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Abstract

The Titanium language is a Java dialect for high-performance parallel scientific computing.
Titanium’s differences from Java include multi-dimensional arrays, an explicitly parallel
SPMD model of computation with a global address space, a form of value class, and
zone-based memory management. This reference manual describes the differences between
Titanium and Java.
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Chapter 1

Lexical Structure

Titanium adds the following new keywords to Java:

broadcast foreach immutable inline local

nonshared op overlap partition polyshared

sglobal single template
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Chapter 2

Program Structure

Types introduced by Titanium are contained in the package ti.lang (‘Ti’ being the stan-
dard chemical symbol for Titanium). There is an implicit declaration

import ti.lang.*;

at the beginning of each Titanium program.
The main procedure of a Titanium program must have signature

public single static void main(String single [] single args) {

...

}

or any variation thereof formed by removing one or more single qualifiers.
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Chapter 3

New Standard Types and
Constructors

3.1 Points

The immutable class Point<N>, for N a compile-time positive integer constant, is a tuple
of N int’s. Point<N>s are used as indices into N -dimensional arrays.

3.1.1 Operations on Points

In the following definitions, p and pi are of type Point<N>; x, k, and ki are integers;

1. p[i], 1 ≤ i ≤ N , is component i of p. That’s right: the numbering starts at 1. It is
an error for i to be out of bounds.

2. [k1, . . . , kn] is a point whose component i is ki.

3. Point<N>.all(x) is the Point<N> each of whose components is x.

4. Point<N>.direction(d, x) for 1 ≤ |d| ≤ N , is the Point<N> whose component |d|
is x · sign(d), and whose other components are 0. x defaults to 1.

5. The arithmetic operators +, -, *, /, applied to two Point<N>s produce Point<N>s by
componentwise operations. They are also defined between Point<N>s and (scalar)
integers: for p a Point<N>, s a scalar, and ⊕ an arithmetic operator, p ⊕ s =
p ⊕ Point<N>.all(s) and s ⊕ p = Point<N>.all(s) ⊕ p. The / operator, in
contrast to its meaning on two scalar integer operands, rounds toward −∞, rather
than toward 0. It is an error to divide by 0.

6. Unary negation on a Point<N>, −p, produces the componentwise negation of p.
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7. The assignment operators +=, -=, *=, /=, applied to a Point<N>s on the left and
another Point<N> or a scalar on the right act like the assignment operators on
scalars in standard Java. That is,

p ⊕= E

where E is a Point<N> or integer expression assigns the value of p⊕E to p, evaluating
the location of p exactly once.

8. If R is any of <, >, <=, >=, or ==, then p0 R p1 if p0[i] R p1[i] for all 1 ≤ i ≤ N .
The expression p0!=p1 is equivalent to !(p0==p1). The member function equals on
Point<N>s is the same as ==

9. The expressions p0.lowerBound (p1) and p0.upperBound (p1) yield p such that
p[i] is the minimum (respectively, maximum) of p0[i] and p1[i].

10. The expression p0.permute (p1), is the Point<N>, p, for which p[p1[i]] = p0[i],
where p1 is a permutation of 1, . . . , N .

11. The expression p.replace (k, v) returns a Point<N> that is identical to p except
that p[k] = v.

12. p.arity = N , and is a compile-time constant.

13. The expression p.toString() yields a text representation of p.

3.2 Domains and RectDomains

The type Domain<N>, for N a compile-time positive integer constant, is an arbitrary set
of Point<N>s. The type RectDomain<N> is a “rectangular” set of Point<N>s: that is, a
set

{p | p0 ≤ p ≤ p1, and for some x, p = p0 + S*x}

where all quantities here are Point<N>s. S here (a Point<N>) is called a stride, and
is always greater than or equal to the unit stride, Point<N>.all(1). The point p0 is
the origin, and p1 the maximum of the set. RectDomain<N>s are used as the index sets
(bounds) of N -dimensional arrays.

A Domain<N> is an Object, having a reference type, whereas the RectDomain<N> types
are immutable classes (§5). As a result, a Domain<N> resides in the demesne (§6.1) in which
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it was created1. Library methods that yield Domain<N>s are not guaranteed to produce
new values (i.e., values that do not compare == to previously created Domain<N>s). That
is, the implementation is free to take advantage of the fact that there are no methods that
mutate Domain<N>s, and to re-use any Domain<N> with the properties otherwise required
of the specified result.

3.2.1 Operations on Domains and RectDomains

In the following descriptions, D is a Domain<N>, R is a RectDomain<N>, and RD may be
either a Domain<N> or a RectDomain<N> (N is a positive integer.)

1. There is a standard (implicit) coercion from RectDomain<N> to Domain<N>.

2. RD.isRectangular() is true for all RectDomains and for any Domain that is rect-
angular.

3. A Domain<N> may be explicitly converted to a RectDomain<N> using the usual con-
version syntax: (RectDomain<N>) D. It is a run-time error if D is not rectangular.

4. If p0 and p1 are Point<N>s, then [ p0 : p1 ] is the RectDomain<N> with stride
Point<N>.all(1), origin p0, and upper bound p1. If s is also a Point<N>, s ≥
Point<N>.all(1), then [ p0 : p1 : s ] is the RectDomain<N> with origin p0, upper
bound p1, and stride s. Because of the definitions of origin and upper bound at the
beginning of this section, it follows that if not p0 ≤ p1, then both [ p0 : p1 ] and [

p0 : p1 : s ] are empty.

So, for example, to get the set of all Point<2>s of the form [i, j], with 0 ≤ i < M

and 0 ≤ j < N , we may use

[ [0, 0] : [M-1, N-1] ]

and to get the subset of this set in which all coordinates are even we may write

[ [0, 0] : [M-1, N-1] : [2, 2] ]

5. If ij , kj , and sj, 1 ≤ j ≤ N , are ints, with sj > 0, then

[ i1 : k1 : s1, . . . , iN : kN : sN]

is the same as

1As a result, applying methods to a Domain<N> can carry unexpected performance penalties if the
programmer does not pay attention to locality. Hence, recommended practice is to make a local copy of a
Domain<N> using its copy constructor before invoking a sequence of operations upon it.
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[ [ i1, . . . , iN ] : [ k1, . . . , kN ] : [ s1, . . . , sN] ].

and

[ i1 : k1, . . . , iN : kN]

is the same as

[ [ i1, . . . , iN ] : [ k1, . . . , kN ] ].

6. RD.arity = N , and is a compile-time constant.

7. The expression RD.min() yields a Point<N> such that RD.min()[k] is the min-
imum over all p in RD of p[k]. Likewise for RD.max(). For empty domains,
RD.min() and RD.max() are not defined.

8. The expression RD.lwb() is a synonym for RD.min(). RD.upb() is defined as
RD.max()+RD.all(1), so that RD.max()<RD.upb().

9. RD.boundingBox() yields the smallest RectDomain<N> that contains all the points
of RD and is either empty or unit-strided. For RectDomains R with unit stride,
R.boundingBox()=R.

10. R.stride() yields the minimal Point<N>, s ≥ Point<N>.all(1) such that R =

[p0 : p1 : s] for some p0 and p1. (This need not be the same as the stride used to
construct R in the first place: for example,

([ 0:1:2, 0:1:2 ]).stride()

is [1,1], not [2,2].) It is undefined on an empty RectDomain.

11. RD.size() is the cardinality of RD (the number of Points it contains). The predicate
RD.isEmpty() is true iff RD.size() = 0.

12. RD.permute(p1) is the domain consisting of all points p.permute(p1) for p in RD.
It is a RectDomain<N> if RD is a RectDomain<N>. Otherwise it is a Domain<N>.

13. The operations +, -, and * are defined between any combination of RectDomain<N>s
and Domain<N>s. They stand for union, difference, and intersection of the sets of
elements in the operand domains. The intersection of two RectDomain<N>s yields a
RectDomain<N>. All other operations and operands yield Domain<N>s.
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14. For a Point<N>, p, the expressions RD+p, RD-p, RD*p, and RD/p compute the
domains

{d|d = d′ ⊕ p, for some d′ ∈ RD}

where ⊕ = +, -, *, or integer division rounded toward −∞ (unlike ordinary integer
division, which rounds toward 0). Divisions require that each p[i] be non-zero, and,
if RD is a RectDomain, that each RD.stride()[i] either be divisible by |p[i]| or less
than |p[i]|; it is an error otherwise. If RD is a RectDomain, so is the result.

15. The assignment expressions

R1 *= R2; D *= RD; D += RD; D -= RD;

RD += p; RD -= p; RD *= p; RD /= p;

where p is a Point<N>-valued expression, act like the assignment operators on scalars
in standard Java. That is,

RD ⊕= V

assigns the value of RD ⊕ V to RD, evaluating the location of RD exactly once.
Only the particular combinations shown are legal, since others would involve type
errors.

16. The operations <, >, <=, and >= are defined between RectDomains and between
Domains and represent set comparisons (< is strict subset, etc.).

The function equals is defined as set equality on all combinations of Domain<N> and
RectDomain<N>. When the arities do not match, the result will always be false, even
when the operands denote empty sets.

Between RectDomains, R1==R0 and R1!=R2 are synonyms for R1.equals(R2) and
!R1.equals(R2). The expression RD.equals(x) is true iff x is a Domain<N> that
contains the same set of points as RD; it is false when x is any other reference value.
As a result, its value is false if x is null, or does not denote a Domain<N> (so that
again, even if RD and x both denote empty domains, they are not equal if their
arities do not match).

17. The expression RD.contains(p), for Point<N> p, is true iff p ∈ RD.

18. The expression R.accrete(k, dir, s) gives the result of adding elements to R on
the side indicated by direction dir , expanding it by k ≥ 0 strides of size s > 0 (all
arguments but R are integers). That is, it computes

R+(R+Point<N>.direction(dir, s))+ . . .+(R+Point<N>.direction(dir, s ·k))
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and returns the result (always rectangular) as a RectDomain. It is an error if R could
not have been constructed with a stride of s in direction dir, so that the resulting set
of elements would not be a RectDomain. It follows that accrete is the identity on
empty RectDomain<N>s. The argument s may be omitted; it defaults to 1. Requires
that 1 ≤ |dir| ≤ N .

19. The expression R.accrete(k, S) gives the result of expanding R on all sides by
k ≥ 0, as for the value V computed by the sequence

V = R.accrete(k, 1, S[1]); V = V .accrete(k, -1, S[1]);

V = V .accrete(k, 2, S[2])....

The argument S is a Point with the same arity as R. It may be omitted, in which
case it defaults to all(1).

20. The expression R.shrink(k, dir) gives the result of shrinking R on the side in-
dicated by direction dir by k ≥ 0 strides of size R.stride()[|dir |] That is, it
computes

R*(R+Point<N>.direction(dir, s))* . . . *(R+Point<N>.direction(dir,−k ·s)).

where s is R.stride()[|dir |]. Requires that 1 ≤ |dir| ≤ N .

21. The expression R.shrink(k) gives the result of shrinking R on all sides by k ≥ 0
strides, as for the value V computed by the sequence

V = R.shrink(k, 1).shrink(k, -1).shrink(k, 2)....

22. The expression R.border(k, dir, shift) is equivalent to

R.accrete(k, dir) - R.boundingBox() + Point<N>.direction(dir , shift-k),

where all arguments are of type int with k ≥ R.stride()[|dir|] and 0 < |dir| ≤ N .
When R has unit stride in direction dir , this consists of the k-thick layer of index
positions on the side of R indicated by dir , shifted by shift positions in direction dir .
Thus,

R.border(1, dir, 0)

is the layer of cells on the face of and interior to R in direction dir , while

R.border(1, dir, 1)

is the layer of cells just over that face (outside the interior of R). As shorthand,
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R.border(k, dir) = R.border(k, dir, 1)

and

R.border(dir) = R.border(1, dir, 1).

23. The expression R.slice(k), where 0 < k ≤ N , and N > 1 is a RectDomain<N − 1>
consisting of the set

{[p1, . . . , pk−1, pk+1, . . . , pN ] | p = [p1, . . . , pn] ∈ R}.

24. The expression D.RectDomainList() returns a one-dimensional array (see §4.3) of
type RectDomain<N>[1d] containing zero or more disjoint, non-null domains whose
union (treated as Domain<N>s) is D.

25. The expression Domain<N>.toDomain(X), where X is of type RectDomain<N>[1d]

and has disjoint members, yields a Domain<N> consisting of the union of the elements
of X.

26. The expression D.PointList() returns an array of type Point<N>[1d] of distinct
points consisting of all the members of D.

27. The expression Domain<N>.toDomain(X), where X is of type Point<N>[1d] and
has distinct members, yields a Domain<N> whose members are the elements of X.

28. The expression RD.toString() yields a text representation of RD.

29. The expression Domain<N>.setRegion(reg), where reg is a Region, is described in
§6.3.2.

30. The type Domain<N> has a copy constructor: new Domain<N>(D) creates a new
local copy of D. Likewise, new (W) Domain<N>(D) will create a local copy of D

in region W .

3.2.2 ‘Foreach’ Statements

The construct

foreach (p in RD) S

or equivalently
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foreach (Point<n> p in RD) S

for RD any kind of n-dimensional domain, executes S repeatedly, binding p to the points
in RD in some unspecified order. The control variable p is a local variable whose scope
is confined to S, and it is constant (final) within its scope. As for other local variables
in Java, you may not use a control variable name that shadows another local variable
(including formal parameters and other control variables). The control constructs break
and continue function in foreach loops analogously to other loops.
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Chapter 4

New Type Constructors

4.1 Syntax

Titanium modifies Java syntax to allow for grid types (§4.3), and the qualifiers local (§6.1),
nonshared (§6.2), polyshared (§6.2) and single (§9.4.1).

Type:
QualifiedBaseType ArraySpecifiersopt

QualifiedBaseType:
BaseType Qualifiersopt

ArraySpecifiers:
ArraySpecifiers ArraySpecifier
ArraySpecifier

ArraySpecifier:
[] Qualifiersopt
[ IntegerConstantExpression d ] Qualifiersopt

Qualifiers:
Qualifier Qualifiers
Qualifier

Qualifier: single | local | nonshared | polyshared

BaseType: PrimitiveType | ClassOrInterfaceType
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where PrimitiveType and ClassOrInterfaceType are from the standard Java syntax. The
grouping of qualifiers with the types they modify is as suggested by the syntax: In Quali-
fiedBaseType, the qualifiers modify the base type. Array specifiers apply to their Qualified-
BaseType from right to left: that is, ‘T [1d][2d]’ is “1-D array of (2-D arrays of T).” The
qualifiers in the array specifiers apply to the type resulting from the immediately preceding
array specification. That is, for qualifiers Q1, Q2, Q3,

Object Q3 [] Q1 [] Q2 V;

defines V to be a Q1 array of Q2 arrays of Q3 Objects. We call Q1 the top-level qualifier,
and Q3 the base qualifier.

The qualifier single is outwardly contagious. That is, the type “array of single T” (T
single [...]) is equivalent to “single array of single T” (T single [...] single),
and the type “array of single array of array of T” (T [...] [...] single [...])
is equivalent to “single array of single array of array of T” (T [...] single [...]

single [...]).

4.2 Atomic types

An atomic type is either a primitive type (int, double, etc.), or an immutable class (see
§5) whose non-static fields all have atomic type.

