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A Quick Overview

• Synchronization
– determining an event order
– used for

• moving a signal into a clock domain
• asynchronous arbitration

• Synchronization Failure
– as the time between two signals 

decreases it becomes more difficult 
to tell which came first

– synchronizer may hang in a 
metastable state, unable to decide

– different parts of the circuit may 
interpret result differently

• Failure Probability
– is proportional to fraction of 

vulnerable time
– exponentially decreases with 

waiting period

– exponentially increases with 
flip-flop regeneration time 
constant

– failure rate is proportional to 
event rate

• Synchronization Hierarchy
• Mesochronous Synchronizers

– delay-line synchronizer
– two-register synchronizer
– FIFO synchronizer

• Plesiochronous Synchronizers
– phase slip and flow control

• Periodic Synchronizers
– clock prediction - looking into 

the future
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What is Synchronization?

• A synchronizer determines the 
order of events on two signals

• Which event came first?
– Does it matter? Some times 

synchronization is 
unnecessary

• Often one signal is a clock
– did the data go high before or 

after the clock went high?
• Why is this problem hard?

A

B

AFirst

BFirst



Copyright (C) by W.J.D. and S.L.H., All Rights ReservedTiming & Synchronization, January 31, 2006 4

Uses of Synchronization

• Sampling asynchronous inputs with a clock
– e.g., particle counter or pushbutton

• Crossing clock domains
– sampling a synchronous signal with a different clock
– this is an easier problem if both clocks are periodic

• Arbitration of asynchronous signals
– e.g., request line for shared resource
– game-show pushbutton
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Synchronization Failure

• Which came first, event on A or event on B?
• The closer the race, the harder it is to call
• When the events are very close, the synchronizer 

may enter a metastable state
• The synchronizer may take an arbitrary amount of 

time to exit this state
• Synchronizer output may be interpreted 

inconsistently in the meantime



Copyright (C) by W.J.D. and S.L.H., All Rights ReservedTiming & Synchronization, January 31, 2006 6

Static Flip-Flop Dynamics

• Initial voltage difference 
depends on ∆t

• Voltage difference increases 
exponentially after clock 
rises

clk

clk'

D Q
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A Brute-Force (Waiting) Synchronizer

• To sample an asynchronous 
signal with a clock

• Sample signal with FF1
– may go into a metastable 

state
• Wait for possible metastable 

stages to decay
– time tw

• Sample output of FF1

D Q
A

Clk

D Q

FF1 FF2 ASAW

Clk
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Synchronization Failure

• What happens if FF1 is still 
in a metastable state when 
FF2 is clocked?

Clk

A

AW

AS

• What is the probability that 
this will happen?
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Calculating Synchronization Failure 
(The Big Picture)

P(failure) = P(enter metastable state) x P(still in state after tw)
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Probability of Entering a Metastable State

• FF1 may enter the 
metastable state if the input 
signal transitions during the 
aperture time of the flip flop

acy
cy
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Clk
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tcy

• Probability of a given 
transition being in the 
aperture time is the fraction 
of time that is aperture time 
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Probability of Staying in the Metastable State

• Still in metastable state if 
initial voltage difference was 
too small to be exponentially 
amplified during wait time

• Probability of starting with 
this voltage is proportion of 
total voltage range that is 
‘too small’
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Example Failure Rate Calculation

• Suppose a 500MHz clock 
samples a 10MHz asynchronous 
signal

• Flip-flops have aperture and 
regeneration time of 100ps

• What is the probability of 
synchronization failure?

