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Challenges

‣ Need for full sampling
- wave-equation based inversion (RTM & FWI)
- SRME/EPSI or related techniques

‣ Full azimuthal coverage 
- multiple source vessels
- simultaneous/blended acquisition

‣ Deblending or wavefield reconstruction
- recover unblended data from blended data
- challenging to recover weak late events



Motivation

Rethink marine acquisition (OBC, OBN)
- sources (and receivers) at random locations
- exploit natural variations in the acquisition (e.g., cable feathering)
- as long as you know where sources were afterwards... it is fine!

Want more for less ...
- shorter survey times
- increased spatial sampling
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How is this possible?
- (multi) vessel acquisition w/ jittered sampling & “blending” via compressed 

randomized intershot firing times
- sparsity-promoting recovery using     constraints (“deblending”)`1



More for less
conventional jittered recovered  `1
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Outline

‣ Measurement model & recovery strategy

‣ Design of jittered, ocean bottom acquisition
- jitter in time ⇒ jittered in space (shot locations)

‣ Experimental results of sparsity-promoting processing
- wavefield recovery via “deblending” & interpolation from (coarse) 

jittered/irregular to (fine) regular sampling grid



Compressed Sensing

Successful sampling & reconstruction scheme

‣ exploit structure via sparsifying transform

‣ subsampling – decreases sparsity 
 

‣ large scale optimization – look for sparsest solution



Time-jittered acquisition

Compress inter-shot times
‣ random jitter in time       jitter in space for a given speed
‣ discrete jittering - start by being on the grid
‣ maximum (acquisition) gap effectively controlled

Challenges: recover fully sampled data from jittered data and remove overlaps 
(but no fear..... sparse recovery is here!)

Recent work - use non-uniform grid [Hennenfent et.al., 2010]
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Measurement model

Solve an underdetermined system of linear equations:

data
(measurements
/observations)
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A � Cn�P

x0 � CP

=

Ab

x0

n ⌧ P

A = RMSH

{

sampling matrix transform matrix

unknown



=

db
Shot # 1

Shot # 2

Shot # 3

Shot # nS 

C
on

ve
nt

io
na

l a
cq

ui
sit

io
n 

tim
e 

sa
m

pl
es

 (#
)RM

acquire in the field on irregular grid
(subsampled shots w/ overlap 

between shot records)

would like to have on regular grid
(all shots w/o overlaps between 

shot records)



Sparsity-promoting recovery

Sparsity-promoting program:

data-consistent amplitude recovery

x̃ = arg min
x

�x�1 subject to Ax = b{
support detection

Sparsity-promoting solver:  SPG�1 [van den Berg and Friedlander, 2008]

Recover single-source prestack data volume: d̃ = SHx̃

Exploit curvelet-domain sparsity of seismic data

{
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Sampling schemes

( η = 4 )

full sampling

regular 
undersampling

uniform random 
undersampling

( η = 4 )

( η = 4 )

jittered 
undersampling

regularly undersampled spatial grid

[Hennenfent et.al., 2008]



Conventional vs. jittered sources
[Speed of source vessel = 5 knots ≈ 2.5 m/s] 
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[Speed of source vessel = 5 knots ≈ 2.5 m/s] 



Significant spatial jittering
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Simultaneous source acquisition & deblending

- A new look at simultaneous sources by Beasley et. al., ’98, ’08
- High quality separation of simultaneous sources by sparse inversion by Abma et. al., ’13
- Changing the mindset in seismic data acquisition by Berkhout, ’08 
- Utilizing dispersed source arrays in blended acquisition by Berkhout et. al., ’12
- Random sampling: a new strategy for marine acquisition by Moldoveanu, ’10
- Multi-vessel coil shooting acquisition by Moldoveanu, ’10
- Simultaneous source separation by sparse radon transform by Akerberg et. al., ’08
- Simultaneous source separation using dithered sources by Moore et. al., ’08
- Simultaneous source separation via multi-directional vector-median filter by Huo et. al., ’09
- Separation of blended data by iterative estimation and subtraction of blending interference noise by Mahdad et. al., ’11



Our approach

Combination of
‣ multiple-source time-jittered acquisition

- random jitter in time        jitter in space for a constant speed 
(favours recovery compared to periodic sampling)

