
Otto-von-Guericke-University Magdeburg

Faculty for Computer Science
Department of Technical and Business Information Systems

Master Thesis

A Survey and Classification of Data Management

Research Approaches in the Cloud

Author:

Siba Mohammad

September 11, 2011

Supervisor:

Prof. Dr. rer. nat. habil. Gunter Saake,
Dr. -Ing. Eike Schallen

University Magdeburg
Faculty for Computer Science

P.O.Box 4120, D–39016 Magdeburg

Germany

Siba, Mohammad:
A Survey and Classification of Data Manage-
ment Research Approaches in the Cloud
Master Thesis, Otto von Guericke University
Magdeburg, 2011.

i

Acknowledgments

I want to thank my supervisor Prof. Gunter Saake for giving me the chance to work
with the database group. I want to thank my supervisor Dr. Eike Schallehn for his
advice and helpful feedback. I am very thankful for the time he spent reading my drafts.
Many thanks to my colleagues Azeem Lodhi and Maik Mory for all the discussions and
suggestions. Last but not least, many thanks to my lovely family and friends for their
support and encouragement during this thesis.

ii

CONTENTS iii

Contents

Contents iii

List of Figures vii

List of Tables ix

List of Abbreviations xi

1 Introduction 1

1.1 Motivation . 1

1.2 Structure . 1

2 Foundations and Related Topics 3

2.1 Database Systems . 3

2.1.1 Traditional Database Management System (DBMS) 3

2.1.2 Parallel Database Systems . 6

2.2 Cloud Computing Overview . 8

2.2.1 Design Principles and Models of Cloud Computing 10

2.2.2 Cloud Computing Enabling Technologies and Related Standards . 12

2.2.3 Security and Data Privacy Issues 14

2.2.4 Grid Computing vs. Cloud Computing 15

3 Amazon Storage for the Cloud 17

3.1 Dynamo . 17

3.1.1 Architecture and Overview . 18

3.1.2 Consistency Model . 19

3.1.3 Query Model . 19

iv CONTENTS

3.2 Amazon Simple Storage Service (S3) . 19

3.2.1 Data Model . 19

3.2.2 Consistency Model . 20

3.2.3 Query Model . 21

3.2.4 Access Control . 21

3.3 Amazon SimpleDB . 22

3.3.1 Data Model . 22

3.3.2 Consistency Model . 23

3.3.3 Query Model . 23

3.3.4 Access Control . 25

3.4 Relational Database Service (RDS) . 25

3.4.1 Architecture . 25

3.4.2 Data Model . 26

3.4.3 Consistency Model . 26

3.4.4 Query Model . 27

3.4.5 Access Control . 27

4 Google Storage for the Cloud 29

4.1 Google File System (GFS) . 29

4.1.1 Architecture and Overview . 29

4.2 Bigtable . 30

4.2.1 Data Model . 31

4.2.2 Bigtable Architecture . 31

4.2.3 Consistency model . 32

4.2.4 Query model . 32

4.2.5 Access control . 33

4.3 Google Storage for Developers . 33

4.3.1 Data Model . 33

4.3.2 Query Model . 33

4.3.3 Consistency model . 34

4.3.4 Access Control . 34

CONTENTS v

5 Hadoop Storage for the Cloud 35

5.1 Hadoop . 35

5.1.1 Architecture and Overview . 35

5.2 Hadoop Distributed File System (HDFS) 37

5.2.1 Architecture and Overview . 37

5.3 Hive . 39

5.3.1 Architecture . 39

5.3.2 Data Model . 41

5.3.3 Query Model . 41

5.3.4 Access Control . 44

5.4 HadoopDB . 45

5.4.1 Architecture and overview . 45

5.5 HBase . 45

5.5.1 HBase Architecture . 47

5.5.2 Data Model . 48

5.5.3 Consistency Model . 48

5.5.4 Query Model . 48

5.5.5 Access Control . 49

6 Yahoo!’s PNUTS 51

6.1 Architecture . 51

6.2 Data Model . 52

6.3 Consistency Model . 53

6.4 Query Model . 53

6.5 Access Control . 53

7 Cassandra 55

7.1 Architecture . 55

7.2 Data Model . 56

7.3 Consistency Model . 56

7.4 Query Model . 58

7.5 Access Control . 60

vi CONTENTS

8 CouchDB 61

8.1 Architecture . 61

8.2 Data Model . 62

8.3 Consistency Model . 63

8.4 Query Model . 63

8.5 Access Control . 63

9 Comparison and Classification of Current Approaches 65

9.1 Architecture and Overview . 65

9.2 Partitioning . 68

9.3 Replication . 71

9.4 Classification based on Data Model . 74

9.5 Consistency, Availability, and Partition Tolerance 76

9.6 Data Access and Query Model . 78

10 Conclusions and Future Work 81

Bibliography 83

LIST OF FIGURES vii

List of Figures

2.1 Relational data model . 4

2.2 Teradata System Architecture adapted from [ter] 8

2.3 From mainframes to cloud computing adapted from [VZ09] 9

2.4 cloud computing deployment models adapted from [FE10] 11

2.5 Cloud computing service models adapted from [FE10] 12

3.1 Dynamo Ring adapted from [Vog11] . 18

3.2 S3 data model adapted from [PC10] . 20

3.3 Typical way of using SimpleDB and S3 adapted from [PC10] 22

3.4 SimpleDB data model adapted from [PC10] 23

3.5 Amazon RDS Architecture . 26

4.1 Google File System Architecture [GGL03] 30

4.2 Google’s Bigtable data model adapted from [CDG+06] 31

4.3 Google’s Bigtable Architecture adapted from [CDG+06] 32

5.1 Hadoop Cluster Architecture adapted from [Nol11] 36

5.2 Hadoop Distributed File System Architecture adapted from [Bor08] . . . 38

5.3 Hive Architecture adapted from [TSJ+09] 40

5.4 Hive Data Model adapted from [Tea09] 41

5.5 HadoopDB Architecture adapted from [ABPA+09] 46

5.6 HBase Architecture adapted from [Geo11] 47

6.1 PNUTS System Architecture adapted from [CRS+08] 52

7.1 Cassandra Data Model adapted from [cas11a] 57

7.2 Cassandra Data Model: Super Column Family adapted from [Hew10] . . 58

viii LIST OF FIGURES

8.1 CouchDB Architecture adapted from [Cou11a] 62

9.1 RDBMS as a service in the cloud . 65

9.2 Architectural components for data management in the cloud 66

9.3 Family tree of cloud storage systems . 68

9.4 Classification based on data partitioning scheme 69

9.5 Classification based on replica placement strategy 72

9.6 Classification based on data models . 75

9.7 Classification based on CAP . 77

9.8 Classification based on query model . 79

LIST OF TABLES ix

List of Tables

9.1 Comparison of data partitioning of cloud storage systems 70

9.2 Comparison of replication of cloud storage systems 73

9.3 Comparison of data model of cloud storage systems 75

9.4 Query models and supported languages and APIs of different cloud storage

systems . 79

x LIST OF TABLES

xi

List of Abbreviations

ACID Atomicity Consistency Isolation Durability

ACL Access Control List

AGATA Advanced Gamma Tracking Array

AMP Access Module Processor

AWS Amazon Web Services

BASE Basically Available Soft-state Eventual consistent

BOOM Berkeley Orders Of Magnitude project

CAP Consistency, Availability, and Partition tolerance

CLI Call Level Interface

CQL Cassandra Query Language

DAG Directed Acyclic Graph

DB Database

DBMS Database Management System

DDL Data Definition Language

DCL Data Control Language

DFS Distributed File System

DML Data Manipulation Language

GFS Google File System

HDFS Hadoop Distributed File System

HiveQL Hive Query Language

IAM Amazon Web Services (AWS) Identity and Access Management

xii

IFP Interface processor

JSON JavaScript Object Notation

MVCC Multi-version Concurrency Control

OLTP On line Transactional Processing

PDE Parallel Database Extension

PE Parsing Engine

OQL Object Query Language

QL Query Language

RDB Relational Database

RDBMS Relational Database Management System

RDS Relational Database Service

RM Relational model

RRS Reduced Redundancy Storage

S3 Simple Storage Service

SCLA Strongly Consistent Loosely Available

SLA Service Level Agreement

SMS SQL to MapReduce to SQL

SQL Structured Query language

TCL Transaction Control

TDP Teradata Director Program

UD User Defined

XML Extensible Markup Language

YMB Yahoo! Message Broker

ZK Zookeeper

Chapter 1. Introduction 1

Chapter 1

Introduction

Cloud computing is a new technology that promises to change the IT world by providing
resources as an elastic pool of services in a pay-as-you-go model. Just like the electric
grid freed corporations from worrying about generating their own electricity. The cloud
promises to free corporations from worrying about their IT resources to focus on their
business logic. Whether it is storage space, computational power, or software delivery,
corporations can get these resources over the network from one of the cloud providers
such as Amazon, and Google.

To meet the storage needs of cloud applications, new data management systems have
been developed. Design decisions were made by analyzing the applications workloads
and technical environment. It was realized that traditional DBMS with their centralized
architecture, strong consistency, and relational model do not fit well. New data models
such as key-value store with its variations of row oriented, document oriented, and wide
column are used widely in the cloud. Different architectures with a variety of data
partitioning schemes and replica placement strategies are developed.

1.1 Motivation

This thesis investigates data storage approaches in the cloud. There are some scien-
tific research publications that highlights certain approaches. However, there are only
very few publications that provide a survey of these approaches. This thesis aims at
classifying, comparing, and summarizing data management research approaches in the
cloud.

1.2 Structure

This thesis will continue as follows:

• Chapter 2 Foundations and Related Topics: Describes the basics of DBMSs and
goes into details of traditional relational DBMSs and Parallel DBMSs. It also
introduces cloud computing basics such as design principles, deployment models
and enabling technologies.

2 1.2. Structure

• Chapter 3 Amazon Storage for the Cloud: Examines the Amazon cloud data man-
agement. It starts with Amazon’s storage building block: Dynamo. Then goes
into more details of the data model, query model, consistency model, and access
control of S3, SimpleDB, and RDS.

• Chapter 4 Google Storage for the Cloud: Examines the Google cloud data manage-
ment. It starts with Google’s storage building block: GFS. Then goes into more
details of the data model, query model, consistency model, and access control of
Bigtable and Google Storage for Developers.

• Chapter 5 Hadoop Storage for the Cloud: Examines Hadoop Framework data
management. It starts with Hadoop’s building block: HDFS. Then goes into more
details of the data model, query model, consistency model, and access control of
Hive, HadoopDB, and HBase.

• Chapter 6 Yahoo!’s PNUTS: Examines the system architecture of PNUTS and goes
in details of its data model, query model, and consistency model.

• Chapter 7 Cassandra: Examines the system architecture of Cassandra and goes in
details of its data model, query model, consistency model, and access control.

• Chapter 8 CouchDB: Examines the system architecture of CouchDB and goes in
details of its data model, query model, consistency model, and access control.

• Chapter 9 Comparison and Classification of Current Approaches: Compares the
examined approaches and provides a classification based on architecture, partition-
ing, replication, data model, CAP, and query model.

• Chapter 10 Conclusion: Summarizes the results and gives an outlook of important
research directions.

Chapter 2. Foundations and Related Topics 3

Chapter 2

Foundations and Related Topics

In this chapter, we provide the background for the rest of the thesis. We describe
traditional and parallel DBMS. Then we introduce the basics of cloud computing.

2.1 Database Systems

In this section we introduce the requirements of a DBMS. We go into details of data
model, consistency model, query model, and access control. Then, we examine some
aspects of parallel DBMS which shares some aspects with cloud storage systems.

2.1.1 Traditional DBMS

A DBMS is a suite of software designed to manage databases and run operations on the
data that are requested by several clients. A DBMS is expected to be able to provide
the following [JDU97]:

• A DBMS should allow users to create new databases. Users define the logical struc-
ture (database schema) of the the data that will be stored using a data definition
language.

• A DBMS allows users to modify and query the data using a query language or
data manipulation language.

• A DBMS is capable of managing large amounts of data while keeping the efficiency
of querying and manipulations.

• A DBMS supports durable storage of data. This means recovery from failures and
misuse cases.

• A DBMS controls access to data from multiple users with different privileges. It
should prevent unexpected interactions between users (isolation) and uncompleted
actions on data (atomicity).

Based on these requirements we will investigate the following aspects of a DBMS:

4 2.1. Database Systems

attributesPrimary key

column1 column2 column3

Value1 Value value relation

y y

Value1 Value value

Value2 Value value

relation

tuple

Foreign key

column1 column4

Value1 Value

Value2 Value

Figure 2.1: Relational data model

Data Model: A data model is a model that describes in an abstract way how data is
represented in an information system or in a DBMS. Choosing the data model has
a fundamental effect on the other aspects of a database system like the integrity
constrains, and data access. Next we list the most important data models:

• Hierarchical model

• Network model

• Relational model (RM)

• Non-first normal form (NF2 and eNF2)

• Object-relational model (ORM)

• Object-oriented database model (OODM)

• Semi-structured and Extensible Markup Language (XML) model

The most commonly used data model is RM. It was developed for classic database
applications such as banking systems, airlines reservations, and sales/customers re-
lations. It was implemented by major DBMS like Oracle, IBM DB2, MS SQL, Post-
greSQL, etc. In this model, Data is organized in tables(relations) of records(tuples)
with columns(attributes). See figure 2.1. A table can have a primary key which is
the unique identifier of rows. A primary key can be referenced from another table
as a foreign key and forces integrity constrains on the data.

Consistency Model: Consistency ensures that only valid data is written to a
database and that transactions transform data from one consistent state to an-
other. There are different consistency models that satisfy the needs of different

Chapter 2. Foundations and Related Topics 5

database applications. Atomicity Consistency Isolation Durability (ACID) proper-
ties means strong consistency and are usually implemented in relational databases.
With ACID, all users have the same consistent view of data before and after trans-
actions. A lock manager makes sure that data is locked while being modified by
a transaction. If another transaction tries to access data while data is locked,
it has to wait. Multi-version Concurrency Control (MVCC) is a replacement for
lock-based systems and is implemented by some relational databases and most dis-
tributed databases. MVCC allows several processes to access data in parallel even
if one is modifying the data. Consistency is maintained using some kind of times-
tamp. Eventual consistency is supported by web scale data management Basically
Available Soft-state Eventual consistent (BASE) properties. Eventual consistency
does not guarantee that all users see the same version of data item but guarantees
that all of them see data (no locking).

Query Model: Data is queried using several languages depending on the data model:
Structured Query language (SQL) for the RM, Object Query Language (OQL) for
the Object model, XQuery for the XML model. Most DBMSs have sophisticated
user interfaces, ad-hoc query support, and JDBC drivers for several languages. The
most used query language SQL is based of the operators of relational algebra and is
divided to Data Definition Language (DDL), Data Manipulation Language (DML),
Data Control Language (DCL), and Transaction Control (TCL). Next, the select
statement, is an example of SQL statements:

SELECT [ALL | DISTINCT] column1[,column2]

FROM table1[,table2]

[WHERE "conditions"]

[GROUP BY "column-list"]

[HAVING "conditions]

[ORDER BY "column-list" [ASC | DESC]]

Access Control: Database access control deals with controlling who has access to
which data in the database. Most of databases have role-based access control
model [RSRS98]. We list the most important aspects of this model in the following:

• Assignable privileges: a privilege defines the read, write, and modify rights on the
whole database or parts of it (e.g. tables, views, and indices). Privileges can be
assigned to a role, a user or group of users.

• User role assignment: initially a user is not assigned any role but can be assigned
multiple roles. A role can also be assigned to another role or a group of users.

• Support for role relationships and constraints: the database admin as well as a
user who is granted a role with a GRANT OPTION can grant the role to other
users. This allows roles nesting.

6 2.1. Database Systems

2.1.2 Parallel Database Systems

Parallel database systems are database systems that parallelize various database op-
erations such as data loading, index building, and query execution to improve perfor-
mance. Parallel databases usually store data on different nodes. They are built on
multi-processor architectures which classified into the following:

• Shared Memory Architecture: processors share direct access to one global memory
and to all disks. This architecture is also called shared everything.

• Shared Disk Architecture: each processor has its own memory but can directly
access all disks.

• Shared Nothing Architecture: each processor had its own memory and and disks.

Shard memory and shared disk architectures do not scale well for database applications.
A major problem for both of them is interference and network traffic. Shared nothing
architecture minimizes the need for interference by minimizing the shared resources and
thus minimizing the transfered data. It is considered to communicate small amounts
of data compared to the other two architecture [DG92]. The shared nothing architec-
ture communicates only questions and their answers. The advantage that this brings is
the ability to scale to hundreds of processors that do not interfere. Examples of par-
allel DBMSs are Teradata, Gamma, Tandem, Oracle RAC, and IBM InfoSphere. Most
parallel DBMSs use the RM. Each relation is horizontally partitioned and its tuples
are distributed over several nodes of the database cluster. Parallel DBMS provide the
following horizontal partitioning techniques [AS10]:

• Round-robin Partitioning: it is considered the simplest strategy. Tuples of a rela-
tion are distributed in a round-robin fashion among the nodes. It is not considered
good for applications that do associative data access frequently.

• Hash Partitioning: tuples of a relation are distributed among disks by applying
a hash function to one or more attributes of the relation. This strategy is good
for applications with sequential and associative data access. It is implemented in
Teradata, Bubba, and Gamma,etc.

• Range Partitioning: in this strategy, tuples of a relation are partitioned to ranges
of key values. The partitioning is predefined or dynamic. It is implemented by
Oracle, Bubba, and Gamma, etc.

Horizontal partitioning of tables is essential for scalable performance of SQL queries and
leads to another important aspect of parallel databases which is parallel query processing.
Relational queries are suitable for parallel processing with shared nothing architecture
achieving near linear speedup for these queries and specially for On line Transactional
Processing (OLTP) [DG92]. As an example we consider sales table partitioned using
the round-robin strategy, where rows of a single customer will be distributed on several
nodes of a database cluster. To execute a query, the paralle DBMS compiles it into
a number of operator pipeline jobs. Then executes the query plan on all the nodes in
parallel [SAD+10]. There are two classes of query parallelizing:

Chapter 2. Foundations and Related Topics 7

• Intra-Query Parallelization: this is applied on the query level where different oper-
ators of the query are executed by different processors. Examples are independent
and pipelining parallelization.

