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A Formal Theory of Symbolic Expressions

Masahiko Sato (佐藤 雅彦)
Department of Information Science

Faculty of Science
University of Tokyo

Introduction

This paper is an excerpt from the full paper Sato[5], which is in preparation In this paper
we continue our study of the domain $S$ of symbolic expressions In contrast to our former
paper Sato[4] (which we will refer to I in the sequel), in this paper, we will study the domain $S$

formally within a formal theory SA of symbolic expressions

Through our attempts at formalization of the domain $S$ we encountered several technical
$d_{1}fficulties$ Most of these difficulties came from the fact that cons of $0$ and $0$ was again $0$ (We
will not go into the details of the difficulties, but we ] $ust$ mention that it is mostly related to the
induction schema on sexps) We were therefore forced to reconsider the domain itself, and by a
simple $mod_{1}fication$ (or, rather simplification) on the definition of symbolic expressions we got
a new domain This domain, which we will denote by the symbol $S$ , will be the $ob_{J}ective$ of
our study in this paper We will refer to our old domain of symbolic expressions which we stu-
died in I as $S_{old}$

This paper can be read without any familiarity with I We should, however, remark that
these two domains are very similar to each other and we will study our new domain with the
same spirit as in I

Besides our previous works $[4, 6]$ , the domain of symbolic expressions recently attracted
the attention of some logicians Feferman[2] introduced second order theories of symbolic
expressions and showed that elementary metamathematics can be naturally developed within his
systems Hayashi[3] also introduced a theory of symbolic expressions and gave sound founda-
tion for his computer implemented system that synthesizes a LISP program from the construc-
tive proof of its specification The most important reason for the choice of symbolic expres-
sions as the domain of discourse is because they provide a natural and easy way of encoding the
metamathemalical entities such as proofs or programs We will adopt the domain of symbolic
expressions as our basic objects of our study for the very same reason

The paper is organized as follows In Section 1, we introduce our new domain $S$ of sym-
bolic expressions informally In Section 2, we introduce the concept of a formal systern, which
is a simplified version of the corresponding concept we studied in I As in I, formal systems
will play fundamental roles in our formal study of S We also point out that a formal system is
essentially equivalent to a program $W\Gamma ltten$ in a logic programming language In Section 3 we
introduce a formal theory of symbolic expressions $wh_{1}ch$ we call BSA (for $\Re sic$ Symbolic
Arithmetic) We also explain the intended interpretation of the theory The theory BSA is an
adequate theory for developing metamathemaics within it We refer the reader for our full
paper [5] for the details of the development

This paper is based on the result of activities of working groups for the Fifth Generation Computer Systems
ProjecLs
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1. Symbolic expressions

1. 1. sexps

We define symbolic expresslons (sexps, for short) by the following inductive clauses:

1 $*is$ a sexp.

2 If $s$ and $t$ are sexps then $CO71S$($S$ , t) is a sexp

3. If $s$ and $t$ are sexps then $snoc$ ($s$ , t) $1S$ a sexp.

All the sexps are constructed by finitely many applications of the above three clauses, and sexps
constructed differently are distinct. We denote the set of all the sexps by S. We denote the
image of the function $c$ ons by $M$ and that of $snoc$ by A. We then have two bijective functions:

$C071SS\cross Sarrow M$

$snoc:S\cross Sarrow A$

Moreover, by the constructlon of $S$ , we see that $S$ is the union of three mutually $dis$] $oint$ sets
$]*[,$ $M$ and A In other words, $S$ satisfies the following domain equation:

$S\equiv]*[+A+M\cong]*\}+SxS+S\cross S$

We will use the symbol $\equiv$ as informal equality symbol, and will reserve the symbol $=$ for
the formal equality sign Elements in $M$ are called $mo$ lecizles and those in A are called atoms
and $*is$ called $nd$ We define two total $funct_{1}ons$ , car and $cdr$, on $M$ by the equations:

$car(C071S(S, t))\equiv s$

$cdr(cons(s, t))\equiv t$

Similarly we define two total functions, $cbr$ and ccr, on A by the equatlons:

cbr(snoc $(s,$ $t)$ ) $\equiv s$

$ccr(sr\iota oc(s, t))\equiv t$

Compositions of the functions car $cbr_{r}ccr$ and $cdr$ will be abbreviated following the convention
in LISP For instance:

cabcdr(t) $\equiv car(cb_{7’}(ccr(cdr(t))))$

We must introduce some notations for sexp The so-called dot notatlon and list notation
lntroduced below is fundamental.

$[ t]\equiv t$

$[t_{1}, , t_{n} t_{n+1}]\equiv CO7ls(t_{1}. [b, , t_{n} t_{n+1}])(n\geqq 1)$

$[t_{1}, t_{n}]\equiv[t_{1} , t_{n} *](n\geqq 0)$

In particular we have

$[s t]\equiv CO\eta S$ ($S$ , t)
$[]\equiv*$

A sexp of the form $[t_{1}, , t_{n}]$ wlll be called a $l\tau st$ We will also use the following abbrevia-
tions

$s[$ . $t]$ for $[s t]$
$s[t_{1}, , t_{n} t_{n+1}]f$ or $[s. t_{1}, t_{n} t_{n+1}]$

$s[t_{1}, t_{n}]f$ or $[s, t_{1)} t_{\tau\iota}]$

$arrow 2-$



For $sn$oc. we only use the followlng notation

( $s$ t) $\equiv snoc$($s$ , t)

Parentheses will a so be used for grouping. Thus $(t)$ will not denote $snoc(t, *)$ but will denote
$t$ (Readers of our previous papers, please forgive our change of notations)

The basic induction schema on $S$ can be stated as follows. Let $\Phi(t)$ be a proposition about
a sexp $t$ . Then we may conclude that $\Phi(t)$ holds for any $t$ , if we can prove the following three
propositions.

(i) $\Phi(*)$

(ii) If $\Phi(s)$ and $\Phi(t)$ then $\Phi([s t])$

(iii) If $\Phi(s)$ and $\Phi(t)$ then $\Phi((s t))$

1.2. symbols and variables

An atom of the form

( $*$ x)

will be called a symbol Let $\Sigma$ be the set of 128 ASCII characters We define an injective func-
tion $\rho$

$\Sigmaarrow M$ by using 7 bit ASCII codes, regarding $*as0$ and $[*]$ as 1. For instance, we have

$\rho(a)$ $\equiv[[*], [*],$ $*,$ $*$ $**$ $[*]]$

$\rho(1)$ $\equiv[*, [*],$ $[*],$ $***$ $[*]]$

We extend $\rho$ homomorphically to $\Sigma^{*}$ , $ie.$ . we define $\rho$ : $\Sigma$ $arrow M$ by
$\rho^{*}$ $(\sigma_{1} \sigma_{k})\equiv[\rho(\sigma_{1}). , \rho(\sigma_{k})](\sigma_{\mathfrak{i}}\in\Sigma)$ Now consider a string of alphanumeric char-
acters such that

(i) its length is longer than 1,

(1i) it begins with a lowercase character and

(lii) its second character is a non-numeric character.

