There are three kinds of lies: lies, damned lies and statistics"

Attributed to Benjamin Disraeli (1804-1881) by Mark Twain

"Its easy to lie with statistics, but it's easier to lie without them" Charles Frederick Mosteller (statistician)

Why do we need statistics

- To separate what is a real difference (in an experiment) and what is caused by 'noise' (random biological and experimental variation)
- Human brains are built to find patterns need something objective to confirm our judgement

Basic idea of statistics

- Using limited amounts of data to draw general conclusions
- Sample versus population
- Gather data from a sample of a population
- Use rules of probability to draw conclusions about the whole population
- What is the 'sample' and 'population' in the following?
 - Clinical trial
 - Enzyme assay on tissue cultured cells

Need for independent samples

- Statistical tests assume that each experimental unit (variable) was sampled (measured) independently of the others
- How many independent experimental units:
 - You are measuring blood pressure in animals. You have five animals in each group, and measure the blood pressure three times in each animal.
 - You have done a biochemical experiment three times, each time in triplicate.

Types of data (levels of measurement)

- Nominal scale (categories)
 - e.g gender, strain, genotype
- Ordinal Scale (ranks)
 - scoring system (e.g. Glasgow coma scale)
- Interval scale
 - E.g. Temperature in celcius
- Ratio scale
 - Most of the things we measure (e.g. weight, enzyme activity)

- Experiments designed to find relationships between variables
- Dictates how to manipulate and present your data
- Dictates what statistical tests are appropriate

OK to compute:	Nominal	Ordinal	Interval	Ratio
Frequency distribution	Yes	Yes	Yes	Yes
Median and percentiles	No			
Add or subtract	No	No		
Mean, standard deviation, SEM	No	No		
Ratio, or coefficient of variation	No	No	No	
Statistical tests:				
Non-parametric				
Parametric	No	No		

Parametric vs Non-parametric

- Parametric
 - Assumes the data you have sampled has come from a particular probability distribution
- Non-parametric
 - Probability distribution free
- What distribution is typically used in biomedical applications?

The Normal (or Gaussian) Distribution

The Normal (or Gaussian) Distribution

Standard deviation (SD) and normal distribution

Standard deviation (SD) and normal distribution

$$\sigma = \frac{\sum (\overline{\mathbf{x}} - \mathbf{x})^2}{\mathbf{n} - \mathbf{1}}$$

- Subtract each value from the mean and square it
- Add those up
- Divide by the number of values less 1

Standard Error of the Mean (SEM)

- Does this measure variability within your sample?
- No- quantifies the precision of the mean
- If you run the experiment again, the SEM gives an indication of where mean will fall
- Can use to generate confidence intervals (CI)

Beware assuming Gaussian distribution when interpreting SD

P values and statistical testing

- When testing if two groups of data differ (e.g Student's T test)
- First hypothesise that the two groups are identical (come from the same normal distribution)
- Called the 'null hypothesis'
- Assuming null hypothesis is true, what is the probability (p-value) of observing that data
- If p is large null hypothesis is likely to be true
- If p is small– null hypothesis is likely to be false
 - Reject null hypothesis at given significance level (usually p<0.05)

What does p<0.05 mean?

- Arbitrary value
- Means that the observed difference had a 5% chance of being observed if null hypothesis was true
- OR 'there is a 5% chance or less of observing a difference as large as you observed even if the two population means are identical (the null hypothesis is true).

FREQUENTISTS VS. BAYESIANS

P value measures whether esearcher's real question: wh trong the result was and, mo	an observed result can b hat are the odds that a h st importantly, on how p	e attributed to chan ypothesis is correct? lausibile the hypoth	ce. But it cannot ans Those odds depend esis is in the first pla	wer a on how ce.	CI	nance of real effect nance of no real effect
	THE LONG SHOT 19-to-1 odds again:	st	THE TOSS-UP		THE GOOD BET 9-to-1 odds in fav	our
Before the experiment						
he plausibility of the						
ypothesis — the odds of		95% chance of				
being true — can be	x	no real effect	50% 50%	, , , , , , , , , ,	90% 10%	
sumated from previous	5% chance					
hechanisms and other	of real effect		· · · · · · · · · · · · · · · · · · ·			
xpert knowledge. Three						
xamples are shown here.						
				\	/	χ
he measured <i>P</i> value value of 0.05 is onventionally deemed	P = 0.05	P = 0.01	<i>P</i> = 0.05	P=0.01	P=0.05	P = 0.01
tatistically significant'; a	1107				/	
very significant'	chance of	\rightarrow	/	X	/	X
	real effect					
		· · · · · · · · · · · · · · · · · · ·				
fter the experiment						
hypothesis more	<u> </u>					
lausible, but the		2007 7007	710/ 200/	800/ 110	7 967 107	0007 107
	9007 chance of	50% /0%	/1/0 29%	09% 11%	0 90% 4%	99% 1%

http://www.nature.com/news/scientific-methodstatistical-errors-1.14700

Beware multiple testing

- Student's independent T Test is a parametric test for comparing two independent samples
- What if you had more than two samples?

