Please check the examination details below before entering your candidate information
International GCSE
Centre Number
Candidate Number
Pearson Edexcel

\square

Thursday 6 June 2019 PREDICTION PAPER 2H

Morning (Time: 2 hours)	Paper Reference 4MA 1/2H

Mathematics A

Level 1/2
Unit 2H

You must have:

Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided - there may be more space than you need.
- Calculators may be used.
- You must NOT write anything on the formulae page.

Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100 .
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.
©
Pearson

IGCSE Maths 2019 PAPER 2H

Algebra - brackets, solving, factorising	Nth term
Algebra - show that and solve	Parallel and perpendicular lines
Algebraic fractions - Adding \& subtracting	Percentage change
Algebraic fractions - simplifying	Percentages (Quantity of)
Algebraic fractions - simplifying GRADE 9	Percentages (Reverse)
Angles - Basic facts Reasoning	Pressure
Angles - Parallel lines ZFC	Probability tables and Estimating
Arithmetic sequences	Probability with algebra
Bearings	Products of primes
Bearings with sine cosine rule	Proof
Bearings with trig	Proportion and graphs
Bisectors	Pythagoras
Bounds	Quadratic Inequalities
Circle problems Area and Circumference	Quadratic formula
Circle problems Semi circles	Ratio
Column vector	Ratio a b c d
Completing the Square	Ratio and proportion
Compound interest	Rationalising
Constructing formulae	Recurring decimals
Cumulative frequency 1 Basic	Regions
Cumulative frequency 2 Median and IQR	Scale drawings
Density	Sector
Density Combining	Set theory
Depreciation	Similar shapes - Length
Direct proportion	Similar shapes - Length area and volume
Distance time graphs	Similar shapes - Mixed length and area
dydx calculus - Grade 9 ONLY	Simultaneous Equations Hidden
dydx calculus - Stationary points	Simultaneous Non linear
dydx calculus	Simultaneous equations - graphical
dydx calculus applied	Simultaneous equations
Estimating gradients IGCSE	Sine Cosine rule \& area of a triangle
Exchange rates	Solving Equations
Expanding three brackets	Speed
Experimental probability	Standard form
Exponential	Subject of the formula
Exterior and Interior angles	Surds
Fractions	Surds Grade 9
Functions - Graphical \& estimating gradients	Surface area
Functions	Theorem - Alternate Segment
Graphical solutions	Theorem - Tangents
Graphs of linear functions	Theorem - Proof
Graphs non linear	Theorems - non tangent
Graphs-recognise	Transformations- Enlargement
Hcf Icm	Transformations- Mixed
Histograms	Transformations- Reflection
Indices (Harder)	Transformations- Rotation
indices F	Transformations- Translation
Inequalities number line 2018	Tree diagrams
Inequalities	Trigonometric graphs
Ingredients	Trigonometry 3D
Intersecting Chords Theorem	Trigonometry
Inverse proportion	Vector proof
IQR	Vectors
Kinematics IGCSE	Venn diagrams
litretocm ${ }^{3}$	Volume and Surface area problems
Mean - Easy	Volume prism
Mean - Estimated	$y=m x+c$
Mean Reverse problems	$y=f(x)$
Modal Median class interval	

Grade 5

Diagram NOT
accurately drawn
$A B C D$ is a straight line.
$A F$ is parallel to $B E$.
Angle $F A B=35^{\circ}$
Angle $C E B=75^{\circ}$
Work out the size of the angle marked x.
Give reasons for your answer.

The diagram shows the positions of a lighthouse L, a yacht Y and a tanker T on a map.

Scale 1 cm represents 10 km
(a) Measure the bearing of L from Y.

The tanker, T, sails 80 km on a bearing of 320°.
(b) Find the distance, in km, between the tanker and the lighthouse when the tanker is closest to the lighthouse.

The diagram shows the positions of three turbines A, B and C.

Diagram NOT accurately drawn
A is 6 km due north of turbine B.
C is 4.5 km due west of turbine B.
(a) Calculate the distance $A C$.
(b) Calculate the bearing of C from A.

Give your answer correct to the nearest degree.
(a) Use ruler and compasses to construct the perpendicular bisector of the line $A B$. You must show all your construction lines.
$A \longrightarrow B$
(b) Use ruler and compasses to construct the bisector of angle $R P Q$. You must show all your construction lines.

* 14 Viv wants to invest $£ 2000$ for 2 years in the same bank.

