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Syllabus

Time series analysis refers to problems in which observations are collected at regular
time intervals and there are correlations among successive observations. Applications

cover virtually all areas of Statistics but some of the most important include economic
and financial time series, and many areas of environmental or ecological data.

In this course, I shall cover some of the most important methods for dealing with
these problems. In the case of time series, these include the basic definitions of
autocorrelations etc., then time-domain model fitting including autoregressive and

moving average processes, spectral methods, and some discussion of the effect of time
series correlations on other kinds of statistical inference, such as the estimation of

means and regression coefficients.

Books
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1 Models for time series

1.1 Time series data

A time series is a set of statistics, usually collected at regular intervals. Time series

data occur naturally in many application areas.

• economics - e.g., monthly data for unemployment, hospital admissions, etc.

• finance - e.g., daily exchange rate, a share price, etc.

• environmental - e.g., daily rainfall, air quality readings.

• medicine - e.g., ECG brain wave activity every 2−8 secs.

The methods of time series analysis pre-date those for general stochastic processes

and Markov Chains. The aims of time series analysis are to describe and summarise
time series data, fit low-dimensional models, and make forecasts.

We write our real-valued series of observations as . . . , X−2, X−1, X0, X1, X2, . . ., a
doubly infinite sequence of real-valued random variables indexed by Z.

1.2 Trend, seasonality, cycles and residuals

One simple method of describing a series is that of classical decomposition. The
notion is that the series can be decomposed into four elements:

Trend (Tt) — long term movements in the mean;

Seasonal effects (It) — cyclical fluctuations related to the calendar;

Cycles (Ct) — other cyclical fluctuations (such as a business cycles);

Residuals (Et) — other random or systematic fluctuations.

The idea is to create separate models for these four elements and then combine
them, either additively

Xt = Tt + It + Ct + Et

or multiplicatively

Xt = Tt · It · Ct · Et .

1.3 Stationary processes

1. A sequence {Xt, t ∈ Z} is strongly stationary or strictly stationary if

(Xt1, . . . , Xtk)
D
=(Xt1+h, . . . , Xtk+h)

for all sets of time points t1, . . . , tk and integer h.

2. A sequence is weakly stationary, or second order stationary if
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(a) E(Xt) = µ, and

(b) cov(Xt, Xt+k) = γk,

where µ is constant and γk is independent of t.

3. The sequence {γk, k ∈ Z} is called the autocovariance function.

4. We also define

ρk = γk/γ0 = corr(Xt, Xt+k)

and call {ρk, k ∈ Z} the autocorrelation function (ACF).

Remarks.

1. A strictly stationary process is weakly stationary.

2. If the process is Gaussian, that is (Xt1, . . . , Xtk) is multivariate normal, for all

t1, . . . , tk, then weak stationarity implies strong stationarity.

3. γ0 = var(Xt) > 0, assuming Xt is genuinely random.

4. By symmetry, γk = γ−k, for all k.

1.4 Autoregressive processes

The autoregressive process of order p is denoted AR(p), and defined by

Xt =

p
∑

r=1

φrXt−r + ǫt (1.1)

where φ1, . . . , φr are fixed constants and {ǫt} is a sequence of independent (or uncor-
related) random variables with mean 0 and variance σ2.

The AR(1) process is defined by

Xt = φ1Xt−1 + ǫt . (1.2)

To find its autocovariance function we make successive substitutions, to get

Xt = ǫt + φ1(ǫt−1 + φ1(ǫt−2 + · · · )) = ǫt + φ1ǫt−1 + φ2
1ǫt−2 + · · ·

The fact that {Xt} is second order stationary follows from the observation that
E(Xt) = 0 and that the autocovariance function can be calculated as follows:

γ0 = E
(

ǫt + φ1ǫt−1 + φ2
1ǫt−2 + · · ·

)2
=
(

1 + φ2
1 + φ4

1 + · · ·
)

σ2 =
σ2

1 − φ2
1

γk = E

( ∞
∑

r=0

φr
1ǫt−r

∞
∑

s=0

φs
1ǫt+k−s

)

=
σ2φk

1

1 − φ2
1

.
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There is an easier way to obtain these results. Multiply equation (1.2) by Xt−k

and take the expected value, to give

E(XtXt−k) = E(φ1Xt−1Xt−k) + E(ǫtXt−k) .

Thus γk = φ1γk−1, k = 1, 2, . . .
Similarly, squaring (1.2) and taking the expected value gives

E(X2
t ) = φ1E(X2

t−1) + 2φ1E(Xt−1ǫt) + E(ǫ2
t ) = φ2

1E(X2
t−1) + 0 + σ2

and so γ0 = σ2/(1 − φ2
1).

More generally, the AR(p) process is defined as

Xt = φ1Xt−1 + φ2Xt−2 + · · · + φpXt−p + ǫt . (1.3)

Again, the autocorrelation function can be found by multiplying (1.3) by Xt−k, taking

the expected value and dividing by γ0, thus producing the Yule-Walker equations

ρk = φ1ρk−1 + φ2ρk−2 + · · · + φpρk−p, k = 1, 2, . . .

These are linear recurrence relations, with general solution of the form

ρk = C1ω
|k|
1 + · · · + Cpω

|k|
p ,

where ω1, . . . , ωp are the roots of

ωp − φ1ω
p−1 − φ2ω

p−2 − · · · − φp = 0

and C1, . . . , Cp are determined by ρ0 = 1 and the equations for k = 1, . . . , p − 1. It
is natural to require γk → 0 as k → ∞, in which case the roots must lie inside the
unit circle, that is, |ωi| < 1. Thus there is a restriction on the values of φ1, . . . , φp

that can be chosen.

1.5 Moving average processes

The moving average process of order q is denoted MA(q) and defined by

Xt =

q
∑

s=0

θsǫt−s (1.4)

where θ1, . . . , θq are fixed constants, θ0 = 1, and {ǫt} is a sequence of independent

(or uncorrelated) random variables with mean 0 and variance σ2.
It is clear from the definition that this is second order stationary and that

γk =

{

0, |k| > q

σ2
∑q−|k|

s=0 θsθs+k, |k| ≤ q

3



We remark that two moving average processes can have the same autocorrelation
function. For example,

Xt = ǫt + θǫt−1 and Xt = ǫt + (1/θ)ǫt−1

both have ρ1 = θ/(1 + θ2), ρk = 0, |k| > 1. However, the first gives

ǫt = Xt − θǫt−1 = Xt − θ(Xt−1 − θǫt−2) = Xt − θXt−1 + θ2Xt−2 − · · ·

This is only valid for |θ| < 1, a so-called invertible process. No two invertible
processes have the same autocorrelation function.

1.6 White noise

The sequence {ǫt}, consisting of independent (or uncorrelated) random variables with

mean 0 and variance σ2 is called white noise (for reasons that will become clear
later.) It is a second order stationary series with γ0 = σ2 and γk = 0, k 6= 0.

1.7 The turning point test

We may wish to test whether a series can be considered to be white noise, or whether
a more complicated model is required. In later chapters we shall consider various

ways to do this, for example, we might estimate the autocovariance function, say
{γ̂k}, and observe whether or not γ̂k is near zero for all k > 0.

However, a very simple diagnostic is the turning point test, which examines a

series {Xt} to test whether it is purely random. The idea is that if {Xt} is purely
random then three successive values are equally likely to occur in any of the six

possible orders.

In four cases there is a turning point in the middle. Thus in a series of n points
we might expect (2/3)(n− 2) turning points.

In fact, it can be shown that for large n, the number of turning points should
be distributed as about N(2n/3, 8n/45). We reject (at the 5% level) the hypothesis
that the series is unsystematic if the number of turning points lies outside the range

2n/3 ± 1.96
√

8n/45.
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2 Models of stationary processes

2.1 Purely indeterministic processes

Suppose {Xt} is a second order stationary process, with mean 0. Its autocovariance

function is
γk = E(XtXt+k) = cov(Xt, Xt+k), k ∈ Z.

