

Tips and Tricks for Creating a Configurator with

Autodesk® Inventor®
Brian Ekins – Autodesk, Inc.

MA316-5

Class Description:
Automatically constructing parts and assemblies based on their description is the holy grail of CAD for
many. In this class, we will look at some of the options for doing just that. We will also look at some of the
realities and pitfalls you need to be aware of when designing a configuration system. Topics to be
discussed include what to consider when creating libraries, using iLogic™, building assemblies, creating
the front-end user-interface, web-based options, creating drawings, choosing output formats, and more.
Automating creation of parts and assemblies can be for internal use to help automate the design process
or for external uses, such as sales tools to allow customers to visualize and use your products during
their design phase.

About the Speaker:
Brian is the designer of the Autodesk Inventor programming interface. He began working in the CAD
industry over 25 years ago in various positions, including CAD administrator, applications engineer, CAD
API designer, and consultant. Brian is the original designer of the Inventor API and has presented at
conferences and taught classes throughout the world to thousands of users and programmers.

brian.ekins@autodesk.com

Understanding Solid Models and the API in Autodesk® Inventor®

ii

Understanding Solid Models and the API in Autodesk® Inventor®

1

Introduction
What is a configurator? The term “configurator” can mean a lot of different things. For this

class I’m going to limit the definition to creating a specific version of a part or assembly.

Typically, the creation is an automated process that takes a description (part numbers, sizes,

etc.) as input and creates the specified part or assembly.

This paper and associated material isn’t meant to fully cover the creation of a configurator, but is

instead a sampling of various issues I’ve run into when creating configurators and the solutions I

found. Please don’t consider any of these as the only or even the best solution to these

problems either; they’re just the solution I came up with. You may be able to figure out better

answers than I did.

I believe there are two basic types of configurators; sales and engineering. A sales configurator

is typically used by a salesman or the customer to configure a product and get a representative

model that can be used in a design to check for interferences and create between other

components in the assembly. A sales model is typically a simplified version of the engineering

model.

An engineering configurator is used in-house to generate variations of a product, or sub-

systems of a larger product. The intent in this case is to create a model that can be used for the

engineering and manufacture of the product. Complete models, and possibly drawings, are

required in this case.

I want to thank Parker Hannifin Corp. for allowing me to use some of their parts as examples.

Part Configuration
Below, several approaches to creating a part configurator are discussed. The important thing to

note is that all of them depend heavily on the parametric nature of Inventor. The ability to

parametrically modify a model is extremely powerful and something to take advantage of when

possible. The alternative to using parameters is to build a model from scratch. This is possible

and the API has the functionality to support it, but it definitely is not as easy as modifying an

existing model and will also take more time to process.

Parameters

Inventor itself can be considered a configurator.

Because of its parametric capabilities it’s relatively

easy to modify a part to represent various

configurations of that part by editing parameter

values and allowing the part to recompute. To the

right, is a simple part I’ll use to illustrate various

techniques to change part parameters.

Understanding Solid Models and the API in Autodesk® Inventor®

2

The part and its valid sizes are shown in the table below. There are only specific values that

can be used to create a valid variation of this part.

One approach to configuring this part is to use Inventor parameters as shown below. The end-

user can use the Parameters dialog to edit the value of any of the parameters and then let the

model recompute to get the new configuration. Using multi-value lists for a parameter limits the

choices the user has when selecting values, but it’s still possible to pick invalid combinations of

values that aren’t represented in the table.

It’s also possible to control the suppression state of a feature

based on the value of a parameter, which is what’s happening

with the DoubleHub parameter above. This is controlled

through the feature’s properties, as shown to the right. When

the parameter DoubleHub has a value not equal to 1, the

feature will be suppressed. Even though paramaters can be

used to configure a part it’s not the ideal solution.

Understanding Solid Models and the API in Autodesk® Inventor®

3

iParts

Another approach to configuring parts is to use iParts. With an iPart you can define all of the

valid combinations of values in the iPart table, as shown below. It’s also possible to have some

variable values using a custom iPart.

The end-user is limited to selecting only valid combinations of values by selecting the desired

member row from the browser, or the “Place Standard iPart” dialog when inserting the part into

an assembly, as shown below.

Understanding Solid Models and the API in Autodesk® Inventor®

4

iParts provides a better user-interface and integrates nicely with assemblies but there are some

things to be aware of when using iParts that can cause problems with some workflows.

 The table is embedded within the part. This makes maintenance of the part a little more

difficult when edits need to be made to the table.

