
-1

TMS320C6000 Peripherals
Reference Guide

Literature Number: SPRU190D
February 2001

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with
TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary
to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except
those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
products or services might be or are used. TI’s publication of information regarding any third party’s products
or services does not constitute TI’s approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation
or reproduction of this information with alteration voids all warranties provided for an associated TI product or
service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Resale of TI’s products or services with statements different from or beyond the parameters stated by TI for
that product or service voids all express and any implied warranties for the associated TI product or service,
is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products. www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright 2001, Texas Instruments Incorporated

iiiContents

Preface

Read This First

About This Manual

This reference guide describes the on-chip peripherals of the TMS320C6000�
digital signal processors (DSPs). Main topics are the program memory, the data
memory, the direct memory access (DMA) controller, the enhanced DMA control-
ler (EDMA), the host-port interface (HPI), the exansion bus, the external memory
interface (EMIF), the boot configuration, the multichannel buffered serial ports
(McBSPs), the timers, the interrupt selector and external interrupts, and the pow-
er-down modes.

The TMS320C62x� (C62x�) and the TMS320C67x� (C67x�) generations
of digital signal processors make up the TMS320C6000� platform of the
TMS320� family of digital signal processors. The C62x� devices are fixed-
point DSPs, and the C67x� devices are floating-point DSPs. The
TMS320C6000 (C6000�) is the first DSP to use the VelociTI architecture,
a high-performance, advanced VLIW (very long instruction word) architecture.
The VelocTI architechure makes the C6x� an excellent choice for multichan-
nel, multifunction, and high data rate applications.

Notational Conventions

This document uses the following conventions:

� Program listings, program examples, names are shown in a special

font . Here is a sample program listing:

LDW .D1 *A0,A1
ADD .L1 A1,A2,A3
NOP 3
MPY .M1 A1,A4,A5

� Throughout this book MSB means most significant bit, and LSB means
least significant bit.

iv

Registers are described throughout this book in register diagrams. Each
diagram shows a rectangle divided into fields that represent the fields of the
register. Each field is labeled with its name inside, its beginning and ending bit
numbers above, and its properties below. A legend explains the notation used
for the properties. For example:

31 25 24 23 22 21 20 18 17 16

FIELDA FIELDB FIELDC R, +1 RW, +0

RW, +0 RC, +x R, +0 R, +1 HRW, +0

Note: R = Readable by the CPU, W = Writeable by the CPU, +x = Value undefined after reset, +0 = Value is 0 after reset,
+1 = Value is 1 after reset, C = Clearable by the CPU, H = reads/writes performed by the host

Related Documentation From Texas Instruments

The following documents describe the TMS320C6x family and related support
tools. To obtain a copy of any of these TI documents, call the Texas Instru-
ments Literature Response Center at (800) 477–8924. When ordering, please
identify the book by its title and literature number.

TMS320C6000 Technical Brief (literature number SPRU197) gives an
introduction to the ’C6000 platform of digital signal processors, develop-
ment tools, and third-party support.

TMS320C6000 CPU and Instruction Set Reference Guide (literature
number SPRU189) describes the ’C6000 CPU architecture, instruction
set, pipeline, and interrupts for these digital signal processors.

TMS320C6000 Programmer’s Guide (literature number SPRU198)
describes ways to optimize C and assembly code for the TMS320C6000
DSPs and includes application program examples.

TMS320C6x Peripheral Support Library Programmer’s Reference
(literature number SPRU273) describes the contents of the ’C6x
peripheral support library of functions and macros. It lists functions and
macros both by header file and alphabetically, provides a complete
description of each, and gives code examples to show how they are
used.

TMS320C6000 Assembly Language Tools User’s Guide (literature number
SPRU186) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for the ’C6000 generation of devices.

Notational Conventions / Related Documentation From Texas Instruments

v

TMS320C6000 Optimizing C Compiler User’s Guide (literature number
SPRU187) describes the ’C6000 C compiler and the assembly optimizer.
This C compiler accepts ANSI standard C source code and produces as-
sembly language source code for the ’C6000 generation of devices. The
assembly optimizer helps you optimize your assembly code.

TMS320C6x C Source Debugger User’s Guide (literature number
SPRU188) tells you how to invoke the ’C6x simulator and emulator
versions of the C source debugger interface. This book discusses
various aspects of the debugger, including command entry, code
execution, data management, breakpoints, profiling, and analysis.

TMS320C6x Evaluation Module Reference Guide (literature number
SPRU269) provides instructions for installing and operating the ’C6x
evaluation module. It also includes support software documentation,
application programming interfaces, and technical reference material.

TMS320C62x Multichannel Evaluation Module User’s Guide (literature
number SPRU285) provides instructions for installing and operating the
’C62x multichannel evaluation module. It also includes support software
documentation, application programming interfaces, and technical refer-
ence material.

6TMS320C62x Multichannel Evaluation Module Technical Reference
(SPRU308) provides provides technical reference information for the
’C62x multichannel evaluation module (McEVM). It includes support
software documentation, application programming interface references,
and hardware descriptions for the ’C62x McEVM.

TMS320C6201/6701 Evaluation Module Technical Reference (SPRU305)
provides provides technical information that describes the ’C6x evalua-
tion module functionality. It includes a description of host software utilities
and a complete application programming interface reference.

TMS320C6000 DSP/BIOS User’s Guide (literature number SPRU303)
describes how to use DSP/BIOS tools and APIs to analyze embedded
real-time DSP applications.

TMS320C6201, TMS320C6201B Digital Signal Processors Data Sheet
(literature number SPRS051) describes the features of the
TMS320C6201 and TMS320C6201B fixed-point DSPs and provides
pinouts, electrical specifications, and timings for the devices.

TMS320C6202 Digital Signal Processor Data Sheet (literature number
SPRS072) describes the features of the TMS320C6202 fixed-point DSP
and provides pinouts, electrical specifications, and timings for the de-
vice.

vi

TMS320C6203 Digital Signal Processor Data Sheet (literature number
SPRS086) describes the features of the TMS320C6203 fixed-point DSP
and provides pinouts, electrical specifications, and timings for the de-
vice.

TMS320C6701 Digital Signal Processor Data Sheet (literature number
SPRS067) describes the features of the TMS320C6701 floating-point
DSP and provides pinouts, electrical specifications, and timings for the
device.

TMS320C6211 Digital Signal Processor Data Sheet (literature number
SPRS073) describes the features of the TMS320C6211 fixed-point DSP
and provides pinouts, electrical specifications, and timings for the de-
vice.

TMS320C6711 Digital Signal Processor Data Sheet (literature number
SPRS088) describes the features of the TMS320C6711 fixed-point DSP
and provides pinouts, electrical specifications, and timings for the de-
vice.

Trademarks

320 Hotline On-line, VelociTI, and XDS510 are trademarks of Texas
Instruments.

PC is a trademark of International Business Machines Corporation.

PowerQUICC is a trademark of Motorola.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

SPI is a trademark of Motorola, Inc.

ST-BUS is a trademark of Mitel.

Windows and Windows NT are registered trademarks of Microsoft Corporation.

Read This First

Related Documents / Trademarks

Contents

vii

Contents

1 Introduction 1-1.
1.1 TMS320 Family Overview 1-2.

1.1.1 History of TMS320 DSPs 1-2.
1.1.2 Typical Applications for the TMS320 Family 1-2.

1.2 Overview of the TMS320C6000 Platform of DSPs 1-4.
1.3 Features and Options of the TMS320C6000 Devices 1-5.
1.4 Overview of TMS320C6000 Memory 1-7.
1.5 Overview of TMS320C6000 Peripherals 1-9.

2 TMS320C620x/C670x Internal Program and Data Memory 2-1.
Describes the program and data memory system for the TMS320C620x/C670x. This includes
program and data memory organization,cache modes, DMA and peripheral bus operation.

2.1 Program Memory Controller 2-2.
2.2 Internal Program Memory 2-3.

2.2.1 Internal Program Memory Modes 2-7.
2.2.2 Memory Mapped Operation 2-8.
2.2.3 Cache Operation 2-9.
2.2.4 Cache Architecture 2-10.
2.2.5 Bootload Operation 2-11.
2.2.6 DMA Controller Access to Program Memory 2-12.

2.3 Data Memory Controller 2-13.
2.3.1 Data Memory Access 2-14.

2.4 Internal Data Memory 2-15.
2.4.1 TMS320C6201/C6204/C6205 2-15.
2.4.2 TMS320C6701 2-16.
2.4.3 TMS320C6202(B) 2-19.
2.4.4 TMS320C6203(B) 2-20.
2.4.5 Data Alignment 2-21.
2.4.6 Dual CPU Accesses to Internal Memory 2-21.
2.4.7 DMA Accesses to Internal Memory 2-24.
2.4.8 Data Endianness 2-24.

2.5 Peripheral Bus 2-27.
2.5.1 Byte and Halfword Access 2-27.
2.5.2 CPU Wait States 2-28.
2.5.3 Arbitration Between the CPU and the DMA Controller 2-28.

Contents

viii

3 TMS320C621x/C671x/C64x Two-Level Internal Memory 3-1.
Describes the program and data memory for the TMS320C621x/C671x/C64x.

3.1 Overview 3-2.
3.2 TMS320C621x/C671x/C64x Cache Definitions 3-7.
3.3 TMS320C621x/C671x Two-Level Memory 3-10.

3.3.1 L1P Description 3-10.
3.3.2 L1D Description 3-10.
3.3.3 L2 Description 3-11.
3.3.4 TMS320C621x/C671x Data Alignment 3-13.
3.3.5 Control Registers 3-14.

3.4 TMS320C64x Two-Level Memory 3-16.
3.4.1 L1P Description 3-16.
3.4.2 L1D Description 3-17.
3.4.3 Pipelining Cache Misses 3-18.
3.4.4 Memory Banking Structure 3-18.
3.4.5 Memory Ordering Support 3-19.
3.4.6 L1D – L2 Write Buffer 3-19.
3.4.7 L2 Description 3-20.
3.4.8 TMS320C64x Data Alignment 3-23.
3.4.9 Control Registers 3-24.

3.5 L1P Operation 3-29.
3.5.1 TMS320C64x L1P Miss Pipelining 3-30.

3.6 L1D Operation 3-32.
3.6.1 Read Allocate 3-32.
3.6.2 L1D Invalidation 3-33.
3.6.3 TMS320C64x L1D Miss Pipelining 3-34.

3.7 L2 Operation 3-38.
3.7.1 L2 Interfaces 3-40.
3.7.2 L2 Organization 3-40.
3.7.3 L2 Read Requests 3-41.
3.7.4 L2 Write Requests 3-42.
3.7.5 L1D Cache in all L2 SRAM Mode 3-43.
3.7.6 L1D and L2 Host-Processor Interface 3-43.
3.7.7 Host Access of L2 registers 3-43.
3.7.8 External Coherency 3-44.
3.7.9 EDMA Service 3-44.
3.7.10 EDMA Coherency 3-45.
3.7.11 Invalidation 3-49.

4 Direct Memory Access (DMA) Controller 4-1.
Describes the direct memory access controller operation.

4.1 Overview 4-2.
4.2 DMA Registers 4-5.

4.2.1 DMA Channel Control Registers (PRICTL and SECCTL) 4-8.
4.2.2 Register Access Protocol 4-14.

Contents

ixContents

4.3 Memory Map 4-14.
4.4 Initiating a Block Transfer 4-15.

4.4.1 DMA Autoinitialization 4-15.
4.5 Transfer Counting 4-18.
4.6 Synchronization: Triggering DMA Transfers 4-19.

4.6.1 Latching of DMA Channel Event Flags 4-20.
4.6.2 Automated Event Clearing 4-21.
4.6.3 Synchronization Control 4-21.

4.7 Address Generation 4-24.
4.7.1 Basic Address Adjustment 4-24.
4.7.2 Address Adjustment With the Global Index Registers 4-25.
4.7.3 Element Size, Alignment, and Endianness 4-25.
4.7.4 Using a Frame Index to Reload Addresses 4-26.
4.7.5 Transferring a Large Single Block 4-27.
4.7.6 Sorting 4-28.

4.8 Split-Channel Operation 4-30.
4.8.1 Split DMA Operation 4-30.
4.8.2 Split Address Generation 4-31.

4.9 Resource Arbitration and Priority Configuration 4-32.
4.9.1 DMA Auxiliary Control Register (AUXCTL) and Priority Between Channels 4-33.
4.9.2 Switching Channels 4-34.

