Operator's Manual Lycoming

TIO-540-AE2A Series

Approved by FAA

2nd Edition

Part No. 60297-27

LYCOMING

652 Oliver Street Williamsport, PA. 17701 U.S.A. 570/323-6181 November 2006

TIO-540-AE2A Series Operator's Manual

Lycoming Part Number: 60297-27

©2006 by Lycoming. All rights reserved. Lycoming and "Powered by Lycoming" are trademarks or registered trademarks of Lycoming.

All brand and product names referenced in this publication are trademarks or registered trademarks of their respective companies.

For additional information:

Mailing address:

Lycoming Engines 652 Oliver Street Williamsport, PA 17701 U.S.A.

Phone:

Factory:	570-323-6181
Sales Department:	570-327-7268
Fax:	570-327-7101

Lycoming's regular business hours are Monday through Friday from 8:00 AM through 5:00 PM Eastern Time (-5 GMT)

Visit us on the World Wide Web at:

http://www.lycoming.com

ATTENTION

OWNERS, OPERATORS AND MAINTENANCE PERSONNEL

This operator's manual contains a description of the engine, its specifications, and detailed information on how to operate and maintain it. Such maintenance procedures that may be required in conjunction with periodic inspections are also included. This manual is intended for use by owners, pilots and maintenance personnel responsible for care of Lycoming powered aircraft. Modifications and repair procedures are contained in Lycoming overhaul manuals; maintenance personnel should refer to these for such procedures.

SAFETY WARNING

Neglecting to follow the operating instructions and to carry out periodic maintenance procedures can result in poor engine performance and power loss. Also, if power and speed limitations specified in this manual are exceeded, for any reason, damage to the engine and personal injury can happen. Consult your local FAA approved maintenance facility.

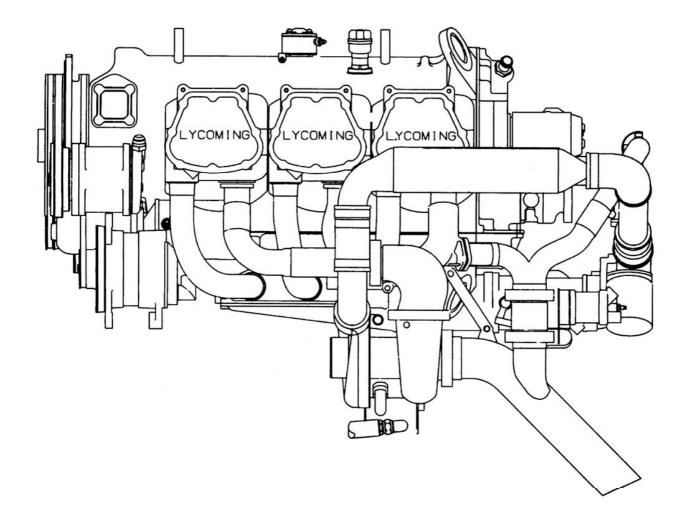
SERVICE BULLETINS, INSTRUCTIONS AND LETTERS

Although the information contained in this manual is up-to-date at time of publication, users are urged to keep abreast of later information through Lycoming Service Bulletins, Instructions and Service Letters which are available from all Lycoming distributors or from the factory by subscription. Consult the latest revision of Service Letter No. L114 for subscription information.

SPECIAL NOTE

The illustrations, pictures and drawings shown in this publication are typical of the subject matter they portray; in no instance are they to be interpreted as examples of any specific engine, equipment or part thereof.

IMPORTANT SAFETY NOTICE


Proper service and repair is essential to increase the safe, reliable operation of all aircraft engines. The service procedures recommended by Lycoming are effective methods for performing service operations. Some of these service operations require the use of tools specially designed for the task. These special tools must be used when and as recommended.

It is important to note that most Lycoming publications contain various Warnings and Cautions which must be carefully read in order to minimize the risk of personal injury or the use of improper service methods that may damage the engine or render it unsafe.

It is also important to understand that these Warnings and Cautions are not all inclusive. Lycoming could not possibly know, evaluate or advise the service trade of all conceivable ways in which service might be done or of the possible hazardous consequences that may be involved. Accordingly, anyone who uses a service procedure must first satisfy themselves thoroughly that neither their safety nor aircraft safety will be jeopardized by the service procedure they select.

TABLE OF CONTENTS

SECTION 1	DESCRIPTION	1-1
SECTION 2	SPECIFICATIONS	2-1
SECTION 3	OPERATING INSTRUCTIONS	3-1
SECTION 4	PERIODIC INSPECTIONS	4-1
SECTION 5	MAINTENANCE PROCEDURES	5-1
SECTION 6	TROUBLE-SHOOTING	6-1
SECTION 7	INSTALLATION AND STORAGE	7-1
SECTION 8	TABLES	8-1

Left Side View - TIO-540-AE2A

WARNING

THIS ENGINE IS EQUIPPED WITH DYNAMIC COUNTERWEIGHTS. AVOID HIGH ENGINE SPEEDS AND LOW MANIFOLD PRESSURES. OPERATE THE THROTTLE SMOOTHLY; DO NOT OPEN AND CLOSE IT RAPIDLY. IF THIS WARNING IS NOT HEEDED, SEVERE DAMAGE COULD OCCUR TO THE COUNTERWEIGHTS, ROLLERS AND BUSHINGS.

SECTION 1 DESCRIPTION

	Page
General	
Cylinders	
Valve Operating Mechanism	
Crankcase	
Crankshaft	
Connecting Rods	
Pistons	
Accessory Housing	
Oil Sump and Induction Assembly	
Lubrication System	
Cooling System	
Fuel Injection System	
Turbocharger System	
Ignition System	

This Page Intentionally Left Blank.

SECTION 1

DESCRIPTION

The TIO-540-AE2A is a direct drive, six cylinder, fuel injected, horizontally opposed, turbocharged, aircooled engine with down exhaust and two induction air coolers. This engine is supplied with an automotive type starter and two (2) alternators. Drives for two (2) AN type accessories and a propeller governor are supplied as standard equipment. A v-belt drive and mounting bracket are also supplied as standard equipment for mounting a Freon compressor.

In referring to the location of the various engine components, the parts are described in their relationship to the engine as installed in the airframe. Thus the power take-off end is considered the front and the accessory drive end the rear. The sump section is considered the bottom and the opposite side of the engine where the shroud tubes are located is the top. Reference to the left and right side is made with the observer facing the rear of the engine. The cylinders are numbered from front to rear, odd numbers on the right, even numbers on the left. The direction of rotation for accessory drives is determined with the observer facing the drive pad.

Cylinders – The cylinders are of conventional air-cooled construction with the two major parts, head and barrel, screwed and shrunk together. The heads are made from an aluminum alloy casting with a fully machined combustion chamber. Rocker shaft bearing supports are integral with the head along with housings to form the rocker boxes for both valve rockers. The cylinder barrels, which are machined from chrome nickel molybdenum steel forgings, have deep integral cooling fins and the inside of the barrels are ground and honed to a specified finish.

Baffles are provided to build up a pressure and force the air through the cylinder fins. The air is then exhausted to the atmosphere through openings located at the rear of the cowling.

Valve Operating Mechanism – A conventional type camshaft is located above and parallel to the crankshaft. The camshaft actuates hydraulic tappets which operate the valves through push rods and valve rockers. The valve rockers are supported on full floating steel shafts. The valve springs bear against hardened steel seats and are retained on the valve stems by means of split keys.

Crankcase – The crankcase assembly consists of two reinforced aluminum alloy castings, fastened together by means of studs, bolts, and nuts. The mating surfaces of the two castings are joined without the use of a gasket, and the main bearing bores are machined for use by precision type main bearing inserts. Internal piston cooling is provided by six nozzles, one for each piston, located in the crankcase.

Crankshaft – The crankshaft is made from a chrome nickel molybdenum steel forging. All bearing journal surfaces are nitrided. Freedom from torsional vibration is assured by a system of pendulum-type dynamic counterweights.

Connecting Rods – The connecting rods are made in the form of "H" sections from alloy steel forgings. They have replaceable bearing inserts in the crankshaft ends and bronze bushings in the piston ends. The bearing caps on the crankshaft ends are retained by two bolts and nuts through each cap.

Pistons – The pistons are machined from an aluminum alloy forging. The piston pin is a full floating type with a plug located in each end of the pin. The pistons are machined for three rings and may employ either half-wedge or full-wedge rings. Consult the latest revision of Service Instruction No. 1037 for proper piston and ring combinations.

SECTION 1 DESCRIPTION

LYCOMING OPERATOR'S MANUAL TIO-540-AE2A

Accessory Housing – The accessory housing is made from an aluminum casting fastened to the rear of the crankcase and the top rear of the sump. It forms a housing for the oil pump and the various accessory drives.

A thermometer well with a .4375-20 NF-3 thread is provided in the accessory housing for the installation of an MS28034-3 or equivalent standard type thermometer bulb for measurement of oil temperature.

Oil Sump and Induction Assembly – This assembly consists of the oil sump bolted to a mated cover containing intake pipe extensions for the induction system. When bolted together they form a mounting pad for the air inlet housing. Fuel drain plugs are provided in the cover, and the sump incorporates oil drain plugs and an oil suction screen.

Lubrication System – A full flow oil filter, oil cooler, and thermostatic bypass valve are remote mounted.

Cooling System – This engine is designed to be cooled by air pressure actuated by the forward speed of the aircraft. Baffles are provided to build up pressure and force the air through the cylinder fins. The air is then exhausted to the atmosphere through exits at the rear of the cowling.

Fuel Injection System – This engine is equipped with a Bendix servo regulator continuous flow type RSA-10ED1 fuel injector. This fuel injector meters fuel to the nozzles at each individual cylinder intake port in proportion to induction airflow. Manual mixture control and idle cutoff are provided.

The engine is equipped with a *fuel pump* as part of the fuel system. External fuel filter requirements are 150 micron maximum.

Turbocharger System – This engine has two integrally mounted turbochargers, one on each side. An automatic control system monitors compressor outlet pressure from sea level to critical altitude by regulating the amount of exhaust gases fed to the turbine wheel.

The automatic control system comprises the variable pressure controller and the exhaust bypass valve, or wastegate. Exhaust gas flow to the turbine wheel is regulated by the wastegate, which is dependent on the oil pressure metered to it from the variable pressure controller.

An absolute pressure relief valve, installed at the fuel injector inlet, protects the engine from excessive surges of manifold pressure.

Intercoolers, one for each turbocharger, cool the compressed air before it enters the fuel injector.

Two sonic nozzles are also incorporated in the turbocharger system to provide air for cabin pressurization.

Ignition System – This engine is equipped with two Slick pressurized magnetos. The left magneto has a fixed retard and long duration boosted spark for starting. A DC power source and a starting vibrator are required for operation. The magnetos incorporate an integral, feed through capacitor. An engine equipped with one retard breaker magneto must have the plain magneto grounded during the starting cycle.

It is recommended that the magneto manufacturer be contacted for information on the various vibrator and switching arrangements available.

This engine is equipped with radio shielded, all weather, long reach spark plugs, in accordance with the latest revision of Lycoming Service Instruction No. 1042.

An all weather shielded harness, braid on wire type, is part of the ignition system.

SECTION 2 SPECIFICATIONS

Page

Basic Engine Specifications	2-1
External Dimensions	2-1
Standard Engine Dry Weight	2-1
Accessory Drives	2-1

This Page Intentionally Left Blank.

