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Abstract—We exploit the “regularity” of Boolean functions with  given for specific algebraic expressions. A relevant three-level
the purpose of decreasing the time for constructing minimal three- - minimization algorithm was given in [20] for networks of the
'e"etll eé(prelss'or;S'T';‘ the Slumt of fpSSUdfprO?”Ctst. %PF;) form re-form £ = ¢, 0 go whereg; andg» are SOP forms anddenotes
cently developed. The regularity of a Boolean functionf of n vari- . : _
ables can be expressed by autosymmetry degrele (with 0 < k < gblnary.opergtlon. The case of = AND (called AND-OR-AND)

n). k = 0 means no regularity, that is we are not able to provide 'S deSC”bed in [11]. The case of= EXOR (calledEX-SOR

any advantage over standard synthesis. Fok > 1 the function has been widely studied (see for details [24], [22], [12], [7]-[9],
f is said to beautosymmetri¢ and a new function f; depending [13]). For example(zo - 21 + 2o - T2) ® (22 - 23+ 1 - 24) iS AN

onn — k variables only, called therestriction of f, is identified in  EX-SOP form. Indeed many practical functions (e.g., arithmetic
time polynomial in the number of points of f. The relation between functions) have a more concise expression if we allow the use
f and fy is discussed in depth to show how a minimal SPP form .

for f can be build in linear time from a minimal SPP form for f;. of EXORs other than classicahp andOR Qates- Another Wel! .
The concept of autosymmetry is then extended to functions with Known advantage of EXOR gates is their excellent testability.
don't care conditions, and the SPP minimization technique is duly An EX-SOP three-level network is one of the simplest EXOR
extended to such functions. A large set of experimental results is of sum of product architecture, since it contains only a single
plresent?d, showingbthath61°/okof the outputs for the functiorrl]s inthe two-input EXOR gate. An algorithm for exact minimization of
classical ESPRESsObenchmark suite are autosymmetric. The min- . : : o . .
imization time for such functions is critically reduced, and cases EX'SO.P netV\_lorks IS descrlbed In [.7]’ I|m|te(_:I tp functions Wl.th
otherwise intractable are solved. The quality of the corresponding UP to five variables. Some interesting heuristics are described

circuits, measured with some well established cost functions, is alsoin [9], [13]. An estimation metric which measures whether an
improved. Finally, we discuss the role and meaning of autosym- input function is suitable for EX-SOP minimization is also de-
metric functions, and why a great amount of functions of practical veloped in [13].

interest fall in this class. A different three-level form called sum of pseudoproducts (or
Index Terms—Circuit optimization, circuit synthesis, logic ~SPP) was introduced in [19]. SPP expressions can be seen as
design. a direct generalization of SOP expressions using EXOR gates.
An SPP form consists of ther of pseudoproductswhere a
I. INTRODUCTION pseudoproduct is thend of EXOR factors. For examplézy @

. . . . fl)'.1724—(.170@:52@.’173)'($2@f4)+$1'374 is an SPP form.
T HE DESIGN flow of logic circuits always includes gyperimental results show that the average size of SPP forms is
a phase of Boolean function synthesis. In this phasgy, oximately half the size of the corresponding SOP, and SPP
reduced, and possibly minimal, algebraic forms are determingglns are also smaller than EX-SOP [3]. As a limit case each
for the functions, in order to reduce the final size of thgxoR factor reduces to a single literal in SPP, and the SOP and
corresponding circuits. SPP forms coincide.

The standard synthesis is performed with sum of products), this work, we focus to SPP minimization. Initially this can
(SOP) minimization procedures, leading to two level circuitge seen as a generalization of SOP minimization, and in fact
I\/;oLe-th_an—?wo level m|_r]3_|m|z?t|(()jn is much harder, but the ﬁ'zgn extension of the Quine-McCluskey algorithm was given in
of the C'FW“S can significantly ecrease. _In many cases t " fg] for SPP. In particular the pseudoproducts to be considered
level Iog|_c is a good tradeoff among qlrcwt speed, circuit siz an be limited to the subclass pfime pseudoproducts, that
and the time needed for the minimization procedure. In any ca&gy the same role of prime implicants in SOP. The algorithm
algorithms for exact minimization have exponential complexit¥0r SPP. however. was more cumbersome than the former. thus
hence the time to attain minimal forms becomes huge for Iﬂa’iling in practice in minimizing very large functions. A deeper

creasing size of the input. understanding of the problem, together with the use of ad-hoc

Twolevel minimization s well developed, see any of the Clas'ata structures, has allowed to widely extend the set of functions
sical references, e.g., [16], or the more recent [26], [6], [213 i y

Techniaues for three level minimization have generally be r'qactically tractable [3]. Still a number of standard benchmark
q 9 y unctions can be hardly handled with this technique.
The aim of this paper is to exploit the “regularity” of any given
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Fig. 1. SPP synthesis of an autosymmetric functjorthrough the SPP Fig 2. A 2-autosymmetric functiof, in a Karnaugh map (on the left) of
synthesis of its restrictioff. . four variables. The corresponding reduced functfenwhich depends on the
variablesr; andx3, and the linear substitutions are on the right.

the number of points of; 2) £ = 0 means no regularity, that
is we are not able to provide any advantage over standard sgamber of variables of;,. Finally, we derive the minimal SPP
thesis; fork > 1 the functionf is said to beautosymmetric network for f from the one off,. and the linear substitutions, as
and a new functiory;, called therestrictionof f, is identified explain in Section V. This final task can be performed in linear
in polynomial time. In a sensf, is “equivalent” to, but smaller time.
than f, and depends on — k variables only. The relation be- To better explain our minimization method, let us apply it to
tween f and f;, is discussed in depth, to show how a minimathe functionf of Fig. 2. A minimal SOP form forf is x; +
SPP form forf can be build in linear time from a minimal SPPzT223 + Tor2T3 + ToT2T3 + Tor223, While its minimal SPP
form for f.; 3) the concept of autosymmetry is extended to funéerm isz1 + (zo ® z2 ® x3). First, we can observe that the min-
tions with don’'t care conditions, and SPP minimization techlimal SPP form is much more compact than the SOP expression.
nique is duly extended to such functions; 4) a large set of expétewever, SPP synthesis is more expensive, than the SOP mini-
imental results is presented, showing that 61% of the outputs foization, in computational time. To overcome this problem, we
the functions in the classicaBERESSenchmark suite are au-can exploit the regularities, if any, of the function. Consider the
tosymmetric: the SPP minimization time for them is criticalljkarnaugh map on the left side of Fig. 2. The four subspaces of
reduced, and cases otherwise intractable are solved. Indeedtha-points within the dotted lines present a sort of symmetry:
though autosymmetric functions form a subset of all possikileey are rotations of the Karnaugh map on the right side, which
Boolean functions, a great amount of standard functions of praiepresent the function callefd.
tical interest fall in this class. In the last section, we speculate onStarting from the two input variables functigh, we could
the possible causes of this fact to substantiate the interest of darive many four input variables functions by combinations of
work. Note that an autosymmetric functigrepends in general different rotations off,. We, thus, need an additional informa-
on all then input variables, however we shall be able to studton to reconstruct the starting functigh This information is
finan — k dimensional space; i.ef,is in general non degen- provided by the linear substitutions given in Fig. 2.
erated, whereas all degenerated functions are autosymmetric. The function f could then be studied through the smaller
In Section I, we show with an example, the main idea of odunction f,. Given an SPP minimal form fof, and the linear
minimization method. In Section Ill, we recall the basic defisubstitutions, we can finally generate a minimal SPP fornyfor
nitions and results of SPP theory, and present a companion alFollowing our example, a minimal SPP form ffyris x; +x3.
gebraic formulation later exploited for testing autosymmetry. [he substitutions; «— x1, z3 < 2o & 2 S x3 give a minimal
Section IV, we discuss the properties of autosymmetric fun8PP formforf: ;4 (zoPz2Px3). Obviously, the minimization
tions, and how the problem of determining their minimal SP#me for f, is much smaller. Fortunately, as we shall show in this
forms can be studied on a reduced number of variables. In Spaper, derivingf, and the linear substitutions is an easy task.
tion V, we show how autosymmetry can be tested in polyno-
mial time, and derive a new minimization algorithm that in- [ll. UNDERLYING THEORY

