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Abstract—We exploit the “regularity” of Boolean functions with
the purpose of decreasing the time for constructing minimal three-
level expressions, in the sum of pseudoproducts (SPP) form re-
cently developed. The regularity of a Boolean function of vari-
ables can be expressed by anautosymmetry degree(with 0

). = 0 means no regularity, that is we are not able to provide
any advantage over standard synthesis. For 1 the function

is said to beautosymmetric, and a new function depending
on variables only, called therestriction of , is identified in
time polynomial in the number of points of . The relation between

and is discussed in depth to show how a minimal SPP form
for can be build in linear time from a minimal SPP form for .
The concept of autosymmetry is then extended to functions with
don’t care conditions, and the SPP minimization technique is duly
extended to such functions. A large set of experimental results is
presented, showing that 61% of the outputs for the functions in the
classical ESPRESSObenchmark suite are autosymmetric. The min-
imization time for such functions is critically reduced, and cases
otherwise intractable are solved. The quality of the corresponding
circuits, measured with some well established cost functions, is also
improved. Finally, we discuss the role and meaning of autosym-
metric functions, and why a great amount of functions of practical
interest fall in this class.

Index Terms—Circuit optimization, circuit synthesis, logic
design.

I. INTRODUCTION

T HE DESIGN flow of logic circuits always includes
a phase of Boolean function synthesis. In this phase,

reduced, and possibly minimal, algebraic forms are determined
for the functions, in order to reduce the final size of the
corresponding circuits.

The standard synthesis is performed with sum of products
(SOP) minimization procedures, leading to two level circuits.
More-than-two level minimization is much harder, but the size
of the circuits can significantly decrease. In many cases three-
level logic is a good tradeoff among circuit speed, circuit size,
and the time needed for the minimization procedure. In any case
algorithms for exact minimization have exponential complexity,
hence the time to attain minimal forms becomes huge for in-
creasing size of the input.

Two level minimization is well developed, see any of the clas-
sical references, e.g., [16], or the more recent [26], [6], [21].
Techniques for three level minimization have generally been
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given for specific algebraic expressions. A relevant three-level
minimization algorithm was given in [20] for networks of the
form where and are SOP forms anddenotes
a binary operation. The case of AND (calledAND-OR-AND)
is described in [11]. The case of EXOR (calledEX-SOP)
has been widely studied (see for details [24], [22], [12], [7]–[9],
[13]). For example, is an
EX-SOP form. Indeed many practical functions (e.g., arithmetic
functions) have a more concise expression if we allow the use
of EXORs other than classicalAND andOR gates. Another well
known advantage of EXOR gates is their excellent testability.
An EX-SOP three-level network is one of the simplest EXOR
of sum of product architecture, since it contains only a single
two-input EXOR gate. An algorithm for exact minimization of
EX-SOP networks is described in [7], limited to functions with
up to five variables. Some interesting heuristics are described
in [9], [13]. An estimation metric which measures whether an
input function is suitable for EX-SOP minimization is also de-
veloped in [13].

A different three-level form called sum of pseudoproducts (or
SPP) was introduced in [19]. SPP expressions can be seen as
a direct generalization of SOP expressions using EXOR gates.
An SPP form consists of theOR of pseudoproducts, where a
pseudoproduct is theAND of EXOR factors. For example,

is an SPP form.
Experimental results show that the average size of SPP forms is
approximately half the size of the corresponding SOP, and SPP
forms are also smaller than EX-SOP [3]. As a limit case each
EXOR factor reduces to a single literal in SPP, and the SOP and
SPP forms coincide.

In this work, we focus to SPP minimization. Initially this can
be seen as a generalization of SOP minimization, and in fact
an extension of the Quine-McCluskey algorithm was given in
[19] for SPP. In particular the pseudoproducts to be considered
can be limited to the subclass ofprime pseudoproducts, that
play the same role of prime implicants in SOP. The algorithm
for SPP, however, was more cumbersome than the former, thus
failing in practice in minimizing very large functions. A deeper
understanding of the problem, together with the use of ad-hoc
data structures, has allowed to widely extend the set of functions
practically tractable [3]. Still a number of standard benchmark
functions can be hardly handled with this technique.

The aim of this paper is to exploit the “regularity” of any given
Boolean function, in order to decrease the time needed for its
logical synthesis. Function regularities have been exploited in
different contests [2], [17], [18].

Our main results are: 1) the regularity of a Boolean function
of variables can be expressed by anautosymmetry degree
(with ), which is computed in time polynomial in
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Fig. 1. SPP synthesis of an autosymmetric functionf through the SPP
synthesis of its restrictionf .

the number of points of ; 2) means no regularity, that
is we are not able to provide any advantage over standard syn-
thesis; for the function is said to beautosymmetric,
and a new function , called therestrictionof , is identified
in polynomial time. In a sense is “equivalent” to, but smaller
than , and depends on variables only. The relation be-
tween and is discussed in depth, to show how a minimal
SPP form for can be build in linear time from a minimal SPP
form for ; 3) the concept of autosymmetry is extended to func-
tions with don’t care conditions, and SPP minimization tech-
nique is duly extended to such functions; 4) a large set of exper-
imental results is presented, showing that 61% of the outputs for
the functions in the classical ESPRESSObenchmark suite are au-
tosymmetric: the SPP minimization time for them is critically
reduced, and cases otherwise intractable are solved. Indeed, al-
though autosymmetric functions form a subset of all possible
Boolean functions, a great amount of standard functions of prac-
tical interest fall in this class. In the last section, we speculate on
the possible causes of this fact to substantiate the interest of our
work. Note that an autosymmetric functiondepends in general
on all the input variables, however we shall be able to study

in a dimensional space; i.e.,is in general non degen-
erated, whereas all degenerated functions are autosymmetric.