1. As {Xt} is stationary, γk does not depend on t.

2. A process is said to be purely-indeterministic if the regression of Xt on

Xt−q, Xt−q−1, . . . has explanatory power tending to 0 as q → ∞. That is, the
residual variance tends to var(Xt).

An important theorem due to Wold (1938) states that every purely-
indeterministic second order stationary process {Xt} can be written in the form

Xt = µ + θ0Zt + θ1Zt−1 + θ2Zt−2 + · · ·
where {Zt} is a sequence of uncorrelated random variables.

3. A Gaussian process is one for which Xt1, . . . , Xtn has a joint normal distri-
bution for all t1, . . . , tn. No two distinct Gaussian processes have the same

autocovariance function.

2.2 ARMA processes

The autoregressive moving average process, ARMA(p, q), is defined by

Xt −
p
∑

r=1

φrXt−r =

q
∑

s=0

θsǫt−s

where again {ǫt} is white noise. This process is stationary for appropriate φ, θ.

Example 2.1

Consider the state space model

Xt = φXt−1 + ǫt ,

Yt = Xt + ηt .

Suppose {Xt} is unobserved, {Yt} is observed and {ǫt} and {ηt} are independent

white noise sequences. Note that {Xt} is AR(1). We can write

ξt = Yt − φYt−1

= (Xt + ηt) − φ(Xt−1 + ηt−1)

= (Xt − φXt−1) + (ηt − φηt−1)

= ǫt + ηt − φηt−1

5



Now ξt is stationary and cov(ξt, ξt+k) = 0, k ≥ 2. As such, ξt can be modelled as a
MA(1) process and {Yt} as ARMA(1, 1).

2.3 ARIMA processes

If the original process {Yt} is not stationary, we can look at the first order difference

process
Xt = ∇Yt = Yt − Yt−1

or the second order differences

Xt = ∇2Yt = ∇(∇Y )t = Yt − 2Yt−1 + Yt−2

and so on. If we ever find that the differenced process is a stationary process we can
look for a ARMA model of that.

The process {Yt} is said to be an autoregressive integrated moving average

process, ARIMA(p, d, q), if Xt = ∇dYt is an ARMA(p, q) process.

AR, MA, ARMA and ARIMA processes can be used to model many time series.
A key tool in identifying a model is an estimate of the autocovariance function.

2.4 Estimation of the autocovariance function

Suppose we have data (X1, . . . , XT ) from a stationary time series. We can estimate

• the mean by X̄ = (1/T )
∑T

1 Xt,

• the autocovariance by ck = γ̂k = (1/T )
∑T

t=k+1(Xt − X̄)(Xt−k − X̄), and

• the autocorrelation by rk = ρ̂k = γ̂k/γ̂0.

The plot of rk against k is known as the correlogram. If it is known that µ is 0

there is no need to correct for the mean and γk can be estimated by

γ̂k = (1/T )
∑T

t=k+1 XtXt−k .

Notice that in defining γ̂k we divide by T rather than by (T − k). When T is

large relative to k it does not much matter which divisor we use. However, for
mathematical simplicity and other reasons there are advantages in dividing by T .

Suppose the stationary process {Xt} has autocovariance function {γk}. Then

var

(

T
∑

t=1

atXt

)

=

T
∑

t=1

T
∑

s=1

atas cov(Xt, Xs) =

T
∑

t=1

T
∑

s=1

atasγ|t−s| ≥ 0.

A sequence {γk} for which this holds for every T ≥ 1 and set of constants (a1, . . . , aT )

is called a nonnegative definite sequence. The following theorem states that {γk}
is a valid autocovariance function if and only if it is nonnegative definite.

6



Theorem 2.2 (Blochner) The following are equivalent.

1. There exists a stationary sequence with autocovariance function {γk}.
2. {γk} is nonnegative definite.

3. The spectral density function,

f(ω) =
1

π

∞
∑

k=−∞
γke

ikω =
1

π
γ0 +

2

π

∞
∑

k=1

γk cos(ωk) ,

is positive if it exists.

Dividing by T rather than by (T − k) in the definition of γ̂k

• ensures that {γ̂k} is nonnegative definite (and thus that it could be the autoco-
variance function of a stationary process), and

• can reduce the L2-error of rk.

2.5 Identifying a MA(q) process

In a later lecture we consider the problem of identifying an ARMA or ARIMA model
for a given time series. A key tool in doing this is the correlogram.

The MA(q) process Xt has ρk = 0 for all k, |k| > q. So a diagnostic for MA(q) is
that |rk| drops to near zero beyond some threshold.

2.6 Identifying an AR(p) process

The AR(p) process has ρk decaying exponentially. This can be difficult to recognise
in the correlogram. Suppose we have a process Xt which we believe is AR(k) with

Xt =

k
∑

j=1

φj,kXt−j + ǫt

with ǫt independent of X1, . . . , Xt−1.

Given the data X1, . . . , XT , the least squares estimates of (φ1,k, . . . , φk,k) are ob-
tained by minimizing

1

T

T
∑

t=k+1

(

Xt −
k
∑

j=1

φj,kXt−j

)2

.

This is approximately equivalent to solving equations similar to the Yule-Walker

equations,

γ̂j =
k
∑

ℓ=1

φ̂ℓ,kγ̂|j−ℓ|, j = 1, . . . , k

These can be solved by the Levinson-Durbin recursion:

7



Step 0. σ2
0 := γ̂0, φ̂1,1 = γ̂1/γ̂0, k := 0

Step 1. Repeat until φ̂k,k near 0:

k := k + 1

φ̂k,k :=

(

γ̂k −
k−1
∑

j=1

φ̂j,k−1γ̂k−j

)/

σ2
k−1

φ̂j,k := φ̂j,k−1 − φ̂k,kφ̂k−j,k−1, for j = 1, . . . , k − 1

σ2
k := σ2

k−1(1 − φ̂2
k,k)

We test whether the order k fit is an improvement over the order k− 1 fit by looking
to see if φ̂k,k is far from zero.

The statistic φ̂k,k is called the kth sample partial autocorrelation coefficient

(PACF). If the process Xt is genuinely AR(p) then the population PACF, φk,k, is

exactly zero for all k > p. Thus a diagnostic for AR(p) is that the sample PACFs
are close to zero for k > p.

2.7 Distributions of the ACF and PACF

Both the sample ACF and PACF are approximately normally distributed about
their population values, and have standard deviation of about 1/

√
T , where T is the

length of the series. A rule of thumb it that ρk is negligible (and similarly φk,k) if

rk (similarly φ̂k,k) lies between ±2/
√

T . (2 is an approximation to 1.96. Recall that
if Z1, . . . , Zn ∼ N(µ, 1), a test of size 0.05 of the hypothesis H0 : µ = 0 against

H1 : µ 6= 0 rejects H0 if and only if Z̄ lies outside ±1.96/
√

n).
Care is needed in applying this rule of thumb. It is important to realize

that the sample autocorrelations, r1, r2, . . ., (and sample partial autocorrelations,
φ̂1,1, φ̂2,2, . . .) are not independently distributed. The probability that any one rk

should lie outside ±2/
√

T depends on the values of the other rk.
A ‘portmanteau’ test of white noise (due to Box & Pierce and Ljung & Box) can

be based on the fact that approximately

Q′
m = T (T + 2)

m
∑

k=1

(T − k)−1r2
k ∼ χ2

m .

The sensitivity of the test to departure from white noise depends on the choice of
m. If the true model is ARMA(p, q) then greatest power is obtained (rejection of the

white noise hypothesis is most probable) when m is about p + q.
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3 Spectral methods

3.1 The discrete Fourier transform

If h(t) is defined for integers t, the discrete Fourier transform of h is

H(ω) =

∞
∑

t=−∞
h(t)e−iωt, −π ≤ ω ≤ π

The inverse transform is

h(t) =
1

2π

∫ π

−π

eiωtH(ω) dω .

If h(t) is real-valued, and an even function such that h(t) = h(−t), then

H(ω) = h(0) + 2

∞
∑

t=1

h(t) cos(ωt)

and

h(t) =
1

π

∫ π

0

cos(ωt)H(ω) dω .

