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Time Series

Forecasting Techniques

Back in the 1970s, we were working with a company in the major home
appliance industry. In an interview, the person in charge of quantitative
forecasting for refrigerators explained that their forecast was based on one time
series technique. (It turned out to be the exponential smoothing with trend
and seasonality technique that is discussed later in this chapter.) This tech-
nique requires the user to specify three “smoothing constants” called α, β, and
γ (we will explain what these are later in the chapter). The selection of these
values, which must be somewhere between 0 and 1 for each constant, can have
a profound effect upon the accuracy of the forecast.

As we talked with this forecast analyst, he explained that he had chosen
the values of 0.1 for α, 0.2 for β, and 0.3 for γ. Being fairly new to the world
of sales forecasting, we envisioned some sophisticated sensitivity analysis that
this analyst had gone through to find the right combination of the values for
the three smoothing constants to accurately forecast refrigerator demand.

However, he explained to us that in every article he read about this
technique, the three smoothing constants were always referred to as α, β,
and γ, in that order. He finally realized that this was because they are the 1st,
2nd, and 3rd letters in the Greek alphabet. Once he realized that, he “simply
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took 1, 2, and 3, put a decimal point in front of each, and there were my
smoothing constants.”

After thinking about it for a minute, he rather sheepishly said, “You know,
it doesn’t work worth a darn, though.”

� INTRODUCTION

We hope that over the years we have come a long way from this type
of time series forecasting. First, it is not realistic to expect that each
product in a line like refrigerators would be accurately forecast by the
same time series technique—we probably need to select a different
time series technique for each product. Second, there are better ways
to select smoothing constants than our friend used in the previous
example. To understand how to better accomplish both of these, the
purpose of this chapter is to provide an overview of the many tech-
niques that are available in the general category of time series analy-
sis. This overview should provide the reader with an understanding
of how each technique works and where it should and should not
be used.

Time series techniques all have the common characteristic that
they are endogenous techniques. This means a time series technique
looks at only the patterns of the history of actual sales (or the series of
sales through time—thus, the term time series). If these patterns can
be identified and projected into the future, then we have our forecast.
Therefore, this rather esoteric term of endogenous means time series
techniques look inside (that is, endo) the actual series of demand
through time to find the underlying patterns of sales. This is in con-
trast to regression analysis, which is an exogenous technique that we
will discuss in Chapter 4. Exogenous means that regression analysis
examines factors external (or exo) to the actual sales pattern to look for
a relationship between these external factors (like price changes) and
sales patterns.

If time series techniques only look at the patterns that are part
of the actual history of sales (that is, are endogenous to the sales
history), then what are these patterns? The answer is that no matter
what time series technique we are talking about, they all examine one
or more of only four basic time series patterns: level, trend, seasonal-
ity, and noise. Figure 3.1 illustrates these four patterns broken out of a
monthly time series of sales for a particular refrigerator model. The
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level is a horizontal sales history, or what the sales pattern would be if
there were no trend, seasonality, or noise. For a product that is sold to
a manufacturing concern as a component in another product whose
demand is stable, the sales pattern for this product would be essen-
tially level, with no trend, seasonality, or noise. In our example in
Figure 3.1, however, the level is simply the starting point for the time
series (the horizontal line), with the trend, seasonality, and noise
added to it.

Trend is a continuing pattern of a sales increase or decrease, and
that pattern can be a straight line or a curve.

Of course, any business person wants a positive trend that is
increasing at an increasing rate, but this is not always the case. If
sales are decreasing (either at a constant rate, an increasing rate, or
a decreasing rate), we need to know this for forecasting purposes.
In our example in Figure 3.1, trend is expressed as a straight line going
up from the level.

Seasonality is a repeating pattern of sales increases and decreases
that occurs within a one-year period or less (“seasonal patterns” of
longer than one year are typically referred to as “cycles,” but can be
forecast using the same time series techniques). Examples of seasonality
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are high sales every summer for air conditioners, high sales of
agricultural chemicals in the spring, and high sales of toys in the fall.
The point is that the pattern of high sales in certain periods of the year
and low sales in other periods repeats itself every year. When broken
out of the time series in Figure 3.1, the seasonality line can be seen as a
regular pattern of sales increases and decreases around the zero line at
the bottom of the graph.

Noise is random fluctuation—that part of the sales history that
time series techniques cannot explain. This does not mean the fluctu-
ation could not be explained by regression analysis or some qualita-
tive technique; it means the pattern has not happened consistently in
the past, so the time series technique cannot pick it up and forecast
it. In fact, one test of how well we are doing at forecasting with time
series is whether the noise pattern looks random. If it does not have
a random pattern like the one in Figure 3.1, it means there are still
trend and/or seasonal patterns in the time series that we have not yet
identified.

We can group all time series techniques into two broad categories—
open-model time series techniques and fixed model time series techniques—
based on how the technique tries to identify and project these four
patterns. Open-model time series (OMTS) techniques analyze the
time series to determine which patterns exist and then build a unique
model of that time series to project the patterns into the future and,
thus, to forecast the time series. This is in contrast to fixed-model time
series (FMTS) techniques, which have fixed equations that are based
upon a priori assumptions that certain patterns do or do not exist in
the data.

In fact, when you consider both OMTS and FMTS techniques, there
are more than 60 different techniques that fall into the general category
of time series techniques. Fortunately, we do not have to explain each
of them in this chapter. This is because some of the techniques are very
sophisticated and take a considerable amount of data but do not pro-
duce any better results than simpler techniques, and they are seldom
used in practical sales forecasting situations. In other cases, several dif-
ferent time series techniques may use the same approach to forecasting
and have the same level of effectiveness. In these latter cases where
several techniques work equally well, we will discuss only the one that
is easiest to understand (following the philosophy, why make some-
thing complicated if it does not have to be). This greatly reduces the
number of techniques that need to be discussed.
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Because they are generally easier to understand and use, we will
start with FMTS techniques and return to OMTS later in the chapter.

� FIXED-MODEL TIME SERIES TECHNIQUES

FMTS techniques are often simple and inexpensive to use and require
little data storage. Many of the techniques (because they require little
data) also adjust very quickly to changes in sales conditions and, thus,
are appropriate for short-term forecasting. We can fully understand the
range of FMTS techniques by starting with the concept of an average as
a forecast (which is the basis on which all FMTS techniques are founded)
and move through the levels of moving average, exponential smoothing,
adaptive smoothing, and incorporating trend and seasonality.

The Average as a Forecast

All FMTS techniques are essentially a form of average. The sim-
plest form of an average as a forecast can be represented by the
following formula:

Forecastt +1 = Average Sales1 to t = ∑
N

t =1
St/N (1)

where:  S = Sales
N = Number of Periods of Sales Data (t)

In other words, our forecast for next month (or any month in the
future, for that matter) is the average of all sales that have occurred in
the past.