In Section II, we show with an example, the main idea of our
minimization method. In Section III, we recall the basic defi-
nitions and results of SPP theory, and present a companion al-
gebraic formulation later exploited for testing autosymmetry. In
Section IV, we discuss the properties of autosymmetric func-
tions, and how the problem of determining their minimal SPP
forms can be studied on a reduced number of variables. In Sec-
tion V, we show how autosymmetry can be tested in polyno-
mial time, and derive a new minimization algorithm that in-
cludes such a test in the initial phase. In Section VI, we ex-
tend the notion of autosymmetry to functions with don’t care set,
showing the theoretical and practical consequences of such an
extension. In Section VII, we present a large set of experimental
results which validate the proposed approach, also proving that
the number of benchmarks practically tractable is significantly
increased. A discussion on the role of autosymmetry, and why
it deserves great attention, is finally developed in Section VIII.

II. EXAMPLE

Fig. 1 shows the minimization strategy for an autosymmetric
function . First we detect, in time polynomial in the number
of points of , the autosymmetry degree(as explained in Sec-
tion IV), and if we derive its restriction and linear
substitutions (Section IV-B). Second, we minimize in SPP
framework; this task usually requires time exponential in the

Fig. 2. A 2-autosymmetric functionf , in a Karnaugh map (on the left) of
four variables. The corresponding reduced functionf , which depends on the
variablesx andx , and the linear substitutions are on the right.

number of variables of . Finally, we derive the minimal SPP
network for from the one of and the linear substitutions, as
explain in Section V. This final task can be performed in linear
time.

To better explain our minimization method, let us apply it to
the function of Fig. 2. A minimal SOP form for is

, while its minimal SPP
form is . First, we can observe that the min-
imal SPP form is much more compact than the SOP expression.
However, SPP synthesis is more expensive, than the SOP mini-
mization, in computational time. To overcome this problem, we
can exploit the regularities, if any, of the function. Consider the
Karnaugh map on the left side of Fig. 2. The four subspaces of
the points within the dotted lines present a sort of symmetry:
they are rotations of the Karnaugh map on the right side, which
represent the function called.

Starting from the two input variables function, we could
derive many four input variables functions by combinations of
different rotations of . We, thus, need an additional informa-
tion to reconstruct the starting function. This information is
provided by the linear substitutions given in Fig. 2.

The function could then be studied through the smaller
function . Given an SPP minimal form for and the linear
substitutions, we can finally generate a minimal SPP form for.

Following our example, a minimal SPP form foris .
The substitutions , give a minimal
SPP form for : . Obviously, the minimization
time for is much smaller. Fortunately, as we shall show in this
paper, deriving and the linear substitutions is an easy task.

III. U NDERLYING THEORY

SPP theory was posed in [19] and extended in [3]. We re-
port here some basic definitions and properties together with
new results needed to developing the theory of autosymmetry.
We work in a Boolean space described by variables

, where each point is represented as a binary
vector of bits. A set of points can be arranged in a
matrix whose rows correspond to the points and whose columns
correspond to the variables. Fig. 3 represents a set of eight points
in a space of six variables. A Boolean function

can be specified with an algebraic expression where the
variables are connected through Boolean operators, or as the
set of points for which . denotes the number of such
points.

Let be a (Boolean) vector; be the element-wise comple-
mentation of ; and denote or . Theconstantvectors0 and
1 are made up of all 0s or all 1s, respectively. Vectoris the
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Fig. 3. A canonical matrix representing a pseudocubeP in f0; 1g . The
canonical columns arec , c , andc .

concatenation of and . A vector of elements, ,
is normal if , or and with (hence )
normal. For instance, is normal since with

, which is in turn normal. All the columns in the matrix
of Fig. 3 are normal vectors.

A matrix with rows isnormal if all its rows are dif-
ferent and all its columns are normal. A normal matrix iscanon-
ical if its rows, interpreted as binary numbers, are arranged in
increasing order (the matrix of Fig. 3 is canonical). A normal
vector is -canonical, , if it is composed of an al-
ternating sequence of groups of 0s and 1s. In Fig. 3, is
2-canonical, is 1-canonical, and is 0-canonical. A canon-
ical matrix contains columns of increasing
indexes, called thecanonical columnsof , such that is the
lowest index column that is ( )-canonical for

. The other columns are thenoncanonicalones. Note that
different ( )-canonical columns can coexist in a canon-
ical matrix, but only the one of lowest index is called canonical.
If represents a set of points in a Boolean space, with column

corresponding to variable , canonical and noncanonical
columns correspond tocanonicalandnoncanonical variables,
respectively. For example, consider the matrix in Fig. 3. The
canonical columns are , which is 2-canonical, , which is
1-canonical, and , which is 0-canonical. The corresponding
canonical variables are , , and , respectively. Observe
that these variables assume all the possible combinations of
values. We have

Definition 1 (From [19]): A pseudocube of degree is a set
of points whose matrix is canonical up to a row permutation.
The matrix of Fig. 3 represents a pseudocube ofpoints in

. The function with value 1 in the points of a pseudocube
(i.e., the characteristic function of) is calledpseudoproduct,

and can be expressed as a product of EXOR factors in several
different forms, one of which is called thecanonical expression
(briefly CEX) of . For the pseudocube of Fig. 3 we have:

(1)

Refer to [19] for the nontrivial rule for generating . In-
tuitively, in Fig. 3 the column is the EXOR between columns

and , therefore, ( ) is true. Analogously, is
always different from the EXOR between columnsand ,
therefore, ( ) is true.

