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ABSTRACT 
 

    Tactical missiles within the U.S. Army are regularly subjected to severe stresses 
such as long-term exposure in harsh environments and transportation handling.  These 
stresses factor into the aging, deterioration, and eventual decommissioning of some of 
the Army’s critical warfighting assets.  The negative reliability impacts associated 
with long-term aging and deterioration significantly affect the total life cycle cost of 
fielding these weapons in a high state of readiness. 
    Reliability evaluation of past data has indicated failures in missile structural, 
energetic, and electronic components associated with the long-term exposure to heat, 
humidity, and transportation shocks.  Unlike strategic missiles, tactical missiles 
undergo a very minimum of field checks and non-destructive evaluation on a routine 
basis. 
    The Army Aviation and Missile Research and Development and Engineering 
Center have been developing a health monitoring system called Remote Readiness 
Asset Prognostics and Diagnostics System (RRAPDS) to assess and improve 
reliability of the missiles during storage and field exposures [3].  RRAPDS will use 
external and internal sensors to provide data to assess missile conditions and predict 
reliability. 
    This paper describes the approach to predict reliability of missile components like 
propellant, nozzles, and thermal batteries using sensor data from RRAPDS, and 
prognostic models for structural integrity and damage mechanisms.  Probabilistic 
models will quantify all the uncertainties present in the health monitoring data and 
finite element models, to provide a realistic reliability evaluation. 
 
 
INTRODUCTION 
 
    The US Army fields tactical missiles of various types all over the world.  These 
missiles are exposed to different environments during storage, transportation, and 
operation.  Typical environments include cyclic exposure to temperature and humidity 
extremes, vibration and shocks, and corrosive atmospheric conditions.  Long-term 
environmental exposures affect a missile’s performance and reliability as component 
material properties degrade, and this degradation negatively impacts critical 
performance parameters. 
    The reliability of the Army’s missile stockpile and individual missile shelf life are 
monitored through dedicated programs of surveillance and testing.  After fielding, the 
Army collects pertinent reliability data over a missile’s lifecycle utilizing a variety of 
test methodologies both destructive and non-destructive.  This data is analyzed for 
trends associated with age, manufacturing strata, and or unique environmental 
exposures. 
    If a missile system continued to perform reliably and safely based on surveillance 
data, then an extension of shelf life for that type missile is recommended to major 
decision makers and coordinated with the user and logistics community.  If 
surveillance analysis indicates undesirable trends, then whole missile populations or 
subsets of populations are suspended for use or restricted for special use only.  
Obviously, the degradation and ageing of missile populations and their effects on 



readiness of the stockpile can have major economic implications if new procurements 
are warranted. 
    A current surveillance and periodic test program is an essential element to maintain 
reliability of the missile stockpile by removing suspect assets before deployment.  
Analysis of test data identifies failure scenarios that include manufacturing defects, 
contamination during manufacturing and, most importantly, the degradation due to 
aging exposure and environmental exposure.  In the case of environmental 
degradation and aging effects, the failure mechanism points towards accumulated 
damage resulting from exposure to temperature, humidity, and shock and vibration.  It 
is evident from the failure mode analysis that real time monitoring and analysis of 
data may provide tools to predict the reliability of the missiles in storage and 
determine ways to improve it.     
 
 
MISSILE FAILURE MODES: 
 
    Table 1 provides a snapshot of generic missile failure modes identified during 
storage.  Fault tree analyses have been conducted to determine pathways from basic 
storage conditions to the top failure events.  Basic events like thermal and humidity 
cycling, shocks and vibration during handling and transportation and corrosion are 
major causes of components failures during long-storage.   
    Table 1 shows generic failure modes classified under temperature, humidity, shock 
and corrosion related causes.  RRAPDS provides data on these variables, which are 
then used and predict missile reliability, improve the shelf life and provide reliable 
hardware for operational use. 
 