Such a string will be called a name Let $\pi$ be a name. Then, by definition, $\pi$ denotes the sym-
$b$ ol

$(* [* \rho^{*}(\pi)])$

An atom of the form

(var x)

Is called a vanable (Note that $\iota_{Var}$
‘ denotes a specific symbol. See Example 1.1 below.) We

introduce notatlons for variables A string of alphanumeric characters such that

(i) it begins with an uppercase character, or

(ii) it consists of a single lowercase character, or

(iii) lts first character is lowercase and its second character is a numeral

denotes a variable as follows. Let $\pi$ be such a strlng Then, by definition, $\pi$ denotes the vari-
able

(var $\rho^{*}(\pi)$ )

We will regard the under score character $\iota-$ as a lower case character for convenience

Example 1.1.

var $\equiv(* [* [[[*], [*], [*],*, [*], [*], *], [[*], [*],*,*, *,*, [*]], [[*],[*],[*],*, *, [*],*]]])$

Var $\equiv$ (var $[[[*],*,[*],*,$ $[*],$ $[*],$ $*],$ $[[*],[*],*,$ $*,$ $*,*\}[*]]$ . $[[*],[*],[*],*,$ $*,[*],*]]$ ) $\square$
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2. Formal systems

2.1. formal system

In I, we have defined the concept of a formal system Here we will redefine a formal sys-
tem by giving a simpler definltlon of $1t$ . As $explalned$ in I, our concept of a formal system has
its origin in Smullyan[7]. However, unlike Smullyan’s, our formal system will be defined
dlrectly as a sexp. This has the advantage of making the definition of a universal formal system
Slmpler Another practically very important aspect of our concept of a formal system is that it
can be quite naturally viewed as a so-called logic program. This means that we can execute for-
mal systems on a computer if we have an interpreter for them. In fact, Takafumi Sakurai of
the University of Tokyo implemented such an interpreter. (See [6].) We can therefore use for-
mal systems both as theoretically and practlcally baslc tools for our study$\cdot$ of symbolic expres-
$SlO$ ns.

No $te$. When we introduced formal systems in I, we were ignorant of the programming
language PROLOG But after we had submitted I for publication, we knew the existence of the
language $S_{1}nce$ it was clear, for anyone who knows both PROLOG and Post-Smullyan $s$ formal
system (or, the concept of lnductive definition), that they are essentially the same, we asked T.
Sakural to implement an interpreter for our formal systems which we introduced in I The
interpreter was named Hyperprolog, and it was used to debug the definition of Ref which we
gave $ln$ I. In this way we could correct bugs in our formal systems in the stage of proof read-
ing We belIeve that the existence of an interpreter $1S$ essential for finding and correcting such
bugs We also remark that Hyperprolog was quite useful in designing our new formal system,
$whlch$ we are about to explain, slnce $1t$ can be slmulated on Hyperprolog Finally we remark
that we have designed a new programming language called Qute which can compute relations
defined by our new formal system Qute was also implemented by T. Sakurai. (See Sato and
$s_{ak_{Ura1}[6]})\square$

Now let us define our formal system We will call, by definition, any sexp a formal system
Our $ob_{J}ectlve$ , then, is to define a relation proves(p, $a,$ $FS$) which holds among certain triples $p$ ,

$a$ , $FS$ of sexps where the sexp $FS$ is treated as a formal system. We will employ informal
inductive definitions to define the relation $pr$oves We will say that $p$ is a $pro$ of of $a$ in the for-
mal system $FS$ , if proves$(p, a, FS)$ holds. We write:

$p\vdash_{FS}$ $a$ $f$ or $p\tau oves(p, a, FS)$

We will say that $a$ is a the orem in $FS$ if proves$(p, a, FS)$ holds $f$ or some $p$ , and will use the
notati on

$\vdash_{FS}$ a

for it

2.2. inductive definitions

As an example of informal inductive definition, let us define the relation member(x, $L$ )
which means that $x$ is a member of $L$ :

(M1) $\Rightarrow$ memb$e\tau(x, [x L])$

(M2) member$(x, L)$ $\Rightarrow$ member(x, $[y$ $L]$ )

(M1) means that the relation member(x, $[x$ $L]$ ) holds unconditlonally for any sexp $x$ and $L$ ,

and (M2) says that If the relatlon member(x, $L$ ) holds then the relation member(x, $[y$ $L]$ )
also holds for any sexp $x,$ $L$ and $y$ . We have omitted the usual extremal clause which states
that the relation member(x, $L$ ) holds only when it can be shown to be so by finitely many appli-
$cat_{1}ons$ of the clauses (M1) and (M2).

Let us now consider about the nature of (informal) inductive definitlons in general. All
inductlve definitions which we consider in $th_{I}s$ paper consist of a finite set of clauses (or, rules)

-4-
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of the form

$(\Gamma)$
$\gamma_{1}$ , $\gamma_{n}$ $\Rightarrow\gamma$

where $n\geqq 0$ and $\Gamma$ is the name of the clause which is used to identify the clause For example,
in (M1) $n$ is $0$ and in (M2) $n$ is 1. Suppose we have a finite set of inductlve clauses like
above, and we could conclude that a certain specific relation holds among specific sexps from
these inductive clauses Let us write our conclusion as $\alpha$ (If.

$\cdot$. our set of $induct_{1}ve$ clauses con-
sist only of (M1) and (M2) above, then $\alpha$ is of the form member(x , $L$ ) where $x$ and $L$ are cer-
tain specific sexps such as orange or [apple, orange].) We now show that we can associate with

$\alpha$ an informal proof $\Pi$ of $\alpha$ According to the extremal clause, $\alpha$ is obtaIned by applying our
inductive clauses finitely many times. Let $(\Gamma)$ be the last applied clause. Since the clause $(\Gamma)$

is schematic, when we apply (F) we must also specify for each schematic variables $x_{i}$ a sexp $v_{i}$

as its value Let $x_{1}$ , , $x_{k}$ be an enumeration of schematic variables occurring $\ln(\Gamma)$ and let

$\Delta\equiv<x_{1}\cdot=v_{1}$ , , $x_{k}$ $;=v_{k}>$

By substituting $v_{1}$. for $x_{i}$ , we can obtain the following instance of $(\Gamma)$ :

$(\Gamma_{\Delta})$
$\alpha_{1}$ , , $\alpha_{n}$

$\Rightarrow\alpha$

Note that the conclus]on of $(\Gamma_{\Delta})$ must be $\alpha$ by our assumption that $a$ is obtained by applying
(an instance of) $(\Gamma)$ That $(\Gamma_{\Delta})$ is applicable also means that each $\alpha_{\dot{t}}$ has already been shown
to hold by applying inductive clauses finitely many times Since the number of appllcatlons of
inductive clauses which was used to show $\alpha_{\iota}$ is smaller than that was required to show $\alpha$ , we
may assume, as $\ln duction$ hypothesls, that we have an informal proof $\Pi_{i}$ of $\alpha_{i}$ for each
$1\leqq’\iota\leqq n_{-}$ Using these data, we can construct a proof $\Pi$ of $\alpha$ as the figure of the form:

$\Pi_{1}$ $\Pi_{n}$

$(\Gamma)\Delta$

Example 2.1.