 A new file is created when a part member is created. This is good and bad. It’s good

because since there is a new file for each member, you can place different members of

the same factory into an assembly. If you were using the factory part directly in an

assembly, the factory could only represent one member at a time. It’s bad because you

have additional files to manage.

 When the member file is created, Inventor creates the model for the member by deriving

the factory into the member file. Because of this, some information on the original

factory model is lost. For example, there aren’t any features in the member model. Also

any API attributes assigned to the model in the factory will not be copied over to the

member model.

 The member can be out of date. If the factory has been changed by modifying the

model or editing the values for a specific member, that member will be out of date until

it’s opened and recomputed.

My personal preference has been to avoid iParts for configurators but you need to look at your

specific situation before making a decision to use iParts or not.

iLogic

Another Inventor tool that can be used to configure parts is iLogic. For the example bearing

we’ve been looking at there are two approaches. One is to embed the table as logic within a

rule and the other is to use a table in Excel. Here are the parameters in the part with the filter

set to only show key parameters. This particular part has two values that can be changed

independent of each other and a setting defining whether it is a single or double bearing. For

this particular part, this limits the user to only selecting valid configurations but most cases will

be more complex than this so this approach isn’t feasible.

Understanding Solid Models and the API in Autodesk® Inventor®

5

The picture below shows the two rules that are used to drive this part. The on the left is entirely

dependent on the “HoleDiameter” parameter and changes the values of four other parameters

based on the current value of “HoleDiameter”. The values that were in the iPart table in the

previous example are now embedded within the rule. The rule on the right suppresses and

unsuppresses two features based on the value of the parameter “Double”. I wouldn’t

recommend defining your table as code. Having the table as code is not very easy to maintain

and will be very difficult for someone not comfortable with programming or iLogic to edit.

Another approach is to combine iLogic with an Excel worksheet. The table data is stored in

Excel and used by iLogic to perform the update. The iLogic rule is shown below.

Understanding Solid Models and the API in Autodesk® Inventor®

6

And here is the table data accessed by the rule and the multi-value list parameter that the rule is

dependent on and which provides the user-interface.

Excel

Using Excel in combination with Inventor’s API is another technique that can be used to drive a

table-driven part. In this example, when the button on the form is clicked a VBA macro is

executed that reads the values from the select row and uses Inventor’s API to edit the

associated parameter values and update the part. Excel acts as the user-interface in this case.

Understanding Solid Models and the API in Autodesk® Inventor®

7

API

Writing an external application that uses the API to configure the desired part is also possible.

The Excel example above is a variation of this. By writing a fully custom application you can

create any type of user-interface you want including a command line interface, windows dialog,

or even a web based interface. You’re free to choose whatever works the best for your specific

case. We’ll look more at API specific solutions when we look at assembly configurators.

As mentioned above, another option when using the API is to dynamically create or edit a model

rather than editing parameters. It is possible, but not suggested because of the complexity and

performance issues. But in a few cases it still might be the best approach and is an option.

The User-Interface
There are two distinct parts of a configurator; the user-interface that collects the input from the

user and the back-end that creates the model. The user interface is a critical component and

typically contains much of the overall logic. It’s the user interface that has to know what’s valid

and enforce the rules as the user interacts with the user interface to specify the component they

want. The result after the user has finished with the user interface is a description of the desired

component. The back-end then takes this description as input and creates the model.

The user-interface and the back-end can be part of the same program or they can be separate

programs running on different machines and commuting over a network or internet. Here are

some examples of some configurator user interfaces.

Inventor

The simplest user-interface to implement is to just use Inventor itself. This is the approach used

in most of the previous examples and makes it easy to implement but is typically not very user-

friendly, especially in the case where someone without Inventor experience or even access to

Inventor needs to use it.

This next example doesn’t have

anything to do with Inventor but

illustrates a web-based user

interface for a configurator. Even

though this configurator doesn’t

result in the creation of an

Inventor model, it shares many of

the same concepts as an Inventor

based configurator; a user is

guided to specify a valid

configuration and returns the

configured result. To help the user understand what he’s configuring, the display of the truck

updates dynamically as different choices are selected. The final result is a picture of the

configured truck and a description of the vehicle that can be sent to your nearest Toyota dealer.

Understanding Solid Models and the API in Autodesk® Inventor®

8

Below is a simple web-based configurator that works with Inventor to create a model of an ice

cream scoop. The user sees images representing the various components they’re selecting.

