
Time Optimal and Minimum Jerk Profiles for 
Motion Control– A Tutorial 
 

[The material in this tutorial is based on standard curriculum of K. N. Toosi University of Technology, 

Faculty of Electrical Engineering. For more information, please write to Mohammad Kia: 

M_Kia@hotmail.com] 

What are we talking about? 
In all concepts and sections of robotics, mechatronics and control systems engineering, when we want to 

design a controller for a system, no matter what the system is, we study the step, ramp or Dirac delta 

impulse responses. Considering the controller is perfect and the system will follow the step input, there 

will be two challenging questions to be answered here: 

 

1) Do we really need the system to behave like a step or ramp function?! Consider the altitude control 

system of an airliner (a type of aircraft for transporting passengers and air cargo) during takeoff. You 

are sitting relaxed with seatbelts fastened, then you will be shot into the air at the height of 3000ft 

like a catapult! That is not what you want. 

2) Should the controller bandwidths and gains be tuned such that they could follow a step input?! That 

is, when you know that you do not want the system to be following an impulse, step or even a ramp 

input, should you tune the controller for those behaviors or you could perform the tuning in a more 

optimum way? 

The answer to such questions has been found in years of implementing mechatronics systems, especially 

when the target plant is to be interfaced and interacted with a human being. And the answer is absolutely 

not! Scientific studies in bio-mechatronics and cybernetics shows that different motional behavior of the 

human body such as walking and running, reaching and grasping, turning and rotating, and so on, follow 

some specific patterns proportional to the jerk of the current movement which is what we are going to 

discuss here. Moreover, when we want to detail every step of the current movement, it is much easier to 

change the input of the system instead of interfering with the controller itself. Furthermore, take the PID 

controller for instance, if we input a step function into it, it will push a step pattern and its derivative, an 

infinite impulse, into the target plant. This will cause a pump and glitch in the mechanical system and if 

the mechanical system is something sensitive like an aircraft, it will lead to a total disaster. Last but not 

least, when we do not want to have an ultimate fast response, such as step, we can tune the controller in 



a more aggressive way with higher bandwidths and gains, and this will give us a perfect trajectory tracking 

and more energy and time saving results in the end.

What should we achieve? 
Up to now we have undrestood that instead of a step 

function we should input the system with somethig like this 

figure. 

Now the main question comes in to part: what should the 

characteristics of  this perfectly balanced  curve be? The 

answer lies within the concept of jerk. Neville Hogan (1984) 

noted that smoothness can be quantified as a function of 

jerk, which is the time derivative of acceleration. Hence, jerk 

is the third time derivative of location (i.e., position). If the 

location of a system is specified by variable x(t) , then the jerk 

of that system is: 

𝑥(𝑡) =
𝑑3𝑥(𝑡)

𝑑𝑡3
 

 

 

Now, as a general information which is essential to know when you are working on motion control 

systems, here we have provided a perfect table about derivatives and integrals of position and their names 

in physics and dynamics. 

Derivative Terminology SI Unit Meaning 

-5 Absounce m.s5 Time integral of abserk 

-4 Abserk m.s4 Time integral of abseleration 

-3 Abseleration m.s³ Time integral of absity 

-2 Absity m.s² Time integral of absement 

-1 Absement (Absition) m.s1 Time integral of position 

0 Position (Displacement) m Position 

1 Velocity m.s-1 Rate-of-change of position 

2 Acceleration m.s-2 Rate of change of velocity 

3 Jerk m.s-3 Rate of change of acceleration 

4 Jounce (Snap) m.s-4 Rate of change of jerk 

5 Crackle m.s-5 Rate of change of jounce 

6 Pop m.s-6 Rate of change of crackle 

7 Lock m.s-7 Rate of change of pop 

8 Drop m.s-8 Rate of change of lock 

The curved profile above in motion control systems is called trajectory. It is believed that for controlling 

systems which have interaction with human body involvement, such as automotive cruise control, 

elevator and escalator movements, active joint prostheses like elbow and knee prostheses, airliners, 

surgery robots and so on, the absolute value of jerk and how it changes defines the smoothness of the 



motion. Three renowned and most commonly used type of these profiles are Time Optimal S-Curve, Time 

Optimal ST-Curve, and Minimum Jerk Trajectory. 