We now simply recall that each EXOR factor of the expres-
sion contains exactly one noncanonical variable in directed or
complemented form, namely the one with greatest index (,

, and in the example), and each noncanonical variable ap-

pears in exactly one EXOR factor; all the other variables in the
expression are canonical (, , and in the example) and
appear in direct form; and some canonical variables may not
appear in the expression. Note that the minimal SOP form for
the above function (1) is

much larger than .
A cube in is a special case of pseudocube where

the noncanonical columns are constant. In this case each EXOR

factor in reduces to a single noncanonical variable,
the canonical variables do not appear, and the whole expression
reduces to the well knownproductexpression, e.g., used for im-
plicants in SOP forms.

A general property of the algebraic representation of pseu-
docubes is given in the following theorem.

Theorem 1: In a Boolean space : a) the EXOR factor
of any subset of variables (directed or complemented) represents
a pseudocube of degree ; b) the product of arbitrary
EXOR factors represents either an empty set or a pseudocube of
degree .

Point a) of the theorem can be easily proved by induction on
the number of variables in the EXOR factor. Point b) then fol-
lows from a theorem of [19] which states that the intersection
of two pseudocubes of degrees, is either empty, or is a pseu-
docube of degree .

For the example of Fig. 3, the EXOR factors, ,
and in (1) represent three pseudocubes ofpoints
each, and their product represents the given pseudocubeof
points. Note now that an equality of the form

satisfied by all the points of a pseudocube
can be equivalently written as a system oflinear equations:

, that is, an instance of a general linear
system , with , , is a

matrix of coefficients 0, 1, and the sum is substituted with
EXOR. In fact, if contains a complemented variable,
this variable can be changed to and the new expression for

be put equal to 0 instead of 1. As known [5], [1] the
above system specifies anaffine subspaceof the linear space

.
Example 1: The CEX expression

corresponds to the system:

which represents the affine space composed of the points in the
matrix of Fig. 3.

From the existence of for any pseudocube , and
from Theorem 1, we have Corollary 1.

Corollary 1: In a Boolean space there is a one-to-one
correspondence between affine subspaces and pseudocubes.

This corollary allows to inherit all the properties of affine
subspaces into pseudocube theory. In particular, a pseudocube
containing the point (vector)0corresponds to alinearsubspace.
More details on this result can be found in [4].
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The structureof a pseudocube , denoted by , is
without complementations [3]. For the pseudocube

of Fig. 3, we have: .
Let us now extend the symbol to denote the element-wise
EXOR between two vectors. Then is the vector obtained
from complementing in it the elements corresponding to the 1s
of . For a vector and a subset , let

. For example, if
and , then . We have
Theorem 2.

Theorem 2: For any pseudocube and any vector
, the subset is a pseudocube with

.
Proof: Given a set , the set is the set of points

obtained complementing in all the points ofthe bits corre-
sponding to the 1s of . Furthermore, complementing a bit in
all the points of a pseudocube corresponds to substituting a
literal with its complementation in the CEX expression. By def-
inition of structure the thesis follows.

Finally, recall that an arbitrary function can be expressed as
an OR of pseudoproducts, giving rise to an SPP form [19].
For example, adding two rows (points) and

to the matrix of Fig. 3 we have a new function
formed as the union of two partially overlapping pseudocubes:
namely (already studied), and associated to the rows, ,

, . Note that is in fact a cube, with .
In conclusion can be expressed in SPP form as

The minimal SOP form for contains 40 literals, while the SPP
expression for contains 11 literals. Passing
from SOP to SPP, however, implies passing from a two-level to a
three-level circuit. This fact has always to be taken into account
and will not be further repeated.

IV. A UTOSYMMETRIC FUNCTIONS

A. Definitions and Characterization

The class ofautosymmetric functionsintroduced in [19]
seems to be particularly suitable for SPP minimization. The
present work addresses these functions, for which we give an
alternative definition.

Definition 2: A Boolean function in is closed
under , with , if for each ,
if and only if .

Example 2: The function is closed
under 011. Indeed , ,

and .
Each function is obviously closed under the zero vector0.

Consider now the set of all the vectorssuch that is closed
under . We have:

Proposition 1: The set : is closed under is a
linear subspace of .

Proof: We first observe that if a function is closed under
two different vectors , it is also closed under

. Indeed, if and only if
(since is closed under ) if and only if (since is

closed under ). Combining in EXOR, in all possible ways,
linearly independent vectors , we form a subspace

of vectors that is closed under, and contains the vector0
generated as , see for example, [5]. Therefore, the set
is a linear subspace of .

The set is called thelinear spaceof . Note that has
dimension . By Corollary 1, is a pseudocube,
and we shall refer to and .

Definition 3: A Boolean function is -autosymmetric, or
equivalently hasautosymmetry degree, , if its
linear space has dimension . If , will be simply
calledautosymmetric.

Example 3: The function in Fig. 2 is 2-autosymmetric and
its linear space is {0000, 0011, 1001, 1010}. Indeed, is
closed under all the vectors in .