• intra-operator Parallelism: this kind is applied to each operator within a query. To
execute an operator, multiple processors can be employed. Examples are selections
from fragments, hash-based decomposition for join, etc.

Parallel DBMSs take into consideration the partitioning strategy that is applied on a
table when executing the query. For instance if two tables of a join are hash partitioned
on the joining attributes, the query optimizer will automatically and transparently to the
user and applications delete the shuffle operator from the compiled query plan [SAD+10].

Teradata: As an example of commercial parallel DBMS, we will examine Teradata
shortly. Teradata is a Relational Database Management System (RDBMS) that
supports large sizes of data up to hundreds of terabytes. It supports scalability
on all database dimensions such as data size, number of users, and complexity
of queries. Teradata was founded in the late seventies and is one of the pioneers
to adopt the shared nothing architecture. Many other parallel database system
use Teradata techniques of horizontally partitioning tables and partitioned query
execution [SAD+10]. Figure 2.2 illustrates the components of Teradata system. We
describe the most important components in this architecture in the following [ter]:

Call Level Interface (CLI): It is the interface that receives quires and returns
results. All SQL queries are transfered in the CLI packet format.

Teradata Director Program (TDP): It routes the packets to the specified
Teradata DBMS sever for execution.

Parallel Database Extension (PDE): It is the interface layer on top of the
operating system. It is responsible for providing the parallel environment,
scheduling sessions, debugging, etc.

Parser Dispatcher: It is responsible for managing sessions, parsing SQL, and
communicating with AMPs.

Teradata processors are divided in two groups based on their function: Interface
processor (IFP)s and Access Module Processor (AMP)s. The interface processors
handle communicating with the host and the access module processors handle
partitioning.

As for data partitioning and query execution, Teradata proved to demonstrate
near linear speedup and scaleup on relational storage and querying [DG92]. All
relations of the database are hash partitioned over AMPs. When inserting a tuple
in a relation, a hash function is applied on its key to decide, based on the result,
which AMP will store the tuple. Next step, the chosen AMP performs a second
hash function to decide where in the specified relation fragments should this tuple
be inserted. For query execution in Teradata, joins are executed using a parallel
merge-join algorithm rather than pipelined parallel execution.

8 2.2. Cloud Computing Overview

1

Introduction to Teradata RDBMS

Teradata RDBMS is a complete relational database management system. The system is based on
off-the-shelf Symmetric Multiprocessing (SMP) technology combined with a communication
network connecting the SMP systems to form a Massively Parallel Processing (MMP) system.
BYNET is a hardware inter-processor network to link SMP nodes. All processors in a same SMP
node are connected by a virtual BYNET. We use the following figure to explain how each
component in this DBMS works together.

PDE (Parallel Database Extensions):
This component is an interface layer on the top of operating system. Its functions
include: executing vprocs (virtualprocessors), providing a parallel environment,
scheduling sessions, debugging, etc.

SQL query Result Table

 CLI

 TDP

 Parser
 Dispatcher

 Database Management System

 Teradata File System

 Disk Subsystem

 Client

 Server

 PDE BYNET
 Inter-Processor Network

 AMPs
 Database
 Engine

 Parsing Engine PEs

Figure 2.2: Teradata System Architecture adapted from [ter]

2.2 Cloud Computing Overview

There is not a widely accepted definition of cloud computing due to different reasons.
One is the involvement of developers and engineers from different fields e.g. grid comput-
ing, software engineering and databases in cloud computing research, where each works
on it from a different perspective. Another reason is that the technologies, that enable
cloud computing such as Web 2.0 and service oriented computing, are still changing
and developing. Cloud computing can be defined as a model for ubiquitous, convenient,
on-demand network access to a shared pool of computing resources (infrastructure, appli-
cations, and platform) that can be provisioned and released with minimal management
effort or service provider interaction [MG11]. Figure 2.3 shows the development of com-
puting models from terminal/mainframes to cloud computing.

The essential characteristics and features of cloud computing are described in the
following. First of all it must be an on-demand self-service, which means that users of
the cloud can automatically provision resources with minimal or no human interference of
the cloud service provider. Users access the cloud services via network deploying suitable
techniques and protocols with the use of thick or thin clients. Another characteristic
is resource pooling. It means that services of the cloud are pooled and serve many
consumers using a multi-tenant model.

Chapter 2. Foundations and Related Topics 9

1. Mainframes Computing Terminal1. Mainframes Computing

2. PC Computing

Terminal

Mainframe
p g

3. Network Computing Server

4. Internet Computing

Server

Server
Internet

Server

Grid
5. Grid Computing

Grid

6. Cloud Computing
cloud

Figure 2.3: From mainframes to cloud computing adapted from [VZ09]

10 2.2. Cloud Computing Overview

In the cloud, users usually do not know or control the location of the provided services
or resources. This is called Location Independence. In some cases or on demand, users
know the location on high level like city or data center. They can ask that their data
(or meta data about their data) never leaves the EU cloud to US cloud for instance.

Resources should look infinite to the users and according to their needs, resources
increase and decrease rapidly and in some cases automatically (rapid elasticity).

Monitoring service usage should be available for both provider and consumer. For
example Amazon provides the CloudWatch service that monitors the AWS resources
(EC2 and RDS database instances) and can be customized to monitor any metrics of
users’ applications.

Guaranteed Quality of Service (QoS) is very important in the cloud where users
expect certain level of service that should be agreed on. Cloud computing still face
many other challenges. Among them are security, privacy, and control issues.

2.2.1 Design Principles and Models of Cloud Computing

Cloud architectures and systems are implemented based on some basic principles that
are described in the following [AS311, Hel07]:

Decompose item into small well-understood building blocks: One should not
think of making a service that provides everything to everyone. For scalability
and availability issues it is better to build small elements which can be used to
make other services.

Decentralization: To get rid of any scaling bottlenecks or single points of failures, it
is recommended to decentralize the used techniques in the cloud systems

Asynchrony: The system can progress in all situations.

Autonomy: Individual elements of the system make decisions based on local informa-
tion.

Local responsibility: Elements are peers, each one of them has the responsibility of
achieving its consistency.

Controlled concurrency: Activities are planned to make sure that only limited con-
currency control is needed or in best case no control is needed at all.

Failure tolerant: Having failures of elements is considered to be the normal case.
Operations must continue with minimal or no interruption.

Controlled parallelism: Performance can be enhanced and recovery can be more
robust by introducing new elements. Parallelism makes that possible.

Simplicity: The system should be made as simple as possible (but not simpler).

In terms of who manages and owns the cloud services, we can divide its deployment
models into the following:

Chapter 2. Foundations and Related Topics 11

E t lExternal

Public cloud

public

Hybrid cloud

private

Private Cloud

Internal

Enterprise

Figure 2.4: cloud computing deployment models adapted from [FE10]

Public clouds: This is the most popular deployment model of cloud computing. In
this model, the cloud infrastructure and resources are owned by an enterprise that
provide them to individuals or other enterprises in a pay-as -you-go model. Cloud
resources are shared between many consumers. Leaders in the market providing
cloud services of this model are Google and Amazon. They provide many options
that allow users to get the resources with minimal cost and less management efforts.
Major concerns are privacy, security, and data control.

Private clouds: Cloud infrastructure operates to serve one organization. Management
of cloud is done by a third part or by the organization. This model usually attracts
governments and organizations that prefer to keep data in a private environment.

Hybrid clouds: The cloud infrastructure is a combination of private and public clouds.
Each of them will still be a single entity connected to another cloud. In this case
enterprises can choose to store their data on the private part of the cloud.

Community clouds: Enterprises with the same needs share the cloud infrastructure.
Cloud is managed by a third party or by the enterprises that share it.

Figure 2.4 illustrates the different deployment models.

In figure 2.5 we can see the cloud service models. The first model is Software as a
Service (SaaS). In this model, thin clients (Internet browsers) are used to access software
and applications that operate on the cloud. Users cannot control the underlying infras-
tructure on which these applications operate (operating systems, networks, servers). In

12 2.2. Cloud Computing Overview

Users/applications

SaaS

PaaS
Service Layer

IaaS
Platform Layer

Infrastructure Layer

Enabling Technologies(hardware and software)

Figure 2.5: Cloud computing service models adapted from [FE10]

some cases, they can modify some application parameters and settings. Example of that
is salesforce. The second service model is Platform as a Service (PaaS). The service pro-
vided in this case is the cloud platform and programming environment on which users
can create and run thier own applications. Operating system, network components and
hardware are controlled by the service provider not by users. Applications settings and
related working environment properties are managed by users. Examples are Microsoft’s
Azure and Google’s Apps Engine. The last service model is Infrastructure as a Service
(IaaS): Users can use the cloud basic computing resources like storage, processing units
and networking components. They can install operating systems and applications and
control their properties. Some network properties like firewall components and load bal-
ancers can be can be controlled by the user but not the underlying cloud infrastructure.
Examples are Amazon EC2 and Eucalyptus open source cloud computing systems.

2.2.2 Cloud Computing Enabling Technologies and Related
Standards

What makes the cloud computing possible is different technologies that came together
each with different standards. It is important to have an overall view of them to be able
to understand how the cloud really works. It allows developers and enterprises to make
informed decisions especially about security and privacy issues and be able to use the
full potential of the cloud service models. Here, we list the most important technologies
and related standards [FE10]:

Virtualization: It is the key technology behind cloud computing that allows the cre-
ation of an abstraction layer of the underlying cloud Infrastructure. Using virtual-
ization, resources (hardware and software) can be shared and utilized while hiding

Chapter 2. Foundations and Related Topics 13

the complexity from the cloud users.

Web services and Service Oriented Architecture (SOA): Cloud services are de-
signed as web services following the standards of WSDl, SOAP and UDDI.

Web 2.0: The technology of using the World Wide Web to enhance information sharing
and collaboration. This usually includes techniques such as CSS, semantic web
technologies, mash up, and syndication.

Hypertext Transfer Protocol (HTTP): A protocol used for distributed, collabora-
tive, hypermedia information systems. It is stateless but a stateful session can be
created with the use of e.g. cookies that carry the state information in the requests
and responses between the user agent and the server. HTTP authentication in-
cludes Basic access Authentication scheme which is considered not secure for user
authentication where the user name and password are transferred over the network
as clear text. To make this scheme more secure, external secure systems like SSL
can be used. The second authentication scheme which is considered to be better
is Digest Access Authentication where user authentication can be done without
sending the password as clear text. The HTTP protocol is a request and response
protocol. Client sends a request to the server in a protocol version, or URI, or a
request method. The request is followed by a MIME like message that includes
the client information, and the request modifiers. The response from the server is
a status line that includes the message’s protocol version and the success or error
code. A MIME like message comes next with holding the server information, entity
meta data and sometimes entity body content. A feature of HTTP is that it allows
applications to be built regardless of the data being transferred. HTTP is used
usually in the IaaS and SaaS layers in the cloud.

HTML5: Adopted by W3C but still is a work in progress. One aim behind this stan-
dard is to reduce the need for proprietary plug-in based technologies such as Adobe
Flash, Microsoft Silver light, and Sun JavaFX. HTML5 will be the new standard
for HTML, XHTML, and the HTML DOM. Another aim is allowing web applica-
tions to work off line HTML5 contains features to support this such as SQL-based
database API, Off line application caching APIs, on line/off line events. HTML5
is used in the SaaS layer of the cloud.

XML and JavaScript Object Notation (JSON): XML is used to represent arbi-
trary data of web services. It has been used for data interchange over the Internet.
However, it is not considered very well suited for the job since it does not match
the data model of most programming languages [FE10]. Here comes JSON. It
is considered more suitable than XML for different reasons. First of all it is easy
to read and write by humans and easy to parse and generate by machines. It is
language independent but uses convections that are familiar to people who work
with C++, C#, Java, Python, Java Script, Perl. XML and JSON are used in the
PaaS and SaaS layers of the cloud.

Asynchronous JavaScript and XML (AJAX): AJAX is implemented on the client
side for creating interactive web applications. It allows them to exchange data with

14 2.2. Cloud Computing Overview

the web server without interfering with the display and the behavior of the existing
web page. AJAX is used in the SaaS layer of the cloud.

Web Syndication: It is a form of syndication where website content is made available
to multiple sites. Usually a summary of the website’s recently added material is
made available to other sites as web feeds. Types of content that are syndicated
are full content, atom content, and RSS. Java script is usually used to for web
syndication. Web syndication can be used in the SaaS layer

The Extensible Messaging and Presence Protocol (XMPP): The is an open
technology used for real time communication, that powers applications like In-
stant Messaging(IM), multi-party chat, voice and video calls, content syndication,
and generalized routing of XML data. New extensions are added all the time.
XMPP can be used in the SaaS layer of the cloud

Representational State Transfer (REST): It is a style of software architecture for
distributed hypermedia systems such as the World Wide Web. It is based on a
set of principles that describe how networked resources are defined and addressed.
Key goals of defining REST are scalability of component interactions,generality of
interfaces,independent deployment of components,reduce latency,enforce security
,and encapsulate legacy systems. Rest can be used in the SaaS, PaaS, and IaaS
layers of the cloud.

2.2.3 Security and Data Privacy Issues

A cloud computing environment is not necessarily less secure than other IT environments.
However, security is the number one objection to cloud computing [AFG+10]. With
a new technology, come a long new challenges and risks that need to be addressed.
Cloud users face threats from outside and inside the cloud. Attacks from outside the
cloud are similar to those attacks for data centers. But the responsibility for protection
depends on the cloud service model and service layer. Both service provider and users are
responsible for security with different degrees. In the case of SaaS, security is supposed
to be enforced and managed by the provider. In PaaS some security features are built
in. But in most cases users need to implement an additional security layer to address
their security needs . In the third service model, IaaS, operating systems, applications,
and content are managed and secured by the cloud users [BM09]. In all cases, cloud
providers are responsible for the physical security. A study that involved more than nine
hundred IT professionals in Europe and the US shows that participants believed that
the most difficult security issues to handle in the cloud are securing the physical location
of data assets and restricting privileged user access to sensitive data [Pon10]. Attacks
from inside the cloud can be theft and denial of service [AFG+10]. The main defence
technique is virtualization. However, the cloud users’ careless use is a major cause for
crucial security threats and vulnerabilities [Dar11]. Another security risk comes from the
lack of organizational control over employees using cloud services [JG11]. To solve this,
control measures of the organization can be extended into the cloud by using Trusted
Computing (TC) and applied cryptography [CGJ+09].

Another concern that organizations face in the cloud is Compliance [JG11]. Compli-
ance is the conformance with standards and regulations. When data of an organization is

Chapter 2. Foundations and Related Topics 15

stored in a different country, compliance becomes complicated and many concerns arise
because different laws of privacy are forced in each country. The main compliance con-
cerns in this case include whether the laws in the country where the data was collected
permit the transfer of data to a different country, whether those laws continue to apply
to the data after transfer, and whether the laws at the destination present additional
risks or benefits.

2.2.4 Grid Computing vs. Cloud Computing

Grid computing is defined as coordinated resource sharing and problem solving in dy-
namic, multi-institutional virtual organizations. The sharing is necessarily highly con-
trolled with resource providers and users defining carefully what is shared, who is al-
lowed to share, and the conditions under which sharing occurs [IF01]. Grid computing
started 10 years before cloud computing and many argue that cloud computing has de-
veloped from it [Mye09]. Both Grid and cloud computing promise to harness computing
resources to provide users with their needs in a cost effective and timely manner. How-
ever, there are many differences between the two in the cost/business model, shared
resources, providers and customers, usage patterns, and interaction models. Cloud and
grid address different areas of distributed computing problems. The work load in grid
computing is composite of distributed jobs that run on highly coupled nodes within a
cluster. In the cloud, it is more loosely coupled jobs (e.g. map/reduce). Grid computing
provides an easy interface to resources which users have the right to access such as in
research and academic institutes. The participating organizations are both consumers
and providers. They form a virtual organization under an agreement that specifies the
shared resources and all regarded details. Shared resources can be under different ad-
ministrative domains. Users or clients submit their requests of storage and application
processing from their home domain. Requests are handled by a resource broker that
selects a domain having the demanded resources. On the other hand, cloud computing
provides pay-as-you-go usage of a pool of resources owned by a provider (e.g. Amazon,
Google) and is mainly used in industry and businesses. Users become owners of virtual
resources with guaranteed QoS. An example of the Cloud usage model is the Amazon
EC2 where most clients are individual users, who demand the needed resources via Ama-
zon EC2 API without cross organizations agreement or contract [FE10]. The execution
environment in the cloud is virtualized, it can be cloned several times in the cloud. In
the Grid case, the execution environment is library based and customized to hardware
domains. Library consistency is hard to be ensured across different domains. A case
study of the Advanced Gamma Tracking Array (AGATA) project focuses on the cost
analysis of storage for their raw data in three cases [VMMS11]: dedicated storage, grid
storage, and cloud storage (Amazon S3). The study shows a minimal overall cost for the
grid option. While the cloud option shows a minimal cost for the Storage Total Cost of
Ownership(TCO), its cost for data transfer is its killing point. It is two times compared
to the grid. However by applying an intermediate data storage strategy [YYLC10], the
cost can be reduced significantly. Cloud supporters argue that in the cloud we have infi-
nite resources, on-demand scalability, ease of use, and guaranteed QoS. The grid is hard
to use, with no guaranteed level of performance [BBG11] and predefined finite allocation
of resources. Neither of the two technologies is better or can replace the other. Each is
more suitable for a certain area of applications. Integrating them is an ongoing research

16 2.2. Cloud Computing Overview

topic [BBG11, JMF09, KFZ05]

Chapter 3. Amazon Storage for the Cloud 17

Chapter 3

Amazon Storage for the Cloud

Amazon is considered to be the first industry leader to introduce the cloud term and
provide cloud services. Amazon introduced a variety of storage services. For all of them,
it promises high availability and low cost. In this chapter we will examine the following
Amazon storage services: S3, SimpleDB, and RDS. First, we will examine Dynamo
storage, which powers other Amazon services.