Multiple comparisons

Bonferroni correction. Simply divide threshold p-value by number of comparisons being made

Age (days)	35	42	50	56	63	70	77	84	91	98	105
Intensity - fore paws	0.034	NS	0.0207	0.0083	NS	NS	NS	NS	0.0175	0.0323	NS
- hind paws	NS	NS	NS	NS	0.0202	0.0453	0.0317	0.0043	< 0.0001	< 0.0001	< 0.0001
Print Width - fore paws	NS	0.0078	0.0172	NS	NS	NS	NS	0.0217	0.0088	0.0016	0.0002
- hind paws	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0185
Print Length - fore paws	NS	0.0011	< 0.0001	0.0005	NS	NS	NS	NS	0.0492	0.0244	0.0109
- hind paws	NS	0.0408	NS	NS	NS	NS	NS	NS	NS	NS	NS
Print Area - fore paws	NS	NS	0.0213	0.0014	NS	NS	NS	0.0326	0.0399	0.0034	0.0001
 hind paws 	NS	NS	NS	0.0169	NS	0.002	0.0113	NS	0.0463	NS	NS
Stand time - forelimb	NS	NS	< 0.0001	NS	< 0.0001	NS	< 0.0001	0.001	0.0001	0.0009	< 0.0001
- hindlimb	NS	NS	0.0074	NS	< 0.0001	NS	0.0016	NS	0.0001	0.0021	0.0001
Paw angle - fore paws	NS	NS	NS	NS	NS	NS	NS	0.0477	NS	NS	NS
- hind paws	NS	NS	NS	NS	NS	NS	NS	0.0465	NS	NS	NS
Swing - forelimb	NS	NS	NS	NS	0.0314	NS	NS	NS	0.0278	0.0097	0.002
- hindlimb	NS	NS	NS	NS	NS	NS	0.0061	NS	NS	0.05	NS
Stride length - front	NS	NS	NS	NS	0.039	NS	NS	0.0036	0.0045	0.0002	< 0.0001
- back	NS	NS	NS	NS	0.0339	NS	NS	0.0005	0.0003	< 0.0001	< 0.0001
Duty cycle - forelimbs	NS	NS	< 0.0001	0.0195	0.0073	NS	NS	0.0001	< 0.0001	< 0.0001	< 0.0001
 hindlimbs 	0.0415	NS	NS	NS	0.0181	NS	NS	0.0053	< 0.0001	0.0007	0.0001
Max contact at % - fore	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0088
- hind	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.0055
Swing speed - fore limb	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
- hind limb	NS	NS	0.0228	NS	NS	NS	NS	0.0193	NS	NS	NS
Stand index - fore limb	NS	NS	0.0011	NS	0.0044	NS	NS	0.0117	0.0202	0.0416	0.0193
- hind limb	NS	NS	0.0053	NS	NS	NS	NS	NS	NS	NS	0.0052
Duration	NS	NS	NS	NS	NS	NS	0.0322	NS	NS	0.0412	0.037
Step pattern #	NS	0.0173	NS	NS	NS	NS	NS	0.0248	0.0034	NS	0.0051
Step pattern Ca	0.0414	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Step pattern Cb	NS	NS	NS	0.0372	NS	NS	NS	NS	0.0041	0.0039	0.0088
Step pattern Aa	NS	NS	NS	NS	NS	NS	0.0211	NS	0.0019	0.018	0.0002
Step pattern Ab	NS	NS	NS	NS	NS	NS	0.0353	NS	0.0001	0.0005	< 0.0001

42 different measures at 11 different timepoints (462 comparisons) P-value cut-off <0.00011

ANOVA

- Analysis of variance
- Can cope with multiple comparisons
- Compares the variances within groups to the variances between them

	Group1	Group2
Replicate 1	2	6
Replicate 2	3	7
Replicate 3	1	5
Mean		
Sum of squared differences from mean		
Overall mean		
Overall sum of squares		

'Sum of squared differences from the mean' is an estimate of the variance (used to calculate SD earlier)

ANOVA example

	Group1	Group2
Replicate 1	2	6
Replicate 2	3	7
Replicate 3	1	5
Mean	2	6
Sum of squared differences from mean	2	2
Overall mean		4
Overall sum of squares		28

Power of ANOVA is that it can take account of multiple variables and calculate interaction effects between these variables and so is statistically more powerful than a T-test

What about non-parametric tests?

- Mann-Whitney U-Test
- Doesn't assume data come from any distribution
- Works on *ranking* the data
- The magnitude of the data values is therefore irrelevant
- Use for ordinal data or if sample sizes small/not normally distributed

Mann-Whitney U test

	Width of leaf / cm							
Sunlight	6.0	4.8	5.1	5.5	4.1	5.3	4.5	5.1
Shade	6.5	5.5	6.3	7.2	6.8	5.5	5.9	5.5

Put data in rank order then sum up the ranks

Sunlight	Rank	Rank	Shade
4.1	1		
4.5	2		
4.8	3		
5.1	4.5		
5.1	4.5		
5.3	6		
5.5	8.5		
		8.5	5.5
		8.5	5.5
		8.5	5.5
		11	5.9
6.0	12		
		13	6.3
		14	6.5
		15	6.8
		16	7.2
$\mathbf{R}_1 =$	41.5	94.5	$=\mathbf{R}_2$

Mann-Whitney U test

- Calculate U value for each group (normalises data depending on sample size)
- U value can then be read off statistical tables
- Note that these types of tests are less statistically powerful than parametric tests
- For more than two groups use the Kruskal-Wallis test

Summary

- Plan your experiment before you start
 - Choose statistical methodology
- Understand the basis for the chosen test
- Be confident you can defend your choice