Theorem 3: Let be a -autosymmetric function. There
exist vectors , with , such that

(2)

and for each, , , .
Proof: Let be any vector in . By Definition 2,

. Consider the set , where denotes
the set difference. If , then and is
a pseudocube of degreewith . Otherwise, let
be any vector of . Again by Definition 2, .
Observe that (by contradiction: let

, then , with
; then , that is

which is a contradiction). Therefore, we have:
, and using the same

argument on the set the theorem
easily follows.

From the proof above we see that the number of points of
a -autosymmetric function is a multiple of . Indeed, each
affine subspace contains points. Recalling that
is a pseudocube, and by Theorems 2 and 3 we immediately have:

Corollary 2: A -autosymmetric function is a disjoint
union of pseudocubes of degree all having
the same structure , and the same canonical variables
of .

This corollary has an immediate consequence. For any au-
tosymmetric function we can extend the definition of canon-
ical and noncanonical variables from pseudocubes to the func-
tion itself. Namely, the canonical (respectively: noncanonical)
variables of are designated as thecanonical(respectively:
noncanonical) variablesof .

Example 4: Consider the linear space of function in
Fig. 2. We can arrange its vectors in the matrix:

The canonical variables of and are and .
An other important consequence of Theorem 3 is the fol-

lowing:
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Corollary 3: The vectors , of Theorem 3 can be
chosen as the points ofwhere all the canonical variables have
value 0.

Proof: Note that the points of each pseudocube
contain all the combinations of values of the canonical

variables, hence in exactly one of these points all such values
are 0. Therefore, in the proof of Theorem 3 we can choose the
vectors with all the canonical variables set to 0.

Note that the choice of , in Corollary 3 is not uni-
vocal.

Example 5: Consider the function

It can be easily verified that the linear space ofis
, where each vector can be ob-

tained as the EXOR of other two.is then 2-autosymmetric. We
have , where , , and

, , , are the canonical and noncanonical variables, respec-
tively. From Corollary 3 we have , ,

, hence:
.

From the above properties of autosymmetric functions we ob-
serve that: 1) any function is at least 0-autosymmetric, since is
closed under0; 2) a function is ( )-autosymmetric if and
only if it is a pseudocube of degree ; 3) a function is -au-
tosymmetric if and only if it is a constant; 4) pseudocubes of
degree are the only -autosymmetric functions with only one
term in the union of expression (2). We also have:

Theorem 4: The overall number of autosymmetric functions
is .

Proof: We first count the number of functions that are at
least -autosymmetric, for a given. Recall that a pseudocube
is an affine space, and a-autosymmetric function is a disjoint
union of affine spaces over the same linear spaceof dimen-
sion (see Theorem 3). There are ways of choosing a-di-
mensional linear subspace () of , where denotes
the Gaussian factor:

Once we have fixed the linear subspace, we must choose a
subset of different affine spaces over, whose union defines
a function that is at least-autosymmetric. The different affine
spaces over are in number. Therefore, the overall
number of functions that are at least-autosymmetric is

. For the Gaussian factor is equal to ( ),
and the thesis follows.

B. The Restriction of an Autosymmetric Function

We now show how any -autosymmetric function can be
studied through a simpler function .

Definition 4: For a ( )-autosymmetric function , the
restriction consists of the points of contained in the
subspace where all the canonical variables ofhave
value 0.

Note that depends only on the noncanonical vari-
ables of . Once has been computed (see next section), the
canonical variables of are known, and can be immediately
determined applying Definition 4. For instance, for the function

with of Example 5, depends on the noncanonical
variables , , . To build we take the subset {00001,
00100, 00 110} of the points of for which the canonical vari-
ables , have value 0, and then project these points onto the

subspace relative to , , , where we have
; or, equivalently, is

.
The importance of the restriction stems from the fact that the

SPP-minimal form of any -autosymmetric function can be
easily derived from the SPP-minimal form of, and finding the
latter is easier because it depends on less variables and contains
less points. (In the example abovedepends on five variables
and has 12 points while depends on three variables and has
only three points). An important result of [19] is extended as
follows.

Lemma 1: A -autosymmetric function and its restriction
have the same number of pseudoproducts in their minimal

SPP forms.
Proof: We show that there is a one-to-one correspondence

between prime pseudoproducts ofand prime pseudoproducts
of its restriction . a) Each prime pseudoproduct ofcor-
responds to a prime pseudoproduct of. In fact, each pseu-
docube associated to a prime pseudoproductof is divided
into equal pseudocubes lying in the subspaces where the
canonical variables of assume all the possible values. The
pseudocube lying in the subspace where the canonical variables
are set to zero corresponds to a prime pseudoproduct of. In-
deed, it is easy to verify by contradiction that the nonprimality
of this pseudoproduct would imply the nonprimality of. b)
Each prime pseudoproduct of corresponds to a prime pseudo-
product of . In fact, is the projection of onto the subspace
where all the canonical variables are set to zero, and for each
prime pseudoproduct of , there exists an equivalent pseudo-
product in all the other subspaces corresponding to all the other
possible settings of the canonical variables of. Since all these
pseudoproducts have the same structure, they can be unified to
form a prime pseudoproduct of. The thesis follows immedi-
ately from this one-to-one correspondence.

Based on Lemma 1, we can prove a stronger property, namely
a minimal form for can be easily derived from a minimal form
for . Let be the noncanonical variables of

, and let , where is the EXOR
factor containing , (recall that each
noncanonical variable appears in exactly one EXOR factor, and
each EXOR factor contains exactly one noncanonical variable).
We have Theorem 5.

Theorem 5: If is a minimal SPP form for , then
the form obtained by substituting in each
variable with the EXOR factor is a minimal SPP form
for .