3.1 Dynamo

Dynamo is a scalable, highly available key value store developed by Amazon to internally
power its web services such as shopping cart, customer preferences, the product catalog
and SimpleDB. Dynamo is not intended to be used by the public [Vog11]. Designing
dynamo is based on several requirements and assumptions of the targeted work scope.
Next we discuss them shortly [DHJ+07]:

Query model: Dynamo targets applications that work with small objects i.e. smaller
than 1 MB. Operations are simple reads and writes that do not target more than
one object at a time. So relational schema is not needed.

ACID properties: Dynamo targets applications that favor availability and tolerate
low consistency. Dynamo does not guarantee any isolation and allows single key
updates only.

Efficiency: Dynamo will work on a cluster of commodity hardware. Amazon services
that will use Dynamo must be able to configure it so their latency, service level,
and throughput requirement are met.

No security requirements: Since Dynamo is intended to be used internally, its sur-
rounding environment is considered friendly. Thus no security related features such
as authentication and authorization are needed

Scalability: Dynamo must be able to scale with minimal impact on its performance
or on the performance of any service that is using it.

Symmetry and decentralization: Dynamo supports decentralized control tech-
niques where all the nodes that compose it have the same responsibilities of request
coordination, membership and failure detection, and data storage.

18 3.1. Dynamo

Heterogeneity: Dynamo will operate properly on heterogeneous infrastructure.

3.1.1 Architecture and Overview

The architecture of Dynamo is based on peer to peer systems. It is a ring of storage hosts
called nodes with each one identified by a number that determines its position. Dynamo
uses the concept of virtual nodes where each nodes is assigned multiple positions in the
ring to tune the partitioning process. Data is automatically partitioned using consistent
hashing. The advantage in consistent hashing is that its output is a circular space or
a ring (the largest hash value raps around to the smallest hash value). Data is stored
as objects and each object is identified by a key. MD5, a cryptographic consistent hash
function, is applied to the key to determine its position on the ring. Then, the node on
which the data item will be stored is determined by moving clockwise to find the first node
on the ring with a position larger than the object’s position. A node that is responsible
for storing an object is called the coordinator node for that object. The coordinator is
responsible for replicating an object N-1 times on other nodes where N is determined
per instance. The list of nodes that store replicas of an object is called the preference
list for that object. Every node in the system can determine which nodes should be in
the preference list for any particular key [DHJ+07]. Any node in dynamo is qualified to
receive clients’ requests. However, there are two options for clients. First is to route the
request using a generic load balancer with the advantage of not having to link any specific
Dynamo node in the client’s code. The second approach is using a partition-aware library
that automatically routes the request to first appropriate node in the reference list with
the advantage of lower latency [Vog11]. The system automatically uses Sloppy Quorum
approach to handle node failure. An Anti-entropy replica synchronization protocol that
uses Merkle trees is adopted by Dynamo to handel perminent failures.

A

Key K

B

H

C

G
Nodes B, C, D store keys in
range A,B including K

C

D
F

Figure 3.1: Dynamo Ring adapted from [Vog11]

Chapter 3. Amazon Storage for the Cloud 19

3.1.2 Consistency Model

Dynamo supports weaker consistency to allow higher availability for write operations.
Data is eventually consistent An update request can return a success before it has be
been committed on all nodes. Read requests may return different versions of the same
object. Vector clocks are used for conflict reconciliation. A vector clock is a list of pairs:
node and counter that is associated with every version of the data object. Vector clock
information is stored in what is called the object’s context.

3.1.3 Query Model

Dynamo data is stored using its simple interface that allows two operations put(key,
context, object) and get(key) [DHJ+07]. The put(key, context, object) request writes
an object associated with the specified key. The context information determines which
version will be updated. The get(key) request returns an object or a list of objects with
conflicting replicas and a context.

3.2 Amazon S3

Amazon S3 provides a simple web services interface that can be used to store and re-
trieve data. It gives developers access to the same highly scalable, reliable, secure,
fast, inexpensive infrastructure that Amazon uses to run its own global network of web
sites. Common use cases include data backup (used to store backup of Amazon RDS),
software delivery (host software applications that customers can download) and media
hosting (videos, photos, music uploads and downloads e.g. Imagenet: uses S3 to store
medical image data) [Ado11b, PC10].

3.2.1 Data Model

Object is the fundamental entity that can be stored in S3. It contains the object data
and its metadata. Metadata is a set of name-value pairs that describes the object. There
are some default system metadata pairs such as the time the object is stored, the date
of last modification of the object, data type and data length. A Bucket is a container
for objects. Each object must be contained in one Bucket. A bucket can be configured
so that each time an object is added to it, a unique version ID is assigned to the object.
So an object is uniquely identified within a bucket by a key (name) and the version ID.
Objects can be addressed by a combination of bucket name, key, and optionally version
ID. To optimize latency and minimize the cost and for compliance issues, Amazon offers
the option to choose the geographical region where buckets are stored (US East, US West-
Northern California, EU-Ireland, Asia Pacific-Singapore, Asia Pacific-Tokyo). Each of
these regions offers different consistency models as we will explain later. Objects stored
in a region and metadata about them never leave the region unless by explicit transfer
made by the owner. Folders can be used to organize objects within buckets. They are
not part of the S3 API but are available in the AWS management console. Objects are
redundantly stored on multiple devices in different facilities of one S3 region and the
PUT object operation synchronously stores data across multiple facilities before sending

20 3.2. Amazon S3

bucket2

Amazon S3
bucket1

object1
bucket2

bucket3
object1

object2

Figure 3.2: S3 data model adapted from [PC10]

back a success message. S3 also provides Reduced Redundancy Storage (RRS). Choosing
this option means data will be stored at a lower level of redundancy than Amazons S3
standard storage. It can be used for storing non critical data to reduce the cost. However
amazon claims it still provides 99.99% durability of objects over a year and 400 times
the durability of a typical disk drive. Integrity is verified using checksums. Amazon S3
regularly verifies integrity and repairs any corrupted data. Checksums are also calculated
on all network traffic to detect corrupted data packets when storing or retrieving data.

3.2.2 Consistency Model

The write operation is atomic on the object level. It is not possible to make atomic
write operations on several keys. There is no locking mechanism and in the case of
concurrent write operations the one with the last time stamp wins. Amazon uses different
methods to achieve high availability that involves replicating data across multiple servers
within Amazon’s datacenters. Getting a success message means data is stored. But
since changes might not be immediately replicated across different copies, a subsequent
read might return old data. Corrupted or partial data is never written and will not
be returned. In Amazon S3, when a process writes a new object and immediately
tries to read it or lists the keys of the same bucket or folder, a ”key does not exist”
error might appear or the new object might not be listed. And it is the same for
deleting a key (it will still be listed and accessed by processes until the change has been
propagated to all replicas). Read after write consistency ensures the immediate visibility
of new objects. The US Region provides eventual consistency for all requests. The EU-
Ireland, US-Northern California, and Asia Pacific-Singapore Regions provide read-after-
write consistency for PUTs of new objects and eventual consistency for overwrite PUTs
and DELETEs.

Chapter 3. Amazon Storage for the Cloud 21

3.2.3 Query Model

Data can be accessed using the AWS console, REST and SOAP APIs. Amazon also
provides language-specific APIs (Java, PHP, Ruby, .Net) that provide basic functions
that are not in the SOAP or REST APIs such as error handling and request retries.

Create Bucket: Must specify the geographical region in which data will be stored
(default if not specified is the US region).

Delete Bucket: Deletes a bucket. All of the objects in it must be deleted before.

Create Folder: Creates folder within bucket. Available only through the AWS console.

Delete Folder: Deletes a folder. A folder can be deleted without deleting its objects.
Available only through the AWS console.

List Keys: Views objects that are stored in a certain bucket or folder. Keys can be
filtered based on a prefix.

Read Object: Reads data belonging to a key from a bucket with two options: view it
in a browser or download and save it locally.

Write Object: An Object can be created in a certain bucket, data file is uploaded and
metadata can be added at creation time and manipulated later.

Delete Object: Deletes a key and its data and metadata.

Edit object metadata: System metadata are sometimes processed by Amazon. User
metadata are edited by user only and never processed by Amazon. The maximum
size for metadata is 2 KB.

3.2.4 Access Control

Data access is controlled using bucket policies that specify users’ permissions or Access
Control List (ACL) that define permissions associated with each bucket or object. By
default object owner has full privileges and can grant permissions to other accounts.
Bucket and object permissions are independent i.e. an object does not inherit the per-
missions from its bucket (each has a separate ACL)

Bucket Policies: A bucket owner can write a bucket policy or use AWS policy generator
tool to define access rights for S3 buckets and objects. Policies are written in JSON
and use the access policy language. They are created, retrieved, and deleted by
the bucket owner and can be used for the following:

• allow/deny bucket level permissions.

• deny permissions on objects in a bucket.

• allow permissions on objects in a bucket (only if the bucket owner is the object
owner as well). If the object is owned by a user other than the bucket owner
then permissions can be controlled using ACL.

22 3.3. Amazon SimpleDB

Access Control List (ACL): Each object and bucket has an ACL attached to it.
Amazon creates a default ACL granting the owner full control over the resource
whether it is an object or a bucket. ACL states the AWS accounts or groups that
have access to a resource and which kind of access they have (read, write, full con-
trol). ACL can be created and managed using the AWS console or using supported
APIs(REST, Java, .Net, etc.)

Query String Authentication: It can be used when a third party browser access to
resources on S3 is required. Owner must specify an expiration date of the query,
add a signature, place the data in an HTTP request and distribute it to users or
embed on a web page.

3.3 Amazon SimpleDB

It is a web service that provides structured data storage in the cloud. SimpleDB au-
tomatically creates and manages multiple geographically distributed replicas of users’
data to enable high availability and data durability. SimpleDB is widely used to store
data for online games. Another use case is to index Amazon S3 object metadata (store
pointers to S3 object locations and detailed information about the objects (metadata).
SimpleDB was created to complement S3 and EC2 [Ado11c].

AWS Cloud
SimpleDB S3

store retrieve metadata store retrieve files

User
Application

Figure 3.3: Typical way of using SimpleDB and S3 adapted from [PC10]

3.3.1 Data Model

It is non-relational schema-less data model. There are no data types and all values are
considered variable length character data [Ado11c]. It is organized into domains com-

Chapter 3. Amazon Storage for the Cloud 23

pared to tables in the RM. There are no configuration options to set except for the
Domain name. Domains are composed of items (rows in RM) that represent objects.
Items have attributes (name-value pairs). It is allowed for each item within a domain
to have different attributes. Different domains have different attributes and each at-
tribute can have multiple values. Amazon offers the option to choose the geographical
region where domains are stored (US East, US West-Northern California, EU-Ireland,
Asia Pacific-Singapore, Asia Pacific-Tokyo). SimpleDB automatically indexes data for
quick and accurate retrieval. Domains are also automatically replicated in different data
centers within a region to achieve high availability. Figure 3.4 illustrates the SimplaDB
data model.

SimpleDB

carsdomain

car2

factory

car1 car3

year year colorfactory color factory

items

attributes

Merc red silver black2011 BMW 2005 BMWvalues

Figure 3.4: SimpleDB data model adapted from [PC10]

3.3.2 Consistency Model

SimpleDB provides the following consistency options for each read: eventual consistency
and strong consistency.

Eventually Consistent Read: Read operation might not return the final update of
the stored values. Consistency across all copies of data is reached after seconds.
In that time frame of seconds before getting the update across all replicas, a read
operation could return an old value. Repeating a read operation should return the
updated value.

Consistent Read: Read operation returns a value that reflects the latest update on
data. It reflects all writes that have received a success message before the read
operation was issued.

3.3.3 Query Model

Data in SimpleDB can be accessed using Amazon API, REST API, SOAP API, and
several language specific APIs (Java, PHP, Ruby, .Net).

CreateDomain: Creates domains to contain user’s data.

24 3.3. Amazon SimpleDB

DeleteDomain: Deletes any of the domains within user’s account.

ListDomains: Lists all domains within user’s account.

PutAttributes: Adds, modifies, or removes data within user’s domains.

BatchPutAttributes: Executes multiple put operations in a single call.

DeleteAttributes: Removes items, attributes, or attribute values from user’s domain.

BatchDeleteAttributes: Executes multiple delete operations in a single call.

GetAttributes: Retrieves the attributes and values of any specified item ID.

DomainMetadata: Views information about the domain, such as the creation date,
number of items, and number of attributes.

Select: A SQL-like SELECT expression used to query data. User can execute queries
against a domain but not across different domains. Using of foreign keys is not
possible (joins are not allowed). Comparison can be applied to a single attribute
in the query between the attribute and a constant value and is lexicographical in
nature [Hab11]. The syntax of this statement is explained in the following:

SELECT output-list

FROM domain-name

[WHERE expression]

[sort-instructions]

[LIMIT limit]

Where

• ouput-list can be one of the following: A wildcard that refers to all of the
attributes *, itemName(), count(*), an explicit list of attributes (attribute1,...,
attributeN). domain-name the name of the domain to be searched

• expression: the match the user is seeking. It can be one of the following:

– <select expression>intersection <select expression>

– NOT <select expression>

– (<select expression>)

– <select expression>or <select expression>

– <select expression>and <select expression>

– <simple comparison>

• Sort-instruction: sorts the result based on a single attribute in ascending or
descending order using ORDER BY(lexicographical in nature as well).

• Limit: the maximum number of the results to be returned by the query.

Chapter 3. Amazon Storage for the Cloud 25

3.3.4 Access Control

SimpleDB does not provide its own system for access permissions but it uses AWS
Identity and Access Management (IAM). This service allows user or organization to:

• Create users and groups under the organization’s AWS account.

• Share AWS account resources between the users in the account.

• Assign unique security credentials to each user.

• Granularly control users’ access to services and resources.

• Get a single AWS bill for all users under the AWS account To control access to a
certain domain, IAM policy is used. For SimpleDB, domain names are the only
resource type name that can be specified in a policy.

3.4 RDS

Amazon RDS allows users to create, delete, and modify Relational Database (RDB)
instances (currently MySQL and Oracle). Data, query, and consistency models of re-
lational DBMS still apply in RDS. Choosing CPU and memory capacity, installing
operating system and database server, failover management, replication, and backups’
scheduling are automatically managed or managed by users using simple web service
calls. For example, users are given the option to choose the CPU and Memory capacity
of each Database (DB) instance while creating it by choosing the instance class (small,
large, extra large, double extra large, quadruple extra large) [PC10]. Users can add
more storage to the DB instance at any time or can change the instance type [Ado11a].
Database instances can be accessed using AWS console, Java-based command line tool,
and Amazon supported APIs (Java, PHP, .Net, and Python).

3.4.1 Architecture

Amazon does not provide details about the underlying architecture of RDS. In figure 3.5,
we try to illustrate the architecture of some of the most important features. These
features are explained in the following:

Multi Availability Zone: this feature enhances the availability of data in the case
of failure. An availability zone has an independent infrastructure in a separated
physical location from other availability zones. When this feature is enabled, a
standby master in a different availability zone is synchronously updated [Ado11a].
Unlike asynchronous replication, this standby master always has the same data as
the live master. In the case of failure, the status of the standby master changes
to live. Then applications can read and write data from this server while a new
standby master is created in the original availability zone.

Read Replicas: this feature uses the replication capability of the underlying DBMS
and provides a replica of the database for read operations only. Read replicas are
created in the same availability zone as the primary database server.

26 3.4. RDS

Availability Zone A

Load balancer

Web layer

Web servers

Amazon EC2

Application layer

Application servers

Amazon EC2

Data layer

P i

Amazon RDS Availability Zone B

synchronous replication

automatic failover

asynchronous replication

read write

read , write

Primary server

RDS backup

synchronous replication
Standby server

y p

read

Amazon
S3

Read replica

DB snapshots

Figure 3.5: Amazon RDS Architecture

Automated Backup and DB Snapshots: RDS uses S3 to store backups and snap-
shots. Automatic backups perform a full daily backup of data. Data backups are
kept for a period of time called retention period after that they are deleted. Snap-
shots are user initiated. Both automated backup and snapshots are used to restore
data in the case of failure using simple AWS API calls.

3.4.2 Data Model

RDS supports the relational data model. Data is organized in tables. Relations between
tables are represented in the integrity constrains of the primary and foreign keys. For
more information about the relational model see traditional DBMS section 2.1.1.

3.4.3 Consistency Model

RDS supports strong consistency and ACID principles are applied.

Chapter 3. Amazon Storage for the Cloud 27

3.4.4 Query Model

With RDS, users can use the same libraries and application that were designed to connect
to MySQL and Oracle. Querying data can be done using SQL or using the AWS API
calls.

3.4.5 Access Control

In addition to the access control features of the underlying DBMSs such as roles and
privileges, Amazon provides more security options using database security groups [rds11].
DB security groups act like a firewall against network access. Access can be granted using
IP ranges as well.

28 3.4. RDS

Chapter 4. Google Storage for the Cloud 29

Chapter 4

Google Storage for the Cloud

Google contributions to the cloud storage aimed to answer its own needs. Whether it is
Google’s distributed file system, data model, or processing model it was very successful
and inspired many other systems. In this chapter, we will examine GFS, Bigtable, and
Google Storage for Developers.

4.1 GFS

The GFS is a distributed file system developed by Google to meet their storage needs. It
stores data on large clusters of commodity hardware providing fault tolerance and high
performance while serving a large number of clients. The design of this file system is build
on the characteristics of Google’s application workload and technological environment.
We will shortly describe the most important ones in the following list [GGL03]:

Components failure is the normal situation rather than the exception:
Google system is composed of hundreds or even thousands of storage components.
These are accessed by hundreds or even thousands of client machines. Operating
system bugs, application bugs, network failures, disk, memory or even power
supplies bugs are expected. Detecting and recovering failures must be integrated
in the system.