4.3 Arrays

A Java array (object) of length N—hereafter called a standard array—is an injective
mapping from the interval of non-negative integers [0, N) to a set of variables, called
the elements of the array. Titanium extends this notion to grid arrays or grids; an N -
dimensional grid is an injective mapping from a RectDomain<N> to a set of variables. As
in Java, the only way to refer to any kind of array object—standard or grid—is through
a pointer to that object. Each element of a standard array resides in (is mapped to from)
precisely one array1. The elements of a grid, by contrast, may be shared among any number
of distinct grids. That is, even if the array pointers A and B are distinct, A[p] and B[p]

may still be the same object. We say then that A and B share that element.
It is illegal to cast grid values to the type Object. However, as for other normal objects,

the value null is a legal value for a grid variable, and it is legal to compare grid quantities
of the same arity using == or !=. If A and B are two grids of the same arity, then A==B

1This does not mean that there is only one name for each element. If X and Y are arrays (of any kind),
then after ‘X=Y;’, X[p] and Y[p] denote the same variable. That is an immediate consequence of the fact
that arrays are always referred to through pointers.
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iff A.domain()==B.domain() and for every p in their common domain, A[p] and B[p]

are the same variable. Similarly for !=.
For a non-grid type T , the type “N -dimensional grid with element type T” is denoted

T[Nd]

where N is a positive compile-time integer constant. When that constant is an identifier,
it must be separated from the ‘d’ by a space2. To declare a variable that may reference
two-dimensional grids of doubles, and initialize it to a grid indexed by the RectDomain<2>
D, one might write

double[2d] A = new double[D];

For the type “N0-dimensional grid whose elements are N1-dimensional grids. . . whose ele-
ments are of type T ,” we write

T[N0d][N1d]· · ·.

There is a reason for this irregularity in the syntax (where one might have expected a
more compositional form, in which the dimensionalities are listed in the opposite order).
The idea is to make the order of indices consistent between type designations, allocation
expressions, and array indexing. Thus, given

double[1d][2d] A = new double[D1][D2];

we access an element of A with

A[p1][p2]

where D1 is a RectDomain<1>, D2 a RectDomain<2>, p1 a Point<1>, and p2 a Point<2>3.
Two grid types are assignment compatible only if they are identical, aside from nar-

rowing and widening conversions on top-level qualifiers (see §6.1 and §6.2.4). For Java
arrays, assignment conversion of one array-of-reference type to another is also allowed if
the element types are assignment convertible and have the same local, sharing, and single
qualification.

Grid types are (at least for now) not quite complete Java Objects, in that they may
not be coerced to type Object. This restriction aside, they are otherwise reference types,
and are subject to reference qualification (see §4).

2It is true that when N is an integer literal, Nd is syntactically indistinguishable from a floating-point
constant in Java. However, in this context, such a constant would be illegal.

3Take these examples with a grain of salt. In general, it is preferable to use a RectDomain<3> index set
in preference to the array-of-arrays seen here, if the algorithm justifies it, because compilers are apt to do
better with the former.
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4.3.1 Array Operations

In the following, take p, p0, . . . to be of type Point<N>, A to be a grid of some type T

[Nd], and D to be a RectDomain<N>.

1. A.domain() is the domain (index set) of A. It is a RectDomain<N>.

2. A[p] denotes the element of A indexed by p, assuming that p is in A.domain(). It
is an lvalue—an assignable quantity—unless A is a global array of local references,
in which case it is unassignable.

3. The expression A.copy(B) copies the contents of the elements of B with indices
in A.domain()*B.domain() into the elements of A that have the same index. It is
illegal if A and B do not have the same grid type. It is also illegal if A is a global
array whose element type has local qualification (it is easy to construct instances in
which such a copy would be unsound). Finally, it is illegal if B resides in a private
region, A resides in a shared region (see §6.3), and the elements of B have a non-
atomic type (see §4.2). (This last provision is a conservative restriction to prevent
situations where objects allocated in shared regions contain references to objects in
private regions.) It is legal for A and B to overlap, in which case the semantics are
as if B were first copied to a (new) temporary before being copied to A. See also
the operations for sparse-array copying described in §12.15, and the operations for
non-blocking array copying described in §12.16.

4. A.arity is the value of A.domain().arity when A is non-null, and is a compile-time
constant.

5. If i1, . . . , iN are integers, then A[i1, . . . , iN] is equivalent to A[ [i1, . . . , iN] ]. (Syn-
tactic note: this makes [...] similar to function parameters; applications of the
comma operator must be parenthesized, unlike C/C++)

6. The following operations provide remappings of arrays.

(a) A.translate(p) produces a grid, B, whose domain is A.domain()+p, such that
B[p+x] aliases A[x].

(b) A.restrict(R) produces the restriction of A to index set R. R must be a
RectDomain<N>.

(c) A.inject(p) produces a grid, B, whose domain is A.domain()*p, such that
B[p*x] aliases A[x].

(d) A.inject(p).project(p) produces A. For other arguments, project is unde-
fined.
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(e) A.slice(k, j) produces the grid, B, with domain A.domain().slice(k) such
that

B[[p1, . . . , pk−1, pk+1, . . . , pn]] = A[[p1, . . . , pk−1, j, pk+1, . . . , pn]].

It is an error if any of the index points used to index A are not in its domain,
or if A.arity≤ 1.

(f) A.permute(p), where p is a permutation of 1, . . . , N , produces a grid, B, where
A[i1, . . . , iN] aliases B[ip[1], . . . , ip[N ]].

7. A.set(v), where v is an expression of type T , sets all elements of A to v. This
operation is illegal if A is global and T has local qualification. It is also illegal if A

resides in a shared region, v resides in a private region, and T is a non-atomic type
(see §4.2).

8. A.exchange(v), where v is an expression of type T , is a barrier operation that fills
in A with the same values on all processes, with each process contributing its value
of v as the value of one element. See §9.2.1.

9. A.isContiguous() is true iff all elements of A are adjacent to each other in vir-
tual memory. This property has no semantic significance, but can be important for
tuning performance. Arrays are created fully contiguous and in row-major order4.
Operations that produce views of subsets of the data can result in non-contiguous
results.

10. Because of the close relationship between grids and their domains, a number of com-
mon idioms involve operations on both. As a convenience, several methods capture
these idioms5:

(a) A.size() is equivalent to A.domain().size().

(b) A.isEmpty() is equivalent to A.domain().isEmpty().

(c) A.shrink(k, dir) is equivalent to A.restrict(A.domain ().shrink(k, dir)).

(d) A.shrink(k) is equivalent to A.restrict(A.domain ().shrink(k)).

(e) A.border(k, dir, shift) is equivalent to
A.restrict(A.domain().border(k, dir, shift)).

(f) A.border(k, dir) is equivalent to A.restrict(A.domain().border(k, dir)).

(g) A.border(dir) is equivalent to A.restrict(A.domain().border(dir)).

4However, A.isContiguous() does not imply that A is in row-major order. The permute method, for
example, preserves contiguity but not row-major order.

5As of version 3.110 of the compiler.
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11. The I/O operations described in §12.17.1.

12. The sparse-copying operations described in §12.15.

13. The non-blocking copy operations described in §12.16.

4.3.2 Overlapping Arrays

As for any reference type in Java, two grid variables can contain pointers to the same
grid. In addition, several of the operations above produce grids that reference the same
elements. The possibility of such overlap does not sit well with certain code-generation
strategies for loops over grids. Using only intraprocedural information, a compiler can
sometimes, in principle, determine that two grid variables do not overlap, but the problem
becomes complicated in the presence of arbitrary data structures containing grid pointers,
and when one or more grid variable is a formal parameter.

For these reasons, Titanium has a few additional rules concerning grid parameters:

1. Formal grid parameters to a method or constructor (including the implicit this in the
case of methods defined on grids) may not overlap unless otherwise specified—that
is, given two formals F1 and F2, none of the variables F1[p1] may be the same as
F2[p2]. It is an error otherwise.

2. The qualifier ‘overlap(F1,F2)’ immediately following a method header, where F1

and F2 name formal parameters of that method, means that the restriction does not
apply to F1 and F2. (There is no restriction that F1 and F2 have the same type
or even that they be grids. When they are not grids with the same element type,
however, the qualifier has no effect.)

4.3.3 Restrictions on Standard Arrays

The possibilities of local qualification and of residence in private regions require additional
restrictions on the standard array method System.arraycopy, analogous to those on the
.copy operation for grids. For standard arrays A and B, the call

System.arraycopy (A, k0, B, k1, len)

is illegal if A is a global array whose element type has local qualification. It is also illegal
if A resides in a private region, B resides in a shared region (see §6.3), and the elements
of A have a non-atomic type (see §4.2).
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Chapter 5

Immutable Classes

Immutable classes (or immutable types) extend the notion of Java primitive type to classes.
An immutable class is a final class that is not a subclass of Object and whose non-static
fields are final. It is declared with the usual class syntax and an extra modifier

immutable class C { ... }

They differ from ordinary classes in the following ways:

1. Non-static fields are implicitly final, but need not be explicitly declared as final.
Because all immutable classes are final and are not subtypes of Object, they may
never have an extends or implements clause.

2. Because immutable classes are not subclasses of any other class, their constructors
may not call super() explicitly, and, contrary to the usual rule for Java classes other
than Object, do not do so implicitly either.

3. There are no type coercions to or from any immutable class, aside from those defined
on standard types in the Titanium library (see §3.2). The standard classes Point<N>

and RectDomain<N> are immutable.

4. The value null may not be assigned to a variable of an immutable class. Each class
variable, instance variable, or array component with immutable type T is initialized
to the default value for that type. For each process, this default value initially consists
of the value in which all the instance fields are set to their respective default values.
The language inserts a static initializer at the end of the definition of T whose effect
is to evaluate new T() and then set the default value of T for the process to the
result. Initialization of the fields in objects of these types otherwise follows the rules
of Java 1.4.
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5. Circular chains of immutable types are disallowed. That is, no immutable type may
contain a non-static subcomponent of its own type. Here, a non-static subcomponent
is a non-static field, or a non-static subcomponent of a field, where the field has an
immutable type.

6. By default, the operators == and != for a type T are defined by comparison of the
non-static fields of the operands using == and !=, as if defined

public boolean single op==(T single x) {

return this.F1 == x.F1 && this.F2 == x.F2 && ...

&& this.Fk == x.Fk;

}

public boolean single op!=(T single x) {

return this.F1 != x.F1 || this.F2 != x.F2 || ...

|| this.Fk != x.Fk;

}

where the Fk are the non-static fields of T in declaration order. (This implies that if
== or != has been overridden on the type of a field, it is the new, overriding definition
that is used for the implicit comparison.) These default definitions of == and != are
not accessible via calls to op== or op!=. Any void finalize() method supplied
with an immutable object is ignored.

7. As a consequence of these rules, it is impossible, except in certain pathological pro-
grams, to distinguish two objects of an immutable class that contain equal fields. The
compiler is free to ignore the possibility of pathology and unbox immutable objects.

8. Nested immutable classes must be static, and may not be local. That is, whereas it
is legal to have an immutable class that is nested immediately inside a class, it is not
legal to nest an immutable class in a block.

9. The ‘+’ operator (concatenation) on type String is extended so that if S is a
string-valued expression and X has an immutable type, then S+X is equivalent to
S+X.toString() and X+S is equivalent to X.toString()+S. These expressions
are therefore illegal if there is no toString method defined for X, or if that method
does not return a String or String local.

10. An immutable class must have a zero-argument constructor with at least as much
access as the class itself. If no such constructor is provided by the user, the compiler
automatically generates a publically accessible zero-argument constructor with an
empty method body.
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Chapter 6

Pointers and Storage Allocation

6.1 Demesnes: Local vs. Global Pointers

In Titanium, the set of all memory is the union of a set of local memories, called demesnes
here to give them a veneer of abstraction. Each object resides in one demesne. Each
process (§9) is associated with one demesne—called simply the demesne of the process. A
local variable resides in the demesne of the process that allocates that variable. An object
created by new and the fields within it reside in the demesne of the process that evaluates
the new expression.

The intent is that on a uniprocessor implementation, there will be a single demesne,
and likewise on a shared-memory multiprocessor. On a pure distributed-memory multi-
processor, there would be a single demesne corresponding to each processor. Finally, on a
distributed cluster of shared-memory multiprocessors, there would be one demesne for the
processes on each shared-memory node.

The static types ascribed to variables (locals, fields, and parameters) containing refer-
ence values and to the return values of functions that return reference values are either
global or local. A variable having a local type will contain only null or pointers whose
demesnes are the same as that of the variable. A pointer contained in a variable with
global type may have any demesne. We distinguish local and global references to improve
performance. Dereferencing a global reference requires a test to see whether the referenced
datum is accessible with a native pointer; communication is needed if it is not. Local ref-
erences are for those data known to be accessible with a native pointer. Global references
can be used anywhere but local references don’t travel well.

Standard Java type designators for reference types denote global types. The modifier
keyword local indicates a local reference. For examples:

Integer i1; /* i is a global reference */

Integer local i2; /* i is a local reference */
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int local i3; /* illegal: int not a reference type */

For grids, there is an additional degree of freedom:

/* A1 is a global pointer to an array of variables that may reside

* remotely (i.e., in a different demesne from the variable A1). */

int[1d] A1;

/* A2 is a local pointer to an array of variables that reside

* locally (in the same demesne as A2). */

int[1d] local A2;

/* A3 is a local pointer to an array of variables that reside

* locally and contain pointers to objects that may reside

* remotely. */

Integer [1d] local A3;

/* A4 is a local pointer to an array of variables that reside

* locally and contain pointers to objects that reside locally */

Integer local [1d] local A4;

/* A5 is a global pointer to an array of variables that may

* reside remotely and contain pointers to objects that

* may reside remotely */

Integer [1d] A5;

/* A6 is a global pointer to an array of variables that may

* reside remotely and contain pointers to objects that reside

* in the same demesne as that array of variables. */

Integer local [1d] A6;

We refer to a reference type apart from its local/global attribute as its object type.
Several rules prevent programs from treating references to other demesnes as if they

were local:

1. If a field selection r.a or r[a] yields a reference value and r has static global type,
then so does the result of the field selection.

2. A locally qualified variable may only be assigned a value whose type is (statically)
local.

3. If r has a static global type and a is an immutable, non-array field defined for that
type that contains embedded local pointers, then the expression r.a is illegal.

4. If r has a global array type whose element type is a non-array immutable with
embedded local pointers, then the expression r[E] is illegal.
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5. Coercions between reference types are only legal if their object types obey the usual
Java restrictions on conversion (plus Titanium’s more stringent rules on arrays).

6. A reference value may only be coerced to have a local type (by means of a cast) if
it is null or denotes an object residing in the demesne of the process performing the
coercion. It is an error to execute such a cast otherwise.

7. Coercions from local to corresponding global types are implicit (they extend assign-
ment and method invocation conversion). Global to local coercions must be expressed
by explicit casts.

The term embedded field, as used above, is defined as follows:

1. If class C defines field C.f , then field C.f is embedded within class C.

2. If class C has superclass D, then all fields embedded within class D are also embedded
within class C.

3. If class C has embedded field B.f , and B.f has immutable type I, then fields em-
bedded within immutable class I are also embedded within class C.

All reference classes support the following operations:

r.creator() Returns the identity of the lowest-numbered process whose demesne contains
the object pointed to by r. NullPointerException if r is null. This number may differ
from the identity of the process that actually allocated the object when multiple
processes share a demesne.

r.isLocal() Returns true iff r may be coerced to a local reference. This returns the same
value as r instanceof T local, assuming r to have object type T. On some (but
not all) platforms r.isLocal() is equivalent to r.creator() == Ti.thisProc().

r.regionOf() See §6.3.2.

r.clone() Is as in Java, but with local references inside the object referenced by r set
to null. The result is a global pointer to the newly created clone, which resides in
the same region (see §6.3.2) as the object referenced by r. This operation may be
overridden.

r.localClone() Is the default clone() function of Java (a shallow copy), except that r
must be local. The result is local and in the same region (see §6.3.2) as the object
referenced by r.