Once they’ve configured the model they want, a description is generated (as xml) and passed to

the back-end that reads the description and creates the specified model, which is then passed

back to the user.

Below is an example of another user-interface to configure an ice cream scoop. This one is a

Windows form. Configuring a scoop results in the same xml data as the web-based configurator

so the back-end that processes the model can be the same.

Even though the user interface is a critical part of any configurator, I’m not going to spend a lot

of time discussing it here. Designing and creating the user interface is typically very

Understanding Solid Models and the API in Autodesk® Inventor®

9

independent of Inventor and will typically require some programming. It’s the use of Inventor as

part of the configurator’s back-end that I want to focus on. Creating a good user interface will

require reasonable design and programming skills. I don’t have any tips or tricks to building

your front-end, except to look at all of the existing conifigurators that you can find and decide

what you like and don’t like about each one and incorporate what you do like into yours.

Associative or Not?
Typically, when designing with Inventor a primary goal is for the entire model including any

associated drawings to be fully associative. This means you should be able to edit a part and

have the assembly and any related drawings correctly update. When creating a configurator

you need to carefully consider whether associativity is needed in the final result. In most cases

it’s not needed and by not worrying about associativity you can often simplify the problem. For

example, instead of using assembly constraints to position parts in an assembly there are some

cases where it’s easier to compute the desired position of the part and place it directly. With

drawings it’s also possible to create dimensions to a location in space without worrying about

how it attaches to the model.

Typically for a sales automation configurator, associativity is not needed because the final

model and drawing are considered static and the user will not be making changes. For an

engineering configurator you have to consider whether the result of the configurator is the final

design or not. If there will be continued design work done using the result then you will likely

want full associativity. If the result is the final design to be used for manufacturing then

associativity probably doesn’t matter.

Even in the cases where you don’t care about the final result being associative, you will still take

advantage of Inventor’s associativity. As we’ve already seen, the parametric nature of Inventor

can make it easy to create different variations of a part by just editing parameters and

suppressing features. In assemblies you can also edit parameters and suppress occurrences to

create different versions of the assembly.

The primary question when considering associativity is can the different variations of the model

you’re configuring be obtained by editing parameters, suppressing features, and disabling parts

in assemblies? If you can answer yes to this then it may be possible to use the parameter

editing techniques described above, along with iAssemblies, iLogic, and possibly some API

routines to modify an existing model to obtain the desired configuration.

In other cases it’s not practical to create the final result by editing an existing part or assembly

because there are so many possible combinations. In this case the solution is to construct the

assembly from scratch. You still need to determine whether the result needs to be associative

or not, but creating a non-associative result is simpler.

Parametric Parts or Not?
The previous section on configuring parts relied on the fact that Inventor is a parametric modeler

and is a powerful tool that can be used to create many variations of a part. However, in many

Understanding Solid Models and the API in Autodesk® Inventor®

10

cases you don’t need to be able to create different parts on the fly but can use a library of static

parts that the configurator assembles in different ways.

Even though the parts might be parametric it doesn’t mean you need to take advantage of that.

For example, there might be a part that has four different variations. Rather than use a single

part and modify it each time to create the version you need, you can create four different part

files, one for each variation. You’ll have more files on disk, but the configurator will be simpler

and will also run faster because you can skip the part configuration step.

Having static parts also simplifies the problem where you might need instances of different

variations of a part. For example, if you have a part that is available in 4 different lengths and

you need 3 of those lengths in the assembly you’re building, you’ll need to create copies of the

original parametric part, one for each variation so you have a unique part for each variation.

Creating these files will take time and increases the complexity of the configurator by having to

manage the files.

The primary issues to consider when deciding whether to use parametric parts are:

 How many variations of the part will there be? If there’s a small number then I would

suggest having multiple static parts.

 Will different variations of the part be used in the same final assembly? If there are a

reasonable number of variations of parts, then this would push the decision further

towards having multiple static parts.

 Is your source part parametric? Maybe you’re getting some of your parts from another

CAD system and they’re not parametric to begin with. If they’re not going to change,

there’s no reason to rebuild them in Inventor so they are parametric but just translate

them into Inventor as use them as static parts.

Pre-build Subassemblies
If there are portions of an assembly that are

always built up the same way you can pre-

build those and have them available as

finished assemblies to place into the final top-

level assembly. Even better than using a pre-

built assembly is to create a derived part from

the subassembly so that the subassembly is

represented by a single part. This will

eliminate some files and speed up processing.