SECTION 2

SPECIFICATIONS

FAA Type Certificate	E14EA
Rated horsepower	
Rated speed RPM	
Bore, inches	
Stroke, inches	4.375
Displacement cubic inches	
Compression ratio	
Firing order	
Spark occurs, degrees BTC	20°
Valve rocker clearance (hydraulic tappets collapsed)	
Prop. Drive Ratio	
Prop. Drive Rotation	Clockwise

External Dimensions (inches):

Height	
Length	
Width.	42.02

Standard Engine, Dry	ry Weight	.595 lbs. (±2%)
----------------------	-----------	-----------------

Accessory Drive	Drive Ratio	Direction of Rotation
Starter	16.556:1	Counterclockwise
Alternator (2)	3.800:1	Clockwise
Tachometer*		
Propeller Governor	.947:1	Clockwise
Magneto Drives	1.500:1	Clockwise
Fuel Pump – AN	1.000:1	Counterclockwise
Freon Compressor Drive	1.462:1	Clockwise
Accessory Drive #1	1.300:1	Counterclockwise
Accessory Drive #2	1.385:1	Clockwise

* - The tachometer is an electronically operated component supplied by the airframe manufacturer.

This Page Intentionally Left Blank.

SECTION 3 OPERATING INSTRUCTIONS

General	
Prestarting Items of Maintenance	
Starting Procedures	3-1
Cold Weather Starting	
Ground Running and Warm-Up	
Ground Check	
Operating in Flight	3-4
Leaning Procedure	
Engine Flight Chart	
Operating Conditions	
Engine Shut-Down Procedure	
Performance Curves	

This Page Intentionally Left Blank.

SECTION 3

OPERATING INSTRUCTIONS

1. General. Close adherence to these instructions will greatly contribute to long life, economy and satisfactory operation of the engine.

NOTE

YOUR ATTENTION IS DIRECTED TO THE WARRANTIES THAT APPEAR IN THE FRONT OF THIS MANUAL REGARDING ENGINE SPEED, THE USE OF SPECIFIED FUELS AND LUBRICANTS, REPAIRS AND ALTERATIONS. PERHAPS NO OTHER ITEM OF ENGINE OPERATION AND MAINTENANCE CONTRIBUTES QUITE SO MUCH TO SATISFACTORY PERFORMANCE AND LONG LIFE AS THE CONSTANT USE OF CORRECT GRADES OF FUEL AND OIL, CORRECT ENGINE TIMING, AND FLYING THE AIRCRAFT AT ALL TIMES WITHIN THE SPEED AND POWER RANGE SPECIFIED FOR THE ENGINE. DO NOT FORGET THAT VIOLATION OF THE OPERATION AND MAINTENANCE SPECIFICATIONS FOR YOUR ENGINE WILL NOT ONLY VOID YOUR WARRANTY BUT WILL SHORTEN THE LIFE OF YOUR ENGINE AFTER ITS WARRANTY PERIOD HAS PASSED.

New engines have been carefully run-in by Lycoming; therefore, no further break-in is necessary insofar as operation is concerned. New or newly overhauled engines should be operated using only the lubricating oils recommended in the latest revision of Service Instruction No. 1014.

NOTE

Cruising should be done at 65% to 75% power until a total of 50 hours has accumulated or oil consumption has stabilized. This is to insure proper seating of the rings and is applicable to new engines, and engines in service following cylinder replacement or top overhaul of one or more cylinders.

The minimum fuel octane rating is listed in the Flight Chart, Part 8 of this section. Under no circumstances should fuel of a lower octane rating or automotive fuel (regardless of octane rating) be used.

2. *PRESTARTING ITEMS OF MAINTENANCE*. Before starting the aircraft engine for the first flight of the day, there are several items of maintenance inspection that should be performed. These are described in Section 4 under Daily Pre-Flight inspection. They must be observed before the engine is started.

3. STARTING PROCEDURES.

The following starting procedures are recommended; however, the starting characteristics of various installations will necessitate some variation from these procedures.

NOTE

Cranking periods should be limited to ten (10) to twelve (12) seconds with five (5) minutes rest between cranking periods.

SECTION 3 OPERATING INSTRUCTIONS

LYCOMING OPERATOR'S MANUAL TIO-540-AE2A

- a. Cold Engine.
 - (1) Perform pre-flight inspection.
 - (2) Set propeller governor in "Full RPM".
 - (3) Turn fuel valve to "on" position.
 - (4) Open throttle approximately ¹/₄ travel.
 - (5) Turn boost pump on and move mixture control to "Full Rich" position until a slight but steady flow is indicated.
 - (6) Return mixture control to "Idle Cut-Off" position.
 - (7) Set magneto, selector switch. Consult airframe manufacturer's handbook for correct position.
 - (8) Engage starter.
 - (9) When engine starts, place magneto selector switch in "Both" position.
 - (10) Move mixture control slowly and smoothly to "Full Rich".
 - (11) Check oil pressure gage for indicated pressure. If oil pressure is not indicated within thirty seconds, stop the engine and determine trouble.

NOTE

If engine fails to achieve a normal start, assume it to be flooded. Use standard clearing procedure of cranking engine over with throttle wide open and ignition off.

b. Hot Engine – Because fuel percolates, the system must be cleared of vapor; it is recommended that the same procedure, as outlined above, be used for starting a hot engine.

4. *COLD WEATHER STARTING*. During extreme cold weather, it may be necessary to preheat the engine and oil before starting.

5. GROUND RUNNING AND WARM-UP. Subject engines are air pressure cooled and depend on the forward movement of the aircraft to maintain proper cooling. Particular care is necessary, therefore, when operating these engines on the ground. To prevent overheating, it is recommended that the following precautions be observed.

NOTE

Any ground check that requires full throttle operation must be limited to three minutes or less if indicated cylinder head temperature should exceed the maximum stated in this manual.

- a. Head the aircraft into the wind.
- b. Leave the mixture in "Full Rich".
- c. Operate the engine on the ground only with the propeller in minimum blade angle setting.
- d. Warm up at approximately 1000-1200 RPM. Avoid prolonged idling and do not exceed 2200 RPM on the ground.
- e. Engine is warm enough for take-off when the throttle can be opened without the engine faltering. If indicated lubricating oil pressure is above maximum due to cold temperature, do not take off with a turbocharged engine. Excessive oil pressure can cause over boost and consequent engine damage.

6. GROUND CHECK.

- a. Warm up as directed above.
- b. Check that both oil pressure and oil temperature are within prescribed limits.
- c. Leave mixture in "Full Rich".
- d. Move the propeller control through its complete range to check operation and return to full low pitch position. Full feathering check on the ground is not recommended but the feathering action can be checked by running the engine between 1000-1500 RPM; then momentarily pulling the propeller control into the feathering position. Do not allow the RPM to drop more than 500 RPM.
- e. A proper magneto check is important. Additional factors, other than the ignition system, affect magneto drop-off. They are load-power output, propeller pitch and mixture strength. The important thing is that the engine runs smoothly because magneto drop-off is affected by the variables listed above. Make the magneto check in accordance with the following procedures.
 - (1) With propeller in minimum pitch angle, set the engine to produce 50-65% power as indicated by the manifold pressure gage unless specified in the aircraft manufacturer's manual. Set the mixture control to the full rich position. At these settings, the ignition system and spark plugs must work harder because of the greater pressure within the cylinders. Therefore, any weakness in the ignition system will be more apparent. Magneto checks at low power settings will only indicate fuel-air distribution quality.
 - (2) Switch from both magnetos to one and note drop-off, return to both until engine regains speed and switch to the other magneto and note drop-off, then return to both. Drop-off must not exceed 175 RPM and must not exceed 50 RPM between magnetos. A smooth drop-off past the normal specification of 175 RPM is usually a sign of a too lean or too rich mixture.
 - (3) If the RPM drop exceeds 175 RPM, slowly lean the mixture until the RPM peaks. Then return the throttle to the RPM specified in step e. (1) for the magneto check and repeat the check. If the drop-off does not exceed 175 RPM, the difference between the magnetos does not exceed 50 RPM, and the engine is running smoothly, then the ignition system is operating properly. Return the mixture to full rich.

SECTION 3 OPERATING INSTRUCTIONS

LYCOMING OPERATOR'S MANUAL TIO-540-AE2A

f. Do not operate on a single magneto for too long a period; a few seconds is usually sufficient to check drop-off and will minimize plug fouling.

7. OPERATING IN FLIGHT.

- a. Subject engines are equipped with a dynamic counterweight system and must be operated accordingly. Use a smooth, steady movement (avoid rapid opening and closing) of the throttle.
- b. See airframe manufacturer's instructions for recommended power settings.
- c. Fuel Mixture Leaning Procedure.

Improper fuel/air mixture during flight is responsible for many engine problems, particularly during take-off and climb power settings. The procedures described in this manual provide proper fuel/air mixture when leaning Lycoming engines; they have proven to be both economical and practical by eliminating excessive fuel consumption and reducing damaged parts replacement. It is therefore recommended that operators of all Lycoming aircraft power plants, utilize the instructions in this publication any time the fuel/air mixture is adjusted during flight.

Manual leaning may be monitored by exhaust gas temperature indication, fuel flow indication, and by observation of engine speed and/or air speed. However, whatever instruments are used in leaning the mixture, the following general rules need to be observed by the operator of Lycoming aircraft engines.

GENERAL RULES

Never exceed the maximum red line cylinder head temperature limits of 500°F (260°C).

All take-offs are to be made with the mixture controls in the full rich position regardless of field elevation. Turbocharging permits the engine to develop rated power regardless of field elevation. However, it may be necessary to manually lean the engine for ground operation at idle or off idle engine speeds.

Leaning during climb, usually 85% of rated power, is permitted only to the limits described in the aircraft operator's handbook. Engine temperature instruments must be monitored and temperatures must be maintained within the prescribed limits.

During let-down flight operations it may be necessary to manually lean engine to obtain smooth operation.

On turbocharged engines never exceed 1750°F turbine inlet temperature (TIT).

A. Leaning to Turbine Inlet Temperature or Exhaust Gas Temperature Gage.

- 1. Best Economy Cruise Lean to peak turbine inlet temperature (TIT) or 1750°F, whichever occurs first.
- 2. Maximum Power Cruise The engine must always be operated on the rich side of peak TIT. Before leaning to obtain maximum power mixture it is necessary to establish a reference point. This is accomplished as follows:



Figure 3-1. Representative Effect of Leaning on Cylinder Head Temperature, EGT (Exhaust Gas Temperature) or TIT (Turbine Inlet Temperature), Engine Power and Specific Fuel Consumption at Constant Engine RPM and Manifold Pressure+

SECTION 3 OPERATING INSTRUCTIONS

LYCOMING OPERATOR'S MANUAL TIO-540-AE2A

- (a) Establish a peak TIT for best economy operation at the highest economy cruise power without exceeding 1750°F. This is the same value previously determined in step A(1).
- (b) Deduct 125°F from this temperature and thus establish the temperature reference point for use when operating at maximum power mixture.
- (c) Return mixture control to full rich and adjust the RPM and manifold pressure for desired performance cruise operation.
- (d) Lean out mixture until TIT is the value established in Step b. This sets the mixture at best power.
- B. Leaning to Flowmeter.

Lean to applicable fuel flow tables or lean to indicator marked for correct fuel flow for each power setting.

8. ENGINE FLIGHT CHART.

Fuel 100/100LL octane, minimum (*Aviation Grade Fuel)

* - Refer to latest revision of Service Instruction No. 1070.