To indicate that the special variable this in a method body is to be a local pointer,
label the method local by adding the local keyword to the method qualifiers:
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public local int length () {...}

Otherwise this is global. If necessary, the value for which a method is invoked is coerced
implicitly to be global. A static method may not be local.

6.2 Data Sharing

In Titanium, the type of any reference includes information about how the referent is
shared among multiple processes. The nonshared and polyshared qualifiers encode this
information. By default, most data is assumed to be shared; there is no explicit shared
qualifier. A nonshared qualifier declares that the reference addresses data that is not
shared: it is only accessible by processes within the same demesne as the data itself. A
polyshared qualifier indicates that the reference addresses data that may be shared or
may be non-shared.

6.2.1 Basic Syntax

The nonshared and polyshared qualifiers can modify any reference type, including
named reference classes, named interfaces, Java arrays, and Titanium arrays. Sharing
qualifiers on arrays may be set independently for elements and for the array as a whole.
Thus:

/* a shared object */

Object x;

/* a non-shared object */

Object nonshared y;

/* either a shared or a non-shared array of non-shared objects */ \\

Object nonshared [] polyshared z;

Sharing qualifiers may modify types in any context where types are expected, includ-
ing field declarations, variable declarations, formal parameter declarations, method return
type declarations, catch clauses, cast expressions, instanceof expressions, and template
parameters. The nonshared qualifier can be used in allocation expressions to allocate
non-shared data rather than the default shared data. However, the polyshared qualifier
may not be used to directly allocate data with unknown sharing; this is a compile-time
error: allocated data must be either shared or non-shared at the topmost level. Thus:

/* ok: a shared object */

Object a = new Integer(6);
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/* ok: a non-shared object */

Object nonshared b = new Integer nonshared (6);

/* error: cannot allocate polyshared data */

Object polyshared z = new Integer polyshared (6);

/* ok: a shared array of polyshared objects */

Object polyshared [] c = new Object polyshared [10];

/* ok: a non-shared array of polyshared objects */

Object polyshared [] nonshared d = new Object polyshared [10] nonshared;

/* error: cannot allocate polyshared data */

Object polyshared [] polyshared e = new Object polyshared [10] polyshared;

Reference types can have zero or one sharing qualifier: it is an error to qualify any
type as both nonshared and polyshared. Primitive and immutable types may not be
qualified as either nonshared or polyshared.

6.2.2 Methods

Within a reference class, a sharing qualifier may also appear among the qualifiers for a
non-static method or constructor, in which case it applies to the implicit this parameter
within the method or constructor body. It is an error to add any sharing qualifier to a
static method, immutable method, or immutable constructor. It is an error to add more
than one sharing qualifier to a reference class method.

Two methods that vary in the sharing qualifiers on their formal parameters or on
the implicit this parameter are always considered distinct types for purposes of method
overloading and overriding. A method with return type R1 may override one with return
type R2 only if:

• If R1 is void then R2 is void.

• If R1 is a primitive or immutable type, then R1 is identical either to R2 or to R2

single.

• Otherwise, R1 is assignment compatible with R2.

6.2.3 Implicit Sharing Qualifiers

In several instances, the sharing status of entities is implicit:
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1. Within field initialization expressions of reference classes, this is assumed to be
polyshared.

2. If the compiler provides a default constructor (Java spec §8.8.7), then this constructor
is assumed to be polyshared.

3. String literals are assumed to be shared.

4. The null type can be converted to any shared, non-shared, or polyshared reference
type, so the sharing qualification of the null literal is unspecified and irrelevant.

In all other contexts, unqualified types are assumed to be shared.

6.2.4 Conversion

Standard Java conversion rules are modified as follows.
All widening reference conversions (Java spec §5.1.4) are restricted to apply only when

at least one of the following conditions hold:

1. the source type and destination type have identical top-level sharing qualifiers (that
is, the sharing qualifiers that apply to the types as a whole—as opposed to the types
of components—are identical).

2. the source type is the null type

3. the destination type’s top-level sharing qualifier is polyshared

Widening reference conversion of array types is further constrained to apply only when
the top-level sharing qualifiers of the element types are identical. For example:

/* ok: (top-level) destination type is polyshared */

Object polyshared o1 = new Integer nonshared (7);

/* ok: top-level destination type is polyshared, element types

* match. */

Object nonshared [] polyshared o2 =

new Object nonshared [10] nonshared;

Object nonshared [] polyshared [] nonshared o3 =

new Object nonshared [10] nonshared [10] nonshared;

/* error: top-level qualifiers on elements do not match:
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* (polyshared vs. non-shared) */

Object polyshared [] o4 = new Integer nonshared [];

Object nonshared [] nonshared [] polyshared o3 =

new Object nonshared [10] nonshared [10] nonshared;

All narrowing reference conversions (Java spec §5.1.5) are restricted to apply only when
the source type and destination type have identical top-level sharing qualifiers. Narrowing
reference conversion of array types is further constrained to apply only when the top-
level sharing qualifiers of the element types are identical. Informally, one cannot convert
polyshared data back to shared or non-shared data, even using a run time test.

6.2.5 Restricted Operations

Non-shared data must only be used by processes in the same demesne. Local references
carry no special restrictions, as the data to which they refer is already known to reside in the
appropriate demesne. Any reference to shared data is similarly unconstrained. However,
a global reference to non-shared or polyshared data is restricted. If p is a global reference
to non-shared or polyshared data, then the following operations are forbidden:

1. reading the value of any field of p;

2. reading the value of any element of p, if p is an array;

3. assigning into any field of p;

4. assigning into any element of p, if p is an array;

5. calling any non-static method of p;

6. evaluating p instanceof T for any type T;

7. performing a narrowing reference conversion of p to a global type;

8. using a synchronized statement to acquire the mutual exclusion lock of p;

9. using p within a string concatenation expression.

The restriction on narrowing reference conversion does allow casting to a local type. It
merely forbids checked casts that do not simultaneously recover localness.
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6.2.6 Early Enforcement

Titanium contains two alternative definitions of sharing. Late enforcement is the more re-
laxed of the two, and entails only those restrictions already listed above. Early enforcement
entails the following additional restrictions:

1. Any type that is non-shared or polyshared must also be local; global pointers may
only address shared data.

2. If any use of a named class is (implicitly) qualified as shared, then all fields embedded
within that class must be qualified as shared.

3. If any use of an array type is (implicitly) qualified as shared, then the elements of
the array must be shared as well.

As a result of these additional restrictions, nonshared data is only accessible within the
process that creates it, whereas under late enforcement, nonshared data is available to any
process in its demesne.

The relative merits of early and late enforcement were not originally clear. Late enforce-
ment was originally the implemented policy, but the preferred policy is early enforcement.
At some point this will become the default and the compiler will provide late enforcement
as an option.

6.3 Region-Based Memory Allocation

Java uses garbage collection to reclaim unreachable storage. Titanium retains this mech-
anism but also includes a more explicit (but still safe) form of memory management:
region-based memory allocation.

In a region-based memory allocation scheme, each allocated object is placed in a
program-specified region. Memory is reclaimed by destroying a region, freeing all the
objects allocated therein. A simple example is shown in Figure 6.3. Each iteration of the
loop allocates a small array. The call r.delete() frees all arrays.

A region r can be deleted only if there are no external references to objects in r (a
reference external to r is any pointer not stored within r). A call to r.delete() throws
an exception when this condition is violated.

6.3.1 Shared and Private Regions

There are two kinds of regions: shared regions and private regions. Objects created in a
shared region are called shared-region objects; all other objects are called private objects.
Garbage-collectible objects are taken to reside in an anonymous shared region. It is an
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class A {

void f()

{

PrivateRegion r = new PrivateRegion();

for (int i = 0; i < 10; i++) {

int[] x = new (r) int[i + 1];

work(i, x);

}

try {

r.delete();

}

catch (RegionInUse oops) {

System.out.println("oops - failed to delete region");

}

}

void work(int i, int[] x) { }

}

Figure 6.1: An example of region-based allocation in Titanium.

error to store a reference to a private object in a shared-region object. It is also an error
to broadcast or exchange a private object. As a consequence, it is impossible to obtain a
private pointer created by another process.

All processes must cooperate to create and delete a shared region, each getting a copy
of the region that represents the same, shared, pool of space. The copy of the shared region
object created by a process p is called the representative of that region in process p (see
the Object.regionOf method below). Creating and deleting shared regions thus behaves
like a barrier synchronization and is an operation with global effects (see §9.4.1).

A region is said to be externally referenced if there is a reference to an object allocated
in it that resides in

1. A live local variable;

2. A static field;

3. A field of an object in another region.

The process of attempting to delete a region r proceeds as follows:
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1. If r is externally referenced, throw a ti.lang.RegionInUse exception.

2. Run the finalize methods of all objects in r for which it has not been run.

3. If r is now externally referenced, throw a ti.lang.RegionInUse exception.

4. Free all the objects in r and delete r.

Garbage-collected objects behave as in Java. In particular, deleting such objects differs
from the description above in that finalization does not wait for an explicit region deletion.

6.3.2 Details of Region-Based Allocation Constructs

Shared regions are represented as objects of the ti.lang.SharedRegion type, private
regions as objects of the ti.lang.PrivateRegion type. The signature of the types is as
shown in Figure 6.2.

The Java syntax for new is redefined as follows, where T is a type that is distinct from
ti.lang.PrivateRegion and ti.lang.SharedRegion:

1. new ti.lang.PrivateRegion() or new ti.lang.SharedRegion() creates a region
containing only the object representing the region itself.

2. new T... allocates a garbage-collected object, as in Java.

3. new (expression) T... creates an object in the region specified by expression.
The static type of expression must be assignable to ti.lang.Region. At runtime
the value v of expression is evaluated. If v is:

(a) null: allocates a garbage-collected object, as in Java.

(b) an object of type ti.lang.PrivateRegion or ti.lang.SharedRegion: allo-
cates an object in region v.

(c) In all other cases a runtime error occurs.

The class java.lang.Object is extended with the following method:

public final ti.lang.Region local regionOf();

This returns the region of the object, or null for garbage-collected objects. For shared-
region objects, the local representative of the shared region is returned.

The expression Domain<N>.setRegion(reg), where reg is a Region, dynamically makes
reg the Region used for allocating all internal pointer structures used in representing do-
mains (until the next call of setRegion). A null value for reg causes subsequent allocations
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package ti.lang;

final public class PrivateRegion extends Region

{

public PrivateRegion() { }

/** Run finalization on all unfinalized objects in THIS.

* Frees all resources used to represent objects in THIS.

* Throws RegionInUse if THIS is externally referenced

* before or after finalization. */

public void delete() throws RegionInUse;

};

final public class SharedRegion extends Region

{

public single SharedRegion() { }

/** See PrivateRegion.delete, above. */

public single void delete() throws RegionInUse single;

};

abstract public class Region

{

};

Figure 6.2: Library definitions related to regions.
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to come from garbage-collected storage. Returns the previous value passed to setRegion

(initially null). The value of N is irrelevant; all general domains are allocated in the same
region.
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Chapter 7

Templates

Titanium uses a “Templates Light” semantics, in which template instantiation is a some-
what augmented macro expansion, with name capture and access rules modified as de-
scribed below.

7.1 Instantiation Denotations

Define

TemplateInstantiation:
Name "<" TemplateActual { "," TemplateActual }* ">"

TemplateActual:
Type | AdditiveExpression

where the AdditiveExpression is a ConstantExpression. Resolution of Name is as for
type names. [Note: We use AdditiveExpression to prevent non-LALRness with < and >

operators.]

7.2 Template Definition

Template definitions occur at the outermost level; they are never nested inside other class,
interface, or template definitions.

CompilationUnit:
PackageDeclarationopt{ ImportDeclaration }* { OuterDeclaration }*

OuterDeclaration:
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TypeDeclaration
TemplateDeclaration

TemplateDeclaration:
TemplateHeader ClassDeclaration
TemplateHeader InterfaceDeclaration

TemplateHeader:
template "<" TemplateFormal { "," TemplateFormal }* ">"

TemplateFormal:
class Identifier
PrimitiveType Identifier

The first form of TemplateFormal allows any type as argument; the second allows Con-
stantExpressions of the indicated type.

Templates introduce new opportunities for creating illegal circular dependencies among
types. In Java, it is a compile-time error if a class depends on itself. In Titanium, the
definition of directly depends is extended as follows:

A class C directly depends on a type T if T is mentioned in the extends or
implements clause of C either as a superclass or superinterface, as a qualifier
within a superclass or superinterface name, or as a qualifier of a parameter of
a template superclass or superinterface.

Otherwise, the definition of depends is as in Java: A class C depends on a reference type
T if any of the following conditions hold:

1. C directly depends on T .

2. C directly depends on an interface I that depends on T .

3. C directly depends on a class D that depends on T (using this definition recursively).

7.3 Names in Templates

A template belongs to a particular package, as for classes and interfaces. Access rules for
templates themselves are as for similarly modified classes and interfaces.

Template instantiations belong to the same package as the template from which they
are instantiated. As a result, it is essentially useless to instantiate a template from a
different package except with public classes and interfaces1.

1An alternative rule (not currently implemented) states that template instantiations have package-level
access to all classes and interfaces mentioned in the template actuals, so that the expansion of a template
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Names other than template parameters in a template are captured at the point of the
template definition. Names in a TemplateActual (and at the point it is substituted for in
a template instantiation) are resolved at the point of instantiation.

7.4 Template Instantiation

References to TemplateInstantiation are allowed as Types. Instantiations that cause an
infinite expansion or a loop are compile-time errors. Inside a template, one may refer to
the “current instantiation” by its full name with template parameters; or by the template’s
simple name. The constructor is called by the simple name.

template<class T> class List {

...

List (T head, List tail) {...}

List tail() { ... }

}

or

template<class T> class List {

...

List (T head, List<T> tail) {...}

List<T> tail() { ... }

}

7.5 Name Equivalence

For purposes of type comparison, all simple type names and template names that appear
as TemplateActuals are replaced by their fully-qualified versions. With this substitution,
two type names are equivalent if their QualifiedName parts are identical and their Tem-
plateActuals are identical (identical types or equal values of the same type).

might be illegal according to the usual rules (e.g., the template expansion could reside in package P and
yet contain fields whose types were non-public members of package Q). The rationale for this alternative
is that otherwise, a package of utility templates would be useless unless one was willing to make public all
classes used as template parameters.
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Chapter 8

Operator Overloading

Titanium allows overloading of the following Java operators as instance methods of classes
and interfaces.

Unary prefix - ! ~

Binary < > <= >=

+ - * / & | ^ % << >> >>>

Matchfix [] []=

Assignment += -= *= /= &= |= ^= %= <<= >>= >>>=

On immutable types, furthermore, one may also overload the binary operators == and !=.
They must have exactly the following signatures:

public boolean single op==(T single I);

public boolean single op!=(T single I);

where T is the enclosing class.

If ⊕ is one of these operators, then declaring op⊕ produces a new overloading of that
operator, replacing the corresponding default definition of the operator in the case of ==
and != on immutable types (so when op== is overloaded, the default definition of == is
unavailable). No space is allowed between the keyword op and the operator name. These
new methods can be called like normal methods, e.g. a.op+(3). There are no restrictions
on the number of parameters, parameter types or result type of operator methods.

Suppose that E, E0, E1 are expressions, T0 is the static type of E0, and ⊕ is a unary
prefix or binary operator. Then the following re-writings apply to syntactically valid ex-
pressions when the re-written expression is also legal according to other language rules:
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1. E0 ⊕ E1 =⇒ (E0).op⊕ (E1)
2. E0 ⊕ E1 =⇒ (E1).op⊕ (E0, E1), if T0 is primitive.
3. ⊕E0 =⇒ E0.op⊕ ()
4. E0[E1, . . . , En] = E =⇒ (E0).op[]=(E1, . . . , En, E)
5. E0[E1, . . . , En] =⇒ E0.op[](E1, . . . , En), in other contexts

When ⊕= is an assignment operator:
6. E0 ⊕ = E1 =⇒ E0 = (T0)(E0).op⊕ =(E1)
7. E0 ⊕ = E1 =⇒ E0 = (T0) (E1).op⊕ =(E0, E1), if T0 is primitive.