cludes such a test in the initial phase. In Section VI, we ex-gpp theory was posed in [19] and extended in [3]. We re-

eﬁOrt here some basic definitions and properties together with
: : ) \ results needed to developing the theory of autosymmetry.
extension. In Section VII, we present a large set of experimen,

. ; : work in a Boolean spacf), 1}™ described by. variables
results which validate the proposed approach, also proving that L .
the number of benchmarks practically tractable is significanfv 1, ¥n—1, Where each point is represented as a binary

increased. A discussion on the role of autosvmmetry. and w ector ofn bits. A set ofk points can be arranged inkax n
: ) o utosymmetry, a atrix whose rows correspond to the points and whose columns
it deserves great attention, is finally developed in Section VII

correspond to the variables. Fig. 3 represents a set of eight points

in a space of six variables. A Boolean functifn {0,1}" —

{0, 1} can be specified with an algebraic expression where the
Fig. 1 shows the minimization strategy for an autosymmetn@riables are connected through Boolean operators, or as the

function f. First we detect, in time polynomial in the numbeset of points for whichf = 1. |f| denotes the number of such

of points of f, the autosymmetry degrégas explained in Sec- points.

tion IV), and if £ > 0 we derive its restrictiory;, and linear Let« be a (Boolean) vectof} be the element-wise comple-

substitutions (Section 1V-B). Second, we minimiggin SPP mentation ofu; andz denoteu oru. TheconstantvectorsO and

framework; this task usually requires time exponential in tHeare made up of all Os or all 1s, respectively. Veatoris the

showing the theoretical and practical consequences of suc

Il. EXAMPLE
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‘3’ "1‘ ‘:)2 ‘:)3 ‘z; °15 pears in exactly one EXOR factor; all the other variables in the
:° 0o 1.0 0 1 0 expression are canonicaty, x2, andz, in the example) and
r; 0 1 1 1 0 1 appear in direct form; and some canonical variables may not
rs 0 1 1 1 1 0 appear in the expression. Note that the minimal SOP form for
s 1 1 0 1 0 0 the above function (1) is
:5 i i (1) (1] (1] (1) ToT1T2T3T4T5 + ToT1T2T3T4T5 + ToT1T2T3T4T5

6 _ _ — — —

rr 1 1 1 0 1 1 + o1 3T4Tx + ToIL1T2X3L4T5 + ToIL1T2X3T4T5

+ ToX122T3T4T5 + ToT1L2T3TAT5
Fig. 3. A canonical matrix representing a pseudociibén {0,1}6. The
canonical columns arey, ¢z, andc,. much larger thalCEX (P).

A cube in{0,1}" is a special case of pseudocube where

concatenation of andw. A vectoru of 2 elementsyn, > 0, the noncanonical columns are constant. In this case eaok E
is normalif m = 0, orm > 0 andu = v with v (henced) factor in CEX(P) reduces to a single noncanonical variable,
normal. For instancey = 0110 is hormal sincex = vo with the canonical variables do not appear, and the whole expression
v = 01, which is in turn normal. All the columns in the matrix"educes to the well knowproductexpression, e.g., used for im-
of Fig. 3 are normal vectors. plicants in SOP forms. _ _

A matrix M with 2™ rows isnormalif all its rows are dif- A general property of the algebraic representation of pseu-
ferent and all its columns are normal. A normal matrigagon- docubes is given in the following theorem.
ical if its rows, interpreted as binary numbers, are arranged inTheorem 1:1n a Boolean spacg0, 1}": &) the EXOR factor
increasing order (the matrix of Fig. 3 is canonical). A normdlf any subset of variables (directed or complemented) represents
vector isk-canonica) 0 < k < m, if it is composed of an al- & Pseudocube of degree- 1; b) the product of; < n arbitrary
ternating sequence of groups2f0s an2* 1s. In Fig. 3 is EXOR factors represents either an empty set or a pseudocube of
2-canonicalg, is 1-canonical, and, is 0-canonical. A canon- degree> n — k.

ical matrix M containsn columnse;, , .. ., ¢;, _, of increasing Point a) of the theorem can be easily proved t_)y induction on
indexes, called theanonical columnsf M, such that;, is the the number of variables in the EXOR factor. Point b) then fol-

lowest index column that isi — j — 1)-canonical fo < j < lows from a theorem of [19] Whiph states that the _intersection
m — 1. The other columns are tmencanonicabnes. Note that ©f two pseudocubes of degrees is either empty, or is a pseu-
different gn — j — 1)-canonical columns can coexist in a canordocube of degree p + 7 — n.

ical matrix, but only the one of lowest index is called canonical. FOr the example of Fig. 3, the EXOR factarg o ® 12 ® 73,

If M represents a set of points in a Boolean space, with colu@id@o ©z4 @ =5 in (1) represent three pseudocubeg opoints
¢; corresponding to variable;, canonical and noncanonical€ach, and their product represents the given pseudacatie’
columns correspond teanonicalandnoncanonical variables POINts. Note now thatan equality of the folXOR, - EXOR, -
respectively. For example, consider the matrix in Fig. 3. The" - EXOR;. = 1 satisfied by all the points of a pseudocube
canonical columns are,, which is 2-canonicale,, which is  ¢an be equivalently written .as a ;ystemkoﬁnear equatlons:
1-canonical, and,, which is 0-canonical. The corresponding®XOR: = 1,1 < 7 < k thatis, an instance of a general linear
canonical variables arey, x», andz4, respectively. Observe SyStemAz = b, with z = {zo,...,z,1},b € {0,1}*, Aisa
that these variables assume all the possible combinationsgf 7 matrix of coefficients 0, 1, and the sumiis substituted with
values. We have EXOR. In fact, fEXOR; contains a complemented variailg
Definition 1 (From [19]): A pseudocube of degree is a set this variable can be chang_edd:g and the new expression for
of 2™ points whose matrix is canonical up to a row permutatiof-X OR: be put equal to 0 instead of 1. As known [3], [1] the
The matrix of Fig. 3 represents a pseudocub@iopoints in above system specifies affine subspacef the linear space
{0,1}5. The function with value 1 in the points of a pseudocub{eov L ]
P (i.e., the characteristic function &) is calledpseudoprodugt ~ EXample 1: The CEX expressiofEX(P) = 1 - (o © w2 ®
and can be expressed as a product of EXOR factors in sevérgl - (To @ 4 @ x5) corresponds to the system:

different forms, one of which is called tlianonical expression =1 2z =1
(briefly CEX) of P. For the pseudocubg of Fig. 3 we have: To® Ty DTy =1 = To® Ty Dy =0
ToDxrs D5 =1 ToDTsPas=1