3.2 The spectral density

The Wiener-Khintchine theorem states that for any real-valued stationary process

there exists a spectral distribution function, F (·), which is nondecreasing and
right continuous on [0, π] such that F (0) = 0, F (π) = γ0 and

γk =

∫ π

0

cos(ωk) dF (ω) .

The integral is a Lebesgue-Stieltges integral and is defined even if F has disconti-

nuities. Informally, F (ω2) − F (ω1) is the contribution to the variance of the series
made by frequencies in the range (ω1, ω2).

F (·) can have jump discontinuities, but always can be decomposed as

F (ω) = F1(ω) + F2(ω)

where F1(·) is a nondecreasing continuous function and F2(·) is a nondecreasing

step function. This is a decomposition of the series into a purely indeterministic
component and a deterministic component.

Suppose the process is purely indeterministic, (which happens if and only if
∑

k |γk| < ∞). In this case F (·) is a nondecreasing continuous function, and dif-

ferentiable at all points (except possibly on a set of measure zero). Its derivative
f(ω) = F ′(ω) exists, and is called the spectral density function. Apart from a
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multiplication by 1/π it is simply the discrete Fourier transform of the autocovariance
function and is given by

f(ω) =
1

π

∞
∑

k=−∞
γke

−ikω =
1

π
γ0 +

2

π

∞
∑

k=1

γk cos(ωk) ,

with inverse

γk =

∫ π

0

cos(ωk)f(ω) dω .

Note. Some authors define the spectral distribution function on [−π, π]; the use of

negative frequencies makes the interpretation of the spectral distribution less intuitive
and leads to a difference of a factor of 2 in the definition of the spectra density.

Notice, however, that if f is defined as above and extended to negative frequencies,
f(−ω) = f(ω), then we can write

γk =

∫ π

−π

1
2e

iωkf(ω) dω .

Example 3.1

(a) Suppose {Xt} is i.i.d., γ0 = var(Xt) = σ2 > 0 and γk = 0, k ≥ 1. Then
f(ω) = σ2/π. The fact that the spectral density is flat means that all frequencies

are equally present accounts for our calling this sequence white noise.

(b) As an example of a process which is not purely indeterministic, consider Xt =
cos(ω0t + U) where ω0 is a value in [0, π] and U ∼ U [−π, π]. The process has
zero mean, since

E(Xt) =
1

2π

∫ π

−π

cos(ω0t + u) du = 0

and autocovariance

γk = E(Xt, Xt+k)

=
1

2π

∫ π

−π

cos(ω0t + u) cos(ω0t + ω0k + u)du

=
1

2π

∫ π

−π

1
2 [cos(ω0k) + cos(2ω0t + ω0k + 2u)] du

=
1

2π
1
2[2π cos(ω0k) + 0]

=
1

2
cos(ω0k) .

Hence Xt is second order stationary and we have

γk =
1

2
cos(ω0k), F (ω) =

1

2
I[ω≥ω0] and f(ω) =

1

2
δω0

(ω) .

10



Note that F is a nondecreasing step function.

More generally, the spectral density

f(ω) =
n
∑

j=1

1

2
ajδωj

(ω)

corresponds to the process Xt =
∑n

j=1 aj cos(ωjt + Uj) where ωj ∈ [0, π] and

U1, . . . , Un are i.i.d. U [−π, π].

(c) The MA(1) process, Xt = θ1ǫt−1 + ǫt, where {ǫt} is white noise. Recall γ0 =

(1 + θ2
1)σ

2, γ1 = θ1σ
2, and γk = 0, k > 1. Thus

f(ω) =
σ2(1 + 2θ1 cos ω + θ2

1)

π
.

(d) The AR(1) process, Xt = φ1Xt−1 + ǫt, where {ǫt} is white noise. Recall

var(Xt) = φ2
1 var(Xt−1) + σ2 =⇒ γ0 = φ2

1γ0 + σ2 =⇒ γ0 = σ2/(1 − φ2
1)

where we need |φ1| < 1 for Xt stationary. Also,

γk = cov(Xt, Xt−k) = cov(φ1Xt−1 + ǫt, Xt−k) = φ1γk−1.

So γk = φ
|k|
1 γ0, k ∈ Z. Thus

f(ω) =
γ0

π
+

2

π

∞
∑

k=1

φk
1γ0 cos(kω) =

γ0

π

{

1 +

∞
∑

k=1

φk
1

[

eiωk + e−iωk
]

}

=
γ0

π

{

1 +
φ1e

iω

1 − φ1eiω
+

φ1e
−iω

1 − φ1e−iω

}

=
γ0

π

1 − φ2
1

1 − 2φ1 cos ω + φ2
1

=
σ2

π(1 − 2φ1 cos ω + φ2
1)

.

Note that φ > 0 has power at low frequency, whereas φ < 0 has power at high
frequency.

0
0

0
0

11 22 33

44

ωω

f(ω)f(ω)

φ1 = 1

2
φ1 = −1

2
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Plots above are the spectral densities for AR(1) processes in which {ǫt} is Gaussian
white noise, with σ2/π = 1. Samples for 200 data points are shown below.

1 50 100 150 200

φ1 =
1

2

1 50 100 150 200

φ1 = −

1

2

3.3 Analysing the effects of smoothing

Let {as} be a sequence of real numbers. A linear filter of {Xt} is

Yt =

∞
∑

s=−∞
asXt−s .

In Chapter 5 we show that the spectral density of {Yt} is given by

fY (ω) = |a(ω)|2 fX(ω) ,

where a(z) is the transfer function

a(ω) =
∞
∑

s=−∞
ase

iωs .

This result can be used to explore the effect of smoothing a series.

Example 3.2

Suppose the AR(1) series above, with φ1 = −0.5, is smoothed by a moving average
on three points, so that smoothed series is

Yt = 1
3 [Xt+1 + Xt + Xt−1] .

Then |a(ω)|2 = |13e−iω + 1
3 + 1

3e
iω|2 = 1

9(1 + 2 cosω)2.
Notice that γX(0) = 4π/3, γY (0) = 2π/9, so {Yt} has 1/6 the variance of {Xt}.

Moreover, all components of frequency ω = 2π/3 (i.e., period 3) are eliminated in
the smoothed series.

00 1

1

2 3
ω

|a(ω)|2

00 1

1

2

2

3

3

4

5

ω

= |a(ω)|2fX(ω)

fY (ω)
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4 Estimation of the spectrum

4.1 The periodogram

Suppose we have T = 2m + 1 observations of a time series, y1, . . . , yT . Define the

Fourier frequencies, ωj = 2πj/T , j = 1, . . . , m, and consider the regression model

yt = α0 +
m
∑

j=1

αj cos(ωjt) +
m
∑

j=1

βj sin(ωjt) ,

which can be written as a general linear model, Y = Xθ + ǫ, where

Y =





y1
...

yT



 , X =





1 c11 s11 · · · cm1 sm1
...

...
...

...
...

1 c1T s1T · · · cmT smT



 , θ =



















α0

α1

β1
...

αm

βm



















, ǫ =





ǫ1
...

ǫT





′

cjt = cos(ωjt), sjt = sin(ωjt) .

The least squares estimates in this model are given by

θ̂ = (X⊤X)−1X⊤Y .

Note that
T
∑

t=1

eiωjt =
eiωj(1 − eiωjT )

1 − eiωj
= 0

=⇒
T
∑

t=1

cjt + i

T
∑

t=1

sjt = 0 =⇒
T
∑

t=1

cjt =

T
∑

t=1

sjt = 0

and

T
∑

t=1

cjtsjt = 1
2

T
∑

t=1

sin(2ωjt) = 0 ,

T
∑

t=1

c2
jt = 1

2

T
∑

t=1

{1 + cos(2ωjt)} = T/2 ,

T
∑

t=1

s2
jt = 1

2

T
∑

t=1

{1 − cos(2ωjt)} = T/2 ,

T
∑

t=1

cjtskt =

T
∑

t=1

cjtckt =

T
∑

t=1

sjtskt = 0, j 6= k .

13



Using these, we have

θ̂ =











α̂0

α̂1
...

β̂m











=











T 0 · · · 0
0 T/2 · · · 0
...