From (M1) and (M2), we can conclude that member(orange, [apple, orange]) holds, and
we have the followIng proof associated with this

$\frac{(M1)<x-=orange,L=.[]>}{(M2)<x:=orange,y=app1e,L=[orange]>}$

$\square$

2.3. definition of the relation proves

Based on this intuitive idea of informal proof we define the relation proves etc as follows
First we define ne (for not equal) which has the property that ne$(x, y)$ holds iff $x$ and $y$ are two
$dist_{1}nct$ sexps

(N1) $=ne(*, [u v])$
(N2) $\Rightarrow ne(*, (u v))$

(N3) $\Rightarrow ne([s t], *)$

(N4) $\Rightarrow ne( (s t), *)$

(N5) $\Rightarrow ne([s t], (u v))$

(N6) $\Rightarrow ne( (s t), [u v])$

(N7) ,ne $(s, u)$ $\Rightarrow ne([s t], [u v])$

(N8) ne $(t, v)$ $\Rightarrow ne([s t], [u v])$

(N9) ne $(s, u)$ $\Rightarrow ne((s t), (u v))$

-5-
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(N10) ne ($t$ , v) $\Rightarrow ne((s t), (u v))$

We next define $as$soc which is used to get the value of a variable from a glven environ-
ment

(A1) $\Rightarrow$ ctss$oc(x, [[x v] L], v)$
(A2) ne $(x, y),$ $assoc(x, L, v)$ $\Rightarrow$ assoc($x,$ $[[y$ $w]$ $L]$ , v)

Example 2.2.

assoc( $c_{?}[[a$ apple], $[b$ banana], [c-carrot]], carrot) $\square$

The relation get is used to extract the i-th member of a list $L$ .

$(G1)$ $\Rightarrow get(*, [v L], v)$

(G2) get$(i, L, v)$ $\Rightarrow get([* ’\overline{\iota}])[w L],$ $v$)

Example 2.3.

get( $[*$ . $*],$ [llsp, prolog, qute], qute) $\square$

The following relation eval gives a simple evaluator of a sexp under a certain environ-
ment. Substitution of values to variables can be simulate $d$ by eval

$(E1)$ assoc(( $var$ $t$ ), $Env$ , v) $\Rightarrow$ eval((var $t),$ $Env$ , v)

(E2) $\Rightarrow eval(*. Env, *)$

(E3) eval$(s, Env, u),$ $eval(t, Env, v)$ $\Rightarrow eval([s t], Env, [u v])$

(E4) eval$(s_{1}Env, u),$ $eval$($t,$ $Env$ , v) $\Rightarrow$ eval((snoc $[s,$ $t]$ ), $Env$ . $(u$ $v)$ )

(E5) $\Rightarrow eval((* t). Env, (* t))$

(E6) $\Rightarrow$ eval((quote $t$ ), $E\tau\iota v$ , t)

We will use the following abbreviations for atoms whose $cbr$ is snoc or quote

( $s$ t) for (snoc $[s,$ $t]$ )

(. t) $f$ or (snoc $[t,$ $*]$ )
$\prime t$ for (quote t)

Example 2.4.

eval([ $x$ , of, $y$ , and, $z$ , is, $’(apple$ orange)],
[ $[x$ snoc], $[y$ apple], $[z$ orange]],
[snoc, of, apple, and, orange, is, (apple orange)]) $\square$

In terms of these relatlons we can now define $pr$oves and lprove5!

(L1) $\Rightarrow lproves([], [], FS)$

(L2) $proves(p, a, FS),$ $lproves(P, A , FS)$ $\Rightarrow$ lproves([p $P]$ , [a $A],$ $FS$)

$(P1)$ assoc(Prd, $FS,$ $R$ ), $get(\prime i, R, [c C]),$ $eval(c, Env, a),$ $eval(C, Env, A)$ ,

$l\rho roves(P, A, FS)$ $\Rightarrow proves([[Prd. \prime i, Env] P], [Prd a], FS)$

We can also define the relation $\vdash_{FS}$ $a$ by the following inductive definition.

(T1) proves(p, $a,$ $FS$) $\Rightarrow$ theorem(a, $FS$)

We show by an example how our intuitive idea of proof has been formalized. Recall that
the relation assoc was defined by the two clause (A1) and (A2) and that its definition depends

$-6arrow$
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also on the relation ne. Since $ne$ has 10 clauses $((N1)-(N10))$ , we need 12 clauses to define
$ossoc$ We formalize these 12 clauses in two steps. In the first step we formalize clauses (A1)
and (A2) into a sexp Assoc and clauses $(N1)-(N10)$ into a sexp $Ne$ . In the second step we
$obta\ln$ a formal syste $m$ [A ssoc, Ne] as a $forma1_{1}zation$ of $assoc$ and $ne$ The sexp $A$ ssoc, which is
the translation of clauses (A1) and (A2), is defined as follows:

[assoc
, $[[x. [[x v] L]. v]]$
, $[[x, [[y w] L],$ $v$ ]

. ne $[x, y]$

assoc $[x, L, v]]$
$]$

We explain the general mechanism of our translation of clauses. We translate clauses that are
used to define a same relation into a single sexp We therefore translate (A1) and (A2) into
Assoc and $(N1)-(N10)$ lnto Ne. Recall that each clause is of the form:

$\gamma_{1}$ , $\gamma_{n}$ $\Rightarrow\gamma$

and that the general $f$ orm of $\gamma$ or $\gamma_{i}$ is:

$Prd(Arg_{1}, Arg_{k})$

We translate $Pnl$ into corresponding symbol. For instance $\mathfrak{a}ss$oc $1S$ translated lnto assoc
$Args)$ are translated as follows $S_{1}nceArg$ is a schematic expression for sexp it has one of the
following forms: (1) a schematic $v$arlable, (ii) $*$ (iii) [ex $\beta$ ], (iv) $(\alpha \beta)$ In case of (i) we
translate $1t$ into corresponding (formal) varlable. Thus $x$ is translated $lnto$ ‘

$x$
’ If $A\tau g1S*then$

$1t1S$ translated into $*$ . If $Arg1S$ of the form (iii), its translation is $[\alpha^{*} \beta]$ where $\alpha$ $(\beta^{*})$ is the
translation of $\alpha$ ( $\beta$ , resp) Similarly, but slightly dif\ddagger erently, case (iv) is translated into
$(: \alpha^{*} \beta^{*})$ (Since $\cdot the$ translation must be one to one, we cannot translate (ex $\beta$ ) lnto
$(\alpha^{*} \beta^{*})$ because, then, $(ii)arrow(iv)$ will leave no room for the translation of schematic variables)
By extending this translation naturally we $obta\ln$ the above translation of (A1) and (A2). For
the sake of readability we lntroduce the following abbreviation for the above sexp $A$ ssoc