CEX(P)=21 - (20 ® 22D 7T3) (0D xs D w5). (1
) - (=0 ? ) (@0 ! - @ which represents the affine space composed of the points in the

Refer to [19] for the nontrivial rule for generatifigEX(P). In-  matrix of Fig. 3.

tuitively, in Fig. 3 the columm; is the EXOR between columns  From the existence afEX(P) for any pseudocub, and

co andc,, therefore, £y @ z2 @ T3) is true. Analogously; is  from Theorem 1, we have Corollary 1.

always different from the EXOR between columfsandc,, Corollary 1: In aBoolean spacf, 1} there is a one-to-one

therefore, £o @ z4 @ z5) is true. correspondence between affine subspaces and pseudocubes.
We now simply recall that each EXOR factor of the expres- This corollary allows to inherit all the properties of affine

sion contains exactly one noncanonical variable in directed subspaces into pseudocube theory. In particular, a pseudocube

complemented form, namely the one with greatest indgx ( containing the point (vectof)corresponds to inear subspace.

x3, andzxs in the example), and each noncanonical variable alptore details on this result can be found in [4].
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The structureof a pseudocubé, denoted bySTR(P), is closed under;). Combining in EXOR, in all possible ways,
CEX(P) without complementations [3]. For the pseudociibe £ linearly independent vectors, . . . , a;, we form a subspace
of Fig. 3, we haveSTR(P) = 1 (1o ®r2®x3)-(zoDrs®rs). of 2F vectors that is closed under, and contains the vectér
Let us now extend the symbal to denote the element-wisegenerated as; ® a;, see for example, [5]. Therefore, the gt
EXOR between two vectors. Thend g is the vector obtained is a linear subspace ¢, 1}". |
from 8 complementing in it the elements corresponding to the 1sThe setL; is called thdinear spaceof f. Note thatL s has
of a. Foravecton € {0,1}" and asubsef C {0,1}",leta® dimensionkt = log, |L¢|. By Corollary 1,L; is a pseudocube,
S = {a®s|s € S}. Forexample, i = {000, 010, 011, 001} and we shall refer t€ EX(Ls) andSTR(Ly).
anda = 100, thena & S = {100, 110, 111, 101}. We have Definition 3: A Boolean functionf is k-autosymmetricor
Theorem 2. equivalently f hasautosymmetry degrele 0 < k£ < n, if its

Theorem 2: For any pseudocube C {0,1}" and any vector linear spacel; has dimensiork. If £ > 1, f will be simply
a € {0,1}", the subset) = a @ P is a pseudocube with calledautosymmetric
STR(Q) = STR(P). Example 3: The functionf in Fig. 2 is 2-autosymmetric and

Proof: Given a setS, the seta @ S is the set of points its linear spacd. is {0000, 0011, 1001, 1010}. Indeed, is
obtained complementing in all the points 8fthe bits corre- closed under all the vectors iny.
sponding to the 1s ak. Furthermore, complementing a bitin Theorem 3:Let f be ak-autosymmetric function. There

all the points of a pseudoculie corresponds to substituting aexist/ vectorsw!, w?, ..., w’ € f, with £ = | f|/2F, such that

literal with its complementation in the CEX expression. By def- ¢

inition of structure the thesis follows. u f= U("’l @ Ly) )
Finally, recall that an arbitrary function can be expressed as i

an OR of pseudoproducts, giving rise to an SPP form [1
For example, adding two rows (points) = 110101 and Proof: Letw! be any vector irf. By Definition 2, w' @

rg = 110110 to the matrix of Fig. 3 we have a new functign : T |
formed as the union of two partially overlapping pseudocubetlﬁfe gseji.c(i:if?grselgigthlf 13 qt_ 6 J;r}e(r:” EB_Lf )iwheLre\ac:‘?jnotieS:s
namelyP (already studied), an@ associated to the rows, rs, =0, f=w &Ly f

e . - = a pseudocube of degrdéewith |f| = 2*. Otherwise, letw?
e s nfatacube WILLAI) 204745 bany vt . Agan b Defion 2 I € /.
' P Observe thatw' & L) N (w? @ Ly) = 0 (by contradiction: let
CEX(P) + CEX(Q) = z1(zo ® z2 D T3) veE (w e Ly)N(w?® Ly), thenv = w' & a = w? & B, with
a,B € Ly; thenw? = w' @ a @ B, thatisw® € (w' & Ly)
which is a contradiction). Therefore, we haye= (w'® Ls)U
The minimal SOP form fof contains 40 literals, while the SPP(w? @ LU f\ ((w'® L) U (w?a Ly)), and using the same

expression foCEX(P)+CEX(Q) contains 11 literals. Passingargument on the set\ ((w' @ Ly) U (w® ® Ly)) the theorem

Ind for each, j,i # j, (w' @ Ly) N (w’ @ L) = (.

'(5’30 Dry D 1175) + x9T1ToT3.

from SOP to SPP, however, implies passing from a two-level teasily follows. m
three-level circuit. This fact has always to be taken into accountFrom the proof above we see that the number of points of
and will not be further repeated. a k-autosymmetric function is a multiple . Indeed, each
affine subspace’ @ L; contains2* points. Recalling that
IV. AUTOSYMMETRIC FUNCTIONS is a pseudocube, and by Theorems 2 and 3 we immediately have:
A. Definitions and Characterization Corollary 2: A k-autosymmetric functionf is a disjoint

union of | f|/2* pseudocubes’ & L; of degreek all having

The class ofautosymmetric functionintroduced in [19] e same structur$TR(L ;), and the same canonical variables
seems to be particularly suitable for SPP minimization. Tl}ﬁ I

. . . f-
present work addresses these functions, for which we give afrfis corollary has an immediate consequence. For any au-

alternative definition. o , tosymmetric functiornf we can extend the definition of canon-
Definition 2: A Boolean functionf in {0,1}" is closed .5/ and noncanonical variables from pseudocubes to the func-

undera, witha € {0, 1}", if for eachw € {0, 1}", w @ @ € f  iop itself. Namely, the canonical (respectively: noncanonical)

if and only ifw € f. _ _ variables ofL; are designated as tloanonical(respectively:
Example 2: The functionf = {001,010, 100, 111} is closed noncanonicgl variablesof f.

under011. Indeed)1©011 = 010 € f,0108011 =001 € /. Eyxample 4: Consider the linear spadg; of function f in

100011 =111 € f and111 @ 011 = 100 € f. Fig. 2. We can arrange its vectors in the matrix:
Each function is obviously closed under the zero veétor

Consider now the set of all the vectg#ssuch thatf is closed To T1 T2 T3

underfB. We have: 0O 0 0o 0 O

Proposition 1: The setL; = {f: f is closed undepB} is a 10 0 1 1.
linear subspace dfo, 1}". 2 1 0 0 1
3 1 0 1 0