The part to the right is a good example of

combining several parts into a single these parts are always assembled in the same way. Using

this approach will affect the BOM, but for most sales automation configurators that doesn’t

matter since you don’t need to generate a full engineering BOM.

Understanding Solid Models and the API in Autodesk® Inventor®

11

Simplify Your Parts and Assemblies
This is a shortcut reserved exclusively for sales automation configurators since you’ll want to

maintain full part detail in an engineering configurator. There are two advantages that come

from part simplification. First is that you hide some of the details and possible intellectual

property of the part and second is that the resulting model will be smaller and simpler to display,

resulting in better performance.

A great example of part simplification is a manifold. For a sales configurator, it’s only the

outside of the manifold that’s important as far as the customer being able to correctly position

the part within their assembly, connect it to other equipment, and check for interference. The

interior cavities aren’t needed and can be represented by simple holes to show where the

connection points are. The pictures below show the full manifold model on the left and the

simplified model on the right. When this part is used in an assembly, it is always sandwiched in

between other parts, so the fact that some internals are missing can’t even be seen. The front

of the manifold is what the customer sees and where they will connect to so it so the details are

left there but all of the other detail has been removed. The holes on the top and side are there

as handles to use in positioning this part and other parts relative to this part.

The part on the right is created by deriving an assembly. You might notice a bolt in the hole on

front of the part on the right. It is used to fasten this manifold to the adjacent manifold. Since

the bolt is always needed, it’s been included into this part. Simplifying by removing geometry

and combining parts into a single part reduces the number of parts and the geometric

complexity. The original part on the left is about 5.2 MB in size. The part on the right is about

0.6 MB.

Using the Derive command to create the final part is important for two reasons. First it lets you

create a single part from an assembly and second it creates a simpler model because the

Understanding Solid Models and the API in Autodesk® Inventor®

12

derived part only contains the geometry and not any of the other data used to create it, like

sketch and feature information.

Below, on the left, is a full featured engineering model that has a lot of detail internally that is not

needed in a sales configurator. The model to the right is the simplified version. The goal in

creating the simplified version is to have the model look the same on the outside but remove all

other geometry. Obviously, this eliminates the internal geometry but can also simplify other

areas too. For example, the end of the part facing you in the picture below will always be

covered with another part. The only reason to even have the holes that are seen is for attaching

other parts to this one. All of the detail on the outside of the part has been left unchanged so

that the part will be recognizable to the user.

Here are a couple of tips for simplifying geometry. If the part was originally created in Inventor

you can likely simplify a lot of the geometry by just suppressing some of the features. Once

you’ve suppressed the as many features as possible you can, or if the part wasn’t created in

Inventor, the next step is to use the Delete Face, Boundary Patch, and Stitch commands to

further simplify the part.

The first step is to look at the part and determine what geometry you want to remove. There are

two things to consider in this step. First, what can be removed but still allow the part to look

correct? Second, what geometry needs to remain so that you can use it to attach other parts?

As discussed below, I always use holes (circular edges) as the attachment points when

assembling parts. In many cases, rather than try and preserve the original holes during the

simplification process, it’s just easier to recreate them as a final step. To make the creation of

Understanding Solid Models and the API in Autodesk® Inventor®

13

the holes easy, I create a sketch on the face that contains the hole before I start simplifying the

model. This creates geometry that I can use later to re-create the hole in the correct location.

The next step is to use the Delete Face command to delete all of the faces that connect the

geometry you want to delete to the geometry you want to keep. The simple model below

illustrates this concept. (It’s been sectioned to easily view the internals.) Even though there’s

quite a bit of internal geometry in this part, there are only four areas where the internals connect

to the outer faces. If I use the Delete Face command to delete the three red faces shown below

and a fourth that’s not visible in this view, it will disconnect the inside from the outside. The

“Heal” option on the Delete Face dialog can also be handy for automatically filling in holes when

you delete faces. For example, deleting the two red faces that connect to the top face with the

heal option checked will automatically fill the holes.

Now that the internals are disconnected from the outside you can delete the internals in one

step using the Delete Face command. Choose the “Select lump or void” button on the right-

hand side of the dialog to select connected sets of faces

as one, as shown to the right. This setting in the Delete

Face command is also a useful tool in determining if you

have completely disconnected the internals or not. If the

entire solid highlights as one, then there’s still something

connecting the inside to the outside.

