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1 Introduction

1.1 Introduction to High Frequency Trading

High-frequency trading (HFT) is a type of algorithmic trading characterized by high speeds, high

turnover rates, and high order-to-trade ratios that leverages high-frequency financial data and electronic

trading tools. While there is no single definition of HFT, among its key attributes are highly sophisticated

algorithms, specialized order types, co-location, very short-term investment horizons, and high cancellation

rates of orders. HFT can be viewed as a primary form of algorithmic trading in finance. Specifically, it

is the use of sophisticated technological tools and computer algorithms to rapidly trade securities. HFT

uses proprietary trading strategies carried out by computers to move in and out of positions in seconds or

fractions of a second. It is estimated that as of 2009, HFT accounted for 60-73% of all US equity trading

volume, with that number falling to approximately 50% in 2012. High-frequency traders move in and out

of short-term positions at high volumes and high speeds aiming to capture sometimes a fraction of a cent

in profit on every trade. HFT firms do not consume significant amounts of capital, accumulate positions or

hold their portfolios overnight. As a result, HFT has a potential Sharpe ratio (a measure of reward to risk)

tens of times higher than traditional buy-and-hold strategies. High-frequency traders typically compete

against other HFTs, rather than long-term investors. HFT firms make up the low margins with incredibly

high volumes of trades, frequently numbering in the millions.

A substantial body of research argues that HFT and electronic trading pose new types of challenges

to the financial system. Algorithmic and high-frequency traders were both found to have contributed to

volatility in the Flash Crash of May 6, 2010, when high-frequency liquidity providers rapidly withdrew

from the market. Several European countries have proposed curtailing or banning HFT due to concerns

about volatility.

1.2 Introduction to High Frequency Trading Data Analysis

In recent years, high-frequency trading is becoming more and more popular. Due to the rapid

development of computing capability and storage capacity, people are able to collect and process high

frequency data, resulting in a great concern for high frequency data research in the both academic and

industry field. For example, Wood [1] described some historical perspective of the high frequency data

research; Eric Ghysels [2] reviewed the application of some econometrics methods in the field of high

frequency data; LUO Zhongzhou [3] conducted researches on application of high frequency trading in the

Chinese market.
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The analysis on high frequency financial data is not only important for many issues like research,

trading procedures and market microstructure, but also related to many fields of studies like econometrics,

finance, statistics and etc. High frequency financial data can be used to compare the effectiveness of

the price discovery in different trading systems (for example, open outcry trading system in NYSE and

the Nasdaq computer system) and can also be used to study the dynamic changes of trading quotes on a

specific stock, see Zhan [4], etc. It will be very helpful to answer the question, such as "who is providing

market liquidity", by researching high frequency financial data.

High frequency data has some unique features: various of time intervals, such as that the time interval

between each trades of stocks are generally not the same; discrete values of the price, such as that the

prices of financial underlying are discrete variables during the transaction; there exists daily cycle, such

as that the shape of trading intensity exhibits a U-shaped curve; multiple transactions within one second

and multiple transaction prices within very short time (one second). Due to these characteristics, we

cannot directly apply the common low frequency data analyzing method here. Therefore, it is a brand new

challenge for financial economists and statisticians to bring up solutions of analyzing high frequency data.

1.3 Bid Ask Price

Bid ask Price is a two-way price quotation that indicates the best price at which a security can be sold

and bought at a given point in time. The bid price represents the maximum price that a buyer or buyers

are willing to pay for a security. The ask price represents the minimum price that a seller or sellers are

willing to receive for the security. A trade or transaction occurs when the buyer and seller agree on a price

for the security.The difference between the bid and asked prices, or the spread, is a key indicator of the

liquidity of the asset - generally speaking, the smaller the spread, the better the liquidity.

Bid one price is the highest among all bid prices and ask one price is the lowest among all ask prices.

Mid-quote price is the weighted average price of bid one price and ask one price.

1.4 Role of Market Maker

According to www.sec.gov, a "market maker" is "a firm that stands ready to buy and sell a particular

stock on a regular and continuous basis at a publicly quoted price. You’ll most often hear about market

makers in the context of the Nasdaq or other "over the counter" (OTC) markets. Market makers that stand

ready to buy and sell stocks listed on an exchange, such as the New York Stock Exchange, are called

"third market makers." Many OTC stocks have more than one market-maker.

Market-makers generally must be ready to buy and sell at least 100 shares of a stock they make a
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Figure 1: Bid-Ask Spread

market in. As a result, a large order from an investor may have to be filled by a number of market-makers

at potentially different prices."

There can be a significant overlap between a ’market maker’ and ’HFT firm’. HFT firms characterize

their business as "Market making"-a set of high-frequency trading strategies that involve placing a limit

order to sell (or offer) or a buy limit order (or bid) in order to earn the bid-ask spread. By doing so,

market makers provide counterpart to incoming market orders. Although the role of market maker was

traditionally fulfilled by specialist firms, this class of strategy is now implemented by a large range of

investors, thanks to wide adoption of direct market access. As pointed out by empirical studies this

renewed competition among liquidity providers causes reduced effective market spreads, and therefore

reduced indirect costs for final investors." A crucial distinction is that true market makers don’t exit the

market at their discretion and are committed not to, where HFT firms are under no similar commitment.

Some high-frequency trading firms use market making as their primary strategy. Automated Trading

Desk, which was bought by Citigroup in July 2007, has been an active market maker, accounting for about

6% of total volume on both the NASDAQ and the New York Stock Exchange. Building up market making

strategies typically involves precise modeling of the target market microstructure together with stochastic

control techniques.

These strategies appear intimately related to the entry of new electronic venues. Academic study of

Chi-X’s entry into the European equity market reveals that its launch coincided with a large HFT that

made markets using both the incumbent market, NYSE-Euronext, and the new market, Chi-X. The study
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shows that the new market provided ideal conditions for HFT market-making, low fees (i.e., rebates for

quotes that led to execution) and a fast system, yet the HFT was equally active in the incumbent market

to offload nonzero positions. New market entry and HFT arrival are further shown to coincide with a

significant improvement in liquidity supply.