	*Recommended Grade Oil		
	MIL-L-22851		
Average Ambient	MIL-L-6082B	Ashless Dispersant	
Temperature	SAE Grade	SAE Grades	
All Temperatures		15W-50 or 20W-50	
Above 80°F	60	60	
Above 60°F	50	40 or 50	
30°F to 90°F	40	40	
0°F to 70°F	30	30, 40 or 20W-40	
Below 10°F	20	30 or 20W-30	

* - Refer to latest revision of Service Instruction No. 1014.

Oil Sump Capacity...... 12 U.S. Qts. Maximum

OPERATING CONDITIONS

Average	*Oil Inlet Temperature			
Ambient Air	Desired	Maximum		
Above 60°F	180°F (82°C)	245°F (118°C)		
30°F to 90°F	180°F (82°C)	245°F (118°C)		
0°F to 70°F	170°F (77°C)	245°F (118°C)		
Below 10°F	160°F (71°C)	245°F (118°C)		

* - Engine oil temperature should not be below 140°F (60°C) during continuous operation.

SECTION 3 OPERATING INSTRUCTIONS

Oil Pressure, psi	Maximum	Mini	mum	Idling	Start and Warm-Up
(Normal Operation)	95	55	5	25	115
Fuel Pressure, psi	Ν	/IN.	MA	X	IDLE MIN.
Inlet to fuel pump Inlet to fuel injector		-2 29		5 5	12
Operation	RPM	HP	Fuel Cons. Gal./Hr.	Max. Oil Cons. Qts./Hr.	*Max. Cyl. Head Temp.
Normal Rated Performance Cruise	2500	350	38.5	1.16	500°F (260°C)
(75% Rated) Economy Cruise (60% Rated)	2400 2200	260 210	22.0 15.0	0.86 0.70	500°F (260°C) 500°F (260°C)

OPERATING CONDITIONS (CONT.)

Maximum permissible cylinder head temperature, as measured with a bayonet type AN5541 thermocouple. For maximum engine life the cylinder head temperature should not exceed 475°F above 85% power, and 435°F at 85% power and below in level flight cruise conditions.

Engine Restart: Engine restarts should not be attempted above 23,000 feet.

9. ENGINE SHUT-DOWN PROCEDURE.

- a. Set propeller at minimum blade angle.
- b. Idle until there is a decided decrease in cylinder head temperature.
- c. Increase throttle to 1000 RPM. Maintain speed for approximately 20-30 seconds to insure adequate scavenging of turbocharger oil system.
- d. Move mixture control to "Idle Cut-Off".
- e. When engine stops, turn ignition switch off.

SECTION 3 OPERATING INSTRUCTIONS

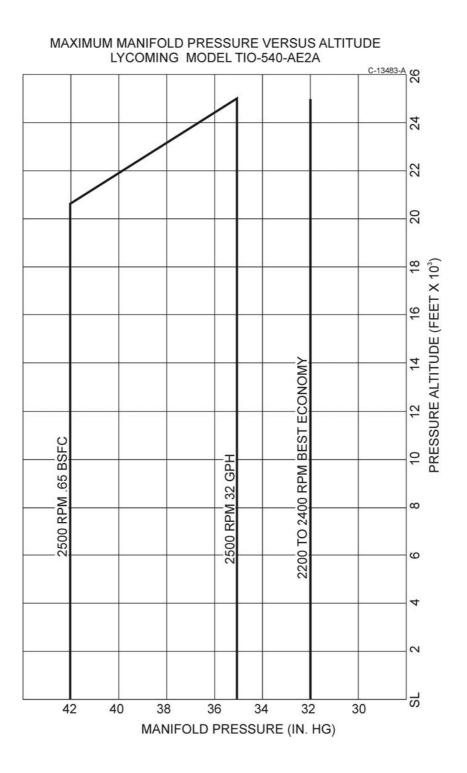


Figure 3-2. Maximum Manifold Pressure vs. Altitude

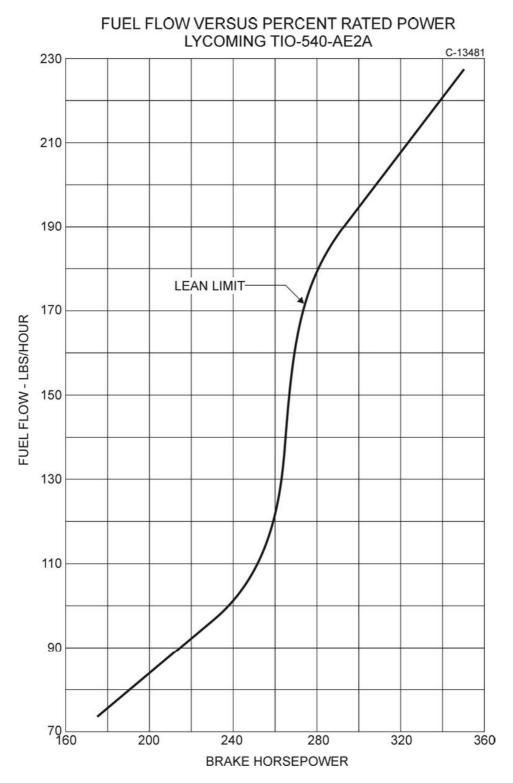


Figure 3-3. Fuel Flow vs Percent Rated Power

USING CURVE TO FIND ACTUAL HORSEPOWER

The Sea Level and Altitude Performance Curves, Figures 3-4 through 3-6 are used to determine actual horsepower delivered by the engine for a given altitude, RPM, manifold pressure, and inlet air temperature.

PRESSURE ALTITUDE	STANDARD ALTITUDE
(Thousands)	(Temperature °F)
SL	59
2	52
4	45
6	38
8	31
10	23
12	16
14	9
16	2
18	-5
20	-12
22	-19
24	-27

STANDARD ALTITUDE TEMPERATURES IN DEGREES F

Correct power approximately 1% for each 10° variation in air inlet temperature from standard altitude temperature. Add correction for temperature below standard; subtract correction for temperatures above standard.

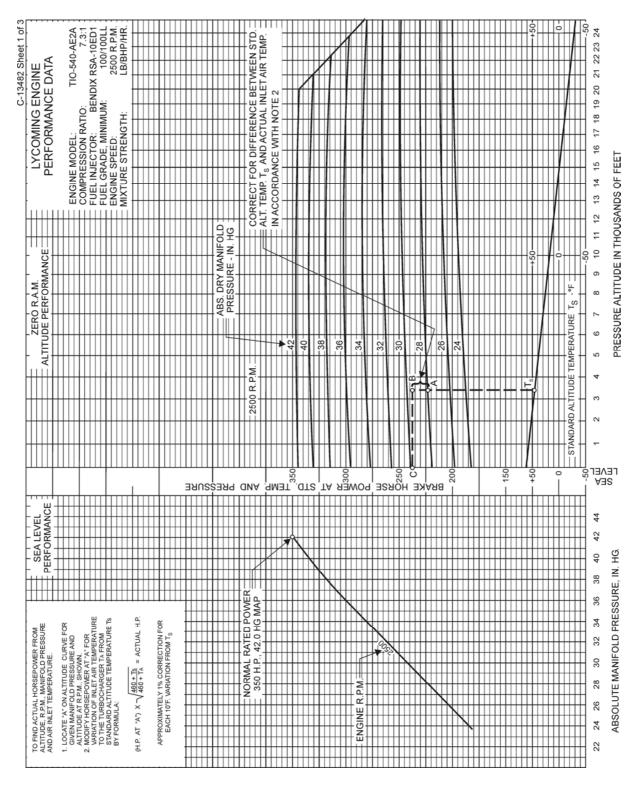


Figure 3-4. Sea Level/Altitude Performance Curve – (Sheet 1 of 3)

SECTION 3 OPERATING INSTRUCTIONS

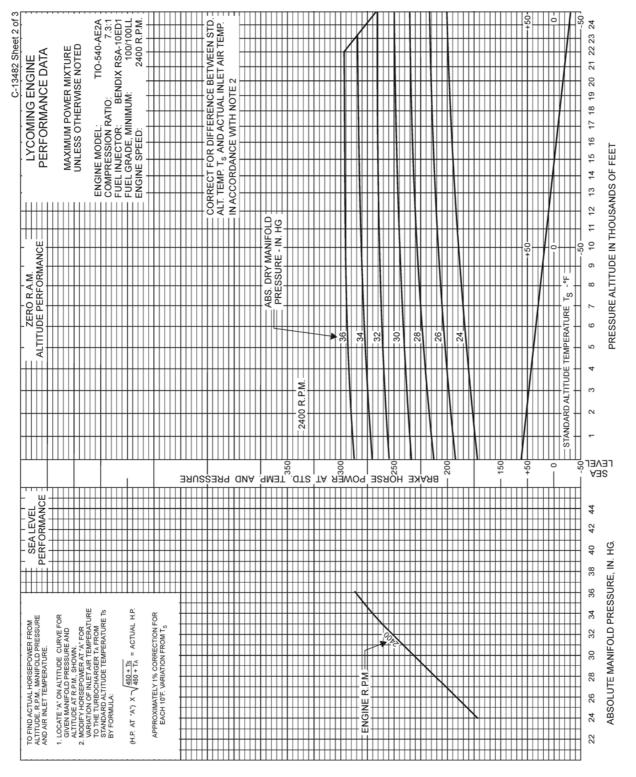


Figure 3-5. Sea Level/Altitude Performance Curve – (Sheet 2 of 3)

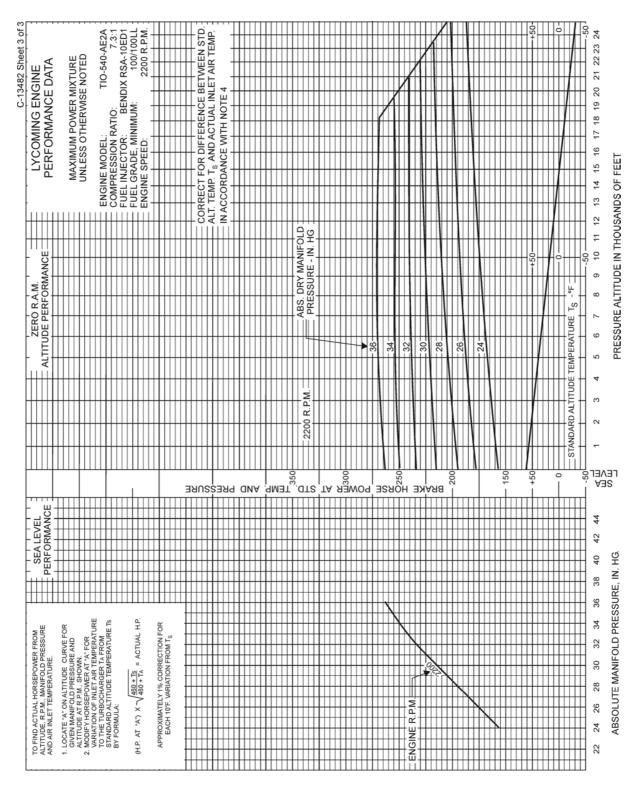


Figure 3-5. Sea Level/Altitude Performance Curve – (Sheet 3 of 3)

This Page Intentionally Left Blank.

SECTION 4 PERIODIC INSPECTIONS

General	
Pre-Starting Inspection	4-1
Daily Pre-Flight – Engine	4-2
Daily Pre-Flight – Turbochargers	4-2
25-Hour Inspection – Engine	4-2
50-Hour Inspection – Engine	4-2
100-Hour Inspection	4-3
400-Hour Inspection	4-4
Non-Scheduled Inspections	4-5

This Page Intentionally Left Blank.