The advantage to the average as a forecast is that the average is
designed to “dampen” out any fluctuations. Thus, the average takes
the noise (which time series techniques assume cannot be forecast
anyway) out of the forecast. However, the average also dampens out
of the forecast any fluctuations, including such important fluctuations
as trend and seasonality. This principle can be demonstrated with a
couple of examples.

Figure 3.2 provides a history of sales that has only the time
series components of level and noise. The forecast (an average) does
a fairly good job of ignoring the noise and forecasting only the level.
However, Figure 3.3 illustrates a history of sales that has the time series
components of level and noise, plus trend. As will always happen when

Time Series Forecasting Techniques 77

03-Mentzer (Sales).qxd  11/2/2004  11:33 AM  Page 77



the average is used to forecast data with a trend, the forecast always
lags behind the actual data. Because the average becomes more “slug-
gish” as more data are added, the lagging of the forecast behind the
actual sales gets worse over time. If our example in Figure 3.3 had been
a negative trend, lagging behind would have meant the average would
have always forecast high.

As a final example, Figure 3.4 illustrates a history of sales that has
the time series components of level and noise, plus seasonality. Notice
that the average has the unfortunate effect of losing (dampening out)
the seasonal pattern. Thus, we would lose this important component of
any possible forecast.

The conclusion from these three illustrations is that the average
should only be used to forecast sales patterns that contain only the time
series components of level and noise. Remember that FMTS techniques
assume certain patterns exist in the data. In the case of the average, we
are assuming there is no trend or seasonality in the data. This is why
we stated earlier that the forecast for the next period is also the forecast
for all future periods. Because the data are supposed to be level, there
should be no pattern of sales increasing (trend) or increasing and
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Figure 3.3 Average as a Forecast: Level, Trend, and Noise
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decreasing (seasonality). Therefore, sales should be the same (level) for
each period in the future. If nothing else, this demonstrates the rather
naïve assumption that accompanies the use of the average as a forecast.

The average as a forecasting technique has the added disadvantage
that it requires an ever-increasing amount of data storage. With each
successive month, an additional piece of data must be stored for the
calculation. With the data storage capabilities of today’s computers,
this may not be too onerous a disadvantage, but it does cause the aver-
age to be sluggish to changes in level of demand. One last example
should illustrate this point. Figure 3.5 shows a data series with little
noise, but the level changes. Notice that the average as a forecast never
really adjusts to this new level because we cannot get rid of the “old”
data (the data from the previous level).

Thus, the average as a forecast does not consider trend or season-
ality, and it is sluggish to react to changes in the level of sales. In fact,
it does little for us as a forecasting technique, other than give us
an excellent starting point. All FMTS techniques were developed
to overcome some disadvantage of the average as a forecast. We next
explore the first attempt at improvement, a moving average.
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Moving Average

Rather than use all the previous data in the calculation of an aver-
age as the forecast, why not just use some of the more recent data? This
is precisely what a moving average does, with the following formula.

Ft+1 = (St + St−1 + St−2 + . . . + St−N−1)/N (2)

where: Ft+1 = Forecast for Period t + 1
St−1 = Sales for Period t − 1

N = Number of Periods in the Moving Average

So a three-period moving average would be:

Ft+1 = (St + St−1 + St−2)/3

a four-period moving average would be:

Ft+1 = (St + St−1 + St−2 + St−3)/4

a five-period moving average would be:

Ft+1 = (St + St−1 + St−2 + St−3 + St–4)/5

and so on, for as many periods in the moving average as you would
like.

The problem with a moving average is deciding how many periods
of sales to use in the forecast. The more periods used, the more it starts
to look like an average. The fewer periods used, the more reactive the
forecast becomes, but the more it starts to look like our naïve technique
from Chapter 2 (the forecast for the next period equals the sales from
the last period). Applying 3-period, 6-period, and 12-period moving
averages to each of the demand patterns in Figures 3.2, through 3.5
(now Figures 3.6 through 3.9, respectively) should illustrate some of
these points.

For a time series that has only level and noise (Figure 3.6), our three
moving averages work equally well. This is because all dampen out the
relatively small amount of noise, and there is no change in level to
which to react. Because it uses the least data, the three-period moving
average is superior in this case.
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Figure 3.6 Moving Average as a Forecast: Level and Noise

However, for the time series with trend added (Figure 3.7), very
different results are obtained. The longer the moving average, the less
reactive the forecast, and the more the forecast lags behind the trend
(because it is more like the average). Again, this is because moving
averages were not really designed to deal with a trend, but the shorter
moving averages adjust better (are more reactive) than the longer in
this case.

An interesting phenomenon occurs when we look at the use of
moving averages to forecast time series with seasonality (Figure 3.8).
Notice that both the three-period and the six-period moving averages
lag behind the seasonal pattern (forecast low when sales are rising
and forecast high when sales are falling) and miss the turning points
in the time series. Notice also that the more reactive moving average
(three-period) does a better job of both of these. This is because in
the short run (defined here as between turning points), the seasonal
pattern simply looks like trend to a moving average.

However, the 12-period moving average simply ignores the
seasonal pattern. This is due to the fact that any average dampens out
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Figure 3.7 Moving Average as a Forecast: Level, Trend, and Noise
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random fluctuations (noise) and any patterns that are the same length
as the average. Because this time series has a 12-month seasonal
pattern, a 12-month moving average completely loses the seasonal
component in its forecast. This is particularly dangerous when you
consider how many sales managers use a simple 12-month moving
average to generate a forecast—they are inadvertently dampening out
the seasonal fluctuations from their forecasts.

Finally, let’s look at the time series where the level changes (Figure
3.9). Again, the longer moving average tends to dampen out the noise
better than the shorter moving average, but the shorter moving aver-
age reacts more quickly to the change in level.

Thus, what we need in a moving average is one that acts like an
average when there is only noise in the time series (dampens out the
noise but uses less data than an average), but acts like a naïve forecast
when the level changes (puts more weight on what happened very
recently). The problem with this is how to recognize the difference in
a change that is noise, as opposed to a change in level, a trend, or a
seasonal pattern.
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A final problem with the moving average is that the same weight
is put on all past periods of data in determining the forecast. It is more
reasonable to put greater weight on the more recent periods than
the older periods (especially when a longer moving average is used).
Therefore, the question when using a moving average becomes how
many periods of data to use and how much weight to put on each
of those periods. To answer this question about moving averages, a
technique called exponential smoothing was developed.

Exponential Smoothing

Exponential smoothing is the basis for almost all FMTS techniques
in use today. It is easier to understand this technique if we acknowl-
edge that it was originally called an “exponentially weighted moving
average.” Obviously, the original name was too much of a mouthful
for everyday use, but it helps us to explain how this deceptively
complex technique works. We are going to develop a moving average,
but we will weight the more recent periods of sales more heavily in
the forecast, and the weights for the older periods will decrease at
an exponential rate (which is where the “exponential smoothing” term
came from).

Regardless of that rather scary statement, we are going to accom-
plish this with a very simple calculation (Brown & Meyer, 1961).