1.5 Motivation of the Project

In our report, we would like to focus on the high frequency trading data of Kweichow Moutai Co

Ltd (SHA: 600519) from January 4th, 2013 to February 26th, 2014 from the market makers’ perspective.

Market makers are interested in two kind of information from the high frequency trading data.

Firstly, market makers are certainly interested in how the mid-quote price would change. Admittedly,

market makers are often employed by the order-driven markets to quote prices continuously for the well

being of the market, and therefore, market makers do not assume the goal of making money. They always

tries to adjust their quoted bids and offer prices in order to facilitate the price discovery process of an

exchange. However they really do not want to lose money either. That’s why they are interested in whether

the price trend is upward or downward.

Secondly, market makers are even more interested in the duration time during which the mid-quote

price remains unchanged. In the theory of Market Microstructure, such duration time is called "Market

Microstructure Characteristics Time", which is a "time scale" during which the price process moves from

a random bid-ask bounce into a random walk process.

Although a large number of high-frequency transactions may occur within one second, the bid one

and ask one price stay unchanged most of time. Market makers like this kind of situation, because they

can simply apply the strategy of "buy low, sell high". During the time duration that the bid one and ask

one price stay unchanged, market makers can automatically buy at bid one price and sell at ask one price,

making money at the same time when they facilitate the price discovery process of an exchange.

However, if the mid-quote price tends to change, market makers have to make a decision whether to

change the bid ask spread or not. Market makers can remain their bid-ask spreads, losing money due to

their duties. They can either change their bid-ask spreads in order to avoid losing money. No matter what

decisions market makers make, they cannot simply apply a fixed strategy. As a result,4ti, the duration

time during which the transaction prices remain unchanged is of great importance for market makers.

In our report, assuming we are a market maker in the SHA market, we would like to build some time

series models on the two important random variables Pti and4ti according to the high frequency data

analysis. From the market maker’s point of view, we are more concerned about the model focusing on

4



4ti.

Admittedly, the forecast value of 4ti might be quite small but still useful. Since low-latency

communication technologies at both the software level and hardware level significantly contributed the

development of algorithmic trading as a trading practice. Market makers can write a program to forecast

the "Market Microstructure Characteristics Time" and use it to determine the algorithmic trading strategies.
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2 Time Series Analysis on Price

2.1 Data Process

We firstly plot the data of price. It can be easily observed from Figure 2 that it is not stationary, so we

take the log return and modified the data.

Figure 2: Price-Time

2.1.1 Dickey-Fuller Unit Root Test

After we change the data (seen in Appendix .A Data), we can see from Figure 3 that the log return

series look somehow stationary. We then make the Dickey-Fuller Unit Root Test by using SAS, getting

the following results in Figure 4. As all P-values are smaller than 0.05, the log return series are stationary.
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Figure 3: Log Return-Time

Figure 4: Dickey-Fuller Unit Root Test on Log Return
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2.1.2 Ljung−Box Test

We then check the serial correlation of log return series by using Ljung−Box Test in SAS. As we can

see from Figure 5 that all P-values are smaller than 0.05, which means that we will reject H0 and that

there exists serial correlation.

Figure 5: Ljung Box Test on Log Return
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2.2 ARIMA Model

We try ARIMA (2,0,1) model, ARIMA (3,0,1) model and MA (1) model based on the ACF and partial

ACF in Figure 6 of the log return series. Unfortunately, under no models the residual can be modeled

as white noise. Based on the results of model checking, we can not find fitting model for our data using

ARIMA. The result means that ARIMA model is not a good model for the high frequency trading data.

We need to build some other models to deal with the problem.

(a) ACF (b) PACF

Figure 6: ACF and PACF
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Figure 7: ARIMA(2,0,1)

Figure 8: Model Checking on ARIMA(2,0,1)
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Figure 9: ARIMA(3,0,1)

Figure 10: Model Checking on ARIMA(3,0,1)
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Figure 11: MA(1)

Figure 12: Model Checking on MA(1)
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2.3 ARIMA-GARCH Model

As ARIMA model is not a good model, we will then try to fit an ARIMA-GARCH model to the data.

The R code is appended in Appendix B.

2.3.1 Checking ARCH Effect

As there is a strong correlation in the log returns, we first consider fit an AR (1) model to the log

return in order to remove the serial correlation and then do the test of ARCH effect.

According to the test result from R, Q(12, a2
t ) = 14794, with a p-value near zero. Therefore, we

reject H0 that all ACF are zero. As a result, there is ARCH effect.

2.3.2 Model Fitting and Checking

We try different kinds of ARMA GARCH models by using R, finding that the AR(1)GARCH(1,1)

model has the smallest AIC and BIC.

As we can see from Table 1 that all parameters have passed the T test.

However, when we check Table 2, we find that even though Q(20, R2) = 28.32919 with a P-value of

0.101833, all Q(l, R) have a very small P-value for all l = 10, 15, 20.

Therefore, ARMA GARCH model can only remove ARCH effect. It cannot remove serial correlation,

which corresponds to the result in Chapter 2.2.