$+$ ass oc
$|_{X}$ . $[[x v] L],$ $v$

$|_{X},$ $[[y w] L],$ $v$

$-$ ne $[x, y]$
- assoc $[x. L, v]$

Example 2.5. By the similar idea as above we can translate the informal proof in Example 21
into the followlng formal proof $p$

$[[member, [*],$ [ $[x$ orange], $[y$ apple], $[L$ [orange]]]],
[ $[member,$ $*$ $[[x$ orange], $[L$ []]]]]]

Let Member be the following sexp:

$+$ member
$|x,$ $[x L]$
$|_{X},$ $[y L]$

- member[x, $L$ ]

Then we can easily verIfy that

$p\vdash_{[Member]}$ member[orange, [apple, orange]]

holds and hence

$\vdash_{[\Lambda I,mber]}$ member[orange, [apple, orange]]

-7-
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holds $\square$

2.4. universal formal system

By translating the relations we have defined so far we obtain a formal system Univ which
is univers$a1$ among all the formal systems. We thus define Univ as the sexp:

Univ $\equiv$ [Ne, Assoc, Get, Eval, Lproves, Proves, Theorem]

where $Ne$ , Assoc, Get, Eval, Lproves, Proves and Theorem are respectively:

$+$ ne
$|*,$ $[u v]$
$|*1$ ( $\cdot u$ v)
$|[s t],$ $*$

$|$ ( $\cdot s$ t), $*$

$|[s t],$ ( $\cdot u$ v)
$|$ ( $\cdot s$ t), $[u v]$
$|[s t],$ $[u v]$

ne $[s, u]$

$|[s t],$ $[u v]$
$-$ ne $[t, v]$

$|$ ( $\cdot s$ t). ( $\cdot u$ v)
ne $[s, u]$

$|$ $(\cdot s t^{\gamma}),$ ( $\cdot u$ v)
$-$ ne $[t, v]$

$+$ assoc
$|_{X},$ $[[x v] L],$ $v$

$|x,$ $[[y w] L],$ $v$

$-$ ne $[x, y]$
- assoc $[x, L, v]$

$+$ get
$|*,$ $[v L],$ $v$

$|[* i],$ $[w L],$ $v$

$-get[i, L, v]$

$+e$ val
( var t), Env, $v$

$assoc$ [ (. var t), Env, $v$ ]

$|[s*Envt]E^{*}nv,$ $[u v]$

- eval[ $s$ , Env, $u$ ]
$e$ val [ $t_{1}$ Env, $v$ ]

(: snoc $[s,$ $t]$ ), Env, (: $u$ v)
- eval $[s, Env, u]$

$e$ val [ $t$ , Env, $v$ ]
$|$ ( $\cdot*$ t) , Env , $(: *. t)$
$|$ (. quote t), Env, $t$

,

$+$ lproves
$|[],$ $[]$ , FS

$arrow 8-$
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$|[p P]$ , [a $A$ ]. FS
- proves[ $p$ . a, FS]
- lproves [ $P,$ $A$ , FS]

$+$ pro $ves$
$|$ [ $[Prd,$ $1$ , Env] $P$ ], [Prd $a$ ], FS

- assoc [Prd, FS, $R$ ]
$-get[i, R, [c C]]$
- eval[ $c_{1}$ Env, $a$ ]
- eval[ $C$ , Env, $A$ ]
- lproves [ $P,$ $A$ , FS]

$+$ the orem
$|_{a}$

, FS
- pro ves [ $p,$ a, FS]

The following theorem establishes that Univ is in fact a universal formal system

Tlieorem 2.1.

(i) ne $(x, y)$ $\Leftrightarrow$ $\vdash_{Univ}$ ne $[x, y]$

(ii) assoc($x$ , L. v) $\Leftrightarrow$ $\vdash_{Univ}assoc[x, L, v]$

(iii) get($l,$ $L$ , v) $\Leftrightarrow$ $\vdash_{Univ}$ get[ $x$ , L. $v$ ]

(iv) eval($t,$ $E$ , v) $\Leftrightarrow$ $\vdash_{Un\overline{1}V}$ eval$[t, E, v]$

(v) $l_{I}/roves(P, A, FS)$ $\Leftrightarrow$ $\vdash_{Univ}$ lproves $[P, A, FS]$

(vi) proves(p, $a,$ $FS$) $\Leftrightarrow$ $\vdash_{Univ}$ proves[p, $a,$ $FS$ ]

(vii) the orem$(a, FS)$ $\Leftrightarrow$ $\vdash_{Univ}$ the orem $[a, FS]$

We omit the simple but tedious combinatorial proof of this theorem The following corollary is
simply a restatement of the last two sentences of this theorem.

Corollary 2.2.

(i) $p\vdash_{FS}$ $a$ $\Leftrightarrow$ $\vdash_{Univ}$ pro$ves[p, a, FS]$

(ii) $\vdash_{FS}$ $a$ $=$ $\vdash_{Univ}$ theorem $[a, FS]$

3. Formal theory of symbolic expressions: BSA

In this section we introduce a formal theory of symbolic expressions which we call BSA
(for Basic Symbolic Arithmetic). The theory is a first order intuitionistic theory which is proof
the oretIcally equivalent to HA (Heyting arithmetic)

Traditionally, metamathematical entities such as terms, wffs and pro ofs have been con-
sidered as concrete figures which can be displayed $on$ a sheet of paper (with some kind of
abstraction which is necessary so as to allow finite but arbitrarily large figures) Our standpoint
is, however, not like this but to regard these entities as symbolic expressions. By taking this
standpoint we can define SA formally in terms of a formal system It is also posslble to define
BSA in this way, but for the convenience of the reader who is perhaps so accustomed to the
traditional approach we first define BSA in the usual way and will then explain how BSA so
defined can be isomorphlcally translated into S. We reserve BSA as the name for the syste $m$

which we will define as a formal system in Section 37, and use $BSA$ to denote the theory
which we now define by a tradltional method

-9-



34

$3_{-}1$ . language

The language of $BSA$ conslsts of the following symbols

$\bullet$ $lnd’\iota vulual$ symb $ols$ : nil
$\bullet$ $fi\iota\eta ct\iota on$ symb $ols$ cons, snoc
$\bullet$ pure variables: $var_{t}$ for each sexp $t$

$\bullet$ $pred\dot{\tau}cates\psi nbols$ eq (equal), lt (less than)
$\bullet$ logtcal $ymbols$ and , or, imply, all, exist
$\bullet$ $0$ ther symbok $\cdot$ $(, )$ ,

$\iota$ ’ (comma), free

3.2. variables, terms and wfis

$U_{S1}ng$ the language lntroduced above, we define syntactic $entit_{1}es$ of $BSA$ . We fir$st$ define
vanables as $f$ ollows.

1. For each sexp $t$ , the pure $v$ ariable $var_{t}$ is a variable.

2 If $x$ is a variable then free $(x)$ is a variable.

For a $v$ariable $x$ we define its pure part as follows.