4.10 DMA Channel Condition Determination 4-35.
4.10.1 Definition of DMA Channel Secondary Control Register (SECCTL)

Conditions 4-36.
4.11 DMA Controller Structure 4-38.

4.11.1 TMS320C6201/C6701/C6202 (1.8V devices) DMA Structure 4-38.
4.11.2 TMS320C6202B/C6203(B)/C6204/C6205 (1.5V Devices) DMA Structure 4-41. .
4.11.3 Operation 4-44.
4.11.4 DMA Performance 4-44.

4.12 DMA Action Complete Pins 4-45.
4.13 Emulation 4-46.

5 DMA and CPU Data Access Performance 5-1.
Describes DMA and CPU data access performance to internal memory, the peripherals, and
external memory.

5.1 Overview 5-2.
5.2 Accessing Data 5-3.

5.2.1 Internal Data Memory 5-4.
5.2.2 Peripheral Bus 5-4.
5.2.3 External Memory Interface (EMIF) 5-4.
5.2.4 Resource Contention 5-7.
5.2.5 DMA Synchronization 5-11.
5.2.6 Transferring To/From Same Resource 5-12.

Contents

x

5.3 Bandwidth Calculation 5-14.
5.3.1 Simple Timing Use Example 5-14.
5.3.2 Complex Bandwidth Calculation Example 5-16.

5.4 Bandwidth Optimization 5-21.
5.4.1 Maximize DMA Bursts 5-21.
5.4.2 Minimizing CPU/DMA Conflict 5-22.

6 EDMA Controller 6-1.
Describes the new enhanced DMA for the TMS320C621x/671x/C64x.
6.1 Overview 6-2.
6.2 EDMA Terminology 6-5.
6.3 Event Processing and EDMA Control Registers 6-6.

6.3.1 Event Register (ER, ERL, ERH) 6-7.
6.3.2 Event Enable Register (EER, EERL, EERH) 6-8.
6.3.3 Event Clear Register (ECR, ECRL, ECRH) 6-9.
6.3.4 Event Set Register (ESR, ESRL, ESRH) 6-10.
6.3.5 Event Polarity Register (EPRL, EPRH) (C64x) 6-12.

6.4 Event Encoder 6-13.
6.5 Parameter RAM (PaRAM) 6-13.

6.5.1 EDMA Transfer Parameter Entry 6-14.
6.6 EDMA Transfer Parameters 6-16.

6.6.1 Options Parameter (OPT) 6-16.
6.6.2 SRC/DST Address (SRC/DST) 6-19.
6.6.3 Element Count (ELECNT) 6-19.
6.6.4 Frame/Array Count (FRMCNT) 6-20.
6.6.5 Element Index (ELEIDX) and Frame/Array Index (FRMIDX) 6-20.
6.6.6 Element Count Reload (ELERLD) 6-20.
6.6.7 Link Address (LINK) 6-20.

6.7 Initiating an EDMA Transfer 6-22.
6.7.1 Synchronization of EDMA Transfers 6-22.

6.8 Types of EDMA Transfers 6-26.
6.8.1 1-Dimensional Transfers 6-26.
6.8.2 2-Dimensional Transfers 6-29.

6.9 Element Size and Alignment 6-32.
6.9.1 Fixed Address Mode Transfer Considerations 6-32.

6.10 Element and Frame/Array Count Updates 6-34.
6.10.1 Element Count Reload (ELERLD) 6-34.

6.11 Source/Destination (SRS/DST) Address Updates 6-35.
6.12 Linking EDMA Transfers 6-39.
6.13 Terminating an EDMA Transfer 6-41.
6.14 EDMA Interrupt Generation 6-42.

6.14.1 EDMA Interrupt Servicing by the CPU 6-46.
6.14.2 TMS320C64x Alternate Transfer Complete Code Interrupt 6-46.

6.15 Chaining EDMA Channels by an Event 6-47.
6.15.1 TMS320C621x/C671x EDMA Transfer Chaining 6-48.
6.15.2 TMS320C64x EDMA Transfer Chaining 6-48.
6.15.3 TMS320C64x Alternate Transfer Chaining 6-49.
6.15.4 C64x Alternate Transfer Chaining Example 6-49.

Contents

xiContents

6.16 Peripheral Device Transfers (TMS320C64x only) 6-54.
6.17 Resource Arbitration and Priority Processing 6-55.

6.17.1 Priority Queue Status Register (PQSR) 6-55.
6.17.2 Transfer Request Queue Length 6-56.

6.18 EDMA Performance 6-59.
6.19 Quick DMA (QDMA) 6-59.

6.19.1 QDMA Registers 6-59.
6.19.2 QDMA Register Access 6-61.
6.19.3 Initiating a QDMA Transfer 6-61.
6.19.4 QDMA Performance 6-62.
6.19.5 QDMA Stalls and Priority 6-62.

6.20 Emulation Operation 6-64.
6.21 Transfer Request Submission 6-64.

6.21.1 Request Chain 6-64.
6.21.2 Transfer Crossbar 6-66.
6.21.3 Address Generation/Transfer Logic 6-67.

6.22 Transfer Examples 6-69.
6.22.1 Block Move Example 6-69.
6.22.2 Sub-frame Extraction Example 6-71.
6.22.3 Data Sorting Example 6-72.
6.22.4 Peripheral Servicing Examples 6-74.
6.22.5 Non-bursting Peripherals 6-75.

7 Host-Port Interface 7-1.
Describes the host-port interface (HPI) used to access C620x/C670x and C621x/C671x/C64x
memory-map space by external processors.

7.1 Overview 7-2.
7.2 HPI External Interface 7-5.

7.2.1 TMS320C620x/C670x HPI 7-5.
7.2.2 TMS320C621x/C671x HPI 7-6.
7.2.3 TMS320C64x HPI16 or HPI32 7-7.

7.3 HPI Signal Descriptions 7-9.
7.3.1 Data Bus: HD[15:0] or HD[31:0] 7-9.
7.3.2 Access Control Select: HCNTL[1:0] 7-10.
7.3.3 Halfword Identification Select: HHWIL 7-10.
7.3.4 Byte Enables: HBE[1:0] (C620x/C670x only) 7-11.
7.3.5 Read/Write Select: HR/W 7-12.
7.3.6 Ready: HRDY 7-12.
7.3.7 Strobes: HCS, HDS1, HDS2 7-12.
7.3.8 Address Strobe Input: HAS 7-13.
7.3.9 Interrupt to Host: HINT 7-14.

7.4 HPI Bus Access 7-15.
7.4.1 HPI Bus Access for C620x/C670x 7-15.
7.4.2 HPI Bus Access for C621x/C671x 7-19.
7.4.3 HPI Bus Access for C64x 7-21.

Contents

xii

7.5 HPI Registers 7-24.
7.5.1 HPI Address Register (HPIA) 7-25.
7.5.2 HPI Control Register (HPIC) 7-25.
7.5.3 Software Handshaking Using HRDY and FETCH 7-26.
7.5.4 Host Device Using DSPINT to Interrupt the CPU 7-27.
7.5.5 CPU Using HINT to Interrupt the Host 7-27.

7.6 Host Access Sequences 7-28.
7.6.1 Initialization of HPIC and HPIA 7-28.
7.6.2 HPID Read Access in Fixed Address Mode 7-30.
7.6.3 HPID Read Access in Autoincrement Mode 7-32.
7.6.4 Host Data Write Access Without Autoincrement 7-34.
7.6.5 HPID Write Access in Autoincrement Mode 7-36.
7.6.6 Single Halfword Cycles (C620x/C670x only) 7-39.

7.7 HPI Transfer Priority Queue — TMS320C621x/C671x/C64x 7-41.
7.8 Memory Access Through the HPI During Reset 7-41.

8 Expansion Bus 8-1.
Describes the expansion bus used by CPU to access off-chip peripherals, FIFOs and PCI inter-
face chips.
8.1 Overview 8-2.
8.2 Expansion Bus Signals 8-5.
8.3 Expansion Bus Registers 8-7.

8.3.1 Expansion Bus Host Port Registers 8-8.
8.3.2 Expansion Bus Global Control Register (XBGC) 8-9.
8.3.3 XCE Space Control Registers (XCExCTL) 8-10.

8.4 Expansion Bus I/O Port Operation 8-11.
8.4.1 Asynchronous Mode 8-13.
8.4.2 Synchronous FIFO Modes 8-14.
8.4.3 DMA Transfer Examples 8-20.

8.5 Expansion Bus Host Port Operation 8-22.
8.5.1 Expansion Bus Host Port Registers Description 8-23.
8.5.2 Synchronous Host Port Mode 8-27.
8.5.3 Asynchronous Host Port Mode 8-42.

8.6 Expansion Bus Arbitration 8-45.
8.6.1 Internal Bus Arbiter Enabled 8-45.
8.6.2 Internal Bus Arbiter Disabled 8-46.
8.6.3 Expansion Bus Requestor Priority 8-49.

8.7 Boot Configuration Control via Expansion Bus 8-50.

9 PCI 9-1.
Describes the PCI operation.
9.1 Overview 9-2.
9.2 PCI Architecture 9-6.
9.3 PCI Registers 9-9.

9.3.1 PCI Configuration Registers (Accessible by External PCI Host Only) 9-9.
9.3.2 PCI I/O Registers (Accessible by External PCI Host Only) 9-11.
9.3.3 PCI Memory-Mapped Peripheral Registers 9-15.

Contents

xiiiContents

9.4 TMS320C6000/PCI Memory Map 9-16.
9.5 Byte Addressing 9-18.
9.6 PCI Address Decode 9-18.
9.7 PCI Transfers to/from Program Memory (TMS320C62x/C67x) 9-19.
9.8 Slave Transfers 9-20.

9.8.1 DSP Memory Slave Writes 9-20.
9.8.2 DSP Memory Slave Reads 9-20.
9.8.3 PCI Target Initiated Termination 9-22.

9.9 Master Transfers 9-23.
9.9.1 DSP Master Address Register (DSPMA) 9-23.
9.9.2 PCI Master Address Register (PCIMA) 9-24.
9.9.3 PCI Master Control Register (PCIMC) 9-25.
9.9.4 Current DSP Address Register (CDSPA) 9-26.
9.9.5 Current PCI Address Register (CPCIA) 9-26.
9.9.6 Current Byte Count Register (CCNT) 9-27.
9.9.7 PCI Transfer Halt Register (HALT) — C62x/C67x only 9-27.
9.9.8 DSP Master Writes 9-28.
9.9.9 DSP Master Reads 9-29.

9.10 Interrupts and Status Reporting 9-31.
9.10.1 PCI Interrupt Source Register (PCIIS) 9-32.
9.10.2 PCI Interrupt Enable Register (PCIIEN) 9-34.
9.10.3 DSP Reset Source/Status Register (RSTSRC) 9-36.
9.10.4 PCI Interrupts 9-38.

9.11 Reset 9-39.
9.11.1 PCI Reset of DSP 9-39.
9.11.2 FIFO Resets 9-39.
9.11.3 PCI Configuration Register Reset 9-39.

9.12 Boot Configuration for PCI Port 9-40.
9.12.1 PCI Boot 9-40.

9.13 EEPROM Interface 9-41.
9.13.1 PCI Autoinitialization from EEPROM 9-42.
9.13.2 EEPROM Memory Map 9-42.
9.13.3 EEPROM Checksum 9-43.
9.13.4 DSP EEPROM Interface 9-44.

9.14 Error Handling 9-48.
9.14.1 PCI Parity Error Handling 9-48.
9.14.2 PCI System Error Handling 9-49.
9.14.3 PCI Master Abort Protocol 9-49.
9.14.4 PCI Target Abort Protocol 9-49.

9.15 Power Management (TMS320C62x/C67x only) 9-50.
9.15.1 Power Management for PCI 9-50.
9.15.2 DSP Power Management Strategy 9-53.
9.15.3 DSP Resets 9-54.
9.15.4 DSP Support for Power Management 9-55.

9.16 PCI Configuration Registers Bit Field Descriptions 9-60.

Contents

xiv

10 External Memory Interface 10-1.
Describes the external memory interface (EMIF) that the CPU uses to access off-chip memory.

10.1 Overview 10-2.
10.1.1 EMIF Signals 10-6.

10.2 EMIF Registers 10-14.
10.2.1 Global Control Register (GBLCTL) 10-15.
10.2.2 EMIF CE Space Control Registers 10-18.
10.2.3 EMIF SDRAM Control Register 10-23.
10.2.4 EMIF SDRAM Timing Register (SDTIM) 10-26.
10.2.5 TMS320C621x/C671x/C64x SDRAM Extension Register (SDEXT) 10-27.