Files are huge (multi gigabytes): Parameters of I/O operations and block sizes
must be adapted to that size of files in order to manage them efficiently.

Data access pattern: Analyzing data access patterns of Google’s applications shows
that after writing files they are often only read and in a sequential order. The
largest number of changes that clients make on files are appending data rather
than overwriting. This makes appending data and atomicity the main focus of
optimization in GFS.

4.1.1 Architecture and Overview

The GFS cluster is made of one master server and multiple chunk servers. Each file
is divided into chunks of fixed size (64 MB default). Chunks are stored as Linux files

30 4.2. Bigtable

Legend:

Data messages
Control messages

Application
(file name, chunk index)

(chunk handle,
chunk locations)

GFS master

File namespace

/foo/bar

Instructions to chunkserver

Chunkserver state

GFS chunkserverGFS chunkserver
(chunk handle, byte range)

chunk data

chunk 2ef0

Linux file system Linux file system

GFS client

Figure 1: GFS Architecture

and replication decisions using global knowledge. However,
we must minimize its involvement in reads and writes so
that it does not become a bottleneck. Clients never read
and write file data through the master. Instead, a client asks
the master which chunkservers it should contact. It caches
this information for a limited time and interacts with the
chunkservers directly for many subsequent operations.

Let us explain the interactions for a simple read with refer-
ence to Figure 1. First, using the fixed chunk size, the client
translates the file name and byte offset specified by the ap-
plication into a chunk index within the file. Then, it sends
the master a request containing the file name and chunk
index. The master replies with the corresponding chunk
handle and locations of the replicas. The client caches this
information using the file name and chunk index as the key.

The client then sends a request to one of the replicas,
most likely the closest one. The request specifies the chunk
handle and a byte range within that chunk. Further reads
of the same chunk require no more client-master interaction
until the cached information expires or the file is reopened.
In fact, the client typically asks for multiple chunks in the
same request and the master can also include the informa-
tion for chunks immediately following those requested. This
extra information sidesteps several future client-master in-
teractions at practically no extra cost.

2.5 Chunk Size
Chunk size is one of the key design parameters. We have

chosen 64 MB, which is much larger than typical file sys-
tem block sizes. Each chunk replica is stored as a plain
Linux file on a chunkserver and is extended only as needed.
Lazy space allocation avoids wasting space due to internal
fragmentation, perhaps the greatest objection against such
a large chunk size.

A large chunk size offers several important advantages.
First, it reduces clients’ need to interact with the master
because reads and writes on the same chunk require only
one initial request to the master for chunk location informa-
tion. The reduction is especially significant for our work-
loads because applications mostly read and write large files
sequentially. Even for small random reads, the client can
comfortably cache all the chunk location information for a
multi-TB working set. Second, since on a large chunk, a
client is more likely to perform many operations on a given
chunk, it can reduce network overhead by keeping a persis-

tent TCP connection to the chunkserver over an extended
period of time. Third, it reduces the size of the metadata
stored on the master. This allows us to keep the metadata
in memory, which in turn brings other advantages that we
will discuss in Section 2.6.1.

On the other hand, a large chunk size, even with lazy space
allocation, has its disadvantages. A small file consists of a
small number of chunks, perhaps just one. The chunkservers
storing those chunks may become hot spots if many clients
are accessing the same file. In practice, hot spots have not
been a major issue because our applications mostly read
large multi-chunk files sequentially.

However, hot spots did develop when GFS was first used
by a batch-queue system: an executable was written to GFS
as a single-chunk file and then started on hundreds of ma-
chines at the same time. The few chunkservers storing this
executable were overloaded by hundreds of simultaneous re-
quests. We fixed this problem by storing such executables
with a higher replication factor and by making the batch-
queue system stagger application start times. A potential
long-term solution is to allow clients to read data from other
clients in such situations.

2.6 Metadata
The master stores three major types of metadata: the file

and chunk namespaces, the mapping from files to chunks,
and the locations of each chunk’s replicas. All metadata is
kept in the master’s memory. The first two types (names-
paces and file-to-chunk mapping) are also kept persistent by
logging mutations to an operation log stored on the mas-
ter’s local disk and replicated on remote machines. Using
a log allows us to update the master state simply, reliably,
and without risking inconsistencies in the event of a master
crash. The master does not store chunk location informa-
tion persistently. Instead, it asks each chunkserver about its
chunks at master startup and whenever a chunkserver joins
the cluster.

2.6.1 In-Memory Data Structures
Since metadata is stored in memory, master operations are

fast. Furthermore, it is easy and efficient for the master to
periodically scan through its entire state in the background.
This periodic scanning is used to implement chunk garbage
collection, re-replication in the presence of chunkserver fail-
ures, and chunk migration to balance load and disk space

Figure 4.1: Google File System Architecture [GGL03]

and replicated on different chunk servers (3 replicas default). Chunks are identified by
chunk handles (assigned by the master at the chunk creation time). The master stores
the file system metadata. Metadata in GFS is of three categories: the file and chunk
namespace, the file-to-chunk mapping, and the location of each chunks replica. All of
the three categories of metadata are kept in master memory and only the first two are
stored persistently. GFS has a relaxed consistency model. GFS uses file regions to
handle consistency. A file region can be defined consistent, undefined consistent, and
undefined inconsistent. The state of a file region depends on the success or failure of the
changes made to the chunks and whether it is one operation or concurrent operations.

When an update is successful without interference of concurrent writes, the affected
region is defined and consistent. When concurrent updates affect one region and they
are all successful, the region is undefined but consistent (all clients can see the same data
but it is not known which update has written which data). A failed update leaves the
affected region inconsistent and undefined.

GFS is not for use outside Google. However to store and access data in GFS,
client code must implement the GFS API (interacting with the master and chunk
servers) [GGL03]. GFS API supports standard operations such as: create, delete, open,
close, read, and write. It also supports snapshot, and record append. Snapshot is used
to create a copy of a file or a directory. Record append is used to allow multiple clients
to write data to one file concurrently while preserving the atomicity of each client’s
update [GGL03].

4.2 Bigtable

Bigtsble is a non relational distributed storage system for managing structured data. It is
developed by Google to store their data and used by almost 60 Google applications such
as web indexing, Google Earth, Google Book Search, and Google Finance. Currently,
it is not available to use outside of Google but only available through the Google App
Engine. It is based on GFS and uses map reduce as the processing paradigm. A wide
range of data is stored in Bigtable from web pages to satellite images. Bigtable can

Chapter 4. Google Storage for the Cloud 31

"CNN.com""CNN"
"<html>..."

"<html>..."
"<html>..."

t9
t6

t3t5 8t

"anchor:cnnsi.com"

"com.cnn.www"

"anchor:my.look.ca""contents:"

Figure 1: A slice of an example table that stores Web pages. The row name is a reversed URL. The contents column family con-
tains the page contents, and the anchor column family contains the text of any anchors that reference the page. CNN’s home page
is referenced by both the Sports Illustrated and the MY-look home pages, so the row contains columns named anchor:cnnsi.com
and anchor:my.look.ca. Each anchor cell has one version; the contents column has three versions, at timestamps t3, t5, and t6.

We settled on this data model after examining a variety
of potential uses of a Bigtable-like system. As one con-
crete example that drove some of our design decisions,
suppose we want to keep a copy of a large collection of
web pages and related information that could be used by
many different projects; let us call this particular table
the Webtable. In Webtable, we would use URLs as row
keys, various aspects of web pages as column names, and
store the contents of the web pages in the contents: col-
umn under the timestamps when they were fetched, as
illustrated in Figure 1.

Rows

The row keys in a table are arbitrary strings (currently up
to 64KB in size, although 10-100 bytes is a typical size
for most of our users). Every read or write of data under
a single row key is atomic (regardless of the number of
different columns being read or written in the row), a
design decision that makes it easier for clients to reason
about the system’s behavior in the presence of concurrent
updates to the same row.

Bigtable maintains data in lexicographic order by row
key. The row range for a table is dynamically partitioned.
Each row range is called a tablet, which is the unit of dis-
tribution and load balancing. As a result, reads of short
row ranges are efficient and typically require communi-
cation with only a small number of machines. Clients
can exploit this property by selecting their row keys so
that they get good locality for their data accesses. For
example, in Webtable, pages in the same domain are
grouped together into contiguous rows by reversing the
hostname components of the URLs. For example, we
store data for maps.google.com/index.html under the
key com.google.maps/index.html. Storing pages from
the same domain near each other makes some host and
domain analyses more efficient.

Column Families

Column keys are grouped into sets called column fami-
lies, which form the basic unit of access control. All data
stored in a column family is usually of the same type (we
compress data in the same column family together). A
column family must be created before data can be stored
under any column key in that family; after a family has
been created, any column key within the family can be
used. It is our intent that the number of distinct column
families in a table be small (in the hundreds at most), and
that families rarely change during operation. In contrast,
a table may have an unbounded number of columns.
A column key is named using the following syntax:
family:qualifier. Column family names must be print-
able, but qualifiers may be arbitrary strings. An exam-
ple column family for the Webtable is language, which
stores the language in which a web page was written. We
use only one column key in the language family, and it
stores each web page’s language ID. Another useful col-
umn family for this table is anchor; each column key in
this family represents a single anchor, as shown in Fig-
ure 1. The qualifier is the name of the referring site; the
cell contents is the link text.
Access control and both disk and memory account-
ing are performed at the column-family level. In our
Webtable example, these controls allow us to manage
several different types of applications: some that add new
base data, some that read the base data and create derived
column families, and some that are only allowed to view
existing data (and possibly not even to view all of the
existing families for privacy reasons).

Timestamps

Each cell in a Bigtable can contain multiple versions of
the same data; these versions are indexed by timestamp.
Bigtable timestamps are 64-bit integers. They can be as-
signed by Bigtable, in which case they represent “real
time” in microseconds, or be explicitly assigned by client

To appear in OSDI 2006 2

Figure 4.2: Google’s Bigtable data model adapted from [CDG+06]

manage large sizes of data with low latency whether it is backend bulk processing or
real time data delivery [CDG+06]. It is scalable to petabytes of data across thousands
of machines, highly available, and widely applicable.

4.2.1 Data Model

Bigtable provides a simple non relational data model. Data is stored in tables and can
be accessed by row or column keys. Each cell in this table can have multiple values with
different timestamps (time oriented data). Each row is made of a row-key, a column key,
a timestamp and a number of columns. It is similar to a key value store but instead
of mapping one key to one value, it maps the row-key, column-key, and timestamp to a
value. Rows in Bigtable are maintained in lexicographic order by row-key. Column keys
are grouped together to form a column family. This must be done before adding data
into the table. The column family is the basic unit of access control in Google’s Bigtable
and all data in a column family are usually of the same type and compressed together.
The number of columns in a table is unbounded but the number of column families
is not supposed to exceed hundreds. Access control, memory, and disk accounting are
performed at the column family level. The timestamp is 64 bit integer and can be
automatically assigned by Bigtable or by the user when adding data. It is used to index
the multiple values or versions of data. Different versions are stored in order of the
timestamp in a way that the most recent one is read first when accessing them. There is
an automatic version garbage collector that can be set on the column family level with
one of two options: keep the last n versions of data or keep new-enough versions. Data
is indexed by the values of row-key, column key and timestamp.

4.2.2 Bigtable Architecture

The Bigtable cluster depends on a Chubby service and consists of one master server
and multiple tablet servers. First of all, each table is partitioned by row boundaries
into several parts called tablets and stored in SStables. The Partitioning is based on
the row range of each table and aims to have 100-200 MB of data for each tablet. The
tablet is considered to be the unit of distribution and load balancing in Bigtable. The
Chubby service is a highly available, persistent, and distributed lock service that is used
for electing the master server. Bigtable uses Chubby for discovering tablet servers, to
store Bigtable schema (column family information) and ACL. The Chubby service is
a single point of failure in Bigtable. If it is unavailable, the Bigtable instance goes

32 4.2. Bigtable

Chubby ServerHead Node

T bl ST bl t S Tablet Server

TabletTabletTablet

Tablet Server

TabletTabletTabletlogical view

SStableSStableSStable

GFS Chunkserver

SStableSStableSStable

GFS Chunkserver

Physical layout

replica
SSTable

replica
SSTable

Figure 4.3: Google’s Bigtable Architecture adapted from [CDG+06]

down. However, only 0.0047% of Bigtable unavailability is caused by the Chubby service
unavailability [CDG+06]. The master server assigns each tablet to one tablet server.
Since Bigtable stores tablets on GFS, replication is managed by GFS on the file level
and tablets are not assigned to several tablet servers. Meta information about tablet
assignments is stored in the master and cached in clients libraries to avoid bottlenecks.

4.2.3 Consistency model

Bigtable supports strong consistency. Data is not replicated on the Database level rather
on the file system level (GFS). This means that SStable parts of a tablet are replicated
in GFS. On the Database level Chubby service guarantees that one master is active and
that requests are routed to the tablet server that has the specific tablet.

4.2.4 Query model

Data can be accessed using the Bigtable API and MapReduce. Each request can work
with one table (i.e. no joins) and perform these operations:

• Create/delete tables and column families

• Modify cluster, table, and column family metadata

• Write or delete values in Bigtable

• Search table for a key value match

• Iterate over a subset of the data in a table

Chapter 4. Google Storage for the Cloud 33

The MapReduce is used for generating and modifying data stored in Bigtable [big11]. A
set of wrappers were introduced by Google to allow a Bigtable to be used as an input
and as an output target for MapReduce jobs [DG04].

4.2.5 Access control

The Column Family is the basic unit of access control rights [CDG+06]. The Bigtable
API can be used to manage access control rights using ACL. The Chubby service is used
to store ACLs.

4.3 Google Storage for Developers

Google storage for developers is a cloud based binary-object storage service for storing
and accessing data on Google’s Infrastructure. It enables users to benefit from the
performance, scalability, and sharing capabilities of Google’s cloud [DE10]. It is used
by many Google services (YouTube) and outside Google (the US Navy Visual News
Service). Data is automatically replicated to multiple data centers (currently only inside
US).

4.3.1 Data Model

Data is stored as objects inside buckets and must belong to a certain project. A project
consists of users, authentications, billing, and APIs. An Object is the individual piece
of data that can be stored in GSfD and has a data component (a file of any type or size)
and a metadata component which is a collection of key-value pairs (size, last modified,
share-publically). Objects are not physically stored in hierarchal structure. A folder can
be created inside a bucket and can be used to organize objects. Google Storage Manager
uses the $folder$ suffix to identify an object as a folder (Google Storage System and
GSUtil recognize a folder as an object with the name name $folder$). Folders can be
nested and only one folder suffix is used for each folder hierarchy. The user can specify
each bucket’s location as the data center location which can be in the US or the EU.

4.3.2 Query Model

Google provides the Google Storage Manger, REST API, and GSUtil to access data
stored in the GSfD. Google Storage Manager is available as a service in the Google APIs
Console with a simple user interface. To work with REST API, users can use Google
Storage simple RESTful programming interface to apply standard HTTP methods (PUT,
GET, HEAD, POST, and DELETE). GSUtil is a Python application that allows users
to access Google storage from a command line. The following requests on GSfD data
are supported:

• Create and delete buckets

• Create and delete folders (not available through GSUtil)

34 4.3. Google Storage for Developers

• Upload download and delete objects

• List buckets and objects

• Moving copying and renaming objects

• Setting bucket and object ACLs

4.3.3 Consistency model

GSfD supports strong consistency for read-after-write, delete, and ACL update oper-
ations. When a user successfully writes something to Google Storage, any subsequent
read will reach a snapshot of the newly written data no matter what replica it is commu-
nicating with. Once a read operation sees a snapshot of new data (even if it appeared to
have failed to be written) any other future read will see the same data. The list operation
is eventually consistent. When a user uploads an object, it can be queried immediately.
But it is possible that this object will not appear in the result of an immediate list
operation on the containing bucket.

4.3.4 Access Control

Data access in GSfD is controlled using ACLs. ACLs can be applied to buckets and
objects. There are two ways to apply ACL: using an ACL query string parameter (for
applying the ACL for a specific scope) or using the x-goog-acl request header (for ap-
plying the predefined ACL which is known as the canned ACL). When using an ACL
query string parameter an xml document that contains the specified ACL must be at-
tached to the body of the request. An ACL scope can be one of the following: Google
Storage ID, Google account email address, Google Apps domain, AllAuthenticatedUsers
(i.e. anyone with Google account), and AllUsers (i.e. anyone who is on the internet).
For the second case of canned ACLs, there is a list of predefined ACLs that can be used
with x-goog-acl header: project-private, private, public-read, public-read-write, etc. Full
control is automatically granted to the project owners of all buckets inside the project.
A user can not apply an ACL that removes full control of the bucket or object owners.

Chapter 5. Hadoop Storage for the Cloud 35

Chapter 5

Hadoop Storage for the Cloud

The Hadoop project was developed by Apache to support scalable distributed computing.
The core of the project is a framework that enables the processing of large and distributed
sets of data and detects and handles failures. Hadoop includes many subprojects among
them HDFS, Hive, HBase, ZooKeeper, and others.

5.1 Hadoop

Hadoop is a framework written in Java that supports distributed processing of large data
sets across clusters of machines. Each machine/node must offer local computation and
storage. The Hadoop framework is highly scalable and is designed to detect and handle
failures. Hadoop consists of two layers: the data storage layer or HDFS and the data
processing layer or MapReduce.

5.1.1 Architecture and Overview

A small Hadoop cluster consists of a master node and slave (worker) nodes. A master
node consists of jobtracker, tasktracker, NameNode, and DataNodes. A slave node
consists of a tasktracker and a DataNode. It is possible to have a slave node with
either a tasktracker (compute-only slave node) or a DataNode (data-only slave node)
but this would be considered nonstandard. The NameNode and DataNodes are part
of the data storage layer. In a large Hadoop cluster, there is a dedicated server for
managing the underlaying file system that contains the NameNode. Hadoop can be
deployed on any distributed file system(typically HDFS). There are alternatives such as
Amazon S3, CloudStore, and FTP file system. The jobtracker and tasktracker are parts
of the data processing layer. The jobtracker receives clients’ requests and directs them to
available tasktracker nodes. Hadoop uses FIFO to schedule jobs. Starting from version
0.19, alternative schedulers can be used such as fair Scheduler and capacity scheduler.
Figure 5.1 illustrates the Hadoop Architecture.

