

## Logic Functions of 2 Variables

| X Y | F0 | F1 | F2 | F3 | F4 | F5 | F6 | F7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| 10 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| 11 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| X Y | F8 | F9 | F10 | F11 | F12 | F13 | F14 | F15 |
| 00 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| 10 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| 11 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |

- $F 1$ is called a logical AND, denoted by X.Y
- F6 is called an XOR (Exclusive-OR), denoted by $X \oplus Y$
- $F 7$ is called $O R$, denoted by $X+Y$
- $\mathrm{F8}$ is NOR, denoted by $\overline{X+Y}$
- F9 is called an XNOR (Exclusive-NOR), denoted by $\overline{X \oplus Y}$
- F14 is NAND, denoted by $\overline{X . Y}$


## Which Truth Tables Are the Same?

| 1) | B | A | F | 2) | A | B | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 0 | 0 |  | 0 | 0 | 0 |
|  | 0 | 1 | 0 |  | 0 | 1 | 0 |
|  | 1 | 0 | 1 |  | 1 | 0 | 1 |
|  | 1 | 1 | 0 |  | 1 | 1 | 0 |

3) $\quad \mathbf{B} \quad \mathbf{A} \mid \boldsymbol{F}$

| 1 | 1 | 0 |
| :--- | :--- | :--- |
| 1 | 0 | 1 |
| 0 | 1 | 0 |
| 0 | 0 | 0 |

## Half and Full Adder Truth Tables




## Truth Table with Four Inputs

- Four inputs $X, Y, Z$, and $\mathbf{W}$; Output is F
- Logic Function:

F = 1 if and only if number of variables with value 1 is more than the number of variables with value 0

- Truth Table:
- Logic Expression:
$\mathrm{F}=$

| XYZW | $F$ |
| :---: | :--- |
| 0000 | 0 |
| 0001 | 0 |
| 0010 | 0 |
| 0011 | 0 |
| 0100 | 0 |
| 0101 | 0 |
| 0110 | 0 |
| 0111 | 1 |
| 1000 | 0 |
| 1001 | 0 |
| 1010 | 0 |
| 1011 | 1 |
| 1100 | 0 |
| 1101 | 1 |
| 1110 | 1 |
| 1111 | 1 |



## Truth Table with Two Inputs

- Two inputs $X$ and $Y$; Output is $F$
- Logic Function:
$F=1$ if and only if $X=Y$
- Truth Table:

| X | Y | F | Min Term |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | $X^{\prime} Y^{\prime}$ |
| 0 | 1 | 0 | $X^{\prime} Y$ |
| 1 | 0 | 0 | $\mathrm{XY}^{\prime}$ |
| 1 | 1 | 1 | $X Y$ |

- Logic Expression:
$F=X^{\prime} Y^{\prime} .1+X ' Y .0+X Y^{\prime} .0+X Y .1$
$=X^{\prime} Y^{\prime}+X Y$

| Min / Product terms for more variables |  |  |  |
| :---: | :---: | :---: | :---: |
| XYZ | Min Term | XYZW | Min Term |
| 000 | $X^{\prime} Y^{\prime} Z^{\prime}$ | 0000 | X'Y'Z'W' |
| 001 | $X^{\prime} Y^{\prime} Z$ | 0001 | X'Y'Z'W |
| 010 | X'Y Z' | 0010 | X'Y'Z W' |
|  | XYZ | 0011 | X'Y'Z W |
| 011 | X' Y Z | 0100 | $X^{\prime} Y$ Z'W' |
| 100 | $X Y^{\prime} Z^{\prime}$ | 0101 | X'Y Z'W |
| 101 | $X Y^{\prime} Z$ | 0110 | X'Y Z W' |
| 110 | X Y Z' | 0111 | X'Y Z W |
| 111 | X Y Z | 1000 | $\begin{array}{ll} X & Y^{\prime} Z^{\prime} W^{\prime} \\ X & Y^{\prime} Z^{\prime} \end{array}$ |
|  |  | 1010 | $X Y^{\prime} Z W^{\prime}$ |
|  |  | 1011 | X Y'Z W |
|  |  | 1100 | X Y Z'W' |
|  |  | 1101 | X Y Z'W |
|  |  | 1110 | X Y Z W' |
|  |  | 1111 | X Y Z W |
|  |  |  |  |