Proof: By Lemma 1, the number of pseudoproducts in
is minimum, then we have only to prove that this form

covers exactly all the points of. When we transform into
, we select the vector with all canonical variables set to
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zero from each affine subspace . Call the vector
without the canonical variables, i.e., its projection onto a

subspace . When we apply the linear substitutions
, we force any pseudo-

product that covers in to cover all the points in
in , and the thesis immediately follows.

Note that the resulting expression may be reduced using some
properties of EXOR, in particular and .

Example 6: The function in Fig. 2 can be reduced to the
function . Its linear space has structure ,
which implies the substitutions and .
A minimal SPP expression of is . By Theorem 5, a
minimal SPP expression for is

Another example of minimization of an autosymmetric func-
tion will be given in Section V.

C. Relation With Different Notions of Symmetry

A Boolean function is generally called symmetric if is in-
variant under any permutation of its variables (see for example
[16]). This property is actually unrelated to autosymmetry. As
known, the total number of symmetric functions is , much
smaller than the one of autosymmetric functions (see Theorem
4); still symmetric functions do not form a subset of the au-
tosymmetric ones. In fact, a symmetric function may be au-
tosymmetric (e.g., the parity function), but there are symmetric
functions that are not autosymmetric (e.g., any symmetric func-
tion with an odd number of points). The concept of symmetry
has been extensively used for functions classification, and for
easing the minimization process in some cases. However sym-
metric functions are not as common as autosymmetric ones in
practical applications, and do not seem to yield as remarkable
advantages as the latter ones in the synthesis process.

Another approach introduced in [18] under the name of
support-reducing decompositionis worth mentioning here.
On one hand, the underlying concept at the base of sup-
port-reducing decomposition can be seen as an extension
of the one of autosymmetry already introduced in [19], be-
cause is aimed at specifying a function as

,
with . On the other hand the work is directed at selecting
the functions from a predefined library set, so that finding a
minimal form for becomes library dependent.

Much more interesting, instead, seem to be the similar-
ities between the class of autosymmetric functions and the
well studied class of self–dual functions [25], [10]. A com-
pletely specified Boolean function is self–dual if for all

, , where is the function whose
one-set is the off-set of and . For example,
the function is self–dual, be-
cause , ,

, and . The relation
between autosymmetric and self–dual functions is better
understood generalizing the latter notion in the following.

Definition 5: A Boolean function in is dual-closed
under , with , if for each ,
if and only if .

Note that a self–dual function is dual-closed under the vector
1. As the set is a linear subspace of (Proposition 1),
we have a similar property for self–dual functions in Proposition
2.

Proposition 2: The set : is dual-closed under
is anaffine subspaceof .

Proof: We will show that is closed under the EXOR of
an odd number of its vectors, as this implies thatis an affine
subspace of by a classical linear algebra result. In fact,
suppose that is dual closed under, and . Then we have:

, and
the thesis follows.

Definition 6: A Boolean function is -self–dual,
, if its affine space has dimension .
Observe that a -self–dual function has exactly points

in its one-set.
Example 7: The function is

2-self–dual and its affine space is .
For instance, , ,

, and .
The most relevant relation between-autosymmetric func-

tions and -self–dual functions is given in the following.
Theorem 6: If is -self–dual, then is -autosymmetric.

Proof: Let . We show that is closed under all
vectors in . Indeed, for all and for all

, we have: . Since
is an affine space and , the set is a linear

space. Therefore, , and the dimensions of and
are equal to .

Finally, note that the concept of self–duality has never been
applied to express functions in reduced algebraic forms.

V. MINIMIZATION ALGORITHM

In the previous section, we have shown that each Boolean
function is -autosymmetric, for . For minimization
purposes we have an increasing advantage for increasing,
as minimizing a -autosymmetric function with variables and

points reduces to minimizing a different function with
variables and points. Even for we have to cover only
one half of the original points.

Fortunately, for a given function , finding the associated
linear space and computing the autosymmetry degreeis
an easy task, because the required algorithm is polynomial in
the number of variables and in the number of points of.

We now give some intuition behind the computation of.
By Definition 2, a function is closed under if for any
there exists such that . Thus, for all , there
exists a vector such that we can expressas .
In other words, must be searched within the vectors of the set

. More precisely, we have Theorem 7.
Theorem 7: Let be a Boolean function. Then

.
Proof: Let . Then

, , .
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Based on Theorem 7, we state Algorithm 1.

Algorithm 1: Construction of (build
and find the autosymmetry degree of a
given function )
1) for all build the set ;
2) build the set ;
3) compute .

The time complexity of Algorithm 1 is , because we
must build a set for all , and the construction of each
such a set requires time.

Any SPP minimization algorithm can be easily extended for
exploiting autosymmetry. For a given functionwe first com-
pute and with Algorithm 1. If (i.e., is not au-
tosymmetric) we proceed with regular minimization, otherwise
we compute the restriction of , minimize it, and finally de-
rive a minimal form from . We propose the
following (for autosymmetry) minimization algorithm.

Algorithm 2: A-Minimization (build a
minimum SPP form of a given function )
1) build and compute the value of by

Algorithm 1;
2) if then

a) minimize with any SPP synthesis
algorithm

3) else
a) determine the canonical variables

of and compute the restric-
tion as indicated in
Section IV;

b) compute ;
c) compute the minimal form

for with any SPP synthesis
algorithm;

d) build SPP( ) by substituting in
each noncanonical vari-

able with the EXOR factor
of .