Delete

Understanding Solid Models and the API in Autodesk® Inventor®

14

The picture on the left shows the model (with the front removed for clarity) with the insides

removed. The next step is to seal up the holes. In some cases, like here, I still want to show

the location of the holes, but don’t need all the internal detail. That’s why I left a portion of the

cylinder that’s connected to the outside. To cap these you can use the Boundary Patch

command and then the Stitch command to combine it all back into a solid.

For some holes you may need to recreate them once you’ve finished simplified the model.

Constructing your Assembly
To configure an assembly, you can have a pre-built assembly that you modify by editing the

parts and subassemblies and then let Inventor update it. That approach doesn’t work when the

assembly can radically change. The assembly below is an example of this. The user can

choose from 1 to 24 stations with each station having many options. For this assemblies like

this it makes more sense to build it up from scratch.

Understanding Solid Models and the API in Autodesk® Inventor®

15

Constructing any assembly is done by placing one part at a time. The construction process

simplifies down to two easy steps; determining which part to place and then positioning it

correctly. There are at least three approaches to positioning a part within an assembly. The

first is to calculate its position, construct a matrix that defines that position, and place the part

using the matrix. This has the advantage of placing and positioning the part in a single step and

doesn’t require Inventor to compute location using constraints. However, this isn’t very practical

for most configurators because it would take quite a bit of coding and logic to be able to

compute the position of all of the parts in the assembly and this logic could be difficult to

maintain if small changes are made to the parts.

Another approach is to use iMates and let Inventor automatically assemble them by finding

matching iMates. This may work in some cases, but in my experience this isn’t a good solution

for a configurator.

The solution that I’ve used the most is to name geometry in each part and then after the part

has been placed into the assembly, find the named geometry and use it to create assembly

constraints. This is going to seem to contradict the previous paragraph, but I’ve typically used

iMates as the naming mechanism. However, I didn’t use iMates the way they were intended; to

automatically create constraints, but only used them as a way to associate a name with

geometry. I chose iMates to do this because they are a standard part of Inventor and the user

interface to create and edit them already exists. I could have chosen to write a custom program

that added an attribute to selected geometry, but then I would have had to write a program to

add, view, and edit these names.

What has worked well for me when assembling parts is to envision putting a plug into a socket.

For a part what would have other parts attached to it, I name geometry “Socket1”, “Socket2”,

etc. for each attachment point. On the part that will be attached I named geometry “Plug1”,

“Plug2”, etc. “Plug1” doesn’t have to match up with “Socket1” when the assembly is put

together. That’s one of the advantages of not using iMates in the standard way; they can be

assembled in any way you want without limitations because of the name or type.

For consistency, I’ve chosen to always use Insert iMates. Insert iMates are always associated

with a circular edge so I know what to expect when I get the associated geometry.

So you don’t have to see the iMate symbols on the part or assembly, you can suppress the

iMates. Since Inventor isn’t going to use these to create a constraint it doesn’t matter if they’re

suppressed or not since the API can still access the associated geometry you need to be able to

create a constraint.

Connecting two parts together can be accomplished using one or two insert constraints. One

constraint can be used if you don’t care about its rotation, like a bolt, and two connect

constraints can be used to fully constrain it.

Understanding Solid Models and the API in Autodesk® Inventor®

16

Here’s an example that illustrates this. This picture below shows the model and the ten iMates

it contains. By looking at the names in the browser, you can see there are two plugs and eight

sockets. The two plugs are used to position this part when it’s placed into an assembly as they

are plugged into sockets on another part. The sockets on this part are used to attach other

parts to this one.

The front-end of the configurator lets the user define the assembly they want, creates a

description of the assembly and passed it to the back-end which builds up the assembly by

placing the specified parts and constraining them to one another. The knowledge of what needs

to be placed, and how they connect is logic within the back-end of the configurator.

Here are the VB.Net utility functions that make this socket-plug concept relatively easy to

implement. The PlugIn function takes two occurrences and the names of the imates within each

occurrence that you want to connect. The only assumption is that the iMates used are insert

iMates. The function creates an insert constraint between the two occurrences and returns the

new constraint, if it was successful. The GetEdgeByName function is used by the first to find an

iMate using a name.

Understanding Solid Models and the API in Autodesk® Inventor®

17

' Utility function that plugs one part into another by placing constraints between

' the two parts by using geometry that has been named by an iMate.

' TopAssembly – The top-level assembly where the parts are being assembled.

' SocketOcc – The base part the plug part is being attached to.

' SocketName – The name of the iMate that is attached to a circular edge.

' PlugOcc – The part that is being attached to the socket part.

' PlugName – The name of the iMate that is attached to a circular edge.