The International Bank
Compound Interest
4\% for the first year
1% for each extra year

The Friendly Bank

Compound Interest
5\% for the first year
0.5% for each extra year

At the end of 2 years, Viv wants to have as much money as possible.
Which bank should she invest her $£ 2000$ in?

1 Mike buys c pens and r rulers.
Each pen costs 24 cents.
Each ruler costs 37 cents.
Mike spends a total of T cents buying pens and rulers.
Write down a formula for T in terms of c and r.

6 Jalin lives in England.
He does a search on the internet and sees the same type of camera on sale in France and in America.

In France, the camera costs 126 euros.
In America, the camera costs $\$ 165.24$
Jalin finds out these exchange rates.

> Exchange rates $\begin{aligned} 1 \text { euro } & =£ 0.89 \\ £ 1 & =\$ 1.62\end{aligned}$

How much cheaper is the camera in America than in France?
Give your answer in pounds ($£$).

$A B C D E F G H$ is a regular octagon.
$B C K F G J$ is a hexagon.
$J K$ is a line of symmetry of the hexagon.
Angle $B J G=$ angle $C K F=140^{\circ}$
Work out the size of angle $K F E$.
You must show all your working.
$-2 \leqslant n<2$
n is an integer.
(a) Write down all the possible values of n.
(b) Here is an inequality, in y, shown on a number line.

Write down the inequality.
(c) On the number line below, show the inequality $-3<x<2$

(d) Solve $4 x+9 \geqslant 2 x+6$

5 Here are the ingredients needed to make $\mathbf{8}$ shortbread biscuits.

> Shortbread biscuits makes 8 biscuits
> 120 g butter
> 60 g caster sugar
> 180 g flour

Tariq is going to make some shortbread biscuits.
He has the following ingredients

$$
330 \mathrm{~g} \text { butter } \quad 200 \mathrm{~g} \text { caster sugar } \quad 450 \mathrm{~g} \text { flour }
$$

Work out the greatest number of shortbread biscuits that Tariq can make with his ingredients.
You must show all your working.

The table gives information about he number of boxes of strawberries filled by each of 100 farm workers.

Number of boxes	Frequency
$160<x \leqslant 180$	5
$180<x \leqslant 200$	25
$200<x \leqslant 220$	48
$220<x \leqslant 240$	22

(a) Write down the modal class interval.
(b) Work out an estimate for the mean.

10 The table gives information about the time it took each of 80 children to do a jigsaw puzzle.

	Number of children	Mean time (minutes)
Boys	32	32.4
Girls	48	28.4

Work out the mean time for all 80 children.
minutes
a, b, c and d are 4 integers written in order of size, starting with the smallest integer.
The mean of a, b, c and d is 15
The sum of a, b and c is 39
(a) Find the value of d.

$$
d=
$$

Given also that the range of a, b, c and d is 10
(b) work out the median of a, b, c and d.

Ahmed, Behnaz and Carmen each have some money.
Ahmed has 20\% more money than Behnaz.
Carmen has $\frac{7}{8}$ of the amount of money that Behnaz has.
Carmen has 31.50 euros.
Work out how much money Ahmed has.

In India,
62 million mobile phones were sold from 1st October 2014 to 31st December 2014 14.5\% fewer mobile phones were sold from 1st January 2015 to 31st March 2015
(a) Work out the number of mobile phones sold in India from 1st January 2015 to 31st March 2015

The table shows information about the mean number of text messages sent by each adult in the UK in 2013 and in 2014

	Mean number of text messages sent by each adult
$\mathbf{2 0 1 3}$	1656
$\mathbf{2 0 1 4}$	1404

(b) Work out the percentage decrease in the mean number of text messages sent by each adult in the UK from 2013 to 2014
Give your answer correct to 1 decimal place.

The diagram shows a concrete block on horizontal ground.

The block is a cuboid, 12 cm by 12 cm by 65 cm .
The block exerts a force of 220 newtons on the ground.
Calculate the pressure that the block exerts on the ground.
Give your answer in newtons $/ \mathrm{cm}^{2}$

Penny, Amjit and James share some money in the ratios $3: 6: 4$
Amjit gets $\$ 28$ more than James.
Work out the amount of money that Penny gets.
(a) On the grid, draw the line with equation $x+2 y=8$ for values of x from 0 to 9

(b) Show, by shading on the grid, the region defined by all three inequalities

$$
\begin{aligned}
& x+2 y \leqslant 8 \\
& x \geqslant 2 \\
& y \geqslant 1
\end{aligned}
$$

Label your region \mathbf{R}.