 
Table 1:  Snapshot of Generic Missile Failure Modes due to Environmental Exposure 

Temperature Humidity Shock Corrosion 
• Propellant Grain 

Cracking 

• Liner Unbond 

• Voids and Porosity in 
Propellant 

• Case Strength 
Degradation 

• Failure of Electronics 
Assemblies 

• Cracks in Packaging and 
Seals 

• Failure in Guidance 
Components  

o Gyros 
o Accelerometers 

• Degradation of 
ballistic properties 

• Degradation of 
composite case 

• Degradation of O-
rings 

• Degradation of 
Propellant  
properties 

• Failure of 
Electronics 
Assemblies 

• Cracks in 
Packaging and 
Seals 

• Failure in Guidance 
Components  

• Gyros 
• Accelerometers 

• Case 
Damage 

• Liner Unbond 

• Propellant 
Cracking 

• Material 
Fatigue due 
to vibration 

• Loosening of 
components 

• Failure of 
solder joints 

• Corrosion of 
metallic 
components 

• Stress 
corrosion 
cracking at 
interconnect 
/bends in 
electronic 
assemblies 

• Corrosion of 
actuators and 
bearings 

• Corrosion of 
contacts 

• Failure in 
squib wires 

 



PROBABILISTIC PROGNOSTICS MODELING 
 
    Temperature, humidity, shock, vibration, and corrosion (chemicals) parameters can 
be measured in real time with an integrated health monitoring system.  The data from 
this system can then be utilized to develop diagnostic and predictive models for 
components’ health and integrity and to determine if a missile will operate 
successfully when fired. 
    The US Army has designed a system to monitor missile storage and transportation 
environments on a real time basis.  The system, called the remote readiness asset 
prognostics and diagnostics system (RRAPDS), utilizes temperature, humidity, and 
shock sensors as an integral part of the weapon to monitor and perform 
diagnostic/prognostics analysis of the stockpiles during long-term storage [12].   
    RRAPDS is currently being field-tested and it is providing data to be used by 
probabilistic engineering models sufficient to predict the reliability of a weapon 
system at any point of time.  Prognostic/predictive models are being developed to 
assess the reliability and structural integrity of the weapon system components and 
they can be used as a decision making tool for field deployment.  Diagnostic and 
prognostic models will be utilized to translate health monitoring data into an 
assessment of reliability and performance of the weapon.  The models are developed 
to determine if the component has or will degrade to a point where it cannot withstand 
the anticipated operating loads. 
    The models are developed to compute degradation in material properties as a result 
of exposure to thermal and humidity cycling, shock and vibration, and or a corrosive 
environment.  The material properties data are determined using sensor information 
[1] that is then correlated with chemical kinetics or age-related relationships to 
determine change in modulus, strain energy, or other properties of this nature.  
Degraded material properties are then used in a finite-element method or other similar 
mathematical technique to evaluate induced internal stresses and predict current and 
future factors of safety.  The factor of safety provides criteria for survivability of a 
component or weapon system in the actual field environment. 
    The prognostics and diagnostics models based on the deterministic approach stated 
above may not provide the actual quantification of uncertainty and variability 
presented in the health data and mathematical models.  The real-time health 
monitoring data would consist of large variations in parameter values over time and 
the application of an average or worst-case value may overlook the occurrence of the 
failure frequency.  Furthermore modeling uncertainty may not provide high 
confidence in the reliability assessment of the weapon system.  The assumption of 
deterministic variables is an idealization that is not true in the real world.  The 
extrapolation of the deterministic data to predict failure over time will be suspect and 
it adds another dimension of uncertainty. 
    A sound approach to modeling for prognostic and diagnostic analysis of the weapon 
system will be based on probabilistic engineering analysis.  The probabilistic 
approach will attempt to quantify variability in the health monitoring data and 
modeling uncertainties and forecast the true failure frequency for decision-making 
purposes. 
 
 



    In this approach, the parameters of the prognostic and diagnostic models are 
specified as statistical distributions.  These distributions are determined using 
statistical analysis of the health monitoring data.  The model output response that 
includes the induced loads and component capabilities are also output as a statistical 
distribution.  The synthesis of induced loads and component capabilities generate a 
failure function that can be analyzed to predict current and future reliability of the 
weapon system.  The probabilistic approach will quantify increased variability in the 
failure function as data are extrapolated for future reliability assessment. 
    Several methods are available to analyze failure modes using the probabilistic 
engineering approach.  The methods range from simple synthesis of material 
capability (strength) distribution with the applied (induced load) distribution to 
complex Monte Carlo simulation and sensitivity analysis.  All of the analyses require 
the statistical analysis of all the input data to the failure function.  The methods that 
are being evaluated for the army tactical systems are classified under three different 
categories: 1) probabilistic engineering evaluation using strength and stress 
interference; 2) probabilistic evaluation of the cumulative damage function; and, 3) 
prediction of component life based on Weibull analysis. 
    RRAPDS will provide data with information on exposed temperature, humidity, 
shock, vibration, and chemicals environment.  Significant variables and trends can be 
identified using data mining techniques.  Data collected can be analyzed to update 
design parameters such as failure rate of components, test costs, environmental 
thresholds, etc., and to predict spare parts requirements. 