In all cases, however, the expressions E0, E1, and E are evaluated in the order they appear
in the original expression, and each is evaluated only once. It is not possible to redefine
plain assignment (=). As a consequence of the legality requirements, E0 must be an lvalue
in cases (6) and (7), and T0 may be a primitive type only in cases (2) and (7).

There is a conflict between the description above and the standard Java description
of how the ‘+’ operator works when the right argument is of type String, which arises
whenever the programmer defines op+ with an argument of type String. We resolve this by
analogy with ordinary Java overloading of static functions. If class A defines op+ on String,
then anA + aString resolves to the user-defined ‘+’, as if resolving a match between an
overloaded two-argument function whose first argument is of type Object and one whose
first argument is of type A.
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Chapter 9

Processes

A process is essentially a thread of control1. Processes may either correspond to virtual
or physical processors—this is implementation dependent. Each process has a demesne
(an area of memory heap; see §6) that may be accessed by other processes through point-
ers. Each process has a distinct non-negative integer index, returned by the function call
Ti.thisProc(). The indices of all processes form a contiguous interval of integers begin-
ning at 0.

9.1 Process teams

At any given time, each process belongs to a process team. The function Ti.myTeam()

returns an int[1d] containing the indices of all members of the team in ascending order.
Teams are the sets of processes to which broadcasts, exchanges, and barriers apply. Initially,
all processes are on the same team, and all execute the main program from the beginning.
This team has the index set [0:Ti.numProcs()-1].

In the current version of Titanium, there is only one process team—the initial one. The
process-team machinery in accordingly a bit heavier than needed. It will become useful
should we decide to introduce the partition construct (see §11.1).

9.2 Interprocess Communication

Titanium processes may communicate with each other through variables and data struc-
tures they share. However, the programmer must be careful that appropriate barriers
occur before attempts by one process to access variables set in another, and (usually) that

1We have chosen to use the term “process” here, but acknowledge that this choice is a potential source of
confusion. Processes in Titanium differ in some crucial details from Java’s threads. At the same time, they
do not necessarily have any one-to-one relationship with whatever the operating system calls a “process.”
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multiple processes avoid attempting to modify the same variable without an intervening
barrier. Titanium also provides specialized constructs to facilitate communication for some
common cases, as detailed in the following sections.

9.2.1 Exchange

The member function exchange, defined on Titanium array types, allows all processes in
a team to exchange data values with each other. Given E is of some type T and A is a
grid of T with an index set that is a superset of Ti.myTeam().domain(), the call

A.exchange(E)

acts as a barrier (see §9.3) among the processes with indices in Ti.myTeam(). It is an
error if the processes reach different textual instances of exchange. The collective effect of
exchange is as if it collected all the values of E and then copied them into all the arrays
A, so that after proceeding from the barrier, the value of A[i] for the A supplied by each
process will be the value of E supplied by the process indexed by Ti.myTeam()[i], for
each i in Ti.myTeam()’s domain. It is illegal to exchange arrays of local pointers (that is
arrays of a type qualified ‘local’) or non-array immutables with embedded local pointers.
If T is non-atomic and A resides in a shared region on any processor, then it is also illegal
to pass an argument that resides in a private region.

Thus, the code

double [1d] single [2d] x = new double[Ti.myTeam().domain()][2d];

x.exchange(new double [D]);

creates a vector of pointers to arrays, each on a separate processor, and distributes this
vector to all processors.

Access to the arrays A is restricted in order to give implementations some leeway to
implement exchange efficiently. If the notation Ak denotes the array reference calculated
by a process k in an exchange operation, the value of a read or effect of a write to Ak[j]
by process i 6= k is undefined between the last dynamically encountered barrier before
the call to exchange and the next dynamically encountered barrier after returning from
the call. As for other method calls, the actual “call to exchange” is an event that occurs
after evaluation of A and v. As a result of these restrictions, the implementation need not
actually complete the copy of data to all the arrays A before any given process continues
from its call to exchange, nor need it wait for all processes to reach the barrier before it
begins setting elements of A for the processes that have reached the barrier.

9.2.2 Broadcast

The broadcast expression allows one process in a team to broadcast a value to all others.
Specifically, in
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broadcast E from p

—where E is an arbitrary value and p (a UnaryExpression) evaluates to the index of a
process on the current process team—process p (only) evaluates E to yield a value V , and
all other processes in the team wait at the broadcast (if necessary) until p performs the
evaluation and then all return the value V . Processes may proceed even if some processes
have not yet reached the broadcast and received the broadcast value. It is an error if
the processes reach a different sequence of textual instances of the call. It is an error if
the processes do not agree on the value p—in fact, p must be a single-valued expression
(see §9.4.1), whose value is non-negative and less than Ti.numProcs(). It is an error for
the evaluation of E on processor p to throw an exception (which, informally, would keep
one process from reaching the barrier). It is illegal to broadcast a value of a non-array
immutable type that contains embedded local pointers.

9.3 Barriers

The call

Ti.barrier();

causes the process executing it to wait until all processes in its team have executed the
same textual instance of the barrier call. It is an error for a process to attempt to execute
a different sequence of textual instances of barrier calls than another in its team. Each
textually distinct occurrence of partition and each textually distinct call on exchange

waits on a distinct anonymous barrier.

9.4 Checking Global Synchronization

In SPMD programs, some portions of the data and control flow are identical across all
processes. In particular, the sequences of global synchronizations (barriers, broadcasts,
etc.) in each process must be identical for the program to be correct.

With the aid of programmer declarations, the Titanium compiler performs a (conserva-
tive) check for a stronger correctness condition statically. This stronger condition requires
that a supersequence of the global synchronizations—the statements with global effects—is
identical across all processes. To be able to perform this check, the compiler must know
that the evaluations of certain expressions in a program—those whose values control which
synchronization operations are performed—produce coherent sequences of values across all
processes in the current process team. We call the sequences of values produced by eval-
uations of one expression by two different processes “coherent” if corresponding pairs of
values are identical in the case of primitive types, or, in the case of reference types, point to
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replicated objects that are of the same dynamic type and that, in the case of arrays, have
identical bounds. To ensure the coherence of such expressions, the compiler must ensure
that the sequences of values assigned to certain storage locations by the processes in a
given team are themselves coherent. The programmer must mark such storage locations
with the type qualifier single.
The following properties are important in checking these coherence constraints:

1. An expression e is single-valued if it is known statically to produce coherent sequences
of values in all processes that start evaluating e. Variables (storage locations) may
also be single-valued, meaning that they are single-valued whenever used as expres-
sions (such variables must be marked by being given single-qualified types, and there
are restrictions on assigning to them, described below in §9.4.2).

2. If a termination T (throw statement, a break, continue, or return) of a statement S is
universal then either all processes that start S terminate abruptly with termination T

or no process that starts S terminates abruptly with termination T , and (in the case
of a throw), the sequence of exception values thrown is coherent across all processes
in P . Titanium has rules and syntax, specified below, for statically determining
universal termination (conservatively) and requiring it in certain contexts. To throw
a universal exception explicitly, one uses a qualified throw statement:

ThrowStatement:
single throw Expression ;

where the Expression must be single-valued. Normal throw statements are statically
taken to throw non-universal exceptions. A catch clause in a try statement and the
throws list of a method or constructor declaration indicate that an exception is
universal by qualifying the exception type with single (we use the terms universal
catch clause and universal throws clause for these cases). A universal catch clause
catches only (statically) universal exceptions; a non-universal catch clause will catch
both universal and non-universal exceptions.

3. A statement has global effects if it or any of its substatements either assigns to any
storage (variable, field or array element) whose type is t single, may call a method or
constructor that has global effects, is a broadcast expression, or is a single throw
statement.

4. A method or constructor has global effects if it is qualified with single (which is a
new MethodModifier that can modify a method or constructor declaration). No other
method or constructor has global effects, except as required by the following rules:
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(a) A method has global effects if any statement of its body has global effects;
however, assignments to single local variables do not count as global effects.

(b) A constructor has global effects if any statement of its body has global effects.
However, an assignment to a single local variable does not count for this pur-
pose, nor does an assignment to a non-static single field of the object being
constructed if it occurs within the constructor body and the destination field is
specified as a simple identifier, possibly qualified by this.

5. A method call e1.m1(. . .) may call a method m2 if m2 is m1, or if m2 overrides
(possibly indirectly) m1.

9.4.1 Single-valued Expressions

In the following, the ei are expressions, v is a non-static member, vs a static member,
T is a type, and X is a type or expression. All instances of operators refer to built-in
definitions; user-defined operators are governed by the same rules as function calls. The
following expressions are single-valued:

1. compile-time constant expressions;

2. this and (when selected from) super;

3. variables whose type is t single;

4. e1.v if e1 is single-valued and v is declared single;

5. e1.length, if e1 has type T [] single.

6. X.vs if vs is declared single.

7. e1[e2] if e1 and e2 are single-valued, e1 is an array (standard or grid), and the type
of the elements of e1 is single;

8. e1[e2] if e1 and e2 are single-valued and e1 is a Point.

9. e1 ⊕ e2, for e1 and e2 single-valued and ⊕ a built-in binary operator (likewise for
unary prefix and postfix operators);

10. (T )e1 if T is single;

11. e1 instanceof T if e1 is single-valued;

12. e1 = e2 if e2 is single-valued;
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13. e1⊕ = e2 if e1 and e2 are single-valued and ⊕ = a built-in assignment operator;

14. e1?e2 : e3 if e1, e2 and e3 are single-valued;

15. e0.v(e1, . . . , en) if:

(a) e0 is single-valued

(b) ei is single-valued if the i’th argument of v is declared single;

(c) the result of v is declared single;

16. X.vs(e1, . . . , en) if:

(a) ei is single-valued wherever the i’th argument of vs is declared single;

(b) the result of vs is declared single;

17. new T (e1, . . . , en) if ei is single-valued wherever the i’th argument of the appropriate
constructor for T is declared single;

18. new T [e1] . . . [en] [] . . . []
︸ ︷︷ ︸

k

, if e1 is single-valued, n ≥ 1, and k ≥ 0. In this case,

the type is T [I1] single [I2] . . . [Ik+n], where the Ij are the appropriate index-type
denotations2. (If T refers to an array type T ′[. . .], then new T [e1] is taken to be
equivalent to new T ′[e1][. . .].)

19. Array initializers in declarations and array creation expressions produce single-valued
expressions. Thus, new T [· · ·]{e1, . . . , en} produces a result of type T [· · ·] single.

20. [e1, . . . , en] if e1, . . . , en are single-valued;

21. [e1 : e2 : e3] if e1, e2, e3 are single-valued (and similarly for the other domain literal
syntaxes);

22. broadcast e1 from e2, if e1 has atomic type.

The rule for broadcast excludes reference values from single expressions, which may
seem odd since the recipients of the broadcast will manifestly get the same value. This
merely illustrates, however, the subtle point that “single” and “equal” are not synonyms.
Consider a loop such as

2As of version 3.86 of the compiler, however, all of the ei must be single-valued before the allocator’s
result is single-valued. This is rectified in later versions.
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x = broadcast E from 0;

while (x.N > 0) {

...

Ti.barrier ();

x.N -= 1;

}

(where ‘x’ and the ‘N’ field of its type are declared single). If we were to allow this, it is
clearly easy to get different processes to hit the barrier different numbers of times, which
is what the rules concerning single are supposed to prevent.

9.4.2 Restrictions on Statements with Global Effects

The following restrictions on individual statements and expressions are enforced by the
compiler:

1. Any assignment to a local variable, method or constructor argument, field or array
element whose type is single must be from a single-valued expression.

2. If a method call e0.v(e1, . . . , en) may call a method m1 that has global effects then:

(a) e0 must be single-valued;

(b) ei must single-valued if the i’th argument of v is declared single.

3. In a method call X.vs(e1, . . . , en) if vs has global effects then ei must be single-valued
if the i’th argument of vs is declared single.

4. In an object allocation new T (e1, . . . , en), if the constructor has global effects then
ei must be single-valued if the i’th argument of the constructor is declared single.

5. An initializer expression for an instance (non-static) variable may not have global
effects. (For simplicity, this rule is stronger than it needs to be.)

6. In broadcast e1from e2, e2 must be single-valued.

9.4.3 Restrictions on Control Flow

The following restriction is imposed on the program’s control flow: the execution of all
statements and expressions with global effects must be controlled exclusively by single-
valued expressions. The following rules ensure this:
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1. An if (or ? operator) whose condition is not single-valued cannot have statements
(expressions) with global effects as its ‘then’ or ‘else’ branch.

2. A switch statement whose expression is not single-valued cannot contain statements
with global effects.

3. A while, do/while or for loop whose exit condition is not single-valued, and a
foreach loop whose iteration domain is not single-valued cannot contain statements
or expressions with global effects.

4. If the main statement of a try has global effects, then non-universal unchecked excep-
tions may not be specified in its catch clauses. It is an error if one of its non-universal
catch clauses catches an unchecked exception at runtime.

If the main statement of a try has non-universal terminations then its catch clauses
cannot specify any universal exceptions.

5. Associated with every statement or expression that causes a termination t is a set of
statements S from the current method or constructor that will be skipped if termina-
tion t occurs. If the termination is not universal and the construct being terminated
is not a static initializer, then S must not contain any statements or expressions with
global effects. (When a static initializer is terminated by an exception, the program
as a whole terminates, making restrictions on control flow unnecessary).

The rules for determining whether a termination is universal are essentially identical
to the restrictions on statements with global effects: any termination raised in a statement
that cannot have global effects is not universal. In addition:

6. In throw e, the exception thrown is not universal if e is not single-valued.

7. In a call to method or constructor v declared to throw exceptions of types t1, . . . , tn,
exception ti is universal only if type ti is single and the following conditions are met:

(a) For a normal method call e0.v(e1, . . . , en): e0 is single-valued and ei is single-
valued when the i’th argument of v is declared single;

(b) For a static method call X.vs(e1, . . . , en): ei is single-valued when the i’th ar-
gument of vs is declared single;

(c) For an object allocation new T (e1, . . . , en): ei is single-valued when the i’th
argument of the appropriate constructor for T is declared single.
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9.4.4 Restrictions on Methods and Constructors

The following additional restrictions are imposed on methods and constructors:

1. If a method is declared to return a single result, then the expression in all its return
statements must be single-valued. The return terminations must all be universal.

2. A method that overrides a corresponding method in a supertype must preserve the
singleness of the method argument types.

3. A method may not have global effects if it overrides or implements a method that
does not have global effects. The reverse is not true—an overriding method need not
have global effects if the method it overrides or implements does.

9.5 Consistency of Shared Data

The consistency model defines the order in which memory operations issued by one pro-
cessor are observed by other processors to take effect. Although memory in Titanium is
partitioned into demesnes, the union of those demesnes defines the same notion of shared
memory that exists in Java. Titanium semantics are consistent with Java semantics in
the following sense: the operational semantics given in the Java Language Specification
(Chapter 17) correctly implements the behavioral specification given below. We use the
behavioral specification here for conciseness and to avoid constraints (or the appearance
of constraints) on implementations.