Ft+1 = α St + (1 − α) Ft (3)

where:  Ft = Forecast for Period t
St = Sales for Period t
0 < α < 1

In other words, our forecast for next period (or, again, any period in
the future) is a function of last period’s sales and last period’s forecast,
with this α thing thrown in to confuse us.

What we are actually doing with this exponential smoothing
formula is merely a weighted average. Because α is a positive fraction
(that is, between 0 and 1), 1 − α is also a positive fraction, and the two
of them add up to 1. Any time we take one number and multiply it
by a positive fraction, take a second number and multiply it by the
reciprocal of the positive fraction (another way of saying 1 − the first
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fraction), and add the two results together, we have merely performed
a weighted average. Several examples should help:

1. When we want to average two periods’ sales (Period 1 was 50
and Period 2 was 100, for example) and not put more weight on
one than the other, we are actually calculating it as ((0.5 × 50) +
(0.5 × 100)) = 75. We simply placed the same weight on each
period. Notice that this gives us the same result as if
we had done the simpler equal-weight average calculation of
(50 + 100)/2.

2. When we want the same two periods of sales but want to
put three times as much weight on Period 2 (for reasons we
will explain later), the calculation would now be ((0.25 × 50) +
(0.75 × 100)) = 87.5. Notice that in this case α would be 0.25 and
1 − α would be 0.75.

3. Finally, if we want nine times as much weight on Period 2, the
resultant calculation would be ((0.1 × 50) + (0.9 × 100)) = 95. Again,
notice that in this case α would be 0.1 and 1 − α would be 0.9.

Therefore, we can control how much emphasis in our forecast is
placed on what sales actually were last period. But what is the purpose
of using last period’s forecast as part of next period’s forecast? This is
where exponential smoothing is “deceptively complex” and requires
some illustration.

For the purpose of this illustration, let’s assume that on the
evening of the last day of each month, we make a forecast for the next
month. Let’s also assume that we have decided to use exponential
smoothing and to put 10% of the weight of our forecast on what hap-
pened last month. Further, let’s assume this is the evening of the last
day of June. Thus, our value for α would be 0.1 and our forecast for
July would be:

FJULY = .1 SJUNE + .9 FJUNE

But where did we get the forecast for June? In fact, a month ago on
the evening of the last day of May, we made this forecast:

FJUNE = .1 SMAY + .9 FMAY

86 SALES FORECASTING MANAGEMENT

03-Mentzer (Sales).qxd  11/2/2004  11:33 AM  Page 86



Again, where did we get the forecast for May? And again, a month
ago on the evening of the last day of April, we made this forecast:

FMAY = .1 SAPRIL + .9 FAPRIL

We could keep this up forever, but suffice it to say that each month
the forecast from the previous month has in it the forecasts (and the
sales) from all previous months. Thus, 10% of the forecast for July is
made up of sales from June, but the other 90% is made up of the fore-
cast for June. However, the forecast for June was made up of 10% of the
sales from May. Thus, 90% times 10% (or 9%) of the July forecast is
made up of the sales from May. The rest of the forecast for June was
made up of 90% of the forecast for May, which in turn was made up
of 10% of the sales from April (so April sales comprises 90% times
90% times 10%, or 8.1%, of the July forecast) and 90% of the forecast
from April, and so on back to where we made our first forecast. This
leads us to the fact that the forecast for July is actually made up of the
following rather complicated formula:

FJULY = .1 SJUNE + (.9) (.1) SMAY + (.9)2 (.1) SAPRIL

+ (.9)3 (.1) SMARCH + . . . + (.9)N (.1) SJULY − (N+1)

If we take a second to study this formula, we see that sales from
June make up 10% of our forecast, sales from May make up 9% (.9 × .1)
of our forecast, sales from April make up 8.1% (.9 × .9 × .1) of our fore-
cast, sales from March make up 7.2% (.9 × .9 × .9 × .1) of our forecast,
and so on back to the first month we used this technique.

What is happening with the rather simple-looking exponential
smoothing formula is that we are putting α weight on last period’s
sales, α times (1 − α) weight on the previous period’s sales, and chang-
ing the weight for each previous period’s sales by multiplying the
weight by (1 − α) for each successive period we go into the past.

For α = 0.1, this causes the weights for the previous period’s sales
to decrease at the following exponential rate: 0.1, 0.09, 0.081, 0.072,
0.063, . . . and for α = 0.2, the weights for the previous period’s sales
to decrease at the following exponential rate: 0.2, 0.16, 0.128, 0.1024,
0.08192, . . .

We could try to develop a similar series for every value of α (by
the way, the possible values of α between 0 and 1 are infinite, so
our attempt might take a while), but it is not necessary—the simple
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exponential smoothing formula does it for us. We do need to remember,
however, that the higher the value of α, the more weight we are putting
on last period’s sales and the less weight we are putting on all the
previous periods combined. In fact, as α approaches one, exponential
smoothing puts so much weight on the past period’s sales and so little
on the previous periods combined, that it starts to look like our naïve
technique (Ft+1 = St) from Chapter 2. Conversely, as α approaches zero,
exponential smoothing puts more equal weight on all periods and
starts to look much like the average as a forecast.

This leads us to some conclusions about what the value of α
should be:

1. The more the level changes, the larger α should be, so that
exponential smoothing can quickly adjust.

2. The more random the data, the smaller α should be, so that
exponential smoothing can dampen out the noise.

Several examples should help illustrate these conclusions. For
our first illustration, we can use the data pattern from Figure 3.9 for
the moving average, now Figure 3.10 for exponential smoothing.
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Figure 3.11 Exponential Smoothing as a Forecast: Low Noise

In Figure 3.10, we can see three exponential smoothing forecasts of the
time series. All three do a fairly good job when the level is stable, but
the higher the value of α in the forecast, the quicker it reacts to the
change in level. Because a low value of α is much like an average, the
forecast for the low α never quite reaches the new level.

However, a very different result is found when we observe the
forecasts of the time series in Figures 3.11 and 3.12. Figure 3.11 is a
reproduction of the data series used in Figures 3.2 and 3.6 and repre-
sents a time series with no trend and a low amount of noise. In this
series, the exponential smoothing forecasts with various levels of α all
perform fairly well. However, in the time series of Figure 3.12, which
has a stable level but a high amount of noise, the forecasts with the
higher values of α overreact to the noise and, as a result, jump around
quite a bit. The forecast with the lower level of α does a better job of
dampening out the noise.

Given these illustrations of our conclusions about the value of α
that should be used, we have in exponential smoothing a technique
that overcomes many of the problems with the average and the mov-
ing average as forecasting techniques. Exponential smoothing is less
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cumbersome than the average because exponential smoothing only
requires the values of last period’s sales and forecast and the value
of α. Exponential smoothing solves the problems with the moving
average of how much data to use and how to weight it by using an
exponentially decreasing weight for all previous periods.