Proof: We first observe that if a functiofiis closed under
two different vectorsr,, a2 € {0,1}", itis also closed under The canonical variables di; and f arez, andzs.
a; @ as. Indeedw Ha; Das € fifandonly ifw d a; € f An other important consequence of Theorem 3 is the fol-
(since f is closed undet) if and only if w € f (sincef is lowing:
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Corollary 3: The vectorsw’, ..., w’ of Theorem 3 can be  Note thatf; depends only on the — k£ noncanonical vari-
chosen as the points gfwhere all the canonical variables haveables off. OnceL; has been computed (see next section), the
value 0. canonical variables of are known, and’, can be immediately

Proof: Note that the2* points of each pseudocule & determined applying Definition 4. For instance, for the function
L contain all the2* combinations of values of the canonicalf with k& = 2 of Example 5,f, depends on the noncanonical
variables, hence in exactly one of these points all such valugsiablesz,, =3, z4. To build f> we take the subset {00001,
are 0. Therefore, in the proof of Theorem 3 we can choose @100, 00 110} of the points gf for which the canonical vari-

vectorsw® with all the canonical variables set to 0. B ableszg, 21 have value 0, and then project these points onto the
Note that the choice ab', ..., w’ in Corollary 3 is not uni- {0,1}? subspace relative to,, =3, x4, where we havef, =
vocal. {001, 100, 110}; or, equivalently,fs iS ToTszy + 22T3T4 +
Example 5: Consider the function T9T3T4.
The importance of the restriction stems from the fact that the
f={00001, 00100, 00110, 01000, 01010, SPP-minimal form of any:-autosymmetric functiorf can be

01101, 10001, 10011, 10100, 11000, 11101, 11111}. easily derived from the SPP-minimal form f, and finding the
latter is easier because it depends on less variables and contains

It can be easily verified that the linear space fofs L; = less points. (In the example aboyedepends on five variables
{00000, 01100, 10101, 11001}, where each vector can be ob-and has 12 points whilg, depends on three variables and has
tained as the EXOR of other twg.is then 2-autosymmetric. We only three points). An important result of [19] is extended as
haveSTR(Lys) = (zo®Dx1®x2)zs(xo®x4), Whererg, z1,and follows.
T3, T3, T4, are the canonical and noncanonical variables, respectemma 1: A k-autosymmetric functiorf and its restriction
tively. From Corollary 3 we have' = 00001, w?> = 00100, fi have the same number of pseudoproducts in their minimal
w® = 00110, hence:f = (00001 & L) U (00100 & L;) U SPP forms.
(00110 @ Ly). Proof: We show that there is a one-to-one correspondence
From the above properties of autosymmetric functions we obetween prime pseudoproductsfoand prime pseudoproducts
serve that: 1) any function is at least 0-autosymmetric, sincedkits restriction f;.. a) Each prime pseudoproduct ¢fcor-
closed undeB; 2) a function is 4 — 1)-autosymmetric if and responds to a prime pseudoproductfgf In fact, each pseu-
only if it is a pseudocube of degree- 1; 3) a function isn-au- docube associated to a prime pseudoprogust f is divided
tosymmetric if and only if it is a constant; 4) pseudocubes d@fito 2* equal pseudocubes lying in the subspaces where the
degreek are the onlyk-autosymmetric functions with only onecanonical variables of assume all the possible values. The

term in the union of expression (2). We also have: pseudocube lying in the subspace where the canonical variables
Theorem 4: The overall number of autosymmetric functionsire set to zero corresponds to a prime pseudoproduyGt -
is (27 — 1)22" . deed, it is easy to verify by contradiction that the nonprimality

Proof: We first count the number of functions that are aof this pseudoproduct would imply the nonprimality @f b)
leastk-autosymmetric, for a giveh. Recall that a pseudocubeEach prime pseudoproduct ff corresponds to a prime pseudo-
is an affine space, andkaautosymmetric function is a disjoint product off. In fact, f;, is the projection off onto the subspace
union of affine spaces over the same linear spacef dimen- where all the canonical variables are set to zero, and for each
sionk (see Theorem 3). There a{rg] ways of choosing &-di- prime pseudoproduct of;, there exists an equivalent pseudo-
mensional linear subspacg ) of {0, 1}", where[}] denotes product in all the other subspaces corresponding to all the other

the Gaussian factor: possible settings of the canonical variableg oSince all these
o1 i pseudoproducts have the same structure, they can be unified to
[n} _ [l (2" —1) form a prime pseudoproduct ¢gf The thesis follows immedi-
k Hfz‘ol(zk—i -1) ) ately from this one-to-one correspondence. [ |

Based on Lemma 1, we can prove a stronger property, namely

Once we have fixed the linear subspdcg we must choose a 3 minimal form forf can be easily derived from a minimal form
subset of different affine spaces ovey, whose union defines for f,. Letx,,,...,z. , , be the noncanonical variables of
a function that is at leadt-autosymmetric. The different affine f.and letSTR(L ) = pop1 - - - pn—k—1, Wherep; is the EXOR
spaces Ovemf are 2n—k in number. Therefore, the OVera”factor Containingljz“ 0 S % S n—Lk—1 (reca” that each
number of functions that are at leastautosymmetric is noncanonical variable appears in exactly one EXOR factor, and
[%]2%" . Fork = 1 the Gaussian factor is equal @'(— 1), each EXOR factor contains exactly one noncanonical variable).
and the thesis follows. B \\e have Theorem 5.

o ) ) Theorem 5:If SPP(f}) is a minimal SPP form foyy, then
B. The Restrictiory; of an Autosymmetric Functiof the form SPP(f) obtained by substituting iSPP(f,) each

We now show how any;-autosymmetric functiorf can be variablez., with the EXOR factorp; is a minimal SPP form
studied through a simpler functiofy . for f.

Definition 4: For a ¢ > 1)-autosymmetric functiorf, the Proof: By Lemma 1, the number of pseudoproducts in
restriction f, consists of théf|/2* points of f contained in the SPP(f) is minimum, then we have only to prove that this form
subspacg0, 1}"~* where all the canonical variables phave covers exactly all the points of. When we transforny into
value 0. fr, we select the vectas’ with all canonical variables set to
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zero from each affine subspaeé @ L. Call r(u) the vector  Definition 5: A Boolean functionf in {0, 1}" is dual-closed
u' without the canonical variables, i.e., its projection onto andera, with o € {0, 1}", if for eachw € {0,1}", w® a € f
subspace(0, 1}"~*. When we apply the linear substitutionsf and only ifw € f.