' Reversed – Indicates if the normals of the geometry should be reversed or not.

' Offset – Offset distance between the two circles.

Public Function PlugIn(ByVal TopAssembly As AssemblyDocument, _

 ByVal SocketOcc As ComponentOccurrence, _

 ByVal SocketName As String, _

 ByVal PlugOcc As ComponentOccurrence, _

 ByVal PlugName As String, _

 Optional ByVal Reversed As Boolean = True, _

 Optional ByVal Offset As Double = 0) As InsertConstraint

 Try

 ' Get the edge in the plug occurrence.

 Dim plugEdge As Edge = GetEdgeByName(PlugOcc, PlugName)

 ' Get the edge of the socket.

 Dim socketEdge As Edge = GetEdgeByName(SocketOcc, SocketName)

 ' Create an insert constraint.

 Dim insert As InsertConstraint

 insert = TopAssembly.ComponentDefinition.Constraints.AddInsertConstraint(_

 socketEdge, plugEdge, Reversed, Offset)

 Return insert

 Catch ex As Exception

 ' Something failed so return Nothing.

 Return Nothing

 End Try

End Function

' Find an iMate by name in the document referenced by the provided occurrence.

' It returns a proxy of the edge that the iMate is attached to.

Private Function GetEdgeByName(ByVal Occ As ComponentOccurrence, _

 ByVal Name As String) As Edge

 ' Iterate through all of the imates in the document referenced by the occurrence.

 For Each iMateDef As iMateDefinition In Occ.Definition.iMateDefinitions

 ' See if the name of this iMate definition matches the input name.

 If UCase(iMateDef.Name) = UCase(Name) Then

 ' Make sure it's an insert iMate.

 If TypeOf iMateDef Is InsertiMateDefinition Then

 Dim insertiMateDef As InsertiMateDefinition = iMateDef

 ' Get the edge referenced by the iMate.

 Dim iMateEdge As Edge = insertiMateDef.Entity

 ' Create a proxy for the edge.

 Call Occ.CreateGeometryProxy(iMateEdge, iMateEdge)

 Return iMateEdge

 End If

 End If

 Next

 ' No match was found so return Nothing.

 Return Nothing

End Function

Understanding Solid Models and the API in Autodesk® Inventor®

18

Here is some example code that exercises the function above. The SampleConfigurator

example in the files associated with this paper demonstrates these concepts.

Private Sub BuildAssembly()

 ' Connect to a running instance of Inventor.
 Dim invApp As Inventor.Application = GetObject(, "Inventor.Application")

 ' Set the path where the library files are located.

 Dim libPath As String = "C:\My Documents\SampleParts\"

 ' Create a new assembly document.

 Dim asmDoc As AssemblyDocument

 asmDoc = invApp.Documents.Add(DocumentTypeEnum.kAssemblyDocumentObject, _

 invApp.FileManager.GetTemplateFile(DocumentTypeEnum.kAssemblyDocumentObject))

 Dim asmDef As AssemblyComponentDefinition = asmDoc.ComponentDefinition

 Dim tg As TransientGeometry = invApp.TransientGeometry

 ' Add the first part.

 Dim base As ComponentOccurrence

 base = asmDef.Occurrences.Add(libPath & "Base.ipt", tg.CreateMatrix)

 ' Turn off user interaction. This will improve performance for an

 ' out of process application.

 invApp.UserInterfaceManager.UserInteractionDisabled = True

 ' Add a pump to the assembly.

 Dim pump As ComponentOccurrence

 pump = asmDef.Occurrences.Add(libPath & "Pump.ipt", tg.CreateMatrix)

 ' Plug the pump into the base.

 Dim connect As InsertConstraint

 connect = PlugIn(asmDoc, base, "Socket1", pump, "Plug1", True)

 connect = PlugIn(asmDoc, base, "Socket2", pump, "Plug2", True)

 ' Add a filter to the assembly.

 Dim filter As ComponentOccurrence

 filter = asmDef.Occurrences.Add(libPath & "Filter.ipt", tg.CreateMatrix)

 ' Plug the filter into the pump.

 connect = PlugIn(asmDoc, pump, "Socket1", filter, "Plug1")

 connect = PlugIn(asmDoc, pump, "Socket2", filter, "Plug2")

 ' Add a second filter.

 filter = asmDef.Occurrences.Add(libPath & "Filter.ipt", tg.CreateMatrix)

 ' Plug the filter into the pump using some other sockets.

 connect = PlugIn(asmDoc, pump, "Socket5", filter, "Plug1")

 connect = PlugIn(asmDoc, pump, "Socket6", filter, "Plug2")

 ' Add a gauge to the assembly.