36 5.1. Hadoop

Figure 5.1: Hadoop Cluster Architecture adapted from [Nol11]

Chapter 5. Hadoop Storage for the Cloud 37

5.2 HDFS

HDFS runs on commodity hardware and provides high throughput access to large data
sets. It is inspired by the GFS paper with similar assumptions and goals such as hardware
failure and large data sets. The following concepts are added [Bor07]:

Simple coherency model: An application that accesses data on HDFS uses a Write-
once-read-many access model. It is considered that when the file is written it is
closed and needs not to be changed. So it is not supported to append writes to a file
in HDFS. This makes high throughput easier to achieve. Examples of applications
that use such access model are web crawlers or MapReduce applications.

Streaming data access: HDFS is designed for batch processing of large workloads
rather than interactive data access. POSIX standards have been relaxed to improve
the throughput rate.

Moving computation is cheaper than moving data: HDFS provides interfaces
for applications to move themselves closer to where the data which will be pro-
cessed is located. This is very efficient especially with large data sets. It decreases
network traffic and increases throughput.

Portability across heterogeneous hardware and software platforms: HDFS
should be easily portable across different platforms.

5.2.1 Architecture and Overview

HDFS is a slave master architecture composed of one master server, one NameNode
several DataNodes [Bor07]. The master sever manages the file system name space and
the clients file access. DataNodes serve the read and write requests of the client and
perform create, delete and replicate block requests issued by the NameNode. Each file
is split into several blocks and stored on a set of DataNodes. The NameNode stores
the file system meta data and is responsible for opening, closing, and renaming files and
directories. All blocks of a file are of the same size (typically 64MB) except for the last
block. Blocks are replicated for fault tolerance. The number of blocks and replicas is
configured for each file. Replica placement is optimized by implementing a rack-aware
policy to achieve reliability, availability, and utilize network use. Meta data in HDFS
are stored in two files: EditLog and FsImage. EditLog is a transaction log that stores
meta data such as new file creations and replication factor. The FsImage stores data
like file system namespace and the mapping of the blocks to the files. The NameNode
keeps a version of the FsImage in memory. When the NameNode starts, it performs
a checkpoint. First, it reads the FsImage and the EditLog. Then applies the changes
that are recorded in the EditLog to the FsImage. The new version of the FsImage is
stored back to disk and the old EditLog is truncated. A checkpoint is performed once
at startup (making periodic checkpoints is supported). The NameNode receives periodic
heartbeat message from the DataNodes. When it does not receive heartbeat from a node
it is marked as dead and no more access requests are directed to it. When the number
of replicas falls below the defined number, new replicas are made. The NameNode is a
single point of failure in HDFS. There is no automatic restart and NameNode failures are

38 5.2. HDFS

Metadata: (Name replicas)
NameNode

client

metadata
Metadata: (Name, replicas)

DataNodes

Block
operation

blocks

Replication

DataNodesDataNodesread

blocks

write

R k 2R k 2 client Rack 2Rack 2

Figure 5.2: Hadoop Distributed File System Architecture adapted from [Bor08]

handled manually. Snapshots of data are not supported. When a client sends a create-
file operation, it is not directed at the NameNode until a chunk-size data is cached on a
local file in the client. The request then is directed to the NameNode and data is flushed
to the specified DataNode. When the file is closed by the client, all remaining data is
sent to the DataNode and the NameNode commits the file creation. If the NameNode
fails before the file is closed, the file is lost. This approach of caching data on the client
has a great impact on the throughput speed.

HDFS provides a Java API and a C language wrapper. Data can also be accessed
using an HTTP browser and an FS shell (command line interface). There is a DFS
Admin Command Set which is used only by the HDFS administrator.

Chapter 5. Hadoop Storage for the Cloud 39

5.3 Hive

Hive is a data warehouse system built on top of Hadoop. It started at Facebook to
overcome some limitations such as Hadoop’s lack of command line interface for end
users, ad-hoc query support, and schema information. It is now a part of the Apache
Hadoop project. Hive use cases include log processing, text mining, document indexing
and predictive modeling.

5.3.1 Architecture

Hive is made of the following components which are illustrated in figure 5.3:

External Interface: allows interactive querying. Hive provides command line inter-
face, web interface, and JDBC clients.

Thrift Server: exposes a simple API for executing queries written in the Hive Query
Language (HiveQL).

Driver: is the core of Hive. It takes the HiveQL statements from the CLI or JDBC
client and hands it to the transformer. Then it fetches results and returns them.
It is a cross language framework. The server can be in one language and clients in
different languages.

Compiler: parses queries and creates query plans. It uses the database schema and
HDFS accesses are used to optimize the query plan.

Execution Engine: uses MapReduce jobs. However, it can read from HDFS without
MapReduce (e.g. when reading rows from a table without filtering).

Meta Store: stores properties of tables and partitions such as schema, SerDe library,
table location on HDFS, logical partitioning keys and types, and partition level
metadata.

An important library is the SerDe Library (Serializer/Deserializer). It describes
how to load data from HDFS files into a table and how to write it back out to HDFS
in any custom format. Hive implements the Thrift DDL based SerDe interface for
IO. This interface handles serialization, deserialization and the interpretation of
data into individual fields. Users can write their own SerDe for their own data
formats. The Meta store is outside HDFS in a Relational Database e.g. MySQL
and Derby.

40 5.3. Hive

JDBC/
ODBCCLI Web

GUI

Thrift
Server Metastore

Driver,
Compiler,
Optimizer,
Executor

HiveHive

b Name
Node

Job
Tracker

DataNode,
TaskTracker Hadoop

Figure 5.3: Hive Architecture adapted from [TSJ+09]

Chapter 5. Hadoop Storage for the Cloud 41

5.3.2 Data Model

Hive data model is a table-based model. Columns of a table can be of basic SQL types
or composite types. Supported SQL types are: integers, floating point numbers, generic
strings, dates, and boolean. Composite types include map and list that allow load-
ing semi structured data (e.g. JSON files). Each table has a HDFS directory. Data
of a table is serialized and stored as files in the corresponding directory. A table can
be partitioned based on columns. Each unique value of the partition-key determines a
partition of the table. Partitioning columns are not stored with the data rather than
define subdirectories to store data. Each partition of a table is a subdirectory within the
table’s directory. For example a table books is stored in directory /userName/books.
If books is partitioned by language and subject, then data with a particular language
value English and particular subject value education are stored in files within directory
/userName/books/language=eng/subject=educ. A partition can be hash-partitioned
into buckets. Each bucket is stored in a file inside the partition subdirectory. Bucket
information is used for optimization by the query planner especially for join optimiza-
tion [TSJ+09].

Figure 5.4: Hive Data Model adapted from [Tea09]

5.3.3 Query Model

Hive provides a command line shell for interactive querying. It also provides web inter-
face and JDBC/ODBC client access. Data is queried using a SQL-based query language
HiveQL [HLM11]. It supports basic SQL operations such as select, join, union, aggrega-
tion, and sub queries. The Creation of primary/foreign keys is not supported. However,

42 5.3. Hive

the creation of indices has been added [Hiv11]. We will discuss the basic operations and
the most important differences in the following:

DDL: Unlike other database systems, Hive gives users control over the way data is
stored by deciding partitions and buckets while creating tables. The partitioned
by clause defines the partitioning columns. Clustered by clause defines buckets.

CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name

[(col_name data_type [COMMENT col_comment], ...)]

[COMMENT table_comment]

[PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]

[CLUSTERED BY (col_name, col_name, ...)

[SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS]

[LOCATION HDFS_path]

[TBLPROPERTIES (property_name=property_value, ...)]

[AS select_statement]

Data is loaded into tables using several ways. User can create a data file in HDFS
using MapReduce and then using the following command to load data into a table:

LOAD DATA INPATH ‘‘path’’

INTO TABLE tableName;

Meta Data Access: HiveQL allows querying the Hive metastore:

SHOW TABLES;

SHOW TABLES ’xxx.*’;

SHOW PARTITIONS tableName;

DESCRIBE EXTENDED tableName;

Select and DML Support: HiveQL provides select statement with the following
syntax:

SELECT [ALL | DISTINCT] select_expr, , ...

FROM table_reference

[WHERE where_condition]

[GROUP BY col_list]

[CLUSTER BY col_list

| [DISTRIBUTE BY col_list] [SORT BY col_list]

]

[LIMIT number]

Where DISTRIBUTE BY and SORT BY are used to partition and sort the output
of a query. CLUSTER By can replace both when data is partitioned and sorted
by the same columns.

In HiveQL there is no insert, update, or delete row support. Hive tables are based
on HDFS files. As we already discussed when a file is closed in HDFS, no new data
can be added to it. However new data can be added to the table by adding new file
to the table folder and using the bulk data command. Hive can be configured to
automatically load data when files are added to a table’s directory. Deletes work
in a similar way by deleting the underlying HDFS files and using bulk delete.

Chapter 5. Hadoop Storage for the Cloud 43

Joins: Multiple tables can be joined in a single HiveQL statement. Only outer, equi,
and left semi joins are supported. Hive converts a join into a MapReduce job if a
single column is used in the join.

table_reference JOIN table_factor [join_condition]

| table_reference {LEFT|RIGHT|FULL} [OUTER] JOIN table_reference join_condition

| table_reference LEFT SEMI JOIN table_reference join_condition

Where

• table-reference can be a table-factor or join-table

• table-factor can be one of the following: table name alias, table-subquery
alias, or table-reference

• join condition can be

equality-expression (AND equality-expression)*

Using MapReduce inside SQL statement : MapReduce code can be invoked from
inside HiveQL using the following syntax where TRANSFORM can replace both
MAP and REDUCE keywords. The map and reduce script can be written in any
language. Next is an example of how they can be used in Hive:

ADD FILE ’map-script.py’

ADD FILE ’reduce-script.py’

FROM (

FROM facebookStatus

MAP statusID, statusTime, statusText

USING ’map-script.py’

AS word, count

CLUSTER BY word) map-output

INSERT OVERWRITE TABLE wordCount

REDUCE map-output.word, map-output.count

USING ’reduce-script.py’

AS word, count;

The previous code illustrates the simple task of counting frequencies of each word
in facebookStatus table using MapReduce. First, the map and reduce script files
are added to Hive. The next step would be to run the map script on facebookStatus
table. The third and final step is to run the reduce script against the output of
the map face and save the results to the wordCount table.

Jaql can also be used to query data in Hive. Jaql is a functional, declarative query
language developed at IBM research center Almaden. It is used to process large
data sets. Jaql was inspired by many programming and query languages that in-
clude: Lisp, SQL, XQuery, and PigLatin [IBM11]. To benefit from parallelism,
Jaql high-level queries are compiled into low level queries that consist of MapRe-
duce jobs that are evaluated using the Apache Hadoop. Users can change in the
low level queries adding functionalities that are missing in MapReduce jobs such
as hashed joins and indexed access [IBM11].

44 5.3. Hive

5.3.4 Access Control

Data access in Hive is organized by granting privileges to users, roles, and groups . By
default authorization grants of a table owner are set to null. This results in the owner
of the table not being able to access it [HLM11]. To solve this, two properties in hive-
site.xml must be changed. First, enable the security authorization of Hive. Second, set
the grants of table’s owner to ALL. The following code explains the changes:

<property>

<name>hive.security.authorization.enabled</name>

<value>true</value>

<description>enable or disable the hive client authorization</description>

</property>

<property>

<name>hive.security.authorization.createtable.owner.grants</name>

<value>ALL</value>

<description>the privileges automatically granted

to the owner whenever a table gets created.

An example like "select,drop" will grant select

and drop privilege to the owner of the table</description>

</property>

After this, privileges such as create, update, drop, select, etc. can be granted to users,
groups or roles using the following syntax:

GRANT

priv_type [(column_list)]

[, priv_type [(column_list)]] ...

[ON object_type]

TO principal_specification [, principal_specification] ...

[WITH GRANT OPTION]

REVOKE

priv_type [(column_list)]

[, priv_type [(column_list)]] ...

[ON object_type priv_level]

FROM principal_specification [, principal_specification] ...

REVOKE ALL PRIVILEGES, GRANT OPTION

FROM user [, user] ...

where

• principal-specification can be user, group, or role.

• object-type can be TABLE or DATABASE.

• priv-level can be tableName or databaseName.

Chapter 5. Hadoop Storage for the Cloud 45

5.4 HadoopDB

HadoopDB is an architectural hybrid of MapReduce and DBMS technologies. It achieves
its best performance when used for analytical workloads. HadoopDB was developed
by the database research group at Yale university and is now commercialized into
Hadapt [had11].

5.4.1 Architecture and overview

HadoopDB idea is to have MapReduce as the communication layer between several nodes
that run single-node instances of DBMS. Queries are given in SQL and translated into
MapReduce tasks. All components of the system are open source (Hadoop as the MapRe-
duce framework, PostgreSQL as DBMS, and Hive as the translation layer). HadoopDB
has the following components that connect its layers as illustrated in figure 5.5:

Database Connector: receives SQL statements from the MapReduce jobs, then con-
nects to the database systems and fetches the result back.

Catalog: stores metadata information such as table definitions, database location,
driver class, replica location, and data partitioning properties. It is used by the
jobTracker and taskTracker for task scheduling and data processing.

Data Loader: is responsible for repartitioning data upon loading, partitioning single
node data into into smaller chunks, and bulk loading the data chunks into the
single node databases. It is made of two parts: Local Hasher and global Hasher.
The global hasher partitions data files stored in HDFS depending on the number
of nodes in the cluster. Then the local hasher on each node loads a partition and
repartition it into chunks depending on predefined maximum chunk size.

SQL to MapReduce to SQL (SMS) Planner: It extends Hive and provides the
SQL interface of HadoopDB while pushing most of the data analyzing job to the
database layer [ABPH+10]. This improves performance since database system
query optimizers are more sophisticated than Hive’s simple optimizer [ABPA+09].

HadoopDB supports relational data model and strong consistency. For data ac-
cess, it provides a parallel database front end to users allowing them to process SQL
queries [ABPA+09]. Queries are expressed in HiveQL which was explained in section 5.3.3

5.5 HBase

HBase is an Apache open source, non relational, column oriented, and distributed
database. It is based on Google’s BigTable and built on top of Apache Hadoop and
Apache Zookeeper. HBase is used for random real time read and write accesses to big
data [HBA11]. It is suitable for storing sparse and versioned data. The main approaches
of using HBase is storing web data e.g. a table of crawled web pages and their attributes.
MapReduce jobs can be used for statistics or adding new columns [Whi09].

46 5.5. HBase

Figure 5.5: HadoopDB Architecture adapted from [ABPA+09]

Chapter 5. Hadoop Storage for the Cloud 47

HMasterclient Zookeeper

HRegionServer

HRegion

HRegionServer

HRegion

HL
og

Store
store file

HFile

store file

HFile …
…

HL
og

Store
store file

HFile

store file

HFile …
… …

H
Ba

se

… …DFS
client

DFS
client

oo
p

DataNodes

H
ad

o

Figure 5.6: HBase Architecture adapted from [Geo11]

5.5.1 HBase Architecture

HBase has a slave/master architecture and is composed of the following components:

HBaseMaster: is responsible for handling table administrative functions e.g. adding
and removing column families. It assigns regions to HRegionServers. The first
region to be assigned is ROOT which locates the other regions to be assigned.

HRegionServer: stores regions and is responsible for handling clients’ read and write
requests. It communicates with the HBaseMaster (Heartbeat messages). In a case
of HRegionServer failure, the HBasemaster region splits the write ahead log of the
specified server for each region. Then It assigns each region with its write ahead
log to one of the available alive HRegionServers.

HBase client: each client finds the HRegionServer that stores the region containing
the requested rows. The only communication between the client and the HBase-
Master is at instantiation to find the ROOT region.

An important underlying Apache service, Zookeeper (ZK), is used by HBase [zoo11].
The master and slave nodes register themselves with the ZK which is responsible for
server selection and recovery. Clients connect with ZK to find a cluster. HBase manages
the ZK instance. If the ZK is lost, the nodes are lost and a repair operation is needed.

48 5.5. HBase

5.5.2 Data Model

In HBase data is stored in sparse tables. Every HBase row-column pair is assigned
a timestamp [HBA11]. Table row keys are byte arrays so they can be of any type e.g.
string, serlialiazed data structure, and binary representation of long [Whi09]. Table rows
are sorted by row key. Columns are grouped in column families which are considered
the unit of performance tuning. Columns of the same family must have the same prefix.
Column families must be defined when defining the schema but columns can be added
to a column family at any point. Columns of one family are physically stored together.
Tables are horizontally split into regions. Each region is identified by the table name,
start-row key, and end-row key.

5.5.3 Consistency Model

HBase focuses slightly less on availability and more on ensuring consistency [Hew10].
It persists data using the underlying HDFS API. Transactions are atomic on the row
level and modifications are immediately available. Write operations are appended to a
commit log and then added to an in memory memstore. When memsotre is filled its
content is flushed to the file system [HBA11].

5.5.4 Query Model

HBase is not relational and does not support joins. Data can be accessed using Avro,
Thrift, REST and several language specific APIs. MapReduce jobs can be run against
tables [Whi09]. A work in progress project is HBql which aims to provide a SQL like
query language for HBase [HBq11]. HBql can be executed using console or JDBC (the
driver is not yet finished). It provides functionalities of table management, index man-
agement, mapping management, data manipulation (insert and delete), and selects. We
will discus some of the important HBql features in the following:

DDL: HBql provides create, drop, alter, enable, disable, split, compact, flush table
statements. It also allows user to create, drop, and describe indices. Next is the
required syntax for creating a table:

CREATE TABLE table_name ’(’ familyDescription [, ...] ’)’ [IF bool_expr]

Where familyDescription is:

family-name ’(’ [familyProperty [, ...]] ’)’

The familyProperty determines properties such as block size and compression type.