Estimate Std. Error t value Pr(>|t|)
mu -3.199e-05 1.143e-05 -2.800 0.00511
ar1 -3.070e-01 4.191e-02 -7.326 2.37e-13

omega 4.945e-09 1.160e-09 4.262 2.03e-05
alpha1 2.142e-01 3.503e-02 6.114 9.69e-10
beta1 7.899e-01 2.484e-02 31.802 < 2e-16

Table 1: Error Analysis

2.4 Conclusion

Both ARIMA model and ARIMA GARCH model cannot fit the data of mid-quote price well. Even

though GARCH model can remove the ARCH effect, ARIMA model cannot remove the serial correlation

well. The reason might be that the ARIMA model cannot describe the features of high frequency trading

price. We have to build some new models.
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Statistic p-Value
Jarque-Bera Test R Chi2 226.6154 0

Shapiro-Wilk Test R W 0.956208 1.386691e-13
Ljung-Box Test R Q(10) 28.83545 0.001324794
Ljung-Box Test R Q(15) 32.80012 0.005001912
Ljung-Box Test R Q(20) 49.91691 0.0002276229
Ljung-Box Test R2 Q(10) 19.5223 0.03410873
Ljung-Box Test R2 Q(15) 27.39051 0.02571104
Ljung-Box Test R2 Q(20) 28.32919 0.101833
LM Arch Test R TR2 24.21535 0.01901148

Table 2: Standardised Residuals Tests

3 Time Series Analysis on Time Duration

We would like to build a time series model on time duration in this section. We first define these

variables as follows. Let ti , ( i = 1, 2, ..., n) denote the time of the ith change of transaction price. Let Pti

denote the transaction price of the ith transaction price change, so4ti = ti − ti−1 is the duration time of

price remain unchanged. Let Si denote the changing amount of ith price change, i.e. Si = Pti − Pti−1 .

Let Ni denote the number of transactions happened within time interval (ti−1, ti) during which the

transaction prices remain unchanged. This variable Ni can represent the trading intensity during the time

with no transaction price change.

3.1 Long Memory Phenomenon of Time Duration

Engle and Rusel [5] proposed the famous autoregressive conditional duration (ACD) model on the

research of time duration4ti. McCuloch and Tsay [6] conducted researches on the nonlinearity of high

frequency financial data through nonlinear layer model to describe the relationship between4ti, Si and

Ni. Together, they came up with the price changing and duration model (PCD) to describe the price

changing feature and the multiple factors dynamic structure during the time durations.

However, we found the time duration of the Kweichow Moutai Co Ltd (SHA: 600519) has a long

memory. The timing chart of its log time duration and the autocorrelation function are shown in Figures 13.

We can neither see the up or down trend of its log time duration from the left one, but from the right one

we can easily observe the log time duration has a long duration of memory. Therefore we need to build a

time series model in order to remove this kind of long memory phenomenon.

The long memory phenomenon was already known by people long before many stochastic model

was developed. For example, people observed that the Nile River has long-term behavioral characteristic

since ancient time. A long period of drought and a long period of flooding always came one after each
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(a) log time duration (b) ACF

Figure 13: Long Memory Phenonmeon

other, so cycled. This phenomenon was recorded in the Bible (Genesis 41, 29-30) and was called Joseph

effects by Mandelbrot [7] later. Since the pioneering of Mandelbrot [8] [9] [10], self-similarity and the

associated long memory process were introduced to the field of statistics. In fact, long memory processes

have a wide range of applications in many fields such as astronomy, geography, physics, chemistry and

environmental science.

3.2 ARFIMA Model and Regression

Typically, in the field of time series, people often use the classic ARFIMA (p, d, q) [11] to model the

long memory feature of certain financial capital’s time duration (−0.5 6 d 6 0.5). However, the classic

ARFIMA (p, d, q) model does not take many other factors that affects the time duration into account.

Meanwhile, PCD model [6] though considers the effects from other factors, it ignores the long memory

feature of the time duration itself. In order to study the relationship between other factors and the time

duration of financial assets with long memory, CAO Zhiqiang [12] combined ARFIMA (0, d, 0) and

regression model then got the following long memory regression model:

(1−B)dln(4ti) = c+ αSi−1 + βNi−1 + ei , (1)

where B is the delay operator, ei is a short memory smooth sequence with a mean of zero. α, β, c, and d

are the parameters to be estimated, d can be decomposed into d = m+ δ, m is an integer greater than or

equal to zero with δ ∈ (−0.5, 0.5). Here the estimated time duration must be a positive number as there

is a log transform on the left side of the model.

However, as is discussed in section 3.3, if the model (1) is not applicable to the high frequency trading

data of the Kweichow Moutai Co Ltd (SHA: 600519) from January 4th, 2013 to February 26th, 2014, i.e.,
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the parameter α or β is not significant, we have to change the model. In order to adjust the model for our

own data, we add cross terms and quadratic terms with regard to Si−1, Ni−1 that affect the time durations

to the right side of the model (1). The new model (2) goes as follows.

(1−B)dln(4ti) = c+ α1Si−1 + α2Ni−1 + β1S
2
i−1 + β2N

2
i−1 + β3Si−1Ni−1 + ei . (2)

3.3 ARFIMA Model Fitting and Checking

As it is very difficult for us to figure out the maximum likelihood function of estimated parameters,

we therefore give up on the maximum likelihood method but use other method instead to estimate the

parameter in the model (1) or (2). We can use the profile-least squares method or use the ARFIMA

package in R directly.

3.3.1 Profile-Least Squares Method

The idea of this method is similar to which of Jan Beran’s [13]. We give the brief introduction as

followings: given d, we estimate the remaining parameters using least squares estimation method and

calculate of the estimated residual variance σ̂2
e(d). Then we set the value of d within a range and increase

little by little. Therefore the d which gives out the minimum σ̂2
e(d) is our estimated value of d. This

method is very intuitive and easy to implement using R.

As the lag(n) autocorrelation function of ln(4ti) is not 0 significantly and no obvious trend is

observed from its own timing chart, we can conclude that d = 0 + δ ∈ (−0.5, 0.5). Besides, as the

P-value of the t test on α1 in model (1)is larger than 0.05, and therefore we consider to fit the data into the

following model (2). We take d from −0.5 to 0.5 by the step of 0.02, getting the following result in R.

> order ( s igma2 )

[ 1 ] 37 36 38 35 39 34 40 41 33 42 43 32 44 45 31 46 47 30 48 49 50 29 51

[ 2 4 ] 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7

6

[ 4 7 ] 5 4 3 2 1

As a result, the 37th one has the minimum σ̂2
e(d), and therefore, d = −0.5 + 0.02 ∗ (37− 1) = 0.22.