However, with exponential smoothing we are still faced with
a dilemma: How do we determine whether the level is changing or
if it is simply noise and, thus, what the value of α should be? To
answer this dilemma, the next group of techniques (called adaptive
smoothing) was developed.

Adaptive Smoothing

Although a number of adaptive smoothing techniques exist, they
all have one thing in common: each is an attempt to automatically
select the value of α. Because there are so many adaptive smoothing
techniques and they all work essentially equally well, we will only
discuss the simplest of this group of techniques here. This adaptive
smoothing approach uses the absolute value of the percent error from
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the previous period’s forecast to adjust the value of α for the next
period’s forecast (Trigg & Leach, 1967). Thus, the original exponential
smoothing formula is still used:

Ft+1 = α St + (1 − α) Ft (4)

but after each period’s sales are recorded, the value of α is adjusted for
the next period by the following formula:

αt+2 = | (Ft+1 − St+1)/St+1 | = |PEt+1| (5)

Because Equation (5) can produce values outside the range of α,
this calculation is adjusted by the following rules:

If |PEt+1| is equal to or greater than 1.0, then αt+2 = 0.99999

If |PEt+1| is equal to 0.0, then αt+2 = 0.00001

We can illustrate the adaptability of this technique by forecasting
the times series with level change in Figure 3.10, now Figure 3.13 for
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Figure 3.13 Adaptive Smoothing as a Forecast: Level Change
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adaptive smoothing. To illustrate the changes in α that result in this
technique, the calculations are also reproduced in Table 3.1.

To get the process started, we used the usual convention of setting
the initial value of α at 0.1, although any value can be chosen without
changing the resultant forecasts. The reason for this is that we also
assume that the initial forecast was equal to the first period demand, so
the first forecast becomes:

F2 = α S1 + (1 − α) S1

So regardless of the initial value of α that is chosen, the forecast
for period two is always equal to sales from period one. The true
calculation of a forecast and the adapted values of α begin at that point.

Notice that the value of α stays low (well below 0.1) while the
time series is level (a low value of α dampens out the noise), but
as soon as the level changes, the value of α jumps dramatically to
adjust. Once the time series levels off, the value of α again returns
to a low level.

This adaptive smoothing technique overcomes one of the major
problems with exponential smoothing: what should be the value cho-
sen for α? However, all the techniques we have discussed so far have a
common problem: none of them considers trend or seasonality. Since
this technique assumes there is no trend or seasonality, our forecast of
January 2004 is 1950 and is also our forecast for every month in 2004—
we assume there will be no general increase or decrease in sales (trend),
nor will there be any pattern of fluctuation in sales (seasonality).
Because this is unrealistic for many business demand situations, we
need some way to incorporate trend and seasonality into our FMTS
forecasts. To do so, we temporarily set aside the concept of smoothing
constant adaptability and introduce first trend and then seasonality
into our exponential smoothing calculations.

Exponential Smoothing With Trend

Although we tend to think of trend as a straight or curving line
going up or down, for the purposes of exponential smoothing, it is
helpful to think of trend as a series of changes in the level. In other
words, with each successive period, the level either “steps up” or
“steps down.” This “step function,” or changing level pattern, of trend
is conceptually illustrated in Figure 3.14. Although demand is going up
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Table 3.1 Adaptive Smoothing Forecast Calculations

Percent Absolute
Month Demand Forecast Error PE or αt+1

J01 1010
F01 920 1010 −0.098 0.098
M01 1020 1002 −0.018 0.018
A01 1040 1002 −0.037 0.037
M01 960 1003 −0.045 0.045
J01 1000 1001 −0.001 0.001
J01 960 1001 −0.043 0.043
A01 960 999 −0.041 0.041
S01 1040 998 −0.041 0.041
O01 960 999 −0.041 0.041
N01 940 998 −0.061 0.061
D01 1040 994 −0.044 0.044
J02 1920 996 −0.481 0.481
F02 2020 1441 −0.287 0.287
M02 1920 1607 −0.163 0.163
A02 2040 1658 −0.187 0.187
M02 2080 1729 −0.169 0.169
J02 1920 1789 −0.068 0.068
J02 2040 1798 −0.119 0.119
A02 2080 1826 −0.122 0.122
S02 1920 1857 −0.033 0.033
O02 1900 1859 −0.021 0.021
N02 2080 1860 −0.106 0.106
D02 2080 1883 −0.095 0.095
J03 1900 1902 −0.001 0.001
F03 2000 1902 −0.049 0.049
M03 2040 1907 −0.065 0.065
A03 1920 1916 −0.002 0.002
M03 1980 1916 −0.033 0.033
J03 2100 1918 −0.087 0.087
J03 2060 1933 −0.061 0.061
A03 1980 1941 −0.020 0.020
S03 2000 1942 −0.029 0.029
O03 2040 1944 −0.047 0.047
N03 1960 1948 −0.006 0.006
D03 2000 1948 −0.026 0.026
J04 1950
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in a straight line, we can conceive of it as a series of increases in the
level (the dashed horizontal lines). This is much like climbing a set of
stairs. Although we make steady progress up the stairs, we are actually
stepping up one step each period (the amount we step up, or the height
of each step, on a set of stairs is called the riser). The height of each step
(the riser) is what we call “trend” in exponential smoothing, and that
trend is designated in Figure 3.14 as T. For period t + 1, the trend is the
amount the level changed from period t to period t + 1 (Lt+1 − Lt), or Tt+1.
Similarly for period t + 2, the trend is the amount the level changed
from period t + 1 to period t + 2 (Lt+2 − Lt−1), or Tt+2.

To understand the calculation of trend in exponential smoothing,
we must also understand that an exponential smoothing calculation
is just a weighted average of two measures of the same thing. Our
original exponential smoothing formula (Equation 4) was:

Ft+1 = α St + (1 − α) Ft

In this calculation, St is one measure of past sales (last period’s
sales) and Ft is another measure of past sales (a weighted average
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of sales in all periods prior to t). Thus, we were taking a weighted
average of two measures of the same thing. We are now going to do
the same thing for level and trend with the following formulae (Holt
et al., 1960):

Lt = α St + (1 − α) (Lt−1 + Tt−1) (6)

Tt = β (Lt − Lt−1) + (1 − β) Tt−1 (7)

where:  L = Level
T = Trend
0 < α < 1
0 < β < 1

Notice that Equation (6) looks very similar to our earlier exponen-
tial smoothing forecast calculation—we still use α in the same way and
we still use last period’s sales. This difference is the addition of trend
into the second part of Equation (6) and the fact that it is not a forecast
for next period (Ft+1) but rather a measure of level for this period (Lt).
In fact, in our original exponential smoothing formula (Equation [4]),
we did not include trend because we assumed it did not exist. Because
trend was assumed not to exist, our estimate of level this period was
our forecast of next period.