As Titanium processes execute, they perform a sequence of actions on memory. In Java
terminology, they may use the value of a variable or assign a new value to a variable. Given
a variable V , we write use(V, A) for a use of V that produces value A and assign(V, A) for
an assignment to V with value A. A Titanium program specifies a sequence of memory
events, as described in the Java specification:

[An implementation may perform] a use or assign by [thread] T of [variable]
V . . . only when dictated by execution by T of the Java program according to
the standard Java execution model. For example, an occurrence of V as an
operand of the + operator requires that a single use operation occur on V ;
an occurrence of V as the left-hand operand of the assignment operator (=)
requires that a single assign operation occur.

Thus, a Titanium program defines a total order on memory events for each process.
This corresponds to the order that a naive compiler and processor would exhibit, i.e.,
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without reorderings. The union of these process orders forms a partial order called the
program order. We write P (a, b) if event a happens before event b in the program order.

During an actual execution, some of the events visible in the Titanium source may be
reordered, modified, or eliminated by the compiler or hardware. However, the processes
see the events in some total order that is related to the program order. For each execution
there exists a total order, E, of memory events from P such that:3:

1. P (a, b) ⇒ E(a, b) if a and b access the same variable, and at least one of them is an
assign.

2. P (l, a) ⇒ E(l, a), if l is a lock or barrier statement.

3. P (a, u) ⇒ E(a, u), if u is an unlock or barrier statement.

4. P (l1, l2) ⇒ E(l1, l2), if l1 and l2 are locks, unlocks, or barriers.

5. E is a correct serial execution, i.e.,

(a) If E(assign(V, A), use(V, B)) and there is no intervening write to V , then A =
B.

(b) If there were n processes in P , then there are n consecutive barrier statements
in E for each instance of a barrier.

(c) A process T may contain an unlock operation l, only if the number of preceding
locks by T (according to E) on the object locked by l is is strictly greater than
the number of unlocks by T .

(d) A process T may contain a lock operation l, only if the number of preceding
locks by other processes (according to E) is equal to the number of preceding
unlocks.

6. P (a, b) ⇒ E(a, b) if a and b both operate on volatile variables.

Less formally, rule 1 says that dependences in the program will be observed. Rules 2 and
3 say that reads and writes performed in a critical demesne must appear to execute in-
side that demesne. Rule 4 says that synchronization operations must not be reordered.
(Titanium extends the Java rules for synchronization, which include only lock and unlock
statements to explicitly include barrier.) Rule 5 says that the usual semantics of mem-
ory and synchronization constructs are observed. Rule 6 says that operations on volatile
variables must execute in order.

As in Java, the indivisible unit for assignment and use is a 32-bit value. In other
words, the assign and use operations in the program order are on at most 32-bit quantities;

3See author’s notes 1 and 2.
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assignment to double or long variables in Titanium source code corresponds to two separate
operations in this semantics. Thus, a program with unsynchronized reads and writes of
double or long values may observe undefined values from the reads4. It is a weakness
of current implementation, unfortunately, that global pointers are not indivisible in this
sense.

9.6 Static Storage

In standard Java, a static field refers to the same (one) variable at all points in the program.
Unless it is a final, compile-time constant, a static fields is created and initialized at the
time its containing class is initialized. Titanium, by contrast, replicates static fields, so that
each declaration of such a field denotes one variable for each process. Constant expressions
of type String are interned separately in each process, regardless of whether they are final
(see §3.10.5 of The Java Language Specification, Third Edition). String literals themselves
have type String local.

The static initializers of each class execute once for each process. More specifically, the
static initializers of a class—including implicit initializers of fields that are not compile-
time constant and the computation of the default value for immutable types (§5)—are
concatenated into a single block forming the body of a method. This method then is
called for each class on each process to perform the static initializations for that class. It is
subject to the usual rules concerning global effects, except that it is legal for any unchecked
exception to terminate static initialization; in such cases, the exception also terminates the
program as a whole. All static initializers in the program are called in the same order in
every process.

4See authors’ note 3.
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Chapter 10

Odds and Ends

10.1 Inlining

The inline qualifier on a method declaration acts as in C++. The semantics of calls to
such methods is identical to that for ordinary methods. The qualifier is simply advice to
the compiler. In particular, you should probably expect it to be ignored when the dynamic
type of the target object in a method call cannot be uniquely determined at compilation
time.

The qualifier may also be applied to loops:

foreach (p in Directions) inline {

...

}

This is intended to mean that the loop is to be unrolled completely. It is ignored if
Directions is not a compile-time constant.

10.2 Macro Preprocessing

Titanium supports the C preprocessor language, as described in International Standard
ISO/IEC 9899: Programming Languages—C. That is, all Titanium sources are first inde-
pendently subjected to macro preprocessing, which recognizes the set of directives described
in that Standard:

# Does nothing.

#define Defines a textual macro, possibly with parameters.

#error Prints a selected error message and cause an error.
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#if...#elif...#else...#endif For conditional compilation.

#ifdef NAME Short for #if defined(NAME).

#ifndef NAME Short for #if !defined(NAME).

#include Inserts text files verbatim.

#line Specifies a source file and line number to ascribe to the current source text for
purposes of generating messages.

#pragma Modifies the behavior of the program in various implementation-dependent ways.

#undef Undefines names introduced by previous #define directives.

This syntax includes a small set of macro operators for use inside definitions

#P The textual macro parameter P in string quotes.

P ## Q The tokens P and Q (after textual parameter substitution) concatenated into a
single token.

Since each Titanium source is preprocessed independently, only #defines that appear
in a given file or those files it explicitly #includes will be available. One consequence of
these semantics is that class declarations should not appear in a file that is #included by
more than one loaded file, because that would lead to a multiply-defined class.

The preprocessor predefines certain names. Due to its legacy, these include the standard
names defined in the C language specification, in addition to those that are specific to
Titanium. The names of likely interest to Titanium programmers are as follows:

__FILE__ Name of the current source file (a string literal).

__LINE__ Line number on which the directive appears within the current source file (an
integer).

__DATE__ Current date in “MMM DD YYYY” form (a string literal).

__TIME__ Current local time in “HH:MM:SS” format on a 24-hour clock (a string literal).

__TITANIUMC__ The major version number for the compiler translating this source file (an
integer).

__TITANIUMC_MINOR__ The minor version number for compiler translating this source file
(an integer).

For full details of all these features, see any current reference work on the C programming
language.
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Chapter 11

Features Under Consideration

This section discusses features of Titanium whose implementation we have deferred indef-
initely until we can evaluate the need for them.

11.1 Partition

The constructs

partition { C0 => S0; C1 => S1; ...; Cn−1 => Sn−1; }

and

partition V { C0 => S0; C1 => S1; ...; Cn−1 => Sn−1; }

divide a team into one or more teams without changing the total number of processes.
The construct begins and ends with implicit calls to Ti.barrier(). When all processes

in a team reach the initial barrier, the system divides the team into n teams (some possibly
empty). All those for which C0 is true execute S0. Of the remaining, all for which C1 is
true execute S1, and so forth. All processes (including those satisfying none of the Ci) wait
at the barrier at the end of the construct until all have reached the barrier.

Since the construct partitions the team, it also changes the value of Ti.myTeam(), (but
not Ti.thisProc()) for all processes for the duration of the construct. If supplied, the
variable name V is bound to an integer value such that Ti.thisProc() = Ti.myTeam()[V ].
Its scope is the text of all the Si.
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Chapter 12

Additions and Changes to the
Standard Library

12.1 Grids

The syntax below is not, of course, legal (and grid types are not classes); we use it simply
as a convenient notation. For each type T and positive integer n:

final class T [n d] {

public static final int single arity = n;

public static int single arity () { return n; }

public RectDomain<n> single domain();

public T [n d] single translate(Point<n> single p);

public local T [n d] local single translate(Point<n> single p);

public T [n d] single restrict(RectDomain<n> single d);

public local T [n d] local single restrict(RectDomain<n> single d);

public T [n d] single inject(Point<n> single p);

public local T [n d] local single inject(Point<n> single p);

public T [n d] single project(Point<n> single p);

public local T [n d] local single project(Point<n> single p);

public T [n d] single permute(Point<n> single p);

public local T [n d] local single permute(Point<n> single p);

public T [(n - 1)d] single slice(int single k, int single j);
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/* only if n > 1 */

public local T[(n - 1)d] local single slice(int single k, int single j);

public int single size();

public boolean single isEmpty();

public T[n d] single shrink(int single k, int single dir);

public local T[n d] local single shrink(int single k, int single dir);

public T[n d] single shrink(int single k);

public local T[n d] local single shrink(int single k);

public T[n d] single border(int single k, int single dir,

int single shift);

public local T[n d] local single border(int single k, int single dir,

int single shift);

public T[n d] single border(int single k, int single dir);

public local T[n d] local single border(int single k, int single dir);

public T[n d] single border(int single dir);

public local T[n d] local single border(int single dir);

public void set(T value);

final public boolean isLocal ();

public boolean isContiguous ();

final public int creator ();

public ti.lang.Region local regionOf ();

public void copy(T [n d] x) overlap(this, x);

public void copyNBI(T [n d] x) overlap(this, x);

public ti.lang.Handle copyNB(T [n d] x) overlap(this, x);

public void copy(T [n d] x, Domain<n> d) overlap(this, x);

public void copy(T [n d] x, Point<n> [1d] p) overlap(this, x);

public void gather(T [1 d] x, Point<n> [1d] p);

public void scatter(T [1 d] x, Point<n> [1d] p);

public single void exchange(T myValue);
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public void readFrom(java.io.RandomAccessFile file)

throws java.io.IOException;

public void readFrom(java.io.DataInputStream str)

throws java.io.IOException;

public void writeTo(java.io.RandomAccessFile file)

throws java.io.IOException;

public void writeTo(java.io.DataOutputStream str)

throws java.io.IOException;

}

12.2 Points

template<int n> public immutable class Point {

public static Point<n> single all(int single x);

public static Point<n> single direction(int single k, int single x);

public static Point<n> single direction(int single k);

public Point<n> single op+(Point<n> single p);

public Point<n> single op+=(Point<n> single p);

public Point<n> single op-();

public Point<n> single op-(Point<n> single p);

public Point<n> single op-=(Point<n> single p);

public Point<n> single op*(Point<n> single p);

public Point<n> single op*=(Point<n> single p);

public Point<n> single op/(Point<n> single p);

public Point<n> single op/=(Point<n> single p);

public Point<n> single op*(int single n);

public Point<n> single op*(int single n, Point<n> single p);

public Point<n> single op*=(int single n);

public Point<n> single op/(int single n);

public Point<n> single op/(int single n, Point<n> single p);

public Point<n> single op/=(int single n);

public boolean single equals(Point<n> single p);

public boolean single op==(Point<n> single p);

public boolean single op!=(Point<n> single p);

public boolean single op<(Point<n> single p);

public boolean single op<=(Point<n> single p);

public boolean single op>(Point<n> single p);
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public boolean single op>=(Point<n> single p);

public int single op[] (int single x);

public Point<n> single lowerBound (Point<n> single p);

public Point<n> single upperBound (Point<n> single p);

public Point<n> single replace (int single k, int single v);

public static final int single arity = n;

public static int single arity () { return n; }

public Point<n> single permute (Point<n> single p);

public String single local toString ();

}

12.3 Domains

A Domain<n> is an Object, and therefore differs in subtle ways from a RectDomain<n>.
Specifically, == and != on Domains denote pointer (in)equality, as for other reference types.

template<int n> public final class Domain {

public Domain<n> (Domain<n> single d);

public static Domain<n> single toDomain(Point<n> single [1d] p);

public static Domain<n> single toDomain(RectDomain<n> single [1d] rd);

public static Domain<n> toDomain(Point<n> [1d] p);

public static Domain<n> toDomain(RectDomain<n> [1d] rd);

public Domain<n> single op+(RectDomain<n> single d);

public Domain<n> single op+(Domain<n> single d);

public Domain<n> single op+=(Domain<n> single d);

public Domain<n> single op+=(RectDomain<n> single d);

public Domain<n> single op-(Domain<n> single d);

public Domain<n> single op-(RectDomain<n> single d);

public Domain<n> single op-=(Domain<n> single d);

public Domain<n> single op-=(RectDomain<n> single d);

public Domain<n> single op*(RectDomain<n> single d);

public Domain<n> single op*(Domain<n> single d);

public Domain<n> single op*=(RectDomain<n> single d);

public Domain<n> single op*=(Domain<n> single d);

public Domain<n> single permute(Point<n> single p);
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public RectDomain<n> [1d] single RectDomainList();

public boolean equals(Object d);

public boolean single equals(Domain<n> single d);

public boolean single equals(RectDomain<n> single d);

public boolean single op<(RectDomain<n> single d);

public boolean single op<(Domain<n> single d);

public boolean single op<=(Domain<n> single d);

public boolean single op<=(RectDomain<n> single d);

public boolean single op>(RectDomain<n> single d);

public boolean single op>(Domain<n> single d);

public boolean single op>=(Domain<n> single d);

public boolean single op>=(RectDomain<n> single d);

public Domain<n> single op+(Point<n> single p);

public Domain<n> single op+=(Point<n> single p);

public Domain<n> single op-(Point<n> single p);

public Domain<n> single op-=(Point<n> single p);

public Domain<n> single op*(Point<n> single p);

public Domain<n> single op*=(Point<n> single p);

public Domain<n> single op/(Point<n> single p);

public Domain<n> single op/=(Point<n> single p);

public Point<n> [1d] single PointList();

public static final int single arity = n;

public static int single arity() { return n; }

public Point<n> single lwb();

public Point<n> single upb();

public Point<n> single min();

public Point<n> single max();

public int single size();

public boolean single contains(Point<n> single p);

public RectDomain<n> single boundingBox();

public boolean single isEmpty();

public boolean single isRectangular();

public String toString();

public int hashCode ();

public static Region setRegion(Region r);

}
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12.4 RectDomains

template<int n> public immutable class RectDomain {

public boolean isRectangular();

public Domain<n> single op+(RectDomain<n> single d);

public Domain<n> single op-(RectDomain<n> single d);

public RectDomain<n> single op*(RectDomain<n> single d);

public RectDomain<n> single op*(Domain<n> single d);

public RectDomain<n> single op*=(RectDomain<n> single d);

public RectDomain<n> single op+(Point<n> single p);

public RectDomain<n> single op+=(Point<n> single p);

public RectDomain<n> single op-(Point<n> single p);

public RectDomain<n> single op-=(Point<n> single p);

public RectDomain<n> single op*(Point<n> single p);

public RectDomain<n> single op*=(Point<n> single p);

public RectDomain<n> single op/(Point<n> single p);

public RectDomain<n> single op/=(Point<n> single p);

public boolean single equals(RectDomain<n> single d);

public boolean single op==(RectDomain<n> single d);

public boolean single op!=(RectDomain<n> single d);

public boolean single op<(RectDomain<n> single d);

public boolean single op<=(RectDomain<n> single d);

public boolean single op>(RectDomain<n> single d);

public boolean single op>=(RectDomain<n> single d);

public boolean equals(Object d);

public boolean single equals(Domain<n> single d);

public Domain<n> single op+(Domain<n> single d);

public Domain<n> single op-(Domain<n> single d);

public boolean single op<(Domain<n> single d);

public boolean single op<=(Domain<n> single d);

public boolean single op>(Domain<n> single d);

public boolean single op>=(Domain<n> single d);

public final static int single arity = n;

public static int single arity () { return n; }

public Point<n> single lwb();

public Point<n> single upb();
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public Point<n> single min();

public Point<n> single max();

public Point<n> single stride();

public int single size();

public boolean single isEmpty();

public RectDomain<n> single accrete(int single k, int single dir,

int single s);

public RectDomain<n> single accrete(int single k, int single dir);

public RectDomain<n> single accrete(int single k, Point<n> single S);

public RectDomain<n> single accrete(int single k); /* S = all(1) */

public RectDomain<n> single shrink(int single k, int single dir);

public RectDomain<n> single shrink(int single k);

public RectDomain<n> single permute(Point<n> single p);

public RectDomain<n> single border(int single k, int single dir,

int single shift);

public RectDomain<n> single border(int single k, int single dir);

public RectDomain<n> single border(int single dir);

public boolean single contains(Point<n> single p);

public RectDomain<n> single boundingBox();

/* only if n > 1 */

public RectDomain<n - 1> single slice(int single k);

public String single local toString();

}

12.5 Reduction operators

Each process in a team must execute the same sequence of textual instances of executions
of reduction operations, barriers, exchanges, and broadcasts.

package ti.lang;

public final class Reduce

{

/* The result of Reduce.F (E) is the result of applying the binary

* operator F to all processes’ values of E in some unspecified

* grouping. The result of Reduce.F (E, k) is 0 or false for all

* processes other than K, and the result of applying F to all the

* values of E for processor K.