- shorter acquisition times

‣ sparsity-promoting processing
- data is sparse in curvelets
- optimization: use     constraints
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Address two challenges - overlap and jittered sampling (regularize & interpolate)
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Time-jittered OBC acquisition
[1 source vessel, speed = 5 knots, underlying grid: 25 m] 
[no. of jittered source locations is half the number of sources in ideal periodic survey w/o overlap]
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Sparsity-promoting recovery on the grid (14.2 dB)
[“deblending” + interpolation from jittered 50m grid to regular 25m grid]

receiver gather shot gather



Sparsity-promoting recovery on the grid (14.2 dB)
[“deblending” + interpolation from jittered 50m grid to regular 25m grid]
(difference)

receiver gather shot gather



FDCT vs. NFDCT

fast discrete curvelet transform

non-equispaced fast discrete curvelet transform
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NFFT-generated data

receiver gather shot gather



Recovery with FDCT (‘binning’)
[“deblending” + interpolation from jittered 50m grid to regular 25m grid]

separation result difference



separation result difference

[“deblending” + interpolation from jittered 50m grid to regular 25m grid]

Recovery with FDCT (‘binning’)



Sparsity-promoting recovery on irregular grid 
with NFDCT (17.6 dB)
[“deblending” + interpolation from jittered 50m grid to regular 25m grid]

receiver gather shot gather



[“deblending” + interpolation from jittered 50m grid to regular 25m grid]

receiver gather shot gather

Sparsity-promoting recovery on irregular grid 
with NFDCT (17.6 dB)



[“deblending” + interpolation from jittered 50m grid to regular 25m grid]   (difference)

receiver gather shot gather

Sparsity-promoting recovery on irregular grid 
with NFDCT (17.6 dB)



Performance

Improvement spatial sampling ratio

= 128
64 = 2

= no. of spatial grid points recovered from jittered sampling via sparse recovery

no. of spatial grid points in conventional sampling



Multiple source vessels

‣ improves recovery – shorter times lead to better spatial 
sampling at the expense of more overlap

‣ better azimuthal coverage



Time-jittered OBC acquisition
[2 source vessels, speed = 5 knots, underlying grid: 25 m] 
[no. of jittered source locations is half the number of sources in ideal periodic survey w/o overlap]
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Sparsity-promoting recovery on irregular grid 
with NFDCT (21.5 dB)
[“deblending” + interpolation from jittered 50m grid to regular 25m grid]

receiver gather shot gather



[“deblending” + interpolation from jittered 50m grid to regular 25m grid]

receiver gather shot gather

Sparsity-promoting recovery on irregular grid 
with NFDCT (21.5 dB)



[“deblending” + interpolation from jittered 50m grid to regular 25m grid]   (difference)

receiver gather shot gather

Sparsity-promoting recovery on irregular grid 
with NFDCT (21.5 dB)



Time-jittered OBC acquisition
[2 source vessels, speed = 5 knots, underlying grid: 12.5 m] 
[no. of jittered source locations is one-fourth the number of sources in ideal periodic survey w/o overlap]
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Sparsity-promoting recovery on irregular grid 
with NFDCT (16.8 dB)
[“deblending” + interpolation from jittered 50m grid to regular 12.5m grid]

receiver gather shot gather



[“deblending” + interpolation from jittered 50m grid to regular 12.5m grid]

receiver gather shot gather

Sparsity-promoting recovery on irregular grid 
with NFDCT (16.8 dB)



[“deblending” + interpolation from jittered 50m grid to regular 12.5m grid]   (difference)

receiver gather shot gather

Sparsity-promoting recovery on irregular grid 
with NFDCT (16.8 dB)



Performance

= 128
32 = 4

Improvement spatial sampling ratio

= no. of spatial grid points recovered from jittered sampling via sparse recovery

no. of spatial grid points in conventional sampling



Summary

deblend + interpolate
(jittered (m) to regular (m))

sparsity-promoting 
recovery with NFDCT 

[SNR (dB)]

1 source vessel
(2 airgun arrays)

50 to 25 17.6
1 source vessel

(2 airgun arrays)
50 to 12.5 12.7

2 source vessels
(2 airgun arrays 

per vessel)

50 to 25 21.52 source vessels
(2 airgun arrays 

per vessel) 50 to 12.5 16.8



Observations

‣ Time-jittered marine acquisition is an instance of compressed sensing

‣ With sparsity-promoting recovery we can:
- deblend – recover the wavefield, and 
- regularize from a jittered/irregular to a regular grid
- interpolate from a coarse jittered (50m) grid to a fine regular grid (25m, 12.5m, and 

finer)
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