...
...

0 0 · · · T/2











−1









∑

t yt
∑

t c1tyt
...

∑

t smtyt











=











ȳ
(2/T )

∑

t c1tyt
...

(2/T )
∑

t smtyt











and the regression sum of squares is

Ŷ ⊤Ŷ = Y ⊤X(X⊤X)−1X⊤Y = T ȳ2 +

m
∑

j=1

2

T





{

T
∑

t=1

cjtyt

}2

+

{

T
∑

t=1

sjtyt

}2


 .

Since we are fitting T unknown parameters to T data points, the model fits with no
residual error, i.e., Ŷ = Y . Hence

T
∑

t=1

(yt − ȳ)2 =

m
∑

j=1

2

T





{

T
∑

t=1

cjtyt

}2

+

{

T
∑

t=1

sjtyt

}2


 .

This motivates definition of the periodogram as

I(ω) =
1

πT





{

T
∑

t=1

yt cos(ωt)

}2

+

{

T
∑

t=1

yt sin(ωt)

}2


 .

A factor of (1/2π) has been introduced into this definition so that the sample variance,
γ̂0 = (1/T )

∑T
t=1(yt − ȳ)2, equates to the sum of the areas of m rectangles, whose

heights are I(ω1), . . . , I(ωm), whose widths are 2π/T , and whose bases are centred
at ω1, . . . , ωm. I.e., γ̂0 = (2π/T )

∑m
j=1 I(ωj). These rectangles approximate the area

under the curve I(ω), 0 ≤ ω ≤ π.

0

I(ω)

I(ω5)

ω5

2π/T
π

14



Using the fact that
∑T

t=1 cjt =
∑T

t=1 sjt = 0, we can write

πTI(ωj) =

{

T
∑

t=1

yt cos(ωjt)

}2

+

{

T
∑

t=1

yt sin(ωjt)

}2

=

{

T
∑

t=1

(yt − ȳ) cos(ωjt)

}2

+

{

T
∑

t=1

(yt − ȳ) sin(ωjt)

}2

=

∣

∣

∣

∣

∣

T
∑

t=1

(yt − ȳ)eiωjt

∣

∣

∣

∣

∣

2

=
T
∑

t=1

(yt − ȳ)eiωjt
T
∑

s=1

(ys − ȳ)e−iωjs

=
T
∑

t=1

(yt − ȳ)2 + 2
T−1
∑

k=1

T
∑

t=k+1

(yt − ȳ)(yt−k − ȳ) cos(ωjk) .

Hence

I(ωj) =
1

π
γ̂0 +

2

π

T−1
∑

k=1

γ̂k cos(ωjk) .

I(ω) is therefore a sample version of the spectral density f(ω).

4.2 Distribution of spectral estimates

If the process is stationary and the spectral density exists then I(ω) is an almost
unbiased estimator of f(ω), but it is a rather poor estimator without some smoothing.

Suppose {yt} is Gaussian white noise, i.e., y1, . . . , yT are iid N(0, σ2). Then for
any Fourier frequency ω = 2πj/T ,

I(ω) =
1

πT

[

A(ω)2 + B(ω)2
]

, (4.1)

where

A(ω) =

T
∑

t=1

yt cos(ωt) , B(ω) =

T
∑

t=1

yt sin(ωt) . (4.2)

Clearly A(ω) and B(ω) have zero means, and

var[A(ω)] = σ2
T
∑

t=1

cos2(ωt) = Tσ2/2 ,

var[B(ω)] = σ2
T
∑

t=1

sin2(ωt) = Tσ2/2 ,

15



cov[A(ω), B(ω)] = E

[

T
∑

t=1

T
∑

s=1

ytys cos(ωt) sin(ωs)

]

= σ2
T
∑

t=1

cos(ωt) sin(ωt) = 0 .

Hence A(ω)
√

2/Tσ2 and B(ω)
√

2/Tσ2 are independently distributed as N(0, 1), and

2
[

A(ω)2 + B(ω)2
]

/(Tσ2) is distributed as χ2
2. This gives I(ω) ∼ (σ2/π)χ2

2/2. Thus
we see that I(w) is an unbiased estimator of the spectrum, f(ω) = σ2/π, but it is not

consistent, since var[I(ω)] = σ4/π2 does not tend to 0 as T → ∞. This is perhaps
surprising, but is explained by the fact that as T increases we are attempting to
estimate I(ω) for an increasing number of Fourier frequencies, with the consequence

that the precision of each estimate does not change.
By a similar argument, we can show that for any two Fourier frequencies, ωj and

ωk the estimates I(ωj) and I(ωk) are statistically independent. These conclusions
hold more generally.

Theorem 4.1 Let {Yt} be a stationary Gaussian process with spectrum f(ω). Let

I(·) be the periodogram based on samples Y1, . . . , YT , and let ωj = 2πj/T , j < T/2,
be a Fourier frequency. Then in the limit as T → ∞,

(a) I(ωj) ∼ f(ωj)χ
2
2/2.

(b) I(ωj) and I(ωk) are independent for j 6= k.

Assuming that the underlying spectrum is smooth, f(ω) is nearly constant over a
small range of ω. This motivates use of an estimator for the spectrum of

f̂(ωj) =
1

2p + 1

p
∑

ℓ=−p

I(ωj+ℓ) .

Then f̂(ωj) ∼ f(ωj)χ
2
2(2p+1)/[2(2p+1)], which has variance f(ω)2/(2p+1). The idea

is to let p → ∞ as T → ∞.

4.3 The fast Fourier transform

I(ωj) can be calculated from (4.1)–(4.2), or from

I(ωj) =
1

πT

∣

∣

∣

∣

∣

T
∑

t=1

yte
iωjt

∣

∣

∣

∣

∣

2

.

Either way, this requires of order T multiplications. Hence to calculate the complete

periodogram, i.e., I(ω1), . . . , I(ωm), requires of order T 2 multiplications. Computa-
tion effort can be reduced significantly by use of the fast Fourier transform, which

computes I(ω1), . . . , I(ωm) using only order T log2 T multiplications.
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5 Linear filters

5.1 The Filter Theorem

A linear filter of one random sequence {Xt} into another sequence {Yt} is

Yt =
∞
∑

s=−∞
asXt−s . (5.1)

Theorem 5.1 (the filter theorem) Suppose Xt is a stationary time series with spec-
tral density fX(ω). Let {at} be a sequence of real numbers such that

∑∞
t=−∞ |at| < ∞.

Then the process Yt =
∑∞

s=−∞ asXt−s is a stationary time series with spectral density

function
fY (ω) =

∣

∣A(eiω)
∣

∣

2
fX(ω) = |a(ω)|2 fX(ω) ,

where A(z) is the filter generating function

A(z) =

∞
∑

s=−∞
asz

s, |z| ≤ 1 .

and a(ω) = A(eiω) is the transfer function of the linear filter.

Proof.

cov(Yt, Yt+k) =
∑

r∈Z

∑

s∈Z

aras cov(Xt−r, Xt+k−s)

=
∑

r,s∈Z

arasγk+r−s

=
∑

r,s∈Z

aras

∫ π

−π

1
2e

iω(k+r−s)fX(ω)dω

=

∫ π

−π

A(eiω)A(e−iω)1
2
eiωkfX(ω)dω

=

∫ π

−π

1
2e

iωk
∣

∣A(eiω)
∣

∣

2
fX(ω)dω

=

∫ π

−π

1
2e

iωkfY (ω)dω .

Thus fY (ω) is the spectral density for Y and Y is stationary.

5.2 Application to autoregressive processes

Let us use the notation B for the backshift operator

B0 = I, (B0X)t = Xt, (BX)t = Xt−1, (B2X)t = Xt−2, . . .

17



Then the AR(p) process can be written as

(I −
∑p

r=1 φrB
r) X = ǫ

or φ(B)X = ǫ, where φ is the function

φ(z) = 1 −
∑p

r=1 φrz
r .