According to the definition of fraction difference proposed by Granger, Joyeux [14] and Hosking [15], we

have

(1−B)δ =

∞∑
k=0

bk(δ)B
k ,
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where

bk(δ) = (−1)k
Γ(δ + 1)

Γ(k + 1)Γ(δ − k + 1)
.

Here Γ(z) is the gamma function with Γ(z) =
∫∞

0
tz−1
et dt. The remaining parameters could now be

easily estimated. We estimate them in R, getting the following results as is shown in Table 3.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.066833683 0.001378441 48.485 < 2e-16

st1 -0.002949702 0.014511981 -0.203 0.83893
nt -0.040695953 0.000386792 -105.214 < 2e-16
st2 -0.014885260 0.005129479 -2.902 0.00371
nt2 0.000200261 0.000004421 45.302 < 2e-16
snt -0.004813683 0.002913033 -1.652 0.09844

Table 3: Parameters in Model2

As is shown in the results, the P-value of the t test on α1 and β3 is larger than 0.05, and therefore we

consider to fit the data into the following model (3).

(1−B)dln(4ti) = c+ α2Ni−1 + β1S
2
i−1 + β2N

2
i−1 + ei . (3)

The result is shown in Table 4.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.06683717 0.00137843 48.488 < 2e-16

nt -0.04069426 0.00038676 -105.218 < 2e-16
st2 -0.01494172 0.00512219 -2.917 0.00353
nt2 0.00019879 0.00000433 45.906 < 2e-16

Table 4: Parameters in Model3

All parameters pass the t-test. The model can be written as

(1−B)0.22ln(4ti) = 0.06683717−0.04069426Ni−1−0.01494172S2
i−1 +0.00019879N2

i−1 +ei , (4)

where (1−B)0.22 =
∞∑
k=0

(−1)k Γ(1.22)
Γ(k+1)Γ(1.22−k)B

k .

Here Γ(z) is the gamma function and ei is a short memory smooth sequence with a mean of zero.

Finally, we need to do the model checking in order to see whether ei has a long memory phenomenon

or not. We can compare the two graphics in Figure 14, finding that ei has no long memory phenomenon

now. Therefore, we can draw a conclusion that the model (4) is somewhat reasonable.
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(a) No Long Memory (b) Long Memory

Figure 14: Before and After ARFIMA

3.3.2 Using AFIMA Package in R to Calculate d

The other method is to use the AFIMA Package in R to calculate the value of d in model (1).

The result shows that d = 0.139462, which is quite different from the results estimated by Profile-

Least Squares Method that d = 0.22.

We then estimate the remaining parameters in R, getting the following results as is shown in Table 5.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0534654 0.0015391 34.74 <2e-16

st -0.4684479 0.0160741 -29.14 <2e-16
nt -0.0181302 0.0002946 -61.54 <2e-16

Table 5: Parameters in Model1

As is shown in the results, the P-value of the t test on α and β is very small, and therefore we do

not need to add any cross terms or quadratic terms with regard to Si−1, Ni−1. The model (1) is already

adequate.

The model can be written as

(1−B)0.139462ln(4ti) = 0.0534654− 0.4684479Ni−1 − 0.0181302Si−1 + ei , (5)

where (1−B)0.139462 =
∞∑
k=0

(−1)k Γ(1.139462)
Γ(k+1)Γ(1.139462−k)B

k .

Here Γ(z) is the gamma function and ei is a short memory smooth sequence with a mean of zero.

Finally, we need to do the model checking in order to see whether ei has a long memory phenomenon

or not. We can compare the two graphics in Figure 15, finding that ei has no long memory phenomenon

now. Therefore, we can draw a conclusion that the model (5) is also somewhat reasonable.
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(a) No Long Memory (b) Long Memory

Figure 15: Before and After ARFIMA

3.3.3 Comments on the Two Methods

We have used two methods in section 3.31 and section 3.32 respectively, getting two different values

of d and two different models. Even though both of the models sound reasonable, we finally choose the

second one. The reasons go as follows.

In section 3.31, as the parameter α is not significant, we add cross terms and quadratic terms with

regard to Si−1, Ni−1 to the right side of the model (1) in order to show how the price would affect the

time durations. However, there exist some problems when using the Least Squares Method to estimate

a model with quadratic terms. Therefore, if we use the Profile-Least Squares Method to estimate d, we

would either face some problems when estimating or ignore the influence of price on time duration.

Fortunately, if we use the ARFIMA package in R directly, the problem is solved. Both the parameter

α and the parameter β are significant. We therefore use the second method to estimate our model. The

final model goes as follows.

(1−B)0.139462ln(4ti) = 0.0534654− 0.4684479Ni−1 − 0.0181302Si−1 + ei ,

where (1−B)0.139462 =
∞∑
k=0

(−1)k Γ(1.139462)
Γ(k+1)Γ(1.139462−k)B

k .

Here Γ(z) is the gamma function and ei is a short memory smooth sequence with a mean of zero.
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3.4 ARIMA GARCH Model on Residuals ei

Notice that even though the residuals ei do not have long memory phenomenon, ei are not white noise

series. When we do the Ljung Box Test on ei and e2
i respectively, the results shows that both P-values

are near to 0. As a result, there is not only serial correlation but also ARCH effect in the series of ei.

Therefore, we would like to fit an ARIMA GARCH model to the residuals ei. Note that the mean of ei

should be equal to 0.

We have tried the different ARIMA GARCH models according to the ACF and PACF of ei, getting

the result that the ARMA(2,1)-GARCH(1,0) model with the residuals ε follows normal distribution has

the least AIC. According to R, the estimated parameters go as Table 6. As all p-values are extremely close

to 0, all parameters pass t-test.