Meta Data Access: HBql provides access to the DB schema similar to SQL state-
ments e.g. describe tables and indices:

DESCRIBE TABLE table_name

Select and DML Support: HBql allows select from a single table

Chapter 5. Hadoop Storage for the Cloud 49

SELECT { ’*’ | selectElement [, ...] } FROM [MAPPING] mapping_name

[with_clause | with_index_clause]

Data manipulation includes inserts and deletes. However, HBql is still is work in
progress.

5.5.5 Access Control

HBase does not currently support access control. However there are several projects
working on that such as an Apache supported project to implement DAC (Discretionary
Access Control) [HBA11] and Secure HBase [HBS11] supported by Trend Micro. At
Apache the plan is to have per row and per key value ACL by implementing a new
“metacolumn” feature for HBase. The hierarchy for applying ACL [HBA11] is:

global -> table -> column family -> column qualifier -> row -> key value

It is still a discussion if the row or key value ACL overwrites the higher level ACLs or
not. At Secure HBase, access is controlled on the table and column family levels. The
current implementation does not support access control on the row or key value levels.

50 5.5. HBase

Chapter 6. Yahoo!’s PNUTS 51

Chapter 6

Yahoo!’s PNUTS

PNUTS is scalable, parallel, distributed database system. It was developed by Yahoo!
to meet their applications storage needs and it is used internally by many of their op-
erations such as social network activities and user profiles. It automatically manages
load balancing and failure recovery. PNUTS was designed to meet the following require-
ments [CRS+08]:

Scalability: PNUTS must achieve architectural scalability and it should be able to
function during periods of rapid scale. This means that scalability should be
achieved with minimal operational effort and minumal effect on the system perfor-
mance.

Response time and geographic scope: The system will be used internally by other
Yahoo! services that are requested by users in wide range of geographic space. It
should meet the Service Level Agreement (SLA) of response time and respond to
all users with low latency.

High availability, fault tolerance, and consistency guarantees: Targeted ap-
plications require high availability of this storage system. They want to be able
to read and write data even in the case of failures. This leads to decisions that
sacrifice strong consistency such as choosing no referential integrity constrains and
no serializable transactions.

6.1 Architecture

PNUTS allows application to store data as ordered or hashed tables. Each table is
horizontally divided into tablets (hundreds of Megabytes or few Gigabytes size). Tablets
of an ordered table are made based on the primary key intervals. In the case of hashed
tables, keys are hashed before dividing the table. Tables are replicated on different
regions. Tablets are distributed across servers within regions. Each tablet is stored in
one server only within a region so that each region contains only one and a complete
copy of a table. Now we will explain the different parts of the system responsible for
storing data:

52 6.2. Data Model

Figure 6.1: PNUTS System Architecture adapted from [CRS+08]

Region: The system is divided into regions which can be geographically distributed.
Each region has multiple servers.

Storage Unit: It is responsible for storing tablets, responding to get, set, and scan
requests. The storage unit can use any physical storage layer. For hash tables
storage, Yahoo! uses a UNIX file system based hash table implementation. For
ordered tables, Yahoo! uses MySQL with InnoDB. Records are stored as parsed
JSON objects.

Router: It cashes the tablets mapping and is responsible for finding which storage
unit contains the records of a client’s read or write request. When a router fails a
new one starts with no recovery on the failed one.

Tablet Controller: It is responsible for recovery and load balancing between storage
units. It decides when to move tablets from one storage unit to another. It is also
responsible for tablet splitting when it is bigger than a specified size. It stores the
tablets mapping which is cashed in the router.

Yahoo! Message Broker (YMB): It is a topic based publish/subscribe system.
Data updates are considered committed once they are published to YMS. YMS
is responsible for propagating updates to different copies of data in all different re-
gions. When a region fails, lost tablets are copied from another region. The tablet
controller sends a copy request, a checkpoint message is sent to the YMB, and then
the specified tablets are copied. Figure 6.1 illustrates the system architecture of
Yahoo! PNUTS.

6.2 Data Model

PNUTS provides a simple data model. Data is organized in tables. Supported data
types are string, integer, boolean, BLOB, etc. PNUTS allows the change of schema at
any stage. Attributes can be added to a table without having to stop queries or updates.
Referential integrity constrains are not enforced [CRS+08].

Chapter 6. Yahoo!’s PNUTS 53

6.3 Consistency Model

PNUTS supports tunable consistency model that is called by Yahoo! Per Record Time-
line Consistency. This model supports consistency between general serializability and
eventual consistency. Updates are applied to all replicas of data in the same order (man-
aged by YMB). One copy of a record is considered to be the master copy which can be
changed according to the work load. All updates of a record are directed and applied to
the master copy first. Clients can choose to query at several points in the consistency
time line:

Read-any: It gives any valid copy of data history, which can be a stale version. It can
be used in cases where performance is more crucial than consistency like in social
networking.

Read-critical (required-version): PNUTS returns a version that is newer than or
the same as the specified version. Version numbers are known from the output of
write requests. Read-critical can be used for example when a user wants to read
data immediately after writing it.

Read-latest: It returns a version that reflects all committed operation on data. It has
lower latency than the two previous operations.

Write: It gives ACID guarantees but on single operations.

Test-and-set write (required-version): It performs a write operation only when
the present version of a record is the same as the required version. It can be used
for transactions that needs to first read a record and the manipulate data according
to its value.

6.4 Query Model

PNUTS does not provide a complex or add hoc query language. However, it provides
a web service RESTful API, and several language specific APIs e.g. PHP, C++, and
Java. PNUTS supports selects, updates, and deletes [CRS+08]. Select is supported on
a single table only (range and single point). Joins and aggregations are not supported.

6.5 Access Control

There is no published information about it.

54 6.5. Access Control

Chapter 7. Cassandra 55

Chapter 7

Cassandra

Cassandra is a distributed key value store for storing large sets of data up to Tera
bytes. It was developed by Facebook and adopted later by Apache. The aim of starting
the Cassandra project was to satisfy the reliability and scalability needs of Facebook.
Cassandra brings together Google’s BigTable data model and Amazon’s Dynamo storage
model (distributed hashed table) [LM10]. It promises scalability with no single point of
failure.

7.1 Architecture

The Cassandra cluster is made of nodes. One leader node is elected by the ZooKeeper
while other nodes are responsible for storage [LM10]. The leader node assigns ranges and
replicas to the storage nodes. Data is partitioned using consistent hashing and precisely
an order preserving hash function. Each node is assigned a number that represents its
position in the ring. Each data item is assigned to a node in the ring by hashing its
key and moving clockwise in the ring to find the first node with a larger position. The
node that stores a data item is called the coordinator for this item. Each node is the
coordinator for any data item that falls in the ring region between the node itself and
the previous node. The coordinator stores a copy of the data item and replicates it on
different nodes in the ring. Data is replicated on a number of nodes based on a replication
factor N and a replica placement strategy. The replication factor is user defined and is set
on the instance level. Cassandra supports three placement strategies: Simple Strategy
(rack unaware), Old Network Topology Strategy (rack aware), and Network Topology
Strategy (data center aware). The leader is responsible for balancing the load over nodes
so that no node is responsible for storing more than N-1 replicas. Meta data such as
dataItem-to-node mappings are stored in ZK and cached in nodes. Membership issues
such as nodes joining (system scaling), failure, and recovery are managed using an anti-
entropy Gossip based mechanism [Hew10]. A read/write request for a key routes to any
node in the cluster. For write operations, the system routes the update to all replicas
of data and waits for a minimal number of replicas to confirm the success of the write.
For read operations, user specified consistency determines whether the system sends the
request to the closest replicas or to all replicas in the cluster. This will be discussed in
more details in the consistency model section.

56 7.2. Data Model

7.2 Data Model

Data is stored as name-value pairs contained in key space. Key space is made of columns
families which are analogues to tables. A column is made of name-value pairs with time
stamps. A row is considered the container for columns [Hew10]. Thus columns are
referenced by row keys. Time stamp is user defined. However, it can not be queried
by users and is used by the server for conflict solving. Columns are grouped together
to make column families. Cassandra is considered schema-free because columns can be
added to column families at any time. In Cassandra, row keys and column names can be
any kind of byte arrays. Column families structure data in four dimensions as follows:

key space -> column family -> column family row -> column -> value

The address of a value would be a row key that points to a column name that points to
the value as illustrated in figure 7.1. The Cassandra data model allows having a column
family inside another one, which will be called the super column family. Super column
families structure data in five dimension as follows:

key space -> super column family -> super column family row ->

super column -> column -> value

In this case, the address of a value would be a row key that points to a super column
name that points to a column name that points to the value as illustrated in figure 7.2.

7.3 Consistency Model

Cassandra allows users to choose a consistency level that is suitable for their applications
requirements. Just like PNUTS, it gives users the choice to make a trade off between
latency and consistency for each read and write operation. Consistency in Cassandra is
based on the replication factor rather than on the number of nodes in the cluster. Next,
we discuss the available choices:

Write Operation the following consistency models are provided:

• ANY: It means that whenever the write is committed on any node, the write
returns a successes message.

• ONE: In this case, the write must be committed on at least one node and
written to the memory table before it returns as successful.

• QUORUM: Data must be written to (<replication factor>/2)+1 nodes.

• LOCAL-QUORUM: Data must be written to (<replication factor>/2)+1
nodes on the same data center. This option requires NetworkTopologyS-
trategy.

• EACH-QUORUM: Data must be written to (<replication factor>/2)+1 nodes
in each data center. This also requires NetworkTopologyStrategy.

• ALL: Data must be written to all replicas. This sacrifices latency for con-
sistency. If any of the replicas does not respond, the write operation will
fails.

Chapter 7. Cassandra 57

Column name1 Column name2 Column name3

Value Value value

Column Family

Key Space

Row key
Value Value value

Column name1 Column name2 Column name4

Value Value value

Key sorted

Row key

Column name1 Column name4

Value Value
Row key

Column Family

Column name5 Column name6 Column name7

Value Value value
Row key

Column name6 Column name7

Value Value
Row key

Key Space

…

Figure 7.1: Cassandra Data Model adapted from [cas11a]

58 7.4. Query Model

Key Space

Super Column family

Row key

Super column1

Column name Column name Column name

Super column2

Column name Column nameRow key
Value Value valueValue Value

Super Column family

Row key
…

…

Figure 7.2: Cassandra Data Model: Super Column Family adapted from [Hew10]

Read Operation the following consistency models are provided:

• ONE: In this case, the read operation gives back the value of the first replica
to answer the request.

• QUORUM: The read operation gives back the value that has the most re-
cent time stamp after getting responses of (<replication factor>/2)+1 of all
replicas.

• LOCAL-QUORUM: The read operation gives back the value that has the most
recent time stamp after getting responses of (<replication factor>/2)+1 of all
replicas in the same data center

• EACH-QUORUM: The read operation gives back the value that has the most
recent time stamp after getting responses of (<replication factor>/2)+1 of
all replicas in each data center

• ALL: Read operation gives back the value that has the most recent time stamp
off all replicas. If one replica does not respond, the read operation fails.

7.4 Query Model

Cassandra provides an API that allows access through an RPC serialization mechanism,
Thrift [Hew10]. There is a list of supported languages-specific APIs such as Java, Ruby,
PHP, Python, etc. The thrift API is intended for internal use and for client library
developers [Cas11b]. The Hadoop functionalities such as Pig, Hive, and MapReduce
can be used with Cassandra DB. Cassandra provides a SQL-like query language called
Cassandra Query Language (CQL). Next we discus the supported queries:

DDL: CQL provides create key space, create column family, and create index. Next
we explain the create column family statement:

Chapter 7. Cassandra 59

CREATE COLUMNFAMILY <COLUMN FAMILY> (KEY <type> PRIMARY KEY

[, name1 type, name2 type, ...])

[WITH keyword1 = arg1 [AND keyword2 = arg2 [AND ...]]];

Where

• type: used to specify the type during creation time and is optional. Supported
types are:

– bytea: Arbitrary bytes (no validation)

– ascii: ASCII character string

– text: UTF8 encoded string

– varchar: UTF8 encoded string

– uuid: Type 1, or type 4 UUID

– varint: 4-byte integer

– bigint: 8-byte long

• keyword: used for configuration. Here is a short list of some of possible key
words:

– row-cache-size: Number of rows that will be cached in memory.

– key-cache-size: Number of keys per SSTable that will be kept in memory.

– memtable-throughput-in-mb: Maximum size of the memtable before it is
flushed.

– etc.

Select and DML: CQL allows select from a single column family.

SELECT [FIRST N] [REVERSED] <SELECT EXPR>

FROM <COLUMN FAMILY> [USING <CONSISTENCY>]

[WHERE-CLAUSE] [LIMIT N];

Where

• FIRST N: determines the number of columns that will appear for each row.
The default value is 10,000 columns.

• REVERSED: using this means that the sort order of the results will be re-
versed.

• SELECT EXPR: It specifies the columns that can appear in the result. Two
options are offered: a list of column names separated by commas

COL1, COL2, COL3,..

or a range of columns specified by start and end column names separated by
(..)

COL1..COLn

• CONSISTENCY: specifies the consistency level that should be applied. It
can be one of the options specified in the previous section 7.3.

• WHERE-CLAUSE: It can filter on Key name or range of keys.

60 7.5. Access Control

WHERE KEY = keyName

WHERE KEY >= startKey and KEY =< endKey AND name1 = value1

WHERE KEY IN (keyname1, keyname2)

• LIMIT N: It limits the result to the first N rows. The default value is 10,000.

An INSERT in CQL is used to insert one or more column values to a row.

INSERT INTO <COLUMN FAMILY> (KEY, , , ..)

VALUES (, , , ..)

[USING CONSISTENCY [AND TIMESTAMP]]

A DELETE in CQL is used to remove of one or more columns from one or more
rows. When column names are not specified then the entire row is deleted

DELETE [COLUMNS]

FROM <COLUMN FAMILY> [USING <CONSISTENCY>]

[WHERE-CLAUSE]

7.5 Access Control

The default authority configuration in Cassandra allows access to all resources.
Users can specify the permissions for column families or key space by changing
org.apache.cassandra.auth.SimpleAuthority.

Chapter 8. CouchDB 61

Chapter 8

CouchDB

CouchDB is a document oriented non relational database written in Erlang. It manages
data as JSON documents providing querying and indexing capabilities (using JavaScript
in a MapReduce model). It also provides incremental replication with conflict detection
and solving [JCAS10].

8.1 Architecture

The CouchDB DB server is a peer based distributed database system [Cou11a]. CouchDB
hosts, whether they are servers or off line clients, can have replicas of a database. Replicas
are independent and updates are made bi-directionally when a host is back online or on
request. CouchDB automatically handles conflicts and copies only new documents and
individual fields that changed after the previous replication request. Figure8.1 illustrates
the CouchDB system architecture.

Storage Engine: the CouchDB storage engine is B-tree based. It is the core of the sys-
tem which manages storing internal data, documents and views. Data in CouchDB
is accessed by keys or key ranges which map directly to the underlying B-tree op-
erations. This direct mapping improves speed significantly [JCAS10].

View Engine: it is based on Mozilla SpiderMonkey and written in JavaScript. It
allows creating adhoc views that are made of MapReduce jobs. Definitions of the
views are stored in design documents. When a user reads data in a view, CouchDB
makes sure the result is up to date [Len09]. Views can be used to create indices
and extract data from documents [JCAS10].

Replicator: It is responsible for replicating data to a local or remote database and
synchronizing design documents [Hol11].

62 8.2. Data Model

HTTP client

Erlang
VM Erlang HTTP

MOD‐Couch

View
Engine

Storage
Engine

Repli‐
cator

Spider

Disk

Lucene
p
Monkey
JavaScript

ICU

Figure 8.1: CouchDB Architecture adapted from [Cou11a]

8.2 Data Model

CouchDB manages data as a flat, self-contained, schema-less collection of JSON docu-
ments. Data is stored in documents as key-value pairs. The Document is the primary
unit of data in CouchDB. It has an ID, other fields, and attachments. The document ID
is unique per Database and can be any string. Document fields are uniquely named and
contain values of varying types (text, date, number, boolean, ordered lists, associated
maps, etc). CouchDb puts no limit to the number of fields and elements or the size of
the text. An Attachment is identified by a name and includes its content type and the
number of bytes it contains. Documents include metadata that is maintained by the
database system. Next is an example of data stored in CouchDB:

{

type: ’contact’,

firstname: ’Siba’,

lastname: ’Mohammad’,

Chapter 8. CouchDB 63

email: [’home’: ’siba@foobar.net’, ’work’: ’siba@foobar-working.net’],

phone: [’home’: ’+49 00 0000 0000’],

address: []

}

8.3 Consistency Model

CouchDB supports strong consistency where updates are lock-less and optimistic. For
write operations, the client loads a copy of the document, makes the changes, and saves
it back to the database. Documents are not locked when updating which allows any
number of clients to be reading and writing data at the same time. If a document was
changed by another client before saving an update, it fails and returns an edit-conflict
error. In this case, the client tries to apply the updates to the new version. CouchDB
implements MVCC for read operations. Each client sees a consistent snapshot of the
database during a read operation.

8.4 Query Model

CouchDB provides a web-based administrator interface for data management, Futon. Fu-
ton allows creating/deleting databases, viewing/editing documents and creating/running
views. View definitions are saved in design documents and can be replicated like data
documents. A view is made of JavaScript MapReduce functions that aggregate, join,
and report data. Next is an example of a view in CouchDB that counts documents with
attachment adapted from [Cou11c].

map: function(doc) {

if (doc._attachments) {

emit("with attachment", 1);

}

else {

emit("without attachment", 1);

}

}

reduce: function(keys, values) {

return sum(values);

}

Data can also be accessed by clients using RESTful HTTP/JSON APIs. The REST-
ful API allows put, delete, post, and get operations and returns data in the form of
JavaScript objects in JSON [Cou11c].

8.5 Access Control

In CouchDB, three types of roles are defined: database reader, database administrator,
and server administrator [Cou11b]. We describe them in the following:

64 8.5. Access Control

Database Reader: This role is defined on the database level and grants reading all
documents (data and design). Creating and editing documents is granted but not
for design documents.