Now consider a point-to-point hand movement control 

system of the body. The relation of position, speed, 

acceleration and jerk in both x and y coordinates to time 

is the trajectory. The overall flowchart for a control 

system will be: 

 

For every desired profile we have a set of motion constraints and a reference position or velocity defined: 

 P is the position step, 

 J is the maximum acceleration jerk, 

 I is the maximum deceleration jerk, 

 A is the maximum acceleration, 

 D is the maximum deceleration, and 

 V is the maximum velocity. 

Considering the sets of constraints, it can be calculated whether the system can or cannot transfer to the 

desired state from its initial state. Know that if the profile generation is performed online, the initial state 

is always the current state. The conditions to check this possibility is presented in the following sections. 

If the equations have an answer, the whole profile can be generated by merely integrating the needed 

jerk in every time instance. The integrators apply the maximum acceleration and velocity limits. So all we 

need to do is to precisely calculate the jerk at each sample time. 

Define a set of motion constraints for a controlled 
mechanical system

Receive a command to transition the controlled 
mechanical system to a new position or a new velocity

Calculate a motion profile for traversing to the new 
position or the new velocity, the motion profile 
including a continuous jerk reference

Instruct the controlled mechanical system to traverse 
from its current position or velocity to the new position 
or velocity according to the motion profile



 

Time Optimal Profiles - Time Based Approach 
Systems and methods are provided for generating a constraint-based, time-optimal motion profile for 

controlling the trajectory of a point-to-point move in a motion control system. A profile generator can 

calculate an S-Curve or ST-curve motion profile that includes a jerk reference that varies continuously over 

time for at least one of the motion profile segments, thereby producing a smooth, time-optimal trajectory. 

The profile generator can create the motion profile to conform to a set of motion constraints provided by 

the user. The profile generator also supports calculation of time-optimal motion profiles having segments 

that align to the sample time of the motion control system. In some embodiments, the profile generator 

can efficiently generate the motion profile by performing reference calculations only for those segments 

that will be used in the final motion profile for a given point-to-point move. 

So the overall flowchart for a control system is: 

 

A for a time based S-Curve or ST-Curve profile we have seven performance segments: 

Number Segment Name Description 

1 Acceleration Increase 
Acceleration profile increases from zero to 
maximum acceleration 

2 Acceleration Hold 
Acceleration profile stays constant as the 
maximum acceleration 

3 Acceleration Decrease 
Acceleration profile decreases from maximum 
acceleration to zero 

4 Velocity Hold Velocity profile stays constant 

5 Deceleration Increase 
Deceleration profile absolute value increases 
from zero to maximum deceleration 

Define a set of motion constraints 
for a controlled mechanical system

Receive a command to transition 
the controlled mechanical system 

to a new position or a new velocity

Calculate values for at least one of 
J, I, A, D, and V, and profile 

segment duration for a motion 
profile designed to transition the 

mechanical system to the new 
position or new velocity

Round all profile segment duration 
to nearest multiple of sample time

Recalculate J, I, A, D, and V using 
rounded profile segment duration

Generate a motion profile for 
traversing to the new position or 

the new velocity based on the 
profile segment duration and the 

values for J, I, A, D, and V



6 Deceleration Hold 
Deceleration profile absolute value stays constant 
as the maximum deceleration 

7 Deceleration Decrease 
Deceleration profile absolute value decreases 
from maximum deceleration to zero 

 S-Curve Profile Formula 
A typical S-Curve profile is something like the figure below. From left to right we can see the positon, 

velocity, acceleration and jerk values in relation to the spent time. We can clearly see the 7 profile 

segments described above in here. 