SECTION 4

PERIODIC INSPECTIONS

NOTE

Perhaps no other factor is quite so important to safety and durability of the aircraft and its components as faithful and diligent attention to regular checks for minor troubles and prompt repair when they are found.

The operator should bear in mind that the items listed in the following pages does not constitute a complete aircraft inspection, but are meant for the engine only. Consult the airframe manufacturer's handbook for additional instructions.

Pre-Starting Inspection – The daily pre-flight inspection is a check of the aircraft prior to the first flight of the day. This inspection is to determine the general condition of the aircraft and engine.

The importance of proper pre-flight inspection cannot be over emphasized. Statistics prove several hundred accidents occur yearly directly responsible to poor pre-flight inspections.

Among the major causes of poor pre-flight inspection are lack of concentration, reluctance to acknowledge the need for a check list, carelessness bread by familiarity and haste.

SECTION 4 PERIODIC INSPECTIONS

- 1. DAILY PRE-FLIGHT (ENGINE).
 - a. Be sure all switches are in the "off" position.
 - b. Be sure magneto ground wires are connected..
 - c. Check oil level.
 - d. See that fuel tanks are full.
 - e. Check fuel and oil line connections, note minor indications for repair at 50-hour inspection. Repair any leaks before aircraft is flown.
 - f. Open the fuel drain to remove any accumulation of water and sediment.
 - g. Make sure all shields and cowling are in place and secure. If any are missing or damaged, repair or replacement should be made before the aircraft is flown.
 - h. Check controls for general condition, travel, and freedom of operation.
 - i. Induction system air filter should be inspected and serviced in accordance with the airframe manufacturer's recommendations.
- 2. DAILY PRE-FLIGHT (TURBOCHARGERS).
 - a. Inspect mounting and connections of turbochargers for security, oil leakage and air or exhaust gas leakage.
 - b. Check engine crankcase breather for restrictions to breather.

3. 25-HOUR INSPECTION (ENGINE). After twenty-five (25) hours of operating time since the first inspection, new, rebuilt or newly overhauled engines should undergo a 50-hour inspection including draining and renewing lubricating oil.

4. 50-HOUR INSPECTION (ENGINE). In addition to the items listed for daily pre-flight inspection, the following maintenance checks should be made after every 50 hours of operation.

- a. Ignition System
 - (1) If fouling of spark plugs has been apparent, rotate bottom plugs to upper position.
 - (2) Examine spark plug leads of cable and ceramics for corrosion and deposits. This condition is evidence of either leaking spark plugs, improper cleaning of the spark plug walls or connector ends. Where this condition is found, clean the cable ends, spark plug walls and ceramics with a dry, clean cloth or a clean cloth moistened with methyl-ethyl-ketone. All parts should be clean and dry before reassembly.
 - (3) Check ignition harness for security of mounting clamps and be sure connections are tight at spark plug and magneto terminals.

SECTION 4 PERIODIC INSPECTIONS

- b. Fuel and Induction System Remove and clean the fuel inlet strainers. Check the mixture control and throttle linkage for travel, freedom of movement, security of the clamps and lubricate if necessary. Check the air intake ducts for leaks, security, filter damage; evidence of dust or other solid material in the ducts is indicative of inadequate filter care or damaged filter. Check vent lines for evidence of fuel or oil seepage; if present, fuel pump may require replacement.
- c. Lubrication System
 - (1) Check oil lines for leaks, particularly at connections; for security of anchorage and for wear due to rubbing or vibration, for dents and cracks.
 - (2) Replace elements on external full flow oil filters. Before disposing of used element check interior folds for traces of metal particles that might be evidence of internal engine damage. Drain and renew lubricating oil.
- *d. Exhaust System* Check attaching flanges at exhaust ports on cylinders for evidence of leakage. If they are loose, they must be removed and machined flat before they are reassembled and tightened. Examine exhaust manifolds for general condition.
- *e. Cooling System* Check cowling and baffles for damage and secure anchorage. Any damaged or missing part of the cooling system must be repaired or replaced before the aircraft resumes operation.
- *f.* Cylinders Check rocker box covers for evidence of oil leaks. If found, replace gasket and tighten screws to specified torque (50 in.-lbs.).

Check cylinders for evidence of excessive heat which is indicated by burned paint on the cylinder. This condition is indicative of internal damage to the cylinder and, if found, its cause must be determined and corrected before the aircraft resumes operation.

Heavy discoloration and appearance of seepage at cylinder head and barrel attachment area is usually due to emission of thread lubricant used during assembly of the barrel at the factory, or by slight gas leakage which stops after the cylinder has been in service for awhile. This condition is neither harmful nor detrimental to engine performance and operation. If it can be proven that leakage exceeds these conditions, the cylinder should be replaced.

g. Turbochargers – All fluid power lines and mounting brackets incorporated in turbocharger system should be checked for leaks, tightness and any damage that may cause a restriction.

Check for accumulation of dirt or other interference with the linkage between the bypass valve and the actuator which may impair operation of turbocharger. Clean or correct cause for interference.

The vent line from the actuator should be checked for oil leakage. Any constant oil leakage is cause for replacement of piston seal.

Check alternate air valve to be sure it swings free and seals tightly.

5. 100-HOUR INSPECTION. In addition to the items listed for daily pre-flight and 50-hour inspection, the following maintenance checks should be made after every one hundred hours of operation.

a. Electrical System -

SECTION 4 PERIODIC INSPECTIONS

LYCOMING OPERATOR'S MANUAL TIO-540-AE2A

- (1) Check all wiring connected to the engine or accessories. Any shielded cables that are damaged should be replaced. Replace clamps or loose wires and check terminals for security and cleanliness.
- (2) Remove spark plugs; test, clean and regap. Replace if necessary.
- b. Lubrication System Drain and renew lubricating oil.
- *c. Magnetos* Check breaker points for pitting and minimum gap. Check for excessive oil in the breaker compartment, if found, wipe dry with a clean lintless cloth. The felt located at the breaker points should be lubricated in accordance with the magneto manufacturer's instructions. Check magneto to engine timing. Timing procedure is described in Section 5, 1, b of this manual.

NOTE

The pressurized ignition system should be checked using the Bendix model 11-10090 airflow tester as described in latest revision of Service Instruction No. 1308.

- *d.* Engine Accessories Engine mounted accessories such as pumps, temperature and pressure sensing units should be checked for secure mounting, tight connections.
- e. Cylinders Check cylinders visually for cracked or broken fins.
- *f. Engine Mounts* Check engine mounting bolts and bushings for security and excessive wear. Replace any bushings that are excessively worn.
- *g. Fuel Injector Nozzles and Lines* Check fuel injector nozzles for looseness. Tighten to 60 in.-lbs. torque. Check fuel line for dye stains at connections (indicating leakage) and security of lines. Repair or replacement must be accomplished before aircraft resumes operation.
- *h. Turbochargers* Inspect all air ducting and connections in turbocharger system for leaks. Make inspection both with engine shut down and with engine running. Check at manifold connections to turbine inlet and at engine exhaust manifold gasket, for possible air leakage.

CAUTION

DUST LEAKING INTO AIR DUCTING CAN DAMAGE TURBOCHARGER AND ENGINE.

Check for dirt or dust build-up within the turbochargers. Check for uneven deposits on the impellers. Consult AiResearch Industrial Div. Manual TP-21 for method to remove all such foreign matter.

Check the condition of the flexible hoses in the turbocharger system. Stiffness of the hose is indicative of deterioration and if this condition is noted the hose should be replaced before further flight.

6. 400-HOUR INSPECTION. In addition to the items listed for daily pre-flight, 50-hour and 100-hour inspections, the following maintenance check should be made after every 400 hours of operation.

4-4

SECTION 4 PERIODIC INSPECTIONS

Valve Inspection – Remove rocker box covers and check for freedom of valve rockers when valves are closed. Look for evidence of abnormal wear or broken parts in the area of the valve tips, valve keeper, springs and spring seats. If any indications are found, the cylinder and all of its components should be removed (including the piston and connecting rod assembly) and inspected for further damage. Replace any parts that do not conform with limits shown in the latest revision of Special Service Publication No. SSP-1776.

7. NON-SCHEDULED INSPECTIONS. Occasionally, service bulletins, or service instructions are issued by Lycoming that require inspection procedures that are not listed in this manual. Such publications, usually are limited to specified engine models and become obsolete after correction modification has been accomplished. All such publications are available from Lycoming distributors, or from the factory by subscription. Consult the latest revision of Service Letter No. L114 for subscription information. Maintenance facilities should have an up-to-date file of these publications available at all times.

This Page Intentionally Left Blank.

LYCOMING OPERATOR'S MANUAL

SECTION 5 MAINTENANCE PROCEDURES

Page
General
Ignition and Electrical System
Ignition Harness and Wire Replacement5-1
Timing Magnetos to Engine
Fuel System
Repair of Fuel Leaks
Fuel Injector Inlet Screen Assembly 5-4
Fuel Grades and Limitations5-4
Air Intake Ducts and Filter5-4
Lubrication System
Oil Grades and Limitations5-5
Oil Suction Screen
Oil Relief Valve
Cylinders
Removal of Cylinder Assembly5-5
Removal of Piston from Connecting Rod5-6
Removal of Hydraulic Tappet Sockets and Plunger Assemblies5-6
Assembly of Hydraulic Tappet Plunger Assemblies5-6
Assembly of Cylinder and Related Parts5-6
Turbocharger
Alternator and Compressor Belt Tension5-8

This Page Intentionally Left Blank.

SECTION 5

MAINTENANCE PROCEDURES

The procedures described in this section are provided to guide and instruct personnel in performing such maintenance operations that may be required in conjunction with the periodic inspections listed in the preceding section. No attempt is made to include repair and replacement operations that will be found in the applicable Lycoming Overhaul Manual.

- 1. IGNITION AND ELECTRICAL SYSTEM.
 - *a. Ignition Harness and Wire Replacement* In the event that an ignition harness or an individual lead is to be replaced, consult the wiring diagram to be sure harness is correctly installed. Mark location of clamps and clips to be certain the replacement is clamped at correct locations.
 - b. Timing Magnetos to Engine
 - (1) Remove a spark plug from No. 1 cylinder and place a thumb over the spark plug hole. Rotate the crankshaft in direction of normal rotation until the compression stroke is reached; this is indicated by a positive pressure inside the cylinder tending to push the thumb off the spark plug hole. Continue rotating the crankshaft until the advance timing mark on the front face of the starter ring gear is in alignment with the small hole located at the two o'clock position on the front face of the starter housing. (Ring gear is marked at 20°.) At this point, the engine is ready for assembly of the magnetos.
 - (2) Remove the ignition harness from the left (retard breaker) magneto, if installed. Insert the Slick T-118 timing pin in the hole marked "L" on the face of the distributor block. Apply a slight inward pressure to the pin and slowly rotate the magneto drive shaft clockwise until the shoulder of the pin seats against the distributor block. When properly engaged, the timing pin will be inserted 7/8 inch into the distributor block.

NOTE

If the magneto shaft cannot be rotated and if the timing pin is not seated 7/8 inch into the distributor block, remove the pin, rotate the drive shaft 1/8 turn and repeat the insertion procedure.

CAUTION

DO NOT ROTATE THE MAGNETO ROTOR SHAFT WITH THE TIMING PIN INSERTED INTO THE DISTRIBUTOR BLOCK. THIS COULD DAMAGE THE INTERNAL COMPONENTS OF THE MAGNETO.