A ship has a length of 345 metres.
A scale model is made of the ship.
The scale of the model is $1: 200$
Work out the length of the scale model of the ship.
Give your answer in centimetres.

Solve the simultaneous equations

$$
\begin{aligned}
& 3 x+2 y=8 \\
& 2 x+5 y=-2
\end{aligned}
$$

```
x=
y=
```

7.

Diagram NOT accurately drawn
A and B are points on the circumference of a circle, centre O. $A C$ and $B C$ are tangents to the circle.

Angle $A C B=40^{\circ}$.
Find the size of angle $A B O$.

Rotate the shape 90° clockwise, centre O.

Describe fully the single transformation that maps triangle A onto triangle B.

On the grid, enlarge triangle \mathbf{P} with scale factor $\frac{1}{2}$ and centre $(4,2)$.

(a) Describe fully the single transformation that maps shape \mathbf{P} onto shape \mathbf{Q}.

(a) Describe fully the single transformation which maps triangle \mathbf{P} onto triangle \mathbf{Q}.
\qquad
\qquad
(b) Reflect triangle \mathbf{Q} in the line with equation $y=x$.

(a) Translate shape \mathbf{A} by the vector $\binom{-3}{2}$.

Describe fully the single transformation that maps triangle \mathbf{P} onto triangle \mathbf{Q}.

Shape \mathbf{T} is reflected in the line $x=-1$ to give shape \mathbf{R}.
Shape \mathbf{R} is reflected in the line $y=-2$ to give shape \mathbf{S}.
Describe the single transformation that will map shape \mathbf{T} to shape \mathbf{S}.

Make v the subject of the formula $t=\frac{v}{5}+2$

$$
v=.
$$

The line \mathbf{N} is drawn on the grid below.

(b) Find an equation of the line \mathbf{N}.
(a) $A B C$ is a right-angled triangle.

Diagram NOT accurately drawn
$A B=4 \mathrm{~cm}$
Angle $C A B=62^{\circ}$
Work out the length of $B C$.
Give your answer correct to 3 significant figures.

(3)

(b) $P Q R$ is a right-angled triangle.

Diagram NOT
accurately drawn
$P Q=7 \mathrm{~cm}$
$P R=16 \mathrm{~cm}$
Work out the size of the angle $P R Q$.
Give your answer correct to 3 significant figures.

Grade 6-7

4. The speeds of 100 cars on a motorway were recorded.

The grouped frequency table shows some information about the speeds of these cars.

Speed $(\boldsymbol{s} \mathbf{~ m p h})$	Frequency
$40<s \leqslant 50$	4
$50<s \leqslant 60$	19
$60<s \leqslant 70$	34
$70<s \leqslant 80$	27
$80<s \leqslant 90$	14
$90<s \leqslant 100$	2

(a) Complete the cumulative frequency table.

Speed $(\mathbf{s} \mathbf{~ m p h}$	Cumulative frequency
$40<s \leqslant 50$	4
$40<s \leqslant 60$	
$40<s \leqslant 70$	
$40<s \leqslant 80$	
$40<s \leqslant 90$	
$40<s \leqslant 100$	

(b) On the grid, draw a cumulative frequency graph for your table.

(2)
(c) Use your graph to find an estimate for the median speed.
mph
(1)
(d) Use your graph to find an estimate for the interquartile range.
\qquad
mph
(2)

12 Here are the marks scored in a test by the girls in class 8 C .

2	8	10	12	15	16	16	17	18	19	20

(a) Work out the interquartile range of the girls' marks.

The boys in class 8 C did the same test.
The boys' marks had a range of 19 and an interquartile range of 11 marks.
Gareth says that the girls' marks are more spread out than the boys' marks.
(b) Is Gareth right?

Tick (\checkmark) the appropriate box.

Give a reason for your answer.

1115 students took an English test.
The same 15 students took a Maths test.
Both tests were marked out of 30
For the English test results
the median was 21
the interquartile range was 14
The Maths test results are shown below.

$$
\begin{array}{lllllllllllllll}
18 & 18 & 19 & 20 & 24 & 25 & 25 & 26 & 28 & 28 & 29 & 29 & 29 & 30 & 30
\end{array}
$$

Use the information above to compare the English test results with the Maths test results. Write down two comparisons.
1.
2.