By the theory developed in the previous section, Algorithm 2
is correct. Note that the algorithm builds an SPP form minimal
with respect to the number of pseudoproducts. To obtain the
minimal SPP form with respect to the number of literals we must
slightly rearrange steps3(c) and 3(d), executing the substitu-
tions of all for in the prime pseudoproducts of, before
selecting such pseudoproducts in the set covering problem im-
plicit in the minimization algorithm.

Example 8: Minimization of the function of Example 5,
using Algorithm 2.

• Derive and by Algorithm 1. For this purpose, for all
compute the set . For example, for the point

00 100 we obtain the set:

Fig. 4. In the Karnaugh map on the left, each point ofO [D is represented
with a letter. Points in the same affine space are represented by the same letter.
The central and the right maps representf and its restrictionf , respectively.

The intersection of all the sets gives the linear space
. We then have

.
• Since we proceed with theelsebranch of Algo-

rithm 2. has noncanonical variables, , , hence
is restricted to these variables and we have:

.
• The minimization problem now consists of finding a min-

imal SPP cover of the points of . Applying the algo-
rithm of [3] we have the minimal form

.
• Compute: .
• Derive the minimal SPP form for by substituting ,

and in with the EXOR factors of ,
respectively ( ), and ( ). We obtain

,
with some immediate algebraic simplifications, e.g., in the
first term of we have:

. In the last term of we
have:

VI. I NCOMPLETELY SPECIFIEDAUTOSYMMETRIC FUNCTIONS

Let us now discuss how to extend the notion of autosym-
metry to functions with don’t care points (denoted by). For
an incompletely specified Boolean function

, the sets of points on which takes value 0, or 1, or
, are respectively called thezero-set , theone-set , and

thedon’t-care-set .
Definition 7: An incompletely specified function is -au-

tosymmetricif the completely specified function with
is -autosymmetric.

The restriction of an incompletely specified autosym-
metric function is in general incompletely specified. For
defining the one-set and don’t-care-set of, let us first discuss
an example.

Example 9: Consider the function represented in the cen-
tral map of Fig. 4. The map on the left shows the points of

marked with letters, with the points in the same affine
space marked with the same letter. Ifcontains an affine space
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TABLE I
DISTRIBUTION OFk-AUTOSYMMETRIC FUNCTIONS IN THE ESPRESSOBENCHMARK SUITE.#funct IS THE TOTAL NUMBER OF FUNCTIONS (SINGLE OUTPUTS)

FORANY VALUE OF k, AND %funct IS THECORRESPONDINGPERCENTAGE. THE NEXT THREEROWSREPORT THENUMBER OFk-AUTOSYMMETRIC FUNCTIONS:
1) SYNTHESIZED WITH THE NEW ALGORITHM A AND WITH THE PREVIOUSBEST ALGORITHM C (#AC); 2) SYNTHESIZED WITH A ONLY (#A), SINCE C DID

NOT TERMINATE; 3) NOT SYNTHESIZED AT ALL SINCE BOTH ALGORITHMS DID NOT TERMINATE (# ).T AND T ARE THEAVERAGE CPU TIMES T , T IN

SECONDS, REQUIRED BY THE TWO ALGORITHMS ON THESAME FUNCTION ON A PENTIUM III 450 MACHINE.T =T IS THEAVERAGE OF THERATIO T =T ,
FOR THE546 FUNCTIONS OFROW#AC (k = 0 TO 8).k=n IS THEAVERAGE OF THERATIO k=n, WHEREn IS THENUMBER OFINPUT VARIABLES

whose points belong to (e.g., the points markedB), the cor-
responding point of belongs to . If all the points of an
affine space belong to (e.g., the points marked A), the cor-
responding point of belongs to . For an affine space com-
posed of points from both and (e.g., the points marked
C), the corresponding point of must be in , since the
points in its affine space that are in must be covered in
the final solution. Therefore, in Fig. 4 the affine space corre-
sponding to C maps to an element of .

Formally, let denote the set of points in projected
onto the subspace where all the canonical variables
of have value 0. We pose the following definition.

Definition 8: For a ( )-autosymmetric incompletely
specified function , therestriction is the incompletely spec-
ified function such that: a) is the set of points for
which the affine space associated toin is contained in
and b) .

We can now generalize Theorem 5 to incompletely specified
autosymmetric functions.

Theorem 8: Let and be as in Definition 8. If
is a minimal SPP form for , the form obtained from

by substituting each variable with the EXOR
factor is a minimal SPP form for .

Proof: For any vector we denote by
its projection in the space where all the canonical
variables of are set to 0. Let and . By
contradiction, suppose thatis not covered by any minimal SPP
form for . Of course any minimal SPP form for covers .
By Definition 8 we know that there exists at least a pointin the
affine space containing (i.e., ) such that .
Let be a pseudocube coveringin a minimal SPP form for .
We can replace, in such form, with a pseudoproduct covering
not only but all (i.e., the affine space containing both

and ). We have obtained a minimal SPP form forcovering
, thereby contradicting the initial hypothesis.
Although the given generalization of autosymmetry to func-

tions with don’t cares may appear quite restrictive, our exper-
imental results show that more than 40% of the outputs for
the incompletely specified functions in the classical ESPRESSO

benchmark suite are autosymmetric (see next section). Indeed,
Definition 7 is just a possible one, as it takesall the don’t cares

of as points of the function to be actually synthesized. This
choice guarantees the minimality of the SPP form for, given
a minimal SPP form for (Theorem 8).