What we need are two estimates of level for this period so we can
exponentially smooth them. The first estimate is simply sales for this
period. Since we assume there is no seasonality in the time series (an
assumption we will discard in the next section), then this sales value
has no seasonality in it. Because the trend is a change in level from one
period to the next, any given value of sales does not have trend in it
(that is, trend is in the change in sales from one period to the next, not
any single sales value). Finally, when we perform the weighted aver-
aging of the exponential smoothing calculation in Equation (6), we get
rid of the noise. (Remember that averaging removes noise.) Since this
logic says there is no trend or seasonality in the sales value and we will
get rid of this noise when we do our exponential smoothing calcula-
tion, we are only left with one time series component in the sales value,
and that component is level.

The second estimate of level is our estimate of level from last
period, plus the estimate of how much level should have changed from
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last period to this period (that is, the trend). This gives us two measures
of level to exponentially smooth with α.

Our two estimates of trend in Equation (7) are how much the level
changed from last period to this period and our estimate of trend from
last period. These two measures of trend are exponentially smoothed
with our new smoothing constant, β. β is just like α in that it is a positive
fraction (that is, between zero and one). It is designated by a different
Greek symbol to indicate that α and β can have different values.

Once we have our new estimates of level (L) and trend (T),
we can forecast as far into the future as we want by taking the
level and adding to it the trend per period times as many periods
into the future as we want the forecast. This can be represented by
the following formula:

Ft+m = Lt + (Tt × m) (8)

where:  m = the number of periods into the future to forecast.
To illustrate this technique, consider the time series with trend

introduced in Figure 3.3, now Figure 3.15 for exponential smoothing
with trend. To illustrate the calculations involved in this technique,
Table 3.2 provides the calculations of level and trend and a forecast for-
ward for one period throughout the time series (also provided in Figure
3.15). For the purposes of illustration, we arbitrarily chose the value of
0.1 for α and the value of 0.2 for β. Notice that to get the process started,
we used the usual convention of assuming the level for the first period
equaled first period demand, and the trend for the first period equaled
the change in demand from the first to the second period.

To provide a forecast for any period more than one in the future
(April 2004, for example), it is merely a task of taking the most recent
value of level that has been calculated (in this case, December 2003)
and adding to it the most recent value of trend that has been calculated
(also in this case, December 2003) times the number of months into the
future that we wish to forecast (because April is four months past
December, it would be times four). For April 2004, the calculations are:

FA04 = LD03 + (TD03 × m)

FA04 = 4614 + (106 × 4)

FA04 = 5038
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Figure 3.15 Exponential Smoothing With Trend as a Forecast

Now that we have the logic for introducing trend into the exponen-
tial smoothing calculations, it is fairly easy to also bring in seasonality.

Exponential Smoothing With Trend and Seasonality

To introduce seasonality, let’s first think of a simple demand
example where we sell 12,000 units of a product every year. If there is
no trend, no noise, and no seasonality, we would expect to sell 1,000
units every month (that is, the level). If, however, we noticed that every
January we sold, on average, 1,150 units, there is clearly a pattern here
of selling more than the level in January. In fact, we are selling
1,150/1,000, or 1.15, times the level.

This value of 1.15 is called a multiplicative seasonal adjustment and
means that sales in that month are 15% higher than they would be
without a seasonal pattern. Similarly, a seasonal adjustment of 1.00
means that sales are right at the non-seasonal level, and a seasonal
adjustment of 0.87 means that sales are 13% below what we would
expect if there was no seasonal pattern.
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Table 3.2 Exponential Smoothing With Trend Forecast Calculations

Level Trend 
Month Demand (α = 0.1) (β = 0.2) Forecast

J01 1010 1010 10
F01 1020 1020 10
M01 1220 1049 14 1030
A01 1340 1091 19 1063
M01 1360 1135 24 1110
J01 1500 1193 31 1159
J01 1560 1258 38 1224
A01 1660 1332 45 1296
S01 1840 1424 54 1377
O01 1860 1516 62 1478
N01 1940 1615 69 1578
D01 2140 1729 78 1684
J02 2120 1839 85 1808
F02 2320 1963 93 1924
M02 2440 2094 100 2056
A02 2420 2217 105 2195
M02 2620 2352 111 2322
J02 2620 2478 114 2462
J02 2840 2617 119 2592
A02 2980 2760 124 2736
S02 2920 2887 124 2884
O02 3000 3011 124 3012
N02 3280 3149 127 3135
D02 3380 3287 129 3277
J03 3300 3404 127 3416
F03 3500 3528 126 3531
M03 3640 3653 126 3654
A03 3620 3763 123 3779
M03 3780 3875 121 3886
J03 4000 3996 121 3996
J03 4060 4111 120 4117
A03 4080 4216 117 4231
S03 4200 4319 114 4332
O03 4340 4424 112 4433
N03 4360 4518 109 4536
D03 4500 4614 106 4627
J04 4720
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We are now going to use this concept of a multiplicative seasonal
adjustment to introduce seasonality into the exponential smoothing
calculations. Again, we will develop two different measures of each
seasonal adjustment and take a weighted average of them (through
exponential smoothing) to come up with our new estimate. To do this,
however, we also need to update our formulae for Exponential
Smoothing with Trend (Equations [6] and [7]) to take into account
the fact that seasonality is now assumed to exist. This leads us to the
following formulae (Winters, 1960):

Lt = α (St/SAt−C) + (1 − α) (Lt−1 + Tt−1) (9)

Tt = β (Lt − Lt−1) + (1 − β) Tt−1 (10)

SAt = γ (St/Lt) + (1 − γ) (SAt−C) (11)

where: L = Level
T = Trend

SAt = Seasonal Adjustment for Period t
C = The Cycle Length of the Seasonal Pattern (that is, the

cycle length for a 12-month pattern is C = 12)
0 < α < 1
0 < β < 1
0 < γ < 1

We have revised our calculation for level to take seasonality into
account in our first estimate of level. Recalling our previous example
of annual sales of 12,000, how would we take the seasonality out of
January sales? If sales were 1,150 and our previous estimates of the
seasonality adjustment for January were 1.15, we can de-seasonalize
January sales simply by dividing the sales value of 1,150 by the
seasonal adjustment of 1.15. This gives us a de-seasonalized value of
1,000—precisely the value we said was the expected level if there were
no seasonality.

Thus, by dividing sales for any period by the seasonal adjustment
for the same period last year (that is, divide sales for January 2004
by the seasonal adjustment for January 2003), we have an estimate in
the first formula of level with the seasonality taken out (recall that the
original formula already took out the trend and the noise). Because the
second part of this formula contains the level from the last period,
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which was de-seasonalized at that time, we now have two estimates of
level to exponentially smooth.

Thankfully, the formula for trend (Equation [10]) does not change.
Therefore, we do not have to revisit it here.

However, we now have added a formula to calculate the seasonal
adjustments (Equation [11]). Again, we need two estimates of the
seasonal adjustment for each period, so we can exponentially smooth
each. This means we have 12 of these calculations per year if we
are forecasting monthly sales, 52 if we are forecasting weekly, and 4
if we are forecasting quarterly.