10.3 Memory Width and Byte Alignment 10-29.
10.3.1 C620x/C670x Memory Width and Byte Alignment 10-29.
10.3.2 C621x/C671x Memory Width and Byte Alignment 10-29.
10.3.3 C64x Memory Width and Byte Alignment 10-32.

10.4 Command-to-Command Turnaround Time 10-33.
10.5 SDRAM Interface 10-34.

10.5.1 SDRAM Initialization 10-43.
10.5.2 Monitoring Page Boundaries 10-43.
10.5.3 Address Shift 10-49.
10.5.4 SDRAM Refresh 10-55.
10.5.5 SDRAM Self Refresh Mode (C64x Only) 10-57.
10.5.6 Mode Register Set 10-58.
10.5.7 Timing Requirements 10-61.
10.5.8 SDRAM Deactivation (DCAB and DEAC) 10-63.
10.5.9 Activate (ACTV) 10-65.
10.5.10 SDRAM Read 10-66.
10.5.11 SDRAM Write 10-69.

10.6 SBSRAM Interface 10-72.
10.6.1 SBSRAM Reads 10-77.
10.6.2 SBSRAM Writes 10-80.

10.7 Programmable Synchronous Interface (TMS320C64x) 10-83.
10.7.1 ZBT SRAM Interface 10-84.
10.7.2 Synchronous FIFO Interface 10-85.

10.8 Asynchronous Interface 10-91.
10.8.1 TMS320C620x/C670x ROM Modes 10-94.
10.8.2 Programmable ASRAM Parameters 10-96.
10.8.3 Asynchronous Reads 10-97.
10.8.4 Asynchronous Writes 10-99.
10.8.5 Ready Input 10-100.

10.9 Peripheral Device Transfers (PDT) (TMS320C64x) 10-103.
10.9.1 PDT Write 10-104.
10.9.2 PDT Read 10-105.

10.10 Resetting the EMIF 10-107.

Contents

xvContents

10.11 Hold Interface 10-108.
10.11.1 Reset Considerations With the Hold Interface 10-109.

10.12 Memory Request Priority 10-110.
10.12.1 TMS320C620x/C670x Memory Request Priority 10-110.
10.12.2 TMS320C621x/C671x/C64x Memory Request Priority 10-111.

10.13 Boundary Conditions When Writing to EMIF Registers 10-112.
10.14 Clock Output Enabling 10-113.
10.15 Emulation Halt Operation 10-114.
10.16 Power Down 10-114.

11 Boot Modes and Configuration 11-1.
Describes the boot modes and associated memory maps.

11.1 Overview 11-2.
11.2 Device Reset 11-2.
11.3 Memory Map 11-3.

11.3.1 TMS320C6201/C6204/C6205/C6701 Memory Map 11-3.
11.3.2 TMS320C6202(B) Memory Map 11-4.
11.3.3 TMS320C6203(B) Memory Map 11-5.
11.3.4 TMS320C621x/C671x Memory Map 11-6.
11.3.5 TMSC64x Memory Map 11-7.
11.3.6 Memory at Reset Address 11-9.

11.4 Boot Configuration 11-10.
11.4.1 TMS320C6201/C6701 Boot and Device Configuration 11-11.
11.4.2 TMS320C6202(B)/C6203(B)/C6204 Boot and Device Configuration 11-12.
11.4.3 TMS320C6205 Boot and Device Configuration 11-13.
11.4.4 TMSC621x/C671x Boot and Device Configuration 11-15.
11.4.5 C64x Boot and Device Configuration 11-16.

11.5 Boot Processes 11-21.

12 Multichannel Buffered Serial Port 12-1.
Describes the features and operation of the multichannel buffered serial port.

12.1 Features 12-2.
12.2 McBSP Interface Signals and Registers 12-4.

12.2.1 Serial Port Configuration 12-7.
12.2.2 Receive and Transmit Control Registers: RCR and XCR 12-13.

12.3 Data Transmission and Reception 12-18.
12.3.1 Resetting the Serial Port: (R/X)RST, GRST, and RESET 12-18.
12.3.2 Determining Ready Status 12-19.
12.3.3 CPU Interrupts: (R/X)INT 12-20.
12.3.4 Frame and Clock Configuration 12-21.
12.3.5 McBSP Standard Operation 12-29.
12.3.6 Frame Synchronization Ignore 12-32.
12.3.7 Serial Port Exception Conditions 12-36.
12.3.8 Receive Data Justification and Sign Extension: RJUST 12-43.
12.3.9 32-Bit Bit Reversal: (R/X)WDREVRS 12-43.

Contents

xvi

12.4 u-Law/A-Law Companding Hardware Operation 12-44.
12.4.1 Companding Internal Data 12-45.

12.5 Programmable Clock and Framing 12-47.
12.5.1 Sample Rate Generator Clocking and Framing 12-47.
12.5.2 Data Clock Generation 12-51.
12.5.3 Frame Sync Signal Generation 12-56.
12.5.4 Stopping Clocks 12-58.
12.5.5 Clocking Examples 12-59.

12.6 Multichannel Selection Operation 12-62.
12.6.1 Multichannel Control Register (MCR) 12-63.
12.6.2 Enabling Multichannel Selection 12-66.
12.6.3 Enabling and Masking of Channels in Normal Multichannel

Selection Mode 12-66.
12.6.4 Enhanced Multichannel Selection Mode (C64x only) 12-73.
12.6.5 DX Enabler: DXENA 12-77.

12.7 SPI Protocol: CLKSTP 12-79.
12.7.1 McBSP Operation as the SPI Master 12-81.
12.7.2 McBSP Operation as the SPI Slave 12-82.
12.7.3 McBSP Initialization for SPI Mode 12-83.

12.8 McBSP Pins as General-Purpose I/O 12-84.

13 Timers 13-1.
Describes the 32-bit timers.

13.1 Overview 13-2.
13.2 Timer Registers 13-4.

13.2.1 Timer Control Register (CTL) 13-4.
13.2.2 Timer Period Register (PRD) 13-6.
13.2.3 Timer Counter Register (CNT) 13-6.

13.3 Resetting the Timers and Enabling Counting: GO and HLD 13-7.
13.4 Timer Counting 13-8.
13.5 Timer Clock Source Selection: CLKSRC 13-8.
13.6 Timer Pulse Generation 13-9.
13.7 Boundary Conditions in the Control Registers 13-10.
13.8 Timer Interrupts 13-11.
13.9 Timer Pins as General-Purpose Input/Output 13-11.
13.10 Emulation Operation 13-11.

14 Interrupt Selector and External Interrupts 14-1.
Describes the interrupt selector external interrupt operation.

14.1 Overview 14-2.
14.2 Available Interrupt Sources 14-3.
14.3 External Interrupt Signal Timing 14-6.
14.4 Interrupt Selector Registers 14-7.

14.4.1 External Interrupt Polarity Register (EXTPOL) 14-7.
14.4.2 Interrupt Multiplexer Register 14-8.

14.5 Configuring the Interrupt Selector 14-10.

Contents

xviiContents

15 Power-Down Logic 15-1.
Describes the power-down modes.

15.1 Overview 15-2.
15.2 Power–Down Mode Descriptions 15-3.
15.3 Triggering, Wake-Up, and Effects 15-5.
15.4 Peripheral Power-Down Mode for TMS320C6202(B)/C6203(B) 15-8.

16 Designing for JTAG Emulation 16-1.
Describes the JTAG emulator cable. Tells you how to construct a 14-pin connector on your tar-
get system and how to connect the target system to the emulator.

16.1 Designing Your Target System’s Emulator Connector (14-Pin Header) 16-2.
16.2 Bus Protocol 16-3.
16.3 IEEE 1149.1 Standard 16-3.
16.4 JTAG Emulator Cable Pod Logic 16-4.
16.5 JTAG Emulator Cable Pod Signal Timing 16-5.
16.6 Emulation Timing Calculations 16-6.
16.7 Connections Between the Emulator and the Target System 16-8.

16.7.1 Buffering Signals 16-8.
16.7.2 Using a Target-System Clock 16-10.
16.7.3 Configuring Multiple Processors 16-11.

16.8 Mechanical Dimensions for the 14-Pin Emulator Connector 16-12.
16.9 Emulation Design Considerations 16-14.

16.9.1 Using Scan Path Linkers 16-14.
16.9.2 Emulation Timing Calculations for SPL 16-16.
16.9.3 Using Emulation Pins 16-18.
16.9.4 Performing Diagnostic Applications 16-23.

17 General Purpose Input/Output 17-1.
Describes the general purpose input/output (GPIO) peripheral.

17.1 Overview 17-2.
17.2 GPIO Registers 17-4.

17.2.1 GPIO Enable Register (GPEN) 17-4.
17.2.2 GPIO Direction Register (GPDIR) 17-5.
17.2.3 GPIO Value Register (GPVAL) 17-6.
17.2.4 GPIO Delta Registers (GPDH, GPDL) 17-6.
17.2.5 GPIO Mask Registers (GPHM, GPLM) 17-8.
17.2.6 GPIO Global Control Register (GPGC) 17-9.
17.2.7 GPIO Interrupt Polarity Register (GPPOL) 17-11.

17.3 General Purpose Input/Output Function 17-12.
17.4 Interrupt and Event Generation 17-14.

17.4.1 Pass Through Mode 17-15.
17.4.2 Logic Mode 17-16.
17.4.3 GPINT Muxing With GP0 and/or GPINT0 17-27.

17.5 GPIO Interrupts/Events 17-28.

Contents

xviii

18 UTOPIA Level 2 Interface 18-1.
Describes the UTOPIA interface for Asynchronous Transfer Mode on TMS320C64x.

18.1 Overview 18-2.
18.2 UTOPIA Interface Signals and Registers 18-4.

18.2.1 UTOPIA Control Register (UCR) 18-5.
18.3 UTOPIA Cell Transfer Format 18-7.
18.4 UTOPIA Slave ATM Controller 18-9.

18.4.1 UTOPIA Slave Pins 18-9.
18.4.2 Slave-Transmit Operation 18-11.
18.4.3 Slave-Transmit Queue 18-11.
18.4.4 Slave-Receive Operation 18-13.
18.4.5 Slave-Receive Queue 18-14.
18.4.6 UTOPIA Events Generation 18-15.
18.4.7 Multi-PHY (MPHY) Operation 18-15.

18.5 EDMA Servicing UTOPIA 18-16.
18.5.1 EDMA Setup for UTOPIA Transmitter 18-16.
18.5.2 EDMA Setup for UTOPIA Receiver 18-17.

18.6 CPU Servicing UTOPIA Interface 18-18.
18.6.1 Interrupt Generation and Servicing 18-19.

18.7 UTOPIA Clocking and Clock Detection 18-21.
18.8 Special Transfer Conditions 18-23.
18.9 Endian Considerations 18-27.
18.10 Slave-Mode Endian Data Formats 18-28.
18.11 UTOPIA Reset 18-31.

18.11.1 UTOPIA Slave Enable Sequence 18-32.
18.12 ATM Adaptation Layer (AAL) Functions 18-32.

A EDMA Transfers
A.1 Element Synchronized 1-D to 1-D Transfers A-2.
A.2 Frame-Synchronized 1-D to 1-D Transfers A-6.
A.3 Array Synchronized 2-D to 2-D Transfers A-10.
A.4 Block-Synchronized 2-D to 2-D Transfers A-13.
A.5 Array Synchronized 1-D to 2-D Transfers A-16.
A.6 Block-Synchronized 1-D to 2-D Transfers A-19.
A.7 Array Synchronized 2-D to 1-D Transfers A-22.
A.8 Block-Synchronized 2-D to 1-D Transfers A-25.

