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Statement of Research
– Explore the differences between microprocessor-based, and 

custom-VLSI logic-based, computing system models .  
– Compare the difference in execution between microprocessor 

computing and custom logic computing architectures, using a set 
of benchmark algorithms.

– Write/select assembler programs that execute on a standard 
microprocessor (the Motorola 68000), and create 
corresponding custom logic architectures and designs for these 
same algorithms using an appropriate VLSI design method.

– Examine the differences in algorithmic processing between the 
two classes of computing architectures.

– Draw conclusions about the nature of algorithm processing 
between the two computing architecture models—the “old” 
and the “new”.
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Microprocessors vs. Custom Logic Computing Systems

• A microprocessor is itself built from custom-designed VLSI logic, yet its 
programming model is based on the “fetch, decode, execute” paradigm 
pioneered by Dr. John Von Neumann almost 50 years ago.  All standard 
microprocessor-based computer architectures are still built around this model.

• An application-specific custom VLSI computing system is not limited by the 
Von Neumann “bottleneck”, as its control and data processing is inherently 
parallel, and its functions are distributed optimally across the VLSI device.
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Algorithms and Architectures for Computing
Algorithms map onto different architectures over a continuum of design choices.

Option 1

Option 2

Option n

Some architecture choices are better than others
for a given problem application.
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General Microprocessor Architecture

Source: Tanenbaum, 4th ed., © Prentice-Hall Publishers, Inc., 1999.

• A microprocessor 
architecture is based 
on the “fetch, decode, 
execute” cycle, that 
loops repeatedly.

• Applications exist as 
programs, loaded into 
memory along with 
required data.

• Program instructions 
are sequentially 
processed by the 
processor.

• The resources for all 
programs are shared, 
but dedicated to a 
specific executing 
program while running.

VLSI Systems Design Lab
Computer Science and Engineering

General Model of VLSI Architecture
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Modeled using Register-Transfer (RTL) model.Modeled using Finite State Machine (FSM) 
model.
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Mapping Algorithms to VLSI Architecture
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• Create Ordered Sequence of Operations.
– Starting with Control Flow Graph (CFG) – If you are starting with the structure of an algorithm, such as from a block of C 

code, you can follow the structure of the algorithm as a basis for creating an ASM chart.

– Starting with Data Flow Graph (CFG).

• Overlay Operation Sequence onto Control Structure.

• Add Hardware Semantics.
– Quickly create a design model (correct by construction).

• Create signal/bus declarations using Bus Table.
• Draw the flow-chart description of the state machine.
• Annotate states, conditions, cases, conditional output objects with RTN expressions (using assertions, assignments and 

macro-function assignments).
• Define clocks, resets, and other synchronous/asynchronous event signaling.

– Verify the Model (using digital cycle-based Simulator).
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Exploring a VLSI Systems Architecture
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• Process starts with abstract description 
of algorithmic behavior written in C or 
some other language, with no timing 
info.

– Task #1:  Compile source code into 
intermediate format, for example, control-flow 
graph, dataflow graph.

– Task #2:  schedule data operations to occur on 
specific control cycles, determined by clocking.

– Task #3:  allocate data operations to RTL 
components implied by use of language 
operators <+, -, *...>.

– Task #4:  bind specific operations to individual 
RTL components, to construct complete circuit 
topology. 

• We look for efficient architectures that 
speed up computation with minimal 
use of resources.  This involves trading 
off speed versus resource usage.
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VLSI Systems Modeling-1

Components of FSM Model
– State registers, input synchronization registers (optional) and output filter registers (optional).

– Next state decoding logic, and output decoding logic - combinational logic blocks.

– Input signals to the state machine, which are inputs to the next state and output decoding logic blocks 
(could be synchronized to clock with input registers).

– Next state information, which is generated as a result of input/next state decoding logic.

– Present state information, output from the state registers, which is fed back as an input to both next state 
and output decoding logic blocks.

– Outputs from the state machine - either generated synchronously from the output of the state registers 
(also used as present state information), or asynchronously as output of the output decoding logic block 
(which takes input and present state information to produce outputs). Could be filtered using output 
registers to eliminate possible signal transients.
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VLSI Systems Modeling-2

• Use of memory elements in the data path to store signal 
values.

– Purpose is to synchronize the behavior of complex circuits.
– Benefits of circuit synchronization:

• Eliminate unpredictability of output behavior due to timing skew.
• Create signal stability, as they must have stable values for certain period of time.
• Better isolate signals from noise transients.

• Use of memory to create complex control structures.
– Controller sequences operations in the data path.
– The sequencing is modeled as a finite state machine, represented as a graph structure.
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The Algorithmic State Machine (ASM) Chart
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Captures both the control path and data path design
in a single design representation.  It is used to model custom 

logic architecture.

VLSI Systems Design Lab
Computer Science and Engineering

Benchmarking the Architecture Models

• Using a 68000 microprocessor:

– A well-understood CPU model, 
as the micro is now 20 years old.