Database Administrator: This role is defined on the database level and has
all privileges of the Database reader plus: creating/editing design documents,
adding/removing database admins and readers, setting the database parameters,
and executing views on the database.

Server Administrator: This role is defined on the CouchDB instance level. It has
the privileges of a Database Administrator plus: creating/ deleting databases.

Roles are defined in the security object of the database (as JSON document). They are
not defined on the document level. To get around this, it is suggested to create different
databases for different user groups.

Chapter 9. Comparison and Classification of Current Approaches 65

Chapter 9

Comparison and Classification of
Current Approaches

In earlier chapters, we tried to cover the most important data management systems in
the cloud. Next, we compare and classify them based on criteria of cloud computing
such as availability and partitioning and DBMS such as data model, consistency, and
query language.

9.1 Architecture and Overview

There are two main approaches in providing data storage management in the cloud:

RDBMS as a service: this is the first approach where RDBMS is provided as a ser-
vice as illustrated in figure 9.1. Examples are RDS that provides MySQL and
Oracle, and Microsoft SQL Azure that provides MS SQL server.

Users / Applications

Cloud data management architecture Cloud storage services

Amazon Relational Database

(RDS), Microsoft SQL Azure

SQL server

Relational Cloud Storage Service

SQL server

Relational DBMS

Figure 9.1: RDBMS as a service in the cloud

Combinations of components: the cloud data management system , in this case,
is not a monolithic system but rather a combination of interconnected systems

66 9.1. Architecture and Overview

and components that can be replaced according to application needs. Figure 9.2
illustrates this architecture. In the following list, we describe these components
and their functionalities:

Users / Applications

Cloud data management architecture Cloud storage services

HiveQL, CQL, HBql, JAQLQuery Language

Google BigTable, HBase, Structured Data System

Distributed Processing System Google MapReduce,
Hadoop MapReduce

Distributed File Systems:
Google File System,

Cassandra, Amazon
SimpleDB, Yahoo! PNUTS

Distributed Storage System

y

Hadoop Distributed File
System

Cloud-based File Service:
Amazon S3

P2P lik Fil S iP2P-like File Service:
Amazon Dynamo

Figure 9.2: Architectural components for data management in the cloud

• Distributed Storage System: it is the essential part of this architecture. Sys-
tems that are in this layer are not usually provided to the public as services
but they are used internally by their vendors. Examples are Dynamo, GFS,
and HDFS. Functionalities provided by systems of this layer are: performance
for data access, fault tolerance, availability and scalability.

• Structured Data System: systems of this layer usually support a simple data
model such as key value pairs. Examples are SimpleDB and HBase. These
systems are provided to end users as web services and support various APIs
for data access.

• Distributed Processing System: systems of this layer are used to process and
analyze data. Examples are Google’s and Hadoop’s MapReduce Frameworks.
Usually MapReduce is the data processing paradigm used by these systems.
They provide high performance for complex data processing operations such
as joins and aggregations.

Chapter 9. Comparison and Classification of Current Approaches 67

• Query Language (QL)s: SQL is not usually supported. However, developers
tried to mimic SQL syntax for simplicity. Examples are HiveQL, SimpleDB
select, JAQL, and CQL. Most query languages of the cloud provide access to
one domain or one table. Other functionalities such as controlling privileges
and user groups, schema creation and meta data access are usually supported.

The previous components complement each other and work together to provide dif-
ferent functionalities of management for the cloud data. Structured data storage systems
differ in their support of QL and MapReduce components. One important design consid-
eration that was made fore most QL is not to support joins and aggregations. Instead,
MapReduce framework is used to provide the means to perform them in the cloud to take
advantage of parallel processing on different nodes. Google pioneered this by providing
a MapReduce framework that inspired other systems. For more insight into connections
and dependencies between these systems and components, we provide the family tree
of the cloud storage systems. See figure 9.3. We use a solid arrow to illustrate that a
system uses another one such as Hive using HDFS. We use a dotted arrow to illustrate
that a system uses some aspects of another system like the data model or the processing
paradigm. Examples are Cassandra using the data model of Bigtable, and CouchDB
using the data processing paradigm of Google’s MapReduce. In this family tree, we
start on the left side with distributed storage systems GFS and HDFS. Then, we have
the structured storage systems with API support such as Bigtable. Then comes the
systems that support a simple QL such as SimpleDB. Next, we have structured storage
systems with support of MapReduce and simple QL such as Cassandra and HBase. Fi-
nally we have systems with sophisticated QL and MapReduce support such as Hive and
HadoopDB.

68 9.2. Partitioning

RDS
HadoopDB

Cassandra
HBase

Hive

p

PNUTS

HDFS Dynamo

S3

SimpleDB

CouchDB

S3

G l M R d

GFS

Bigtable

use the system

Google MapReduce

GFS use aspects

File system DBMS

Figure 9.3: Family tree of cloud storage systems

9.2 Partitioning

Partitioning (sharding) is used by databases in the cloud to achieve scalability. There
is a variety of partitioning schemes used by different systems on different levels. Some
systems partition data on the file level while others partition the key space or tables.
Examples of systems partitioning data on the file level are the cloud Distributed File
System (DFS)s such as GFS and HDFS which partition each file into fixed sized (typically
64 MB) chunks of data. The second class of systems that partition tables or key space
uses one or a composite of the following partitioning schemes [LA02, Par11, AS10] :

List Partitioning: a partition is assigned a list of discrete values. If the key of the
inserted tuple has one of these values, the specified partition is selected . Example
of a cloud data management system using list as the partitioning scheme is Hive.

Range Partitioning: the range of values belonging to one key is divided into intervals.
Each partition is assigned one interval. A partition is selected if the key value of
the inserted tuple is inside a certain range. Example of a system using range

Chapter 9. Comparison and Classification of Current Approaches 69

Data partitioning in the cloud

table (key space)

p g

file(y p)

range hash
GFS
HDFSlist

Hive
HadoopDB
PNUTS

Bigtable
PNUTS
HBase

Dynamo
Cassandra

Hive

Figure 9.4: Classification based on data partitioning scheme

partitioning is HBase.

Hash Partitioning: the output of a hash function is assigned to different partitions.
The hash function is applied on key values to determine the partition. This scheme
is used when data does not lend itself to list and range partitioning. Example of a
system using hash as the partitioning scheme is PNUTS.

There are some systems that use a composite partitioning scheme. An Example is
Dynamo which uses a composite of hash and list schemes (consistent hashing). Some
systems allows partitioning data several times using different partitioning schemes each
time . An example is Hive where each table is partitioned based on column values. Then
each partition can be hash partitioned into buckets which are stored in HDFS.

One disadvantage that comes with data partitioning is load balancing. Since most
methods depend on random position assignment of storage nodes and does not take
into consideration the diversity of their performance levels. This leads to non uniform
distribution of data and workload. Several techniques have been used to achieve load
balancing. Cassandra uses a leader node that acts as a load balancer. While Dynamo
uses several strategies to maintain a uniform distribution of keys on nodes and provides
a load balancer that directs requests based on load information.

One important design consideration to make is whether to choose an order preserving
partitioning technique or not. Order preserving partitioning has an advantage of better
performance when it comes to range queries. Examples of systems using order preserving
partitioning techniques are Bigtable and Cassandra.

70 9.2. Partitioning

system partitioning partitioning scheme partition architecture

Dynamo key space consistent hashing set of items peer to peer

S3 not supported - - -

SimpleDB - no Info

RDS not supported - - slave master

GFS file fixed sized parts chunk slave master

Bigtable table ordered tablet

GSfD not supported - - -

HDFS file fixed sized parts chunk slave master

Hive table 2 levels: list, hash bucket slave master

HBase table ordered region slave master

HadoopDB table 2 level: hash chunk slave master

Cassandra table consistent hash-
ing

set of items slave master

PNUTS table hash or ordered tablet peer to peer

CouchDB not supported - - no Info

Table 9.1: Comparison of data partitioning of cloud storage systems

Chapter 9. Comparison and Classification of Current Approaches 71

9.3 Replication

Data replication is used by data management systems in the cloud to achieve high
availability. Replication means storing replicas of data on more than one storage node
and probably more than one data center. The replica placement strategy affects the
efficiency of the system [Hew10]. In the following we describe the replication strategies
used by cloud systems [Hew10]:

Rack Aware Strategy: it is also known as the Old Network Topology Strategy which
places replicas in more than one data center on different racks within each one.

Data Center Aware Strategy: it is also known as the New Network Topology Strat-
egy. In this strategy, clients/applications specify how replicas are placed across
different data centers.

Rack Unaware Strategy: it is also known as the Simple Strategy. It places replicas
within one data center using a method that does not configure replica placement
on certain racks.

Figure 9.5 illustrates the classification of data management systems in the cloud based
on the replication placement strategy.

The replication factor which determines the number of replicas is handled in different
ways. Some systems do not reveal it to users e.g. Amazon S3 and SimpleDB. Most
systems allow users to set the replication factor. One example is HDFS which allows
clients to set the replication factor on the file level. For a complete overview of how
different cloud systems manage data replication see table 9.3

Replication improves system robustness against node failures. When a node fails, the
system can transparently read data from other replicas. Another gain of replication is
increasing read performance with the help of a load balancer that directs requests to a
data center close to the user. Replication has a down side when it comes to updating data.
The system has to update all replicas. This leads to very important design considerations
that impact the availability and consistency of data. The first one is to decide whether
to make replicas available during updates or wait until data is consistent across all of
them. Most systems in the cloud choose availability over consistency. However, we will
discuss this in more detail later in section 9.5. The second design consideration is to
decide when to perform replica conflicts resolution i.e. during writes or reads. If conflict
resolution is done during write operations, writes could be rejected if the system can
not reach all replicas or a specified number of them within a specific time. Example
of that is the WRITE ALL operation in Cassandra, where the write fails if the system
could not reach all replicas of data. However, some systems in the cloud choose to be
always writeable and push conflict resolution to read operations. An Example of that is
Dynamo which is used by many Amazon services like the shopping cart service where
customer updates should not be rejected.

72 9.3. Replication

Replication placement strategies in the cloud

rack unaware

Replication placement strategies in the cloud

rack awaredata center aware

Bigtable
S3
C d

rack unaware rack aware

HDFS
HBase
Hive

Dynamo
SimpleDB
RDS GSfDCassandra Hive

HadoopDB
GFS
Cassandra

RDS GSfD
PNUTS
Cassandra

Figure 9.5: Classification based on replica placement strategy

Chapter 9. Comparison and Classification of Current Approaches 73

system replication level placement strategy replication factor

Dynamo item data center aware per instance

S3 item data center un-
aware

automatic, RRS

SimpleDB domain data center aware automatic

RDS database within region in
different AZ

per database

GFS chunk rack aware per part of fileNS

Bigtable sstable data center un-
aware

per part of fileNS

GSfD no Info data center aware automatic

HDFS block rack aware per file flexible

Hive DB file uses HDFS defined in HDFS

HBase DB file uses HDFS defined in HDFS

HadoopDB chunk uses HDFS defined in HDFS

Cassandra per record rack unaware,
rack aware, data
center aware

per key space

PNUTS tablet data center aware automatic

CouchDB database manual -

Table 9.2: Comparison of replication of cloud storage systems

74 9.4. Classification based on Data Model

9.4 Classification based on Data Model

The main data models used by cloud systems:

Relational Model (RM): the most common data model for traditional DBMS. Ex-
amples of cloud storage systems supporting this model are HadoopDB and Ama-
zon’s RDS.

Key Value: the most common data model for cloud storage. It has three subcate-
gories:

• Row Oriented: In this model, data is organized as containers of rows that
represent objects with different attributes. An Example is SimpleDB where
data is organized in domains of rows. In this approach, access control lists
are applied on the object(row) or container(set of rows) level.

• Document Oriented: data in this model is organized as a collection of self
described JSON documents. Example of a cloud system with document ori-
ented data model is CouchDB. Document is the primarily unit of data which is
identified by a unique ID. CouchDB automatically indexes data by document
IDs.

• Wide Column: In this model, attributes are grouped together to form a col-
umn family. Column family information can be used for query optimization.
Some systems perform access control and both disk and memory accounting
at the column family level such as Bigtable.

Systems of wide column data model should not be mistaken with column
oriented DB systems. The former deals with data as column families on the
conceptual level only. The latter is more on the physical level and stores data
by column rather than by row.

See table 9.3 for a comparison of data storage systems’ data model, schema, and index
support. Figure 9.6 illustrates the classification of data storage systems in the cloud
based on the data model.

Chapter 9. Comparison and Classification of Current Approaches 75

system Data model Schema Index

S3 key value object, bucket, folder no no

SimpleDB key value items, domain no automatic

RDS relational yes yes

Bigtable key value row, CFamily, table yes automatic

GSfD key value object, bucket, folder no no

Hive table-based yes yes

HBase table CFamily flexiable yes yes

HadoopDB relational yes yes

PNUTS relational yes flexiable yes

Cassandra key value CFamily flexiable yes flexiable yes

CouchDB key value document oriented no yes

Table 9.3: Comparison of data model of cloud storage systems

Data models in the cloud

key value relationaly

row oriented wide column document oriented PNUTS
HadoopDB

SimpleDB
RDS

CouchDB
MongoDB

Bigtable
HBase
Hive
CassandraCassandra

Figure 9.6: Classification based on data models

76 9.5. Consistency, Availability, and Partition Tolerance

9.5 Consistency, Availability, and Partition Toler-

ance

We will compare and classify the cloud data storage systems based on Consistency,
Availability, and Partition tolerance (CAP). The CAP theorem [Bro11, GL02] states
that consistency, availability, and partition tolerance are systematic requirements for
designing and deploying applications for distributed environments. These concepts mean
the following:

• Consistency means that modifications on data must be visible to all clients once
they are committed. At any given point in time, all clients can read the same data.

• Availability means that all operations on data whether read or write must end with
a response within a specified time.

• Partition tolerance means that even in the case of components’ failures, operations
on the database must continue.

The CAP theorem also states that developers must make trade off decisions between
the three to achieve high scalability. So if we want a data storage system that is both
strongly consistent and partition tolerant, its availability will be sacrificed . Because the
system has to make sure that write operations returns a success message only if data has
been committed to all nodes which is not always possible because of network or node
failures. In the cloud, there are basically four approaches for systems in dealing with
CAP.

Atomicity Consistency Isolation Durability (ACID): with ACID, all users have
the same consistent view of data before and after transactions. A transaction is
atomic. If one part fails, the whole transaction fails and the state of the data
is left unchanged. But once the transaction is committed, it is protected against
crashes and errors. Data is locked while being modified by a transaction. If another
transaction tries to access data while data is locked, it has to wait. ACID is used
by systems which prefer very strong consistency and do not mind losing some
availability for that.

Basically Available Soft-state Eventual consistent (BASE): with BASE, the
system does not guarantee that all users see the same version of data item but
guarantees that all of them see data. It means that data is not locked while a
transaction is working on it. BASE is used by systems that choose weaker consis-
tency to have higher availability.

Strongly Consistent Loosely Available (SCLA): this approach provides better
availability than ACID and stronger consistency than BASE. It is used by systems
that choose higher consistency and sacrifice a little bit of availability. Examples of
that are HBase and Bigtable.

Tunable consistency: in this model, consistency is configurable for each read and
write request. Users decide the level of consistency in balance with the level of
availability. Then the system can work in high consistency or high availability

Chapter 9. Comparison and Classification of Current Approaches 77

C

HadoopDB
RDS

HBase
Hive
Bigtable

A P
CouchDB
SimpleDB
Dynamo

Cassandra
PNUTS

BASE
Tunable

Consistency

Dynamo
S3

Figure 9.7: Classification based on CAP

mode and other degrees in between. For instance a user can set the consistency
level of a write operation to high (means update all replicas of data). In that case,
the user gains strong consistency but must wait until all replicas are updated. If
any node storing a replica of the specfied data does not respond to the system, the
operation fails. For more examples and discussion about this see sections 6.3 and
7.3

78 9.6. Data Access and Query Model

9.6 Data Access and Query Model

Data querying capabilities in cloud systems varies a lot. Some systems provide querying
options on a single object such as in S3. Other systems provide querying capabilities on a
single container of objects (or table of records) such as SimpleDB, HBase, and PNUTS.
At the end of the spectrum, systems provide more sophisticated operations like joins
and aggregations. Figure 9.8 illustrates the classification of cloud data storage systems
according to query capabilities.

Amazon storage services based on Dynamo provide a web based interface, REST
API, SOAP API, and language specific APIs such as Java, PHP, C#. They do not
support a SQL like query language except for SimpleDB. SimpleDB provides a select
statement that allows querying data from one domain. Amazon’s RDS provide the full
query support of the underlying Oracle and MySQL clusters.

In Google’s Bigtable, data can be queried using the Bigtable’s API and Google’s
MapReduce Framework. The API provides operations such as searching for a key
value match or iterating over data. MapReduce is used to generate and modify data
in Bigtable. Google’s Storage for Developers provides GSUtil, a command line interface,
and also supports REST API.

Hadoop based Hive provides an SQL like query language, HiveQL. HiveQL supports
schema definition and data querying. Outer, equi, and left semi joins are also supported.
MapReduce jobs can be used from inside queries. As for client support, Hive provides
command line tool and supports JDBC/ODBC and Thrift APIs. HBase provides an SQL
like query language called HBql which is still a work in progress. Joins are not allowed.
However, HBase supports running MapReduce jobs against tables. Data can be also
accessed using Avro, Thrift, REST and several language specific APIs. A system that
tries to combine the best of relational and MapReduce worlds is HadoopDB. It provides
a parallel DB front end to allow users to query data using HiveQL. Both MapReduce
jobs and joins are supported. Yahoo!’s PNUTS does not support any SQL like query
language. However data can be accessed using REST API, and many other language
specific APIs such as Java and PHP. PNUTS does not support joins or MapReduce
jobs. Facebook’s Cassandra which is based on Hadoop provides a Thrift API to access
data. Other Hadoop functionalities such as Pig, Hive, and MapReduce can be used
against Cassandra DB. Cassandra also provides a SQL-like query language called CQL.
Joins are not supported in Cassandra. Document oriented CouchDB provides REST and
HTTP/JSON APIs. It also supports using MapReduce functions to create indices and
perform other operations on data. Table 9.6 summarizes this comparison.