VII. EXPERIMENTAL RESULTS

The new minimization Algorithm 2, also called AlgorithmA
(for autosymmetry), has been tested on a large set of functions
taken from the ESPRESSObenchmark suite [27]. The different
outputs for each function have been synthesized separately. The
performance of AlgorithmAhas been compared with the perfor-
mance of the best previous algorithm, that is the one proposed in
[3], in the following indicated as AlgorithmC (after Ciriani). In
fact, the minimization of function in Algorithm A [step 3(c)]
has been implemented with AlgorithmC. The input of both al-
gorithms is the on-set and don’t care-set of the functions.

For all the functions considered we have computed the values
of the autosymmetry degreewith Algorithm 1, obtaining the
results shown in the first two rows of Table I for completely
specified functions, and in Table II for functions with don’t
cares. Surprisingly the overall percentage of autosymmetric
completely specified functions ( ) is over the 61%
(Table I); while more than 40% of the functions with don’t
care set are autosymmetric according to Definition 7 (Table II).
We have then attempted to run AlgorithmsA andC for all the
completely specified functions of our test set, recording the
CPU times whenever the computation terminated in less than
172 800 seconds (2 days) on a Pentium III 450 machine. Results
on program termination are given in rows , of Table I.

We have found out that the autosymmetry property drasti-
cally reduces the minimization time, as reported in row
of Table I that shows the average reduction of computing time
using AlgorithmA (time ) instead ofC (time ), for all the
benchmark functions for which both algorithms terminated (i.e.,
for the 546 functions of row ). Note how the improve-
ment introduced by the new algorithm drastically increases for
increasing . For , instead, we have ,
and actually the ratio is slightly greater than 1 for each
such a function. This is because AlgorithmA computes in
any case, then calls AlgorithmC. The resulting slowdown is
however always negligible because is computed in polyno-
mial time by Algorithm 1 (see Section V), while AlgorithmC is
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TABLE II
DISTRIBUTION OFk-AUTOSYMMETRIC FUNCTIONS WITH A DON’T CARE SET, IN THE ESPRESSOBENCHMARK SUITE. #funct IS THE TOTAL NUMBER OF

FUNCTIONS (SINGLE OUTPUTS) FOR ANY VALUE OF k, AND #funct IS THE CORRESPONDINGPERCENTAGE

TABLE III
DETAILED RESULTS FOR ASUBSET OFAUTOSYMMETRIC FUNCTIONS. COLUMNS jf j, n, k AND k=n REPORT THENUMBER OFPOINTS OF THEFUNCTION, AND THE

VALUES OFn, k, AND k=n, RESPECTIVELY. COLUMNST AND T REPORTCPU TIMES AS IN TABLE I (A STAR INDICATES NON TERMINATION AFTER172 800
SECONDS). THE LAST COLUMN REPORTS THERATIO T =T . THE RESULTSARE RELATIVE TO SINGLE OUTPUTS. #L AND #PP REPORT THENUMBERS OF

LITERALS, AND OF PRIME PSEUDOPRODUCTS, IN THE MINIMAL EXPRESSION

TABLE IV
DETAILED RESULTS FOR ASUBSET OFBENCHMARK CIRCUITS. COLUMNS n, #O,Avg(k) AND Avg(k)=n REPORT THENUMBER OF INPUT VARIABLES, THE

NUMBER OF OUTPUTS, THE AVERAGE AUTOSYMMETRY DEGREE OF THESINGLE OUTPUTS, AND ITS RATIO WITH n, RESPECTIVELY. COLUMNST ,T , AND

T =T , REPORTTOTAL CPU TIMES IN SECONDS, AND THEIR RATIO, FOR THECOMPUTATION OF ALL OUTPUTS(FOR *’ S SEE TABLE III )

exponential in nature. For all the functions in the table the forms
obtained with AlgorithmsA andC coincide. Table III shows the
CPU times for a small subset of the above functions with ,
and other relevant minimization parameters for them. Note that
Tables I–III show results for single outputs of different bench-
mark circuits. Table IV, instead, shows experimental results for
whole benchmark circuits, with reference to all their outputs.

We now compare the cost of the solutions generated with our
algorithm with the once of two level SOP minimization and of
the widely studied EX-SOP three-level logic synthesis [7], [12],
[13]. To this end, we count the number of literals and gates (AND

and EXOR) of an expression. In the multilevel contest the cost
function is the number of literals in each different gate (see [14],
[15]). For example, we represent the multilevel network of ex-
pression with the four equations

(each equation corresponds to a gate) and we count the 10 lit-
erals on the right hand sides of the equations. The problem is
that, in many technologies, EXOR andOR (or AND) gates have
different costs. In [15] the authors consider a 2-input EXOR
gate as . Thus, the cost in literals of an
2-input EXOR gate is 4, while the cost of the 2-inputOR and
AND gates is 2. This corresponds also to the number of transis-
tors used for the CMOS technology mapping (i.e., 4 transistors
for AND/OR gates and 8 transistors for the EXOR gate). In gen-
eral the associative property of the EXOR operator allows to
see a -input EXOR gate as the composition of , 2-input
EXOR gates. For example, , and

. There-
fore, we can use a cost function , where a -input EXOR gate
costs , and a -inputOR/AND gate costs . This function
corresponds to the CMOS cost described in [14], where the ex-
pression of the previous example has cost . In [14], a
different cost function is also proposed for FPGA [23] realiza-
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TABLE V
CMOSAND FPGA COSTS FORSOME BENCHMARK FUNCTIONS IN THESPP, SOP,AND EX-SOP SYNTHESIS. � AND � ARE THECMOSAND FPGA COSTS FOR

THE SPP NETWORK, RESPECTIVELY. � IS THE CMOS COST FOR THESOP NETWORK, AND ITS FPGA COST IS� = � . � IS THE CMOS COST FOR THE

EX-SOP NETWORK, AND ITS FPGA CIOST IS� = � � 2.#E IS THE NUMBER OF DIFFERENTEXOR GATES IN THE SPP FORM

tion, where -input EXOR gates and-inputAND/ORgates have
the same cost. We call this cost . The results of comparing
SPP, SOP, and EX-SOP expressions with this measures are re-
ported in Tables V and VI.