## Multiplexer Circuit



## Canonical Sum-of-Product Expression

- A product ( min ) term is a unique combination of variables:
- It has a value of 1 for only one input combination
- It is 0 for all the other combinations of variables
- To write an expression, we need not write the entire truth table
- We only need those combinations for which function output is 1
- For example, for the function below: $f=x^{\prime} y z^{\prime}+x y^{\prime} z^{\prime}+x y z$

| $x$ | $y$ | $z$ | $f$ | Min term |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0}$ | 0 | 0 | 0 |  |
| 0 | 0 | 1 | 0 |  |
| 0 | 1 | 0 | 1 | $x^{\prime} y z '$ |
| 0 | 1 | 1 | 0 |  |
| 1 | 0 | 0 | 1 | $x y^{\prime} z^{\prime}$ |
| 1 | 0 | 1 | 0 |  |
| 1 | 1 | 0 | 0 |  |
| 1 | 1 | 1 | 1 | $x y z$ |

- This is called the Canonical Sum-of-Product (SOP) Expression


## Max I Sum Terms

- A max (sum) term is also a unique combination of variables
- However, it is opposite of a min term
- It has a value of 0 for only one input combination
- It is $\mathbf{1}$ for all the other combinations of variables
- That is why it is called a $\max$ (sum) term
- Each row in truth table has a max term corresponding to it
- Example, a max term $(x+y+z)$ is 0 for combination $x y z=000$ only

| $X$ | $Y$ | Max Term |
| :---: | :---: | :---: |
| 0 | 0 | $X+Y$ |
| 0 | 1 | $X+Y^{\prime}$ |
| 1 | 0 | $X^{\prime}+Y$ |
| 1 | 1 | $X^{\prime}+Y^{\prime}$ |

## Shorthand Notation for Canonical SOP

- We can also assign an integer to represent each input combination
- Thus the function produces a 1 for input combinations $2,4,7$
- Therefore, the function can be written as $\mathrm{f}(\mathbf{x}, \mathrm{y}, \mathrm{z})=\sum m(2,4,7)$

| x | y | z | f | Index for <br> shorthand <br> notation |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 1 | 2 |
| 0 | 1 | 1 | 0 | 3 |
| 1 | 0 | 0 | 1 | 4 |
| 1 | 0 | 1 | 0 | 5 |
| 1 | 1 | 0 | 0 | 6 |
| 1 | 1 | 1 | 1 | 7 |

## Canonical Product-of-Sum Expression

- A function can also be written in terms of max terms
- The function is product of all max terms for which function is 0
- For example, the same function of three variable $x, y$, and $z$ produces 0 for $x y z=000,011,101$, then
- F = (x+y+z).(x+y’+z').(x'+y+z')
- This is called the Canonical Product-of-Sum (POS) Expression
- The function can also be written as $F(x, y, z)=\prod M(0,3,5)$

| X | Y | Z | F | F |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 1 | 0 |

$$
\begin{aligned}
F & =\left(F^{\prime}\right)^{\prime} \\
& =\left(x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y z+x y^{\prime} z\right)^{\prime} \\
& =(x+y+z) \cdot\left(x+y^{\prime}+z^{\prime}\right) \cdot\left(x^{\prime}+y+z^{\prime}\right)
\end{aligned}
$$