SECTION 5 MAINTENANCE PROCEDURES

LYCOMING OPERATOR'S MANUAL TIO-540-AE2A

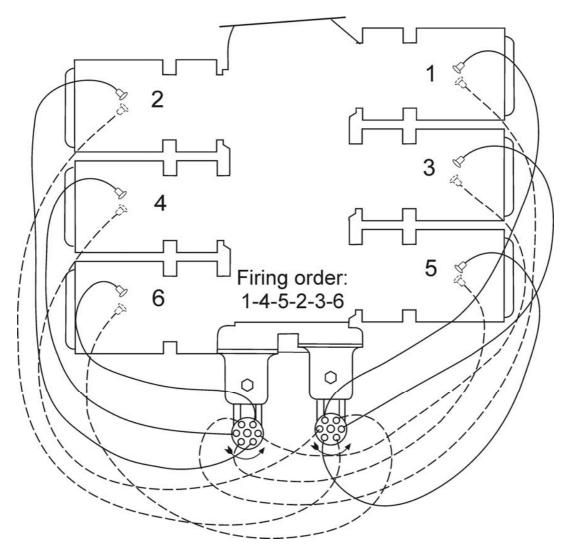


Figure 5-1. Ignition Wiring Diagram

(3) Inspect the left magneto accessory housing mounting pad to ensure the magneto drive dampers, adapter, and gaskets are there and installed properly. Position the magneto on its side with the top of the magneto located outboard away from the accessory housing vertical centerline. Install the magneto onto the mounting pad. Be sure the drive dampers remain in place when the magneto drive is inserted into the drive gear. Secure the magneto to the accessory housing with the proper clamps, washers, and nuts. Tighten nuts only finger tight.

CAUTION

DO NOT ROTATE THE MAGNETO OR ENGINE WITH THE TIMING PIN INSERTED INTO THE MAGNETO DISTRIBUTOR BLOCK. THIS COULD CAUSE DAMAGE TO THE INTERNAL COMPONENTS OF THE MAGNETO.

- (4) Remove the timing pin from the distributor block.
- (5) Repeat steps (2), (3), (4) for the right (plain) magneto.

SECTION 5 MAINTENANCE PROCEDURES

WARNING

DO NOT ATTACH HARNESS SPARK PLUG ENDS TO THE SPARK PLUGS UNTIL ALL MAGNETO-TO-ENGINE TIMING PROCEDURES AND MAGNETO-TO-SWITCH CONNECTIONS ARE ENTIRELY COMPLETED.

- (6) Attach a timing light to the magneto condenser stud according to the timing light manufacturer's instructions.
- (7) Rotate the magneto assembly in the direction of rotor rotation until the timing light comes on. If the light is on initially, rotation of the magneto is not required. This indicates the breaker points are closed.
- (8) Slowly rotate the magneto assembly in the opposite direction until the light goes out or the breaker points open.
- (9) Alternately tighten the magneto mounting nut clamps to 8 ft.-lbs. torque. Continue to tighten both nuts alternately, in several steps, to 17 ft.-lbs. torque.
- (10) Repeat steps (6) thru (9) for the second magneto.
- (11) Rotate the engine approximately 10° opposite to the normal rotational direction. The timing lights should light. Slowly (bump) rotate the engine in the normal direction until the timing lights go out. Both lights should go out within $\pm 1^{\circ}$ of the 20° timing mark on ring gear with the dot on the starter housing as referenced in step (1).
- (12) Repeat steps (6) thru (10) until the condition described in step (11) is satisfied.
- (13) If magneto position $(\pm 15^{\circ})$ from the mounting pad horizontal centerline allowed) interference is encountered, which is unlikely, the magneto must be removed and the drive gear in the accessory housing repositioned. Care must be taken not to drop the dampers into the engine during the repositioning of the drive gear.
- (14) Remove timing light leads from the magnetos.
- (15) Attach the appropriate switch or P-Leads to the condenser terminal of each magneto using a lock washer and nut. Torque nut to 13-15 in.-lbs.
- (16) Retard Breaker Attach one positive lead of the timing light to retard breaker terminal and the negative lead to ground. Set the engine 20° before top center on the compression stroke of the number 1 cylinder. The timing light should be on, indicating the retard breaker points are closed. Slowly rotate the engine in the normal direction until the timing light goes out indicating the points opened. The TC #1 timing mark on the ring gear should be aligned with the dot on the starter housing within $\pm 3^{\circ}$. If the timing of these points is incorrect, refer to the Slick Maintenance Manual for the procedure and proper adjustment of the contact points.
- (17) Attach the switch retard breaker lead to the retard post on the magneto (left magneto only) using a lock washer and nut. Torque nut to 13-15 in.-lbs.

SECTION 5 MAINTENANCE PROCEDURES

LYCOMING OPERATOR'S MANUAL TIO-540-AE2A

(18) Install ignition harness assemblies on the magnetos. The left magneto harness is marked "left" and right magneto harness is marked "right". Check for proper installation of "o" ring seal in the wire cap. Torque cap mounting screws to 18-20 in.-lbs.

NOTE

Some timing lights operate in the reverse manner as described. The light comes on when the breaker points open. Check your timing light instructions.

- *c.* Alternator Output The alternator should be checked to determine that the specified voltage and current are being obtained.
- 2. FUEL SYSTEM.
 - *a. Repair of Fuel Leaks* In the event a line or fitting in the fuel system is replaced, only a fuel soluble lubricant, such as clean engine oil or Loctite Hydraulic Sealant may be used. Do not use any other form of thread compound.
 - *b. Fuel Injector Inlet Screen Assembly* Remove the assembly and check the screen for distortion or openings in the strainer. Replace for either of these conditions. Clean screen assembly in solvent and dry with compressed air. To install the screen assembly, place the gasket on the screen assembly and install the assembly in the throttle body and tighten to 60-70 in.-lbs. torque.
 - c. Fuel Grades and Limitations See recommended fuel grades in Section 3.

In the event that the specified fuel is not available at some locations, it is permissible to use higher octane fuel. Fuel of a lower octane than specified is not to be used. Under no circumstances should automotive fuel be used (regardless of octane rating).

NOTE

It is recommended that personnel be familiar with the latest revision of Service Instruction No. 1070 regarding specified fuel for Lycoming engines.

- *d.* Air Intake Ducts and Filter Check all air intake ducts for dirt or restrictions. Inspect and service air filters as instructed in the airframe manufacturer's handbook.
- e. Idle Speed and Mixture Adjustment -
 - (1) Start the engine and warm up in the usual manner until oil and cylinder head temperatures are normal.
 - (2) Check magnetos. If the "mag-drop" is normal, proceed with idle adjustment.
 - (3) Set throttle stop screw so that the engine idles at the airframe manufacturer's recommended idling RPM. If the RPM changes appreciably after making idle mixture adjustment during the succeeding steps, readjust the idle speed to the desired RPM.
 - (4) When the idling speed has been stabilized, move the cockpit mixture control lever with a smooth, steady pull toward the "Idle Cut-Off" position and observe the tachometer for any change during the leaning process. Caution must be exercised to return the mixture control to the "Full Rich" position before the RPM can drop to a point where the engine cuts out. An increase of more than 50 RPM while "leaning out" indicates an excessively rich idle mixture. An immediate decrease in RPM (if not preceded by a momentary increase) indicates the mixture is too lean.

SECTION 5 MAINTENANCE PROCEDURES

If the above indicates that the idle adjustment is too rich or too lean, turn the idle mixture adjustment in the direction required for correction, and check this new position by repeating the above procedure. Make additional adjustments as necessary until a check results in a momentary pick-up of approximately 50 RPM. Each time the adjustment is changed, the engine should be run up to 2000 RPM to clear the engine before proceeding with the RPM check. Make final adjustment of the idle speed adjustment to obtain the desired idling RPM with closed throttle. The above method aims at a setting that will obtain maximum RPM with minimum manifold pressure. In case the setting does not remain stable, check the idle linkage; any looseness in this linkage would cause erratic idling. In all cases, allowance should be made for the effect of weather conditions and field altitude upon idling adjustment.

3. LUBRICATION SYSTEM.

- *a.* Oil Grades and Limitations Service the engine in accordance with the recommendations shown in Section 3.
- b. Oil Suction Screen At each oil change, remove and inspect for metal particles; clean and reinstall.
- *c. Oil Relief Valve* The adjustable oil relief valve enables the operator to maintain engine oil pressure within the specified limits. If the pressure under normal operating conditions should consistently exceed the maximum or minimum specified limits, adjust the valve as follows:

With the engine warmed up and running at approximately 2000 RPM, observe the reading on the oil pressure gage. If the pressure is above maximum or below minimum specified limits, stop engine and screw the adjusting screw out to decrease pressure and in to increase pressure. Depending on installation, the adjusting screw may have only a screw driver slot and is turned with a screw driver; or may have the screw driver slot plus a pinned .375-24 castellated nut and may be turned with either a screw driver or a box wrench.

4. *CYLINDERS.* It is recommended that as a field operation, cylinder maintenance be confined to replacement of the entire assembly. For valve replacement consult the proper overhaul manual. This should be undertaken only as an emergency measure.

- a. Removal of Cylinder Assembly
 - (1) Remove exhaust manifold.
 - (2) Remove rocker box drain tube, intake pipe, baffle and any clips that might interfere with the removal of the cylinder.
 - (3) Disconnect ignition cables and remove the bottom spark plug.
 - (4) Remove rocker box cover and rotate crankshaft until piston is approximately at top center of the compression stroke. This is indicated by a positive pressure inside of cylinder tending to push thumb off of bottom spark plug hole.
 - (5) Slide valve rocker shafts from cylinder head and remove the valve rockers. Valve rocker shafts can be removed when the cylinder is removed from the engine. Remove rotator cap from exhaust valve stem.

SECTION 5 MAINTENANCE PROCEDURES

LYCOMING OPERATOR'S MANUAL TIO-540-AE2A

(6) Remove push rod by grasping ball end and pulling rod out of shroud tube. Detach shroud tube spring and lock plate and remove shroud tubes from cylinder head.

NOTE

The hydraulic tappets, push rods, rocker arms and valves must be assembled in the same location from which they were removed.

- (7) Remove cylinder base nuts, then remove cylinder by pulling directly away from crankcase. Be careful not to allow the piston to drop against the crankcase, as the piston leaves the cylinder.
- *b. Removal of Piston from Connecting Rod* Remove the piston pin plugs. Insert piston pin puller through piston pin, assemble puller nut; then proceed to remove piston pin. Do not allow connecting rod to rest on the cylinder bore of the crankcase. Support the connecting rod with heavy rubber band, discarded cylinder base oil ring seal, or any other non-marring method.
- *c. Removal of Hydraulic Tappet Sockets and Plunger Assemblies* It will be necessary to remove and bleed the hydraulic tappet plunger assembly so that dry tappet clearance can be checked when the cylinder assembly is reinstalled. This is accomplished in the following manner:
 - (1) Remove the hydraulic tappet push rod socket by inserting the forefinger into the concave end of the socket and withdrawing. If the socket cannot be removed in this manner, it may be removed by grasping the edge of the socket with a pair of needle nose pliers. However, care must be exercised to avoid scratching the socket.
 - (2) To remove the hydraulic tappet plunger assembly, use the special Lycoming service tool. In the event that the tool is not available, the hydraulic tappet plunger assembly may be removed by a hook in the end of a short piece of lock wire, inserting the wire so that the hook engages the spring of the plunger assembly. Draw the plunger assembly out of the tappet body by gently pulling the wire.