17 (a) Simplify $\left(\frac{8 e^{6}}{f^{12}}\right)^{\frac{1}{3}}$

Expand and simplify.

$$
(2 x-1)(x+5)(3 x-2)
$$

(b)

15 (a) Complete the table of values for $y=x^{3}-3 x^{2}+5$

x	-2	-1	0	1	2	3	4
y	-15	1	5	3			

(b) On the grid, complete the graph of $y=x^{3}-3 x^{2}+5$ for $-2 \leqslant x \leqslant 4$

(1)
(c) Use the graph to find an estimate for the solution of the equation $x^{3}-3 x^{2}+5=0$

$$
x=
$$

(d) By drawing a suitable straight line on the grid, find an estimate for the solution of the equation $x^{3}-3 x^{2}+2 x+4=0$

$$
x=
$$

The function f is such that

$$
f(x)=\frac{3 x-5}{4}
$$

(a) Find $f(-7)$
(b) Express the inverse function f^{-1} in the form $\mathrm{f}^{-1}(x)=\ldots$

$$
\begin{equation*}
\mathrm{f}^{-1}(x)= \tag{2}
\end{equation*}
$$

The function g is such that

$$
\mathrm{g}(x)=\sqrt{19-x}
$$

(c) Find f (3)
(d) Which values of x cannot be included in any domain of g ?

Write as a single fraction in its simplest form

$$
\frac{2}{y+3}-\frac{1}{y-6}
$$

accurately drawn

The diagram shows a trapezium.
The trapezium has an area of $17 \mathrm{~cm}^{2}$
(a) Show that $2 x^{2}+7 x-17=0$
(b) Work out the value of x.

Give your answer correct to 3 significant figures.
Show your working clearly.
15. The diagram shows part of the graph of $y=\mathrm{f}(x)$ and part of the graph of $y=\mathrm{g}(x)$.

(a) Find $f(3)$.
(b) Solve $\mathrm{f}(x)=\mathrm{g}(x)$.

Give your answers correct to 1 decimal place.
(c) Find $\mathrm{fg}(1)$.
(d) Find an estimate for the gradient of the graph of $y=\mathrm{f}(x)$ at the point $(1,16)$.

14 There are 31 students in a class.
The only languages available for the class to study are French and Spanish.
17 students study French.
15 students study Spanish.
6 students study neither French nor Spanish.
Using a Venn diagram, or otherwise, work out how many students study only one language.

21 Each student in a group of 32 students was asked the following question.
"Do you have a desktop computer (D), a laptop (L) or a tablet (T) ?"
Their answers showed that
19 students have a desktop computer
17 students have a laptop
16 students have a tablet
9 students have both a desktop computer and a laptop
11 students have both a desktop computer and a tablet
7 students have both a laptop and a tablet
5 students have all three.
(a) Using this information, complete the Venn diagram to show the number of students in each appropriate subset.

One of the students with both a desktop computer and a laptop is chosen at random.
(b) Find the probability that this student also has a tablet.
$18 y$ is directly proportional to \sqrt{x}
When $x=49, y=4$
(a) Find a formula for y in terms of x.
(b) Calculate the value of x when $y=12$

$$
x=
$$

$20 R$ is inversely proportional to the square of c.
When $c=4, R=30$
(a) Find a formula for R in terms of c.
(b) Calculate the positive value of c when $R=1920$

$$
c=
$$

\qquad
(2)

Simplify $\frac{x^{2}-16}{2 x^{2}-5 x-12}$
$20 P T R$ and $Q T S$ are chords of a circle.
$P T=3 \mathrm{~cm}$.
$S T=10 \mathrm{~cm}$.
$R T=15 \mathrm{~cm}$.
$Q T=x \mathrm{~cm}$.

Diagram NOT
accurately drawn

Calculate the value of x.
$x=$ \qquad

Diagram NOT accurately drawn
P, Q, S and T are points on a circle.
$T S R$ and $P Q R$ are straight lines.
Work out the length of $P Q$.

Diagram NOT accurately drawn

The diagram shows a sector of a circle, centre C. The radius of the circle is 8.2 cm .
The angle at the centre of the circle is 67°.

Calculate the area of the sector.
Give your answer correct to 3 significant figures.

The diagram shows a sector of a circle of radius 6.8 cm .