Figures

xixContents

Figures

1–1 TMS320C620x/C670x Block Diagram 1-10.
1–2 TMS320C621x/C671x Block Diagram 1-11.
1–3 TMS32064x Block Diagram 1-11.
2–1 TMS320C620x/C670x Program Memory Controller in the Block Diagram 2-2.
2–2 TMS320C6201/C6204/C6205/C6701 Program Memory Controller Block Diagram 2-5.
2–3 TMS320C6202(B)/C6203(B) Program Memory Controller Block Diagram 2-6.
2–4 Logical Mapping of Cache Address (C6201/C6204/C6205/C6701) 2-11.
2–5 Logical Mapping of Cache Address (C6202(B)/C6203(B)) 2-11.
2–6 TMS320C620x/C670x Block Diagram 2-13.
2–7 Data Memory Controller Interconnect to Other Banks

 (TMS320C6201/C6204/C6205) 2-16.
2–8 Data Memory Controller Interconnect to Other Blocks (TMS320C6701) 2-18.
2–9 TMS320C6202(B) Data Memory Controller Block Diagram 2-19.
2–10 TMS320C6203(B) Data Memory Controller Block Diagram 2-20.
2–11 Conflicting Internal Memory Accesses to the Same Block

(TMS320C6201/C6202(B)/C6203(B)/C6204/C6205) 2-22.
2–12 Conflicting Internal Memory Accesses to the Same Block (TMS320C6701) 2-23.
3–1 TMS320C621x/C671x Block Diagram 3-2.
3–2 TMS320C64x Block Diagram 3-3.
3–3 TMS320C6000 Two-Level Internal Memory Block Diagram 3-4.
3–4 TMS320C621x/C671x L1P Address Allocation 3-10.
3–5 TMS320C621x/C671x L1D Address Allocation 3-11.
3–6 TMS320C621x/C671x L2 Memory Configuration 3-12.
3–7 TMS320C621x/C671x L2 Address Allocation 64K/48K Cache

 (L2MODE = 011b or 111b) 3-13.
3–8 TMS320C621x/C671x L2 Address Allocation 32K Cache (L2MODE = 010b) 3-13.
3–9 TMS320C621x/C671x L2 Address Allocation 16K Cache (L2MODE = 001b) 3-13.
3–10 TMS320C621x/C671x L2 Memory Attribute Registers (MAR0 – MAR15) 3-14.
3–11 TMS320C64x L1P Address Allocation 3-16.
3–12 TMS320C64x L1D Address Allocation 3-17.
3–13 TMS320C64x L2 Memory Configuration 3-21.
3–14 TMS320C64x L2 Address Allocation, 256K Cache (L2MODE = 111b) 3-22.
3–15 TMS320C64x L2 Address Allocation, 128K Cache (L2MODE = 011b) 3-22.
3–16 TMS320C64x L2 Address Allocation, 64K Cache (L2MODE = 010b) 3-22.
3–17 TMS320C64x L2 Address Allocation, 32K Cache (L2MODE = 001b) 3-22.
3–18 TMS320C64x Control Status Register (CSR) 3-24.
3–19 TMS320C64x L2 Memory Attribute Registers (MAR0 – MAR255) 3-24.

Figures

xx

3–20 TMS320C64x L2 Allocation Registers (L2ALLOC0 – L2ALLOC3) 3-25.
3–21 L1P Flush Base Address Register (L1PFBAR) 3-30.
3–22 L1P Flush Word Count Register (L1PFWC) 3-30.
3–23 L1D Flush Base Address Register (L1DFBAR) 3-34.
3–24 L1D Flush Word Count Register (L1DFWC) 3-34.
3–25 L1D – L2 SRAM 4 Read Miss Pipeline 3-36.
3–26 L1D – L2 CACHE 4 Read Miss Pipeline 3-36.
3–27 Key to Read Miss Pipeline Signals 3-36.
3–28 Cache Configuration Register (CCFG) 3-38.
3–29 Coherency Diagram, Buffers A, B Allocated in L1D 3-46.
3–30 Coherency Example Part 2, Data Written Back and Transferred by EDMA 3-47.
3–31 L2 Flush Register (L2FLUSH) 3-49.
3–32 L2 Clean Register (L2CLEAN) 3-49.
3–33 L2 Flush Base Address Register (L2FBAR) 3-50.
3–34 L2 Flush Word Count Register (L2FWC) 3-50.
3–35 L2 Clean Base Address Register (L2CBAR) 3-51.
3–36 L2 Clean Word Count Register (L2CWC) 3-51.
3–37 Two-Level Cache CPU Read Operation Flowchart 3-53.
3–38 Two-Level Cache CPU Write Operation Flowchart 3-55.
3–39 Two-Level Memory EDMA Read Operation Flowchart 3-57.
3–40 Two-Level Memory EDMA Write Operation Flowchart 3-58.
4–1 DMA Controller Interconnect to TMS320C6000 Memory-Mapped Modules 4-4.
4–2 DMA Channel Primary Control Register (PRICTL) 4-8.
4–3 DMA Channel Secondary Control Register (SECCTL) 4-11.
4–4 DMA Channel Transfer Counter Register (XFRCNT) 4-18.
4–5 DMA Global Count Reload Register (GBLCNT)

Used as Transfer Counter Reload 4-18.
4–6 Synchronization Flags 4-22.
4–7 DMA Channel Source Address Register (SRC) 4-24.
4–8 DMA Channel Destination Address Register (DST) 4-24.
4–9 DMA Global Index Register (GBLIDX) 4-25.
4–10 DMA Global Address Register (GBLADDR) Used for Split Address 4-31.
4–11 DMA Auxiliary Control Register (AUXCTL) 4-33.
4–12 Generation of DMA Interrupt for Channel x From Conditions 4-36.
4–13 DMA Controller Data Bus Block Diagram for 1.8V Device 4-38.
4–14 DMA Controller Data Bus Block Diagram for 1.5V Device 4-41.
4–15 Shared FIFO Resource Problem 4-43.
5–1 TMS320C620x/C670x Data Paths 5-3.
5–2 1/2x Rate SBSRAM Read Cycle Timings 5-9.
5–3 Combining External Peripherals 5-21.
5–4 Converting a 16-bit Peripheral to 32-bit 5-22.
6–1 TMS320C621x/C671x/C64x Block Diagram 6-2.
6–2 EDMA Controller 6-3.
6–3 Event Register (ER, ERL, ERH) 6-7.

Figures

xxiContents

6–4 Event Enable Register (EER, EERL, EERH) 6-8.
6–5 Event Clear Register (ECR, ECRL, ECRH) 6-9.
6–6 Event Set Register (ESR, ESRL, ESRH) 6-11.
6–7 Event Polarity Register (EPRL, EPRH) (C64x) 6-12.
6–8 Parameter Storage for an EDMA Event 6-15.
6–9 Options (OPT) Bit-Fields 6-16.
6–10 1-D Transfer Data Frame 6-26.
6–11 Transfer with Element Synchronication (FS=0) 6-27.
6–12 1D Transfer With Frame Synchronization (FS=1) 6-28.
6–13 2-D Transfer Data Block 6-29.
6–14 2-D Transfer with Array Synchronization (FS = 0) 6-30.
6–15 2-D Transfer with Block Synchronization (FS=1) 6-31.
6–16 Linked EDMA Transfer 6-39.
6–17 Terminating EDMA Transfers 6-41.
6–18 Channel Interrupt Pending Register (CIPR, CIPRL, CIPRH) 6-43.
6–19 Channel Interrupt Enable Register (CIER, CIERL, CIERH) 6-44.
6–20 Channel Chain Enable Register (CCER, CCERL, CCERH) 6-47.
6–21 Alternate Transfer Complete Chaining Example 6-51.
6–22 Single Large Block Data Transfer 6-52.
6–23 Smaller Packet Data Transfers 6-53.
6–24 Priority Queue Status Register(PQSR)(C621x/C671x) 6-56.
6–25 Priority Queue Status Register(PQSR)(C64x) 6-56.
6–26 Priority Queue Allocation Register 0 (PQAR0) (C64x only) 6-58.
6–27 Priority Queue Allocation Register 1 (PQAR1) (C64x only) 6-58.
6–28 Priority Queue Allocation Register 2 (PQAR2) (C64x only) 6-58.
6–29 Priority Queue Allocation Register 3 (PQAR3) (C64x only) 6-58.
6–30 QDMA Registers‡ 6-60.
6–31 QDMA Pseudo Registers 6-60.
6–32 QDMA Options Register (QDMA_OPT, QDMA_S_OPT) 6-61.
6–33 EDMA Block Diagram 6-64.
6–34 Address Generation/Transfer Logic Block Diagram 6-67.
6–35 Block Move Diagram 6-69.
6–36 Block Move QDMA Parameters 6-70.
6–37 Sub-Frame Extraction 6-71.
6–38 Sub-Frame Extraction QDMA Parameters 6-71.
6–39 Data Sorting Example Diagram 6-72.
6–40 Sorting QDMA Parameters 6-73.
6–41 McBSP Servicing for Incoming Data 6-75.
6–42 EDMA Parameters for Servicing Incoming McBSP Data 6-76.
6–43 Bursting Peripheral 6-76.
6–44 EDMA Parameters to Service Peripheral Bursts 6-77.
6–45 Continuous McBSP Servicing by EDMA 6-78.
6–46 EDMA Parameters for Continuous McBSP Servicing 6-79.
6–47 Ping-Pong Buffering for McBSP Data 6-81.

Figures

xxii

6–48 EDMA Parameters for Ping-Pong Buffering 6-82.
7–1 TMS320C620x/C670x Block Diagram 7-2.
7–2 TMS320C621x/C671x/C64x Block Diagram 7-3.
7–3 HPI Block Diagram 7-5.
7–4 HPI Block Diagram of TMS320C621x/C671x 7-7.
7–5 HPI Block Diagram of TMS320C64x 7-8.
7–6 Select Input Logic 7-12.
7–7 HPI Read Timing (HAS Not Used, Tied High) 7-17.
7–8 HPI Read Timing (HAS Used) 7-17.
7–9 HPI Write Timing (HAS Not Used, Tied High) 7-18.
7–10 HPI Write Timing (HAS Used) 7-18.
7–11 HPI32 Read Timing (HAS Not Used, Tied High) for C64x only 7-22.
7–12 HPI32 Read Timing (HAS Used) for C64x only 7-22.
7–13 HPI Write Timing (HAS Not Used, Tied High) for C64x only 7-23.
7–14 HPI Write Timing (HAS Used) for C64x only 7-23.
7–15 HPIC Register 7-26.
8–1 Expansion Bus Block Diagram 8-2.
8–2 Expansion Bus Interface in TMS320C620x/C670x Block Diagram 8-4.
8–3 Expansion Bus Global Control Register (XBGC) 8-9.
8–4 Expansion Bus XCE(0/1/2/3) Space Control Register Diagram (XCExCTL) 8-10.
8–5 Example of the Expansion Bus Interface to Four 8-Bit FIFOs 8-12.
8–6 Example of the Expansion Bus Interface to Two 16-Bit FIFOs 8-13.
8–7 Glueless Write FIFO Interface 8-16.
8–8 Read and Write FIFO Interface With Glue 8-17.
8–9 FIFO Write Cycles 8-17.
8–10 Glueless Read FIFO Interface 8-18.
8–11 FIFO Read Mode – Read Timing (glueless case) 8-18.
8–12 FIFO Read Mode – With Glue 8-19.
8–13 Expansion Bus Host Port Interface Block Diagram 8-22.
8–14 Expansion Bus Data Register (XBD) 8-23.
8–15 Expansion Bus Internal Slave Address Register (XBISA) 8-23.
8–16 Expansion Bus Internal Master Address Register (XBIMA) 8-24.
8–17 Expansion Bus External Address Register (XBEA) 8-25.
8–18 Expansion Bus Host Port Interface Control Register (XBHC) 8-25.
8–19 Read Transfer Initiated by the DSP and Throttled by

XWAIT and XRDY (Internal Bus Arbiter Disabled) 8-30.
8–20 Write Transfer Initiated by the DSP and Throttled by

XWAIT and XRDY (Internal Bus Arbiter Disabled) 8-32.
8–21 External Device Requests the Bus From the DSP Using XBOFF 8-34.
8–22 Expansion Bus Master Writes a Burst of Data to the DSP 8-38.
8–23 The Bus Master Reads a Burst of Data From the DSP 8-40.
8–24 Timing Diagrams for Asynchronous Host Port Mode of the Expansion Bus 8-44.
8–25 Timing Diagrams for Bus Arbitration – XHOLD/XHOLDA

(Internal Bus Arbiter Enabled) 8-46.

Figures

xxiiiContents

8–26 Timing Diagrams for Bus Arbitration XHOLD/XHOLDA
(Internal Bus Arbiter Disabled) 8-46.

8–27 XHOLD Timing When the External Host Starts a Transfer to DSP Instead of
Granting the DSP Access to the Expansion Bus(Internal Bus Arbiter Disabled) 8-47.