 

The jerk formula as a function of time is achieved by this function (it means give J for t1 seconds, then give 

zero for t2 seconds, after that give –J for t1 seconds again and so on): 

𝜃(𝑡) =

{
  
 

  
 
𝐽 0 < 𝑡 < 𝑡1
0 0 < 𝑡 < 𝑡2
−𝐽 0 < 𝑡 < 𝑡1
0 0 < 𝑡 < 𝑡3
−𝐼 0 < 𝑡 < 𝑡4
0 0 < 𝑡 < 𝑡5
𝐼 0 < 𝑡 < 𝑡4

    𝑤ℎ𝑒𝑟𝑒   

{
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Given that t1, t2, t3, t4 and t5 should all be greater than or equal to zero the following set of inequalities 

can be established: 

𝑉 >
𝐴2

𝐽
             ,          𝑉 >

𝐷2

𝐼
           ,            

𝑃
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For back calculation and precise computation of the maximum accelerations and velocity we can use: 



{
  
 

  
 𝐴 = 𝑃

2

(𝑡1 + 𝑡2)(𝑡5 + 2𝑡4 + 2𝑡3 + 2𝑡1 + 𝑡2)

𝐷 = 𝑃
2

(𝑡4 + 𝑡5)(𝑡5 + 2𝑡4 + 2𝑡3 + 2𝑡1 + 𝑡2)

𝑉 = 𝑃
2

𝑡5 + 2𝑡4 + 2𝑡3 + 2𝑡1 + 𝑡2

 

ST-Curve Profile Formula 
A typical ST-Curve profile is something like the figure below. We can see the 7 profile segments and 

positon, velocity, acceleration and jerk values just like before. We can see that the main difference 

between S-Curve and ST-Curve is the jerk.  

 

The jerk formula as a function of time is achieved by the below function (it means that for each segment 

generate a parabola: 

𝜃(𝑡) =

{
 
 
 

 
 
 
𝐾1𝑡(𝑡1 − 𝑡) 0 < 𝑡 < 𝑡1

0 0 < 𝑡 < 𝑡2
−𝐾1𝑡(𝑡1 − 𝑡) 0 < 𝑡 < 𝑡1

0 0 < 𝑡 < 𝑡3
−𝐾2𝑡(𝑡4 − 𝑡) 0 < 𝑡 < 𝑡4

0 0 < 𝑡 < 𝑡5
𝐾2𝑡(𝑡4 − 𝑡) 0 < 𝑡 < 𝑡4

    𝑤ℎ𝑒𝑟𝑒   

{
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𝑎𝑛𝑑 

{
 
 

 
 𝐾1 = 𝑃

12

𝑡1
3(𝑡1 + 𝑡2)(𝑡5 + 2𝑡4 + 2𝑡3 + 2𝑡1 + 𝑡2)
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12

𝑡4
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Given that t1, t2, t3, t4 and t5 should all be greater than or equal to zero the following set of inequalities 

can be established: 



𝑉 >
3𝐴2

2𝐽
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3𝐷2
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For back calculation and precise computation of the maximum accelerations and velocity we can use: 

{
 
 
 
 
 

 
 
 
 
 𝐽 = 𝑃

3

𝑡1(𝑡1 + 𝑡2)(𝑡5 + 2𝑡4 + 2𝑡3 + 2𝑡1 + 𝑡2)

𝐼 = 𝑃
3

𝑡4(𝑡4 + 𝑡5)(𝑡5 + 2𝑡4 + 2𝑡3 + 2𝑡1 + 𝑡2)

𝐴 = 𝑃
2

(𝑡1 + 𝑡2)(𝑡5 + 2𝑡4 + 2𝑡3 + 2𝑡1 + 𝑡2)

𝐷 = 𝑃
2

(𝑡4 + 𝑡5)(𝑡5 + 2𝑡4 + 2𝑡3 + 2𝑡1 + 𝑡2)

