
Copyright (C) by W.J.D. and S.L.H., All Rights ReservedTiming & Synchronization, January 31, 2006 1

Timing & Synchronization
January 31, 2006

Sarah Harris
Engineering Department

Harvey Mudd College
sarah_harris@hmc.edu

Copyright (C) by W.J.D. and S.L.H., All Rights ReservedTiming & Synchronization, January 31, 2006 2

A Quick Overview

• Synchronization
– determining an event order
– used for

• moving a signal into a clock domain
• asynchronous arbitration

• Synchronization Failure
– as the time between two signals

decreases it becomes more difficult
to tell which came first

– synchronizer may hang in a
metastable state, unable to decide

– different parts of the circuit may
interpret result differently

• Failure Probability
– is proportional to fraction of

vulnerable time
– exponentially decreases with

waiting period

– exponentially increases with
flip-flop regeneration time
constant

– failure rate is proportional to
event rate

• Synchronization Hierarchy
• Mesochronous Synchronizers

– delay-line synchronizer
– two-register synchronizer
– FIFO synchronizer

• Plesiochronous Synchronizers
– phase slip and flow control

• Periodic Synchronizers
– clock prediction - looking into

the future

Copyright (C) by W.J.D. and S.L.H., All Rights ReservedTiming & Synchronization, January 31, 2006 3

What is Synchronization?

• A synchronizer determines the
order of events on two signals

• Which event came first?
– Does it matter? Some times

synchronization is
unnecessary

• Often one signal is a clock
– did the data go high before or

after the clock went high?
• Why is this problem hard?

A

B

AFirst

BFirst

Copyright (C) by W.J.D. and S.L.H., All Rights ReservedTiming & Synchronization, January 31, 2006 4

Uses of Synchronization

• Sampling asynchronous inputs with a clock
– e.g., particle counter or pushbutton

• Crossing clock domains
– sampling a synchronous signal with a different clock
– this is an easier problem if both clocks are periodic

• Arbitration of asynchronous signals
– e.g., request line for shared resource
– game-show pushbutton

Copyright (C) by W.J.D. and S.L.H., All Rights ReservedTiming & Synchronization, January 31, 2006 5

Synchronization Failure

• Which came first, event on A or event on B?
• The closer the race, the harder it is to call
• When the events are very close, the synchronizer

may enter a metastable state
• The synchronizer may take an arbitrary amount of

time to exit this state
• Synchronizer output may be interpreted

inconsistently in the meantime

Copyright (C) by W.J.D. and S.L.H., All Rights ReservedTiming & Synchronization, January 31, 2006 6

Static Flip-Flop Dynamics

• Initial voltage difference
depends on ∆t

• Voltage difference increases
exponentially after clock
rises

clk

clk'

D Q

Copyright (C) by W.J.D. and S.L.H., All Rights ReservedTiming & Synchronization, January 31, 2006 7

A Brute-Force (Waiting) Synchronizer

• To sample an asynchronous
signal with a clock

• Sample signal with FF1
– may go into a metastable

state
• Wait for possible metastable

stages to decay
– time tw

• Sample output of FF1

D Q
A

Clk

D Q

FF1 FF2 ASAW

Clk

A

AW

AS

Copyright (C) by W.J.D. and S.L.H., All Rights ReservedTiming & Synchronization, January 31, 2006 8

Synchronization Failure

• What happens if FF1 is still
in a metastable state when
FF2 is clocked?

Clk

A

AW

AS

• What is the probability that
this will happen?