1 If $x$ is a pure variable then its pure part is $x$ itself.

2 If the pure part of $x$ is $y$ then the pure part of free $(x)1S$ also $y$ .

The definitlon of lems is as follows

1 A varlable $1S$ a term

2 nil is a term.
$3arrow 4$ . If $s$ and $t$ are terms then cons( $s$ , t) and snoc( $s$ , t) are terms.

We define wffs (well formed formulas) as follows

1-2 If $s$ and $t$ are terms then $eq$ ( $s$ , t) and $1t$ ( $s$ , t) are wffs.

3-4 If $a_{1}$ , , $a_{n}(n\geqq 0)$ are wffs then and $(a_{1}, , a_{n})$ and or$(a_{1}, , a_{n})$ are
wffs

5 If $a_{1}$ , $a_{n}(n\geqq 0)$ and $b$ are wffs then imply $( (a_{1}, - a_{n})$ , b) is a wff

$6arrow 7$ If $x_{1}$ , $x_{n}(n\geqq 0)$ are distinct pure variables and $a$ is a wff then
all(( $x_{1}$ , , $x_{n}$ )

$y$
a) and exist( $(x_{1}$ , , $x_{n})$ , a) are wffs.

A wff is called an atomic wff if it is constructed by the clauses 1-2 above, and a wff $1S$

called a quantifier free wff if it is constructed by the clauses 1-5 above We will call both a term
and a wff as a designcrtor

We wlll use the followlng symbols with or wlthout subscripts as syntactic varlables for
speclfic $syntact_{1}cob_{J}$ects

$x,$ $y,$ $z$ for variables

$r,$ $s,$ $t,$ $u,$ $vf$ or terms
$a,$ $b,$ $c$ for wffs
$d$ . $e$ for $deslgnators$

3.3. abbreviations

We introduce the following abbreviations

$\# xf$ or free $(x)$

$s=tf$or eq ( $s$ , t)

$s<tf$ or lt( $s$ , t)
$s\leqq tf$ or or$(1t(s, t)$ , eq $(s, t))$

-10-



$-;$.

$a_{1}\wedge$ $\wedge a_{n}$ for and $(a_{1}, , a_{n})$

$a_{1}\vee$ V $a_{n}$ for or $(a_{1}, , a_{n})$

$a_{1}$ , . $a_{n}arrow b$ for imply $((a_{1}, a.)$ , b)

$arightarrow$ $b$ for and(imply((a), $b$ ) $imply((b),$ $a)$ ) ,

$\forall$( $x_{1}$ , , $x_{n}$ ; a) for al1 ( ( $x_{1}$ , , $x_{n}$ ), a)
$\exists$( $x_{1}$ , , $x_{n}$ ; a) $f$ or exist $( (x_{1}, , x_{n}), a)$

We assume that the binding power of the operators A. V and $arrow$ decrease In this order, and we
insert parentheses when necessary to insure unambiguous reading.

3.4. substitutions and free variables

Let $t$ be a term, $x$ be a varlable and $d$ be a deslgnator. We then define a designator $e$

which we call the result of substitutmg $t$ for $xtnd$ as follows The definition requIres one auxi-
liary concept, namely, the elevation of a term utth respect to a finite sequence of pure variables,
$wh_{1}ch$ we also define below

Il.l. If $d$ is $x$ then $e$ is $t$

I. 12. If $d$ is a variable other than $x$ then $e$ is $d$

I2 If $d$ is nil then $e1S$ nil

I 3 If $d$ is cons $(t_{1}. \zeta)$ and $e_{1}(\epsilon_{2})$ is the result of substituting $t$ for $x$ in $t_{1}$ ( $t_{2}$ , resp)
then $e$ is cons $(e_{1}, e_{2})$

I.4 If $d$ is snoc $(t_{1}. t_{2})$ and $e_{1}(e_{2})$ is the result of substItuting $t$ for $x\ln t_{1}$ ( $t_{2}$ , resp.)
then $e$ is snoc $(e_{1}, e_{2})$ .

$I[1$ If $d$ is $eq(t_{1}, t_{2})$ and $e_{1}(e_{2})$ is the result of substituting $t$ for $x$ in $t_{1}$ ( $t_{2}$ , resp.)
then $e$ is $eq(e_{1}, e_{2})$ .

$II2$ If $d$ is $1t(t_{1}, t_{2})$ and $e_{1}(e_{2})$ is the result of substituting $t$ for $x$ in $t_{1}$ ( $t_{3}$ . resp.)
then $eislt(e_{1}, e_{2})$

IF 3-4If $d$ is and $(a_{1}, \alpha_{n})$ (or( $a_{1}$ , , $a_{\mathfrak{n}}$ )) and $e_{\mathfrak{i}}(1\leqq x\leqq n)1S$ the result of sub-
stituting $t$ for $x$ in $a_{i}$ then $e$ is and $(e_{1}, e_{n})$ (or( $e_{1}$ , $e_{n}$ ). resp)

$II5$ . If $d$ is imply $((a_{1} , s_{n})$ . $b$ ). $e_{\mathfrak{i}}(1\leqq i\leqq n)1S$ the result of substItuting $t$ for $x$

in $a_{7}$ and $c$ is the result of substituting $t$ for $x$ in $b$ then $e$ is
impl$y$ ( $(e_{1}$ , , $e_{n})$ , c)

$II6$ If $d$ is all $((x_{1}, , x_{n}), a),$ $u(y)$ is the elevation of $t$ ( $x$ , resp) with respect to
the sequence of pure variables $x_{1}$ , , $x_{n}$ and $b$ is the result of substituting $u$

for $y$ in $a$ then eis al1 $((x_{1\}} , x_{n})$ , b)

II 7 If $d$ is exist $((x_{1}, x_{n}),$ $a$ )
$,$

$u(y)$ is the elevation of $t$ ( $x$ , resp) with respect
to the sequence of pure variables $x_{1}$ , , $x_{n}$ and $b$ is the result of substituting $u$

for $y$ in $a$ then $e$ is exist( $(x_{1}$ , , $x_{n})$ , b)

Let $t$ be a term and $x_{1}$ . , $x_{n}(n\geqq 0)$ be a sequence of distinct pure $v$ariables We
define a term $u$ which we call the elevatlon of $i$ with respect to $x_{1}$ , , $x_{\mathfrak{n}}$ as follows

1 1 If $t$ is a variable whose pure part is $x_{i}$ for some $\iota$ (1 $\leqq\prime i\leqq$ n) then $u$ is free $(t)$

12 If $t$ is a $varlable$ whose pure part does not appear in the sequence $x_{1}$ , . $x_{n}$

then $u$ is $t$

2 If $t$ is nil then $TI$ is nil

3 If $t$ is a term cons $(t_{1}. t_{2})$ and $u_{1}(u_{z})$ is the elevation of $t_{1}$ ( $t_{2}$ , resp.) with respect
to the sequence $x_{1}$ , , $x_{n}$ then $u$ is cons $(u_{1}, u_{z})$ .

4. If $t$ is a term snoc $(t_{1}, \zeta)$ and $u_{1}(u_{2})$ is the elevation of $t_{1}$ ( $t_{2}$ , resp.) with respect
to the sequence $x_{1}$ , $x_{n}$ then $u$ is snoc $(u_{1}, u_{2})$ .

