Tiles and Tessellations

Duke TIP Academic Adventures

Game of SET

Number

Color

Shading
(14) solid
$\theta \hat{\theta} \theta$ striped,
$\Delta 00$ or outlined

A set consists of 3 cards in which each of the cards features, looked at one-by-one, are the same on each card, or different on each card.

Game of SET

$$
\begin{aligned}
& \text { YES } \\
& \text { ミ:(a) 8: } \\
& \text { NO }
\end{aligned}
$$

Game of SET

- At your table deal 12 cards face up.
- Players do not take turns, but pick up SETs as they see them. If everyone agrees there are no SETs, deal 3 more cards on the table.
- Replace the cards from the top of the deck when a SET is removed.
- The person with the most SETs wins!

Third Person Introductions

Introduce the person sitting next you by saying the following.

- Name
- Hometown
- Favorite Food

Human Machine

Rules and Expectations

- Be Respectful
- Participate
- Don't Talk When Someone Else Is
- Don’t Shout Out Answers
- Thinking > Answers
- Have Fun

Finishing Early

Everyone works at a different pace. If you you happen to finish something early, please raise your hand and let me know. You may get to be my assistant!

Warm Up

Draw the line(s) of symmetry on each figure.

Warm Up

Tiles and Tessellations

Tiles and Tessellations

A tessellation of a flat surface is the covering of a plane using one or more geometric shapes, called tiles, with no overlaps and no gaps.

Create a Tessellation

Create your own tessellations using the shapes provided. You may use as many different shapes as you like.

Create a Tessellation

- How did you create your tessellations?
- Could you come up with a way to create a tessellation, if given a few shapes?

Polygons

A polygon is a closed geometric figure.

Polygon

Not a Polygon

Convex and Concave Polygons

convex polygon

concave polygon

Polygon Angle Sum

What is the sum of the angle measures of a triangle?

Polygon Angle Sum

1. Draw a triangle on a sheet of paper using a ruler.
2. Carefully cut out the triangle with the scissors provided.
3. Rip off two of the corners.
4. Place them next to the remaining corner so that they all share a vertex.
5. What do you notice?

Polygon Angle Sum

The sum of the angle measures of a triangle is 180 degrees!

Polygon Angle Sum

What is the sum of the angle measures of a quadrilateral (rectangle, square, rhombus, parallelogram, trapezoid, kite, etc.)?

Polygon Angle Sum

Hint: Separate the quadrilateral into two triangles.

Polygon Angle Sum

The sum of the angle measures of a quadrilateral is 360 degrees!

Polygon Angle Sum

- What is the sum of the angle measures of pentagon (5 sided polygon)? Hexagon (6 sided polygon)?
- Create a table and record these values.
- Can you predict the sum of the angle measures a polygon with any number of sides?

Polygon Angle Sum

Polygon Angle Sum

Polygon	Number of Sides	Sum of Angle Measures
Triangle	3	
Quadrilateral	4	
Pentagon	5	
Hexagon	6	
Heptagon	7	
Octagon	9	
Nonagon	10	
Decagon	n	
n-gon	100	
$100-g o n$		

Polygon Angle Sum

Polygon	Number of Sides	Sum of Angle Measures
Triangle	3	180
Quadrilateral	4	360
Pentagon	5	
Hexagon	6	
Heptagon	7	
Octagon	9	
Nonagon	10	
Decagon	n	
n-gon	100	
$100-g o n$		

Polygon Angle Sum

Polygon	Number of Sides	Sum of Angle Measures
Triangle	3	180
Quadrilateral	4	360
Pentagon	5	540
Hexagon	6	720
Heptagon	8	
Octagon	9	
Nonagon	10	
Decagon	n	
n-gon	100	
100 -gon	7	

Polygon Angle Sum

Polygon	Number of Sides	Sum of Angle Measures
Triangle	3	180
Quadrilateral	4	360
Pentagon	5	540
Hexagon	6	720
Heptagon	8	900
Octagon	9	1080
Nonagon	10	1440
Decagon	n	
n-gon	100	70
$100-g o n$	7	

Polygon Angle Sum

Polygon	Number of Sides	Sum of Angle Measures
Triangle	3	180
Quadrilateral	4	360
Pentagon	5	540
Hexagon	6	720
Heptagon	8	900
Octagon	9	1080
Nonagon	10	1440
Decagon	n	$180(n-2)$
n-gon	100	
100 -gon	7	

Polygon Angle Sum

Polygon	Number of Sides	Sum of Angle Measures
Triangle	3	180
Quadrilateral	4	360
Pentagon	5	540
Hexagon	6	720
Heptagon	8	1080
Octagon	9	1260
Nonagon	10	1440
Decagon	n	$180(n-2)$
n-gon	100	17640
$100-g o n$	7	

Polygon Angle Sum

Why does the formula $S=180(n-2)$ make sense?