*

* Here, F can be ’add’ (+), ’mult’ (*), ’max’ (maximum),
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* ’min’ (minimum), ’and’ (&), ’or’ (|), or ’xor’ (^).

*/

public static single int add(int n, int single to);

public static single long add(long n, int single to);

public static single double add(double n, int single to);

public static single int single add(int n);

public static single long single add(long n);

public static single double single add(double n);

public static single int mult(int n, int single to);

public static single long mult(long n, int single to);

public static single double mult(double n, int single to);

public static single int single mult(int n);

public static single long single mult(long n);

public static single double single mult(double n);

public static single int max(int n, int single to);

public static single long max(long n, int single to);

public static single double max(double n, int single to);

public static single int single max(int n);

public static single long single max(long n);

public static single double single max(double n);

public static single int min(int n, int single to);

public static single long min(long n, int single to);

public static single double min(double n, int single to);

public static single int single min(int n);

public static single long single min(long n);

public static single double single min(double n);

public static single int or(int n, int single to);

public static single long or(long n, int single to);

public static single boolean or(boolean n, int single to);

public static single int single or(int n);

public static single long single or(long n);

public static single boolean single or(boolean n);

public static single int xor(int n, int single to);

public static single long xor(long n, int single to);

public static single boolean xor(boolean n, int single to);

public static single int single xor(int n);
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public static single long single xor(long n);

public static single boolean single xor(boolean n);

public static single int and(int n, int single to);

public static single long and(long n, int single to);

public static single boolean and(boolean n, int single to);

public static single int single and(int n);

public static single long single and(long n);

public static single boolean single and(boolean n);

/* These reductions use OPER.eval as the binary operator, and are

* otherwise like the reductions above. */

public static single Object gen(ObjectOp oper, Object o, int single to);

public static single Object gen(ObjectOp oper, Object o);

public static single int gen(IntOp oper, int n, int single to);

public static single int single gen(IntOp oper, int n);

public static single long gen(LongOp op, long n, int single to);

public static single long single gen(LongOp oper, long n);

public static single double gen(DoubleOp oper, double n, int single to);

public static single double single gen(DoubleOp oper, double n);

}
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package ti.lang;

public final class Scan

{

/* Scan.F (E) produces the result of applying the operation F to all

* values of E for this and lower-numbered processes, according to

* some unspecified grouping. */

public static single int add(int n);

public static single long add(long n);

public static single double add(double n);

public static single int mult(int n);

public static single long mult(long n);

public static single double mult(double n);

public static single int max(int n);

public static single long max(long n);

public static single double max(double n);

public static single int min(int n);

public static single long min(long n);

public static single double min(double n);

public static single int or(int n);

public static single long or(long n);

public static single boolean or(boolean n);

public static single int xor(int n);

public static single long xor(long n);

public static single boolean xor(boolean n);

public static single int and(int n);

public static single long and(long n);

public static single boolean and(boolean n);

/* As for the preceding scans, but with F being oper.eval. */

public static single Object gen(ObjectOp oper, Object o);

public static single int gen(IntOp oper, int n);

public static single long gen(LongOp oper, long n);

public static single double gen(DoubleOp oper, double n);

}
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interface IntOp {

int eval(int x, int y);

}

interface LongOp {

long eval(long x, long y);

}

interface DoubleOp {

double eval(double x, double y);

}

interface ObjectOp {

Object eval(Object arg0, Object arg1);

}

12.6 Complex Numbers

The immutable class ti.lang.Complex provides the standard basic operations on complex
numbers familiar to users of Fortran and C. The real and imaginary parts of these numbers
come from the set < ∪ {−0}, where −0 is the IEEE negative 0.

package ti.lang;

/** IEEE-extended complex numbers, rectangular representation */

public immutable class Complex {

public double re, im;

/** Zero */

public Complex();

public Complex(double re, double im);

/* A string in the form <num>, <num>i, <num>+<num>i,

or <num>-<num>i */

public String toString();

/** The Complex value denoted by S. S must have the form <num>,

* <num><i>, <num><op><num><i>, or (<num>,<num>),

* where each <num> is parsable as a double, <i> is i or I,

* and <op> is + or -. The parenthesized form is Fortran format:
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* (real part, imag part). The <nums> may contain

* no embedded whitespace; otherwise whitespace is ignored. */

public static Complex parseComplex(String s) throws NumberFormatException;

/* Arithmetic and Comparison */

public Complex op-();

public Complex op+(double d1);

public Complex op+(Complex c1);

public Complex op-(double d1);

public Complex op-(Complex c1);

public Complex op*(double d1);

public Complex op*(Complex c1);

public Complex op/(double d1);

public Complex op/(Complex c1);

public boolean op==(double d1);

public boolean op==(Complex c1);

public boolean op!=(double d1);

public boolean op!=(Complex c1);

public Complex op+(double d1, Complex c1);

public Complex op-(double d1, Complex c1);

public Complex op*(double d1, Complex c1);

public Complex op/(double d1, Complex c1);

public Complex op^(double d1, Complex c1);

public Complex op==(double d1, Complex c1);

public Complex op!=(double d1, Complex c1);

/** The complex conjugate of THIS. */

public Complex op~();

public Complex conj();

/** The value THIS raised to the D1 power. */

public Complex op^(double d1);

/** The value THIS raised to the C1 power. */

public Complex op^(Complex c1);

/* Assignment operations */

public Complex op+=(Complex c1);

public Complex op-=(Complex c1);

public Complex op*=(Complex c1);
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public Complex op/=(Complex c1);

public Complex op^=(Complex c1);

public Complex op+=(double d1);

public Complex op-=(double d1);

public Complex op*=(double d1);

public Complex op/=(double d1);

public Complex op^=(double d1);

public Complex exp();

public Complex log();

public Complex sqrt();

public Complex sin();

public Complex cos();

public Complex tan();

public Complex asin();

public Complex acos();

public Complex atan();

public Complex sinh();

public Complex cosh();

public Complex tanh();

public Complex asinh();

public Complex acosh();

public Complex atanh();

/** Absolute value (magnitude) */

public double abs();

/** The square of the magnitude. */

public double absSquare();

/** The argument (phase angle) in radians. The result will be

* between -pi and pi. It is 0.0 when abs() is 0.0. */

public double arg();

}

12.7 Timer class

A Timer (type ti.lang.Timer provides a microsecond-granularity “stopwatch” that
keeps track of the total time elapsed between start() and stop() method calls.

package ti.lang;

public class Timer {
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/** The maximum possible value of secs (). Roughly 1.84e13. */

public final double MAX_SECS;

/** Creates a new Timer object for which secs () is initially 0. */

public Timer ();

/** Cause THIS to begin counting. */

public void start();

/** Add the time elapsed from the last call to start() to the value

* of secs (). */

public void stop();

/** Set secs () to 0. */

public void reset();

/** The count of THIS in units of seconds, with a maximum

* granularity of one microsecond. */

public double secs();

/** The count of THIS in units of milliseconds, with a maximum

* granularity of one microsecond. */

public double millis();

/** The count of THIS in units of microseconds, with a maximum

* granularity of one microsecond. */

public double micros();

}

12.8 PAPI Counters

This class provides access to the Performance Application Programming Interface (PAPI)
on platforms that support it. Creating and starting a PAPICounter provides an object
that counts the events indicated by its constructor parameter.

package ti.lang;

/** PAPI counter library. The available counters are platform dependent. */
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public class PAPICounter {

/** Constants denoting possible tracked events. */

public static final int L1_DataCache_Misses;

public static final int L1_ICache_Misses;

public static final int L2_DataCache_Misses;

public static final int L2_ICache_Misses;

public static final int L3_DataCache_Misses;

public static final int L3_ICache_Misses;

public static final int L1_TotalCache_Misses;

public static final int L2_TotalCache_Misses;

public static final int L3_TotalCache_Misses;

public static final int Branch_Unit_Idle;

public static final int Integer_Unit_Idle;

public static final int Float_Unit_Idle;

public static final int LoadStore_Unit_Idle;

public static final int DataTLB_Misses;

public static final int ITLB_Misses;

public static final int Total_TLB_Misses;

public static final int L1_Load_Misses;

public static final int L1_Store_Misses;

public static final int L2_Load_Misses;

public static final int L2_Store_Misses;

public static final int Data_Prefetch_Cache_Misses;

public static final int L3_DataCache_Hits;

public static final int Memory_Access_Stall;

public static final int Memory_Read_Stall;

public static final int Memory_Write_Stall;

public static final int No_Instruction_Issued;

public static final int No_Instruction_Completed;

public static final int Conditional_Branch_Instruction;

public static final int Mispredicted_Conditional;

public static final int Correctly_Predicted_Conditional;

public static final int FMA_Instruction_Completed;

public static final int Instruction_Issued;

public static final int Instruction_Completed;

public static final int Integer_Instruction;

public static final int Floating_Point_Instruction;

public static final int Load_Instruction;

public static final int Store_Instruction;

public static final int Branch_Instruction;

public static final int Total_Cycles;
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public static final int Load_Store_Instruction;

public static final int Synchronization_Instruction;

public static final int L1_DataCache_Hits;

public static final int L2_DataCache_Hits;

public static final int L1_DataCache_Accesses;

public static final int L2_DataCache_Accesses;

public static final int L3_DataCache_Accesses;

public static final int L1_DataCache_Reads;

public static final int L2_DataCache_Reads;

public static final int L3_DataCache_Reads;

public static final int L1_DataCache_Writes;

public static final int L2_DataCache_Writes;

public static final int L3_DataCache_Writes;

public static final int L1_ICache_Hits;

public static final int L2_ICache_Hits;

public static final int L3_ICache_Hits;

public static final int L1_ICache_Accesses;

public static final int L2_ICache_Accesses;

public static final int L3_ICache_Accesses;

public static final int L1_ICache_Reads;

public static final int L2_ICache_Reads;

public static final int L3_ICache_Reads;

public static final int L1_ICache_Writes;

public static final int L2_ICache_Writes;

public static final int L3_ICache_Writes;

public static final int L1_Cache_Hits;

public static final int L2_Cache_Hits;

public static final int L3_Cache_Hits;

public static final int L1_Cache_Accesses;

public static final int L2_Cache_Accesses;

public static final int L3_Cache_Accesses;

public static final int L1_Cache_Reads;

public static final int L2_Cache_Reads;

public static final int L3_Cache_Reads;

public static final int L1_Cache_Writes;

public static final int L2_Cache_Writes;

public static final int L3_Cache_Writes;

public static final int Float_Multiply_Instruction;

public static final int Float_Add_Instruction;

public static final int Float_Divide_Instruction;

public static final int Float_SquareRoot_Instruction;

public static final int Float_Inverse_Instruction;
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public static final int Float_Operations;

/** A counter for the indicated EVENT. */

public PAPICounter(int event);

/** True iff EVENT can be monitored. */

public static boolean checkEvent(int event);

/** True iff the current counter is running (not idle). Initially

* false. */

public boolean single running();

/** Starts the counter. Requires that the counter be idle. */

public void start();

/** Stops (idles) the counter. Requires that the counter be running. */

public void stop();

/** Resets the counter value to 0. Requires that the counter be

* idle. */

public void clear();

/** Returns the current counter value. Requires that the counter be

* idle. */

public long getCounterValue();

/** Returns the current counter value as a string. */

public String toString();

}

12.9 ti.lang.Ti

This class provides miscellaneous static methods supporting SPMD programming and
memory management in Titanium.

package ti.lang;

public class Ti {

public static int thisProc();
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public static int single numProcs();

public static single void barrier();

public static int single [1d] single local myTeam();

public static void poll();

public static void suspend_autogc();

public static void resume_autogc();

}

12.10 Additional properties

The values of the following properties are available, as in ordinary Java, through calls to
java.lang.System.getProperty.

runtime.distributed Has the value "true" if and only if the Titanium program reading
it has been compiled for a platform with a distributed memory architecture, and
otherwise "false".

runtime.shared Has the value "true" iff some processes may share a memory space.
(The CLUMP backends make “shared” and “distributed” orthogonal, rather than
mutually exclusive.)

runtime.model Indicates the specific platform that the Titanium program reading it has
been compiled for.

java.version, java.vm.version The tc (Titanium compiler) version.

runtime.boundschecking Has the value "true" if bounds checking is on.

runtime.gc Has the value "true" if garbage collection is on.

compiler.flags Flags passed to tc to compile the application.

12.11 java.lang.Object

Titanium adds or modifies several methods in class java.lang.Object, as indicated in
§6.1:

final public int creator();

final public boolean isLocal();
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protected Object clone() throws CloneNotSupportedException;

protected local Object local localClone()

throws CloneNotSupportedException;

public final ti.lang.Region local regionOf();

1. r.creator() returns the identity of the lowest-numbered process whose demesne
contains the object pointed to by r. NullPointerException if r is null. This number
may differ from the identity of the process that actually allocated the object when
multiple processes share a demesne.

2. r.isLocal() returns true iff r may be coerced to a local reference. This returns the
same value as r instanceof T local, assuming r to have object type T. On some
(but not all) platforms r.isLocal() is equivalent to r.creator() == thisProc().

3. r.clone() is as in Java, but with local references inside the object referenced by r

set to null. The result is a global pointer to the newly created clone, which resides
in the same region (see §6.3.2) as the object referenced by r. This operation may be
overridden.

4. r.localClone() is the default clone() function of Java (a shallow copy), except
that r must be local. The result is local and in the same region (see §6.3.2) as the
object referenced by r. See also §6.1.

5. r.regionOf () See §6.3.2.

12.12 java.lang.Math

The static methods in java.lang.Math, with the exception of java.lang.Math.random,
take single arguments and produce single results.