## Multiple Forms and Equivalence

- Canonical Sum-of-Product form
- Canonical Product-of-sum form
- How to convert one from other?
- Minterm expansion of $X$ to minterm expansion of $X^{\prime}$ - Just take the terms that are missing

$$
X(A, B, C)=\sum m(1,2,4,7) \quad X^{\prime}(A, B, C)=\sum m(\quad)
$$

- Maxterm expansion of $X$ to maxterm expansion of $X$ ' - Just take the terms that are missing

$$
X(A, B, C)=\prod M\left(\quad X^{\prime}(A, B, C)=\prod M(\right.
$$



## Single-Variable Theorems

- 5a: x. $0=0$ Null

5b: $x+1=1$

- 6a: x. $1=x$ Identity

6b: $x+0=x$

- 7a: $x . x=x \quad$ Idempotency

7b: $\mathrm{x}+\mathrm{x}=\mathrm{x}$
8a: $x . x^{\prime}=0 \quad$ Complementarity
8b: $x+x^{\prime}=1$

- 9: $\left(x^{\prime}\right)^{\prime}=x \quad$ Involution


## Axioms of Boolean Algebra

- 1a: $0.0=0$

1b: $1+1=1$

- 2a: $1.1=1$

2b: $0+0=0$

- 3a: $0.1=1.0=0$

3b: $1+0=0+1=1$

- 4a: If $x=0$, then $x^{\prime}=1$

4b: If $x=1$, then $x^{\prime}=0$

## Two- and Three-Variable Properties

- 10a: x.y = y.x

Commutative
10b: $x+y=y+x$

- 11a: $x .(y . z)=(x . y) . z \quad$ Associative

11b: $x+(y+z)=(x+y)+z$

- 12a: $x .(y+z)=x . y+x . z$ Distributive

12b: $x+y . z=(x+y) .(x+z)$

- 13a: $x+x . y=x$

Absorption
13b: $x .(x+y)=x$

## Other Properties

Simplify Logic Function by Algebraic Manipulation

- Combining

14a: $x . y+x . y^{\prime}=x$
14b: $(x+y) .(x+y$ ') $=x$

- DeMorgan's Theorem

15a: (x.y)' $=x^{\prime}+y^{\prime}$
15b: $(x+y)^{\prime}=x^{\prime} . y^{\prime}$

- Another form of Absorption

16a: $x+x^{\prime} \cdot y=x+y$
16b: $x .\left(x^{\prime}+y\right)=x . y$

## Principle of Duality

- Dual:
- A dual of a Boolean expression is derived by replacing . by +, + by ., 0 by 1 , and 1 by 0 and leaving variables unchanged
- In general duality: $\quad f^{\mathrm{D}}(\mathrm{x} 1, \times 2, \ldots, x n, 0,1,+,)=$.
- Principle of Duality:
- If any theorem can be proven, the dual theorem can also be proven.
- A meta-theorem (a theorem about theorems)
- Examples:
- Multiplication and factoring:
- $(x+y) \cdot\left(x^{\prime}+z\right)=x \cdot z+x^{\prime} \cdot y$ and
$x . y+x^{\prime} . z=(x+z) .\left(x^{\prime}+y\right)$
- Consensus:
- $(x . y)+(y . z)+\left(x^{\prime} . z\right)=x . y+x^{\prime} z$ and



## Using NOR to Implement POS

## Order of Precedence of Logic Operators

- From highest precedence to lowest: NOT, AND, OR
- We can use parenthesis to change the order
- Examples:
$f=X^{\prime}+X . Y$ is the same as
$f=\left(\left(X^{\prime}\right)+(X . Y)\right)$
$f=X .(Y+Z)$ is NOT the same as $f=X . Y+Z$


A Typical CAD (Computer-Aided Design) System


## DeMorgan's Theorem in Terms of Logic Gates



$$
\text { (a) } \overline{x_{1} x_{2}}=\bar{x}_{1}+\bar{x}_{2}
$$

(b) $\overline{x_{1}+x_{2}}=\bar{x}_{1} \bar{x}_{2}$

## Karnaugh map

- Karnaugh map (K-map) allows viewing the function in a picture form
- Containing the same information as a truth table
- But terms are arranged such that two neighbors differ in only one variable
- It is easy to identify which terms can be combined
- Example:

A map with 3 variables

$$
\begin{aligned}
& \text { AB } 00011110 \\
& \begin{array}{c}
\text { C } \\
0 \\
0 \\
\hline
\end{array} \mathbf{1} \left\lvert\, \begin{array}{ll|l|l|}
\hline 0 & 0 & 1 & 1 \\
\hline & 1 & 1 & 1 \\
\hline
\end{array}\right. \\
& \begin{array}{l|l|l|l|l|}
\hline 1 & 0 & 1 & 1 \\
\hline 1 & 1 & 1 & 0 \\
\hline
\end{array}
\end{aligned}
$$

## Location of Min-terms in K-maps



## Simplification using K-map

- Groups of ' 1 's of size $1 \times 1,2 \times 1,1 \times 2,2 \times 2,4 \times 1,1 \times 4,4 \times 2,2 \times 4$, or $4 \times 4$ are called prime implicants (p. 159 in textbook).

- Some rule-of-thumb in selecting groups
- Try to use as few group as possible to cover all '1's.
- For each group, try to make it as large as you can (i.e., if you can use a $2 \times 2$, don't use a $2 \times 1$ even if that is enough).


## Examples of 3-Variable K-map



## Karnaugh maps with up to 4 variables

- Example: 1, 2, 3, and 4 variables maps are shown below

- What if a function has 5 variables?

K-map Example for Adder functions

| A | B |  | S | Cout |  | $S(A, B$ | $m(1$ | (1,2, | 4,7) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | - | 0 | 0 | $\operatorname{Cout}(A, B, C)=\sum m(3,5,6,7)$ |  |  |  |  |
| 0 | 0 | 1 | 1 | 0 |  |  |  |  |  |
| 0 | 1 | 0 | 1 | 0 | S |  |  |  |  |
| 0 | 1 | 1 | 0 | 1 |  |  | Cout |  |  |
| 1 | 0 | 0 | 1 | 0 | ${ }_{\text {c }}^{\text {AB }} 00011110$ |  | AB ${ }_{00} 011110$ |  |  |
| 1 | 0 | 1 | 0 | 1 |  | 011 $10 \mid 1$ | $\mathrm{C}_{0}$ | $0{ }_{0} 0$ | $110$ |
| 1 | 1 | 0 | 0 | 1 | 1. | 1 0 1 <br>  1 0 | 110 | 0 01 |  |
| 1 | 1 | 1 | 1 | 1 |  |  |  |  |  |
|  |  |  |  | $\mathrm{S}=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}+\mathrm{A}^{\prime} \mathrm{BC}{ }^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime}+\mathrm{ABC}$ |  |  |  |  |  |
|  |  |  |  | Cout $=\mathrm{BC}+\mathrm{AC}+\mathrm{AB}$ |  |  |  |  |  |

## K-map with Don't Care Conditions

- Don't care condition is input combination that will never occur.
- So the corresponding output can either be 0 or 1.
- This can be used to help simplifying logic functions.
- Example: $F(A, B, C, D)=\Sigma m(1,3,7,11,15)+\Sigma D(0,2,5)$

$F=C D+A^{\prime} B^{\prime}$
$F=C D+A^{\prime} D$
d: Don't Care Condition


## Examples

- Simplify the following function considering
- the sum-of-products form -- the product-of-sums form


| $A B$ | 00 | 01 | 11 | 10 |
| :---: | :---: | :---: | :---: | :---: |
| 00 | 1 | 0 | 0 | 1 |
| 01 | 1 | 1 | 1 | d |
| 11 | 0 | d | 1 | 1 |
| 10 | 0 | 0 | 0 | 1 |

## 1-bit building blocks to make $n$-bit circuit

- Design a 1-bit circuit with proper "glue logic" to use it for n-bits
- It is called a bit slice
- The basic idea of bit slicing is to design a 1-bit circuit and then piece together $\mathbf{n}$ of these to get an $\mathbf{n}$-bit component
- Example:
- A half-adder adds two 1-bit inputs
- Two half adders can be used to add 3 bits A B S C
- A 3-bit adder is a full adder
- A full adder can be a bit slice to construct an n-bit adder