By the filter theorem, fǫ(ω) = |φ
(

eiω)|2fX(ω
)

, so since fǫ(ω) = σ2/π,

fX(ω) =
σ2

π|φ(eiω)|2 . (5.2)

As fX(ω) = (1/π)
∑∞

k=−∞ γke
−iωk, we can calculate the autocovariances by ex-

panding fX(ω) as a power series in eiω. For this to work, the zeros of φ(z) must lie
outside the unit circle in C. This is the stationarity condition for the AR(p) process.

Example 5.2

For the AR(1) process, Xt − φ1Xt−1 = ǫt, we have φ(z) = 1 − φ1z, with its zero at

z = 1/φ1. The stationarity condition is |φ1| < 1. Using (5.2) we find

fX(ω) =
σ2

π|1 − φeiω|2 =
σ2

π(1 − 2φ cosω + φ2)
,

which is what we found by other another method in Example 3.1(c). To find the
autocovariances we can write, taking z = eiω,

1

|φ1(z)|2 =
1

φ1(z)φ1(1/z)
=

1

(1 − φ1z)(1 − φ1/z)
=

∞
∑

r=0

φr
1z

r
∞
∑

s=0

φs
1z

−s

=

∞
∑

k=−∞
zk(φ

|k|
1 (1 + φ2

1 + φ4
1 + · · · )) =

∞
∑

k=−∞

zkφ
|k|
1

1 − φ2
1

=⇒ fX(ω) =
1

π

∞
∑

k=−∞

σ2φ
|k|
1

1 − φ2
1

eiωk

and so γk = σ2φ
|k|
1 /(1 − φ2

1) as we saw before.

In general, it is often easier to calculate the spectral density function first, using
filters, and then deduce the autocovariance function from it.

5.3 Application to moving average processes

The MA(q) process Xt = ǫt +
∑q

s=1 θsǫt−s can be written as

X = θ(B)ǫ

where θ(z) =
∑q

s=0 θsB
s. By the filter theorem, fX(ω) = |θ(eiω)|2(σ2/π).
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Example 5.3

For the MA(1), Xt = ǫt + θ1ǫt−1, θ(z) = 1 + θ1z and

fX(ω) =
σ2

π

(

1 + 2θ1 cosω + θ2
1

)

.

As above, we can obtain the autocovariance function by expressing fX(ω) as a power
series in eiω. We have

fX(ω) =
σ2

π

(

θ1e
−iω + (1 + θ2

1) + θ1e
iω
)

=
σ2

π
θ(eiω)θ(e−iω)

So γ0 = σ2(1 + θ2
1), γ1 = θ1σ

2, γ2 = 0, |k| > 1.

As we remarked in Section 1.5, the autocovariance function of a MA(1) process

with parameters (σ2, θ1) is identical to one with parameters (θ2
1σ

2, θ−1
1 ). That is,

γ∗
0 = θ2

1σ
2(1 + 1/θ2

1) = σ2(1 + θ2
1) = γ0

ρ∗1 = θ−1
1 /(1 + θ−2

1 ) = θ1/(1 + θ2
1) = ρ1 .

In general, the MA(q) process can be written as X = θ(B)ǫ, where

θ(z) =

q
∑

k=0

θkz
k =

q
∏

k=1

(ωk − z) .

So the autocovariance generating function is

g(z) =

q
∑

k=−q

γkz
k = σ2θ(z)θ(z−1) = σ2

q
∏

k=1

(ωk − z)(ωk − z−1) . (5.3)

Note that (ωk−z)(ωk−z−1) = ω2
k(ω

−1
k −z)(ω−1

k −z−1). So g(z) is unchanged in (5.3)
if (for any k such that ωk is real) we replace ωk by ω−1

k and multiply σ2 by ω2
k. Thus

(if all roots of θ(z) = 0 are real) there can be 2q different MA(q) processes with the
same autocovariance function. For identifiability, we assume that all the roots of

θ(z) lie outside the unit circle in C. This is equivalent to the invertibility condition,
that ǫt can be written as a convergent power series in {Xt, Xt−1, . . .}.

5.4 The general linear process

A special case of (5.1) is the general linear process,

Yt =

∞
∑

s=0

asXt−s ,

where {Xt} is white noise. This has

cov(Yt, Yt+k) = σ2
∞
∑

s=0

asas+k ≤ σ2
∞
∑

s=0

a2
s ,
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where the inequality is an equality when k = 0. Thus {Yt} is stationary if and
only if

∑∞
s=0 a2

s < ∞. In practice the general linear model is useful when the as are

expressible in terms of a finite number of parameters which can be estimated. A rich
class of such models are the ARMA models.

5.5 Filters and ARMA processes

The ARMA(p, q) model can be written as φ(B)X = θ(B)ǫ. Thus

|φ(eiω)|2fX(ω) = |θ(eiω)|2σ
2

π
=⇒ fX(ω) =

∣

∣

∣

∣

θ(eiω)

φ(eiω)

∣

∣

∣

∣

2
σ2

π
.

This is subject to the conditions that

• the zeros of φ lie outside the unit circle in C for stationarity.

• the zeros of θ lie outside the unit circle in C for identifiability.

• φ(z) and θ(z) have no common roots.

If there were a common root, say 1/α, so that (I − αB)φ1(B)X = (I − αB)θ1(B)ǫ,
then we could multiply both sides by

∑∞
n=0 αnBn and deduce φ1(B)X = θ1(B)ǫ, and

thus that a more economical ARMA(p − 1, q − 1) model suffices.

5.6 Calculating autocovariances in ARMA models

As above, the filter theorem can assist in calculating the autocovariances of a model.
These can be compared with autocovariances estimated from the data. For example,

an ARMA(1, 2) has

φ(z) = 1 − φz, θ(z) = 1 + θ1z + θ2z
2, where |φ| < 1.

Then X = C(B)ǫ, where

C(z) = θ(z)/φ(z) =
(

1 + θ1z + θ2z
2
)

∞
∑

n=0

φnzn =
∞
∑

n=0

cnz
n ,

with c0 = 1, c1 = φ + θ1, and

cn = φn + φn−1θ1 + φn−1θ2 = φn−2
(

φ2 + φθ1 + θ2
)

, n ≥ 2.

So Xt =
∑∞

n=0 cnǫt−n and we can compute covariances as

γk = cov(Xt, Xt+k) =
∞
∑

n,m=0

cncm cov(ǫt−n, ǫt+k−m) =
∞
∑

n=0

cncn+kσ
2 .

For example, γk = φγk−1, k ≥ 3. As a test of whether the model is ARMA(1, 2)

we might look to see if the sample autocovariances decay geometrically, for k ≥ 2,
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6 Estimation of trend and seasonality

6.1 Moving averages

Consider a decomposition into trend, seasonal, cyclic and residual components.

Xt = Tt + It + Ct + Et .

Thus far we have been concerned with modelling {Et}. We have also seen that the
periodogram can be useful for recognising the presence of {Ct}.

We can estimate trend using a symmetric moving average,

T̂t =
k
∑

s=−k

asXt+s ,

where as = a−s. In this case the transfer function is real-valued.

The choice of moving averages requires care. For example, we might try to esti-
mate the trend with

T̂t = 1
3 (Xt−1 + Xt + Xt+1) .

But suppose Xt = Tt + ǫt, where trend is the quadratic Tt = a + bt + ct2. Then

T̂t = Tt + 2
3c + 1

3(ǫt−1 + ǫt + ǫt+1) ,

so ET̂t = EXt + 2
3c and thus T̂ is a biased estimator of the trend.

This problem is avoided if we estimate trend by fitting a polynomial of sufficient
degree, e.g., to find a cubic that best fits seven successive points we minimize

3
∑

t=−3

(

Xt − b0 − b1t − b2t
2 − b3t

3
)2

.

So
∑

Xt = 7b̂0 + 28b̂2
∑

tXt = 28b̂1 + 196b̂3
∑

t2Xt = 28b̂0 + 196b̂2
∑

t3Xt = 196b̂1 + 1588b̂3

Then

b̂0 = 1
21

(

7
∑

Xt −
∑

t2Xt

)

= 1
21

(−2X−3 + 3X−2 + 6X−1 + 7X0 + 6X1 + 3X2 − 2X3) .