 

STRESS AND STRENGTH INTERFERENCE METHOD 
 
    In this approach, the material capability (C ) and the induced load distributions 
( R ) are used to compute the probability of failure at a point in time.  If both 
parameters are normally distributed, the probability of failure is given by, [5] 
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where C  and R are average capabilities and sc and sr are standard deviation of the 
capability and induced loads, respectively.  Ф is the normal probability function 
determined from standard normal table. 
    Figure 1 [5] shows the probability distributions as the material capability degrades 
while the induced stress due to long-term environmental effects increases.   
 



 
 

Figure 1:  Component reliability with age. 
    
    In the stress and strength model, the capability or material strength (properties) is 
determined using a degradation mechanism resulting from humidity or temperature 
cycling, or shock and vibration.  Some of the degradation functions include empirical 
Coffin-Manson functions, the Arrhenius law, or Boltzman formula [6].  The induced 
loads are determined using structural engineering models and input distribution from 
material properties (modulus, temperature) to compute the distribution of r.  Statistics 
from these distributions are applied at any point of time to evaluate Pf . 
    An appropriate example for the stress and strength approach is to determine the 
reliability of the propellant/casebond system in the missile ordnance components like 
rocket motors and gas generators.  Propellant modulus changes with age which 
impacts both the strength properties and the induced stress.  Knowing propellant 
modulus at a given point of time, the propellant reliability can be determined using a 
finite element analysis model of induced stress and data on degraded material 
properties.  
 
 
CUMULATIVE DAMAGE FUNCTION METHOD 
 
    Cumulative damage models evaluate the aggregate of small or microscopic damage 
within the component due to stress induced by environmental conditions over a time 
period.  The incremental stresses are accumulated over time to determine the 
degradation in the component strength and to make predictions on whether the missile 
will withstand operational loads without failure.  The rationale of the cumulative 
damage function is that eventually microscopic damage will accumulate and lead to 
failure.  According to this theory, missile component failure will occur if the 
following is true: 
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stress accumuldated over time t operating stressD

strength of material at time t predicted material strength at operation
 ≥ 1.0   . 

 
    The simplest form of the cumulative damage law is described by the Palmgren-
Miner [7] rule as, 
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where d denotes the fatigue damage and ni are the number of actual applied cycles at 
time t, and Nf is the total number of cycles to failure.  At failure, d = 1 and ni (t) = Nf.   
    Equation (2) represents a linear damage function that was originally proposed for 
the life prediction of metallic components undergoing fatigue.  However, the linear 
damage function was found to give non-conservative results, as it predicts lives 
greater than those observed experimentally.  Its main deficiencies are: 1) load level 
interdependence; 2) load sequence interdependence; and, 3) lack of load interaction 
accountability. 
    To make the cumulative damage law more appropriate to the real world, a simple 
non-linear form of Eq. 2 was presented using the definition of the power law as  
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where the power β is the load-dependent variable.   
    The cumulative damage [(D(t)] resulting from small steps in induced strength due 
temperature and humidity cycling or shock and vibration over a period of time is 
described by a damage function [2] as 
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where tf  is the time to failure, σ(t) is the induced stress as a function of time, σ0 is the 
material strength, and β is the power law exponent showing the interaction between 
stress and strength parameters. 
    Equation 6 is shown graphically in Fig. 2 [2]. 



 
 
 
 
 
 
 
 
 
 

Figure 2: Time-to-failure versus damage due to increased stress. 
 