Xz — POy---sTz, ., — Pn—k—1, We force any pseudo- Note that a self-dual function is dual-closed under the vector

product that covers(u’) in fj, to cover all the points im' & L; 1. As the setL; is a linear subspace ¢f), 1}" (Proposition 1),

in f, and the thesis immediately follows. m we have asimilar property for self-dual functions in Proposition
Note that the resulting expression may be reduced using sofhe

properties of EXOR, in particular @ z = 0 and0 & = = . Proposition 2: The setd; = {g: f is dual-closed undes}
Example 6: The functionf in Fig. 2 can be reduced to theis anaffine subspacef {0,1}".

function f,. Its linear spacé. ; has structure; (zo ® z2 ® x3), Proof: We will show thatA  is closed under the EXOR of

which implies the substitutions, «— x; andzs «— zo®z.Pxs. an odd number of its vectors, as this implies thatis an affine
A minimal SPP expression qf is z; + x3. By Theorem 5, a subspace of0, 1}" by a classical linear algebra result. In fact,

minimal SPP expression fgfis suppose thaf is dual closed undex, 8 andy. Then we have:
f(w@a_@ﬂ@'y) =flwedadp) = flwda) = f(w),and
(21 + z3)[71 — 21, T3 — TQ B T2 D T3] the thesis follows. [ |

Definition 6: A Boolean functionf is k-self—dua) 0 < £ <
n, if its affine spaced ; has dimensiort.
Observe that &-self—dual function has exact®—! points
its one-set.
Example 7: The functionf = {000, 011, 101, 110} is
2-self-dual and its affine spacg; is {001, 010, 100, 111}.
C. Relation With Different Notions of Symmetry For instancep00 & 001 = 001 € f, 011 & 001 = 010 € f,
A Boolean function is generally called symmetric if is in-101 ® 001 =100 € f,and110 ® 001 = 111 € f.
variant under any permutation of its variables (see for example! '€ MOst relevant relation betweérautosymmetric func-
[16]). This property is actually unrelated to autosymmetry. A%ONS andk-self-dual functions is given in the following.
known, the total number of symmetric function®ist!, much ~ 1heorem 6:1f fis k-self—dual, thery is k-autosymmetric.
smaller than the one of autosymmetric functions (see Theorem 700f: Leta € A;. We show thaif is closed under all
4): still symmetric functions do not form a subset of the al6ctors ina & Ay. Indeed, for allf € Ay and for allw €
tosymmetric ones. In fact, a symmetric function may be add: 11" we have:f(w © a © f) = f(w & a) = f(w). Since
tosymmetric (e.g., the parity function), but there are symmetn%f is an affine space andl € Ay, the Se.h @ Af is a linear
functions that are not autosymmetric (e.g., any symmetric furid2ac®- Thereford,; = a & Ay, and the dimensions di; and
tion with an odd number of points). The concept of symmetrﬁf are equal td. ) u
has been extensively used for functions classification, and forF'na"y’ noie that the ‘?O”C‘?pt of seli—duality has never been
easing the minimization process in some cases. However sﬁﬂp“ed to express functions in reduced algebraic forms.
metric functions are not as common as autosymmetric ones in
practical applications, and do not seem to yield as remarkable
advantages as the latter ones in the synthesis process. In the previous section, we have shown that each Boolean
Another approach introduced in [18] under the name d@dinction f is k-autosymmetric, foix > 0. For minimization
support-reducing decompositiors worth mentioning here. purposes we have an increasing advantage for increasing,
On one hand, the underlying concept at the base of sgsminimizing a-autosymmetric function with variables and
port-reducing decomposition can be seen as an extensigpoints reduces to minimizing a different function with— &
of the one of autosymmetry already introduced in [19], berariables and/2* points. Even fok = 1 we have to cover only
cause is aimed at specifying a functigf{z1,...,z,) as one half of the original points.
fo= hlgi(zr, .. s28), s ge(T1y o Ts)y Tsgds e vy T )y Fortunately, for a given functiorf, finding the associated
with & < s. On the other hand the work is directed at selectirlinear spacel; and computing the autosymmetry degrees
the functionsy; from a predefined library set, so that finding aan easy task, because the required algorithm is polynomial in
minimal form for f becomes library dependent. the numbem of variables and in the number of points ff
Much more interesting, instead, seem to be the similar-We now give some intuition behind the computation/gf.
ities between the class of autosymmetric functions and tBg Definition 2, a functionf is closed unde if for any u € f
well studied class of self-dual functions [25], [10]. A comthere exist® € f such thab = u® . Thus, foralle € f, there
pletely specified Boolean functiorf is self-dualif for all exists a vectos € f such that we can expreasasa = u & v.
w € {0,1}", f(w) = f(w), wheref is the function whose In other wordse must be searched within the vectors of the set
one-set is the off-set of andw = w @ 1. For example, {u® v |u,v € f}. More precisely, we have Theorem 7.
the functionf = {001, 010, 100, 111} is self—dual, be- Theorem 7:Let f be a Boolean function. Then
cause00l & 111 = 110 € f, 010 & 111 = 101 € f, Lj =y (u@® f).
1009 111 =011 € f,and111 & 111 = 000 € f. The relation Proof: Leta € (g (u® f). Thena € (g ;(u® f) &
between autosymmetric and self—dual functions is bettéw € f,acudf < Vue f,Ive fla=udv e ac Ly.
understood generalizing the latter notion in the following. =

:xl-l-(xo@xg@([}g).

Another example of minimization of an autosymmetric funq—n
tion f will be given in Section V.

V. MINIMIZATION ALGORITHM
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X3

Based on Theorem 7, we state Algorithm 1.
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Algorithm 1: Construction of Ls (build Ly

and find the autosymmetry degree k of a o
given function f) I
1) for all u € f build the set ud f;

2) build the set Ly =yc;(u® f);

3) compute k = log|Ly|.

Fig. 4.
The time complexity of Algorithm 1i®(|f|?n), because we with a

In the Karnaugh map on the left, each pointgfU D is represented
letter. Points in the same affine space are represented by the same letter.

must build a set: @ f forallu € 1, and the construction of eachThe central and the right maps represgrind its restrictiory;., respectively.

such a set require3(|f| n) time.

Any SPP minimization algorithm can be easily extended for
exploiting autosymmetry. For a given functignwe first com-
pute L; and k with Algorithm 1. If & = 0 (i.e., f is not au-
tosymmetric) we proceed with regular minimization, otherwise *
we compute the restrictiofy, of f, minimize it, and finally de-
rive a minimal formSPP(f) from SPP(fi). We propose the
following A (for autosymmetry) minimization algorithm.

The intersection of all the sets® f gives the linear space
Ly = {00000, 01100, 10101, 11001}. We then have
k= 2.

Sincek = 2 we proceed with thelsebranch of Algo-
rithm 2. L has noncanonical variables, z3, z4, hence
f2 is restricted to these variables and we hayg: =
{001, 100, 110}.

The minimization problem now consists of finding a min-
imal SPP cover of the points gf,. Applying the algo-
rithm of [3] we have the minimal forrfPP( f2) = xoT4+
fg(d}'Q D .174).

Compute:STR(Lf) = (il?() Dxr1 D .’1}2)3?3(.’1}0 D 3?4).

Algorithm 2: A-Minimization (build a

minimum SPP form of a given function

1) build L; and compute the value of
Algorithm 1;

f)
k by

2) if k=0 then * Derive the minimal SPP form fof by substitutingr,, =3
a) minimize  f with any SPP synthesis andz, in SPP(f,) with the EXOR factors o8TR(Ly),
algorithm respectively ¢o ® 21 ® x3), 23 and (o ® z4). We obtain

3) else SPP(f) = (zo®x1 ® x2)(20 B Ty) + T3(x1 B 2 B 24),

with some immediate algebraic simplifications, e.g., in the

a) determine the canonical variables i
first term of SPP(f;) we haveZy[zy — (zo ® z4)] =

of L; and compute the restric-

tion  fi as indicated in (20 @ x4) = (o D T4). In the last term oBPP(f;) we
Section IV: have:

b) compute STR(Ly) = pop1-- Prn—k—1,

c) compute the minimal form SPP(fi) (w2 & wa)lwz —(w0 & 01 S w2), w4 — (w0 & 74)]
for f. with any SPP synthesis =(z0 ® 21 ® w2) ® (20 ® 74)
algorithm; =(z0 ® o ® 11 D T2 D x4)

d) build SPP( f) by substituting in
SPP(f;) each noncanonical vari-
able =z, with the EXOR factor
of STR(Ly).