𝑉 = 𝑃
2

𝑡5 + 2𝑡4 + 2𝑡3 + 2𝑡1 + 𝑡2

 

S-Curve Profiles – A Closed From Solution 
Up to now we have shown how to generate the desired profile limited by a set of constraints. These 

profiles are perfect when you have a fully causal system where the current time of the system is available, 

and so you can design the geometry of more complex profiles like the mentioned ST-Curve. But there may 

be situations that you do not have the current system time or you have to start the profile from any initial 

condition! In such cases it is not very easy to just calculate the solution from its geometry and we need a 

complete controller to just calculate the profile for us. Previously we have stated that if we could calculate 

the needed jerk at any sample time, we can integrate it to achieve the target velocity or position. Consider 

the following diagram: 

 

Where the plant is a double or triple integrator system. In optimal control theory, it can be proved that 

such system can have a controller which transfers the system from any initial condition to X = [0] n × 1 final 

state in the minimum admissible time. 

S-Curve Velocity Profile Generator – Double Integral Plant 
It is well known in optimal control, the time optimal control law (TOC) for a double integral plant can be 

written as: 

[
𝑥1̇
𝑥2̇
] = [

0 1
0 0

] [
𝑥1
𝑥2
] + [

1
0
] 𝑢, 𝑢 = −𝐽 × 𝑠𝑖𝑔𝑛 (𝑥1 − 𝑟𝑒𝑓 +

𝑥2|𝑥2|

2𝐽
) , 𝑤ℎ𝑒𝑟𝑒: |𝑢| ≤ 𝐽 



Prof. Jingqing Han, a control theorist and educator who inspired generations of students and colleagues 

in China, proved that the TOC law of the double integrator system in digital form can exactly be written 

like this (x1 is velocity and x2 is acceleration): (𝑢 = 𝑓ℎ𝑎𝑛(𝑥1, 𝑥2, 𝑟, ℎ)) 

 

𝑓ℎ𝑎𝑛(𝑣1, 𝑣2, 𝑟, ℎ) →

{
 
 
 
 
 
 

 
 
 
 
 
 
𝑑 = 𝑟ℎ2, 𝑎0 = ℎ𝑣2, 𝑦 = 𝑣1 + 𝑎0

𝑎1 = √𝑑(𝑑 + 8|𝑦|)

𝑎2 = 𝑎0 +
𝑎1 − 𝑑

2
× 𝑠𝑖𝑔𝑛(𝑦)

𝑠𝑦 =
𝑠𝑖𝑔𝑛(𝑦 + 𝑑) − 𝑠𝑖𝑔𝑛(𝑦 − 𝑑)

2
𝑎 = 𝑠𝑦(𝑎0 + 𝑦 − 𝑎2) + 𝑎2

𝑠𝑎 =
𝑠𝑖𝑔𝑛(𝑎 + 𝑑) − 𝑠𝑖𝑔𝑛(𝑎 − 𝑑)

2

𝑓 = −𝑟𝑠𝑎 (
𝑎

𝑑
− 𝑠𝑖𝑔𝑛(𝑎)) − 𝑟 × 𝑠𝑖𝑔𝑛(𝑎)

, 𝑤ℎ𝑒𝑟𝑒 {

𝑟 = 𝐽 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑗𝑒𝑟𝑘
ℎ = 𝑇𝑠 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒

𝑣1 = 𝑥1 − 𝑟𝑒𝑓
𝑣2 = 𝑥2

 

S-Curve Position Profile Generator – Triple Integral Plant 
After a long time of research and practice in motion control, we had to also solve the TOC law for the 

triple integral plant as well, and the result is (x1 is position and x2 is velocity and x3 is acceleration): 