Estimate Std. Error t value Pr(>|t|)
ar1 0.926741 0.000067 13887.851 0
ar2 0.073041 0.000055 1339.097 0
ma1 -0.996010 0.000010 -100686.523 0

omega 0.466424 0.001411 330.518 0
alpha1 0.036881 0.002012 18.332 0

Table 6: ARMA(2,1)-GARCH(1,0)

Therefore, the model of ei could be written as

ei = 0.926741ei−1 + 0.073041ei−2 + ai − 0.996010ai−1

ai = εiσi

σ2
i = 0.466424 + 0.036881a2

i−1 ,

where εi ∼ whitenoise(0, 1).

Fortunately, when we make the model checking by using the Ljung Box test, the results go as Table 7.

As all the p-value are larger than 0.05, we cannot reject any of the two H0. We can conclude that εi are

white noises with no ARCH effect.

variable X-squared df p-value
residepsi 18.613 12 0.09832
residepsi2 15.625 12 0.209

Table 7: Ljung Box Test
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The final model of4ti that we build goes as follows.

(1−B)0.139462ln(4ti) = 0.0534654− 0.4684479Ni−1 − 0.0181302Si−1 + ei

ei = 0.926741ei−1 + 0.073041ei−2 + ai − 0.996010ai−1

ai = εiσi

σ2
i = 0.466424 + 0.036881a2

i−1 ,

where εi ∼ whitenoise(0, 1), (1 − B)0.139462 =
∞∑
k=0

(−1)k Γ(1.139462)
Γ(k+1)Γ(1.139462−k)B

k , and Γ(z) is the

gamma function.

3.5 Forecast

According to our final model, we can forecast the (1 − B)0.139462ln(4ti(1)) = 0.0534654 −

0.4684479Ni − 0.0181302Si + ei(1), where ei(1) = 0.926741ei + 0.073041ei−1 + ai − 0.996010ai.

Besides, the 1-step 95% forecasting interval of ei(1) is (ei(1) − 1.96σi(1), ei(1) + 1.96σi(1)),

where σi(1)2 = 0.466424 + 0.036881a2
i .

The forecasting result goes as Table 8.

e (1−B)dln(4t) ln(4t) 4t
forecast value 0.4461 0.393037815 -2.3606 0.09436
low boundary -0.897284 -0.950346185 -3.7041 0.024622
high boundary 1.789484 1.736421815 -1.0171 0.361642

Table 8: Forecast
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4 Conclusion

In our report, we focus on the high frequency trading data of Kweichow Moutai Co Ltd (SHA: 600519)

from January 4th, 2013 to February 26th, 2014 from the market makers’ perspective. Market makers are

interested in two kind of information from the high frequency trading data.

Firstly, market makers are certainly interested in how the mid-quote price would change. However,

even though the log return series are stationary according to the Dickey-Fuller Unit Root Test, both

ARIMA model and ARIMA GARCH model cannot fit the data of mid-quote price well. There exists serial

correlation and ARCH effect in log return series, while only ARCH effect can be removed by ARIMA

GARCH model. Under no models can the serial correlation be removed. The result means that ARIMA

model is not a good model for the high frequency trading data. Fortunately, market makers are often

employed by the order-driven markets to quote prices continuously for the well being of the market, and

therefore, market makers do not assume the goal of making money.

Secondly, market makers are even more interested in the duration time during which the mid-quote

price remains unchanged. Market makers like this kind of situation, because they can simply apply

the strategy of "buy low, sell high". During the time duration that the bid one and ask one price stay

unchanged, market makers can automatically buy at bid one price and sell at ask one price, making

money at the same time when they facilitate the price discovery process of an exchange. If the mid-quote

price tends to change, market makers cannot simply apply a fixed strategy. Fortunately, a ARFIMA and

regression model can be fitted to the duration time during which the mid-quote price remains unchanged.

Market makers can use the model to forecast the duration time.

Admittedly, the forecast value of 4ti might be quite small but still useful. Since low-latency

communication technologies at both the software level and hardware level significantly contributed the

development of algorithmic trading as a trading practice. Market makers can write a program to forecast

the "Market Microstructure Characteristics Time" and use it to determine the algorithmic trading strategies.
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Appendices

Appendix .A Data

The following data is part of our raw data.
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After we treat the raw data, the settled data go as follows. The first table is the data of log return price.

The second one is the data of time duration that mid-quote price keeps unchanged.
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Appendix .B R Codes in Section 2

# ARCH e f f e c t

> a t = l g r t −mean ( l g r t )

> Box . t e s t ( a t ^2 , l a g =12 , t y p e = ’ Ljung ’ )

Box−Ljung t e s t

data : a t ^2

X−s q u a r e d = 2 3 7 8 . 4 , df = 12 , p−v a l u e < 2 . 2 e−16

> Box . t e s t ( a r ima ( l g r t , order = c ( 1 , 0 , 0 ) ) $ r e s i d ^2 , l a g =12 , t y p e = ’ Ljung ’ )

Box−Ljung t e s t

data : a r ima ( l g r t , order = c ( 1 , 0 , 0 ) ) $ r e s i d ^2

X−s q u a r e d = 14794 , df = 12 , p−v a l u e < 2 . 2 e−16

# ARMA−GARCH model

> f i t q 1 = g a r c h F i t ( l g r t ~arma ( 1 , 0 ) + g a r c h ( 1 , 1 ) , data= l g r t , t r a c e =F )

> summary ( f i t q 1 )

T i t l e :

GARCH Mode l l i ng

Cal l :

g a r c h F i t ( formula = l g r t ~ arma ( 1 , 0 ) + g a r c h ( 1 , 1 ) , data = l g r t ,

t r a c e = F )

Mean and V a r i a n c e E q u a t i o n :

data ~ arma ( 1 , 0 ) + g a r c h ( 1 , 1 )

<environment : 0 x1212f7ca0 >
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[ data = l g r t ]