=(z1 ® z2 B x4).

pi
VI. INCOMPLETELY SPECIFIEDAUTOSYMMETRIC FUNCTIONS
Let us now discuss how to extend the notion of autosym-

By the theory developed in the previous section, Algorithm @etry to functions with don’t care points (denoted By For
is correct. Note that the algorithm builds an SPP form minimah incompletely specified Boolean functigh : {0,1}" —
with respect to the number of pseudoproducts. To obtain the, 1, x}, the sets of points on whicfi takes value 0, or 1, or
minimal SPP form with respect to the number of literals we must are respectively called theero-setZ ¢, the one-setO ¢, and
slightly rearrange step3(c) and 3(d), executing the substitu- the don't-care-setD.
tions of allp; for z., in the prime pseudoproducts §f, before  Definition 7: An incompletely specified functioif is k-au-
selecting such pseudoproducts in the set covering problem itasymmetridf the completely specified functiop with O, =
plicit in the minimization algorithm. Oy U Dy is k-autosymmetric.

Example 8: Minimization of the functionf of Example 5,  The restrictionf; of an incompletely specified autosym-
using Algorithm 2. metric function f is in general incompletely specified. For

« Derive L; andk by Algorithm 1. For this purpose, for all defining the one-set and don't-care-sefff let us first discuss

u € f compute the sei @ f. For example, for the point an example.

00 100 we obtain the set: Example 9: Consider the functiorf represented in the cen-
tral map of Fig. 4. The map on the left shows the points of
O5 U Dy marked with letters, with the points in the same affine
space marked with the same letterfI€ontains an affine space

00100 & f = {00101, 00000, 00010, 01100, 01110,
01001, 10101, 10111, 10000, 11100, 11001, 11011}.
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TABLE |
DISTRIBUTION OF k-AUTOSYMMETRIC FUNCTIONS IN THE ESPRESSABENCHMARK SUITE. #funct IS THE TOTAL NUMBER OF FUNCTIONS (SINGLE OUTPUTS)
FORANY VALUE OF k, AND %funct |S THE CORRESPONDINGPERCENTAGE THE NEXT THREE ROWS REPORT THENUMBER OF A-AUTOSYMMETRIC FUNCTIONS:
1) SYNTHESIZED WITH THE NEW ALGORITHM A AND WITH THE PREVIOUS BESTALGORITHM C (#AC); 2) SYNTHESIZED WITH AONLY (#A), SNCE C DID
NOT TERMINATE; 3) NOT SYNTHESIZED AT ALL SINCE BOTH ALGORITHMS DID NOT TERMINATE (#*). T A AND T'¢ ARE THEAVERAGE CPU TIMES T'4, T IN
SECONDS REQUIRED BY THE TWO ALGORITHMS ON THE SAME FUNCTION ON A PENTIUM Il 450 MACHINE. T s / Tc |S THEAVERAGE OF THERATIO T4 /T,
FOR THE546 FUNCTIONS OFRow #AC (k = 0 T0 8). k/n IS THEAVERAGE OF THERATIO k/n, WHEREn |S THE NUMBER OF INPUT VARIABLES

k=] 0 | 1 [ 2 [ 8 [ 4 [ 5 [ 6 7 | 8 [ 9 10 11 [ 12 | Tot
F##funct 365 116 72 95 41 43 39 27 16 24 58 28 18 942
%funct 38.9 12.3 7.6 10.1 4.3 4.6 4.1 2.9 1.7 2.4 6.2 3.0 1.9 100
#AC 264 82 55 54 23 35 21 10 2 0 0 0 0 | 546
#A 0 5 4 5 9 7 16 9 14 24 58 28 18 197
#E* 101 29 13 36 9 1 2 8 0 0 0 0 0 199
Ta | 101.94 6.42 1.37 0.19 | 0.05 | 0.09 | 0.10 0.08 0.41 - - - - -
Tc 101.8 | 222.3 | 109.7 | 203.2 4.8 | 51.5 | 90.1 23.6 2880 - - - - -
Ta/Tc 1.01 0.63 0.42 0.37 | 0.32 | 0.27 | 0.07 | 0.004 | 0.0001 - - - - -

K/n | 0] 0.12] 023 ] 031 [043 055 ] 053] 0.66] 062 ] 059 | 0.63 ] 0.73 | 0.75 | 0.4

whose points belong t0; (e.g., the points markel), the cor- of f as points of the function to be actually synthesized. This
responding point off, belongs toOy, . If all the points of an choice guarantees the minimality of the SPP formffpgiven
affine space belong td+ (e.g., the points marked A), the cor-a minimal SPP form foff, (Theorem 8).

responding point of}, belongs taD, . For an affine space com-

posed of points from bottv; and D¢ (e.g., the points marked VIl. EXPERIMENTAL RESULTS

C), the corresponding point of, must be inOy,, since the
points in its affine space that are iy must be covered in
the final solution. Therefore, in Fig. 4 the affine space corr
sponding to C maps to an element(®f, .

Formally, letS, denote the set of points i U D projected
onto the subspacf, 1}"~* where all the canonical variables
of f have value 0. We pose the following definition.

Definition 8: For a ¢ > 1)-autosymmetric incompletely
specified functiory, therestriction f, is the incompletely spec-
ified function such that: apy, is the set of pointa € S, for

which the affine space associateckdn f is contained inDy For all the functions considered we have computed the values

and D)0y, = So \ Dy, _ __of the autosymmetry degréewith Algorithm 1, obtaining the
We can now generalize Theorem 5 to incompletely specifiegs, s shown in the first two rows of Table | for completely

autosymmetric functions. _ o specified functions, and in Table Il for functions with don't

~ Theorem 8:Let f and f; be as in Definition 8. ISPP(fx)  cares. Surprisingly the overall percentage of autosymmetric

is a minimal SPprrm foff, the forrnSPP(f)_obtalned from completely specified functionsk( > 1) is over the 61%

SPP(fi) by substituting each variable., with the EXOR (Taple I); while more than 40% of the functions with don’t

factorp; is a minimal SPP form foy. care set are autosymmetric according to Definition 7 (Table I).

Proof: For any vectors € {0,1}" we denote byr(v) e have then attempted to run AlgorithrasandC for all the

its projection in the spac¢y, 1}"~* where all the canonical completely specified functions of our test set, recording the

variables off are setto 0. Leb € Dy andw(v) € Oy,. By CPU times whenever the computation terminated in less than

contradiction, suppose thats not covered by any minimal SPP172 800 seconds (2 days) on a Pentium 1l 450 machine. Results

form for f. Of course any minimal SPP form f¢g coversr(v).  on program termination are given in ro&, , T of Table I.