CAUTION

NEVER USE A MAGNET TO REMOVE HYDRUALIC PLUNGER ASSEMBLIES FROM THE CRANKCASE. THIS CAN CAUSE THE CHECK BALL TO REMAIN OFF ITS SEAT, RENDERING THE UNIT INOPERATIVE.

- *d.* Assembly of Hydraulic Tappet Plunger Assemblies To assemble the unit, unseat the ball by inserting a thin clean wire through the oil inlet hole. With the ball off its seat, insert the plunger and twist clockwise so that the spring catches. All oil must be removed before the plunger is inserted.
- *e.* Assembly of Cylinder and Related Parts Rotate the crankshaft so that the connecting rod of the cylinder being assembled is at the top center of the compression stroke. This can be checked by placing two fingers on the intake and exhaust tappet bodies. Rock crankshaft back and forth over top center. If the tappet bodies do not move the crankshaft is on the compression stroke.
 - (1) Place each plunger assembly in its respective tappet body and assemble the socket on top of plunger assembly.

SECTION 5 MAINTENANCE PROCEDURES

- (2) Assemble piston with rings so that the number stamped on the piston pin boss is toward the front of the engine. The piston pin should be of a hand push fit. If difficulty is experienced in inserting the piston pin, it is probably caused by carbon or burrs in the piston pin hole. During assembly, always use a generous quantity of oil, both in the piston pin hole and on the piston pin.
- (3) Assemble one piston pin plug at each end of the piston pin and place a new rubber oil seal ring around the cylinder skirt. Coat piston and rings and the inside of the cylinder generously with oil.
- (4) Using a piston ring compressor, assemble the cylinder over the piston so that the intake port is at the bottom of the engine. Push the cylinder all of the way on, catching the ring compressor as it is pushed off.

NOTE

Before installing cylinder hold-down nuts, lubricate crankcase thru-stud threads with any one of the following lubricants, or combination of lubricants.

- 1. 90% SAE 50W engine oil and 10% STP.
- 2. Parker Thread Lube.
- 3. 60% SAE 30 engine oil and 40% Parker Thread Lube.

NOTE

At any time a cylinder is replaced, it is necessary to retorque the thru-stude on the cylinder on the opposite side of the engine.

- (a) Tighten ¹/₂ inch cylinder base nuts to 300 in.-lbs. (25 ft.-lbs.) torque, using the sequence shown in Figure 5-2.
- (b) Using the same sequence, tighten the ½ inch cylinder base nuts, to 600 in.-lbs. (50 ft.-lbs.) torque.

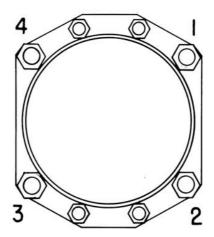


Figure 5-2. Sequence of Tightening Cylinder Base Hold-Down Nuts

SECTION 5 MAINTENANCE PROCEDURES

- (c) Tighten the 3/8 inch hold down nuts to 300 in.-lbs. (25 ft.-lbs.) torque. Sequence of tightening is optional.
- (d) As a final check, hold the torque wrench on each nut for about five seconds. If the nut does not turn, it may be presumed to be tightened to correct torque.

CAUTION

AFTER ALL CYLINDER BASE NUTS HAVE BEEN TIGHTENED, REMOVE ANY NICKS IN THE CYLINDER FINS BY FILING OR BURRING.

- (5) Install new shroud tube oil seals on both ends of shroud tube. Install shroud tube and lock in place as required for type of cylinder.
- (6) Assemble each push rod in its respective shroud tube, and assemble each rocker in its respective position by placing rocker between bosses and sliding valve rocker shaft in place to retain rockers. Before installing exhaust valve rocker, place rotator cap over end of exhaust valve stem.
- (7) Be sure that the piston is at top center of compression stroke and that both valves are closed. Check clearance between the valve stem tip and the valve rocker. In order to check this clearance, place the thumb of one hand on the valve rocker directly over the end of the push rod and push down so as to compress the hydraulic tappet spring. While holding the spring compressed, the valve clearance should be between .028 and .080 inch. If clearance does not come within these limits, remove the push rod and insert a longer or shorter push rod, as required to correct clearance.

NOTE

Inserting a longer push rod will decrease the valve clearance.

(8) Install intercylinder baffles, rocker box covers, intake pipes, rocker box drain tubes and exhaust manifold.

5. TURBOCHARGER..

a. Variable Pressure Controller – Refer to latest revision of Lycoming Service Instruction No. 1431 for adjustment procedure.

6. ALTERNATOR AND COMPRESSOR DRIVE BELT TENSION.

Check the tension of new belts 25 hours are installation. Refer to latest revision of Service Instruction No. 1129 for methods of checking tension of drive belts.

LYCOMING OPERATOR'S MANUAL

SECTION 6 TROUBLE-SHOOTING – ENGINE

Page

Failure of Engine to Start	6-1
Failure of Engine to Idle Properly	
Low Power and Uneven Running	
Failure of Engine to Develop Full Power	
Rough Engine	6-3
Low Oil Pressure	6-3
High Oil Temperature	6-4
Excessive Oil Consumption	6-4
High Fuel Flow Indicated on Fuel Gage	6-4

TROUBLE-SHOOTING – TURBOCHARGER

Excessive Noise or Vibration	
Engine Will Not Deliver Rated Power	
Critical Altitude Lower Than Specified	
Engine Surges or Smokes	
High Deck Pressure	

This Page Intentionally Left Blank.

SECTION 6

TROUBLE-SHOOTING

Experience has proven that the best method of trouble-shooting is to decide on the various causes of a given trouble and then to eliminate causes one by one, beginning with the most probable. The following charts list some of the more common troubles, which may be encountered in maintaining engines and turbochargers; their probable causes and remedies.

1. TROUBLE-SHOOTING – ENGINE.

TROUBLE	PROBABLE CAUSE	REMEDY
Failure of Engine to Start	Lack of fuel.	Check fuel system for leaks. Fill fuel tank. Clean dirty lines, strainers or fuel valves.
	Overpriming.	Leave ignition "off" and mixture control in "Idle Cut-Off", open throttle and "unload" engine by cranking for a few seconds. Turn ignition switch on and proceed to start in a normal manner.
	Defective spark plugs.	Clean and adjust or replace spark plugs.
	Defective ignition wiring.	Check with electric tester, and replace any defective wires.
	Defective battery.	Replace with charged battery.
	Improper operation of magneto breaker.	Clean points. Check internal timing of magnetos.
	Lack of sufficient fuel flow.	Disconnect fuel line and check fuel flow.
	Water in fuel injector.	Drain fuel injector and fuel lines.
	Internal failure.	Check suction screen for metal particles. If found, complete overhaul of the engine may be indicated.

SECTION 6 TROUBLE-SHOOTING

LYCOMING OPERATOR'S MANUAL TIO-540-AE2A

TROUBLE	PROBABLE CAUSE	REMEDY
Failure of Engine to Idle Properly	Incorrect idle mixture.	Adjust mixture.
	Leak in induction system.	Tighten all connections in the induction system. Replace any parts that are defective.
	Incorrect idle adjustment.	Adjust throttle stop to obtain correct idle.
	Uneven cylinder compression.	Check condition of piston rings and valve seats.
	Faulty ignition system.	Check entire ignition system.
	Insufficient fuel pressure.	Adjust fuel pressure.
	Leak in air bleed nozzle balance line.	Check connection and replace if necessary.
	Plugged fuel injector nozzle.	Clean or replace nozzle.
	Flow divider fitting plugged.	Clean fitting.
Low Power and Uneven Running	Mixture too rich; indicated by sluggish engine operation, red exhaust flame at night. Extreme cases indicated by black smoke from exhaust.	Readjustment of fuel injector by authorized personnel is indicated.
	Mixture too lean; indicated by overheating or backfiring.	Check fuel lines for dirt or other restrictions. Readjustment of fuel injector by authorized personnel is indicated.
	Leaks in induction system.	Tighten all connections. Replace defective parts.
	Defective spark plugs.	Clean and gap or replace spark plugs.
	Improper fuel.	Fill tank with fuel of recommended grade.

SECTION 6 TROUBLE-SHOOTING

TROUBLE	PROBABLE CAUSE	REMEDY
Low Power and Uneven Running (Cont.)	Magneto breaker points not working properly.	Clean points. Check internal timing of magnetos.
	Defective ignition wire.	Check wire with electric tester. Replace defective wire.
	Defective spark plug terminal connectors.	Replace connectors on spark plug wire.
	Plugged fuel injector nozzle.	Clean or replace nozzle.
Failure of Engine to Develop Full Power	Leak in induction system	Tighten all connections and replace defective parts.
	Plugged fuel injector nozzle.	Clean or replace nozzle.
	Throttle lever out of adjustment.	Adjust throttle lever.
	Improper fuel flow.	Check strainer, gage and flow at the fuel line.
	Restriction in air scoop.	Examine air scoop and remove restrictions.
	Improper fuel.	Drain and refill tank with recommended fuel.
	Faulty ignition.	Tighten all connections. Check system with tester. Check ignition timing.
Rough Engine	Cracked engine mount.	Replace or repair mounting.
	Defective mounting bushings.	Install new mounting bushings.
	Uneven compression.	Check compression.
	Plugged fuel injector nozzle.	Clean or replace nozzle.
Low Oil Pressure	Insufficient oil.	Fill sump to proper level with recommended oil.
	Air lock or dirt in relief valve.	Remove and clean oil pressure relief valve.

SECTION 6 TROUBLE-SHOOTING

LYCOMING OPERATOR'S MANUAL TIO-540-AE2A

TROUBLE	PROBABLE CAUSE	REMEDY
Low Oil Pressure (Cont.)	Leak in suction line or pressure line.	Check gasket between accessory housing and crankcase.
	High oil temperature.	See "High Oil Temperature" in "Trouble" column.
	Defective pressure gage.	Replace.
	Stoppage in oil pump intake passage.	Check line for obstruction. Clean suction strainer.
High Oil Temperature	Insufficient oil supply.	Fill oil sump to proper level with specified oil.
	Low grade of oil.	Replace with oil conforming to specifications.
	Clogged oil lines or strainers.	Remove and clean oil strainers.
	Excessive blow-by.	Usually caused by worn or stuck rings.
	Failing or failed bearing.	Examine sump for metal particles. If found, overhaul of engine is indicated.
	Defective temperature gage.	Replace gage.
Excessive Oil Consumption	Low grade of oil.	Fill tank with oil conforming to specification.
	Failing or failed bearings.	Check sump for metal particles.
	Worn piston rings.	Install new rings.
	Incorrect installation of piston rings.	Install new rings.
	Failure of rings to seat (new nitrided cylinders).	Use mineral base oil. Climb to cruise altitude at full power and operate at 75% cruise power setting until oil consumption stabilizes.
High Fuel Flow Indicated on Fuel Gage	Plugged fuel injector nozzle.	Clean or replace nozzle.