We estimate the trend at time 0 by T̂0 = b̂0, and similarly,

T̂t = 1
21 (−2Xt−3 + 3Xt−2 + 6Xt−1 + 7Xt + 6Xt+1 + 3Xt+2 − 2Xt+3) .
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A notation for this moving average is 1
21[−2, 3, 6, 7, 6, 3,−2]. Note that the weights

sum to 1. In general, we can fit a polynomial of degree q to 2q+1 points by applying a

symmetric moving average. (We fit to an odd number of points so that the midpoint
of fitted range coincides with a point in time at which data is measured.)

A value for q can be identified using the variate difference method: if {Xt} is
indeed a polynomial of degree q, plus residual error {ǫt}, then the trend in ∆rXt is

a polynomial of degree q − r and

∆qXt = constant + ∆qǫt = constant + ǫt −
(

q

1

)

ǫt−1 +

(

q

2

)

ǫt−2 − · · · + (−1)qǫt−q .

The variance of ∆qXt is therefore

var(∆qǫt) =

[

1 +

(

q

1

)2

+

(

q

2

)2

+ · · · + 1

]

σ2 =

(

2q

q

)

σ2 ,

where the simplification in the final line comes from looking at the coefficient of zq

in expansions of both sides of

(1 + z)q(1 + z)q = (1 + z)2q .

Define Vr = var(∆rXt)/
(

2r
r

)

. The fact that the plot of Vr against r should flatten out
at r ≥ q can be used to identify q.

6.2 Centred moving averages

If there is a seasonal component then a centred-moving average is useful. Sup-

pose data is measured quarterly, then applying twice the moving average 1
4 [1, 1, 1, 1]

is equivalent to applying once the moving average 1
8[1, 2, 2, 2, 1]. Notice that this so-

called centred average of fours weights each quarter equally. Thus if Xt = It + ǫt,

where It has period 4, and I1 + I2 + I3 + I4 = 0, then T̂t has no seasonal com-
ponent. Similarly, if data were monthly we use a centred average of 12s, that is,
1
24[1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1].

6.3 The Slutzky-Yule effect

To remove both trend and seasonal components we might successively apply a number
of moving averages, one or more to remove trend and another to remove seasonal

effects. This is the procedure followed by some standard forecasting packages.
However, there is a danger that application of successive moving averages can

introduce spurious effects. The Slutzky-Yule effect is concerned with the fact that
a moving average repeatedly applied to a purely random series can introduce artificial

cycles. Slutzky (1927) showed that some trade cycles of the nineteenth century were
no more than artifacts of moving averages that had been used to smooth the data.
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To illustrate this idea, suppose the moving average 1
6[−1, 2, 4, 2,−1] is applied k

times to a white noise series. This moving average has transfer function, a(ω) = 1
6
(4+

4 cosω−2 cos 2ω), which is maximal at ω = π/3. The smoothed series has a spectral
density, say fk(ω), proportional to a(ω)2k, and hence for ω 6= π/3, fk(ω)/fk(π/3) → 0

as k → ∞. Thus in the limit the smoothed series is a periodic wave with period 6.

6.4 Exponential smoothing

Single exponential smoothing

Suppose the mean level of a series drifts slowly over time. A naive one-step-ahead
forecast is Xt(1) = Xt. However, we might let all past observations play a part in
the forecast, but give greater weights to those that are more recent. Choose weights

to decrease exponentially and let

Xt(1) =
1 − ω

1 − ωt

(

Xt + ωXt−1 + ω2Xt−2 + · · · + ωt−1X1

)

,

where 0 < ω < 1. Define St as the right hand side of the above as t → ∞, i.e.,

St = (1 − ω)

∞
∑

s=0

ωsXt−s .

St can serve as a one-step-ahead forecast, Xt(1). St is known as simple exponential

smoothing. Let α = 1 − ω. Simple algebra gives

St = αXt + (1 − α)St−1

Xt(1) = Xt−1(1) + α[Xt − Xt−1(1)] .

This shows that the one-step-ahead forecast at time t is the one-step-ahead forecast
at time t − 1, modified by α times the forecasting error incurred at time t − 1.

To get things started we might set S0 equal to the average of the first few data

points. We can play around with α, choosing it to minimize the mean square fore-
casting error. In practice, α in the range 0.25–0.5 usually works well.

Double exponential smoothing

Suppose the series is approximately linear, but with a slowly varying trend. If it
were true that Xt = b0 + b1t + ǫt, then

St = (1 − ω)
∞
∑

s=0

ωs (b0 + b1(t − s) + ǫt)

= b0 + b1t − b1(1 − ω)

∞
∑

s=0

ωss + b1(1 − ω)

∞
∑

s=0

ωsǫt−s ,
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and hence
ESt = b0 + b1t − b1ω/(1 − ω) = EXt+1 − b1/(1 − ω) .

Thus the forecast has a bias of −b1/(1−ω). To eliminate this bias let S1
t = St be the

first smoothing, and S2
t = αS1

t + (1−α)S2
t−1 be the simple exponential smoothing of

S1
t . Then

ES2
t = ES1

t − b1ω/(1 − ω) = EXt − 2b1ω/(1 − ω) ,

E(2S1
t − S2

t ) = b0 + b1t, E(S1
t − S2

t ) = b1(1 − α)/α .

This suggests the estimates b̂0 + b̂1t = 2S1
t − S2

t and b̂1 = α(S1
t − S2

t )/(1 − α). The

forecasting equation is then

Xt(s) = b̂0 + b̂1(t + s) = (2S1
t − S2

t ) + sα(S1
t − S2

t )/(1− α) .

As with single exponential smoothing we can experiment with choices of α and find
S1

0 and S2
0 by fitting a regression line, Xt = β̂0 + β̂1t, to the first few points of the

series and solving

S1
0 = β̂0 − (1 − α)β̂1/α, S2

0 = β̂0 − 2(1 − α)β̂1/α .

6.5 Calculation of seasonal indices

Suppose data is quarterly and we want to fit an additive model. Let Î1 be the

average of X1, X5, X9, . . ., let Î2 be the average of X2, X6, X10, . . ., and so on for Î3

and Î4. The cumulative seasonal effects over the course of year should cancel, so that
if Xt = a + It, then Xt + Xt+1 + Xt+2 + Xt+3 = 4a. To ensure this we take our final

estimates of the seasonal indices as I∗t = Ît − 1
4(Î1 + · · · + Î4).

If the model is multiplicative and Xt = aIt, we again wish to see the cumulative

effects over a year cancel, so that Xt +Xt+1 +Xt+2 +Xt+3 = 4a. This means that we
should take I∗t = Ît − 1

4(Î1 + · · · + Î4) + 1, adjusting so the mean of I∗1 , I
∗
2 , I

∗
3 , I

∗
4 is 1.

When both trend and seasonality are to be extracted a two-stage procedure is
recommended:

(a) Make a first estimate of trend, say T̂ 1
t .

Subtract this from {Xt} and calculate first estimates of the seasonal indices, say

I1
t , from Xt − T̂ 1

t .

The first estimate of the deseasonalized series is Y 1
t = Xt − I1

t .

(b) Make a second estimate of the trend by smoothing Y 1
t , say T̂ 2

t .

Subtract this from {Xt} and calculate second estimates of the seasonal indices,

say I2
t , from Xt − T̂ 2

t .

The second estimate of the deseasonalized series is Y 2
t = Xt − I2

t .
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7 Fitting ARIMA models

7.1 The Box-Jenkins procedure

A general ARIMA(p, d, q) model is φ(B)∇(B)dX = θ(B)ǫ, where ∇(B) = I − B.

The Box-Jenkins procedure is concerned with fitting an ARIMA model to data.
It has three parts: identification, estimation, and verification.

7.2 Identification

The data may require pre-processing to make it stationary. To achieve stationarity

we may do any of the following.

• Look at it.

• Re-scale it (for instance, by a logarithmic or exponential transform.)

• Remove deterministic components.

• Difference it. That is, take ∇(B)dX until stationary. In practice d = 1, 2 should

suffice.