 Dim gauge As ComponentOccurrence

 gauge = asmDef.Occurrences.Add(libPath & "Gauge.ipt", tg.CreateMatrix)

 ' Plug the gauge into the filter.

 connect = PlugIn(asmDoc, filter, "Socket1", gauge, "Plug1")

 MsgBox("Finished.")

End Sub

Understanding Solid Models and the API in Autodesk® Inventor®

19

Providing the Model to the End User
For a sales configurator there can be special requirements about the final result. A typical

option will be to allow the user to choose the format of the final model; Inventor, STEP, SAT,

etc. These are easy to provide by using any of the translators that are delivered with Inventor to

translate the final Inventor model into whatever format they choose.

Another option when working with assemblies is to convert the assembly into a single part. This

can be convenient for you and your customer since you’ll both only have to deal with a single

file. You can convert an assembly into a part by creating a new part and using the Derive

Component command to derive the assembly into the part. There are several options in the

Derive Component command that can be useful. One of these is to keep the seams on planar

faces. This will result in the final part model looking like the original assembly. You should look

at the other options too, including some of the shrink-wrap options to see what provides the best

result in your case.

There are cases where you need to provide an assembly rather than a single part. For

example, if the parts move relative to one another and the user needs to be able to reproduce

this behavior in their assembly. To provide multiple parts, especially if you have a web

interface, it’s best to package them into a single file. I’ve used the command line interface for

WinZip to do this in the past. The command line utility is available as a free download to work

with your licensed copy of WinZip.

Creating Drawings
The automatic creation of drawings is typically more difficult than creating parts and assemblies.

This is a combination of how drawings work in Inventor, the fact that everything you can do

interactively in a drawing is not supported by the API, and that there are so many subjective

decisions made about how to lay out a drawing.

The biggest thing to decide up-front is if the resulting drawing needs to be associative to the

model or not. You’ll make your life much easier if it doesn’t need to be associative. Having said

that, most things will be associative because that’s the only way to create them in Inventor, but

there are some things that will be easier if you don’t have to worry about associativity;

dimensions being the primary one.

Understanding Solid Models and the API in Autodesk® Inventor®

20

The primary issue with creating dimensions, and other annotations, through the API is that it’s

very difficult to determine the geometry that you want to dimension to. A drawing view is a

cleaned up representation of the 3D model. This is illustrated in the pictures below. The picture

on the left is the drawing as you would typically see it. The one on the right shows the drawing

as an iso view so you can see the view geometry as it really exists.

A large part of the clean-up is removing all of the edges that are not visible with respect to

particular view. For example, when you create a drawing view of a box, there are only four

edges seen in the view. The edges that are behind the visible edges aren’t just covered up, but

have been removed from the view and are not available. Because of this, you can’t rely on

certain geometry always being available in a drawing. For example, if you added attributes to

two edges in a model because you know you need to create a dimension between them in the

drawing, you may not be able to find one or both of those edges in the drawing because they

may have been removed as part of the view clean up.

Below are some tricks I’ve discovered to work around some of these issues when creating

drawings.

Understanding Solid Models and the API in Autodesk® Inventor®

21

Retrieving Dimensions from the Model
One possibility to automate the dimensioning of a model is to carefully create dimension

constraints in the model and then use the API to retrieve those into the model. If you create the

dimensions in the part (typically as dimension constraints in a sketch) taking into account the

dimensions that will be needed in the drawing, you can re-use these dimensions in the drawing

by retrieving them.

There are many ways to approach this and the code below demonstrates one approach. This

example takes a drawing view and a string as input. What it expects is that the dimensions you

want to retrieve have been previously marked with an attribute. Specifically it looks for attribute

sets named “GetDim” and then looks for the attribute within that set named “View” that has the

same value as the string that is passed in. I’m using the string to specify which view orientation

that dimension should be retrieved for. For example “Front”, “Top”, “Left”, etc. If you create a

drawing of the SampleParts\Pump.iam part and run the RetrieveTest macro it will demonstrate

this.

Public Sub AutoRetrieveDim(drawView As DrawingView, ViewName As String)

 ' Get the document associated with the drawing view. Can be a part or assembly.