• What is the failure frequency?

t_a 1.0E-10
f_cy 5.0E+08
τ_s 1.0E-10
t_w 2.0E-09
P_E 5.0E-02
P_S 2.1E-10
P_F 1.0E-11

f_e 1.0E+07
f_F 1.0E-04
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Failure Probability and Error Rate

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
==

S

w
cyeaFeF

S

w
cyaSEF

tfftPff

tftPPP

τ

τ

exp

exp
• Each event can potentially 

fail.
• Failure rate = event rate x 

failure probability
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Common Pitfalls

• Its easy to get a 
synchronizer design wrong

• The two most common 
pitfalls are:
– using a non-restoring (or 

slowly restoring) flip-flop
• τS needs to be small

– not isolating the flip-flop 
feedback loop
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Synchronization Hierarchy

• The difficulty of 
synchronization depends on 
the relationship between 
events on the signal and 
events on the clock

• Synchronous
– signal events always 

happen outside of the 
clock’s keep-out region

• same clock
• Mesochronous

– signal events happen with a 
fixed but unknown phase 
relative to the clock 

• same frequency clock

• Plesiochronous
– phase of signal events 

changes slowly with time
• slightly different frequency 

clock

• Periodic
– signal events are periodic

• includes meso- and 
pleisochronous

• signal is synchronized to 
some periodic clock

• Asynchronous
– signal events may occur at 

any time
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Synchronization Hierarchy Summary

Type Frequency Phase 
Synchronous Same Same 
Mesochronous Same Constant 
Plesiochronous Small Difference Slowly Varying 
Periodic Different Periodic Variation
Asynchronous N/A Arbitrary 
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The Brute-Force Synchronizer

• How do we compare 
synchronizers?
– synchronizer delay
– failure rate

• For the brute-force 
synchronizer
– td=tw+2(ts+tdCQ)
– ff=tafefcyexp(-tw/τs)

• Can we do better?

D Q
A

Clk

D Q

FF1 FF2 ASAW
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Periodic Synchronizers
The Big Picture

• If an input signal is synchronized to some periodic 
clock, we can predict when its events are allowed to 
happen arbitrarily far into the future

• Thus, we can determine well in advance if the signal 
is safe to sample on a given clock cycle
– if it is, we just sample it
– if it isn’t, we delay the signal (or the clock) to make it safe

• This allows us to move the waiting time, tW, out of the 
critical path.
– we can make it very long without adding latency
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Periodic Synchronizers
The Illustration

Clk1

Clk2



Copyright (C) by W.J.D. and S.L.H., All Rights ReservedTiming & Synchronization, January 31, 2006 20

Mesochronous Synchronization

• The phase difference between the signal and the 
clock is constant
– typical of systems where we distribute a master clock with no 

deskew

• Thus, we only need to synchronize once for all time!
• During reset check the phase

– if its OK, sample the signal directly for ever
– if its not, sample the signal after delay for ever
– this phase check is the only asynchronous event we ever 

sample - and we can afford to wait a long time
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Delay-Line Synchronizer

• For mesochronous and 
plesiochronous signals

• Delay signal as needed to 
keep transitions out of the 
keep-out region of the 
synchronizer clock

• How do we set the delay 
line?

D Q
x xd xs

Clk
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Detecting an Unsafe Signal

• To see if a signal is unsafe, see 
if it changes in the forbidden 
region

– sample just before and after the 
forbidden region and see if 
result is different

• These samples may hang the 
flip-flop in a metastable state

– need to wait for this state to 
decay

– if mesochronous we can wait a 
very long time since we only 
have to do this once
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Two-Register Synchronizer

• The delay-line synchronizer 
has two problems
1. Its expensive, we need a 

delay line for each input
2. We can’t use it with clocked 

receivers
• Both problems are solved by 

the two-register synchronizer
• We delay the clock rather 

than the data
– sample the data with normal 

and delayed clock
– pick the ‘safe’ output

• Can we just mux the clock?
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FIFO Synchronizer

• A first-in-first-out (FIFO) 
buffer can be used to move 
the synchronization out of 
the data path

• Clock the data into the FIFO 
in one clock domain (xclk)

• Mux the data out of the FIFO 
in a second clock domain 
(clk)
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Plesiochronous Timing

• With plesiochronous timing, 
one clock is running slightly 
faster than the other
– e.g., system with 

independent crystal 
oscillators with same 
nominal frequency 
(±200ppm)

• The same basic 
synchronizer types apply
– delay line
– two-register
– FIFO

• But...