12.13 java.lang.Boolean, java.lang.Number and Sub-

classes

The signatures of certain constructors and methods in the standard wrapper classes of
java.lang—Boolean, Byte, Double, Float, Integer, Long, and Short—have added single
qualification. We list below only the methods modified from Java.

public class Integer {
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public static int single parseInt(String single s, int single radix)

throws NumberFormatException;

public static int single parseInt(String single s)

throws NumberFormatException;

public static Integer single valueOf(String single s, int single radix)

throws NumberFormatException;

public static Integer single valueOf(String single s)

throws NumberFormatException;

public Integer(int single value);

public Integer(String single s) throws NumberFormatException;

public int single intValue();

public long single longValue();

public float single floatValue();

public double single doubleValue();

}

public class Short {

public Short(short single value);

public static Short single valueOf(String single s);

public static Short single valueOf(String single s, int single radix);

public static short single parseShort(String single s);

public static short single parseShort(String single s, int single radix);

public byte single byteValue();

public short single shortValue();

public int single intValue();

public long single longValue();

public float single floatValue();

public double single doubleValue();

}

public class Byte {

public Byte(byte single value);

public static Byte single valueOf(String single s);

public static Byte single valueOf(String single s, int single radix);

public static byte single parseByte(String single s);

public static byte single parseByte(String single s, int single radix);

public byte single byteValue();

public short single shortValue();

public int single intValue();

public long single longValue();
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public float single floatValue();

public double single doubleValue();

}

public class Long {

public static long single parseLong(String single s, int single radix)

public static long single parseLong(String single s)

throws NumberFormatException;

public static Long single valueOf(String single s, int single radix)

throws NumberFormatException;

public static Long single valueOf(String single s)

throws NumberFormatException;

public Long(long single value)

public Long(String single s) throws NumberFormatException;

public int single intValue()

public long single longValue()

public float single floatValue()

public double single doubleValue()

}

public class Double {

public static Double single valueOf(String single s)

throws NumberFormatException;

public boolean single isNaN(double single v)

public boolean single isInfinite(double single v)

public Double(double single value)

public Double(String single s) throws NumberFormatException;

public boolean single isNaN()

public boolean single isInfinite()

public int single intValue()

public long single longValue()

public float single floatValue()

public double single doubleValue()

public static long single doubleToLongBits(double single value);

public static double single longBitsToDouble(long single bits);

}

public class Boolean {

public Boolean(boolean single value);

public Boolean(String single s);
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public boolean single booleanValue();

public static Boolean single valueOf(String single s);

}

12.14 Polling

The operation Ti.poll() services any outstanding network messages. This is needed in
programs that have long, purely-local computations that can starve the NIC (e.g. a self-
scheduled computation). It has no semantic content, and affects only performance (on
some systems).

12.15 Sparse Titanium Array Copying

The copy method described in §4.3.1 applies to dense (rectangular) regions of grids specified
by RectDomains. Here, we describe more general copying methods that take their index
sets from general domains or from arrays of points.

The Titanium array operation .copy() takes an optional second parameter that can
be a Domain<N> or a Point<N> [1d], specifying the set of points to be copied (the types
Domain<N> and RectDomain<N> have methods that make it easy to convert back and forth
from Point<N> [1d]). For the purposes of modularity and performance, other sparse-
array copying operations are divided into two lower-level components: a gather operation,
which copies selected elements to contiguous points in an array, and its inverse, a scatter
operation, which scatters values from a dense array using an index vector of points.

12.15.1 Copy

Assuming

T [N d] dest, src;

Domain<N> dom;

Point<N> [1d] pts;

the calls

dest.copy(src, dom)

dest.copy(src, pts);

copy the specified points from src to dest.
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Restrictions

1. pts must not overlap dest or src.

2. Each point element of pts or dom must be contained within the intersection of
.domain()dest and .domain()src (it is a fatal error otherwise).

3. If T is a non-atomic type, then it may not be the case that src resides in a private
region and dest resides in a shared region.

4. If T contains embedded local pointers then src and dest must both be local.

5. The contents of src (at the selected points) and pts may not be modified (i.e., by
other processes) during the operation.

Effects

After the operation completes, the following conditions will hold:

1. For every Point<N> p in dom (or in pts), dest[p] == src’[p] (where src’ denotes
the contents of src prior to the operation).

2. All other values are unchanged.

3. pts is permitted to contain duplicate points, but by definition these will not affect
the result.

4. src and dest are permitted to overlap, and if they do it will be as if the relevant
values were first copied from src to an intermediate temporary array and then to
dest.

5. During the operation, the contents of dest at affected points is undefined.

12.15.2 Gather

Assuming

T [N d] src;

Point<N> [1d] pts;

T [1d] dest;

the call

src.gather(dest, pts);

packs the values from src selected by pts into dest, maintaining ordering of the points
and data, and preserving any duplicated points in the packed array.
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Restrictions

1. dest.domain().size() >= pts.domain().size() (i.e. there is enough space to
gather into). It is a fatal error otherwise.

2. Each point value in pts must be in src.domain(). It is a fatal error otherwise.

3. None of the arrays may overlap.

4. If T is a non-atomic type, then it may not be the case that src resides in a private
region and dest resides in a shared region.

5. If T contains embedded local pointers then src and dest must both be local.

6. The contents of src (at the selected points) and pts may not be modified (i.e., by
other processes) during the operation.

Effects

After the operation completes, the following conditions will hold:

1. src and pts will be unchanged

2. For all i such that 0 ≤ i < pts.size(),
dest[[i] + dest.min()] == src[pts[[i] + pts.min()]].

3. The contents of dest are undefined while operation is in progress.

4. pts is permitted to contain duplicate points. If it does, the corresponding dest

elements will contain the relevant data values once for each duplicate (as implied by
the description of the effects).

12.15.3 Scatter

Assuming

T [1d] src;

Point<N> [1d] pts;

T [N d] dest;

the call

dest.scatter(src, pts);

unpacks the values from src into dest at the positions selected by pts.
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Restrictions

1. pts.domain().size() <= src.domain().size() (i.e. there are enough values to
be scattered in src). It is a fatal error otherwise.

2. Each point value in pts must be in dest.domain(). It is a fatal error otherwise.

3. None of the arrays may overlap.

4. If T is a non-atomic type, then it may not be the case that src resides in a private
region and dest resides in a shared region.

5. If T contains embedded local pointers then src and dest must both be local.

6. The contents of src and pts may not be modified (i.e., by other processes) during
the operation.

Effects

After the operation completes, the following conditions will hold:

1. src and pts will be unchanged.

2. For all i such that 0 ≤ i < pts.size(),
dest[pts[[i] + pts.min()]] == src[[i] + src.min()].

3. pts is permitted to contain duplicate points. If it does, the relevant destArray

element will contain the data value corresponding to the highest-indexed duplicate
in pts.

4. The contents of destArray at the affected points are undefined while operation is in
progress.

12.16 Non-blocking Array Copying

Non-blocking array copying exposes the initiation and synchronization of array copying to
the user, allowing overlap of copying with other communication and computation without
performing data-dependency and alias analyses to see that it is safe to do so. The motiva-
tion is that the programmer’s application-level knowledge should enable significantly more
aggressive overlapping than a general optimizer could ever hope to accomplish.

All non-blocking operations require an initiation (the copy call) and a subsequent syn-
chronization on the completion of that operation before the result at the destination is
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defined. Between the initiation of the copy operation and the completion of the correspond-
ing sync, any use of one of the target elements (by any process) produces an undefined
value and any assignment to one of the target or source elements (by any process) has an
undefined effect on the targets’ final values.

There are two basic categories of non-blocking operations, defined by the synchroniza-
tion mechanism used:

• An explicit handle (NB) operation returns a specific handle from the initiation (of
type ti.lang.Handle), which the calling process must later use to synchronize that
particular copy (through its syncNB() instance method).

• An implicit handle (NBI) operation does not return a handle from the initiation.
Instead, the static routine Handle.syncNBI() must later be used to synchronize all
outstanding NBI operations issued by the calling process.

Non-blocking operations proceed independently of inter-process synchronization opera-
tions (barriers, broadcasts, synchronized regions, etc.), and the ‘sync’ operations in Handle

provide no inter-process synchronization. NB and NBI operations proceed independently
of each other; syncNBI does not affect on-going NB operations.

Specifications In package ti.lang:

public immutable class Handle {

/** Wait until the arraycopyNB or copyNB operation that created

* this Handle completes, and invalidate this Handle.

* Must be called by the same process that initiated the copy

* operation that returned this Handle.

*/

public void syncNB();

/** Wait until all arraycopyNBI and copyNBI operations

* issued by the calling process have completed.

*/

public static void syncNBI();

}

The following methods in java.lang.System have the same parameter signatures as
arraycopy:
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public static native Handle arraycopyNB(Object src, int src_position,

Object dst, int dst_position,

int length);

public static native void arraycopyNBI(Object src, int src_position,

Object dst, int dst_position,

int length);

}

All Titanium array types define the following two methods:

public void copyNBI(T [n d] x) overlap(this, x);

public Handle copyNB(T [n d] x) overlap(this, x);

Examples of using explicit handles.

int [1d] x,y;

int [] ja,jb;

...

Handle h = x.copyNB(y); // initiate a non-blocking copy from y -> x

// as for TiArray.copy()

Handle h2 = System.arraycopyNB(ja,0,jb,0,jb.length);

// initiate a non-blocking copy from ja -> jb

// as for System.arraycopy

h.syncNB(); // block until the first operation completes

h2.syncNB(); // block until the second operation completes

Examples of using implicit handles.

x.copyNBI(y); // initiate a non-blocking copy from y -> x

System.arraycopyNBI(ja,0,jb,0,jb.length);

// initiate a non-blocking copy from ja -> jb

Handle.syncNBI(); // block until both operations complete
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12.17 Bulk I/O

This library supports fast I/O operations on both Titanium arrays and Java arrays. These
operations are synchronous (that is, they block the caller until the operation completes).

12.17.1 Bulk I/O for Titanium Arrays

Bulk I/O works through two methods on Titanium arrays: .readFrom() and .writeTo().
The arguments to the methods are various kinds of file—currently: RandomAccessFile,
DataInputStream, DataOutputStream, in java.io and their corresponding subclasses,
BulkRandomAccessFile, BulkDataInputStream, and BulkDataOutputStream from ti.io.

Consider a Titanium array type whose elements are of an atomic type (§4.2). The
following methods are defined for this type:

/** Perform a bulk read of data into the elements of this

* array from INFILE. The number of elements read will be

* equal to domain().size(). They are read sequentially in

* row-major order. Throws java.io.IOException in the

* case end-of-file or an I/O error occurs before all

* data are read. */

void readFrom (java.io.RandomAccessFile infile)

throws java.io.IOException;

void readFrom (java.io.DataInputStream infile)

throws java.io.IOException;

/** Perform a bulk write of data from the elements of this array

* to OUTFILE. The number of elements written will be equal

* to domain().size(). They are written sequentially in row-major

* order. Throws java.io.IOException in the case of disk full or

* other I/O errors. */

void writeTo (java.io.RandomAccessFile outfile)

throws java.io.IOException;

void writeTo(java.io.DataOutputStream outfile)

throws java.io.IOException;

I/O on Partial Arrays

To read or write a proper subset of the elements in a Ti array, first use the regular array-
selection methods such as .slice() and .restrict() to select the desired elements, then
make I/O calls on the resultant arrays (these operations are implemented very efficiently
without performing a copy).
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12.17.2 Bulk I/O for Java Arrays in Titanium

The BulkDataInputStream, BulkDataOutputStream, and BulkRandomAccessFile classes
in the ti.io package implement bulk, synchronous I/O. They subclass the three classes
in java.io that can be used for I/O on binary data (so you can still use all the familiar
methods), but they add a few new methods that allow I/O to be performed on entire ar-
rays in a single call, leading to significantly less overhead (in practice speedups of over 60x
have been observed for Titanium code that performs a single large I/O using the readAr-
ray() and writeArray() methods, rather than many calls to a single-value-at-a-time method
like DataInputStream.readDouble()). These classes only handle single-dimensional Java
arrays whose elements have atomic types (see §4.2).

package ti.io;

public interface BulkDataInput extends java.io.DataInput {

/** Perform bulk input into A[OFFSET] .. A[OFFSET+COUNT-1] from this

* stream. A must be a Java array with atomic element type.

* Requires that all k, OFFSET <= k < OFFSET+COUNT be valid indices

* of A, and COUNT>=0 (or throws ArrayIndexOutOfBoundsException).

* Throws IllegalArgumentException if A is not an array of appropriate

* type. Throws java.io.IOException if end-of-file or input error

* occurs before all data are read. */

void readArray(Object A, int offset, int count)

throws java.io.IOException;

/** Equivalent to readArray (A, 0, N), where N is the length of

* A. */

void readArray(Object primjavaarray)

throws java.io.IOException;

}

public interface BulkDataOutput extends java.io.DataOutput {

/** Perform bulk output from A[OFFSET] .. A[OFFSET+COUNT-1] to this

* stream. A must be a Java array with atomic element type.

* Requires that all k, OFFSET <= k < OFFSET+COUNT be valid indices

* of A, and COUNT>=0 (or throws ArrayIndexOutOfBoundsException).

* Throws IllegalArgumentException if A is not an array of appropriate

* type. Throws java.io.IOException if disk full or other output

* error occurs before all data are read. */

void writeArray(Object primjavaarray, int arrayoffset, int count)

throws java.io.IOException;
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/** Equivalent to writeArray (A, 0, N), where N is the length of

* array A. */

void writeArray(Object primjavaarray)

throws java.io.IOException;

}

public class BulkDataInputStream

extends java.io.DataInputStream

implements BulkDataInput

{

/** A new stream reading from IN. See documentation of superclass. */

public BulkDataInputStream(java.io.InputStream in);

public void readArray(Object A, int offset, int count)

throws java.io.IOException;

public void readArray(Object A)

throws java.io.IOException;

};

public class BulkDataOutputStream

extends java.io.DataOutputStream

implements BulkDataOutput

{

/** An output stream writing to OUT. See superclass documentation. */

public BulkDataOutputStream(java.io.OutputStream out);

public void writeArray(Object A, int offset, int count)

throws java.io.IOException;

public void writeArray(Object A)

throws java.io.IOException;

};

public class BulkRandomAccessFile

extends java.io.RandomAccessFile

implements BulkDataInput, BulkDataOutput

{

80



/** A file providing access to the external file NAME in mode

* MODE, as described in the documentation of the superclass. */

public BulkRandomAccessFile(String name, String mode)

throws java.io.IOException;

/** A file providing access to the external file FILE in mode

* MODE, as described in the documentation of the superclass. */

public BulkRandomAccessFile(java.io.File file, String mode)

throws java.io.IOException;

public void readArray(Object A, int offset, int count)

throws java.io.IOException;

public void readArray(Object A)

throws java.io.IOException;

public void writeArray(Object A, int offset, int count)

throws java.io.IOException;

public void writeArray(Object primjavaarray)

throws java.io.IOException;

};

12.18 Controlling Garbage Collection

Two functions in ti.lang.Ti provide additional control over when garbage-collections may
happen.

suspend autogc() Temporarily suspends the use of automatic garbage collection on the
calling process. While suspended, garbage collection will not run on the current pro-
cess during allocation operations, except in response to explicit calls to System.gc().
In some configurations, suspending collection on one process may also prevent auto-
matic collections from running on one or more other processes. Suspending collection
for too long can lead to memory exhaustion.

resume autogc() Resumes the use of automatic garbage collection on a particular process.
Must be matched by a previous call to suspend autogc() on this process. Pairs of
calls to suspend autogc() and resume autogc() nest; automatic collection will only
be enabled outside all such pairs of calls.
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Chapter 13

Various Known Departures from Java

1. Blank finals: Currently the compiler does not prevent one from assigning to a blank
final field multiple times. This minor pathology is sufficiently unimportant that is
unlikely to be fixed, but it is best for programmers to adhere to Java’s rules.

2. Dynamic class loading: Titanium does not implement java.lang.ClassLoader

or the java.lang.Class.forName method.

3. Thread creation: SPMD processes are the only thread-like entities that may be
created. Java classes that depend on thread creation, such as those in java.awt and
java.net, are consequently not implemented.

4. Strictfp: The strictfp keyword is accepted, but has no effect.

5. Covariant return types: As in Java 1.5, but not 1.4, Titanium allows the return
type of an overriding method to be a subtype of that of the overridden method.

6. Static fields: The compiler replicates static storage so that a single textual definition
of a static field actually represents a distinct variable in each process. See §9.6.
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Chapter 14

Handling of Errors

Technically, in those places that the language specifically says that “it is an error” for the
program to perform some action, the result of further execution of the program is undefined.
However, as a practical matter, compilers should comply with the following constraints,
absent a compelling (and documented) implementation consideration. In general, a situ-
ation that “is an error” should halt the program (preferably with a helpful traceback or
other message that locates the error). It is not required that the program halt immediately,
as long as it does so eventually, and before any change to state that persists after execution
of the program (specifically, to external files). Therefore, it is entirely possible that several
erroneous situations might be simultaneously pending, and such considerations as which
of them to report to the user are entirely implementation dependent.