 Dim viewDoc As Document

 Set viewDoc = drawView.ReferencedDocumentDescriptor.ReferencedDocument

 Dim sh As Sheet

 Set sh = drawView.Parent

 Dim tg As TransientGeometry

 Set tg = ThisApplication.TransientGeometry

 ' Get the dimensions to retrieve in the front view by looking for any attribute

 ' sets named "GetDim" and an attribute named "View" with a value of "Front".

 Dim dimsToRetrieve As ObjectCollection

 Set dimsToRetrieve = viewDoc.AttributeManager.FindObjects("GetDim", "View", _

 ViewName)

 ' If dimensions were found with the correct attribute, retrieve them.

 If dimsToRetrieve.Count > 0 Then

 Call sh.DrawingDimensions.GeneralDimensions.Retrieve(drawView, dimsToRetrieve)

 End If

End Sub

Retrieving Dimensions from the Drawing
Sometimes you know the exact locations that you want to dimension to and don’t want to bother

with the geometry. The problem is that Inventor requires dimensions to be associated to

geometry and can’t just dimension to a point in space. A trick to working around this is create a

sketch on a drawing view, add points to the sketch that are in the locations you want to

dimension to, add dimension constraints between the points that represents the dimensions you

want, and then retrieve the dimensions onto the sheet.

Understanding Solid Models and the API in Autodesk® Inventor®

22

The result is not associative to the model at all. If the model was to change, these dimensions

would stay in the original position since they’re only dependent on the sketch points and not the

model.

The sample code that demonstrates the overall dimension example below uses this technique.

Overall Dimensions
I’ve run into an issue a few times where I needed the overall dimensions for a part or assembly.

This is not uncommon for a sales automation configurator. One issue that complicates this is

that sometimes you need to place a dimension that you couldn’t even create interactively

because there’s not a key point on the geometry at the location you need to dimension to. The

TestOverallDimensions macro in the sample VBA project demonstrates an approach to this

problem.

The sample examines the part or assembly geometry and finds the minimum and maximum

coordinates. It then uses the trick described above to create a sketch, place sketch points at

those locations, place dimension constraints between those points, and retrieve those

dimensions into the drawing, as illustrated below.

Understanding Solid Models and the API in Autodesk® Inventor®

23

Dimensioning to Named Work points
This is a fairly recent discovery for me but I think one that can solve many of the problems with

automatically creating a drawing. With this approach, you create work points in the model at

every location that a dimension will attach to. You’ll need to figure out a naming scheme for the

work points so you can easily find the correct ones when placing dimensions.

The process in this case is to find the work point of interest in the model and then retrieve that

work point into the drawing as a center mark. You can turn off the visibility of the center mark to

keep the drawing clean, but even when it is invisible the center mark still supports dimensions.

This approach has a lot of advantages. First, work points are always available to be retrieved

into the drawing and aren’t impacted by the view cleanup that Inventor performs. Second, work

points can be identified by name. You can take advantage of this by using that name to find

specific work points to dimension to. Third, these dimensions are associative to the model;

editing the model will cause the work points to adjust, the center marks will update, and the

dimensions will adjust.

The function below creates a dimension between two work points. The work points must be in

the context of the part or assembly that is referenced by the drawing view. This means if the

work points are in a part but the view references an assembly, you’ll need to create proxies for

the work points

Public Function DimToWorkPoints(ByVal DrawView As DrawingView, _

 ByVal WorkPoint1 As WorkPoint, _

 ByVal WorkPoint2 As WorkPoint, _

 ByVal TextPosition As Point2d, _

 ByVal AlignmentType As DimensionAlignmentTypeEnum) As GeneralDimension

 Try

 Dim sheet As Sheet

 sheet = DrawView.Parent

 ' Create centermarks based on the work points.

 Dim marks(1) As Centermark

 marks(0) = sheet.Centermarks.AddByWorkFeature(WorkPoint1, DrawView)

 marks(0).Visible = False

 marks(1) = sheet.Centermarks.AddByWorkFeature(WorkPoint2, DrawView)

 marks(1).Visible = False

 ' Create geometry intents for the center marks.

 Dim intent1 As GeometryIntent

 intent1 = sheet.CreateGeometryIntent(marks(0))

 Dim intent2 As GeometryIntent

 intent2 = sheet.CreateGeometryIntent(marks(1))

 ' Add a dimension.

 Dim genDim As GeneralDimension

 genDim = sheet.DrawingDimensions.GeneralDimensions.AddLinear(TextPosition, _

 intent1, intent2, AlignmentType)

 Return genDim

 Catch ex As Exception

 Return Nothing

 End Try

End Function

