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Abstract—Fingerprint scanners may be susceptible to spoofing using artificial materials, or in the 

worst case, dismembered fingers.  An anti-spoofing method based on liveness detection has been 

developed for use in fingerprint scanners. This method quantifies a specific temporal perspiration 

pattern present in fingerprints acquired from live claimants. The enhanced perspiration detection 

algorithm presented here improves our previous work by including other fingerprint scanner 

technologies, using a larger, more diverse data set, and a shorter time window.  Several classification 

methods were tested in order to separate live and spoof fingerprint images. The dataset included 

fingerprint images from 33 live subjects, 30 spoof created with dental material and Play-Doh, and 

fourteen cadaver fingers.  Each method had a different performance with respect to each scanner 

and time window. However, all the classifiers achieved approximately 90% classification rate for all 

scanners, using the reduced time window and the more comprehensive training and test sets.  

 

Index Terms—biomedical measurements, biomedical image processing, identification of persons, 

pattern recognition.   

 

1. Introduction 

Biometrics can play a vital role in enhancing security systems and is under consideration for 

dramatically increased use in order to minimize security threats in military organizations, government 

centers, and public places like airports. Biometrics systems use physiological or behavioral characteristics 

to automatically determine or verify the identity of a person. Examples of biometric technologies include 

fingerprint, facial, iris, hand geometry, voice, and keystroke recognition. As with all security measures, a 

biometric system is subject to various threats like attacks at the sensor level, replay attacks on the data 

communication stream and attacks on the database [1]. This paper will focus on countermeasures to attacks 

at the sensor level of fingerprint biometric systems or spoofing, the process of defeating a biometric system 

through an introduction of a fake biometric sample or, worst case, a dismembered finger.  Liveness 

detection, i.e. to determine whether the introduced biometric is coming from a live source, has been 

suggested as a means to circumvent attacks that use spoof fingers.  
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2. Background 

Previous work has shown that it is possible to spoof a variety of fingerprint technologies through 

relatively simple techniques.  These include utilization of latent fingerprints on the scanner with pressure 

and/or background materials (e.g., a bag of water), molds created from casts of live fingers, and molds from 

casts made from latent fingerprints lifted from a surface and reproduced with photographing etching 

techniques [2] - [7]. Casts have been made from wax, silicon and plastic, and molds from silicon or gelatin 

(gummy finger) [4], [5]. 

Our laboratory has demonstrated vulnerability to spoofing using dental materials for casts and 

Play-Doh for molds [6], [7].  Furthermore, we have tested fingerprint scanners with cadaver fingers.  In our 

testing, ten attempts were performed for all available security levels for optical, capacitive AC, capacitive 

DC, and electro-optical technologies [6]. Results showed that the spoofing rate for cadaver fingers was 

typically 90% when verified against an enrolled cadaver finger, whereas for Play-Doh and water-based 

clay, results varied from 45-90% and 10-90%, respectively, when verified against an enrolled live finger. 

This research demonstrated that water-based casting materials and cadaver fingers are able to be scanned 

and verified for most fingerprint scanner technologies. Example images from live, cadaver and spoof 

fingers, obtained using commercially available fingerprint sensor technologies, are shown in Fig. 1.  

In order to avoid spoof attacks of fingerprint biometric systems, various liveness countermeasures 

have been considered including thermal sensing of finger temperature [8], laser detection of the 3-D finger 

surface and pulse [9], pulse oximetry [8], [10], ECG [8], and impedance and electrical conductivity of the 

skin (dielectric response) [11].  Other techniques which can make spoofing more difficult include challenge 

response, use of passwords, tokens, smart cards, and multiple biometrics.  Summaries of liveness and anti-

spoofing methods are given in [6], [12], [13].  Most methods require additional hardware which is costly 

and, unless integrated properly, may be spoofed with an unauthorized live person.  In addition, most 

previously developed methods are not available commercially and/or have not been tested rigorously in 

order to determine their effectiveness. 

Previously, we have developed an anti-spoofing method which is based on a time-series of 

fingerprint images captured from a DC capacitance-based Si CMOS fingerprint scanner [7].  The method 
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uses the physiological process of perspiration to determine the vitality of a fingerprint.  The initial 

algorithm extracted the grey levels along the ridges to form signals, calculated a set of features, and used a 

neural network to perform classification. The training and test sets were formed from 18 live, 18 spoof, and 

18 cadaver fingerprints.  Results gave 100% precision for distinguishing between fingerprints collected 

from live and spoof/cadaver fingers. While these initial results were encouraging, they also raised a number 

of issues, which, if adequately addressed would aid in the assessment of the viability of the approach.  