[

𝑥1̇
𝑥2̇
𝑥3̇

] = [
0 1 0
0 0 1
0 0 0

] [

𝑥1
𝑥2
𝑥3
] + [

0
0
1
] 𝑢,

𝑢 = {

−𝐽 × 𝑠𝑖𝑔𝑛(𝑥𝑐𝑎𝑙), |𝑥𝑐| > 𝑒𝑝𝑠

−𝐽 × 𝑠𝑖𝑔𝑛 (𝑥2 +
𝑥3|𝑥3|

2𝐽
) , |𝑥𝑐| ≤ 𝑒𝑝𝑠

 ,

{
 
 
 

 
 
 𝑦1 = 𝑟𝑒𝑓 − 𝑥1 +

𝑥3
3

3𝐽2
+
𝑥3|𝑥2|

𝐽

𝑦3 = 𝑠𝑖𝑔𝑛(𝑥2)(|𝑥2| +
𝑥3
2

2𝐽
)

𝑥𝑐 = 𝑦1 + 𝑦3√
|𝑦3|

𝐽

 

With these time optimal control laws we can easily write a program to generate a motion profile from any 

initial condition to the desired state. 

Minimum Jerk Trajectory 
Among all the motion profiles, the minimum jerk trajectory is the easiest of them all to generate. It is 

proved in mathematics that for a trajectory to be in minimum jerk, its sixth derivative must be equal to 

zero. Hence from integrating and substituting the initial and final states, the whole profile model can be 

achieved. The function x(t) represents the minimum jerk trajectory in one dimension. Hogan noted that, 

in general, if something you wanted to move something from location x = xi to x = xf in t = d seconds, the 

minimum jerk trajectory would be: 

𝑥(𝑡) = 𝑥𝑖 + (𝑥𝑓 − 𝑥𝑖) (10 (
𝑡

𝑑
)
3

− 15 (
𝑡

𝑑
)
4

+ 6(
𝑡

𝑑
)
5

) 



And the minimum jerk trajectory in two dimensions is: 

{
 
 

 
 𝑥(𝑡) = 𝑥𝑖 + (𝑥𝑓 − 𝑥𝑖) (10 (

𝑡

𝑑
)
3

− 15 (
𝑡

𝑑
)
4

+ 6(
𝑡

𝑑
)
5

)

𝑦(𝑡) = 𝑦𝑖 + (𝑦𝑓 − 𝑦𝑖) (10 (
𝑡

𝑑
)
3

− 15 (
𝑡

𝑑
)
4

+ 6(
𝑡

𝑑
)
5

)

  

 

Examples 
The usage of S-Curve and ST-Curve profiles is mostly in the whole human body movement such as 

elevators, cruise control systems, etc. The minimum Jerk trajectories are mostly used for human motor 

control like functions such as elbow and knee prostheses and robotic arms. 

S-Curve Velocity Profile Generator – Closed Form 
In MATLAB you only need to create a model like this: 

 

And write the following code in the MATLAB function block: 

function f = fhan(x1, x2, r, h) 

  

    d = r * h^2; 

    a0 = h * x2; 

    y = x1 + a0; 

    a1 = sqrt(d * (d + 8 * abs(y))); 



    a2 = a0 + sign(y) * (a1 - d) / 2; 

    sy = (sign(y + d) - sign(y - d)) / 2; 

    a = (a0 + y - a2) * sy + a2; 

    sa = (sign(a + d) - sign(a - d)) / 2; 

    f = -r * (a / d - sign(a)) * sa - r * sign(a); 

  

end 

 

Then set the variables Ts = 0.001, J = 1, A = 1 and D = 0.5 (“A” and “D” are the acceleration integrator 

output limits) and input a stair function with [0, 1, 0.1, 0] values at [0, 1, 5, 8] seconds. The result is: 

 

S-Curve Position Profile Generator – Time Based Mode 
Write the presented code in this section in a MATLAB function block and pass it through three integrators 

like this: 

 

Set variables P = 3, V = 1, A = 2, J = 3, Ts = 0.001. The following code solves the time based mode in the 

simplest way where A = D and J = I. 