9–1 TMS320C62x/C67x Block Diagram 9-4.
9–2 TMS320C64x Block Diagram 9-5.
9–3 PCI Port Block Diagram 9-8.
9–4 Host Status Register (HSR) 9-12.
9–5 Host-to-DSP Control Register (HDCR) 9-13.
9–6 DSP Page Register (DSPP) 9-14.
9–7 PCI Base Slave Address Generation (Prefetchable) 9-16.
9–8 PCI Base 1 Slave Address Generation (Non-prefetchable) 9-16.
9–9 DSP Master Address Register (DSPMA) 9-23.
9–10 PCI Master Address Register (PCIMA) 9-24.
9–11 PCI Master Control Register (PCIMC) 9-25.
9–12 Current DSP Address (CDSPA) 9-26.
9–13 Current PCI Address Register (CPCIA) 9-26.
9–14 Current Byte Count Register (CCNT) 9-27.
9–15 PCI Transfer Halt Register (HALT) 9-27.
9–16 PCI Interrupt Source Register (PCIIS) 9-32.
9–17 PCI Interrupt Enable Register (PCIIEN) 9-34.
9–18 DSP Reset Source/Status Register (RSTSRC) 9-36.
9–19 EEPROM Address Register (EEADD) 9-44.
9–20 EEPROM Data Register (EEDAT) 9-44.
9–21 EEPROM Control Register (EECTL) 9-45.
9–22 PCI Port Power Management State Transition Diagram 9-52.
9–23 Power Management DSP Control/Status Register (PMDCSR) 9-55.
10–1 External Memory Interface in the TMS320C620x/C670x Block Diagram 10-3.
10–2 External Memory Interface in the TMS320C621x/C671x Block Diagram 10-4.
10–3 External Memory Interface in the TMS320C640x Block Diagram 10-4.
10–4 TMS320C6201/C6701 External Memory Interface 10-6.
10–5 TMS320C6202(B)/C6203(B)/C6204/C6205 External Memory Interface 10-7.
10–6 TMS320C621x/C671x External Memory Interface 10-8.
10–7 TMS320C64x External Memory Interface (EMIFA and EMIFB) 10-10.
10–8 EMIF Global Control Register (GBLCTL) 10-15.
10–9 TMS320C62x/C67x/C64x EMIF CE Space Control Register (CExCTL) 10-19.
10–10 CE Space Secondary Control Register (CExSEC) – TMS320C64x Only 10-21.
10–11 EMIF SDRAM Control Register (SDCTL) 10-23.
10–12 EMIF SDRAM Timing Register (SDTIM) 10-26.
10–13 TMS320C621x/C671x/C64x SDRAM Extension Register (SDEXT) 10-27.
10–14 TMS320C621x/C671x Byte Alignment by Endianness 10-31.
10–15 TMS320C64x Byte Alignment by Endianness 10-33.
10–16 TMS320C620x/C670x EMIF to 16M-Bit SDRAM Interface 10-36.
10–17 TMS320C621x/C671x EMIF to 16M-Bit SDRAM Interface 10-36.

Figures

xxiv

10–18 TMS320C620x/C670x EMIF to 64M-Bit SDRAM Interface 10-37.
10–19 TMS320C64x EMIFA to 64M-Bit SDRAM Interface 10-37.
10–20 TMS320C620x/C670x Logical Address to Page Register Mapping 10-44.
10–21 TMS320C621x/671x Logical Address to Page register Mapping 10-46.
10–22 TMS320C64x Logical Address to Page Register Mapping for EMIFA 10-48.
10–23 TMS320C64x Logical Address to Page Register Mapping for EMIFB 10-49.
10–24 SDRAM Refresh 10-56.
10–25 TMS320C620x/C670x Mode Register Value 10-58.
10–26 TMS320C621x/C671x/C64x Mode Register Value (0032h) 10-59.
10–27 SDRAM Mode Register Set: MRS Command 10-60.
10–28 TMS320C6000 SDRAM DCAB — Deactivate all Banks 10-63.
10–29 TMS320C621x/C671x SDRAM DEAC — Deactivate Single Bank 10-64.
10–30 ACTV Command Before an Example SDRAM Write 10-65.
10–31 TMS320C620x/C670x SDRAM Read 10-66.
10–32 TMS320C621x/C671x SDRAM Read 10-67.
10–33 TMS320C64x SDRAM Read 10-68.
10–34 TMS320C620x/C670x SDRAM Three-Word Write 10-69.
10–35 TMS320C621x/C671x SDRAM Three-Word Write 10-70.
10–36 TMS320C64x SDRAM Write 10-71.
10–37 TMS320C620x/C670x SBSRAM Interface 10-74.
10–38 TMS320C621x/C671x SBSRAM Interface 10-74.
10–39 TMS320C64x SBSRAM Interface 10-75.
10–40 TMS320C620x/C670x SBSRAM Four-Word Read 10-77.
10–41 TMS320C621x/C671x SBSRAM Six-Word Read 10-78.
10–42 TMS320C64x SBSRAM Six-Element Read 10-79.
10–43 TMS320C620x/C670x SBSRAM Four-Word Write 10-80.
10–44 TMS320C621x/C671x SBSRAM Write 10-81.
10–45 TMS320C64x SBSRAM Six-Element Write 10-82.
10–46 TMS320C64x ZBT SRAM Interface 10-84.
10–47 TMS320C64x ZBT SRAM Six-Element Write 10-85.
10–48 TMS320C64x Read and Write Synchronous FIFO Interface With Glue 10-86.
10–49 TMS320C64x Glueless Synchronous FIFO Read Interface in CE3 Space 10-86.
10–50 TMS320C64x Glueless Synchronous FIFO Write Interface in CE3 Space 10-87.
10–51 TMS320C64x Standard Synchronous FIFO Read 10-88.
10–52 TMS320C64x Standard Synchronous FIFO Write 10-89.
10–53 TMS320C64x FWFT Synchronous FIFO Read 10-90.
10–54 EMIF to 32-bit SRAM Interface 10-92.
10–55 TMS320C621x/C671x EMIF to 16-bit SRAM (Big Endian) 10-92.
10–56 EMIF to 8-Bit ROM Interface 10-93.
10–57 EMIF to 16-Bit ROM Interface 10-93.
10–58 EMIF to 32-Bit ROM Interface 10-93.
10–59 Asynchronous Read Timing Example 10-98.
10–60 Asynchronous Write Timing Example 10-100.
10–61 TMS320C620x/C670x Ready Operation 10-101.

Figures

xxvContents

10–62 TMS320C621x/C671x Ready Operation 10-102.
10–63 PDT Write Transfer From FIFO to SDRAM 10-104.
10–64 PDT Read Transfer From SDRAM to FIFO 10-106.
11–1 TMSC6202(B)/C6203(B)/C6204 Boot and Device Configuration via Pull-Up/

Pull-Down Resistors on XD[31:0] 11-12.
11–2 TMS320C6205 Boot and Device Configuration via Pull-Up/Pull-Down

Resistors on ED[31:0] 11-13.
11–3 TMS320C6414 Boot and Device Configuration via Pull-Up/Pull-Down

Resistors on BEA[20:1] 11-17.
11–4 McBSP2/EEPROM Selection Interface 11-19.
11–5 TMS320C6415 Boot and Device Configuration via Pull-Up/Pull-Down

Resistors on BEA[20:1] 11-20.
12–1 McBSP Block Diagram 12-4.
12–2 Serial Port Control Register (SPCR) 12-8.
12–3 Pin Control Register (PCR) 12-11.
12–4 Receive Control Register (RCR) 12-13.
12–5 Transmit Control Register (XCR) 12-16.
12–6 Frame and Clock Operation 12-21.
12–7 Receive Data Clocking 12-23.
12–8 Dual-Phase Frame Example 12-23.
12–9 Single-Phase Frame of Four 8-Bit Elements 12-26.
12–10 Single-Phase Frame of One 32-Bit Element 12-26.
12–11 Data Delay 12-27.
12–12 2-Bit Data Delay Used to Discard Framing Bit 12-28.
12–13 AC97 Dual-Phase Frame Format 12-28.
12–14 AC97 Bit Timing Near Frame Synchronization 12-29.
12–15 McBSP Standard Operation 12-30.
12–16 Receive Operation 12-30.
12–17 Transmit Operation 12-31.
12–18 Maximum Frame Frequency Transmit and Receive 12-32.
12–19 Unexpected Frame Synchronization With (R/X)FIG = 0 12-33.
12–20 Unexpected Frame Synchronization With (R/X)FIG = 1 12-34.
12–21 Maximum Frame Frequency Operation With 8-Bit Data 12-35.
12–22 Data Packing at Maximum Frame Frequency With (R/X)FIG = 1 12-35.
12–23 Serial Port Receive Overrun 12-37.
12–24 Serial Port Receive Overrun Avoided 12-37.
12–25 Decision Tree Response to Receive Frame Synchronization Pulse 12-39.
12–26 Unexpected Receive Synchronization Pulse 12-39.
12–27 Transmit With Data Overwrite 12-40.
12–28 Transmit Empty 12-41.
12–29 Transmit Empty Avoided 12-41.
12–30 Response to Transmit Frame Synchronization 12-42.
12–31 Unexpected Transmit Frame Synchronization Pulse 12-43.
12–32 Companding Flow 12-44.
12–33 Companding Data Formats 12-45.

Figures

xxvi

12–34 Transmit Data Companding Format in DXR 12-45.
12–35 Companding of Internal Data 12-46.
12–36 Clock and Frame Generation 12-47.
12–37 Sample Rate Generator 12-48.
12–38 Sample Rate Generator Register (SRGR) 12-49.
12–39 CLKG Synchronization and FSG Generation When GSYNC = 1

and CLKGDV = 1 12-53.
12–40 CLKG Synchronization and FSG Generation When GSYNC = 1

and CLKGDV = 3 12-54.
12–41 Programmable Frame Period and Width 12-56.
12–42 ST-BUS and MVIP Example 12-60.
12–43 Single-Rate Clock Example 12-60.
12–44 Double-Rate Clock Example 12-61.
12–45 Multichannel Control Register (MCR) 12-63.
12–46 Element Enabling by Subframes in Partitions A and B 12-67.
12–47 XMCM Operation 12-69.
12–48 Receive Channel Enable Register (RCER) 12-71.
12–49 Transmit Channel Enable Register (XCER) 12-71.
12–50 Enhanced Receive Channel Enable Registers 12-75.
12–51 Enhanced Transmit Channel Enable Registers 12-76.
12–52 DX Timing for Multichannel Operation 12-78.
12–53 SPI Configuration: McBSP as the Master 12-79.
12–54 SPI Configuration: McBSP as the Slave 12-79.
12–55 SPI Transfer with CLKSTP = 10b 12-80.
12–56 SPI Transfer with CLKSTP = 11b 12-80.
13–1 Timer Block Diagram 13-3.
13–2 Timer Control Register (CTL) 13-4.
13–3 Timer Period Register (PRD) 13-6.
13–4 Timer Counter Register (CNT) 13-6.
13–5 Timer Operation in Pulse Mode (C/P = 0) 13-9.
13–6 Timer Operation in Clock Mode (C/P = 1) 13-9.
14–1 External Interrupt Polarity Register (EXTPOL) 14-7.
14–2 Interrupt Multiplexer Low Register (MUXL) 14-8.
14–3 Interrupt Multiplexer High Register (MUXH) 14-8.
15–1 Power-Down Mode Logic 15-4.
15–2 PWRD Field of the CSR Register 15-5.
15–3 Peripheral Power-Down Control Register (PDCTL)

for TMS320C6202(B)/C6203(B) 15-8.
16–1 14-Pin Header Signals and Header Dimensions 16-2.
16–2 JTAG Emulator Cable Pod Interface 16-4.
16–3 JTAG Emulator Cable Pod Timings 16-5.
16–4 Target-System-Generated Test Clock 16-10.
16–5 Multiprocessor Connections 16-11.
16–6 Pod/Connector Dimensions 16-12.