These include the performance of the techniques across a more diverse population, the contraction of the 

time series data to achieve user transparency of the technique, and the applicability of the approach to other 

fingerprint sensor technologies. 

In this paper, we present results of the extension of this initial study which addresses these issues. 

Section 3.1 discusses the collection of a larger, more diverse dataset which includes 33 live, 30 spoof 

(based on the 30 live individuals), and 14 cadaver fingers for each scanner. Section 3.2 describes the 

perspiration detection algorithm which was expanded as part of this work to include new features and new 

classification techniques. The classification techniques used are described in Section 3.3 while Section 4 

gives the vitality detection results for optical, electro-optical, and DC capacitive sensor devices for time 

series of two and five seconds as well as their statistical analysis. These results are discussed in section 5 

and the emergence from the data of device dependent feature sets are noted as a potential avenue for further 

improvement in this vitality based countermeasure to fingerprint system spoofing. 

 

3. Methods 

3.1 Data collection 

Three types of fingerprint scanner technologies were used in this study:  capacitive DC (Precise 

Biometrics, 100sc), electro-optical (Ethentica, Ethenticator USB 2500), and optical (Secugen, EyeD 

hamster model #HFDUO1A).  These systems were selected based on considerations of technology 

diversity, availability and flexibility of the software developer kit (SDK), and ability to readily access and 

construct a time series of sensor raw images.  For each device, fingerprint images were collected from live, 

spoof, and cadaver fingers. Protocols for data collection from the subjects were followed that were 

approved by the West Virginia University Institutional Review Board (IRB) (HS#14517 and HS#15322).  
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Thirty-three volunteers were solicited and represented a wide range of ages (20-60 years), ethnicities, and 

both sexes (17 men and 16 women). Each subject was asked to enroll (up to five times), verify (six times), 

and create a cast for generation of spoofs (described below).  Two live subjects were excluded in two 

devices and three in another device due to inability to enroll, a technical error or time constraint.  Three 

subjects in the spoof category were excluded because a spoof cast was not created because of subject time 

constraints or quality of spoof cast.  Table 1 summarizes the number of subjects used for each device and 

category.  A time-series of twenty fingerprint images was collected for each subject and device using 

customized programs developed with manufacturer-provided SDK functions.  The images utilized in this 

paper are the first image and images from approximately two seconds and five seconds after the start of the 

time-series collection.  To generate spoof fingerprint images, finger casts were created from thirty subjects 

who participated in generation of the time series of live fingerprint images. Dental impression materials of 

two types were used, (i) name: Aquasil Easy Mix Putty Smart Wetting Impression Material, content: 

Quadrafunctional Hydrophilic Addition Reaction Silicone (having very high viscosity, high consistency) 

manufacturer: Dentsply Caulk [14] and (ii) Extrude, content: polyvinylsiloxane impression material 

(having medium consistency-medium bodied) manufacturer: Kerr [15].  These dental impression materials 

formed the cast and Play-Doh was used to form the mold. A time-series capture of the Play-Doh spoof 

fingers was captured similar to the live fingers.  Fourteen cadaver fingers (from 4 subjects, of male age 41, 

female ages 55, 65, and 66) were collected in collaboration with the Musculoskeletal Research Center 

(MSRC) at the West Virginia University Health Science Center, creating the time-series of cadaver 

fingerprint images. Only the fingerprint images which were able to enroll were considered for study. Six 

cadaver fingers were excluded from capacitive DC because of failure to enrollment. One cadaver finger 

was excluded from the electro-optical device because of technical difficulties with the scanner (Table 1). 

Examples of the time-series of live, spoof, and cadaver fingerprint images are shown in Fig. 2.  

 

3.2 Perspiration Detection Algorithm 

The basis for our original method and details of the algorithm are discussed in detail in [7]. In 

brief, when in contact with the fingerprint sensor surface, live fingers, as opposed to cadaver or spoof, 

demonstrate a distinctive spatial moisture pattern which evolves in time due to the physiological 
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perspiration process.  Optical, electro-optical, and solid-state fingerprint sensors are sensitive to the skin’s 

moisture changes on the contacting ridges of the fingertip skin. These sensors can capture the time 

dependent, spatial pattern (Fig. 2). To quantify the perspiration phenomenon, our algorithm maps a 2-

dimensional fingerprint image to a "signal" which represents the gray level values along the ridges (Fig. 3). 