Copyright (C) by W.J.D. and S.L.H., All Rights ReservedTiming & Synchronization, January 31, 2006 9

Calculating Synchronization Failure
(The Big Picture)

P(failure) = P(enter metastable state) x P(still in state after tw)

Copyright (C) by W.J.D. and S.L.H., All Rights ReservedTiming & Synchronization, January 31, 2006 10

Probability of Entering a Metastable State

• FF1 may enter the
metastable state if the input
signal transitions during the
aperture time of the flip flop

acy
cy

a
E tf

t
tP ==

Clk

ta
tcy

• Probability of a given
transition being in the
aperture time is the fraction
of time that is aperture time

Copyright (C) by W.J.D. and S.L.H., All Rights ReservedTiming & Synchronization, January 31, 2006 11

Probability of Staying in the Metastable State

• Still in metastable state if
initial voltage difference was
too small to be exponentially
amplified during wait time

• Probability of starting with
this voltage is proportion of
total voltage range that is
‘too small’

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
∆=∆

S

w
S

S

w
FS

tP

tVV

τ

τ

exp

exp

∆VS

tw

∆VF=1

Copyright (C) by W.J.D. and S.L.H., All Rights ReservedTiming & Synchronization, January 31, 2006 12

Example Failure Rate Calculation

• Suppose a 500MHz clock
samples a 10MHz asynchronous
signal

• Flip-flops have aperture and
regeneration time of 100ps

• What is the probability of
synchronization failure?

• What is the failure frequency?

t_a 1.0E-10
f_cy 5.0E+08
τ_s 1.0E-10
t_w 2.0E-09
P_E 5.0E-02
P_S 2.1E-10
P_F 1.0E-11

f_e 1.0E+07
f_F 1.0E-04

Copyright (C) by W.J.D. and S.L.H., All Rights ReservedTiming & Synchronization, January 31, 2006 13

Failure Probability and Error Rate

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
==

S

w
cyeaFeF

S

w
cyaSEF

tfftPff

tftPPP

τ

τ

exp

exp
• Each event can potentially

fail.
• Failure rate = event rate x

failure probability

∆VS

tw

∆VF=1

Clk

ta
tcy

Copyright (C) by W.J.D. and S.L.H., All Rights ReservedTiming & Synchronization, January 31, 2006 14

Common Pitfalls

• Its easy to get a
synchronizer design wrong

• The two most common
pitfalls are:
– using a non-restoring (or

slowly restoring) flip-flop
• τS needs to be small

– not isolating the flip-flop
feedback loop

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

S

w
cyaF

tftP
τ

exp

D Q

clk clk'

clk

clk'

Copyright (C) by W.J.D. and S.L.H., All Rights ReservedTiming & Synchronization, January 31, 2006 15

Synchronization Hierarchy

• The difficulty of
synchronization depends on
the relationship between
events on the signal and
events on the clock

• Synchronous
– signal events always

happen outside of the
clock’s keep-out region

• same clock
• Mesochronous

– signal events happen with a
fixed but unknown phase
relative to the clock

• same frequency clock

• Plesiochronous
– phase of signal events

changes slowly with time
• slightly different frequency

clock

• Periodic
– signal events are periodic

• includes meso- and
pleisochronous

• signal is synchronized to
some periodic clock

• Asynchronous
– signal events may occur at

any time

Copyright (C) by W.J.D. and S.L.H., All Rights ReservedTiming & Synchronization, January 31, 2006 16

Synchronization Hierarchy Summary

Type Frequency Phase
Synchronous Same Same
Mesochronous Same Constant
Plesiochronous Small Difference Slowly Varying
Periodic Different Periodic Variation
Asynchronous N/A Arbitrary

Copyright (C) by W.J.D. and S.L.H., All Rights ReservedTiming & Synchronization, January 31, 2006 17

The Brute-Force Synchronizer

• How do we compare
synchronizers?
– synchronizer delay
– failure rate

• For the brute-force
synchronizer
– td=tw+2(ts+tdCQ)
– ff=tafefcyexp(-tw/τs)

• Can we do better?