## Multiple Function Unit Design

- Design a unit that can do more than one function
- In that case, we can design a function unit for each operation like ADD, SUB, AND, OR, ....
- And then select the desired output
- For example, if we want to be able to perform ADD and SUB on two given operands A and B, and select any one
- Then the following set up will work



## ADD/SUB unit design

- Separate ADD and SUB units are expensive
- We can simplify the design
- $A-B$ is the same as adding negation of $B$ to $A$
- How to negate?
- 2's complement (i.e., take 1's complement and add 1)
- Adding 1 is also expensive
- It needs an n-bit adder in general
- However, we only need to add two bits in each stage
- In the first stage, we need to add 1 's complement of LSB and 1
- In other stages, we need to add carry output of previous bit to 1's complement of current bit
- We select $B$ or negation of $B$ depending on the requirement
- We add $A$ to the selected input to obtain the result



## Multiplexer Implementation

- We can write a logic expression for output $F$ as follows F = X' Y' Z' IO + X' Y' Z I1 + X' Y Z' I2 + X' Y Z I3
+ X Y' Z' 14 + X Y' $\mathbf{Z} 15+X$ Y Z' 16 + X Y Z 17
- This circuit can be implemented using
- eight 4-input AND gates and one 8-input OR gates


Implementing 4-to-1 MUX using 2-to-1 MUXs


Making a 2-bit 4-to-1 Multiplexer

- Four 2-bit inputs A, B, C, D
- One 2-bit output F
- Two bits of selection signal $X Y$

| X | Y | F |
| :---: | :---: | :---: |
| $\mathbf{0}$ | $\mathbf{0}$ | A |
| 0 | 1 | B |
| 1 | 0 | C |
| 1 | 1 | D |




## Implementing 3-variable functions with 4x1 MUX

- Divide the outputs into 4 groups based on $X$ and $Y$.
- Write the outputs as a function of $Z$
- There are only 4 possibilities: $\mathrm{F}=\mathrm{Z}, \mathrm{F}=\mathrm{Z}$ ', $\mathrm{F}=\mathbf{0}, \mathrm{F}=1$




## Implementing 4-variable functions with 4x1 MUX

\section*{| A | $B$ | $C$ | $D$ | $F$ |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 |}


| 0 | 0 | 0 | 0 | 0 | $\mathrm{F}=\mathrm{D}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 | 1 |  |
| 0 | 0 | 1 | 0 | 0 |  |
| 0 | 0 | 1 | 1 | 1 |  |
| 0 | 1 | 0 | 0 | 1 | $F=C^{\prime} D^{\prime}$ |
| 0 | 1 | 0 | 1 | 0 |  |
| 0 | 1 | 1 | 0 | 0 |  |
| 0 | 1 | 1 | 1 | 0 |  |
| 1 | 0 | 0 | 0 | 0 | $F=C D$ |
| 1 | 0 | 0 | 1 | 0 |  |
| 1 | 0 | 1 | 0 | 0 |  |
|  | 0 | 1 | 1 | 1 |  |
| 1 | 1 | 0 | 0 | 1 | $\mathrm{F}=1$ |
| 1 | 1 | 0 | 1 | 1 |  |
| 1 | 1 | 1 | 0 | 1 |  |
| 1 | 1 | 1 | 1 | 1 |  |



## Definition of Decoder

- Suppose we have $n$ input bits (which can represent up to $\mathbf{2 n}^{\mathbf{n}}$ distinct elements of coded information).
- We need a device that allows us to select which of the $2^{n}$ elements, devices, memory locations, etc. is being selected.
- In general:
- A decoder has $n$ input bits
- A decoder has $\mathbf{2}^{n}$ (or less) output bits
- As a rule, all but one of the outputs is zero (deselected) at any time (called one-hot encoded)