Variations in gray levels in the signal correspond to variations in moisture both statically (on one image) 

and dynamically (difference between consecutive images). The static feature measures variability in gray 

level along the ridges due to the presence of perspiration around the pores. The dynamic features quantify 

the temporal change of the ridge signal due to propagation of this moisture between pores in the initial 

image relative to image captures two (or five) seconds later.  

The basic steps performed in the algorithm are described as follows. For more information, please 

refer to [7]. First, two fingerprint images are captured within a 2 (or 5) second interval (referred to as first 

and last capture). The results are enhanced by having the subjects wipe their fingers immediately before 

capture. The captured images are binarized and thinned to locate the ridges. Ridges that are not long 

enough to cover at least 2 pores are discarded. Using the thinned ridge locations as a mask, the gray levels 

of the original image underneath these ridge paths are recorded. The resulting signals for the first and the 

last capture are representative of the moisture level along the ridges for a given image in the time series.  

Fig. 3 illustrates these steps by showing a portion of the ridge signals derived from the first and last 

captures from a live source along the mentioned mask. 

Prior work established and obtained test results from one static and four dynamic measures [7]. 

The static measure (SM) uses the Fourier transform of the ridge signal from the first image capture and 

quantifies the existence of active pores through the corresponding spatial frequencies. The four dynamic 

measures quantify the specific ongoing temporal changes of the ridge signal intensity due to active 

perspiration. The first dynamic measure (DM1) is the total swing ratio of the first to last fingerprint signal. 

The second dynamic measure (DM2) is the growth ratio of the minimum to maximum of the first and last 

fingerprint signal. The third dynamic measure (DM3) is the mean of the differences of the first and last 

fingerprint signals, and the fourth dynamic measure (DM4) describes the percentage change between the 

standard deviations of the first and last fingerprint signals. 
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To increase the robustness of the classification, two additional measures were introduced and are 

presented here. In the case that the fingerprint signal swings beyond a device’s dynamic range (i.e. the 

device enters cut-off or saturation due to extreme dryness/moisture), the information about the minimums 

and maximums and their rate of change, utilized in the second dynamic measure, will be lost. These two 

measures address this by taking advantage of the upper and lower cut off region lengths of the fingerprint 

signals and converting them into perspiration rates. The equations for the new dynamic measures are given 

below. 

• Dry saturation percentage change: This fifth dynamic measure (DM5) indicates how fast the low 

cut-off region of the ridge signal is disappearing, thus extracting further perspiration rate information 

from the low-cutoff region: 
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C1i is referring to the ith point (pixel gray level) in the first capture ridge signal. C2i is the same 

except for that it is for the second capture. i is equal to 1 to the length of the ridge signal (m). m is 

the same for C1 and C2 since the same mask was used for C1 and C2. LT is the low-cutoff threshold 

of the ridge signal ( min(Ci) ). δ is the discrete delta function.  Higher DM5 corresponds to faster 

disappearance of dry saturation, because the active perspiration raises the baseline of the ridge 

signal above the low-cutoff region of the sensor. This is an indication of ongoing perspiration. 0.1 

is added to the denominator to avoid division by zero. 

• Wet saturation percentage change: The sixth dynamic measure (DM6) indicates how fast the high 

cut-off region of the ridge signal is appearing, thus extracting further perspiration rate information 

from the wet-saturation region: 
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C1i and C2i are the same as in DM5. HT is the high-cutoff (saturation) threshold of the ridge signal 

( max(Ci) ). δ is the discrete delta function. Higher DM6 corresponds to faster appearance of moist 

saturation, because the active perspiration raises the baseline of ridge signal towards the saturation 

levels of the sensor. This is an indication of ongoing perspiration. 0.1 is added to the denominator 

to avoid division by zero.  

 

3.3 Classification 

   One static and six dynamic measures are used as features for classification of images. These 

measures were obtained from two different time windows of two and five seconds. Classification was 

performed separately for each time window. Classification of images is divided into live and spoof where 

spoof fingerprint images include images from Play-Doh spoofs and cadavers. With approximately 75 

images for each scanner, 50% of the data was used as a training set and the remaining 50% as the test set 

for classification. Three classification methods were used:  neural networks, discriminant analysis, and One 

R. One R and neural network classification was performed using the WEKA (Waikato Environment for 

Knowledge Analysis) software tool [16] that provides different classification techniques for large data sets. 

Discriminant analysis was performed with R [17] and SAS [18]. 

For neural network classification, a back propagation algorithm (with momentum 0.2) was used to 

train the data set with the hidden layer of 4 nodes derived from (attributes + groups)/2) (where there are 

seven attributes and two groups). Other specifications include a learning rate of 0.3, a nominal to binary 

filter, and validation threshold of 20. 