Polygon Angle Sum

Hint: How many triangles can you create inside of a polygon with n sides?

Find the Measure of the Missing Angle

Find the Measure of the Missing Angle

$$
\begin{gathered}
39+55+x=180 \\
94+x=180 \\
x=86 \\
75+100+110+x=360 \\
285+x=360 \\
x=75 \\
68+121+103+85+x=540 \\
377+x=540 \\
x=163
\end{gathered}
$$

Challenge Problem

Find the value of x, then find the measures of the missing angles.

Challenge Problem

$$
\begin{gathered}
5 x+3+88+10 x+7+127=360 \\
15 x+225=360 \\
15 x=135 \\
x=9
\end{gathered}
$$

The two missing angle measures are $5(9)+3=48$ and $10(9)+7=97$.

Polygon Angle Sum

Is there a polygon with an angle sum of 1980 degrees? If so, how many sides does it have? If not, explain why.

Polygon Angle Sum

Yes, it has 13 sides!

$$
\begin{gathered}
180(n-2)=1980 \\
180 n-360=1980 \\
180 n=2340 \\
n=13
\end{gathered}
$$

Polygon Angle Sum

Is there a polygon with an angle sum of 2960 degrees? If so, how many sides does it have? If not, explain why.

Polygon Angle Sum

No!

If this were true we would have

$$
\begin{gathered}
180(n-2)=2960 \\
180 n-360=2960 \\
180 n=3320 \\
n \approx 18.4
\end{gathered}
$$

Since n is the number of sides, n must be a whole number.

Create a Tessellation

Regular Polygons

A regular polygon is a polygon with congruent sides and angles. This means all of the sides have the same length and all of the angles have the same measure.

Regular Polygons

Regular Polygons

Now that we know the sum of the angle measures of any polygon, let's find the measure of each angle in a regular polygon. We will call this angle the corner angle.

Regular Polygons

What is the measure of each angle in an equilateral triangle?

Regular Polygons

Regular Polygons

- What about a square? Regular pentagon? Regular Hexagon?
- Create a table and record these values.
- Can you come up with a formula for the corner angle of a regular n-gon?

Regular Polygon Corner Angle

Regular Polygon	Number of Sides	Measure of Corner Angle
Equilateral Triangle	3	
Square	4	
Pentagon	5	
Hexagon	6	
Heptagon	8	
Octagon	9	
Nonagon	10	
Decagon	100	
n-gon		7
100 -gon		6

Regular Polygon Corner Angle

Regular Polygon	Number of Sides	Measure of Corner Angle
Equilateral Triangle	3	60
Square	4	
Pentagon	5	
Hexagon	6	
Heptagon	8	
Octagon	9	
Nonagon	10	
Decagon	100	
n-gon	7	
100 -gon		6

Regular Polygon Corner Angle

Regular Polygon	Number of Sides	Measure of Corner Angle
Equilateral Triangle	3	60
Square	4	90
Pentagon	5	108
Hexagon	6	120
Heptagon	8	
Octagon	9	
Nonagon	10	
Decagon	100	
n-gon	100 -gon	
10		

Regular Polygon Corner Angle

Regular Polygon	Number of Sides	Measure of Corner Angle
Equilateral Triangle	3	60
Square	4	90
Pentagon	5	108
Hexagon	6	120
Heptagon	7	128.6
Octagon	9	135
Nonagon	10	144
Decagon	n	
n-gon	100	140
$100-g o n$		9

Regular Polygon Corner Angle

Regular Polygon	Number of Sides	Measure of Corner Angle
Equilateral Triangle	3	60
Square	4	90
Pentagon	5	108
Hexagon	6	120
Heptagon	8	128.6
Octagon	9	135
Nonagon	10	144
Decagon	n	$180(n-2) / n$
n-gon	100	140
100 -gon	7	109

Regular Polygon Corner Angle

Regular Polygon	Number of Sides	Measure of Corner Angle
Equilateral Triangle	3	60
Square	4	90
Pentagon	5	108
Hexagon	6	120
Heptagon	7	128.6
Octagon	8	135
Nonagon	9	140
Decagon	10	144
n-gon	n	$180(n-2) / n$
100-gon	100	176.4

Regular Polygon Corner Angle

How big can a corner angle of a regular polygon get? Why?

Regular Polygon Corner Angle

Regular Polygon Corner Angle

A corner angle can not exceed 180 degrees, since this would be a straight line.