By Definition 8 we know that there exists at least a paiin the We have found out that the autosymmetry property drasti-

affine space containing (i.e.,u € v © Ly) such thatu € O;. cally reduces the minimization time, as reported in /w/Tc

Letp be a pseudocube coveriagn a minimal SPP form foff.  of Table | that shows the average reduction of computing time

We can replace, in such form, with a pseudoproduct coveringising AlgorithmA (time T » ) instead ofC (time T¢), for all the

not onlyw but allu ® Ly (i.e., the affine space containing botrbenchmark functions for which both algorithms terminated (i.e.,

u andv). We have obtained a minimal SPP form focovering for the 546 functions of rowt AC). Note how the improve-

v, thereby contradicting the initial hypothesis. B mentintroduced by the new algorithm drastically increases for
Although the given generalization of autosymmetry to fundncreasingk. Fork = 0, instead, we havévg(T4/Tc) > 1,

tions with don’t cares may appear quite restrictive, our expeand actually the rati@s /T¢ is slightly greater than 1 for each

imental results show that more than 40% of the outputs feuch a function. This is because AlgoritthrcomputesL in

the incompletely specified functions in the classicaPRESSO any case, then calls Algorithi@. The resulting slowdown is

benchmark suite are autosymmetric (see next section). Indefeolyvever always negligible because is computed in polyno-

Definition 7 is just a possible one, as it taladbthe don’t cares mial time by Algorithm 1 (see Section V), while Algorith@is

The new minimization Algorithm 2, also called Algorithfn
éf_or autosymmetry), has been tested on a large set of functions
taken from the BEPRESSCbenchmark suite [27]. The different
outputs for each function have been synthesized separately. The
performance of Algorithm has been compared with the perfor-
mance of the best previous algorithm, that is the one proposed in
[3], in the following indicated as Algorithr@ (after Ciriani). In
fact, the minimization of functiorfy, in Algorithm A [step 3(c)]
has been implemented with Algorith@ The input of both al-
gorithms is the on-set and don't care-set of the functions.
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TABLE I
DISTRIBUTION OF k-AUTOSYMMETRIC FUNCTIONS WITH A DON'T CARE SET, IN THE ESPRESSABENCHMARK SUITE. #funct IS THE TOTAL NUMBER OF
FUNCTIONS (SINGLE OUTPUTS) FORANY VALUE OF k, AND #funct |S THE CORRESPONDINGPERCENTAGE

k || #funct | %funct
0 83 53.90
1 17 11.04
2 8 5.19
3 23 14.94
4 8 5.19
5 10 6.49
6 4 2.60
8 1 0.65
TABLE Il

DETAILED RESULTS FOR ASUBSET OFAUTOSYMMETRIC FUNCTIONS. COLUMNS |f], nn, k AND k/n REPORT THENUMBER OF POINTS OF THEFUNCTION, AND THE
VALUES OF n, k, AND k/n, RESPECTIVELY. COLUMNS T'a AND T ¢ REPORTCPU TIMES AS IN TABLE | (A STAR INDICATES NON TERMINATION AFTER 172 800
SECONDS. THE LAST COLUMN REPORTS THERATIO T4 /T THE RESULTSARE RELATIVE TO SINGLE OUTPUTS #L AND #PP REPORT THENUMBERS OF
LITERALS, AND OF PRIME PSEUDOPRODUCTSIN THE MINIMAL EXPRESSION

function || ] n ] k [ k/n [ #L [ #PP | Ta | Tc | Ta/Tc
max512(0) 258 9 1| 0.11 8 2 20.82 | 2618.02 0.08
Z9sym(0) 420 9 1| 0.11 102 17 310.17 * *
newtpla2(2) 204 | 10 2 | 0.20 17 4 1.71 236.89 0.07
radd(2) 128 8 3 | 0.38 16 3 0.22 5.43 0.04
addm4(6) 224 9 4] 044 18 4 0.39 79.86 0.005
intb(O) 13888 | 15 51| 0.33 96 12 11420.80 * *
addm4(7) 192 9 6 | 0.67 6 2 0.27 123.63 0.002
intb(5) 16384 | 15 7 | 0.46 38 8 431.60 * *
newtpla(4) 256 | 15 8 | 0.57 7 1 0.48 | 2893.04 0.0002
opa(17) 33792 | 17 | 10 | 0.59 37 7 503.01 * *
alcom(5) 14336 | 15 | 11 | 0.73 6 3 119.67 * *
TABLE IV

DETAILED RESULTS FOR ASUBSET OFBENCHMARK CIRCUITS. COLUMNS n, #0, Avg(k) AND Avg(k)/n REPORT THENUMBER OF INPUT VARIABLES, THE
NUMBER OF OUTPUTS, THE AVERAGE AUTOSYMMETRY DEGREE OF THESINGLE OUTPUTS AND ITS RATIO WITH n, RESPECTIVELY. COLUMNS T o, T'c, AND
Ta/Tc, REPORTTOTAL CPU TIMES IN SECONDS AND THEIR RATIO, FOR THE COMPUTATION OF ALL OUTPUTS(FOR*' s SEE TABLE IIl')

function || n | #0 [ Avg(k) [ Avg(k)/n | Ta | Tc [ Ta/Tc
Z9sym 9 1 1.0 0.11 310.17 * *
adr4 8 5 3.2 0.40 88.22 145.29 0.61
max512 9 4 0.5 0.06 3042.22 | 6420.00 0.46
newaplal 12 6 5.3 0.44 0.38 2.81 0.14
risk 8 31 3.3 0.41 0.96 516.66 0.002

z4 7 4 3.0 0.43 6.75 9.44 0.72

exponential in nature. For all the functions in the table the fornfsach equation corresponds to a gate) and we count the 10 lit-
obtained with Algorithm#\ andC coincide. Table Il shows the erals on the right hand sides of the equations. The problem is
CPU times for a small subset of the above functions with 1, that, in many technologies, EXOR ane (or AND) gates have
and other relevant minimization parameters for them. Note thdifferent costs. In [15] the authors consider a 2-input EXOR
Tables I-11l show results for single outputs of different benclgate as:: & y = zy + Zy. Thus, the cost in literals of an
mark circuits. Table IV, instead, shows experimental results farinput EXOR gate is 4, while the cost of the 2-inpart and
whole benchmark circuits, with reference to all their outputs. AND gates is 2. This corresponds also to the number of transis-
We now compare the cost of the solutions generated with dars used for the CMOS technology mapping (i.e., 4 transistors
algorithm with the once of two level SOP minimization and ofor AND/OR gates and 8 transistors for the EXOR gate). In gen-
the widely studied EX-SOP three-level logic synthesis [7], [12&ral the associative property of the EXOR operator allows to
[13]. To this end, we count the number of literals and gata®(  see ak-input EXOR gate as the composition of- 1, 2-input
and EXOR) of an expression. In the multilevel contest the cdsKOR gates. For example; &z ® x5 = (21 22) ® x5, and
function is the number of literals in each different gate (see [14]; D r2 @ 23 D rs D25 = ((21 P x2) B (23D x4)) D 5. There-
[15]). For example, we represent the multilevel network of exere, we can use a cost functipg, where a-input EXOR gate
pressiore = ((zyz) + (2 ® xyz) + x)y with the four equations costsi(k— 1), and ak-inputOR/AND gate costg. This function
corresponds to the CMOS cost described in [14], where the ex-
pressiore of the previous example has cegt = 12. In[14], a
a=zyz, b=z2®a, c=a+b+z, e=cy different cost function is also proposed for FPGA [23] realiza-
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TABLE V
CMOSAND FPGA GosTs FORSOME BENCHMARK FUNCTIONS IN THE SPP, SORMND EX-SOP §NTHESIS. itc AND py ARE THECMOSAND FPGA QOSTS FOR
THE SPP NETWORK, RESPECTIVELY. 1 IS THECMOS QST FOR THESOP NETWORK, AND ITSFPGA QOSTIS jip = pi. 1 IS THECMOS GOST FOR THE
EX-SOP NeTWORK, AND ITS FPGA QosTIs g = s — 2. #E |s THENUMBER OF DIFFERENTEXOR GATES IN THE SPP [ORM