Discriminant analysis requires that variables represent a normal distribution. Almost all variables 

were tested for normality with the help of R software tool.  Discriminant analysis of two groups was 

performed using SAS.  Discriminant analysis uses pooled variance-covariance matrix of variables for 

generating a linear combination of variables called discriminant function [19]. The discriminate function 

separates the two groups. All variables were used as parameters for discriminant analysis.  

One R is the most simple classification tree method. It uses ‘one-rule’ to form a single level 

decision tree [20].The rule tests for each variable and its different values. It enumerates how frequently 

each class appears for each value of the variable. Then it determines the most frequent class. It creates the 
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rule and assigns a class for that particular value of variable. Likewise, it forms different rules for different 

variable values. It computes the error rate for each rule on the training data. Finally it selects the rule with 

the smallest error rate to classify the groups. In our case, One R classifier with minimum bucket size of 6 

was used. It chose the static measure to form a rule for all scanners. 

 

4. Results 

Fig. 4 shows the mean of each feature for live and spoof (which includes both cadaver and Play-

Doh fingerprint images) for each device.  For some features the mean appears graphically different between 

groups.  Further exploratory statistical analysis was performed which showed that the means were 

statistically different (p<0.01) for DM2 and DM5 for capacitive DC, SM, DM2, and DM6 for electro-

optical, and SM, DM2 and DM5 for optical (as indicated by a *).   

Figs. 5, 6, and 7 present the classification rate for live and spoof fingerprints for each device and 

time window.  The capacitive DC device demonstrates between 80-93.3% classification for live fingers and 

80-95% for spoof fingers, depending on the method and time window. There is little difference in the 

results for two seconds as compared to five seconds. For the electro-optical device, 62.5-93.3% 

classification is achieved for live and 81-100% for spoof.  There is a modest improvement in live 

classification from two to five seconds (62.5-81.3% to 81.3-93.3%), with a smaller increase in spoof 

classification (81-94.7% to 95.2-100.0%). For optical, classification ranged from 73.3-100% for live and 

85.7-95.4% for spoof with a small change for live classification from two to five seconds (73.3-93.8% to 

80-100%). 

 

5.  Discussion and Future Work 

Detection of liveness has been suggested as a means to make spoofing more difficult.  For 

fingerprint recognition, several liveness methods including temperature, pulse, pulse oximetry, and 

electrocardiogram have been suggested [6], [8]-[12].  The difficulty with these measurements is that they 

require hardware in addition to the fingerprint scanner to capture these liveness features.  This is expensive, 

bulky, and the liveness technique may be spoofed with a live finger presented in combination with a spoof.  

Furthermore, proposed liveness methods have not been rigorously tested and evaluated with relation to 
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impact on statistical measurements like false reject and false accept ratios, user acceptance, universality, 

and collectability. 

The research presented here suggests a new method which detects the perspiration process through 

a time-series of fingerprint images measured directly from the scanner itself.  Using image processing and 

pattern recognition, fingerprint images captured from live fingers can be separated from those captured 

from spoof or dismembered fingers.  This method relies solely on the underlying fingerprint scanner with 

the addition of software-based image processing and pattern recognition to make the liveness decision.  

This method is more difficult to spoof, since the spoof would have to replicate perspiration emanating from 

the pores and spreading across the ridges. Through this paper and other published work, this method is 

being evaluated in terms of statistical performance and other biometric characteristics for its 

appropriateness to be used widely in combination with fingerprint authentication. 

The initial version of the algorithm was performed for a DC capacitance scanner with a five 

second window for eighteen subjects (ages 20-45) [7].  This study expands this research to consider (1) a 

variety of technologies, (2) a large, more diverse dataset, and (3) a shorter time window.  First, results 

demonstrate that using standard classification tools, algorithms can be created to separate live and 

spoof/cadaver fingerprint images for optical and electro-optical technologies, in addition to DC 

capacitance.  Second, in collection of the dataset, a variety of age groups (11 people between ages 20-30 

years, 9 people between 30-40, 7 people between 40-50, and 6 people greater than 50), ethnicities (Asian-

Indian, Caucasian, Middle Eastern), and approximately equal numbers of men and women were chosen.  