Diagram NOT

accurately drawn
$P Q$ is an arc of the sector.
Angle $P R Q=100^{\circ}$.
Work out the perimeter of the sector.
Give your answer correct to 3 significant figures.

$$
\frac{x}{x+c}=\frac{p}{q}
$$

Make x the subject of the formula.

$$
x=
$$

$A B C D E F$ is a triangular prism.
$A B=9 \mathrm{~cm}, B C=15 \mathrm{~cm}$ and $A E=12 \mathrm{~cm}$.
Angle $A B C=90^{\circ}$
M is the midpoint of $C D$.
Calculate the size of the angle between $A M$ and the plane $B C D F$.
Give your answer correct to 1 decimal place.

The curve \mathbf{C} has equation $y=2 x^{3}-6 x$
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}= \tag{2}
\end{equation*}
$$

(b) Work out the gradient of \mathbf{C} at the point $(2,4)$
(c) Find the x coordinates of the points on \mathbf{C} where the gradient of the curve is $7 \frac{1}{2}$ Show clear algebraic working.

Grade 8-9

$23 A B C D$ is a parallelogram.

$$
\overrightarrow{A B}=\binom{2}{3} \quad \overrightarrow{A C}=\binom{9}{4}
$$

Find the magnitude of $\overrightarrow{B C}$

Diagram NOT accurately drawn

R and S are two points on a circle, centre O.
$T S$ is a tangent to the circle.
Angle $R S T=x$.
Prove that angle $R O S=2 x$.
You must give reasons for each stage of your working.

$$
y=x^{3}-6 x^{2}-15 x
$$

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}= \tag{2}
\end{equation*}
$$

The curve with equation $y=x^{3}-6 x^{2}-15 x$ has two stationary points.
(b) Work out the coordinates of these two stationary points.
\qquad
21. A coin is biased so that the probability that it shows heads on any one throw is p. The coin is thrown twice.

The probability that the coin shows heads exactly once is $\frac{8}{25}$

Show that $25 p^{2}-25 p+4=0$

20 Prove algebraically that the difference between the squares of any two consecutive odd numbers is always a multiple of 8

21 Prove that

$$
(2 n+3)^{2}-(2 n-3)^{2} \text { is a multiple of } 8
$$

for all positive integer values of n.

Solve $x^{2}+3 x-10 \leqslant 0$
(b) Represent your solution set to part (a) on the number line below.

Solve $(5-x)(2+x) \leqslant 0$

Rationalise the denominator of $\frac{5+\sqrt{5}}{5-\sqrt{5}}$
Give your answer in the form $\frac{a+\sqrt{5}}{b}$ where a and b are integers.

Show that $(7-2 \sqrt{5})(7+2 \sqrt{5})=29$
Show your working clearly.

$P Q R$ is a triangle.
The midpoint of $P Q$ is W.
X is the point on $Q R$ such that $Q X: X R=2: 1$
$P R Y$ is a straight line.
$\overrightarrow{P W}=\mathbf{a} \overrightarrow{P R}=\mathbf{b}$
(a) Find, in terms of \mathbf{a} and \mathbf{b},
(i) $\overrightarrow{Q R}$
(ii) $\overrightarrow{Q X}$
(iii) $\overrightarrow{W X}$
R is the midpoint of the straight line $P R Y$.
(b) Use a vector method to show that $W X Y$ is a straight line.

Grade 9

Write $5-(x+2) \div\left(\frac{x^{2}-4}{x-3}\right)$ as a single fraction.
Simplify your answer fully.

Express $\frac{2 \sqrt{7}-1}{2 \sqrt{7}+5}$ in the form $m+n \sqrt{7}$, where m and n are integers. (4 marks)

Solve the simultaneous equations

$$
\begin{gathered}
x+4 y=7 \\
x^{2}+2 y=26
\end{gathered}
$$

25 Here is the graph of $y=\mathrm{f}(x)$.

Each of the graphs $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}$ and \mathbf{F} is a transformation of the graph of $y=\mathrm{f}(x)$.
Graph A

Graph B

Graph \mathbf{E}

Graph C

Graph \mathbf{F}

Match each of the graphs $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}$ and \mathbf{F} to its equation in the table.

Equation	Graph
$y=\mathrm{f}(x)+2$	
$y=\mathrm{f}(-x)$	
$y=\mathrm{f}(2 x)$	
$y=-\mathrm{f}(x)$	
$y=\mathrm{f}(x-2)$	
$y=\mathrm{f}(x)-2$	