D Q
A

Clk

D Q

FF1 FF2 ASAW

Copyright (C) by W.J.D. and S.L.H., All Rights ReservedTiming & Synchronization, January 31, 2006 18

Periodic Synchronizers
The Big Picture

• If an input signal is synchronized to some periodic
clock, we can predict when its events are allowed to
happen arbitrarily far into the future

• Thus, we can determine well in advance if the signal
is safe to sample on a given clock cycle
– if it is, we just sample it
– if it isn’t, we delay the signal (or the clock) to make it safe

• This allows us to move the waiting time, tW, out of the
critical path.
– we can make it very long without adding latency

Copyright (C) by W.J.D. and S.L.H., All Rights ReservedTiming & Synchronization, January 31, 2006 19

Periodic Synchronizers
The Illustration

Clk1

Clk2

Copyright (C) by W.J.D. and S.L.H., All Rights ReservedTiming & Synchronization, January 31, 2006 20

Mesochronous Synchronization

• The phase difference between the signal and the
clock is constant
– typical of systems where we distribute a master clock with no

deskew

• Thus, we only need to synchronize once for all time!
• During reset check the phase

– if its OK, sample the signal directly for ever
– if its not, sample the signal after delay for ever
– this phase check is the only asynchronous event we ever

sample - and we can afford to wait a long time

Copyright (C) by W.J.D. and S.L.H., All Rights ReservedTiming & Synchronization, January 31, 2006 21

Delay-Line Synchronizer

• For mesochronous and
plesiochronous signals

• Delay signal as needed to
keep transitions out of the
keep-out region of the
synchronizer clock

• How do we set the delay
line?

D Q
x xd xs

Clk

Copyright (C) by W.J.D. and S.L.H., All Rights ReservedTiming & Synchronization, January 31, 2006 22

D Q

E

D Q

E

th

tcy-ts

x

Clk

sample

ClkL

ClkE

D Q

E

doneWaiting
Clk

unsafe

Detecting an Unsafe Signal

• To see if a signal is unsafe, see
if it changes in the forbidden
region

– sample just before and after the
forbidden region and see if
result is different

• These samples may hang the
flip-flop in a metastable state

– need to wait for this state to
decay

– if mesochronous we can wait a
very long time since we only
have to do this once

Copyright (C) by W.J.D. and S.L.H., All Rights ReservedTiming & Synchronization, January 31, 2006 23

Two-Register Synchronizer

• The delay-line synchronizer
has two problems
1. Its expensive, we need a

delay line for each input
2. We can’t use it with clocked

receivers
• Both problems are solved by

the two-register synchronizer
• We delay the clock rather

than the data
– sample the data with normal

and delayed clock
– pick the ‘safe’ output

• Can we just mux the clock?

D Q

D Q

Clk

x 0

1

xs

unsafe

tko

Copyright (C) by W.J.D. and S.L.H., All Rights ReservedTiming & Synchronization, January 31, 2006 24

FIFO Synchronizer

• A first-in-first-out (FIFO)
buffer can be used to move
the synchronization out of
the data path

• Clock the data into the FIFO
in one clock domain (xclk)

• Mux the data out of the FIFO
in a second clock domain
(clk)

D Q

E

D Q

E

D Q

E

ring
counter

ring
counter

x

xclk

xp0

xp1

xp2

xp 3 rp 3

rclk

x0

x1

x2

xs

Copyright (C) by W.J.D. and S.L.H., All Rights ReservedTiming & Synchronization, January 31, 2006 25

Plesiochronous Timing

• With plesiochronous timing,
one clock is running slightly
faster than the other
– e.g., system with

independent crystal
oscillators with same
nominal frequency
(±200ppm)

• The same basic
synchronizer types apply
– delay line
– two-register
– FIFO

• But...

• we need to resynchronize
periodically
– e.g., once every 1,000

clocks
• we need flow control

– have to match data rate of
tx and rx even if clock rate is
different

– eventually the phase wraps
and we either get 2 or 0
data elements during a
particular clock

• unless we make sure we
are not sending data when
the phase wraps

Copyright (C) by W.J.D. and S.L.H., All Rights ReservedTiming & Synchronization, January 31, 2006 26

A Plesiochronous FIFO Synchronizer

• Insert data with transmit
clock (xclk)

• Remove data with receive
clock (rclk)

• Periodically update the
receive pointer (rp) by
synchronizing the transmit
pointer (xp) to the receive
clock
– how do we know when to do

this?
– what do we do if rp

increments by 2 or 0 when
we update it?