Note that minimization of multiple output circuits has been
carried out individually for each output. Such outputs may not
be function of all input variables (i.e., the corresponding func-
tions are degenerated). In our method, such irrelevant variables
are not eliminated beforehand, since they are discovered during
the evaluation of autosymmetry at no additional cost. Doing this,
the degenerated functions are brought into the class of autosym-
metric ones. Note that this is not a disadvantage of our approach
if compared with others, as none of the minimization methods
in current use detects the irrelevant variables in a preliminary
phase.

VIII. A D ISCUSSION ONAUTOSYMMETRY

To understand the role of autosymmetric functions, we must
compare them with the set of all possible functions. The total
number of Boolean functions of variables is , cor-
responding to all the ways a subset of points can be chosen in

. This is a huge number, however, due to the randomness
of the above generating process very many of such functions do
not correspond to any significant circuit. Autosymmetric func-
tions are just a subset of the above. The autosymmetric functions
are in number (see Theorem 4). Therefore,
for increasing , autosymmetric functions constitute a vanishing
fraction of all the functions, as goes to zero for going
to infinity. Still the question remains on how many significant
functions are autosymmetric.

A key observation is that most of the major benchmark func-
tions are indeed autosymmetric, as shown in the previous sec-
tion. The more so when is small and the values of and
are not too distant. The reason, we might argue, is that a func-
tion encoding a real life problem must exhibit a regular structure
that can be reflected in some degree of autosymmetry. In fact,
also “degenerated” functions that do not depend on all the vari-
ables are autosymmetric, although the converse is not true in
general. Although some degenerated functions are encountered
in the major benchmarks, this property is not immediately evi-
dent and has not been directly used in the standard minimization
processes.

TABLE VI
MINIMIZATION TIMES (IN SECONDS) FOR SOME BENCHMARK FUNCTIONS IN

THE SPP, SOP,AND EX-SOP FORMS. SPP EXPERIMENTSWEREPERFORMED

ON A SINGLE 450 MHZ CPU WITH 128 MB MEMORY. EXPERIMENTAL TIMES

FOR SOPAND EX-SOP WEREOBTAINED WITH A SUN ULTRA 60 OPERATING

ON TWO 360 MHZ CPUS AND 768 MB MEMORY

Another important observation is that regularity may also
allow to define an autosymmetric functionindependently on
the number of variables, and then to state a rule for deriving a
minimal form for valid for any . Well known functions as,
for example, the ones counting the parity ofbits, or giving
the next-state values for an bits Gray code, can be easily
expressed in minimal form for an arbitrary number of variables
just because they are autosymmetric (for the parity see [19]; for
Gray codes elementary considerations suffice).

The relation between autosymmetric functions and functions
which are simply symmetric might be better investigated (see
Section IV-C). No interesting results seem to emerge from the
analysis conducted as far. We simply note that the total number
of symmetric functions is , but symmetric func-
tions do not form a subset of the autosymmetric ones, as already
observed.

The introduction of the restriction for a -autosymmetric
function leads to consider the nature of Boolean functions
under a new light. We can state that theinformation content
of is represented by together with the linear transforma-
tion (Section IV), so that
the core of the synthesis problem is the minimization of
(Section V). This suggests a formal generalization. For a given
function we can define theautosym-
metry class as the class of all the autosymmetric functions

, , such that . Since the infor-
mation content of any given functioncan be easily found, and
a minimal SPP form for can then be derived from ,
minimizing the function corresponds to minimize the entire
class . Exploiting the full potential of such an approach
is currently a matter of study.
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IX. CONCLUSION

In this paper, we have introduced the autosymmetry degree
of a Boolean function of variables. The value of is a

measure of the regularity of. This approach supplies a new
tool for efficient minimization. For a new function of

variables has been defined. is called the restriction of
and can be built in polynomial time.
The importance of has been demonstrated in connection

with the construction of minimal three-level SPP expressions.
In fact, it has been shown how a minimal SPP expression for
can be built in linear time from a minimal SPP expression for

, and how this induces a drastic reduction of the minimization
time. This advantage increases with the value of, since de-
pends on variables only, and has a number of input points
equal to the number of points of divided by . Our experi-
ments have confirmed the foreseen time reduction, and have also
shown that a great number of functions of practical importance
are indeed autosymmetric, thus validating the overall interest of
our approach.

Our minimization algorithm would probably be greatly im-
proved if formulated on BDD’s as its applicability is presently
limited by the size of the input. This promising approach is cur-
rently under investigation, and constitutes a challenging open
problem.

Also some more work is needed in the treatment of don’t
care conditions. In fact our present definition of autosymmetry
for an incompletely specified function is rather restrictive, as
it takes all the don’t cares of as points of the function to
be actually synthesized. Another approach would be selecting
only a subsetof don’t cares of as points of the function, in
order to maximize the autosymmetry degree and reduce the size
of the final circuit. Thus far we have been unable to propose a
polynomial time algorithm for such a selection.
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