function r = profile(P, V, A, J, Ts) 

  

persistent t; 

if isempty(t) 

    t = 0; 

else 

    t = t + Ts; 

end 

  

if P/V < (A/J + V/A) 

    b = A/J; 

    V = A * (-b + sqrt(b^2 + 4*P/A)) / 2; 

end 



  

if V*J < A^2 

    A = sqrt(J*V); 

end 

  

t1 = A/J; 

t2 = V/A - A/J; 

t3 = P/V - V/A - A/J; 

t4 = t1; 

t5 = t2; 

  

t = round(t / Ts) * Ts; 

t1 = round(t1 / Ts) * Ts; 

t2 = round(t2 / Ts) * Ts; 

t3 = round(t3 / Ts) * Ts; 

t4 = round(t4 / Ts) * Ts; 

t5 = round(t5 / Ts) * Ts; 

  

K = 2*P/(t1*(t1+t2)*(t5+2*t4+2*t3+2*t1+t2)); 

  

if 0 

elseif t < (t1) 

    r = +K; 

elseif t < (t1 + t2) 

    r = 0; 

elseif t < (2*t1 + t2) 

    r = -K; 

elseif t < (2*t1 + t2 + t3) 

    r = 0; 

elseif t < (2*t1 + t2 + t3 + t4) 

    r = -K; 

elseif t < (2*t1 + t2 + t3 + t4 + t5) 

    r = 0; 

elseif t < (2*t1 + t2 + t3 + 2*t4 + t5) 

    r = K; 

else 

    r = 0; 

end 

  

end 

The result will be: 

 

 



Minimum Jerk Trajectory Generator 
The following function generates a minimum jerk trajectory from xi to xf: 

function output = min_jerk(xi, xf, t) 

% Generate a minimum jerk trajectory from xi to xf. 

% xi: starting position, 1x3 matrix 

% xf: final position, 1x3 matrix 

% t: the time vector, Nx1 matrix 

% output: the generated trajectory, Nx3 matrix 

  

d = t(end); 

N = length(t); 

a = repmat((xf - xi), N, 1); 

b = repmat((10 * (t/d).^3 - 15 * (t/d).^4 + 6 * (t/d).^5)',1,3) ; 

output = repmat(xi, N, 1) + a .* b; 

  

end 

And the following code is an example for how to use it: 

i = 1; 

t = 0:0.01:0.5; 

  

out = min_jerk([5 0 0], [10 10 5], t); 

  

subplot(3,1,1); 

plot(t, out(:,1)); 

xlabel('t'); 

ylabel('x'); 

  

subplot(3,1,2); 

plot(t, out(:,2)); 

xlabel('t'); 

ylabel('y'); 

  

subplot(3,1,3); 

plot(t, out(:,3)); 

xlabel('t'); 

ylabel('z'); 

The result will be like this: 

 



Summary 
Please Note: 

1) The presented solutions are the result of very complex mathematics and mentioning them in a 

tutorial is out of discussion. For more information please refer to the references. 

2) There are many other types of trajectories in control systems for different purposes, but here we 

only study those which are perfect for human related motion control systems. For other types of 

trajectories you could search for example minimum-snap trajectory which is widely used for 

differentially flat systems, such as quadrotor. 

3) What presented here is the result of years of investigation, largely performed experimentally in 

computer simulations with the scientific spirit of daring imaginations, painstaking observations, 

careful generalization and abstraction, and truthful verifications of principles in real-world 

applications. It may help the newcomers to trajectory concept greatly if one abandons the initial 

“How can this be right?” attitude and, instead, run a few simulations and practical tests of the 

proposed solutions and observe the results. Perhaps the facts, or data, are more convincing than 

mere articulation of ideas. 

4) The benefit of the proposed solutions is that they present the current acceleration and jerk in 

addition to the desired velocity or position, therefore these additiona values can also be used as 

feedforward  
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