Figures

xxviiContents

16–7 14-Pin Connector Dimensions 16-13.
16–8 Connecting a Secondary JTAG Scan Path to an SPL 16-15.
16–9 EMU0/1 Configuration 16-19.
16–10 EMU0/1 Configuration With Additional AND Gate

to Meet Timing Requirements 16-21.
16–11 Suggested Timings for the EMU0 and EMU1 Signals 16-21.
16–12 EMU0/1 Configuration Without Global Stop 16-22.
16–13 TBC Emulation Connections for n JTAG Scan Paths 16-23.
17–1 TMS320C64x Block Diagram 17-2.
17–2 GPIO Peripheral Block Diagram 17-3.
17–3 GPIO Enable Register 17-4.
17–4 GPIO Direction Register (GPDIR) 17-5.
17–5 GPIO Value Register (GPVAL) 17-6.
17–6 GPIO Delta High Register (GPDH) 17-7.
17–7 GPIO Delta Low Regiser (GPDL) 17-7.
17–8 GPIO High Mask Register (GPHM) 17-8.
17–9 GPIO Low Mask Register (GPLM) 17-9.
17–10 GPIO Global Control Register (GPGC) 17-9.
17–11 GPIO Interrupt Polarity Register (GPPOL) 17-11.
17–12 General-Purpose Input/Output Functiuonal Block Diagram 17-13.
17–13 GPIO Interrupt and Event Generation Block Diagram 17-14.
17–14 GPINTx Generation in Pass Through Mode 17-16.
17–15 Logic Mode Interrupt/Event Generation Block Diagram 17-17.
17–16 GPINT Generation, Delta OR Mode 17-21.
17–17 GPINT Generation, Delta AND Mode 17-24.
17–18 GPINT Generation, Value AND Mode 17-26.
17–19 GPINT Connection to GP0 and GPINT0 17-27.
18–1 TMS320C64x Block Diagram 18-3.
18–2 UTOPIA Block Diagram 18-4.
18–3 UTOPIA Control Register (UCR) 18-5.
18–4 Standard UTOPIA Cell Transfer Format for 8-Bit Mode 18-7.
18–5 Non-Standard UTOPIA Cell Transfer Format for 8-Bit Mode 18-7.
18–6 TMS320C64x UTOPIA Slave Interface to Motorola PowerQUICC� Master

in 8-Bit Mode 18-9.
18–7 ATM Controller Slave Transmit Timing 18-11.
18–8 ATM Controller Slave Receive Timing 18-14.
18–9 UTOPIA Interrupt Enable Register (UIER) 18-18.
18–10 UTOPIA Interrupt Pending Register (UIPR) 18-19.
18–11 Clock Detect Register (CDR) 18-21.
18–12 Error Interrupt Pending Register (EIPR) 18-24.
18–13 Error Interrupt Enable Register (EIER) 18-26.
18–14 Little-Endian (BEND=0) and RUDC/XUDC=0 in 8-Bit UTOPIA Slave Mode 18-29.
18–15 Big-Endian (BEND=1) and RUDC/XUDC=0 in 8-Bit UTOPIA Slave Mode 18-29.
18–16 Big-Endian (BEND=1) and RUDC/XUDC=1 in 8-Bit UTOPIA Slave Mode 18-29.

Figures

xxviii

18–17 Little-Endian (BEND=0) and RUDC/XUDC=7 in 8-Bit UTOPIA Slave Mode 18-30.
18–18 Little-Endian (BEND=0) and RUDC/XUDC=11 in 8-Bit UTOPIA Slave Mode 18-30.
18–19 Big-Endian (BEND=1) and RUDC/XUDC=11 in 8-Bit UTOPIA Slave Mode 18-30.
A–1 Element Synchronized 1-D (SUM=00b) to 1-D (DUM=00b) A-2.
A–2 Element Synchronized 1-D (SUM=00b) to 1-D (DUM=01b) A-2.
A–3 Element Synchronized 1-D (SUM=00b) to 1-D (DUM=10b) A-2.
A–4 Element Synchronized 1-D (SUM=00b) to 1-D (DUM=11b) A-2.
A–5 Element Synchronized 1-D (SUM=01b) to 1-D (DUM=00b A-3.
A–6 Element Synchronized 1-D (SUM=01b) to 1-D (DUM=01b) A-3.
A–7 Element Synchronized 1-D (SUM=01b) to 1-D (DUM=10b) A-3.
A–8 Element Synchronized 1-D (SUM=01b) to 1-D (DUM=11b) A-3.
A–9 Element Synchronized 1-D (SUM=10b) to 1-D (DUM=00b) A-4.
A–10 Element Synchronized 1-D (SUM=10b) to 1-D (DUM=01b) A-4.
A–11 Element Synchronized 1-D (SUM=10b) to 1-D (DUM=10b) A-4.
A–12 Element Synchronized 1-D (SUM=10b) to 1-D (DUM=11b) A-4.
A–13 Element Synchronized 1-D (SUM=11b) to 1-D (DUM=00b) A-5.
A–14 Element Synchronized 1-D (SUM=11b) to 1-D (DUM=01b) A-5.
A–15 Element Synchronized 1-D (SUM=11b) to 1-D (DUM=10b) A-5.
A–16 Element Synchronized 1-D (SUM=11b) to 1-D (DUM=11b) A-5.
A–17 Frame-synchronized 1-D (SUM=00b) to 1-D (DUM=00b) A-6.
A–18 Frame–synchronized 1-D (SUM=00b) to 1–D (DUM=01b) A-6.
A–19 Frame-synchronized 1-D (SUM=00b) to 1-D (DUM=10b) A-6.
A–20 Frame-synchronized 1-D (SUM=00b) to 1-D (DUM=11b) A-6.
A–21 Frame-synchronized 1-D (SUM=01b) to 1-D (DUM=00b) A-7.
A–22 Frame-synchronized 1-D (SUM=01b) to 1-D (DUM=01b) A-7.
A–23 Frame-synchronized 1-D (SUM=01b) to 1-D (DUM=10b) A-7.
A–24 Frame-synchronized 1-D (SUM=01b) to 1-D (DUM=11b) A-7.
A–25 Frame-synchronized 1-D (SUM=10b) to 1-D (DUM=00b) A-8.
A–26 Frame-synchronized 1-D (SUM=10b) to 1-D (DUM=01b) A-8.
A–27 Frame-synchronized 1-D (SUM=10b) to 1-D (DUM=10b) A-8.
A–28 Frame-synchronized 1-D (SUM=10b) to 1-D (DUM=11b) A-8.
A–29 Frame-synchronized 1-D (SUM=11b) to 1-D (DUM=00b) A-9.
A–30 Frame-synchronized 1-D (SUM=11b) to 1-D (DUM=01b) A-9.
A–31 Frame-synchronized 1-D (SUM=11b) to 1-D (DUM=10b) A-9.
A–32 Frame-synchronized 1-D (SUM=11b) to 1-D (DUM=11b) A-9.
A–33 Array Synchronized 2-D (SUM=00b) to 2-D (DUM=00b) A-10.
A–34 Array Synchronized 2-D (SUM=00b) to 2-D (DUM=01b) A-10.
A–35 Array Synchronized 2-D (SUM=00b) to 2-D (DUM=10b) A-10.
A–36 Array Synchronized 2-D (SUM=01b) to 2-D (DUM=00b) A-11.
A–37 Array Synchronized 2-D (SUM=01b) to 2-D (DUM=01b) A-11.
A–38 Array Synchronized 2-D (SUM=01b) to 2-D (DUM=10b) A-11.
A–39 Array Synchronized 2-D (SUM=10b) to 2-D (DUM=00b) A-12.
A–40 Array Synchronized 2-D (SUM=10b) to 2-D (DUM=01b) A-12.
A–41 Array Synchronized 2-D (SUM=10b) to 2-D (DUM=10b) A-12.

Figures

xxixContents

A–42 Block-synchronized 2-D (SUM=00b) to 2-D (DUM=00b) A-13.
A–43 Block-synchronized 2-D (SUM=00b) to 2-D (DUM=01b) A-13.
A–44 Block-synchronized 2-D (SUM=00b) to 2-D (DUM=10b) A-13.
A–45 Block-synchronized 2-D (SUM=01b) to 2-D (DUM=00b) A-14.
A–46 Block-synchronized 2-D (SUM=01b) to 2-D (DUM=01b) A-14.
A–47 Block-synchronized 2-D (SUM=01b) to 2-D (DUM=10b) A-14.
A–48 Block-synchronized 2-D (SUM=10b) to 2-D (DUM=00b) A-15.
A–49 Block-synchronized 2-D (SUM=10b) to 2-D (DUM=01b) A-15.
A–50 Block-synchronized 2-D (SUM=10b) to 2-D (DUM=10b) A-15.
A–51 Array Synchronized 1-D (SUM=00b) to 2-D (DUM=00b) A-16.
A–52 Array Synchronized 1-D (SUM=00b) to 2-D (DUM=01b) A-16.
A–53 Array Synchronized 1-D (SUM=00b) to 2-D (DUM=10b) A-16.
A–54 Array Synchronized 1-D (SUM=01b) to 2-D (DUM=00b) A-17.
A–55 Array Synchronized 1-D (SUM=01b) to 2-D (DUM=01b) A-17.
A–56 Array Synchronized 1-D (SUM=01b) to 2-D (DUM=10b) A-17.
A–57 Array Synchronized 1-D (SUM=10b) to 2-D (DUM=00b) A-17.
A–58 Array Synchronized 1-D (SUM=10b) to 2-D (DUM=01b) A-18.
A–59 Array Synchronized 1-D (SUM=10b) to 2-D (DUM=10b) A-18.
A–60 Block-Synchronized 1-D (SUM=00b) to 2-D (DUM=00b) A-19.
A–61 Block-Synchronized 1-D (SUM=00b) to 2-D (DUM=01b) A-19.
A–62 Block-Synchronized 1-D (SUM=00b) to 2-D (DUM=10b) A-19.
A–63 Block-Synchronized 1-D (SUM=01b) to 2-D (DUM=00b) A-20.
A–64 Block-synchronized 1-D (SUM=01b) to 2-D (DUM=01b) A-20.
A–65 Block-synchronized 1-D (SUM=01b) to 2-D (DUM=10b) A-20.
A–66 Block-synchronized 1-D (SUM=10b) to 2-D (DUM=00b) A-20.
A–67 Block-synchronized 1-D (SUM=10b) to 2-D (DUM=01b) A-21.
A–68 Block-synchronized 1-D (SUM=10b) to 2-D (DUM=10b) A-21.
A–69 Array Synchronized 2-D (SUM=00b) to 1-D (DUM=00b) A-22.
A–70 Array Synchronized 2-D (SUM=00b) to 1-D (DUM=01b) A-22.
A–71 Array Synchronized 2-D (SUM=00b) to 1-D (DUM=10b) A-22.
A–72 Array Synchronized 2-D (SUM=01b) to 1-D (DUM=00b) A-23.
A–73 Array Synchronized 2-D (SUM=01b) to 1-D (DUM=01b) A-23.
A–74 Array Synchronized 2-D (SUM=01b) to 1-D (DUM=10b) A-23.
A–75 Array Synchronized 2-D (SUM=10b) to 1-D (DUM=00b) A-24.
A–76 Array Synchronized 2-D (SUM=10b) to 1-D (DUM=01b) A-24.
A–77 Array Synchronized 2-D (SUM=10b) to 1-D (DUM=10b) A-24.
A–78 Block-synchronized 2-D (SUM=00b) to 1-D (DUM=00b) A-25.
A–79 Block-synchronized 2-D (SUM=00b) to 1-D (DUM=01b) A-25.
A–80 Block-synchronized 2-D (SUM=00b) to 1-D (DUM=10b) A-25.
A–81 Block-synchronized 2-D (SUM=01b) to 1-D (DUM=00b) A-26.
A–82 Block-synchronized 2-D (SUM=01b) to 1-D (DUM=01b) A-26.
A–83 Block-synchronized 2-D (SUM=01b) to 1-D (DUM=10b) A-26.
A–84 Block-synchronized 2-D (SUM=10b) to 1-D (DUM=00b) A-27.
A–85 Block-synchronized 2-D (SUM=10b) to 1-D (DUM=01b) A-27.
A–86 Block-synchronized 2-D (SUM=10b) to 1-D (DUM=10b) A-27.