– Used in CSCE 313 class for 
embedded systems design.

– Select a set of baseline 
programs representing standard 
algorithms that have been 
studied in the past.

– Using the cycle counts for each 
instruction, tally up the total 
cycles for the program, given the 
initial data elements defined for 
the benchmark programs (cf. 
MacKenzie, 1995).

• Using the ASM design method:
– A well-understood custom logic 

design method, having been 
used for almost 30 years.

– Used in CSCE 491, 611 classes 
for custom logic VLSI design.

– Follow the same program 
algorithms, using RTL macro 
operations in place of 68000 
instructions, yet inserting 
scheduling and clocking for 
synchronization.

– Count the number of discrete 
states visited during the logic 
execution, given the same data 
elements defined for the 
baseline programs.
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Counting Cycles in Custom Logic
Using the graphical view of the simulator waveform display, we can easily count

the cycles required to execute an algorithm in a given VLSI architecture.

VLSI Systems Design Lab
Computer Science and Engineering

Benchmark Cycle Count Comparison

361376SQRT: taking the 
square root of an 
unsigned integer.

35782SORT: bubble 
sorting elements in a 
sequence.

24882ASCBIN: 
converting ASCII 
string into equivalent 
binary number.

15194NEG2: counting 
negative numbers in 
a sequence.

Clock Cycles Custom LogicClock Cycles CPUBenchmark

Benchmark Source: MacKenzie, © Prentice-Hall Publishers, Inc., 1995. Note: lower is better!
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The NEG2 Benchmark – 68K

Source: MacKenzie, © Prentice-Hall Publishers, Inc., 1995.

VLSI Systems Design Lab
Computer Science and Engineering

The NEG2 Benchmark - ASM
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The ASCBIN Benchmark – 68K

Source: MacKenzie, © Prentice-Hall Publishers, Inc., 1995.

VLSI Systems Design Lab
Computer Science and Engineering

The ASCBIN Benchmark - ASM
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The SORT Benchmark – 68K

Source: MacKenzie, © Prentice-Hall Publishers, Inc., 1995.
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The SORT Benchmark - ASM
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The SQRT Benchmark – 68K

Source: MacKenzie, © Prentice-Hall Publishers, Inc., 1995.
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The SQRT Benchmark - ASM
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Comparing Cycle Counts – NEG2

Using the MacKenzie benchmark data set of N=4 elements, we look at two
pieces of information: (1) what is the difference in the cycle counts between
the different computing architecture styles; and, (2) what is the rate of 
change in cycle counts if we increased the number of negative elements
in the sequence of length N that we needed to add to the running count.

NEG2: Elements in List = 4 (Original MacKenzie benchmark)
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Comparing Cycle Counts – NEG2

Extending the original benchmark scope with N=8k elements, we look at the
two questions again: (1) what is the cycle count difference between
the microprocessor and custom logic executions; and, (2) what rate of 
change in cycle counts occurs as we increase the number of negative elements
in the sequence as a percentage of the total elements.

NEG2: Elements in List = 8192 (Benchmark modification)
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Comparing Complexity - NEG2

Extending the original benchmark scope yet again by varying N, we look at the
two questions: (1) what is the cycle count difference between the microprocessor
and custom logic executions as N increases; and, (2) what rate of change in cycle
counts occur as we increase the number of negative elements in the sequence as
a percentage of the total elements while N grows?  Does % Neg Elements matter?
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Comparing Complexity- NEG2
Complexity Comparison: M68K vs ASM
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Complexity Comparison: M68K vs ASM (Zoomed view)
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What we learned: (1) the custom logic architecture
is an order of magnitude more efficient, in terms
of number of clock cycles, in performing the same
computational task, (2) this ratio is consistent as
N grows large, but (3) the “number of probes” of
the list (represented by % of negatives for NEG2) 
does not seem to be a relevant metric of complexity
for this algorithm.

What we have yet to calculate: (1) the actual
time to perform the task, given some clock frequencies
for the microprocessor and the custom logic device,
(2) the computational throughput (calculations per
unit time), which can be affected by pipelining of data
operations, CPU instruction caching, etc.
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Future Work
• Extend the scope of coverage to incorporate time complexity 

analysis of the other benchmarks, to see what happens to 
computation with both architecture models as N grows large, 
and as we increase the number of “probe points” in the data set 
at each value of N.

• Examine the time complexity characteristics O(n), Ω(n) and other 
identified metrics for VLSI custom logic architectures in other 
benchmarks that have different algorithmic control structures.

• Modify the custom logic models by exploiting inherent 
parallelism afforded by VLSI device structure.  Here, we might 
exploit parallelism & pipelining to increase performance of the 
VLSI design, by changing the “shape” of the algorithm.

• Explore more generally how time complexity and other 
characteristics are affected by different architecture topologies 
for various standard algorithms in both models.
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