2. TROUBLE-SHOOTING – TURBOCHARGER.

SECTION 6 TROUBLE-SHOOTING

TROUBLE	PROBABLE CAUSE	REMEDY
Excessive Noise or Vibration	Improper bearing lubrication.	Supply required oil pressure. Clean or replace oil line; clean oil strainer. If trouble persists, overhaul turbocharger.
	Leak in engine intake or exhaust manifold.	Tighten loose connections or replace manifold gaskets as necessary.
	Dirty impeller blades.	Disassemble and clean.
Engine Will Not Deliver Rated Power	Clogged manifold system.	Clear all ducting.
	Foreign material lodged in compressor impeller or turbine.	Disassemble and clean.
	Excessive dirt build-up in compressor.	Thoroughly clean compressor assembly. Service air cleaner and check for leakage.
	Leak in engine intake or exhaust.	Tighten loose connections or replace manifold gaskets as necessary.
	Rotating assembly bearing seizure.	Overhaul turbocharger.
	Restriction in return lines from actuator to exhaust bypass controller.	Remove and clean lines.
	Exhaust bypass controller is in need of adjustment.	Have exhaust bypass controller adjusted.
	Oil pressure too low.	Tighten fittings. Replace lines, or hoses, increase oil pressure to desired pressure.
	Inlet orifice to actuator clogged.	Remove inlet line at actuator and clean orifice.
	Exhaust bypass controller malfunction.	Replace unit.

SECTION 6 TROUBLE-SHOOTING

LYCOMING OPERATOR'S MANUAL TIO-540-AE2A

TROUBLE	PROBABLE CAUSE	REMEDY
Engines Will Not Deliver Rated Power (Cont.)	Exhaust bypass butterfly not closing.	Low pressure. Clogged orifice in let to actuator.
		Butterfly shaft binding. Check bearings.
	Turbocharger impeller binding, frozen or fouling housing.	Check bearings. Replace turbocharger.
	Piston seal in actuator leaking. Usually accompanied by oil leakage at drain line.	Remove and replace actuator or disassemble and replace packing.
Critical Altitude Lower Than Specified	Controller not getting enough oil pressure to close the exhaust bypass.	Check pump outlet pressure, oil filters, external lines for leaks or obstructions.
	Chips under metering valve in controller holding it open	Replace controller.
	Metering jet in actuator plugged.	Remove actuator and clean jet.
	Actuator piston seal failed and leaking excessively.	If there is oil leakage at actuator drain, clean cylinder and replace piston seal.
	Exhaust bypass valve sticking.	Clean and free action.
Engine Surges or Smokes	Air in oil lines or actuator.	Bleed system.
	Controller metering valve stem seal leaking oil into manifold.	Replace controller.
	Clogged breather.	Check breather for restrictions to air flow.

NOTE

Smoke would be normal if engine has idled for a prolonged period.

High Deck Pressure (Compressor Discharge Pressure)	Controller metering valve not opening, aneroid bellows leaking.	Replace controller assembly or replace aneroid bellows.
	Exhaust bypass sticking closed.	Shut off valve in return line not working.
		Butterfly shaft binding. Check bearings.

SECTION 6 TROUBLE-SHOOTING

TROUBLE	PROBABLE CAUSE	REMEDY
High Deck Pressure (Compressor Discharge Pressure) (Cont.)	Exhaust bypass sticking closed. (Cont.)	Replace exhaust bypass valve or correct linkage binding.
	Controller return line restricted.	Clean or replace line.
	Oil pressure too high.	Check pressure 75 to 85 psi (80 psi desired) at exhaust bypass actuator inlet.
		If pressure on outlet side of actuator is too high, have exhaust bypass controller adjusted.
	Exhaust bypass valve actuator piston locked in full closed position. (Usually accompanied by oil leakage at actuator drain line.) NOTE: Exhaust bypass normally closed in idle and low power conditions. Should open when actuator inlet line is disconnected.	Remove and disassemble actuator, check condition of piston and packing or replace actuator assembly.
	Exhaust bypass controller malfunction.	Replace controller.

This Page Intentionally Left Blank.

LYCOMING OPERATOR'S MANUAL

SECTION 7 INSTALLATION AND STORAGE

Page

Preparation of Engine for Installation	
General	7-1
Inspection of Engine Mounting	
Attaching Engine to Mounts	
Propeller Installation	
Preparation of Fuel Injector for Installation	
Corrosion Prevention in Engines Installed in Inactive Aircraft	

This Page Intentionally Left Blank.

SECTION 7

INSTALLATION AND STORAGE

1. PREPARATION OF ENGINE FOR INSTALLATION. Before installing an engine that has been prepared for storage, remove all dehydrator plugs, bags of desiccant and preservative oil from the engine. Preservative oil can be removed by removing the bottom spark plugs and turning the crankshaft three or four revolutions by hand. The preservative oil will then drain through the spark plug holes. Draining will be facilitated if the engine is tilted from side to side during the above operation. Preservative oil which has accumulated in the sump can be drained by removing the oil sump plug. Engines that have been stored in a cold place should be removed to an environment of at least 70°F (21°C) for a period of 24 hours before preservative oil is drained from the cylinders. If this is not possible, heat the cylinders with heat lamps before attempting to drain the engine.

After the oil sump has been drained, the plug should be replaced, safety-wired, and the sump refilled with lubricating oil. The crankshaft should again be turned several revolutions to saturate the interior of the engine with the clean oil. When installing spark plugs, make sure that they are clean; if not, wash them in clean petroleum solvent. Of course, there will be a small amount of preservative oil remaining in the engine, but this can cause no harm. However, after twenty-five hours of operation, the lubricating oil should be drained while the engine is hot. This will remove any residual preservative oil that may have been present.

CAUTION

DO NOT ROTATE THE CRANKSHAFT OF AN ENGINE CONTAINING PRESERVATIVE OIL BEFORE REMOVING THE SPARK PLUGS, BECAUSE IF THE CYLINDERS CONTAIN ANY APPRECIABLE AMOUNT OF THE MIXTURE, THE RESULTING ACTION, KNOWN AS HYDRAULIC LOCKING, WILL DAMAGE THE ENGINE. ALSO, ANY CONTACT OF THE PRESERVATIVE OIL WITH PAINTED SURFACES SHOULD BE AVOIDED.

General – Should any of the dehydrator plugs, containing crystals of silica-gel or similar material, be broken during their term of storage or upon their removal from the engine, and if any of the contents should fall into the engine, that portion of the engine must be disassembled and thoroughly cleaned before using the engine. The oil strainers should be removed and cleaned in gasoline or some other hydrocarbon solvent. The fuel drain screen located in the fuel inlet of the fuel injector should also be removed and cleaned in a hydrocarbon solvent. The operator should also note if any valves are sticking. If they are, this condition can be eliminated by coating the valve stem generously with a mixture of gasoline and lubrication oil.

Inspection of Engine Mounting – If the aircraft is one from which an engine has been removed, make sure that the engine mount is not bent or damaged by distortion or misalignment as this can produce abnormal stresses within the engine.

Attaching Engine to Mounts – See airframe manufacturer's recommendation for method of mounting the engine.

Oil and Fuel Line Connections – The oil and fuel line connections are called out on the accompanying installation drawings.

Propeller Installation - Consult the airframe manufacturer for information relative to propeller installation.

SECTION 7 INSTALLATION AND STORAGE

2. PREPARATION OF FUEL INJECTOR FOR INSTALLATION.

A fuel injector that has been prepared for storage should undergo the following procedure before being placed in service.

Fuel Injector (*Bendix*) – Remove and clean the fuel inlet strainer assembly and reinstall. Inject clean fuel into the fuel inlet connection with the fuel outlets uncapped until clean fuel flows from the outlets. Do not exceed 15 psi inlet pressure.

CORROSION PREVENTION IN ENGINES INSTALLED IN INACTIVE AIRCRAFT

Corrosion can occur, especially in new or overhauled engines, on cylinder walls of engines, that will be inoperative for periods as brief as two days. Therefore, the following preservation procedure is recommended for inactive engines and will be effective in minimizing the corrosion condition for a period of up to thirty days.

NOTE

Ground running the engine for brief periods of time is not a substitute for the following procedure; in fact, the practice of ground running will tend to aggravate rather than minimize this corrosion condition.

- a. As soon as possible after the engine is stopped, move the aircraft into the hangar, or other shelter where the preservation process is to be performed.
- b. Remove sufficient cowling to gain access to the spark plugs and remove both spark plugs from each cylinder.
- c. Spray the interior of each cylinder with approximately two (2) ounces of corrosion preventive oil while cranking the engine about five (5) revolutions with the starter. The spray gun nozzle may be placed in either of the spark plug holes.

NOTE

Spraying should be accomplished using an airless spray gun (Spraying Systems Co., "Gunjet" Model 24A-8395 or equivalent). In the event an airless spray gun is not available, personnel should install a moisture trap in the air line of a conventional spray gun and be certain oil is hot at the nozzle before spraying cylinders.

d. With the crankshaft stationary, again spray each cylinder through the spark plug holes with approximately two (2) ounces of corrosion preventive oil. Assemble spark plugs and do not turn crankshaft after cylinders have been sprayed.

The corrosion preventive oil to be used in the foregoing procedure should conform to specification MIL-L-6529, Type 1 heated to 200° F/220°F (93°C/104°C) spray nozzle temperature. It is not necessary to flush preservative oil from the cylinder prior to flying the aircraft. The small quantity of oil coating the cylinders will be expelled from the engine during the first few minutes of operation.

7-2

SECTION 7 INSTALLATION AND STORAGE

NOTE

Oils of the type mentioned are to be used in Lycoming aircraft engines for corrosion prevention only, and not for lubrication. See the latest revision of Lycoming Service Instruction No. 1014 and Service Bulletin No. 318 for recommended lubricating oil.

SECTION 7 INSTALLATION AND STORAGE

LYCOMING OPERATOR'S MANUAL TIO-540-AE2A

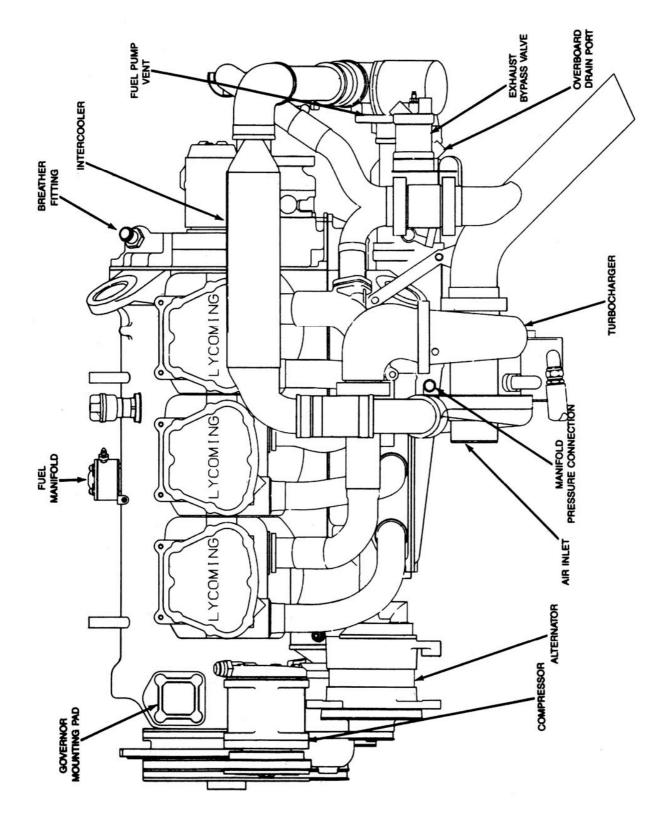


Figure 7-1. Installation Drawing – Left Side View – TIO-540-AE2A

SECTION 7 INSTALLATION AND STORAGE

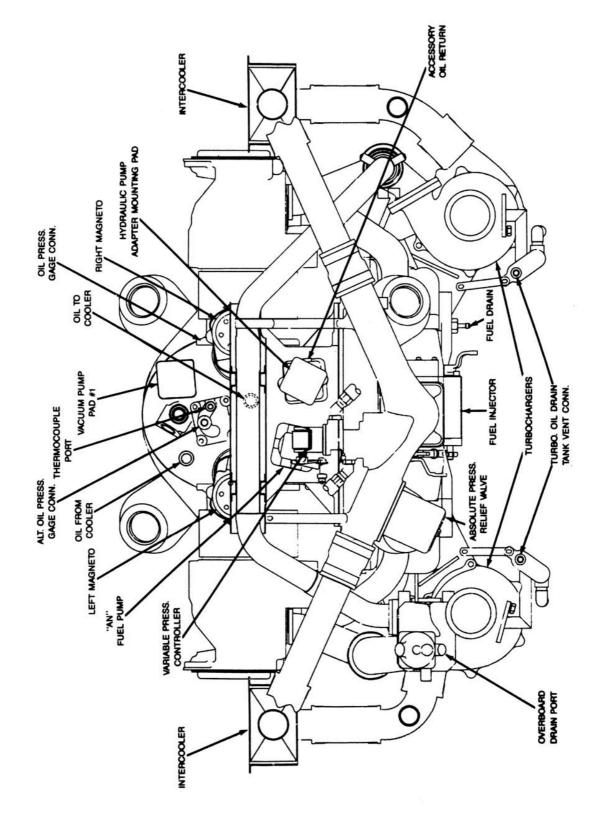


Figure 7-2. Installation Drawing – Rear View – TIO-540-AE2A

This Page Intentionally Left Blank.