C o n d i t i o n a l D i s t r i b u t i o n :

norm

C o e f f i c i e n t ( s ) :

mu a r 1 omega a l p h a 1 b e t a 1

−3.1993 e−05 −3.0703 e−01 4 .9455 e−09 2 .1421 e−01 7 .8991 e−01

Std . E r r o r s :

based on H e s s i a n

E r r o r A n a l y s i s :

E s t i m a t e S td . E r r o r t v a l u e Pr ( > | t | )

mu −3.199e−05 1 .143 e−05 −2.800 0 .00511 ∗∗

a r 1 −3.070e−01 4 .191 e−02 −7.326 2 . 3 7 e−13 ∗∗∗

omega 4 .945 e−09 1 .160 e−09 4 .262 2 . 0 3 e−05 ∗∗∗

a l p h a 1 2 .142 e−01 3 .503 e−02 6 .114 9 . 6 9 e−10 ∗∗∗

b e t a 1 7 .899 e−01 2 .484 e−02 31 .802 < 2e−16 ∗∗∗

−−−

S i g n i f . codes : 0 ’∗∗∗ ’ 0 . 001 ’∗∗ ’ 0 . 0 1 ’∗ ’ 0 . 0 5 ’ . ’ 0 . 1 ’ ’ 1

Log L i k e l i h o o d :

4387 .835 n o r m a l i z e d : 6 .268335

D e s c r i p t i o n :

Sun May 1 2 1 : 1 4 : 3 3 2016 by u s e r :

S t a n d a r d i s e d R e s i d u a l s T e s t s :

S t a t i s t i c p−Value

Ja rque−Bera T e s t R Chi ^2 226 .6154 0
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Shap i ro−Wilk T e s t R W 0.956208 1 .386691 e−13

Ljung−Box T e s t R Q( 1 0 ) 28 .83545 0.001324794

Ljung−Box T e s t R Q( 1 5 ) 32 .80012 0.005001912

Ljung−Box T e s t R Q( 2 0 ) 49 .91691 0.0002276229

Ljung−Box T e s t R^2 Q( 1 0 ) 19 .5223 0 .03410873

Ljung−Box T e s t R^2 Q( 1 5 ) 27 .39051 0 .02571104

Ljung−Box T e s t R^2 Q( 2 0 ) 28 .32919 0 .101833

LM Arch T e s t R TR^2 24 .21535 0 .01901148

I n f o r m a t i o n C r i t e r i o n S t a t i s t i c s :

AIC BIC SIC HQIC

−12.52238 −12.48988 −12.52249 −12.50982

# GARCH model

> f i t q 2 = g a r c h F i t ( ~ g a r c h ( 1 , 1 ) , data= l g r t , t r a c e =F )

> summary ( f i t q 2 )

T i t l e :

GARCH Mode l l i ng

Cal l :

g a r c h F i t ( formula = ~ g a r c h ( 1 , 1 ) , data = l g r t , t r a c e = F )

Mean and V a r i a n c e E q u a t i o n :

data ~ g a r c h ( 1 , 1 )

<environment : 0 x1215fa6a8 >

[ data = l g r t ]

C o n d i t i o n a l D i s t r i b u t i o n :

norm

C o e f f i c i e n t ( s ) :
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mu omega a l p h a 1 b e t a 1

−2.6592 e−05 5 .4495 e−09 2 .2163 e−01 7 .8535 e−01

Std . E r r o r s :

based on H e s s i a n

E r r o r A n a l y s i s :

E s t i m a t e S td . E r r o r t v a l u e Pr ( > | t | )

mu −2.659e−05 1 .151 e−05 −2.310 0 .0209 ∗

omega 5 .450 e−09 1 .234 e−09 4 .416 1 . 0 1 e−05 ∗∗∗

a l p h a 1 2 .216 e−01 3 .556 e−02 6 .233 4 . 5 9 e−10 ∗∗∗

b e t a 1 7 .853 e−01 2 .449 e−02 32 .066 < 2e−16 ∗∗∗

−−−

S i g n i f . codes : 0 ’∗∗∗ ’ 0 . 001 ’∗∗ ’ 0 . 0 1 ’∗ ’ 0 . 0 5 ’ . ’ 0 . 1 ’ ’ 1

Log L i k e l i h o o d :

4365 .56 n o r m a l i z e d : 6 .236515

D e s c r i p t i o n :

Sun May 1 2 1 : 1 4 : 3 3 2016 by u s e r :

S t a n d a r d i s e d R e s i d u a l s T e s t s :

S t a t i s t i c p−Value

Ja rque−Bera T e s t R Chi ^2 262 .0727 0

Shap i ro−Wilk T e s t R W 0.9447482 1 .744111 e−15

Ljung−Box T e s t R Q( 1 0 ) 47 .44318 0.0000007841877

Ljung−Box T e s t R Q( 1 5 ) 50 .55803 0.00000975758

Ljung−Box T e s t R Q( 2 0 ) 64 .81859 0.000001247344

Ljung−Box T e s t R^2 Q( 1 0 ) 21 .65193 0 .01697939

Ljung−Box T e s t R^2 Q( 1 5 ) 29 .73687 0 .0129065

Ljung−Box T e s t R^2 Q( 2 0 ) 31 .49438 0 .04899305
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LM Arch T e s t R TR^2 28 .22129 0.005134042

I n f o r m a t i o n C r i t e r i o n S t a t i s t i c s :

AIC BIC SIC HQIC

−12.46160 −12.43559 −12.46167 −12.45155
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Appendix .C R Codes in Section 3

rm ( l i s t = l s ( a l l =TRUE ) )

setwd ( "C : / Users / Ted / Desktop / T S P r o j e c t / Rcodes " )

x g s j =read . csv ( " midquote . c sv " , h e a d e r =T )

t ime= x g s j [ , 1 ]

un= l e n g t h ( unique ( t ime ) ) ; un # d i f f e r e n t t i m e

s j b h =cbind ( time , x g s j [ , 2 ] )

date = x g s j [ , 3 ]

colnames ( s j b h )= c ( " t ime " , " p r i c e " )