14.1 Erroneous Exceptions

In addition to the erroneous conditions described in other sections of this manual, it is an
error to perform any action that, according to the rules of standard Java, would cause the
implementation to throw one of the following exceptions implicitly (that is, in the absence
of an explicit ‘throw’ statement):

ArithmeticException ArrayStoreException,

ClassCastException,

IndexOutOfBoundsException, NegativeArraySizeException,

NullPointerException,

ThreadDeath,

VirtualMachineError (and subclasses)
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Appendix A

Notes

These are collected discussion notes on various topics. This section is not part of the
reference manual.

A.1 On Consistency

Note 1. We debated whether there should be a single total order E for a given execution
or one for every process in the execution. The latter seems to admit implementations
that are not strictly cache-coherent, since processes may see writes happening in different
orders. Our interpretation of the Java semantics is the stronger single serial order, so we
have decided to use that in Titanium. This is subject to change if we find a significant
performance advantage on some platform to the weaker semantics. Even with the single
serial order, the semantics are quite weak, so it is unlikely that any program would rely on
the difference. The following example is an execution that would be correct in the weaker
semantics, but not in the stronger one – we are currently unable to find a motivating
problem in which this execution would arise.

// initially X = Y = 0

P1 P2 P3

X = 2 X = Y Y = X

Y = 1

// Separating and labeling the accesses:

P1 P2 P3
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(A) Write X Read Y (C) Read X (E)

(B) Write Y Write X (D) Write Y (F)

// The following execution constitutes an incorrect behavior:

Read Y (C) returns 1, Read X (E) returns 2,

X = 2, Y = 1 at the end of execution.

We observe that:

1. Access (C) consumes the value produced by (B) since it returns 1. The only other
candidate is (F). Let us assume that (F) indeed wrote the value 1. That would imply:

(a) (D) hasn’t taken place yet

(b) (E) read 1

(c) (A) must have written 1, which is false.

2. Similarly (E) consumes the value produced by (A).

3. According to P2, since the final value of X is 2:

B < C < D < A

4. According to P3, since the final value of Y is 1:

A < E < F < B

Note 2. The Titanium semantics as specified are weaker than Split-C’s in that the default
is weak consistency; sequential consistency (the default in Split-C) can be achieved through
the use of volatile variables. However, this semantics is stronger than Split-C’s put and
get semantics, since Split-C does not require that dependences be observed. For example,
a put followed by a read to the same variable is undefined in Split-C, unless there is an
intervening synch. This stronger Titanium semantics is much nicer for the programmer, but
may create a performance problem on some distributed memory platforms. In particular,
if the network reorders messages between a single sender and receiver, which is likely if
there are multiple paths through the networks, then two writes to the same variable can
be reordered. On shared memory machines this will not be an issue. We felt that it was
worth trying to satisfy dependences at some risk of performance degradation.
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Note 3. The Java specification makes this qualification about divisibility only on non-
volatile double and long values. It gives the (unstated) impression that accesses to 64-bit
volatile values are indivisible. This seems to confuse two orthogonal issues: the size of an
indivisible value and the relative order in which operations occur.

A.2 Advantages of Regions [David Gay]

1. The memory management costs are more explicit than with garbage collection: there
is a predictable cost at region creation and deletion and on each field write. The costs
of the reference counting for local variables should be negligible (at least according
to the study we did for our PLDI paper, but I am planning a somewhat different
implementation). With garbage collection, pauses occur in unpredictable places and
for unpredictable durations.

2. Region-based memory management is safe.

3. I believe that this style of region-based memory management is more efficient than
parallel garbage collection. Obviously this claim requires validation.

4. When reference-counting regions instead of individual objects two common problems
with reference counting are ameliorated: minimal space is devoted to storing reference
counts, and cyclic structures can be collected so long as they are allocated within a
single region.

A.3 Disadvantages of Regions [David Gay]

1. Regions are obviously harder to use than garbage-collection.

2. As formulated above, regions will not mesh well with Java threads (which are cur-
rently not part of Titanium). You must stop everything to delete a shared region.
Currently this is enforced by including a barrier in the shared region deletion oper-
ation, but with threads that is no longer sufficient. There are a number of possible
solutions, but none of them seem very good:

(a) Require r.delete() to be called from all threads. This would be painful for
the programmers.

(b) The implementation of r.delete() can just stop the other threads on the same
process. However, to efficiently handle local variables containing references one
needs to know all points where a process may be stopped (and obviously if these
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points are “all points in the program” then efficiency is lost). So this solution
doesn’t seem very good either.
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77
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Complex.atan method, 63
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Ti.barrier method, 39
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Boolean class, modifications, 69
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border method (on grid), 16
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RectDomain.boundingBox method, 7, 57
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broadcast expression, 39
bulk I/O, 78–81
BulkDataInput methods

readArray, 79
BulkDataInputStream, 78, 79
BulkDataInputStream methods

readArray, 80
BulkDataOutput methods

writeArray, 80
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BulkDataOutputStream, 78, 79
BulkDataOutputStream methods

writeArray, 80
BulkRandomAccessFile, 78, 79
BulkRandomAccessFile methods

readArray, 81
writeArray, 81

Byte class, modifications, 69

circular dependence, 33
Object.clone method, 69
clone method (on reference), 22
coercion

Domain to RectDomain, 6
RectDomain to Domain, 6

coercions, reference type, 22
compiler.flags property, 68
Complex, 61–63
Complex methods

absSquare, 63
abs, 63
acosh, 63
acos, 63
arg, 63
asinh, 63
asin, 63
atanh, 63
atan, 63
conj, 63
cosh, 63
cos, 63
exp, 63
im, 63
parseComplex, 63
re, 63
sinh, 63
sin, 63
sqrt, 63
tanh, 63
tan, 63

Complex.conj method, 63
consistency model, 45–47
constructor

for domains, 6
Domain.contains method, 8, 55
RectDomain.contains method, 8, 57
control flow and global synchronization,

43–44
conversions, reference type, 22
copy method (on grid), 15, 53, 72
copy constructor for Domain, 10, 55
copying sparse grids, 72–75
copyNB method (on grid), 53, 77
copyNBI method (on grid), 53, 77
Complex.cos method, 63
Complex.cosh method, 63
Object.creator method, 69
creator method (on grid), 53
creator method (on reference), 22

default constructor, sharing qualification,
25

default value of immutable type, 18
demesne, 20–23, 37
depends, 33
Point.direction method, 4, 54
directly depends, 33
Domain, 5–11
Domain fields

arity, 7, 55
Domain methods

PointList, 10, 55
RectDomainList, 10, 55
arity, 7, 55
boundingBox, 7, 55
contains, 8, 55
equals, 8, 55
isEmpty, 55
isRectangular, 6, 55
lwb, 7, 55
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max, 7, 55
min, 7, 55
permute, 55
setRegion, 10, 31, 55
size, 7, 55
toDomain, 10, 55
toString, 10, 55
upb, 7, 55

domain method (on grid), 15, 53
Domain copy constructor, 10, 55
Double class, modifications, 69
DoubleOp, 61
dynamic class loading, absence of, 82

embedded fields, 22
Domain.equals method, 8, 55
Point.equals method, 5
RectDomain.equals method, 8, 57
errors, 83
exchange method (on grid), 16, 38, 53
Complex.exp method, 63
externally referenced regions, 28

finalize on immutable types, 19
finalize methods in regions, 29
Float class, modifications, 69
foreach, 2, 11
from, 2

gather method (on grid), 53, 73
Reduce.gen method, 59
Scan.gen method, 61
global effects, 40, 43, 45
global pointer, 20–23
global synchronization, 39–45
grid (Titanium array), 13–17
grid methods

arity, 15
border, 16
copyNBI, 53, 77
copyNB, 53, 77

copy, 15, 53, 72
creator, 53
domain, 15, 53
exchange, 16, 38, 53
gather, 53, 73
inject, 15, 53
isContiguous, 16, 53
isEmpty, 16
isLocal, 53
overlap, 53
permute, 16, 53
project, 15, 53
readFrom, 53, 78
regionOf, 53
restrict, 15, 53
scatter, 53, 74
set, 16, 53
shrink, 16
size, 16
slice, 16, 53
translate, 15, 53
writeTo, 53, 78

grid types, and Object, 13, 14
grid, allocation, 14
grids, assignment compatibility, 14
grids, indexing, 15
grids, overlapping, 17

Handle, 76

Complex.im method, 63
immutable, 2
immutable classes, 18–19
immutable type, default value, 18
indexing, on Points, 4
inject method (on grid), 15, 53
inline, 2
inline qualifier, 48
Integer class, modifications, 69
IntOp, 61

91



isContiguous method (on grid), 16, 53
Domain.isEmpty method, 55
RectDomain.isEmpty method, 57
isEmpty method (on grid), 16
Object.isLocal method, 69
isLocal method (on grid), 53
isLocal method (on reference), 22
Domain.isRectangular method, 6, 55
RectDomain.isRectangular method, 6, 57

java.lang.System methods
arraycopyNBI, 77
arraycopyNB, 77

java.version property, 68

local, 2, 13, 22
local pointer, 20–23
Object.localClone method, 69
localClone method (on reference), 22
Long class, modifications, 69
LongOp, 61
Point.lowerBound method, 5
lvalue, 15
Domain.lwb method, 7, 55
RectDomain.lwb method, 7, 57

macro pre-processing, 48
main procedure, signature of, 3
Math package, modifications, 69
Domain.max method, 7, 55
RectDomain.max method, 7, 57
Reduce.max method, 59
Scan.max method, 61
memory consistency, 45–47
Timer.micros method, 64
Timer.millis method, 64
Domain.min method, 7, 55
RectDomain.min method, 7, 57
Reduce.min method, 59
Scan.min method, 61
Reduce.mult method, 59

Scan.mult method, 61
ti.lang.Ti.myTeam method, 68

new, 29
non-blocking array copying, 75–77
nonshared, 2, 13, 23–27
null, sharing qualification, 25
Number class, modifications, 69
ti.lang.Ti.numProcs method, 68

Object methods
clone, 69
creator, 69
isLocal, 69
localClone, 69
regionOf, 29

ObjectOp, 61
op, 2
operator overloading, 35–36
Reduce.or method, 59
Scan.or method, 61
origin, 5
overlap, 2
overlap method qualifier, 17
overlap method (on grid), 53
overlapping arrays and grids, 17

PAPICounter, 64–67
Complex.parseComplex method, 63
partition, 2
partition statement, 50
Domain.permute method, 55
Point.permute method, 5, 54
RectDomain.permute method, 7, 57
permute method (on grid), 16, 53
Point, 4–5
Point fields

arity, 5, 54
Point methods

all, 4, 54
arity, 5, 54
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direction, 4, 54
equals, 5
lowerBound, 5
permute, 5, 54
replace, 5
toString, 5
upperBound, 5

Domain.PointList method, 10, 55
Ti.poll method, 72
ti.lang.Ti.poll method, 68
polyshared, 2, 13, 23–27
pre-processing, 48
private regions, 27–29
PrivateRegion, 29
process, 37
process team, 37
project method (on grid), 15, 53

QualifiedBaseType, 13
Qualifier, 13
qualifier, base, 13
qualifier, top-level, 13

Complex.re method, 63
BulkDataInput.readArray method, 79
BulkDataInputStream.readArray method,

80
BulkRandomAccessFile.readArray method,

81
readFrom method (on grid), 53, 78
RectDomain, 5–11
RectDomain fields

arity, 7, 57
RectDomain methods

accrete, 9, 57
all, 57
arity, 7, 57
border, 10, 57
boundingBox, 7, 57
contains, 8, 57

equals, 8, 57
isEmpty, 57
isRectangular, 6, 57
lwb, 7, 57
max, 7, 57
min, 7, 57
permute, 7, 57
shrink, 9, 57
size, 7, 57
slice, 10, 57
stride, 7, 57
toString, 10
upb, 7, 57

Domain.RectDomainList method, 10, 55
Reduce methods

add, 59
and, 59
gen, 59
max, 59
min, 59
mult, 59
or, 59
xor, 59

reference methods
clone, 22
creator, 22
isLocal, 22
localClone, 22
regionOf, 22

region-based allocation, 27–31
RegionInUse, 29
Object.regionOf method, 29
regionOf method (on grid), 53
regionOf method (on reference), 22
regions, allocating from, 29
Point.replace method, 5
Timer.reset method, 64
restrict method (on grid), 15, 53
ti.lang.Ti.resume autogc method, 68,

81
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runtime.boundschecking property, 68
runtime.distributed property, 68
runtime.gc property, 68
runtime.model property, 68
runtime.shared property, 68

Scan methods
add, 61
and, 61
gen, 61
max, 61
min, 61
mult, 61
or, 61
xor, 61

scatter method (on grid), 53, 74
Timer.secs method, 64
set method (on grid), 16, 53
Domain.setRegion method, 10, 31, 55
sglobal, 2
shared regions, 27–29
SharedRegion, 29
sharing qualification, 23–27
Shrt class, modifications, 69
RectDomain.shrink method, 9, 57
shrink method (on grid), 16
Complex.sin method, 63
single, 2, 13, 40
single analysis, 39–45
single throw statement, 40
single-valued expression, 40–43
Complex.sinh method, 63
Domain.size method, 7, 55
RectDomain.size method, 7, 57
size method (on grid), 16
RectDomain.slice method, 10, 57
slice method (on grid), 16, 53
sparse grids, copying, 72–75
Complex.sqrt method, 63
standard arrays, restrictions, 17

Timer.start method, 64
static fields, per-process, 47
static initializers, 47
Timer.stop method, 64
stride, 5
RectDomain.stride method, 7, 57
String constants, interning, 47
String literals, sharing qualification, 25
ti.lang.Ti.suspend autogc method, 68,

81
ti.lang.Handle.syncNB method, 76
ti.lang.Handle.syncNBI method, 76

Complex.tan method, 63
Complex.tanh method, 63
template, 2
TemplateActual, 32
TemplateDeclaration, 33
TemplateFormal, 33
TemplateHeader, 33
TemplateInstantiation, 32, 34
templates, 32

defining, 32
denoting instantiations, 32
instantiation, 34
name equivalence, 34
names in, 33

this, sharing qualification, 25
Ti.thisProc method, 37
ti.lang.Ti.thisProc method, 68
threads, absence of, 82
ThrowStatement, 40
Ti, 67–68
Ti methods

barrier, 39
poll, 72
thisProc, 37

ti.lang, 3
ti.lang.Handle methods

syncNBI, 76
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syncNB, 76
ti.lang.Ti methods

barrier, 68
myTeam, 68
numProcs, 68
poll, 68
resume autogc, 68, 81
suspend autogc, 68, 81
thisProc, 68

Timer, 63–64
Timer methods

micros, 64
millis, 64
reset, 64
secs, 64
start, 64
stop, 64

Titanium array, see grid
Domain.toDomain method, 10, 55
Domain.toString method, 10, 55
Point.toString method, 5
RectDomain.toString method, 10
translate method (on grid), 15, 53
Type, 13

unit stride, 5
universal catch clause, 40
universal termination, 40
universal throws clause, 40
Domain.upb method, 7, 55
RectDomain.upb method, 7, 57
Point.upperBound method, 5

BulkDataOutput.writeArray method, 80
BulkDataOutputStream.writeArray method,

80
BulkRandomAccessFile.writeArray method,

81
writeTo method (on grid), 53, 78

Reduce.xor method, 59

Scan.xor method, 61
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