- 11 -
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That the result of substltutlng a term for a varlable in a destgnator is again a designator of
the same type can be proved easily by induction. (To prove this, one must also prove that the
elevation of a term with respect to a sequence of $dlst_{1}nct$ pure variables $1S$ also $a$ term)

Example 3.1.
(i) Let $x$ and $y$ be distinct pure variables and let $a$ be the wff $\exists(x;x=y)$ . Let us substi-

tute $x$ for $y$ in $a$ . To do so, we must first compute the elevations of $x$ and $y$ with respect to $x$ .

They are $\# x$ and $y$ respectively Now the result of substituting $\# x$ for $y$ in $x=y$ is $x=\# x$ .

Thus we have that $\exists(x;x=\# x)$ is the result of substituting $x$ for $y$ in $a$ . Let us call this wff
$b$ Then the reader should verify that the result of substituting $y$ for $x$ in $b$ is $a$ .

(ii) Let $z$ be a variable distinct from $x$ and $y$ above and conslder the wff
$\exists(x, y;z=cons(x, y))$ Then the result of substituting the term cons $(x, y)$ for $z$ in this wff
is calculated similarly as above and we obtain the wff $\exists(x, y;cons(\# x, \# y)\subset cons(x, y))$ . $\square$

Remark As can be seen $ln$ the above examples we have avoided the problem of the colli-
$S1$ on of varlables by introducing a systematic way of referring to a non-local variable that hap-
pens to have the same name as one of the loc $al$ variables. We remark that our method is a gen-
eralizatlon of the method due to de $Brul$] $n[1]\square$

We can define simultaneous $subst_{1}tution$ similarly. Let $t_{1}$ , , $t_{n}$ be a sequence of terms,

$x_{1}$ . , $x_{n}$ be a sequence of distinct variables and let $d$ be a designator. We will use the nota-
tion $d_{x_{1}}$

,
$x_{n}[t_{1}, , t_{n}]$ to denote the result of simultaneously substituting $t_{1}$ , , $t_{n}$ for

$x_{1}$ . . $x_{n}$ in $d$ .

We say that a variable $xoc$curs free $m$ a deslgnator $d$ if $d.[ni1]$ is distinct from $d$ . A
designator Is said to be closed $1f$ no variables occur free in it.

We need the following concept in the definition of proofs below Let $t$ be a term, $x$ be a
variable and $d$ be $a$ designator We then define a deslgnator $e$ which we call the result of bind
subshtutrng $t$ for $xmd$ as follows The definition goes completely in parallel with the definition
of substitution except for the clause I 12 We therefore only gives the clause I 1.2. below.

I 12 If $d$ is a variable other than $x$ then:
if the pure parts of $d$ and $x$ are the same then:

if $d$ is $a$ pure variable then $e$ is $d$ ;

if $x$ is $a$ pure variable then $e1S$ defined so that $d\equiv\# e$ .
if $x\equiv\# x_{1}$ and $d\equiv\# d_{1}$ then $e$ is $\# e_{1}$ where $e_{1}$ is the result of
bind substituting $t$ for $x_{1}\ln d_{1}$ :

if the pure parts of $d$ and $x$ are distinct then $e1Sd$

Let $t_{1}$ . , $t_{n}$ be a sequence of terms, $x_{1}$ , , $x_{n}$ be a sequence of $v$arlables whose pure parts
are distInct and $d$ be a designator We can define the result of simultaneously bind substituting

$t_{1}$ . , $t_{n}$ for $x_{1}$ , , $x_{\tau\iota}$
$\ln$ $d$ slmllarly as above, and we use the notation

$d_{x_{1}}$ . $x_{n}[[l_{1}, . t_{n}]|f$ or it.

3.5. proofs

We formulate our formal theory $BSA$ in natural deduction style Since we eventually give
a precise definition of BSA us ng a formal system, we give here an informal definition in terms
of schematlc inference rules Namely an inference rule is a figure of the form:

$a_{1}$ $a_{n}$

$n\geqq 0$

$a$

where $a_{\iota}$ , $a$ are $f$ ormulas $ck$ may have assumptions that are $d’tscharged$ at this inference rule,

and we show such assumptions by encloslng them by brackets We call $a_{1}$ , , $a_{\mathfrak{n}}$ the prem es
and $a$ the consequence of the inference rule We first collect logical rules The logic we use is
the first order intuitionistic logic with equality

$arrow 12-$
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1

$(\wedge I)$

$a_{1^{a_{\wedge^{1}}}}$ $\wedge\alpha_{n}a_{n}$

$(\wedge E)_{\mathfrak{i}}$

$\frac{a_{1}\wedge\wedge a_{n}}{a_{\iota}}$ $1\leqq i\leqq n$

$[ a_{1}]$ $[ a_{n}]$

$(\vee I)_{x}$ $a_{i}$ $(\vee E)$ $a_{1}\vee$ $\vee a_{n}$ $c$ $c$

$1\leqq x\leqq n$

$a_{1}\vee$ V $a_{\mathfrak{n}}$
$c$

$[a_{1}]$ $[ a_{n}]$

$(arrow I)$ $b$ $(arrow E)$ $a_{1}$ , $a_{n}arrow b$ $a_{1}$ $a_{n}$

$a_{1}$ , $a_{n}arrow b$ $b$

$(\forall I)$

$\frac{a_{x_{1},x_{r\iota}},[[y_{1},’.,’ y_{n}]]}{\forall(x_{1}’,x_{n}a)}$

$(\forall E)$

$a_{x_{1}x_{n}}[t_{1^{1}}\forall,(x_{1},,\cdot x_{n} : a,)_{t_{n}]]}$

$[a_{x_{1}}, x_{n}Iy_{1}, y_{n}]]]$

$(\exists I)$

$\frac{\alpha_{x_{1},,x_{n}}[It_{1},.’ t_{n}]]}{\exists(x_{1},Jx_{n},a)}$

$(\exists E)$

$\exists$ ( $x_{1},$ $x_{n}$ ; a)

$b$

$b$

$(=)$ $(=subst)$ $a_{x_{1}}$ , $x_{n}[s_{1}, s_{n}]$ $s_{1}=t_{1}$ $s_{n}=t_{n}$

$t=t$ $a_{x_{1}}$ , $x_{n}[t_{1}, t_{n}]$

In the above rules the variables $x_{1}$ . , $x_{n}$ must be distinct pure variables The variables
$y_{1}$ , , $y_{n}$ must be distinct and must satisfy the $\alpha gen$ vanables $co?1d\theta io?1S$ That is, in $(\forall I)$ , they
must not occur free $\ln\forall$( $x_{1}$ . , $x_{n}$ ; a) or $\ln$ any assumption on which $a_{x_{1},..-,x_{n}}[[y_{1}, , y_{\mathfrak{n}}]]$

depends, and in $(\exists E)$ , they must not occur free in $\exists(x_{1}, , x_{n} ; a)$ , $b$ or any assumption
other than

$a_{x_{1}}$ , $x_{n}[[y_{\mathfrak{l}}, , y_{n}]]$ on which the premise $b$ depends.