    Equation (6) can be evaluated using calculated stress values induced by 
temperature, humidity cycling, or shock and vibrations over time t.  The value of the 
damage function at time (t) must be less than 1.0 to ensure the structural integrity of 
the component.  Stress values are determined using finite element modeling or similar 
techniques. 
    The damage function D(t) evaluated in Eq. (6) represents a precise value and does 
not show any variability in D(t).  It is calculated using specified values of temperature, 
humidity, or shock. 
    The data from the health monitoring systems will show a large variation in the 
measured parameters and the incorporation of average values to calculate stress will 
not provide an appropriate failure scenario.  Since the damage function D(t) is very 
sensitive to applied stress, any variation in mechanical properties or other data could 
provide uncertainties in the results. 
    A probabilistic approach will be more appropriate to forecast the true failure 
frequency [10].  Figure 3 shows the comparison of mean damage (deterministic value) 
versus the failure probability. 
    According to Fig. 3, [4] the probability of failure as defined by the damage model is 
defined as, 
   Pf  = P (d ≥ 1.0)     (7) 
 
 
 
 

 
 
 
 
 
 

 
 

Figure 3:  Failure probability distribution due to cumulative damage. 
 
    The probabilistic approach suggests that the damage model be developed as a 
failure distribution using statistical information on the input parameters such as 
temperature, humidity, and shock as measured by the health monitoring systems.  The 



variability in the input parameters could provide distribution of the damage function 
that can be evaluated for failure probability and reliability of the component. 
 
 
WEIBULL SERVICE LIFE PREDICTION METHOD 
 
    Weibull analysis is widely used in reliability work to predict component service life 
and long-term aging degradation due to induced stress [9].  Weibull probability 
analysis provides a useful tool to predict time-dependent reliability and component 
service life [8]. 
    The analysis methodology has a great advantage in stress and strength approach 
where non-linearity in the strength or stress function is involved.  The application of 
Weibull distribution in the prognostic analysis is illustrated with an example of 
monitoring and predicting reliability of missile component like gyros in the guidance 
section. 
 
 
PROBABILITY ANALYSIS OF GYROS: 
 
    Gyros are used in missile guidance and navigation systems and their precision is 
impacted due to long term exposure to humidity and temperature in storage 
environment.  Failure mode analysis of gyros has identified several failure modes [16] 
in non-operating storage environment.  Some of them are listed below: 
 

• Separation in Spin Bearing lubrication due to temperature and humidity 
• Creep and change in dimensional tolerances due to temperature variations 
• Adhesive failure in Gimbals gas bearings due to humidity. 

 
    Data on gyros reliability as a function of storage time have been reported in 
reference [16].  To illustrate the application of probabilistic analysis for predicting 
failures and improve shelf life, some of the data from [16] are used.  Weibull 
probability analysis has been performed to predict the reliability of gyros as a function 
of storage time. 
    According to Weibull analysis, the cumulative failure distribution is defined by 
function F(t) as follows: 
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where  
 
  t = time in storage (hours, years, etc.) 
  η= scale parameter 
  β= shape parameter 
 
    Component reliability at a given storage time t is therefore,  
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Weibull parameters η and β can be estimated by using field reliability data and then 
used to predict the component reliability over time.  Some of the data on gyros 
described in [16] are used to illustrate the methodology. 
    Taking the national log of both sides and negating both sides, (9), we get 
 
  ln [1/R(t)] =  (t/n)β     (10) 
 
    And, by taking the natural log again, we arrive at 
 
  ln {ln [1/R(t)]} = β ln(t) - β ln(η)   (11) 
 
    Given component reliability versus storage time data, Weibull parameters (β, η ) 
can be estimated using linear regression analysis of equation (11)  An example of 
gyros field reliability versus storage time are taken from [16]  and are shown in Table 
2  below 
 
   Table 2:  Reliability Data on Gyros 

Storage Time 
(years) 

t 

Reliability 
Success/Total 

tested 
R(t) 

ln ln [(1/R(t)]) Ln (t) 

1.14 0.9988 -6.718409 0.127061 
1.50 0.9942 -5.154005 0.405592 
3.27 0.9824 -4.030075 1.185539 
4.35 0.9844 -4.150703 1.46978 
5.00 0.9548 -3.074563 1.609438 

  
    The data are plotted in Figure 4.  A least square fit of data in Table 2 gives the 
following values. 
 
 Slope (β)   =  1.432 
 Intercept (-β ln(η)) = -5.774 
 
η, the scale parameter is equal to exp (5.774/1.432) = exp (4.032) = 56.4 years.  Thus 
63.21 % of gyros failures are expected to occur in 56.4 years. 
    Using the values of β and η, Figure 5 is constructed to show the predicted reliability 
of gyros as a function of time. 
   