The first part of Equation (11) is, again, a throwback to our initial
example. If we take the sales value for this period and divide it by the
most recently calculated level (which was just done two formulas
before and is Lt), we have one estimate of the seasonal adjustment for
this period. In our initial example, we did the same thing when we
divided 1,150 by 1,000 to obtain 1.15 as our estimate of the seasonal
adjustment for January.

For our second estimate of the seasonal adjustment for this period,
we need to look back one year to the same period last year. We can now
exponentially smooth these two estimates of the seasonal adjustment
for this period using the smoothing constant, γ. Again, γ is just like α
and β in that it is a positive fraction (that is, between zero and one).
It is designated by a different Greek symbol to indicate that α, β,
and γ can all have different values.

Once we have our new estimates of level (L), trend (T), and sea-
sonal adjustments (SA), we can forecast as far into the future as we
want by taking the level, adding to it the trend per period times as
many periods into the future as we want the forecast, and multiplying
that result by the most recent seasonal adjustment for that period. This
can be represented by the following formula:

Ft+m = (Lt + (Tt × m)) × SAt−C+m (12)

where:  m = the number of periods into the future to forecast.
The last component of Equation (12) probably needs a little

illustration. If we have just received sales for December 2003
and want to forecast April 2004, we will use the values of L and T
calculated in December 2003 (in this case, December 2003 is “t”) for
the first part of the forecast. However, our most recent estimate
of the seasonal adjustment for April was calculated back in
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April 2003. The symbol to represent using this value is to take “t”
(December 2003); subtract C, or 12, months from it (placing us in
December 2002); and add to it m, or 4, months to bring us to the
seasonal adjustment for April 2003.

To illustrate this technique, we will go all the way back to our orig-
inal time series with trend and seasonality introduced in Figure 3.1,
now Figure 3.16, for exponential smoothing with trend and seasonality.
To illustrate the calculations involved in this technique, Table 3.3 pro-
vides the calculation of level, trend, seasonality, and a forecast forward
for one period throughout the time series (also provided in Figure
3.16). For the purposes of illustration, we arbitrarily chose the value of
0.1 for α, the value of 0.2 for β, and the value of 0.15 for γ. Notice that
to get the process started, we used the usual convention of assuming
the level for the first period equaled first period demand, the trend for
the first period equaled the change in demand from the first to the
second period, and the initial 12 seasonal adjustment values were
equal to 1.00. Notice, also, that this technique does a pretty terrible job
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Figure 3.16 Exponential Smoothing With Trend and Seasonality as a
Forecast
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Table 3.3 Exponential Smoothing With Trend and Seasonality Forecast
Calculations

Level Trend Seasonality
Month Demand (α = 0.1) (β = 0.2) (γ = 0.15) Forecast

J01 1104 1104 −219 1.00
F01 885 885 −219 1.00 885
M01 976 697 −213 1.06 666
A01 1101 546 −200 1.15 484
M01 1120 423 −185 1.25 345
J01 1276 342 −164 1.41 238
J01 1419 302 −139 1.56 178
A01 1615 308 −110 1.64 162
S01 1836 361 −78 1.61 197
O01 1730 428 −49 1.46 284
N01 1686 510 −22 1.35 380
D01 1769 616 3 1.28 488
J02 1521 709 21 1.17 619
F02 1504 808 37 1.13 730
M02 1478 899 48 1.15 895
A02 1480 981 54 1.21 1091
M02 1726 1070 61 1.30 1291
J02 1759 1143 64 1.43 1595
J02 2137 1223 67 1.58 1877
A02 2436 1310 71 1.67 2113
S02 2425 1393 73 1.63 2227
O02 2355 1482 76 1.48 2136
N02 2499 1588 82 1.38 2097
D02 2442 1694 87 1.30 2140
J03 2069 1780 87 1.17 2087
F03 1992 1856 85 1.12 2108
M03 1958 1918 80 1.13 2227
A03 1990 1963 73 1.18 2409
M03 2222 2003 67 1.27 2651
J03 2525 2039 60 1.40 2958
J03 2789 2066 54 1.55 3327
A03 3017 2088 47 1.64 3542
S03 3232 2120 44 1.62 3485
O03 3198 2165 44 1.48 3195
N03 3028 2207 44 1.38 3048
D03 2985 2255 45 1.31 2938
J04 2692
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of forecasting until at least one year of the seasonal pattern is available.
Thus, exponential smoothing with trend and seasonality needs at least
one complete year of data before it is “warmed up” and can start to
forecast fairly effectively.

To provide a forecast for any period more than one in the future
(April 2004, for example), it is merely a task of taking the most recent
value of level that has been calculated (in this case, December 2003),
adding to it the most recent value of trend that has been calculated
(also in this case, December 2003), times the number of months into
the future we wish to forecast (because April is four months past
December, it would be times four), and multiplying this value by the
seasonal adjustment for April of last year (2003). For April 2004, the
calculations are:

FA04 = (LD03 + (TD03 × m)) × SAA03

FA04 = (2255 + (45 × 4)) × 1.18

FA04 = 2874

Now that we have introduced the components of trend and
seasonality into our basic exponential smoothing formula, we can
return to the idea of how to set the value of the smoothing constants.
However, now it is not simply a matter of choosing a value for α, but
one of choosing values for β and γ, as well. In fact, the accuracy
of exponential smoothing with trend and seasonality is very sensi-
tive to the values chosen for the smoothing constants, so this is no
small matter.

Adaptive Exponential Smoothing With Trend and Seasonality

As with regular adaptive smoothing, there are several techniques
that are adaptive and consider trend and seasonality. One of the most
complex computationally is called the Self Adaptive Forecasting
Technique (SAFT) and was developed more than 35 years ago (Roberts
& Reed, 1969). SAFT is a heuristic technique that examines different
combinations of α, β, and γ to arrive at the most accurate forecast. For
each forecast each period, SAFT tries each combination of α, β, and
γ starting with a value of 0.05 for each and incrementally increasing the
values by 0.05 until a value of 0.95 for each is reached. For each of these
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6,859 (19 × 19 × 19, where the 19 is the number of values between 0 and
1, incrementing by 0.05 at a time) combinations, SAFT starts at the
beginning of the time series and forecasts using exponential smoothing
with trend and seasonality, and it records the resultant value of MAPE.
Once the lowest MAPE value combination of α, β, and γ is determined,
a local search for a lower MAPE is implemented by examining
the values of α, β, and γ above and below each value (including the
original three values) at a rate of change of 0.01.

For example, if the first search found the lowest value of MAPE
to come from the combination of α = 0.15, β = 0.20, and γ = 0.30, SAFT
would then try all the combinations of α = 0.11, 0.12, 0.13, 0.14, 0.15,
0.16, 0.17, 0.18, 0.19; β = 0.16, 0.17, 0.18, 0.19, 0.20, 0.21, 0.22, 0.23, 0.24;
and γ = 0.26, 0.27, 0.28, 0.29, 0.30, 0.31, 0.32, 0.33, 0.34. These 729
(9 × 9 × 9) combinations are compared to the original best MAPE
combination and, again, the lowest combination is chosen.