We recognise stationarity by the observation that the autocorrelations decay to

zero exponentially fast.
Once the series is stationary, we can try to fit an ARMA(p, q) model. We consider

the correlogram rk = γ̂k/γ̂0 and the partial autocorrelations φ̂k,k. We have already
made the following observations.

• An MA(q) process has negligible ACF after the qth term.

• An AR(p) process has negligible PACF after the pth term.

As we have noted, very approximately, both the sample ACF and PACF have stan-
dard deviation of around 1/

√
T , where T is the length of the series. A rule of thumb

is that ACF and PACF values are negligible when they lie between ±2/
√

T . An

ARMA(p, q) process has kth order sample ACF and PACF decaying geometrically
for k > max(p, q).

7.3 Estimation

AR processes

To fit a pure AR(p), i.e., Xt =
∑p

r=1 φrXt−r + ǫt we can use the Yule-Walker

equations γk =
∑p

r=1 φrγ|k−r|. We fit φ by solving γ̂k =
∑p

1 φrγ̂|k−r|, k = 1, . . . , p.

These can be solved by a Levinson-Durbin recursion, (similar to that used to solve
for partial autocorrelations in Section 2.6). This recursion also gives the estimated
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residual variance σ̂2
p, and helps in choice of p through the approximate log likelihood

−2 log L ≃ T log(σ̂2
p).

Another popular way to choose p is by minimizing Akaike’s AIC (an information

criterion), defined as AIC = −2 log L + 2k, where k is the number of parameters

estimated, (in the above case p). As motivation, suppose that in a general modelling
context we attempt to fit a model with parameterised likelihood function f(X | θ),

θ ∈ Θ, and this includes the true model for some θ0 ∈ Θ. Let X = (X1, . . . , Xn) be a
vector of n independent samples and let θ̂(X) be the maximum likelihood estimator
of θ. Suppose Y is a further independent sample. Then

−2nEY EX log f
(

Y | θ̂(X)
)

= −2EX log f
(

X | θ̂(X)
)

+ 2k + O
(

1/
√

n
)

,

where k = |Θ|. The left hand side is 2n times the conditional entropy of Y given

θ̂(X), i.e., the average number of bits required to specify Y given θ̂(X). The right
hand side is approximately the AIC and this is to be minimized over a set of models,

say (f1, Θ1), . . . , (fm, Θm).

ARMA processes

Generally, we use the maximum likelihood estimators, or at least squares numerical

approximations to the MLEs. The essential idea is prediction error decomposition.
We can factorize the joint density of (X1, . . . , XT ) as

f(X1, . . . , XT ) = f(X1)
T
∏

t=2

f(Xt | X1, . . . , Xt−1) .

Suppose the conditional distribution of Xt given (X1, . . . , Xt−1) is normal with mean

X̂t and variance Pt−1, and suppose also that X1 is normal N(X̂1, P0). Here X̂t and
Pt−1 are functions of the unknown parameters φ1, . . . , φp, θ1, . . . , θq and the data.

The log likelihood is

−2 logL = −2 log f =
T
∑

t=1

[

log(2π) + log Pt−1 +
(Xt − X̂t)

2

Pt−1

]

.

We can minimize this with respect to φ1, . . . , φp, θ1, . . . , θq to fit ARMA(p, q).
Additionally, the second derivative matrix of − log L (at the MLE) is the observed

information matrix, whose inverse is an approximation to the variance-covariance

matrix of the estimators.
In practice, fitting ARMA(p, q) the log likelihood (−2 logL) is modified to sum

only over the range {m + 1, . . . , T}, where m is small.

Example 7.1

For AR(p), take m = p so X̂t =
∑p

r=1 φrXt−r, t ≥ m + 1, Pt−1 = σ2
ǫ .
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Note. When using this approximation to compare models with different numbers
of parameters we should always use the same m.

Again we might choose p and q by minimizing the AIC of −2 logL + 2k, where
k = p + q is the total number of parameters in the model.

7.4 Verification

The third stage in the Box-Jenkins algorithm is to check whether the model fits the

data. There are several tools we may use.

• Overfitting. Add extra parameters to the model and use likelihood ratio test or

t-test to check that they are not significant.

• Residuals analysis. Calculate the residuals from the model and plot them. The

autocorrelation functions, ACFs, PACFs, spectral densities, estimates, etc., and
confirm that they are consistent with white noise.

7.5 Tests for white noise

Tests for white noise include the following.

(a) The turning point test (explained in Lecture 1) compares the number of peaks

and troughs to the number that would be expected for a white noise series.

(b) The Box–Pierce test is based on the statistic

Qm = T
m
∑

k=1

r2
k ,

where rk is the kth sample autocorrelation coefficient of the residual series, and
p + q < m ≪ T . It is called a ‘portmanteau test’, because it is based on the

all-inclusive statistic. If the model is correct then Qm ∼ χ2
m−p−q approximately.

In fact, rk has variance (T − k)/(T (T + 2)), and a somewhat more powerful test

uses the Ljung-Box statistic quoted in Section 2.7,

Q′
m = T (T + 2)

m
∑

k=1

(T − k)−1r2
k ,

where again, Q′
m ∼ χ2

m−p−q approximately.

(c) Another test for white noise can be constructed from the periodogram. Recall

that I(ωj) ∼ (σ2/π)χ2
2/2 and that I(ω1), . . . , I(ωm) are mutually independent.

Define Cj =
∑j

k=1 I(ωk) and Uj = Cj/Cm. Recall that χ2
2 is the same as the expo-

nential distribution and that if Y1, . . . , Ym are i.i.d. exponential random variables,
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then (Y1 + · · · + Yj)/(Y1 + · · · + Ym), j = 1, . . . , m − 1, have the distribution of
an ordered sample of m − 1 uniform random variables drawn from [0, 1]. Hence

under the hypothesis that {Xt} is Gaussian white noise Uj, j = 1, . . . , m − 1
have the distribution of an ordered sample of m − 1 uniform random variables

on [0, 1]. The standard test for this is the Kolomogorov-Smirnov test, which uses
as a test statistic, D, defined as the maximum difference between the theoret-

ical distribution function for U [0, 1], F (u) = u, and the empirical distribution
F̂ (u) = {#(Uj ≤ u)}/(m− 1). Percentage points for D can be found in tables.

7.6 Forecasting with ARMA models

Recall that φ(B)X = θ(B)ǫ, so the power series coefficients of C(z) = θ(z)/φ(z) =
∑∞

r=0 crz
r give an expression for Xt as Xt =

∑∞
r=0 crǫt−r.

But also, ǫ = D(B)X, where D(z) = φ(z)/θ(z) =
∑∞

r=0 drz
r — as long as the

zeros of θ lie strictly outside the unit circle and thus ǫt =
∑∞

r=0 drXt−r.
The advantage of the representation above is that given (. . . , Xt−1, Xt) we can

calculate values for (. . . , ǫt−1, ǫt) and so can forecast Xt+1.
In general, if we want to forecast XT+k from (. . . , XT−1, XT ) we use

X̂T,k =

∞
∑

r=k

crǫT+k−r =

∞
∑

r=0

ck+rǫT−r ,

which has the least mean squared error over all linear combinations of (. . . , ǫT−1, ǫT ).
In fact,

E

(

(X̂T,k − XT+k)
2
)

= σ2
ǫ

k−1
∑

r=0

c2
r .

In practice, there is an alternative recursive approach. Define

X̂T,k =

{

XT+k, −(T − 1) ≤ k ≤ 0 ,

optimal predictor of XT+k given X1, . . . ,XT , 1 ≤ k .

We have the recursive relation

X̂T,k =

p
∑

r=1

φrX̂T,k−r + ǫ̂T+k +

q
∑

s=1

θsǫ̂T+k−s

For k = −(T − 1),−(T − 2), . . . , 0 this gives estimates of ǫ̂t for t = 1, . . . , T .
For k > 0, this gives a forecast X̂T,k for XT+k. We take ǫ̂t = 0 for t > T .

But this needs to be started off. We need to know (Xt, t ≤ 0) and ǫt, t ≤ 0.
There are two standard approaches.