 
 



WEIBULL PLOT OF GYRO DATA
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   Figure 4:  Weibull plot of gyro data. 
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Figure 5:  Pct failures versus storage (time). 
 
    Gyros failures in storage are generally caused by exposure to temperature and 
humidity cycling over a long period of time.  Humidity and temperature cycling 
causes material degradation and induce stress which accumulates over time resulting 
in component failure.  The Weibull analysis can be further extended by evaluating a 
relationship between stress and temperature/humidity cycling and integrating it over 
the storage time.  Temperature, and humidity data from RRAPDS could then be 
directly input into the model to predict component reliability and shelf life. 



    In situations where there is a potential of crack initiation and/or crack propagation 
in materials due to environmental exposures, Weibull probability analysis provides a 
useful tool to predict time-dependent reliability and component service life [11].  In 
the case of tactical missiles, the potential for crack initiation and propagation exists in 
propellant, liners, solder joints and metallic hardware because of temperature and 
humidity cycling and exposure to corrosive environments. 
    The Weibull probability analysis for failure modes related to time-dependent crack 
propagation can be developed by defining the Weibull statistics in terms of parameters 
used in the fracture mechanics analysis.  According to Weibull distribution, the 
reliability of a component under stress ( σ ) is given by: 
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    From the fracture mechanics model, the material fracture toughness at a given stress 
level and critical flaw size is given in reference  [14] 
 
  cIC aYK σ=                                                              (13) 
 
    In equations (12) and (13), 
 
  ac =  critical crack length (mm) 
  σ  = applied stress (psi) 
  y  = is a geometrical factor (assumed = 1.0)  

β = Weibull modulus or shape parameters 
σ o = Weibull scale factor (also characteristic value of ultimate 
material strength) 
Ki c material fracture toughness properties to for a critical flaw size 
(determined by testing or handbooks) 

 
The Weibull shape parameter (β) and the scale parameter σ o are determined from 
material test data. 
    Fracture toughness (Ki c ) is a measure of material toughness to withstand cracks 
[13] [14].  When both sides of equation (13) are equal, a material balance is 
maintained and the material is tough enough to withstand the effect of stress 
concentration about the crack.  If stress (σ) or crack length (a) increases due to 
environmental thermal cycling or corrosive atmosphere, the balance is broken and the 
crack propagates and ultimately cause a failure. 
    The propagation of crack due to cyclic stress is defined by power law [15] 

  nKA
dt
da )( 1=        (14) 

where K1 is as defined as in equation (13) for any crack length (a) below the critical 
length (A c) and stress level (σ) is equal to  σ a0.5 for y =1.  The variables A and n are 
two constants that are determined experimentally or from historical data. 



    The life time, tf , can be determined by integrating equation (14) from initial crack 
length ai to the critical length a c  as shown in equation (15) below: 
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   The integral steps are given in [15].  The final Weibull reliability model for crack 
propagation as a function of time is shown in equations (12) and (13). 
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    Equation (16) provides a measure of component service life for given 
environmental conditions.  If the initial defect or flaw size is known from 
manufacturing or historical data, the service life of the component can be predicted 
with equation (16).  In the case of tactical missiles, the solder joint failures and or the 
failures of propellant, liners or other similar structures are caused by propagation of 
cracks when subjected to thermal cycling, shock, vibration or corrosive environment.  
Reliability models based on crack propagation theory are good prognostic tools for 
improving the reliability of the tactical missiles.   
 
 
CONCLUSION 
 
    This paper addresses the application of an integrated health monitoring system to 
monitor health and perform prognostics and diagnostics analysis of army missile 
systems in storage and field deployment.  The US Army has been field testing an 
integrated health monitoring system called RRAPDS that include diagnostic and 
prognostic models to assess the reliability of the weapons. 
    The application of probabilistic engineering methods to analyze RRAPDS data and 
predict component reliability during the life cycle of the weapon systems was 
discussed.  Probabilistic methods in the diagnostic and prognostic analysis provide a 
realistic reliability assessment for decision making purposes. 
    The limitations of deterministic methods to predict component survivability were 
discussed.  Probabilistic methodologies based on stress and strength approach, 
cumulative damage functions, and Weibull analysis were presented for use with data 
from health monitoring systems. 
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