# i m p o r t t h e o r i g i n da ta

l o g t i m e = l o g ( s j b h [ , 1 ] )

p r i c e = s j b h [ , 2 ]

p l o t . t s ( p r i c e )

# change t h e t i m e from f a c t o r t o numer ic

t . s e t =unique ( s j b h [ , 1 ] ) # s e t o f t i m e

n t =numeric ( un )

f o r ( i i n 1 : un ) {

n t [ i ]=sum ( t . s e t [ i ]== s j b h [ , 1 ] )

}

p l o t ( t s ( n t ) , x l a b =" t r a d e minu te " , y l a b =" t r a d e t i m e s i n one minu te " )

#no d i f f e r e n c e be tween morning and a f t e r n o o n

t t =NULL

f o r ( i i n 1 : un ) {

temp . t = seq ( ( i −1)∗ 60 , i ∗60−0.5 , l e n g t h = n t [ i ] )

t t =c ( t t , temp . t )

}

data=cbind ( t t , s j b h [ , 2 ] )

pt=data [ , 2 ] # t r a d e p r i c e

d p t = d i f f ( pt ) #dp [ t ]=p [ t ]−p [ t −1]

index =which ( d p t ! = 0)
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c t = t t [ c ( 1 , index + 1 ) ] # t h a t ’ s c t be t h e c a l e n d a r t i m e

# o f t h e i t h p r i c e change o f an a s s e t

d_ t = d i f f ( c t )

s _ t =abs ( d p t [ index ] ) # s i z e o f t h e i t h p r i c e change measured i n t i c k s

n_ t =c ( 0 , d i f f ( index )−1) # t h e number o f t r a d e s i n t h e t i m e i n t e r v a l ( t [ i −1] , t [ i ] )

m= l e n g t h ( n_ t ) ;m

d e l t a =numeric (m)

i _up=which ( d p t [ index ] >0)

i _down=which ( d p t [ index ] <0)

d e l t a [ i _up ]=1

d e l t a [ i _down]=−1

newdata519=cbind ( d_ t , s _ t , n_ t , d e l t a )

w r i t e . csv ( newdata519 , f i l e ="C : / Users / Ted / Desktop / T S P r o j e c t / Rcodes / q u o t e . c sv " )

setwd ( "C : / Users / Ted / Desktop / T S P r o j e c t / Rcodes " )

n d a t a =read . csv ( " t r a d e 6 0 0 5 1 9 . csv " , h e a d e r =TRUE)

d t 1 = n d a t a [ , 2 ]

s t 1 = n d a t a [ , 3 ]

n t 1 = n d a t a [ , 4 ]

d e l t a 1 = n d a t a [ , 5 ]

index = d t 1 ! =0

dt= d t 1 [ index ]

s t = s t 1 [ index ]

n t = n t 1 [ index ]

d e l t a = d e l t a 1 [ index ]

n= l e n g t h ( dt )

dt=dt [ 2 : n ]

s t = s t [ 1 : ( n−1)]

n t = n t [ 1 : ( n−1)]

d e l t a = d e l t a [ 1 : ( n−1)]

s t 1 = s t ∗ d e l t a

s t 2 = s t 1 ^2

n t 2 = n t ^2
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s n t = s t 1 ∗ n t

n=n−1

l d t = l o g ( dt )

md=mean ( l d t )

l l d t = l d t−md

cor ( cbind ( l d t , s t 1 , n t , s t 2 , n t2 , s n t ) )

p l o t . t s ( l l d t )

a c f ( l d t , l a g . max = 96 , p l o t = TRUE)

#MLE

r e q u i r e ( f r a c d i f f )

a r f i m a 1 = f r a c d i f f ( l d t , n a r =0 ,nma=0 , d r an ge = c ( 0 , 0 . 5 ) )

a r f i m a 1

d =0.139462

# Granger , Joyeux , Hosking

o p t i o n s ( s c i p e n = 3)

nb =(−1)^( i −1)∗gamma ( d +1) / (gamma ( i −1+1)∗gamma ( d−i +1+1) )

f o r ( j i n 1 : n ) {

i f ( j <=m1) {

ed [ j ]=sum ( nb [ 1 : j ] ∗ rev ( l d t [ 1 : j ] ) )−sum ( nb [ 1 : j ] ) ∗md

}

e l s e ed [ j ]=sum ( nb∗ rev ( l d t [ ( j−m1+ 1 ) : j ] ) )−sum ( nb ) ∗md

}

lm . r eg1 =lm ( ed ~ s t + n t )

summary ( lm . r eg1 )

#LSE

d e l t a = seq ( −0 . 5 , 0 . 5 , by = 0 . 0 2 )

m= l e n g t h ( d e l t a )

s igma2=numeric (m)

ed=numeric ( n )
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m1=171

nb=numeric (m1)

i =1 :m1

f o r ( k i n 1 :m) {

i f ( k ! = 26){

nb =(−1)^( i −1)∗gamma ( d e l t a [ k ] + 1 ) / (gamma ( i −1+1)∗gamma ( d e l t a [ k]− i +1+1) )

f o r ( j i n 1 : n ) {

i f ( j <=m1) {

ed [ j ]=sum ( nb [ 1 : j ] ∗ rev ( l d t [ 1 : j ] ) )−sum ( nb [ 1 : j ] ) ∗md

}

e l s e ed [ j ]=sum ( nb∗ rev ( l d t [ ( j−m1+ 1 ) : j ] ) )−sum ( nb ) ∗md

}

lm . r e g =summary ( lm ( ed ~ n t + s t 2 + n t 2 + s n t ) )

s igma2 [ k ]= lm . r e g $ s igma

}

e l s e {

lm . r e g =summary ( lm ( l d t ~ n t + s t 2 + n t 2 + s n t ) )

s igma2 [ k ]= lm . r e g $ s igma

}

c a t ( " i t e r a t i o n = " , k , " \ n " )