1. Conditional approach: take Xt = ǫt = 0, t ≤ 0.

2. Backcasting: we forecast the series in the reverse direction to determine estima-

tors of X0, X−1, . . . and ǫ0, ǫ−1, . . . .
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8 State space models

8.1 Models with unobserved states

State space models are an alternative formulation of time series with a number of

advantages for forecasting.

1. All ARMA models can be written as state space models.

2. Nonstationary models (e.g., ARMA with time varying coefficients) are also state
space models.

3. Multivariate time series can be handled more easily.

4. State space models are consistent with Bayesian methods.

In general, the model consists of

observed data: Xt = FtSt + vt

unobserved state: St = GtSt−1 + wt

observation noise: vt ∼ N(0, Vt)

state noise: wt ∼ N(0, Wt)

where vt, wt are independent and Ft, Gt are known matrices — often time dependent

(e.g., because of seasonality).

Example 8.1

Xt = St + vt, St = φSt−1 + wt. Define Yt = Xt −φXt−1 = (St + vt)−φ(St−1 + vt−1) =

wt + vt − φvt−1. The autocorrelations of {yt} are zero at all lags greater than 1. So
{Yt} is MA(1) and thus {Xt} is ARMA(1, 1).

Example 8.2

The general ARMA(p, q) model Xt =
∑p

r=1 φrXt−r +
∑q

s=0 θsǫt−s is a state space
model. We write Xt = FtSt, where

Ft = (φ1, φ2, · · · , φp, 1, θ1, · · · , θq), St =



















Xt−1
...

Xt−p

ǫt
...

ǫt−q



















∈ R
p+q+1
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with vt = 0, Vt = 0. St = GtSt−1 + wt.

St =



































Xt−1

Xt−2

Xt−3
...

Xt−p−1

ǫt

ǫt−1

ǫt−2
...

ǫt−q



































=





































φ1 φ2 · · · φp 1 θ1 θ2 · · · θq−1 θq

1 0 · · · 0 0 0 0 · · · 0 0

0 1
... 0 0 0 0 · · · 0 0

...
...

...
...

...
...

... · · · ...
...

0 0 0 1 0 0 0 · · · 0 0
0 0 0 0 0 0 0 · · · 0 0

0 0 0 0 0 1 0 · · · 0 0
0 0 0 0 0 0 1 · · · 0 0
...

...
...

...
...

...
... · · · ...

...
0 0 0 0 0 0 0 · · · 1 0







































































Xt−2

Xt−3
...

Xt−p−1

ǫt−1

ǫt−2

ǫt−3
...

ǫt−q

ǫt−q−1



































+





































0

0
...
...
0

ǫt

0
...
...
0





































.

8.2 The Kalman filter

Given observed data X1, . . . , Xt we want to find the conditional distribution of St

and a forecast of Xt+1.

Recall the following multivariate normal fact: If

Y =

(

Y1

Y2

)

∼ N

((

µ1

µ2

)

,

(

A11 A12

A21 A22

))

(8.1)

then

(Y1 | Y2) ∼ N
(

µ1 + A12A
−1
22 (Y2 − µ2), A11 − A12A

−1
22 A21

)

. (8.2)

Conversely, if (Y1 | Y2) satisfies (8.2), and Y2 ∼ N(µ2, A22) then the joint distribution

is as in (8.1).
Now let Ft−1 = (X1, . . . , Xt−1) and suppose we know that (St−1 | Ft−1) ∼

N
(

Ŝt−1, Pt−1

)

. Then

St = GtSt−1 + wt ,

so

(St | Ft−1) ∼ N
(

GtŜt−1, GtPt−1G
⊤
t + Wt

)

,

and also (Xt | St,Ft−1) ∼ N(FtSt, Vt).
Put Y1 = Xt and Y2 = St. Let Rt = GtPt−1G

⊤
t + Wt. Taking all variables

conditional on Ft−1 we can use the converse of the multivariate normal fact and
identify

µ2 = GtŜt−1 and A22 = Rt .

Since St is a random variable,

µ1 + A12A
−1
22 (St − µ2) = FtSt =⇒ A12 = FtRt and µ1 = Ftµ2 .
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Also

A11 − A12A
−1
22 A21 = Vt =⇒ A11 = Vt + FtRtR

−1
t R⊤

t F⊤
t = Vt + FtRtF

⊤
t .

What this says is that

(

Xt

St

)∣

∣

∣

∣

Ft−1

= N

((

FtGtŜt−1

GtŜt−1

)

,

(

Vt + FtRtF
⊤
t FtRt

R⊤
t F⊤

t Rt

))

.

Now apply the multivariate normal fact directly to get (St | Xt,Ft−1) = (St | Ft) ∼
N(Ŝt, Pt), where

Ŝt = GtŜt−1 + RtF
⊤
t

(

Vt + FtRtF
⊤
t

)−1
(

Xt − FtGtŜt−1

)

Pt = Rt − RtF
⊤
t

(

Vt + FtRtF
⊤
t

)−1
FtRt

These are the Kalman filter updating equations.

Note the form of the right hand side of the expression for Ŝt. If contains the term
GtŜt−1, which is simply what we would predict if it were known that St−1 = Ŝt−1, plus

a term that depends on the observed error in forecasting Xt, i.e.,
(

Xt − FtGtŜt−1

)

.

This is similar to the forecast updating expression for simple exponential smoothing
in Section 6.4.

All we need to start updating the estimates are the initial values Ŝ0 and P0. Three

ways are commonly used.

1. Use a Bayesian prior distribution.

2. If F, G, V, W are independent of t the process is stationary. We could use the

stationary distribution of S to start.

3. Choosing S0 = 0, P0 = kI (k large) reflects prior ignorance.

8.3 Prediction

Suppose we want to predict the XT+k given (X1, . . . , XT ). We already have

(XT+1 | X1, . . . , XT ) ∼ N
(

FT+1GT+1St, VT+1 + FT+1RT+1F
⊤
T+1

)

which solves the problem for the case k = 1. By induction we can show that

(ST+k | X1, . . . , XT ) ∼ N
(

ŜT+k, PT+k

)
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where

ŜT,0 = ŜT

PT,0 = PT

ŜT,k = GT+kŜT,k−1

PT,k = GT+kPT,k−1G
⊤
T+k + WT+k

and hence that (XT+k | X1, . . . , XT ) ∼ N
(

FT+kŜT,k, VT+k + FT+kPT,kF
⊤
T+k

)

.

8.4 Parameter estimation revisited

In practice, of course, we may not know the matrices Ft, Gt, Vt, Wt. For example, in

ARMA(p, q) they will depend on the parameters φ1, . . . , φp, θ1, . . . , θq, σ2, which we
may not know.

We saw that when performing prediction error decomposition that we needed to

calculate the distribution of (Xt | X1, . . . , Xt−1). This we have now done.

Example 8.3

Consider the state space model

observed data Xt = St + vt ,
unobserved state St = St−1 + wt ,

where vt, wt are independent errors, vt ∼ N(0, V ) and wt ∼ N(0, W ).
Then we have Ft = 1, Gt = 1, Vt = V , Wt = W . Rt = Pt−1 + W . So if

(St−1 | X1, . . . , Xt−1) ∼ N
(

Ŝt−1, Pt−1

)

then (St | X1, . . . , Xt) ∼ N
(

Ŝt, Pt

)

, where

Ŝt = Ŝt−1 + Rt(V + Rt)
−1(Xt − Ŝt−1)

Pt = Rt −
R2

t

V + Rt
=

V Rt

V + Rt
=

V (Pt−1 + W )

V + Pt−1 + W
.

Asymptotically, Pt → P , where P is the positive root of P 2 +WP −WV = 0 and Ŝt

behaves like Ŝt = (1 − α)
∑∞

r=0 αrXt−r, where α = V/(V + W + P ). Note that this

is simple exponential smoothing.

Equally, we can predict ST+k given (X1, . . . , XT ) as N
(

ŜT,k, PT,k

)

where

ŜT,0 = St ,

PT,0 = PT ,

ŜT,k = ŜT ,

PT,k = PT + kW .

So (XT+k | X1, . . . , XT ) ∼ N
(

ŜT , V + PT + kW
)

.
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