While in this small dataset, it is impossible to consider these groups separately, the dataset presents a 

diverse set of fingers and therefore begins to consider potential problems (dry finger, saturated finger, ridge 

variations, etc.).  Even with this diversity, we were able to achieve approximately 90% classification 

considering standard pattern recognition algorithms and a common set of features.  Third, the original 

algorithm utilized a five-second time window to show feasibility of the concept.  The results from this 

paper demonstrate that a shorter time window of two seconds achieves similar classification results. 

The classification performed here used a standard set of seven features and standard classification 

routines: neural networks, One R (selection of the best single measure and threshold), and discriminant 

analysis.  Training was performed with images from 15 live subjects and 23 spoof samples.  Training was 



 11 

separate for each device and time window.  A device-independent algorithm was not developed due to the 

large differences in the measurements across devices and since the statistical analysis showed different 

features having relevance for difference devices. Between the statistical analysis and classification results, a 

device-specific approach would most likely be the most successful for classification. That is, different 

measures have varying effectiveness for different technologies.   The future direction of this research will be 

to further explore the features and to develop additional features which provide the best classification for each 

of the device types.   

While this study begins to address some of the limitations of the original work, more data is needed 

for further verify that this phenomenon is applicable across the population. Potentially, subjects having dry 

and overly moist fingers may receive a false rejection.  Environmental testing will be necessary to 

demonstrate applicability to a wide variety of settings. Second, while reasonable classification is achieved for 

a variety of devices using a common set of features, it is necessary to consider each device separately to 

expand and fine-tune the features and algorithms for each device.  This could potentially improve 

classification performance.  Third, features are averaged across the entire fingerprint image.  Targeting areas 

of the image that are changing due to perspiration may improve the separation of live and spoof measurement.  

Lastly, in this method the fingerprint image is converted to a ridge signal. While effective in pinpointing the 

parts of the image which are most effected by perspiration, image processing techniques may provide 

enhanced features, particularly considering the entire area around the pores, and therefore improving 

classification. 

 

6. Conclusion 

This paper describes a unique method to determine liveness through measurement of perspiration 

process in the finger. Results are presented which improve upon past reports by decreasing the time needed 

to make the decision and demonstrating its applicability to a variety of fingerprint sensor technologies. A 

diverse subject population was tested and ~90% classification rate for all scanners was achieved. The 

method is totally software based and no additional hardware is required. Application of this liveness 

method can increase the difficulty of spoof attacks for fingerprint scanners. 
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Table 1. Number of subjects used for each device and category.    

 Capacitive DC Electro-Optical Optical 
Live 31 30 31 

Spoof 30 30 30 
Cadaver 8 13 14 
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LIVE IMAGE                         CADAVER IMAGE                                   SPOOF IMAGE             

Fig. 1.  Images captured with commercial fingerprint sensors from live, cadaver and spoof fingers. 
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Live: 

                

 
Spoof:  
 

      

   
Cadaver: 

                

 

Fig. 2. Example fingerprint images from live (top), spoof (middle), and cadaver (bottom) fingers captured 

at 0, 2 and 5 seconds (left to right) after placement on the scanner. 
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Fig. 3. Ridge mask superimposed over the original grayscale fingerprint image (left) and resulting 

ridge signal for two image captures, 0 (solid) and 5 (dashed) seconds (right). 
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Mean of Features for Capacitive DC
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Mean of Features for Electro-optical
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Mean of Features for Optical
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Fig. 4. Mean of each feature for live (dashed) and spoof (solid) for each device, capacitive DC (top), 

electro-optical (middle), and optical (bottom).  * indicates p<0.01. 
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Classification Results for Capacitive DC

0%

20%

40%

60%

80%

100%

Group (time window)

 C
la

ss
ifi

ca
tio

n 
R

at
e

Neural
Network
OneR

Discriminant
Analysis

Live (2 sec) Spoof (2 sec) Live (5 sec)  Spoof (2 sec)

 

 

Fig. 5. Classification rates of capacitive DC for live and spoof (2 and 5 second windows) using neural 

network, One R, and discriminant analysis classification techniques.  
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Classification Results for Electro-optical

0%

20%

40%

60%

80%

100%

Group (time window)

 C
la

ss
ifi

ca
tio

n 
R

at
e

NeuralNetwork

OneR

Discriminant
Anlaysis

Live (2 sec) Spoof (2 sec) Live (5 sec) Spoof (5 sec)

 

Fig. 6. Classification rates of electro-optical for live and spoof (2 and 5 second windows) using neural 

network, One R, and discriminant analysis classification techniques. 
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Classification Results for Optical
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Fig. 7. Classification rates of optical for live and spoof (2 and 5 second windows) using neural network, 

One R, and discriminant analysis classification techniques. 

 

 

                 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