LYCOMING OPERATOR'S MANUAL

SECTION 8 TABLES

Page

Table of Limits	
Ground Run After Top Overhaul	
Flight Test After Top Overhaul	
Full Throttle HP at Altitude	
Table of Speed Equivalents	
Centigrade – Fahrenheit Conversion	
Inch – Fraction Conversion	

This Page Intentionally Left Blank.

SECTION 8

TABLES

FOR TIGHTENING TORQUE RECOMMENDATIONS AND INFORMATION CONCERNING TOLERANCES AND DIMENSIONS THAT MUST BE MAINTAINED IN LYCOMING AIRCRAFT ENGINES, CONSULT LATEST REVISION OF SPECIAL SERVICE PUBLICATION NO. SSP-1776.

CONSULT LATEST REVISION OF SERVICE INSTRUCTION NO. 1029 AND NO. 1150 FOR INFORMATION PERTINENT TO CORRECTLY INSTALLING CYLINDER ASSEMBLY.

SECTION 8 TABLES

LYCOMING OPERATOR'S MANUAL TIO-540-AE2A

	SN	Temperature Fuel Flow uel L. carb. R. carb. L. carb. R. carb. Amb. Air Left Right After Completion of Ground Run 1. Visually inspect engine(s) 2. Check oil levels
FIXED WING ONLY	Type Aircraft Registration No Aircraft No Owner Engine Model n and allow Date Run-Up By	GROUND RUN Pressure 1. L. oil R. oil L. fuel Adjustment Required Adjustment Required Adjustment Required
	GROUND RUN AFTER TOP OVERHAUL OR CYLINDER CHANGE WITH NEW RINGS (DO NOT USE AFTER MAJOR OVERHAUL) Avoid dusty location and loose stones. Head aircraft into the wind. All cowling should be in place, cowl flaps open. Accomplish ground run in full flat pitch. Never exceed 200°F. oil temperature. If cylinder head temperatures reach 400°F., shut down and allow engine to cool before continuing.	L. oil R. oil L. cyl. R. cy
	GROUND RUN OR CYLINDER O OR CYLINDER O (DO NOT USE A (DO NOT USE A (DO NOT USE A and lo 2. Head aircraft into the wind. 3. All cowling should be in pla 4. Accomplish ground run in f 5. Never exceed 200°F. oil ter 6. If cylinder head temperat engine to cool before contir	Time RPM MAP 5 min 1000 10 5 min 1200 10 5 min 1500 5 5 min 1600 5 5 min 1600 1000 5 min 1600 1000 5 min 1700 1700 6 min 1800 1800 Mag. Check Power Check Idle Check

						_		its),	
				Flow	Right			l for lim ing.	
				Fuel Flow	Left			s manua for scori	
				Ire	Amb. Air			Make careful visual inspection of engine(s). Check oil level(s). If oil consumption is excessive, (see operator's manual for limits), remove spark plugs and check cylinder barrels for scoring.	
				Temperature	R. carb		Flight.	ection of cessive, (check cy	
lGS				T	L. carb		After Test Flight.	Make careful visual inspection of engine(s). Check oil level(s). If oil consumption is excessive, (see operat remove spark plugs and check cylinder barr	
FLIGHT TEST AFTER TOP OVERHAUL OR CYLINDER CHANGE WITH NEW RINGS		Tested by_			R. fuel			Make careful visu Check oil level(s). If oil consumptior remove spark plug	
OP OVI NITH N			ECORD	sure	L. fuel	-			
ANGE V			TEST R	Pressure	R. oil				
TEST AI	Se.		FLIGHT TEST RECORD		L. oil			5	
I CHT T	Test fly aircraft one hour. Use standard power for climb, and at least 75% power for cruise. Make climb shallow and at good airspeed for cooling. Record engine instrument readings during climb and cruise.		н		R. cyl.				
FL OR C	Test fly aircraft one hour. Use standard power for climb, and at least 75% power for cr Make climb shallow and at good airspeed for cooling. Record engine instrument readings during climb and cruise.			cmperature	L. cyl.				
	id at least airspeed gs during			Tempe	R. oil				
	ır. climb, ar d at good nt readin				L. oil		Flight		
	t one hou ower for allow and instrume				MAP		ed After]		
	Test fly aircraft one hour. Use standard power for cl Make climb shallow and a Record engine instrument				RPM		tt Require		
18	 Test f Use st Use st Make Recor 				Time (Climb)	Cruise	Adjustment Required After Flight		

SECTION 8 TABLES

Altitude	% S.L.	Altitude	% S.L.	Altitude	% S.L.
Ft.	H.P.	Ft.	H.P.	Ft.	H.P.
0	100	10,000	70.8	19,500	49.1
500	98.5	11,000	68.3	20,000	48.0
1,000	96.8	12,000	65.8	20,500	47.6
2,000	93.6	13,000	63.4	21,000	46.0
2,500	92.0	14,000	61.0	21,500	45.2
3,000	90.5	15,000	58.7	22,000	44.0
4,000	87.5	16,000	56.5	22,500	43.3
5,000	84.6	17,000	54.3	23,000	42.2
6,000	81.7	17,500	53.1	23,500	41.4
7,000	78.9	18,000	52.1	24,000	40.3
8,000	76.2	18,500	51.4	24,500	39.5
9,000	73.5	19,000	50.0	25,000	38.5

FULL THROTTLE HP AT ALTITUDE (Normally Aspired Engines)

TABLE OF SPEED EQUIVALENTS

Sec./Mi.	M.P.H.	Sec./Mi.	M.P.H.	Sec./Mi.	M.P.H.
72.0	50	24.0	150	14.4	250
60.0	60	22.5	160	13.8	260
51.4	70	21.2	170	13.3	270
45.0	80	20.0	180	12.8	280
40.0	90	18.9	190	12.4	290
36.0	100	18.0	200	12.0	300
32.7	110	17.1	210	11.6	310
30.0	120	16.4	220	11.2	320
27.7	130	15.6	230	10.9	330
25.7	140	15.0	240	10.6	340

CENTIGRADE-FAHRENHEIT CONVERSION TABLE

Example: To convert 20°C to Fahrenheit, find 20 in the center column headed (F-C); then read 68.0° F in the column (F) to the right. To convert 20°F to Centigrade; find 20 in the center column and read -6.67° C in the (C) column to the left.

С	F-C	F	С	F-C	F
-56.7	-70	-94.0	104.44	220	428.0
-51.1	-60	-76.0	110.00	230	446.0
-45.6	-50	-58.0	115.56	240	464.0
-40.0	-40	-40.0	121.11	250	482.0
-34.0	-30	-22.0	126.67	260	500.0
-28.9	-20	-4.0	132.22	270	518.0
-23.3	-10	14.0	137.78	280	536.0
-17.8	0	32.0	143.33	290	554.0
-12.22	10	50.0	148.89	300	572.0
-6.67	20	68.0	154.44	310	590.0
-1.11	30	86.0	160.00	320	608.0
4.44	40	104.0	165.56	330	626.0
10.00	50	122.0	171.11	340	644.0
15.56	60	140.0	176.67	350	662.0
21.11	70	158.0	182.22	360	680.0
26.67	80	176.0	187.78	370	698.0
32.22	90	194.0	193.33	380	716.0
37.78	100	212.0	198.89	390	734.0
43.33	110	230.0	204.44	400	752.0
48.89	120	248.0	210.00	410	770.0
54.44	130	266.0	215.56	420	788.0
60.00	140	284.0	221.11	430	806.0
65.56	150	302.0	226.67	440	824.0
71.00	160	320.0	232.22	450	842.0
76.67	170	338.0	237.78	460	860.0
82.22	180	356.0	243.33	470	878.0
87.78	190	374.0	248.89	480	896.0
93.33	200	392.0	254.44	490	914.0
98.89	210	410.0	260.00	500	932.0

SECTION 8 TABLES

LYCOMING OPERATOR'S MANUAL TIO-540-AE2A

INCH FRACTION CONVERSIONS Decimals, Area of Circles and Millimeters

Inch	Decimal	Area	MM	Inch	Decimal	Area	MM
Fraction	Equiv.	Sq. In.	Equiv.	Fraction	Equiv.	Sq. In.	Equiv.
1/64	.0156	.0002	.397	1/2	.5	.1964	12.700
1/32	.0312	.0008	.794	17/32	.5312	.2217	13.494
3/64	.0469	.0017	1.191	35/64	.5469	.2349	13.891
1/16	.0625	.0031	1.587	9/16	.5625	.2485	14.288
3/32	.0937	.0069	2.381	19/32	.5937	.2769	15.081
7/64	.1094	.0094	2.778	39/64	.6094	.2916	15.478
1/8	.125	.0123	3.175	5/8	.625	.3068	15.875
5/32	.1562	.0192	3.969	21/32	.6562	.3382	16.669
11/64	.1719	.0232	4.366	43/64	.6719	.3545	17.065
3/16	.1875	.0276	4.762	11/16	.6875	.3712	17.462
7/32	.2187	.0376	5.556	23/32	.7187	.4057	18.256
15/64	.2344	.0431	5.593	47/64	.7344	.4235	18.653
1/4	.25	.0491	6.350	3/4	.75	.4418	19.050
9/32	.2812	.0621	7.144	25/32	.7812	.4794	19.844
19/64	.2969	.0692	7.540	51/64	.7969	.4986	20.241
5/16	.3125	.0767	7.937	13/16	.8125	.5185	20.637
11/32	.3437	.0928	8.731	27/32	.8437	.5591	21.431
23/64	.3594	.1014	9.128	55/64	.8594	.5800	21.828
3/8	.375	.1105	9.525	7/8	.875	.6013	22.225
13/32	.4062	.1296	10.319	29/32	.9062	.6450	23.019
27/64	.4219	.1398	10.716	59/64	.9219	.6675	23.416
7/16	.4375	.1503	11.112	15/16	.9375	.6903	23.812
15/32	.4687	.1725	11.906	31/32	.9687	.7371	24.606
31/64	.4844	.1842	12.303	63/64	.9844	.7610	25.003