## 2-to-4 Decoder

- The 2-to-4 decoder is a block which decodes the 2-bit binary inputs and produces four outputs
- One output corresponding to the input combination is a one
- Two inputs and four outputs are shown in the figure
- The equations are
$-\quad y 0=x 1^{\prime} . x 0{ }^{\prime}$
$-\mathrm{y} 1=x 1^{\prime} \cdot x 0$
$-\quad y 2=x 1 . x 0 \prime$
$\mathrm{y} 3=\mathrm{x} 1 . \mathrm{x} 0$

- The truth table


## Definition of Encoder

- Encoders perform the inverse function of Decoders.
- An encoder has $2^{n}$ (or less) input bits and $n$ output bits
- The output bits generate the binary code corresponding to the input value
- Assuming only one input has a value of 1 at any given time
- Example: An 8-to-3 Encoder

| D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | A2 | A1 | A0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |

A2=D4+D5+D6+D7 A1=D2+D3+D6+D7 A0 = D1+D3+D5+D7

## What are the outputs of the following circuits?



## Priority Encoders

- Each input signal has a priority level associated with it
- May have more than one 1's in the input signals
- Outputs indicate the active input that has the highest priority
- Example: 4-to-2 priority encoder
- Assume w3 has the highest priority and wo the lowest
- y1 y0 indicate the active input with highest priority
$-z$ indicates none of the inputs is equal to 1

|  | w3 w | w2 | w1 |  |  |  | y0 |  |  | $\begin{aligned} & \text { Let } \mathrm{i} 0=\mathrm{w} 0 \mathrm{w} 1^{\prime} \text { w2' w3' } \\ & \mathrm{i} 1=\mathrm{w} 1 \mathrm{w} 2^{\prime} \text { w3' } \\ & \mathrm{i} 2=\mathrm{w} 2 \mathrm{w} 3^{\prime} \\ & \mathrm{i} 3=\mathrm{w} 3 \\ & \text { Then } \mathrm{y} 0=\mathrm{i} 1+\mathrm{i} 3 \\ & \mathrm{y} 1=\mathrm{i} 2+\mathrm{i} 3 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0 | 0 | 0 |  |  | d |  |  |  |
|  |  | 0 | 0 | 1 |  |  | 0 |  |  |  |
|  | 0 | 0 | 1 | $x$ |  |  | 1 |  |  |  |
|  | 0 | 1 | $x$ | $x$ |  |  | 0 |  |  |  |
|  | 1 | $x$ | $x$ | x |  | 1 | 1 |  |  |  |

## Decoder with Enable

- A 2-to-4 decoder can be designed with an enable signal
- If enable is zero, all outputs are zero
- If enable is 1 , then an output corresponding to two inputs is a one, all others are still zero
- The equations are
$-\mathrm{y} 0=\mathrm{x} 1^{\prime} \cdot \mathrm{x} 0^{\prime} . \mathrm{E}$
- $y 1=x 1^{\prime} . x 0 . E$
- $y 2=x 1 . x 0^{\prime} . E$
$-\quad y 3=x 1 . x 0 . E$



## Demultiplexers

- Perform the opposite function of multiplexers
- Placing the value of a single data input onto one of the multiple data outputs
- Same implementation as decoder with enable
- Enable input of decoder serves as the data input for the demultiplexer



## 3-to-8 decoder using a 2-to-4 decoder with Enable

- The 3-to-8 decoder can be implemented using two 2-to-4 decoders with enable and one NOT gate
- The implementation is as shown


```
Verilog HDL
    Popular Hardware Description Languages (HDLs):
    - Verilog HDL
    - More popular with US companies
    - Similar to C / Pascal programming language in syntax
    . VHDL
        - More popular with European companies
        - Similar to Ada programming language in syntax
        - More "verbose" than Verilog
    Uses of Verilog:
    - Synthesis
    - Simulation
    - Verification
```

```
Structural Specification of Logic Circuit
    module example1 (x1, x2, x3, f);
        input x1, x2, x3;
        output f;
    and (g, x1, x2);
    not (k, x2);
    and (h, k, x3);
    or (f, g, h);
```

endmodule

## Behavioral Specification Continuous Assignment