Note that we may identify the wffs and $()$ and or $()$ wIth the truth values true and false
$respectlvely$ by letting $n$ to be $0$ in $(\wedge I)$ and $(\vee E)$ For this reason, we will use $\perp as$ an abbrevia-
tion for or $(),$ $\neg$ $a$ $f$ or $aarrow\perp ands\neq tf$ or $\neg(s=t)$ .

The remalning rules are specific to the theory $BSA$ First we consider the rules for equal-
ity

$(co71S\neq nd)$ cons
$(s_{\perp}t)=$

nil $(snoc\neq nd)$
$\underline{snoc(s_{\perp}t)=n\overline{1}1}$

( $cons\neq sn$oc) cons $( s, t)=$ snoc ( $u$ , v)
$\perp$

$(co71s=co71s)_{t}$ cons $(s_{1}, s_{2})=$ cons $(t_{1} , t_{?})$

$x=1.2$
$s_{t}=t$

$arrow 13-$
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$(snoc=snoc)_{t}$ snoc $(s_{1}, s_{2})=snoc(t_{1}, t_{2})$

$i=1,2$
$s_{i}=t$

Next we collect rules for $<$ (less than).

$(<*)$
$\frac{r<*}{\perp}$

$(<snoc)$ $r<snoc$ (
$s\perp$

’
t)

$(<)_{i}$

$\overline{t_{t}<cons(t_{1}.t_{2})}$
$l\iota=1,2$

$(<cons)_{i}$
$s<cons(t_{1}s<t, t_{2})$ $i=1,2$

$[\tau=s]$ $[\tau<s]$ $[r=t]$ $[r<t]$

$(<co\eta sE)$ $T<$ cons ( $s$ , t) $c$ $c$ $c$ $c$

$c$

As the final rule of inference for $BSA$ we have the lnduction inference.

$[a_{z}[x]]$ $[ a_{z}[y]]$ $[a_{z}[x]]$ $[a_{z}[y]]$

$(lnd)$ $a_{z}$ [nil] $a_{z}$ [cons $(x,$ $y)$ ] $a_{z}[snoc(x, y)]$

$a_{z}[t]$

The assumptions discharged by this rule are called induction $h\varphi otheses$ In this rule, the vari-
ables $x$ and $y$ must be distinct and must satisfy the $\dot{\alpha}gen$ variables $CO71d\dot{x}tion$ Namely, the vari-
ables $x$ and $y$ may not occur free in any assumption other than the induction hypotheses on
which the premises $a_{z}[cons(x, y)]$ and $a_{z}[snoc(x, y)]$ depend.

3.6. interpretation

We now explain the intended interpretation of the theory $BSA$ The intended domain of
interpretation of our theory is S We first define the denotation $I[t]]$ of a closed term $t$ as fol-
low $s$

1 [[nil]] $\equiv*$

2 $[[cons(s, t)]]\equiv[|[s]| [[t]]]$

3 $[[snoc(s, t)]|\equiv([[s]] |[t]|)$

It should be clear that each closed term denotes a unique sexp, and for each sexp $t$ there
uniquely exists a closed term $t$ which denotes $t$

We next ass gn a truth value (true or fals $e$) wlth each quantlfier free closed wff We first
define the set of $desce7\iota dants$ of a sexp as follows

1 The descendants of $*is$ empty.

2 The descendants of $[s t]$ is the un on of the descendants of $s$ and $t$ and the set
$]s,$ $t[$

3 The descendants of ( $s$ t) is empty.

Thus, for instance, the descendants of $[[*] (* *)]1S$ the set $l*$ $[*]$ . $(* *)$ } We say that $s$ is
a descendant of $t$ if $s$ is a member of the descendants of $t$ .

Let $s$ and $t$ be closed terms and let $s$ and $t$ respectively be their denotations. Then the
closed wff $s=t$ is true if $s$ and $t$ are the same sexp, and it is false $1fs$ and $t$ are distlnct. The

$arrow 14-$
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closed wff $s<$ $t$ is lrue if $s1S$ a descendant of $t$ and $1S$ false otherwise

Let $a$ be any closed quantlfier free wff Since it is a propositlonal combination of the
atomic wffs of the above form, we can calculate its truth value by first replacing each atomic
sub-wff by its value and then evaluatlng the $resultlng$ boolean expression in the usual way.

We now define the class of pnmWhve wffs for which we can also assign truth values if they
are closed

1-2 If $s$ and $t$ are terms then $s=t$ and $s<t$ are primitive wffs

3-4 If $a_{1}$ . $a_{\mathfrak{n}}(n\geqq 0)$ are primitive wffs then $a_{1}\Lambda$ $\wedge a_{n}$ and $a_{1}\vee$ V $a_{n}$ are
primitive wffs

5. If $a_{1)}$ $a_{n}(n\geqq 0)$ and $b$ are primitive wffs then $a_{1}$ , , $a_{\mathfrak{n}}arrow b$ is a primi-
tive wff.

$6arrow 7$ If $x_{1}$ , , $x_{n}$ is a sequence of distinct pure variables, $t_{1}$ , , $t_{n}$ is a sequence of
terms, eq $(1 \leqq x\leqq n)$ is the elevation of $t_{t}$ with respect to $x_{1^{1}}$ . $x_{n}$ and $a$ is $a$

primitive wff then $\forall$( $x_{1}$ , , $x_{n},$ $x_{1}<u_{1}$ , , $x_{n}<u_{n}arrow$ a) and
$\exists(x_{1}, x_{n} ; x_{1}<u_{1}\wedge \wedge x_{n}<u_{n}\wedge a)$ are primitive wffs.

The primitive wffs defined by the clauses 6 and 7 above will respectively be abbreviate $d$ as:

$\forall$( $x_{1}<t_{1},$ , $x_{n}<t_{n}$ ; a)
$\exists$ ( $x_{1}<t_{1}$ . . $x_{n}<t_{n}$ ; a)

$s_{lnce}$ for each sexp $t$ we can calculate the set of its descendants which is a finite set, it should
be cle $ar$ that we can uniquely assign a truth value for each closed primitive wff

Next, we define $\Sigma$ -wffs as follows:

1. A prlmitive wff is $a$ $\Sigma- wff$

2-3 If $a_{1}$ , , $a_{n}(n\geqq 0)$ ar $e\Sigma$ -wffs then $a_{1}\wedge$ $\wedge a_{n}$ and $a_{1}\vee$ V $a_{n}$ are $\Sigma$ -wffs

4.
$isIfaa_{\Sigma^{1}}$,-wff

, $a_{n}(n\geqq 0)$ are primitive wffs and $b$ is $a$ $\Sigma- wff$ then $a_{1}$ . , $a_{n}arrow$
$b$

5 If $x_{1}$ , , $x_{n}$ is a sequence of distinct pure variables and $a$ is $a$ $\Sigmaarrow wff$ then
$\exists$ ( $x_{1^{t}}$ $x_{n}$ , a) is a $\Sigma- w$ ff

We can define the $t’\Gamma|xlh$ of a closed $\Sigmaarrow wff$ inductively. The definition for the cases 1-4 is given
slmllarly as for prlmitlve wffs For the case 5, we glve the following definition. A closed $\Sigma- wff$

$\exists$ ( $x_{1}$ , , $x_{n}$ ; a) is defined to be true if we can find a sequence of closed terms $t_{1}$ , , $t_{\mathfrak{n}}$ for
$wh_{1}cha_{x_{1}}$ , . $x_{n}[t_{1}, , t_{n}]$ becomes true

We may say that $BSA1Sc$orre$ct$ if any closed $\Sigma- wff$ which is provable in $BSA$ is true In
this paper we assume the correctness of $BSA$ without any further arguments. In particular we
assume that $BSA$ is conslstent $1n$ the sense that there is no proof of the wff $\perp$ .