Tables

xxx

Tables

1–1 Typical Applications for the TMS320 DSPs 1-3.
1–2 TMS320C6000 Peripherals 1-9.
2–1 TMS320C6000 Internal Memory Configurations 2-3.
2–2 TMS320C6000 Cache Architectures 2-4.
2–3 Internal Program Memory Mode Summary 2-8.
2–4 Internal Program RAM Address Mapping in Memory Mapped Mode 2-9.
2–5 TMS320C6202(B)/C6203(B) Internal Program RAM Address Mapping

in Cache Mode 2-9.
2–6 Data Memory Organization (TMS320C6201/C6204/C6205) 2-15.
2–7 Internal Data RAM Address Mapping 2-16.
2–8 Data Memory Organization (TMS320C6701) 2-17.
2–9 Internal Data RAM Address Mapping 2-18.
2–10 Internal Data RAM Address Mapping 2-19.
2–11 Internal Data RAM Address Mapping 2-20.
2–12 Register Contents After Little-Endian or Big-Endian Data Loads

(TMS320C620x and TMS320C670x) 2-25.
2–13 Register Contents After Little-Endian or Big-Endian Data Loads

(TMS320C6701 only) 2-26.
2–14 Memory Contents After Little-Endian or Big-Endian Data Stores

(TMS320C620x/C670x) 2-26.
2–15 Memory Contents After Little-Endian or Big-Endian Data Stores 2-27.
3–1 TMS320C621x/C671x/C64x Internal Memory Details 3-5.
3–2 TMS320C621x/C671x Internal Memory Control Registers Addresses 3-14.
3–3 TMS320C64x Internal Memory Control Registers Addresses 3-26.
3–4 Level 1 Program Cache Mode Setting 3-29.
3–5 Miss Penalties for Large Numbers of Sequential Execute Packets 3-31.
3–6 Level 1 Data Cache Mode Settings 3-32.
3–7 Cycles Per Miss for Different Numbers of Misses to L1D from L2 Cache 3-37.
3–8 Cycles Per Miss for Different Numbers of Misses to L1D from L2 SRAM 3-37.
3–9 TMS320C621x/C671x Cache Configuration Register (CCFG) Field Description 3-38.
3–10 TMS320C64x Cache Configuration Register (CCFG) Field Description 3-39.
3–11 L2 Mode Switch Guidelines 3-40.
3–12 Memory Attribute Register(MAR) Bit Field Description 3-42.
3–13 TMS320C621x/C671x EDMA Mechanism 3-48.
3–14 TMS320C64x EDMA Mechanism 3-48.
3–15 L2 Flush Register Fields Description 3-49.
3–16 L2 Clean Register Fields Description 3-50.

Tables

xxxiContents

3–17 Cache Flush/Clean Summary 3-52.
4–1 Differences in TMS320C6000 DMAs 4-4.
4–2 DMA Control Registers by Address 4-6.
4–3 DMA Control Registers by Register Name 4-7.
4–4 DMA Channel Primary Control Register (PRICTL) Field Descriptions 4-8.
4–5 DMA Channel Secondary Control Register (SECCTL) Field Descriptions 4-11.
4–6 Synchronization Events 4-19.
4–7 Sorting Example in Order of DMA Transfers 4-28.
4–8 Sorting in Order of First by Address 4-29.
4–9 DMA Auxiliary Control Register (AUXCTL)Field Descriptions 4-33.
4–10 DMA Channel Secondary Control Register (SECCTL) Condition Descriptions 4-37.
5–1 CPU Stalls For Peripheral Register Accesses 5-4.
5–2 EMIF Data Access Completion Timings in CLKOUT1 (CPU Clock) Cycles 5-6.
5–3 CPU Stalls for Single External Data Accesses 5-7.
5–4 External Switching Time between Accesses by Different Requestors 5-8.
5–5 Additional Switching Time between External DMA Accesses 5-10.
5–6 CLKOUT1 (CPU Clock) Cycles between External Frame Bursts 5-11.
5–7 Burst Interruption by McBSP/Host Service 5-11.
5–8 DMA Synchronization Timings 5-12.
5–9 Burst Size for Shared Resource 5-13.
5–10 Additional Switching Time for External-to-External Transfers 5-13.
5–11 Switching Time for Internal-to-Internal Transfers 5-13.
5–12 Timing Parameter Descriptions For Simple Example 5-14.
5–13 Timing Parameter Descriptions For Complex Example 5-17.
5–14 DMA Channel Selection Priority 5-19.
6–1 Differences in TMS320C6000 EDMAs 6-4.
6–2 EDMA Control Registers 6-6.
6–3 EDMA Parameter RAM Contents 6-14.
6–4 EDMA Channel Parameters 6-15.
6–5 EDMA Channel Options Parameter (OPT) Description (C621x/C671x/C64x) 6-17.
6–6 EDMA Channel Options Field Description (C64x only) 6-19.
6–7 EDMA Channel Synchronization Events – TMS320621x/C671x 6-23.
6–8 EDMA Channel Synchronization Events – TMS320C64x 6-24.
6–9 EDMA Element and Frame/Array Count Updates 6-34.
6–10 Address Update Modes 6-35.
6–11 EDMA SRC Address Parameter Updates 6-37.
6–12 EDMA DST Address Parameter Updates 6-38.
6–13 Channel Completion Conditions 6-40.
6–14 Transfer Complete Code (TCC) to EDMA Interrupt Mapping 6-45.
6–15 C64x Transfer Complete Code (TCC) to EDMA Interrupt Mapping 6-45.
6–16 Programmable Priority Levels for Data Requests 6-55.
6–17 Transfer Request Queues (C621x/C671x) 6-57.
6–18 Transfer Request Queues (C64x) 6-57.
6–19 QDMA Transfer Length 6-61.

Tables

xxxii

6–20 TMS320C621x/C671x Cache Controller Data Transfers 6-65.
7–1 Differences Between the C62x/C67x and C64x HPI 7-4.
7–2 HPI External Interface Signals 7-9.
7–3 HPI Input Control Signals Function Selection Descriptions 7-10.
7–4 HPI Data Write Access 7-11.
7–5 Byte Enables for HPI Data Write Access (C620x/C670x only) 7-12.
7–6 HPI Registers for C62x/C67x 7-24.
7–7 HPI Registers for C64x 7-24.
7–8 HPI Control Register (HPIC) Bit Descriptions 7-26.
7–9 Initialization of HWOB = 1 and HPIA 7-29.
7–10 Initialization of HWOB = 0 and HPIA 7-29.
7–11 Initialization of HPIC and HPIA 7-30.
7–12 Data Read Access to HPI in Fixed Address Mode: HWOB = 1 7-31.
7–13 Data Read Access to HPI in Fixed Address Mode: HWOB = 0 7-31.
7–14 Data Read Access in Fixed Address Mode for HPI32 7-32.
7–15 Read Access to HPI With Autoincrement: HWOB = 1 7-33.
7–16 Read Access to HPI With Autoincrement: HWOB = 0 7-33.
7–17 Read Access to HPI with Autoincrement for HP132 7-34.
7–18 Data Write Access to HPI in Fixed Address Mode: HWOB = 1 7-35.
7–19 Data Write Access to HPI in Fixed Address Mode: HWOB = 0 7-35.
7–20 Data Write Access to HPI in Fixed Address Mode for HPI32 7-36.
7–21 Write Access to HPI With Autoincrement: HWOB = 1 7-37.
7–22 Write Access to HPI With Autoincrement: HWOB = 0 7-38.
7–23 Write Access to HPI with Autoincrement: HPI32 7-39.
8–1 Expansion Bus Signals 8-5.
8–2 Signal State for Disabled Host Port 8-6.
8–3 Expansion Bus Memory Mapped Registers 8-7.
8–4 Expansion Bus Host Port Registers 8-8.
8–5 Expansion Bus Global Control Register (XBGC) Field Description 8-9.
8–6 Expansion Bus XCE(0/1/2/3) Space Control Register (XCExCTL)

Field Description 8-10.
8–7 Addressing Scheme – Case When Expansion Bus is Interfaced

to Four 8-Bit FIFOs 8-12.
8–8 Addressing Scheme – Case When the Expansion Bus is Interfaced

to Two16-Bit FIFOs 8-13.
8–9 Synchronous FIFO Pin Description 8-15.
8–10 Content of Relevant Registers (single frame transfer) 8-20.
8–11 Content of DMA Channel Primary Control Register Fields 8-20.
8–12 Content of Relevant Registers (multiple frame transfer) 8-21.
8–13 Content of DMA Primary Control Register 8-21.
8–14 Content of DMA Secondary Control Register 8-21.
8–15 Expansion Bus Internal Slave Address Register (XBISA) Description 8-24.
8–16 Expansion Bus Host Port Interface Control Register (XBHC) Description 8-26.
8–17 Expansion Bus Pin Description (Synchronous Host Port Mode) 8-27.

Tables

xxxiiiContents

8–18 Expansion Bus Pin Description (Asynchronous Host Port Mode) 8-42.
8–19 XARB Bit Value and XHOLD/XHOLDA Signal Functionality 8-45.
8–20 Possible Expansion Bus Arbitration Scenarios

(Internal Bus Arbiter Disabled) 8-47.
9–1 Differences Between the C62x/C67x and C64x PCI 9-5.
9–2 PCI Configuration Registers 9-10.
9–3 PCI I/O Registers Accessed via I/O Space (Base 2 Memory) 9-11.
9–4 PCI I/O Registers Accessed via Base 1 Memory 9-11.
9–5 Host Status Register (HSR) Bit Field Description 9-12.
9–6 Host-to-DSP Control Register (HDCR) Bit Field Description 9-13.
9–7 DSP Page Register (DSPP) Bit Field Description 9-14.
9–8 PCI Memory-Mapped Peripheral Registers 9-15.
9–9 DSP Master Address Register (DSPMA) Bit Field Description 9-23.
9–10 PCI Master Address Register (PCIMA) Bit Field Description 9-24.
9–11 PCI Master Control Register (PCIMC) Bit Field Description 9-25.
9–12 Current DSP Address (CDSPA) Bit Field Description 9-26.
9–13 Current PCI Address Register (CPCIA) Bit Field Description 9-26.
9–14 Current Byte Count Register (CCNT) Bit Field Description 9-27.
9–15 PCI Transfer Halt Register (HALT) Bit Field Description 9-27.
9–16 PCI Interrupt Source Register (PCIIS) Bit Field Description 9-32.
9–17 PCI Interrupt Enable Register (PCIIEN) Bit Field Description 9-34.
9–18 DSP Reset Source/Status Register (RSTSRC) Bit Field Description 9-36.
9–19 EEPROM Serial Interface 9-41.
9–20 TMS320C62x/C67x EEPROM Size Support 9-41.
9–21 EEPROM Autoinitialization (EEAI) 9-42.
9–22 EEPROM Memory Map 9-43.
9–23 EEPROM Address Register (EEADD) Bit Field Description 9-44.
9–24 EEPROM Data Register (EEDAT) Bit Field Description 9-44.
9–25 EEPROM Control Register (EECTL) Bit Field Description 9-45.
9–26 EEPROM Command Summary 9-46.
9–27 Power Management DSP Control/Status Register (PMDCSR) Bit

Field Description 9-55.
9–28 Vendor ID Register Bit Field Description 9-60.
9–29 Device ID Register Bit Field Description 9-60.
9–30 PCI Command Register Bit Field Description 9-60.
9–31 PCI Status Register Bit Field Description 9-61.
9–32 Revision ID Register Bit Field Description 9-61.
9–33 Class Code Register Bit Field Description 9-61.
9–34 Cache Line Size Register Bit Field Description 9-61.
9–35 Latency Timer Register Bit Field Description 9-62.
9–36 Header Type Register Bit Field Description 9-62.
9–37 Base 0 Address Register Bit Field Description 9-62.
9–38 Base 2 Address Register Bit Field Description 9-62.
9–39 Base 1 Address Register Bit Field Description 9-62.

Tables

xxxiv

9–40 Subsystem ID Register Bit Field Description 9-62.
9–41 Subsystem Vendor ID Register Bit Field Description 9-62.
9–42 Capabilities Pointer Register Bit Field Description 9-62.
9–43 Interrupt Line Register Bit Field Description 9-63.
9–44 Min_Gnt Register Bit Field Description 9-63.
9–45 Max_Lat Register Bit Field Description 9-63.
9–46 Capability ID Register Bit Field Description 9-63.
9–47 Next Item Pointer Register Bit Field Description 9-63.
9–48 Power Management Capabilities Register (PMC) Bit Field Description 9-63.
9–49 Power Management Control/Status Register (PMCSR) Bit Field Description 9-64.
9–50 Power Data Register (PWRDATA) Bit Field Description 9-66.
9–51 Power Data Register (PWRDATA) DATASCALE Description 9-67.
10–1 TMS320C6000 EMIF Summary 10-5.
10–2 EMIF Signal Descriptions 10-11.
10–3 EMIF Memory-Mapped Registers 10-14.
10–4 EMIF Global Control Register (GBLCTL) Field Descriptions 10-16.
10–5 EMIF CE Space Control Registers (CExCTL) Field Descriptions 10-20.
10–6 CE Space Secondary Control Register (CExSEC) Field Descriptions

(TMS320C64x only) 10-22.
10–7 EMIF-to-SDRAM Control Register (SDCTL) Field Descriptions 10-24.
10–8 EMIF SDRAM Timing Register Field Descriptions 10-26.
10–9 TMS320C621x/C671x/C64x SDRAM Extension Register (SDEXT)

Field Descriptions 10-28.
10–10 TMS320C620x/C670x Addressable Memory Ranges 10-29.
10–11 TMS320C621x/C671x Addressable Memory Ranges 10-30.
10–12 TMS320C64x Addressable Memory Ranges 10-32.
10–13 EMIF SDRAM Commands 10-34.
10–14 Truth Table for SDRAM Commands 10-35.
10–15 TMS320C620x/C670x Compatible SDRAM 10-38.
10–16 TMS320C621x/C671x Compatible SDRAM 10-39.
10–17 TMS320C64x Compatible SDRAM 10-40.
10–18 SDRAM Pins 10-41.
10–19 TMS320C6000 SDRAM Interface Summary 10-42.
10–20 TMS320C620x/C670x Byte Address to EA Mapping

for SDRAM RAS and CAS 10-50.
10–21 TMS320C621x/C671x Byte Address-to-EA Mapping

for 8-, 16-, and 32-Bi Interface 10-52.
10–22 TMS320C64x Byte Address to EA Mapping

for 8-, 16-, 32-, 64-bit Interface 10-54.
10–23 TMS320C620x/C670x Implied SDRAM Configuration by MRS Value 10-58.
10–24 TMS320C621x/C671x/C64x Implied SDRAM Configuration by MRS 10-59.
10–25 TMS320C620x/C670x SDRAM Timing Parameters 10-61.
10–26 TMS320C621x/C671x/C64x SDRAM Timing Parameters 10-62.
10–27 TMS320C621x/C671x/C64x Recommended Values

for Command–to–Command Parameters 10-62.