It should be clear by now that SAFT is a very computationally
cumbersome technique (after all, it requires 7,588 trial forecasts for
each product each period before it actually makes a forecast) and,
as a result, is in little use today. More computationally efficient
versions of SAFT try to calculate values of α, β, or γ and use a heuris-
tic similar to SAFT for the smoothing constants that are not directly
calculated.

As with adaptive smoothing, because these adaptive exponential
smoothing techniques with trend and seasonality essentially all work
equally well, we will only discuss the simplest of this group of tech-
niques here. This adaptive smoothing approach, called Adaptive
Extended Exponential Smoothing (AEES), uses the absolute value of
the percent error from the previous period’s forecast to adjust the value
of α for the next period’s forecast and uses the SAFT heuristic to adjust
the values of β and γ (Mentzer, 1988). Thus, the exponential smoothing
with trend and seasonality formulae (Equations [9], [10], [11], and [12])
are still used,

Lt = α (St/SAt−C) + (1 − α) (Lt−1 + Tt−1)

Tt = β (Lt − Lt−1) + (1 − β) Tt−1

SAt = γ (St/Lt) + (1 − γ) (SAt−C)

Ft+m = (Lt + (Tt × m)) × SAt−C+m
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but after each period’s sales are recorded, the value of α is adjusted for
the next period by Equation (5), repeated here as:

αt+2 = | (Ft+1 − St+1)/St+1 | = |PEt+1|

Because this calculation can still produce values outside the range
of α, this calculation is again adjusted by the following rules:

If |PEt+1| is equal to or greater than 1.0, then αt+2 = 0.99999

If |PEt+1| is equal to 0.0, then αt+2 = 0.00001

Once the new value of α has been calculated, AEES tries each
combination of β and γ starting with a value of 0.05 for each and incre-
mentally increasing the values by 0.05 until a value of 0.95 for each is
reached. For each of these 361 (19 × 19, where the 19 is the number of
values between 0 and 1, incrementing by 0.05 at a time) combinations,
AEES starts at the beginning of the time series and forecasts using
exponential smoothing with trend and seasonality and records the
resultant value of MAPE. Once the lowest MAPE value combination of
the calculated value of α and the heuristic values of β and γ is deter-
mined, a local search for a lower MAPE is implemented by examining
the values of β and γ above and below each value (including the origi-
nal two values) at a rate of change of 0.01.

For example, if the first search found the lowest value of MAPE to
come from the calculated value of α = 0.15, and combination of β = 0.20,
and γ = 0.30, AEES would then try all the combinations of β = 0.16, 0.17,
0.18, 0.19, 0.20, 0.21, 0.22, 0.23, 0.24; and γ = 0.26, 0.27, 0.28, 0.29, 0.30,
0.31, 0.32, 0.33, 0.34. These 81 (9 × 9) combinations are compared to the
original best MAPE combination and, again, the lowest combination is
chosen.

It should be clear by now that AEES is a much less computa-
tionally cumbersome technique than SAFT. AEES requires 442 trial
forecasts for each product each period before it actually makes a fore-
cast, rather than the 7,588 trial forecasts of SAFT. Further, the exact
value of α is calculated rather than the approximation obtained from
the SAFT heuristic.

We can illustrate the adaptability of AEES by forecasting the times
series with trend and seasonality used in the last section. (See Figure
3.17.) Notice that the forecast in Figure 3.17 “tracks” the demand better
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than the forecast in Figure 3.16. This is due to the adaptability of α, β,
and γ. Also, the year-to-date MAPE for exponential smoothing with
trend and seasonality (Figure 3.16) at the end is 9.73%, while the same
calculation for AEES (Figure 3.17) is 7.00%.

� FIXED-MODEL TIMES SERIES TECHNIQUES SUMMARY

Considerable effort has been devoted over time to testing the various
FMTS techniques discussed here (and variations on these techniques as
well) over a wide variety of time series and forecasting horizons and
intervals. (For a summary of these efforts, see Mentzer & Gomes, 1994.)
To date, no FMTS technique has shown itself to be clearly superior to
any of the other FMTS techniques across a wide variety of forecast-
ing levels and time horizons. For this reason, it is recommended that
FMTS users keep in mind where the general category of techniques
works well and the time series scenario for which each technique was
designed.

In general, FMTS techniques should be used when a limited
amount of data is available on anything other than an actual history
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of sales (that is, little data on outside factors such as price changes,
economic activity, promotional programs, and so on). This lack of
outside (exogenous) data precludes the use of regression (discussed
in the next chapter). Further, FMTS techniques are useful when the
time series components change fairly regularly. That is, the trend rate
changes, the seasonal pattern changes, or the overall level of demand
changes. FMTS is much more effective at adjusting to these changes
in time series components than are the OMTS techniques to be dis-
cussed next, which require more data with stable time series compo-
nents over a long period of time.

In terms of which FMTS to use in which situations, a general
guideline is provided in Table 3.4. However, remember that these are
only general guidelines, and it is best to incorporate these techniques
into a system (such as the one discussed in Chapter 6) that allows the
system to try each FMTS technique on each forecast to be made and
select the one that works best in terms of accuracy.

With these general guidelines established, we will now move on to
a discussion of the open-model time series (OMTS) techniques.

� OPEN-MODEL TIMES SERIES TECHNIQUES

Open-model time series (OMTS) techniques assume that the same com-
ponents exist in any time series—level, trend, seasonality, and noise—
but take a different approach to forecasting these components. Where
FMTS techniques assume that certain components exist in the time
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Table 3.4 FMTS Technique Selection Guidelines

FMTS Technique 

Exponential Smoothing

Adaptive Smoothing

Exponential Smoothing with Trend

Exponential Smoothing with Trend
and Seasonality

AEES

Time Series Component Characteristics

Stable Level, with No Trend or
Seasonality

Changing Level, with No Trend
or Seasonality

Level and Trend

Level, Trend, and Seasonality

Changing Level, Trend, and
Seasonal Patterns
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series and use one set of formulae to forecast this series (that is, the
formulae are “fixed”), OMTS techniques first analyze the components
in the time series to see which exist and what is their nature. From this
information, a set of forecasting formulae unique to that time series is
built (that is, the formulae are “open” until the time series components
are analyzed).

Various forms of OMTS exist, including decomposition analysis
(Shiskin 1961a, 1961b), spectral analysis (Nelson, 1973), fourier analy-
sis (Bloomfield, 1976), and auto-regressive moving average (ARMA)
or Box-Jenkins analysis (Box & Jenkins, 1970). All of these OMTS tech-
niques have in common the fact that they first try to analyze the time
series to determine the components and, as a result, require a consid-
erable amount of history before any forecasts can be made. For
instance, many OMTS techniques recommend no less than 48 periods
of data prior to using the technique. Obviously, this is a disadvantage
for situations where a limited amount of history is available.