3.7. BSA as a formal system

We now define BSA as a formal system and then define an isomorphism from $BSA$ to
BSA It is possible to regard this isomorphism as an (symbolic) arithmetlzation of $BSA$ Here
we will not define the conc\’ept of proof in BSA since we give a full description of BSA as a $f$ or-
mal axiom system in the next Section.

Let $Non_{-}member$, Pure vanable, $Pure_{-}vanable_{-}l_{l}st$ , Variable, Term Wff and $Wff_{-}l_{l}st$ respec-
tively be the $f$ ollowing sexps

$+non_{-}me$mber
$|x,$ $[]$

$|x,$ [ $y$ X]
$-$ ne $[x, y]$
- $non_{-}member[x. X]$

$arrow 15arrow$
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$+pure_{-}variab1e$
$|$ ( $\cdot var$ t)

$+pure_{-}variable_{-}Iist$

$|[]$

$|$ [ $x$ X]
- $pure_{-}variable[x]$

- $non_{-}member[x, X]$
- $pure_{-}variable_{-}1ist[X]$

$+$ variable
1 $x$

$pure_{-}variable[x]$

(: free x)
- variable $[x]$

$+$ term
$|*$

$|x$

- variable $[x]$

$|[s t]$

- term $[s]$

- term $[t]$

$|$ ( $\cdot$ snoc $[s_{1}t]$ )
- term $[s]$

- term $[t]$

$+w$ ff
$|_{eq}[S, t]$

- term $[s]$

- term $[t]$

lt $[s, t]$
- term $[s]$

- term $[t]$

an$d[A]$
$-wff_{-}1ist[A]$

$|_{or}[A]$

$wff_{-}1ist[A]$

imply $[A, b]$

$-wff_{-}1ist[A.]$

$-w$ff $[b]$

all[(. abs [X, $a]$ )]
- $pure_{-}variabIe_{-}1ist[X]$

$-wff[a]$
ex[( abs [X, $a]$ )]

- $pure_{-}variable_{-}1ist[X]$

$-wff[a]$

$+wff_{-}1ist$
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$|[]$

$|$ [a $A$ ]
$-wff[a]$
$-wff_{-}1ist[A]$

Then the formal system:

$BSA_{0}\equiv$ [Ne, $Non_{-}membe\tau Pure_{-}variable,$ $Pure_{-}vanable_{-}l\tau s\zeta$ Vanable, Term Wff
$Wff_{-}l\tau st]$

defines basic concepts in BSA. Thus, for instance, we say that (a sexp) $a$ is a wff if
$\vdash_{BSA_{0}}wff[a]$ holds. $1$

Example 3.2.

$(: * *)$ is a term since we have $\vdash_{BSA_{0}}term[(\cdot* *)]$ . $\square$

In this way we can continue to give a complete definition of BSA as a formal system. But
as we sai $de$arlier we will not $do$ so here because we wlll give a complete definition of BSA in
the next Section

We now explain that the concepts which we defined formally here are essentially the same
as the corresponding concepts which we defined for BSA- To this end we define a translation
from syntactic $ob_{J}ects$ like terms or wffs in $BSA$ into S We denote the translation of $d$ by $d^{\uparrow}$

Terms in $BSA$ are translated as follows.

11. $var_{t}^{\uparrow}$ Is (var $t$ ).

12 free $(x)\dagger$ is (free $x\dagger$ ).

2 nil\dagger is $*$ .

$3arrow 4$ cons $(s_{1}t)\dagger$ Is $[s^{\uparrow} t^{\uparrow}]$ and snoc $(s, t)\dagger$ is $(: s^{\uparrow} t^{\uparrow})_{-}$

The translation of wffs $\ln BSA$ is defined as follows.

1-2 $eq(s, t)\dagger$ is $eq[s^{T}, t^{\uparrow}]$ and $1t(s, t)\dagger$ is $1t[s^{\uparrow}, t^{\uparrow}]$ .

3-4. and $(a_{1}. , a_{n})\dagger$ is $and[a_{1^{\uparrow}}, a_{n}^{\uparrow}]$ and or $(a_{1}, , a_{n})\dagger$ is $or[a_{1}^{\uparrow}, , a_{n}^{\uparrow} ]$
-

5. imply $((a_{1} , , a_{n}), b)\dagger$ is $imply[[a_{1^{\uparrow}}, . a_{n}^{\uparrow}]$ . $b^{\uparrow}$ ]

6-7. all $((x_{1}. , x_{n}),$ $\alpha$ ) $\dagger$ is $all[(abs [[x_{1^{\uparrow}}, x_{n}^{\uparrow}], a^{\uparrow}])]$ and
exist$((x_{1}, , x_{n}). a)\dagger$ is $ex[(abs [[x_{1^{\uparrow}}, , x_{n}^{\uparrow}], a^{\uparrow}])]$ .

It $1S$ then easy to verlfy that this translation sends each syntactic $e$ ntity In $BSA$ into
corr$e$ sponding entlty in BSA. Thus if $a$ is a wff in the sense of $BSA$ then $a^{\uparrow}$ is a wff in BSA,
that $1S$ , we have $\vdash_{BSA_{0}^{W}}ff[a^{T}]$ . Moreover for each wff $a$ in BSA we can uniquely find a wff $a$

in $BSA$ such that $a\dagger 1S$
$a$ A similar correspondence holds also for terms. It is also obvlous

from our definition that the translation is homomorphlc wlth respect to the inductive definition
of syntactic entities. We may thus conclude that both $BSA$ and BSA give definitions to the
abstract concepts such as terms or wffs in terms of their respective representations For this
reason we WIII use the same abbreviations which we used for syntactic entlties in $BSA$ as abbre-
vlat]ons for the corresponding objects in BSA. We will also use syntactic varlables to make our
lntentlon clear. Thus for instance if In some context we wish to refer a certain sexp as a wff,

we will use syntactlc variables $a,$ $b$ or $c$ for it.

Example 3.3.

$\forall(x;\exists(x;x=\#x))$ is an abbreviation of the sexp

$al1$ [ ( $abs$ $[[x],$ $ex[$ ( $abs$ $[[x],$ $eq[x$ , (free $x$ ) $]]$ ) $]]$ )]

which is a wff in BSA. $\square$

-17-
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