}

order ( s igma2 )

# Granger , Joyeux , Hosking

o p t i o n s ( s c i p e n = 3)

k=37

nb =(−1)^( i −1)∗gamma ( d e l t a [ k ] + 1 ) / (gamma ( i −1+1)∗gamma ( d e l t a [ k]− i +1+1) )

f o r ( j i n 1 : n ) {

i f ( j <=m1) {

ed [ j ]=sum ( nb [ 1 : j ] ∗ rev ( l d t [ 1 : j ] ) )−sum ( nb [ 1 : j ] ) ∗md

}

e l s e ed [ j ]=sum ( nb∗ rev ( l d t [ ( j−m1+ 1 ) : j ] ) )−sum ( nb ) ∗md
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}

lm . r eg1 =lm ( ed ~ n t + s t 2 + n t 2 )

summary ( lm . r eg1 )

# r e s i d u a l s a n a l y s i s

r e s i d = r e s i d ( lm . r eg1 )

a c f ( r e s i d , l a g . max = 24 , p l o t = TRUE)

p l o t ( t s ( r e s i d ) )

boxp lo t ( r e s i d )

fivenum ( r e s i d )

fu =0.4764604

f l =−0.5965162 #MLE

fu =0.4721599

f l =−0.6038488

df=fu− f l

o l = f l −3∗df

ou= fu +3∗df

o l 1 = f l −1.5∗df

ou1= fu +1 .5 ∗df

r e s i d 1 = r e s i d [ r e s i d <=ou1&r e s i d >= o l 1 ]

l e n g t h ( r e s i d 1 ) / l e n g t h ( r e s i d )

r e q u i r e ( FinTS )

A u t o c o r T e s t ( r e s i d 1 )

ArchTes t ( r e s i d 1 )

a c f ( r e s i d 1 , l a g . max = 24 , p l o t = FALSE)

p a c f ( r e s i d 1 , l a g . max = 24 , p l o t = FALSE)

# rugarch

r e q u i r e ( r u g a r c h )
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spec<−u g a r c h s p e c ( v a r i a n c e . model= l i s t ( model="sGARCH" , g a r c h O r d e r =c ( 1 , 0 ) ) ,

mean . model= l i s t ( armaOrder=c ( 2 , 1 ) , i n c l u d e . mean=FALSE ) ,

d i s t r i b u t i o n . model = " norm " )

g a r ch 3<−u g a r c h f i t ( spec =spec , data= r e s i d 1 )

g a r ch 3

A u t o c o r T e s t ( g a r c h 3 @ f i t $ z )

A u t o c o r T e s t ( ( g a r c h 3 @ f i t $ z ) ^ 2 )

ArchTes t ( g a r c h 3 @ f i t $ z )

ArchTes t ( ( g a r c h 3 @ f i t $ z ) ^ 2 )

# f g a r c h

l i b r a r y ( fGarch )

g a r ch 4 = g a r c h F i t ( r e s i d 1 ~arma ( 2 , 1 ) + g a r c h ( 1 , 0 ) , data= r e s i d 1 , t r a c e =F )

summary ( g a r ch 4 )

# e p s i l o n

r e s i d e p s i = r e s i d u a l s ( garch3 , s t a n d a r d i z e =TRUE)

boxp lo t ( r e s i d e p s i )

mean ( r e s i d e p s i )

var ( r e s i d e p s i )

a c f ( r e s i d e p s i , l a g . max = 24 , p l o t = TRUE)

p a c f ( r e s i d e p s i , l a g . max = 12 , p l o t = TRUE)

Box . t e s t ( r e s i d e p s i , l a g = 12 , t y p e = " Ljung " )

#MLE p r e d i c t

p r e d i c t g a r c h 3 = u g a r c h f o r e c a s t ( garch3 , data = NULL, n . ahead = 4 , con f = . 9 5 )

p r e d i c t g a r c h 3

d =0.139462

newed=c ( ed , 0 )

ne wl d t =c ( l d t , −2 .3606)

nb =(−1)^( i −1)∗gamma ( d +1) / (gamma ( i −1+1)∗gamma ( d−i +1+1) )

37



f o r ( j i n 1 : ( n + 1 ) ) {

i f ( j <=m1) {

newed [ j ]=sum ( nb [ 1 : j ] ∗ rev ( ne wl d t [ 1 : j ] ) )−sum ( nb [ 1 : j ] ) ∗md

}

e l s e newed [ j ]=sum ( nb∗ rev ( ne wl d t [ ( j−m1+ 1 ) : j ] ) )−sum ( nb ) ∗md

}

rev ( newed ) [ 1 ]

0 .393037815

−0.950346185

1.736421815

#LSE p r e d i c t

p r e d i c t g a r c h 3 = u g a r c h f o r e c a s t ( garch3 , data = NULL, n . ahead = 4 , con f = . 9 5 )

p r e d i c t g a r c h 3

newed=c ( ed , 0 )

ne wl d t =c ( l d t ,−2 .31592)

k=37

nb =(−1)^( i −1)∗gamma ( d e l t a [ k ] + 1 ) / (gamma ( i −1+1)∗gamma ( d e l t a [ k]− i +1+1) )

f o r ( j i n 1 : ( n + 1 ) ) {

i f ( j <=m1) {

newed [ j ]=sum ( nb [ 1 : j ] ∗ rev ( ne wl d t [ 1 : j ] ) )−sum ( nb [ 1 : j ] ) ∗md

}

e l s e newed [ j ]=sum ( nb∗ rev ( ne wl d t [ ( j−m1+ 1 ) : j ] ) )−sum ( nb ) ∗md

}

rev ( newed ) [ 1 ]

0 .147155676

−1.203088324

1.497399676
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