OMTS techniques also have in common the need for considerable
understanding of quantitative methods to properly use the techniques.
The analysis with OMTS can become quite complex and require
considerable input from the forecaster. For these reasons (large data
requirements and considerable user experience), OMTS techniques
have seen limited use in practice (Mentzer & Kahn, 1995; Mentzer &
Cox, 1984a). Improvements in systems technology have made OMTS
techniques easier to use (as we will see in Chapter 6), but the data
requirements still limit their use.

As with FMTS techniques, there is no evidence that the perfor-
mance of one of these OMTS techniques is clearly superior to any of
the others. Thus, we will again only discuss the simplest of the OMTS
techniques here. This technique is called decomposition analysis.
To demonstrate decomposition analysis, we will use the time series
presented at the beginning of the chapter in Figure 3.1.

Like all OMTS techniques, the purpose of decomposition analysis
is to decompose the data into its time series components. The first step
in doing this is to remove noise and seasonality from the original time
series. As we discussed earlier in the chapter, one of the characteristics
of a moving average is that it dampens out any noise and dampens out
any regular pattern of fluctuation that has a pattern length that is equal
to the number of periods in the moving average. Thus, one of the first
things we have to do in decomposition analysis is make a judgment
about how long the seasonal pattern is.
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Visual examination of Figure 3.1 will, we hope, lead us to conclude
that the seasonal pattern takes 12 months. Therefore, a 12-month mov-
ing average should remove noise and seasonality from the time series.
As in the discussion earlier in the chapter, the value of the moving
average in any given period is our estimate of level, and how much
that level estimate changes from one period to the next is our estimate
of trend. However, because our purpose here is not to forecast, but to
decompose the data, we will perform this moving average calculation
in a slightly different way than previously discussed. This calculation
is as follows:

MAt = (St−5 + St−4 + St–3 + St−2 + St−1 + St + St+1 +
St+2 + St+3 + St+4 + St+5 + St+6) / 12

Notice that this is a centered moving average, which means that we
take an average of 12 months and assign that value to the month in the
center. The purpose of this is to find a more accurate estimate of the
level. If we placed the moving average value at the end of the 12
months used in the calculation, it would have too much old data (lower
trend) to accurately represent the level for that period. Conversely, if
we place the moving average value at the beginning of the 12 months
used in the calculation, it would have too much new data (higher
trend) to actually represent the level at that period. Thus, the best place
to position this estimate of level is in the center of the periods used in
its calculation.

Because this moving average contains the level and the trend, we
can simply take the difference between each period to determine the
trend. Similarly, since the moving average contains the level and the
trend, if we subtract it from the original time series (which contained
level, trend, seasonality, and noise), the result is a series of data that
contains only the seasonality and the noise. These calculations are
demonstrated in Table 3.5.

We now have decomposed the original time series into the level
and the trend. All that is left is to remove the noise from the data series
containing seasonality and noise, and we will have our final compo-
nent, seasonality. Again, to remove noise we use an average. However,
because each month of the year represents a different season, we want
to perform this average calculation within each season. Thus, we take
all the January values and average them, then take an average of all the
February values, and so on for all 12 months. This calculation is shown
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Table 3.5 Decomposition Analysis

Level Seasonality 
Month Demand and Trend Trend and Noise Seasonality Forecast

J01 1104
F01 885
M01 976
A01 1101
M01 1120
J01 1276 1376 −100 −140
J01 1419 1411 35 −8 −60
A01 1615 1463 52 −152 −261
S01 1836 1505 42 −331 −325
O01 1730 1536 32 −194 −200
N01 1686 1587 51 −99 −204
D01 1769 1627 40 −142 −165
J02 1521 1687 60 −166 −203
F02 1504 1755 68 −251 −308
M02 1478 1804 49 −326 −396
A02 1480 1856 52 −376 −440
M02 1726 1924 68 −198 −258
J02 1759 1980 56 −221 −140
J02 2137 2026 46 −111 −60
A02 2436 2067 41 −370 −261
S02 2425 2107 40 −319 −325
O02 2355 2149 43 −206 −200
N02 2499 2190 41 −309 −204
D02 2442 2254 64 −188 −165
J03 2069 2309 54 −240 −203
F03 1992 2357 48 −365 −308
M03 1958 2424 67 −466 −396
A03 1990 2494 70 −504 −440
M03 2222 2539 44 −317 −258
J03 2525 2584 45 −59 −140
J03 2789 45 −60
A03 3017 90 −261
S03 3232 135 −325
O03 3198 180 −200
N03 3028 225 −204
D03 2985 270 −165
J04 315 −203 2696
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in Table 3.6, and the resultant values are added to Table 3.5 in the
Seasonality column. Notice that this is not a multiplicative seasonal
adjustment like we used in FMTS. Rather, it is an additive seasonal adjust-
ment; to determine the seasonal adjustment, we add it to (not multiply
it by) the level plus trend.

We now have our most recent estimate of level (2,584 in June 2003),
our most recent estimate of trend (45 units per month from June 2003),
and our most recent estimates of the additive seasonal adjustments
for the last 12 months. To forecast a future period (such as January
2004), we take the last estimate of level and add to it the trend times the
number of periods into the future. To this value, we add the seasonal
adjustment. For January 2004, the calculation is:

ForecastJan04 = LevelJune03 + (7 × TrendJune03) + SeasonalityJan03

= 2584 + (7 × 45) − 203 = 2696

This example illustrates just how much data are required to complete
OMTS analysis. Although we have 3 years of monthly data in this
example, for all but June, only two values were available to estimate the
seasonality adjustment for each season (month). With another year’s
data, three values would be available for each season, which should
improve the seasonality adjustment estimates. However, one of the pri-
mary drawbacks to OMTS is this dependency on a large amount of data.
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Table 3.6 Decomposition of Seasonality

Month 2001 2002 2003 Average

January −166 −240 −203
February −251 −365 −308
March −326 −466 −396
April −376 −504 −440
May −198 −317 −258
June −100 −221 −59 −140
July −8 −111 −60
August −152 −370 −261
September −331 −319 −325
October −194 −206 −200
November −99 −309 −204
December −142 −188 −165

03-Mentzer (Sales).qxd  11/2/2004  11:33 AM  Page 111



� SUMMARY

In this chapter, we have covered a number of time series techniques. All
have in common a recognition of the time series components—level,
trend, seasonality, noise. FMTS techniques deal with these components
by assuming certain components are (and are not) in the data, while
OMTS techniques analyze the data to determine which components
exist. This greater level of sophistication in OMTS is somewhat amelio-
rated by the considerable data requirements for analysis.

Another characteristic of all the techniques included in this chapter
is the fact that they ignore other factors that might have influenced
demand, such as price changes, advertising, trade promotions, sales
programs, competitive actions, economic activity, and so on. In many
cases, much of what time series techniques classify as noise can be
explained by looking at these “exogenous” factors. In the next chapter,
we turn our attention to regression analysis, a technique that considers
these exogenous factors.
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