Regular Polygon Corner Angle

If a polygon has a corner angle measure of 150 , can it be a regular polygon? If so, how many sides does it have? If not, explain why.

Regular Polygon Corner Angle

Yes, it has 12 sides!

$$
\begin{gathered}
180(n-2) / n=150 \\
180(n-2)=150 n \\
180 n-360=150 n \\
30 n-360=0 \\
30 n=360 \\
n=12
\end{gathered}
$$

Regular Polygon Corner Angle

If a polygon has a corner angle measure of 100 , can it be a regular polygon? If so, how many sides does it have? If not, explain why.

Regular Polygon Corner Angle

No!

$$
\begin{gathered}
180(n-2) / n=100 \\
180(n-2)=100 n \\
180 n-360=100 n \\
80 n-360=0 \\
80 n=360 \\
n=4.5
\end{gathered}
$$

Since n is the number of sides, n must be a whole number.

Regular Tessellations

Regular Polygon	Tile (Yes or No)	Explanation	Picture (If Possible)
Equilateral Triangle	Yes		
Square	Yes		
Pentagon	No		
Hexagon	Yes		
Heptagon	No		
Octagon	No		

Regular Tessellations

Can we tile the plane with any regular polygon?

Regular Tessellations

- In the table you just created, there are only three regular polygons that can be used to tile the plane.
- Determine which three can be used to tile the plane.
- Explain why those three can be used to tile the plane and why the other five cannot.

Regular Tessellations

Regular Tessellations

Corners of the tiles need to fit together around a point, which means the corner angle of the regular polygon must evenly divide 360 .

Regular Tessellations

Regular Polygon	Tile (Yes or No)	Explanation	Picture (If Possible)
Equilateral Triangle	Yes	$360 / 60=6$	
Square	Yes	$360 / 90=4$	
Pentagon	No	$360 / 108 \approx 3.33$	
Hexagon	Yes	$360 / 120=3$	
Heptagon	No	$360 / 128.6 \approx 2.8$	
Octagon	No	$360 / 135 \approx 2.66$	

Regular Tessellations

Can we tile the plane with any polygon with more than 6 sides? Why or why not?

Regular Tessellations

- No!
- A regular polygon with more than 6 sides has a corner angle larger than 120 degrees and smaller than 180 degrees.
- Is there any number between 120 and 180 that divides into 360 evenly?

Regular Tessellations

Equilateral Triangle

Square

Semi-Regular Tessellations

A semi-regular tessellation is a tiling of the plane made up of two or more regular polygons such that the same polygons are in the same order surrounding each vertex.

Semi-Regular Tessellations

- There are 5 other semi-regular tessellations.
- Create them using the shapes provided and sketch what each one looks like.
- Explain why there are no other semi-regular tessellations.

Semi-Regular Tessellations

Semi-Regular Tessellations

How can we move shapes?

How can we move shapes?

- Flips
- Turns
- Slides

Reflection (Flip)

- A figure can be reflected (flipped) across a line of symmetry (mirror line).
- Can you think of any real life examples?

Reflection (Flip)

Rotation (Turn)

- A figure can be rotated (turned) about a point of rotation (center point).
- Can you you think of any real life examples?

Rotation (Turn)

Translation (Slide)

- A figure can be translated (slid) along a vector.
- Can you you think of any real life examples?

Translation (Slide)

Transformations

- Reflections
- Rotations
- Translations

Symmetries

- A symmetry is a transformation that moves a figure onto itself.
- A figure can have either reflectional or rotational symmetry.

Symmetries

How many symmetries does an equilateral triangle have?

Symmetries

R_{360} or Identity
Reflection

Symmetries

How many symmetries does a square have?

Symmetries

Symmetries

How many symmetries does regular pentagon have?

Symmetries

Symmetries

Can you predict the number of rotations that an n sided regular polygon has?

Symmetries

An n sided regular polygon has n reflectional symmetries and n rotational symmetries, a total of $2 n$ symmetries.

How are transformations and symmetries related to tessellations?

Map Coloring

What is the minimum number of colors required to color any "map" so that adjacent edges are not the same color?

Map Coloring

Try to color these using the least amount of colors, where adjacent edges must be different colors.

Map Coloring

Four Color Theorem

It turns out that any "map" can be colored with four colors or less.

Tessellation Coloring

Color the tessellation you created earlier so that no adjacent sides are the same color.

Evaluations and Certificates

1. Fill out the evaluation for Duke TIP.
2. Write down what you liked and didn't like about the class on a blank sheet of paper.
3. Receive your certificate.
4. Celebrate!