SPP SOP SPP vs SOP EX-SOP || SPP vs EX-SOP
function || uc [ wr | #E be || Be/vg | pr/up vt [ pc/ut | wvr/ug
5xpl 64 | 60 2 341 0.20 0.18 146 0.44 0.42
adr4 117 | 79 [ 10 415 0.28 0.19 108 1.08 0.74
life 180 | 148 | 16 746 0.24 0.20 509 0.35 0.29
mipd 524 | 400 | 32 853 0.61 0.47 433 1.21 0.92
rd53 64 | 46 7 171 0.37 0.27 79 0.81 0.60
rd73 207 [ 127 | 15 883 0.23 0.14 312 0.66 0.41
rd84 420 | 330 | 31 [[ 2029 0.20 0.17 650 0.65 0.51
74 100 [ 62 ] 10 311 0.32 0.20 146 0.68 0.43

tion, wherek-input EXOR gates anb-inputAND/OR gates have TABLE VI

; ; MINIMIZATION TIMES (IN SECONDS FOR SOME BENCHMARK FUNCTIONS IN
the same cost. We call this cos:r. The results of comparing THE SPP, SORPAND EX-SOP fORMS. SPP EXPERIMENTS WERE PERFORMED

SPP, SOP, and EX-SOP expressions with this measures arediga sincLe 450 MHz CPU WTH 128 M8 MEMORY. EXPERIMENTAL TIMES

ported in Tables V and VI. FOR SOPAND EX-SOP WERE OBTAINED WITH A SUN ULTRA 60 OPERATING
Note that minimization of multiple output circuits has been ON Two 360 MHz CPUS AND 768 M MEMORY

carried out individually for each output. Such outputs may not  function || Avg(k) ]| SPP || SOP || EX-SOP

be function of all input variables (i.e., the corresponding func- f51m 3.6 || 201.30 0.90 55
tions are degenerated). In our method, such irrelevant variables _life 0.0 || 122.59 || 0.42 200
are not eliminated beforehand, since they are discovered during :Zgg ‘33 8(7),5133 g'g‘i ?g
the evaluation of autosymmetry at no additional cost. Doing this,  —g73 20 T 6075 T 01l 294
the degenerated functions are brought into the class of autosym- ~z4 3.0 6.75 0.11 9

metric ones. Note that this is not a disadvantage of our approach

if compared with others, as none of the minimization methods ) o )
in current use detects the irrelevant variables in a preliminaryANOther important observation is that regularity may also
phase. allow to define an autosymmetric functighindependently on

the number of variables, and then to state a rule for deriving a
minimal form for f valid for anyn. Well known functions as,
VIIl. A D ISCUSSION ONAUTOSYMMETRY for example, the ones counting the parityrobits, or giving

To understand the role of autosymmetric functions, we mU&§e next-state values for am bits Gray code, can be easily
compare them with the set of all possible functions. The tot@xPressed in minimal form for an arbitrary number of variables
number of Boolean functions of variables isN» = 22", cor- just because they are autosymmetric (for the parity see [19]; for

responding to all the ways a subset of points can be choser3fy codes elementary considerations suffice).

{0, 1}". This is a huge number, however, due to the randomnesd he relation between autosymmetric functions and functions

of the above generating process very many of such functions gich areé simply symmetric might be better investigated (see

not correspond to any significant circuit. Autosymmetric funcSeCtIon IV-C). No interesting results seem to emerge from the

tions are just a subset of the above. The autosymmetric functi%r?%ly;';gﬁncd;’Cr:i?;]ssf‘gnvfle S|m]p\lfy ngtet tshantq::i ttr(_)éa:cl rr']lém ber
n—1 . -
areN4 = (2"—1)22"" innumber (see Theorem 4). Therefore y 'c Tunc : < Va, but sy ic 1

. ; . . . .. tions do not form a subset of the autosymmetric ones, as already
for increasing:, autosymmetric functions constitute a vanishin

fraction of all the functions, a& 4 /N goes to zero for. going %bserved.

o . . . S The introduction of the restrictioffi. for a k-autosymmetric
to infinity. Still the question remains on how many S'gmf'canﬁ.mction f leads to consider the nature of Boolean functions
functions are autosymmetric.

under a new light. We can state that tinéormation content

_ Akey observation is that most of the major benchmark fungg ¢ is represented by, together with the linear transforma-
tions are indeed autosymmetric, as shown in the previous sggn .. o - — pn_r_1 (Section IV), so that
Z0 1ty M Zpk—1 n—k— )

tion. The more so whenis small and the values 8f» andV.a  he core of the synthesis problem is the minimizationfepf
are not too distant. The reason, we might argue, is that a fup&ection V). This suggests a formal generalization. For a given
tion encoding a real life problem must exhibit a regular structufgnction ¢ < {0,1}™ — {0,1} we can define thautosym-
that can be reflected in some degree of autosymmetry. In fagletry classC, as the class of all the autosymmetric functions
also “degenerated” functions that do not depend on all the vayi< {0,1}* — {0,1},t > m, such thaf, = g. Since the infor-
ables are autosymmetric, although the converse is not truemi@tion content of any given functioghcan be easily found, and
general. Although some degenerated functions are encountegafinimal SPP form forf can then be derived fro®PP( f.),

in the major benchmarks, this property is not immediately evininimizing the functionf;, corresponds to minimize the entire
dent and has not been directly used in the standard minimizatiassC, = Cy, . Exploiting the full potential of such an approach
processes. is currently a matter of study.
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IX. CONCLUSION [10]

In this paper, we have introduced the autosymmetry degree
k of a Boolean functiory of » variables. The value of isa  [11]
measure of the regularity of. This approach supplies a new [12]
tool for efficient minimization. Fok > 0 a new functionf;, of
n — k variables has been definefl, is called the restriction of
f and can be built in polynomial time.

The importance off;, has been demonstrated in connection
with the construction of minimal three-level SPP expressions,
In fact, it has been shown how a minimal SPP expressiorf for [14]
can be built in linear time from a minimal SPP expression for
f,» and how this induces a drastic reduction of the minimization
time. This advantage increases with the valug,&incef; de- 19
pends om — k variables only, and has a number of input points|16]
equal to the number of points ¢fdivided by2*. Our experi-
ments have confirmed the foreseen time reduction, and have aldd!
shown that a great number of functions of practical importance
are indeed autosymmetric, thus validating the overall interest di8l
our approach.

Our minimization algorithm would probably be greatly im- [19]
proved if formulated on BDD's as its applicability is presently
limited by the size of the input. This promising approach is curd?0!
rently under investigation, and constitutes a challenging open
problem. [21]

Also some more work is needed in the treatment of don't
care conditions. In fact our present definition of autosymmetry22]
for an incompletely specified functiofiis rather restrictive, as
it takes all the don’t cares of as points of the functiom to
be actually synthesized. Another approach would be selectings]
only a subsebf don't cares off as points of the functiop, in
order to maximize the autosymmetry degree and reduce the si
of the final circuit. Thus far we have been unable to propose a
polynomial time algorithm for such a selection. [25]

[13]

[26]
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