Chapter 9. Comparison and Classification of Current Approaches 79

System QueryL MapReduce Join Languages/API

S3 no no no REST, SOAP
Java, Ruby
PHP, C#

SimpleDB SQL-like no no REST, SOAP
Java, Ruby
PHP, C#

RDS SQL no yes REST, SOAP
Java, Ruby
PHP, C#

Bigtable no yes no GoogleAPI
Java, Python

GSfD no no no REST, GSU-
til

Hive HiveQL
Jaql Pig

yes yes Thrift
JDBC/ODBC

HBase HBql yes no REST, Avro
Thrift, JDBC

HadoopDB HiveQL yes yes Thrift
JDBC/ODBC

PNUTS no yes no REST, Java
C++, PHP

Cassandra CQL yes no Thrift

CouchDB no yes no REST
HTTP/JSON

Table 9.4: Query models and supported languages and APIs of different cloud storage
systems

Single Object Single table SQL joins & aggregations

S3 SimpleDB, Bigtable
GsfD, HBase, PNUTS
Cassandra, CouchDB

RDS
HadoopDB
Hive

Figure 9.8: Classification based on query model

80 9.6. Data Access and Query Model

Chapter 10. Conclusions and Future Work 81

Chapter 10

Conclusions and Future Work

The landscape of data management systems has changed during the last ten years. A new
generation of database applications that exploit the advantages of the cloud is emerg-
ing. We presented a comprehensive survey and classification of cloud data management
approaches. This work covers a variety of systems developed by industry leaders such as
Google’s Bigtable or by academia such as HadoopDB, from the database research group
at Yale University.

Some data management systems in the cloud are provided as web services or stand
alone systems. Other data management systems are made of components that can be
deployed and replaced depending on the application needs and workload. In most cases
components developed by one vendor complement each other to satisfy one application
storage needs. Data partitioning and replication are used by cloud data management
systems to achieve scalability and availability. Since data partitioning is a state of fact
in the cloud, this leads as explained by the CAP theorem to the trade off between
consistency and availability. Consistency is not an all or nothing proposition in the
cloud. Several levels of consistency are supported and some systems allow users to tune
consistency on the request level. Non relational key value store is the prominent data
model in the cloud. This new model provides more flexibility and scalability. It also
provides more efficient data processing through MapReduce.

Cloud data management is a work in progress where new strategies, features, and
components are still being developed. Next we list some challenges and research direc-
tions in cloud data management [Oez10, LYCL11]:

• Query processing and optimization:
Parallel database techniques such as indices and optimization can be used to im-
prove the performance and support more complex data analysis operations. An-
other direction is the deployment of non centralized query execution such as peer
to peer techniques [JX09].

• Automatic data management:
This includes automatic management of partitioning and replication to handle load
variations and consider the diversity of nodes capacities and their performance
levels .

• Data security and privacy:
One direction is the transparent deployment of data encryption techniques with

82

the ability to perform operations on encrypted data. Another is the deployment
of privacy preserving query processing techniques [HXRC11, TSWZ11]

• Declarative programming languages:
Distributed data management on large scales using MapReduce is still hard [Oez10].
Ongoing research is to find a replacement that increases the ease of development
and keeps the performance benefits that MapReduce already provides. A data
centric declarative programming language was provided by Berkeley Orders Of
Magnitude project (BOOM) [ACC+10].

BIBLIOGRAPHY 83

Bibliography

[ABPA+09] Abouzeid, A.; Bajda-Pawlikowski, K.; Abadi, D.; Silberschatz, A.;
Rasin, A.: Hadoopdb: an architectural hybrid of mapreduce and dbms
technologies for analytical workloads. Proc. VLDB Endow., Band 2, S.
922–933, August 2009.

[ABPH+10] Abouzied, A.; Bajda-Pawlikowski, K.; Huang, J.; Abadi, D. J.; Silber-
schatz, A.: Hadoopdb in action: building real world applications. In
Proceedings of the 2010 international conference on Management of data,
SIGMOD ’10, S. 1111–1114. ACM, New York, NY, USA, 2010.

[ACC+10] Alvaro, P.; Condie, T.; Conway, N.; Elmeleegy, K.; Hellerstein, J. M.;
Sears, R.: Boom analytics: exploring data-centric, declarative programming
for the cloud. In Proceedings of the 5th European conference on Computer
systems, EuroSys ’10, S. 223–236. ACM, New York, NY, USA, 2010.

[Ado11a] Amazon rds documentation, June 2011.

[Ado11b] Amazon s3 technical documentation, May 2011.

[Ado11c] Amazon simpledb technical documentation, June 2011.

[AFG+10] Armbrust, M.; Fox, A.; Griffith, R.; Joseph, A. D.; Katz, R.; Konwinski, A.;
Lee, G.; Patterson, D. et al.: A view of cloud computing. Commun. ACM,
Band 53, S. 50–58, April 2010.

[AS10] Avi Silberschatz, S. S., H. F. K.: Database System Concepts Fifth Edition.
McGraw-Hill, 2010.

[AS311] Amazon s3 design principles, May 2011.

[BBG11] Buyya, R.; Broberg, J.; Gościński, A.: Cloud Computing: Principles and
Paradigms. John Wiley & Sons, Inc., Hoboken, New Jersey, 2011.

[big11] Bigtable, August 2011.

[BM09] Brunette, G.; Mogull, R.: Security guidance for critical areas of focus
in cloud computing v2. 1. Technischer Bericht, Cloud Security Alliance,
December 2009.

[Bor07] Borthakur, D.: The Hadoop Distributed File System: Architecture and
Design. The Apache Software Foundation, 2007.

84 BIBLIOGRAPHY

[Bor08] Borthakur, D.: Hdfs architecture guide. The Apache Software Foundation.,
2008.

[Bro11] Browne, J.: Brewer’s cap theorem, August 2011.

[cas11a] Apache cassandra quick tour, July 2011.

[Cas11b] Cassandra wiki, July 2011.

[CDG+06] Chang, F.; Dean, J.; Ghemawat, S.; Hsieh, W. C.; Wallach, D. A.; Bur-
rows, M.; Chandra, T.; Fikes, A.; Gruber, R. E.: Bigtable: A distributed
storage system for structured data. In IN PROCEEDINGS OF THE 7TH
CONFERENCE ON USENIX SYMPOSIUM ON OPERATING SYSTEMS
DESIGN AND IMPLEMENTATION - VOLUME 7, S. 205–218, 2006.

[CGJ+09] Chow, R.; Golle, P.; Jakobsson, M.; Shi, E.; Staddon, J.; Masuoka, R.;
Molina, J.: Controlling data in the cloud: outsourcing computation without
outsourcing control. In Proceedings of the 2009 ACM workshop on Cloud
computing security, CCSW ’09, S. 85–90. ACM, New York, NY, USA, 2009.

[Cou11a] The apache couchdb project, July 2011.

[Cou11b] Couchdb security features overview, July 2011.

[Cou11c] Exploring couchdb a document-oriented database for web applications.
Technischer Bericht, July 2011.

[CRS+08] Cooper, B. F.; Ramakrishnan, R.; Srivastava, U.; Silberstein, A.; Bohan-
non, P.; Jacobsen, H.-A.; Puz, N.; Weaver, D. et al.: Pnuts: Yahoo!’s hosted
data serving platform. Proc. VLDB Endow., Band 1, S. 1277–1288, August
2008.

[Dar11] Darmstadt, F. S.: Careless behaviour of cloud users leads to crucial security
threats. Technischer Bericht, June 2011.

[DE10] David Erb, M. S.: Google storage for developers, 2010.

[DG92] DeWitt, D.; Gray, J.: Parallel database systems: the future of high perfor-
mance database systems. Commun. ACM, Band 35, S. 85–98, June 1992.

[DG04] Dean, J.; Ghemawat, S.: Mapreduce: simplified data processing on large
clusters. In Proceedings of the 6th conference on Symposium on Opearting
Systems Design & Implementation - Volume 6, S. 10–10. USENIX Associ-
ation, Berkeley, CA, USA, 2004.

[DHJ+07] DeCandia, G.; Hastorun, D.; Jampani, M.; Kakulapati, G.; Lakshman, A.;
Pilchin, A.; Sivasubramanian, S.; Vosshall, P. et al.: Dynamo: amazon’s
highly available key-value store. SIGOPS Oper. Syst. Rev., Band 41, S.
205–220, October 2007.

[FE10] Furht, B.; Escalante, A. (Hrsg.): Hand Book of Cloud Computing. Springer,
2010.

BIBLIOGRAPHY 85

[Geo11] George, L.: Hbase architecture 101 - storage, July 2011.

[GGL03] Ghemawat, S.; Gobioff, H.; Leung, S.-T.: The google file system. SIGOPS
Oper. Syst. Rev., Band 37, Nr. 5, S. 29–43, 2003.

[GL02] Gilbert, S.; Lynch, N.: Brewer’s conjecture and the feasibility of consistent
available partition-tolerant web services. In In ACM SIGACT News, S.
2002, 2002.

[Hab11] Habeeb, M.: A Developers Guide to Amazon SimpleDB. Addison Wesley,
2011.

[had11] Hadoopdb an architectural hybrid of mapreduce and dbms technologies for
analytical workloads., August 2011.

[HBA11] Hbase discretionary access control, July 2011.

[HBq11] Hbase query language hbql, July 2011.

[HBS11] Secure hbase: Access controls, July 2011.

[Hel07] Helland, P.: Life beyond distributed transactions: an apostate’s opinion.
In CIDR, S. 132–141, 2007.

[Hew10] Hewitt, E.: Cassandra The Definitive Guide. O Reilly Media, Inc, Nove-
mober 2010.

[Hiv11] Hive indices, August 2011.

[HLM11] Hive language manual, July 2011.

[Hol11] Holt, B.: Scaling CouchDB Replication, Clustering, and Administration.
OReilly Media, Inc, April 2011.

[HXRC11] Hu, H.; Xu, J.; Ren, C.; Choi, B.: Processing private queries over untrusted
data cloud through privacy homomorphism. Data Engineering, Interna-
tional Conference on, Band 0, S. 601–612, 2011.

[IBM11] Jaql overview, August 2011.

[IF01] Ian Foster, S. T., C. K.: The anatomy of the grid enabling scalable virtual
organizations. International Journal of Supercomputing Applications, S.
200–222, 2001.

[JCAS10] J. Chris Anderson, J. L.; Slater, N.: CouchDB The Definitive Guide. OR-
eilly Media, Inc, 2010.

[JDU97] Jeffrey D. Ullman, J. W.: A first course in database systems. Prentice Hall,
1997.

[JG11] Jansen, W.; Grance, T.: Guidelines on security and privacy in public
cloud computing. Technischer Bericht, NIST, January 2011. Draft Special
Publication 800-144. Available at http://csrc.nist.gov/publications/
drafts/800-144/Draft-SP-800-144_cloud-computing.pdf.

http://csrc.nist.gov/publications/drafts/800-144/Draft-SP-800-144_cloud-computing.pdf
http://csrc.nist.gov/publications/drafts/800-144/Draft-SP-800-144_cloud-computing.pdf

86 BIBLIOGRAPHY

[JMF09] Jha, S.; Merzky, A.; Fox, G.: Using clouds to provide grids with higher levels
of abstraction and explicit support for usage modes. Concurr. Comput. :
Pract. Exper., Band 21, S. 1087–1108, June 2009.

[JX09] Jurczyk, P.; Xiong, L.: Dynamic query processing for p2p data services in
the cloud. In Proceedings of the 20th International Conference on Database
and Expert Systems Applications, DEXA ’09, S. 396–411. Springer-Verlag,
Berlin, Heidelberg, 2009.

[KFZ05] Keahey, K.; Foster, I.; Zhang, T. F. X.: Virtual workspaces: Achieving
quality of service and quality. In of Life in the Grid. Scientific Programming
Journal, S. 265–276, 2005.

[LA02] Lance Ashdown, S. B. e. a., C. B.: Oracle9i Database Concepts. Oracle
Corporation., 2002.

[Len09] Lennon, J.: Beginning CouchDB. Springer-Verlag New York, Inc, 2009.

[LM10] Lakshman, A.; Malik, P.: Cassandra: a decentralized structured storage
system. SIGOPS Oper. Syst. Rev., Band 44, S. 35–40, April 2010.

[LYCL11] Li, M.; Yu, S.; Cao, N.; Lou, W.: Authorized private keyword search over
encrypted data in cloud computing. In ICDCS, S. 383–392, 2011.

[MG11] Mell, P.; Grance, T.: The nist definition of cloud computing.
Technischer Bericht, NIST, January 2011. Draft Special Publication
800-145. Available at http://csrc.nist.gov/publications/drafts/

800-145/Draft-SP-800-145_cloud-definition.pdf.

[Mye09] Myerson, J. M.: Cloud computing versus grid computing. IBMdeveloper-
Works, 2009.

[Nol11] Noll, M. G.: Running hadoop on ubuntu linux (multi-node cluster), August
2011.

[Oez10] Oezsu, V. P., M. T.: Principles of Distributed Database Systems, Third
Edition. Prentice Hall, 2010.

[Par11] Partition (database), August 2011.

[PC10] Prabhakar Chaganti, R. H.: Amazon SimpleDB Developer Guide Scale
your application’s database on the cloud using Amazon SimpleDB. Packt
Publishing Ltd, 2010.

[Pon10] Ponemon, L.: Security of cloud computing users a study of practitioners in
the us & europe. Technischer Bericht, Ponemon Institute, May 2010.

[rds11] Amazon relational database service getting started guide, April 2011.

[RSRS98] Ramaswamy, C.; Sandhu, R.; Ramaswamy, R.; S, R.: Role-based access con-
trol features in commercial database management systems. In In Proceedings
of 21st NIST-NCSC National Information Systems Security Conference, S.
503–511, 1998.

http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145_cloud-definition.pdf
http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145_cloud-definition.pdf

BIBLIOGRAPHY 87

[SAD+10] Stonebraker, M.; Abadi, D. J.; DeWitt, D. J.; Madden, S.; Paulson, E.;
Pavlo, A.; Rasin, A.: Mapreduce and parallel dbmss: Friends or foes?
CACM, 53(1), January 2010.

[Tea09] Team, F. D.: Data warehousing & analytics on hadoop, 2009.

[ter] Manual: Introduction to Teradata RDBMS.

[TSJ+09] Thusoo, A.; Sarma, J. S.; Jain, N.; Shao, Z.; Chakka, P.; Anthony, S.;
Liu, H.; Wyckoff, P. et al.: Hive: a warehousing solution over a map-reduce
framework. Proc. VLDB Endow., Band 2, S. 1626–1629, August 2009.

[TSWZ11] Tian, X.; Sha, C.; Wang, X.; Zhou, A.: Privacy preserving query processing
on secret share based data storage. In Yu, J.; Kim, M.; Unland, R. (Hrsg.):
Database Systems for Advanced Applications, Lecture Notes in Computer
Science, Band 6587, S. 108–122. Springer Berlin / Heidelberg, 2011.

[VMMS11] Victor Mendez Munoz, A. G., M. K.; Salt, J.: On the economics of huge
requirements of the mass storage a case study of the agata project. CLOSER
International Conference on Cloud Computing and Services Science, April
2011.

[Vog11] Vogels, W.: All things distributed amazon’s dynamo, August 2011.

[VZ09] Voas, J.; Zhang, J.: Cloud computing: New wine or just a new bottle? IT
Professional, Band 11, Nr. 2, S. 15 –17, march-april 2009.

[Whi09] White, T.: Hadoop: The Definitive Guide. OReilly Media, Inc, 2009.

[YYLC10] Yuan, D.; Yang, Y.; Liu, X.; Chen, J.: A cost-effective strategy for interme-
diate data storage in scientific cloud workflow systems. In IPDPS, S. 1–12,
2010.

[zoo11] Apache zookeeper, July 2011.

88 BIBLIOGRAPHY

89

Deceleration of Authorship

I hereby declare that I am the sole author of this thesis and used nothing but the specified
resources and means.

Magdeburg, den September 23, 2011

Siba Mohammad

90

	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Structure

	Foundations and Related Topics
	Database Systems
	Traditional DBMS
	Parallel Database Systems

	Cloud Computing Overview
	Design Principles and Models of Cloud Computing
	Cloud Computing Enabling Technologies and Related Standards
	Security and Data Privacy Issues
	Grid Computing vs. Cloud Computing

	Amazon Storage for the Cloud
	Dynamo
	Architecture and Overview
	Consistency Model
	Query Model

	Amazon S3
	Data Model
	Consistency Model
	Query Model
	Access Control

	Amazon SimpleDB
	Data Model
	Consistency Model
	Query Model
	Access Control

	RDS
	Architecture
	Data Model
	Consistency Model
	Query Model
	Access Control

	Google Storage for the Cloud
	 GFS
	Architecture and Overview

	Bigtable
	Data Model
	Bigtable Architecture
	Consistency model
	Query model
	Access control

	Google Storage for Developers
	Data Model
	Query Model
	Consistency model
	Access Control

	Hadoop Storage for the Cloud
	Hadoop
	Architecture and Overview

	HDFS
	Architecture and Overview

	Hive
	Architecture
	Data Model
	Query Model
	Access Control

	HadoopDB
	 Architecture and overview

	HBase
	HBase Architecture
	Data Model
	Consistency Model
	Query Model
	Access Control

	Yahoo!'s PNUTS
	Architecture
	Data Model
	Consistency Model
	Query Model
	Access Control

	Cassandra
	Architecture
	Data Model
	Consistency Model
	Query Model
	Access Control

	CouchDB
	Architecture
	Data Model
	Consistency Model
	Query Model
	Access Control

	Comparison and Classification of Current Approaches
	Architecture and Overview
	Partitioning
	Replication
	Classification based on Data Model
	Consistency, Availability, and Partition Tolerance
	Data Access and Query Model

	Conclusions and Future Work
	Bibliography