• we need to resynchronize 
periodically
– e.g., once every 1,000 

clocks
• we need flow control

– have to match data rate of 
tx and rx even if clock rate is 
different

– eventually the phase wraps
and we either get 2 or 0 
data elements during a 
particular clock

• unless we make sure we 
are not sending data when 
the phase wraps
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A Plesiochronous FIFO Synchronizer

• Insert data with transmit 
clock (xclk)

• Remove data with receive 
clock (rclk)

• Periodically update the 
receive pointer (rp) by 
synchronizing the transmit 
pointer (xp) to the receive 
clock
– how do we know when to do 

this?
– what do we do if rp

increments by 2 or 0 when 
we update it?
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Open-Loop and Closed-Loop Flow Control

• We need to keep a fast 
transmitter from overrunning a 
receiver

• (or a slow transmitter from 
underrunning the receiver)

• Open-loop approach
– insert lots of nulls into the 

data stream at the transmitter
– enough so that rate of non-

nulls is less than the rate of 
the slowest possible receiver

– when the receiver underruns
it inserts another null

• Closed-loop approach
– receiver applies back 

pressure when it is about to 
be overrun

– still has to insert nulls when 
it is underrun
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Example Synchronizer Design

• Designing an interface where 
clocks nominally match but 
might differ by as much as 
1000ppm.

• Channel sends data in blocks 
of 104 symbols separated by 
fields of at least 20 NULL 
symbols
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Example Synchronizer Design: rclk fast, xclk slow

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31xp

@ t=0

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 0 1 2 3 4 5 6 7 8 7 8 9rp

x0
x1
x2...

xclk

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31xp

@ t=10,000 cycles

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11rp

x0
x1
x2...

A

B

C

xclk

rp drifts left

repeat rp = 0,  20 times
rp has drifted 20 
cycles to the left

A

B

C

A

B

C
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Example Synchronizer Design: rclk slow, xclk fast

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 0 1 2 3 4 5 6 7 8 9 10xp

@ t=0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31rp

x0
x1
x2...

X

xclk

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 0 1 2 3 4 5 6 7 8 9 10xp

@ t=10,000 cycles

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 0 21 22 23 24 25 26 27 28 29 30 31rp

x0
x1
x2...

A

B

C

V

W

X

xclk

rp drifts right

rp has drifted 20 
cycles to the right

skip the next 20 
symbols (NULLS)

A

B

C

V

W

A

B

C

V

W
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Periodic Timing

• Transmit and receive clocks 
are periodic but at unrelated 
frequencies
– e.g., modules in a system 

operate off of separate 
oscillators with independent 
frequencies

– case where one is rationally 
derived from the other is an 
interesting special case

• In this situation, a single 
synchronization won’t last 
forever (like mesochronous) 
or even for a long time (like 
plesiochronous)

• However, we can still look 
into the future and predict 
clock conflicts far enough 
ahead to reduce 
synchronizer delay
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Clock-Predictor Circuit

• Suppose we want to know 
the value of xclk, one rclk
cycle (trcy) in the future

• This is just a phase shift of 
txcy-trcy

• It is easy to generate this 
phase shift using a simple 
timing loop

• Note that we could just as 
easily predict xclk several 
rclk cycles in the future

• So how do we build a 
synchronizer using this? 

φCxclk

pxclk

trcy
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Asynchronous Timing

• Sometimes we need to 
sample a signal that is truly 
asynchronous

• We can still move the 
synchronization out of the 
datapath by using an 
asynchronous FIFO 
synchronizer

• However this still incurs a 
high latency on the full and 
empty signals as we have to 
wait for a brute force 
synchronizer to make its 
decision

• We can still avoid delay in 
this case if we don’t really
need to synchronize
– often synchronization is just 

an expensive convenience