D Q

E

D Q

E

D Q

E

rin
g

co
un

te
r

rin
g

co
un

te
r

x

xclk

xp0

xp1

xp2

xp

3

rp 3

rclk

x0

x1

x2

xs

sy
nc

Copyright (C) by W.J.D. and S.L.H., All Rights ReservedTiming & Synchronization, January 31, 2006 27

Open-Loop and Closed-Loop Flow Control

• We need to keep a fast
transmitter from overrunning a
receiver

• (or a slow transmitter from
underrunning the receiver)

• Open-loop approach
– insert lots of nulls into the

data stream at the transmitter
– enough so that rate of non-

nulls is less than the rate of
the slowest possible receiver

– when the receiver underruns
it inserts another null

• Closed-loop approach
– receiver applies back

pressure when it is about to
be overrun

– still has to insert nulls when
it is underrun

Copyright (C) by W.J.D. and S.L.H., All Rights ReservedTiming & Synchronization, January 31, 2006 28

Example Synchronizer Design

• Designing an interface where
clocks nominally match but
might differ by as much as
1000ppm.

• Channel sends data in blocks
of 104 symbols separated by
fields of at least 20 NULL
symbols

Copyright (C) by W.J.D. and S.L.H., All Rights ReservedTiming & Synchronization, January 31, 2006 29

Example Synchronizer Design: rclk fast, xclk slow

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31xp

@ t=0

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 0 1 2 3 4 5 6 7 8 7 8 9rp

x0
x1
x2...

xclk

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31xp

@ t=10,000 cycles

0 1 2 3 4 5 6 7 8 9 10 11rp

x0
x1
x2...

A

B

C

xclk

rp drifts left

repeat rp = 0, 20 times
rp has drifted 20
cycles to the left

A

B

C

A

B

C

Copyright (C) by W.J.D. and S.L.H., All Rights ReservedTiming & Synchronization, January 31, 2006 30

Example Synchronizer Design: rclk slow, xclk fast

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 0 1 2 3 4 5 6 7 8 9 10xp

@ t=0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31rp

x0
x1
x2...

X

xclk

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 0 1 2 3 4 5 6 7 8 9 10xp

@ t=10,000 cycles

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 0 21 22 23 24 25 26 27 28 29 30 31rp

x0
x1
x2...

A

B

C

V

W

X

xclk

rp drifts right

rp has drifted 20
cycles to the right

skip the next 20
symbols (NULLS)

A

B

C

V

W

A

B

C

V

W

Copyright (C) by W.J.D. and S.L.H., All Rights ReservedTiming & Synchronization, January 31, 2006 31

Periodic Timing

• Transmit and receive clocks
are periodic but at unrelated
frequencies
– e.g., modules in a system

operate off of separate
oscillators with independent
frequencies

– case where one is rationally
derived from the other is an
interesting special case

• In this situation, a single
synchronization won’t last
forever (like mesochronous)
or even for a long time (like
plesiochronous)

• However, we can still look
into the future and predict
clock conflicts far enough
ahead to reduce
synchronizer delay

Copyright (C) by W.J.D. and S.L.H., All Rights ReservedTiming & Synchronization, January 31, 2006 32

Clock-Predictor Circuit

• Suppose we want to know
the value of xclk, one rclk
cycle (trcy) in the future

• This is just a phase shift of
txcy-trcy

• It is easy to generate this
phase shift using a simple
timing loop

• Note that we could just as
easily predict xclk several
rclk cycles in the future

• So how do we build a
synchronizer using this?

φCxclk

pxclk

trcy

Copyright (C) by W.J.D. and S.L.H., All Rights ReservedTiming & Synchronization, January 31, 2006 33

Asynchronous Timing

• Sometimes we need to
sample a signal that is truly
asynchronous

• We can still move the
synchronization out of the
datapath by using an
asynchronous FIFO
synchronizer

• However this still incurs a
high latency on the full and
empty signals as we have to
wait for a brute force
synchronizer to make its
decision

• We can still avoid delay in
this case if we don’t really
need to synchronize
– often synchronization is just

an expensive convenience