Tables

xxxvContents

10–28 EMIF SBSRAM Pins 10-72.
10–29 TMS320C621x/C671x SBSRAM in Linear Burst Mode 10-73.
10–30 TMS320C6000 SBSRAM Interface Summary 10-76.
10–31 TMS320C64x Programmable Synchronous Pins 10-83.
10–32 EMIF Asynchronous Interface Pins 10-91.
10–33 TMS320C6000 ASRAM Interface Summary 10-94.
10–34 Byte Address to EA Mapping for Asynchronous Memory Widths 10-95.
10–35 TMS320C620x/C670x EMIF Prioritization of Requests 10-110.
10–36 TMS320C621x/C671x/C64x EMIF Prioritization of Requests 10-111.
10–37 EMIF Output Clock (ECLKOUTx) Operation 10-113.
11–1 TMS320C6201/C6204/C6205/C6701 Memory Map Summary 11-3.
11–2 TMS320C6202(B) Memory Map Summary 11-4.
11–3 TMS320C6203(B) Memory Map Summary 11-5.
11–4 TMS320C621x/C671x Memory Map Summary 11-6.
11–5 TMS320C64x Memory Map Summary 11-7.
11–6 TMS320C620x/C670x Boot Configuration Summary 11-10.
11–7 TMSC6202(B)/C6203(B)/C6204 Boot and Device Configuration

Description 11-12.
11–8 TMSC6205 Boot and Device Configuration Description 11-14.
11–9 TMS320C621x/C671x Boot Configuration Summary 11-15.
11–10 TMS320C64x Boot Configuration Summary 11-16.
11–11 TMS320C6414 Boot and Device Configuration Description 11-17.
11–12 TMS320C6415 HPI, PCI, McBSP2, and GPIO Selection 11-18.
11–13 TMS320C6415 UTOPIA and McBSP1 Selection 11-18.
11–14 TMS320C6415 Boot and Device Configuration Description 11-20.
12–1 Enhanced Features on TMS320C6000 McBSP 12-3.
12–2 McBSP Interface Signals 12-5.
12–3 McBSP Registers 12-6.
12–4 McBSP CPU Interrupts and DMA Synchronization Events 12-7.
12–5 TMS320C621x/C671x/C64x Data Receive and Transmit Registers

(DRR/DXR) Mapping 12-7.
12–6 Serial Port Control Register (SPCR) Field Descriptions 12-8.
12–7 Pin Control Register (PCR) Field Descriptions 12-11.
12–8 Receive Control Register (RCR) Field Descriptions 12-14.
12–9 Transmit Control Register (XCR) Field Descriptions 12-16.
12–10 Reset State of McBSP Pins 12-18.
12–11 RCR/XCR Fields Controlling Elements per Frame and Bits per Element 12-24.
12–12 McBSP Receive/Transmit Frame Length 1/2 Configuration 12-24.
12–13 McBSP Receive/Transmit Element Length Configuration 12-25.
12–14 Effect of RJUST Values With 12-Bit Example Data ABCh 12-43.
12–15 Justification of Expanded Data in DRR 12-45.
12–16 Sample Rate Generator Register (SRGR) Field Summary 12-49.
12–17 Receive Clock Selection 12-55.
12–18 Transmit Clock Selection 12-55.

Tables

xxxvi

12–19 Receive Frame Synchronization Selection 12-57.
12–20 Transmit Frame Synchronization Selection 12-58.
12–21 Multichannel Control Register (MCR) Field Descriptions 12-63.
12–22 Receive Channel Enable Register Field Description 12-71.
12–23 Transmit Channel Enable Register Field Description 12-72.
12–24 Enhanced Receive/Transmit Channel Enable Register (R/XCEREx)

Field Description 12-77.
12–25 Channel Enable Bits (in RCEREx/XCEREx) for a 128-Channel Data Stream 12-77.
12–26 SPI-Mode Clock Stop Scheme 12-80.
12–27 Configuration of Pins as General Purpose I/O 12-84.
13–1 Differences in TMS320C6000 Timers 13-2.
13–2 Timer Registers 13-4.
13–3 Timer Control Register (CTL) Field Descriptions 13-5.
13–4 Timer GO and HLD Field Operation 13-7.
13–5 TSTAT Parameters in Pulse and Clock Modes 13-10.
14–1 Differences in C6000 Interrupt Selectors 14-2.
14–2 TMS320C620x/C670x Available Interrupts 14-3.
14–3 TMS320C621x/C671x Available Interrupts 14-4.
14–4 TMS320C64x Available Interrupts 14-5.
14–5 Interrupt Selector Registers 14-7.
14–6 Default Interrupt Mapping 14-9.
15–1 Differences in C6000 Power–Down Modes 15-2.
15–2 Power-Down Mode and Wake-Up Selection 15-5.
15–3 Characteristics of the Power-Down Modes 15-7.
15–4 Peripheral Power-Down Memory-Mapped Register 15-8.
15–5 Peripheral Power-Down Control Register Bit Field Descriptions 15-9.
16–1 14-Pin Header Signal Descriptions 16-2.
16–2 Emulator Cable Pod Timing Parameters 16-5.
17–1 GPIO Registers 17-4.
17–2 GPIO Enable Register (GPEN) Bit Field Description 17-5.
17–3 GPIO Direction Register (GPDIR) Bit Field Description 17-5.
17–4 GPIO Value Register (GPVAL) Bit Field Description 17-6.
17–5 GPIO Delta High Register (GPDH) Bit Field Description 17-7.
17–6 GPIO Delta Low Register (GPDL) Bit Field Description 17-7.
17–7 GPIO High Mask Register (GPHM) Bit Field Description 17-8.
17–8 GPIO Low Mask Register (GPLM) Bit Field Description 17-9.
17–9 Global Control Register (GPGC)Bit Field Description 17-10.
17–10 GPIO Interrupt Polarity Register (GPPOL) Bit Field Description 17-11.
17–11 Logic Mode Truth Table 17-18.
17–12 GPIO Interrupts to CPU and Events to EDMA 17-28.
18–1 UTOPIA Configuration Register 18-5.
18–2 Utopia Data Port Address 18-5.
18–3 UTOPIA Control Register (UCR) Bit Field Description 18-6.
18–4 Slave UTOPIA Pin Descrition 18-10.

Tables

xxxviiContents

18–5 EDMA Synchronization Events from UTOPIA 18-16.
18–6 UTOPIA Interrupt Enable Register (UIER) Bit Field Description 18-18.
18–7 UTOPIA Interrupt Pending Register (UIPR) Bit Field Descrition 18-19.
18–8 CPU Interrupt from UTOPIA 18-19.
18–9 Clock Detect Register (CDR) Bit Field Description 18-21.
18–10 Error Interrupt Pending Register (EIPR) Bit Field Description 18-25.
18–11 Error Interrupt Enable Register (EIER) Bit Field Description 18-26.
18–12 UTOPIA Pin REset Values 18-31.

1-1

Introduction

The TMS320C6000� platform of devices consists of the first off-the-shelf digital
signal processors (DSPs) that use advanced very long instruction word (VLIW)
to achieve high performance through increased instruction-level parallelism.
The VelociTI VLIW architecture uses multiple execution units operating in
parallel to execute multiple instructions during a single clock cycle. Parallelism
is the key to extremely high performance, taking these DSPs well beyond the
performance capabilities of traditional designs.

This chapter introduces the TMS320� family of DSPs and the C6000� plat-
form of this family. The features, memory, and peripherals of the C6000 de-
vices are described.

Topic Page

1.1 The TMS320 Family Overview 1-2.

1.2 Overview of the TMS320C6000 Platform of DSPs 1-4.

1.3 Features and Options of the TMS320C6000 Devices 1-5.

1.4 Overview of TMS320C6000 Memory 1-7.

1.5 Overview of TMS320C6000 Peripherals 1-9.

Chapter 1

TMS320 Family Overview

 1-2

1.1 TMS320 Family Overview

The TMS320 family consists of fixed-point, floating-point, and multiprocessor
digital signal processors (DSPs). TMS320 DSPs are specifically designed for
real-time signal processing.

1.1.1 History of TMS320 DSPs

In 1982, Texas Instruments introduced the TMS32010�—the first fixed-point
DSP in the TMS320 family. Before the end of the year, Electronic Products
magazine awarded the TMS32010� the title “Product of the Year”. Today, the
TMS320 family includes these generations: C1x�, C2x�, C27x�, C5x�, and
C54x�, C55x� fixed-point DSPs; C3x� and C4x� floating-point DSPs; and
C8x� multiprocessor DSPs. Now there is a new generation of DSPs, the
TMS320C6000 platform, with performance and features that are reflective of
Texas Instruments’ commitment to lead the world in DSP solutions.

1.1.2 Typical Applications for the TMS320 Family

Table 1–1 lists some typical applications for the TMS320 family of DSPs. The
TMS320 DSPs offer adaptable approaches to traditional signal-processing
problems. They also support complex applications that often require multiple
operations to be performed simultaneously.

TMS320 Family Overview

1-3Introduction

Table 1–1. Typical Applications for the TMS320 DSPs

Automotive Consumer Control

Adaptive ride control
Antiskid brakes
Cellular telephones
Digital radios
Engine control
Global positioning
Navigation
Vibration analysis
Voice commands

Digital radios/TVs
Educational toys
Music synthesizers
Pagers
Power tools
Radar detectors
Solid-state answering machines

Disk drive control
Engine control
Laser printer control
Motor control
Robotics control
Servo control

General Purpose Graphics/Imaging Industrial

Adaptive filtering
Convolution
Correlation
Digital filtering
Fast Fourier transforms
Hilbert transforms
Waveform generation
Windowing

3-D computing
Animation/digital maps
Homomorphic processing
Image compression/transmission
Image enhancement
Pattern recognition
Robot vision
Workstations

Numeric control
Power-line monitoring
Robotics
Security access

Instrumentation Medical Military

Digital filtering
Function generation
Pattern matching
Phase-locked loops
Seismic processing
Spectrum analysis
Transient analysis

Diagnostic equipment
Fetal monitoring
Hearing aids
Patient monitoring
Prosthetics
Ultrasound equipment

Image processing
Missile guidance
Navigation
Radar processing
Radio frequency modems
Secure communications
Sonar processing

Telecommunications Voice/Speech

1200- to 56 600-bps modems
Adaptive equalizers
ADPCM transcoders
Base stations
Cellular telephones
Channel multiplexing
Data encryption
Digital PBXs
Digital speech interpolation (DSI)
DTMF encoding/decoding
Echo cancellation

Faxing
Future terminals
Line repeaters
Personal communications
 systems (PCS)
Personal digital assistants (PDA)
Speaker phones
Spread spectrum communications
Digital subscriber loop (xDSL)
Video conferencing
X.25 packet switching

Speaker verification
Speech enhancement
Speech recognition
Speech synthesis
Speech vocoding
Text-to-speech
Voice mail

Overview of the TMS320C6000 Platform of DSPs

 1-4

1.2 Overview of the TMS320C6000 Platform of DSPs

With a performance of up to 4800 million instructions per second (MIPS) and
an efficient C compiler, the TMS320C6000 DSPs give system architects unlim-
ited possibilities to differentiate their products from others. High performance,
ease of use, and affordable pricing make the TMS320C6000 platform the ideal
solution for multichannel, multifunction applications such as:

� Pooled modems
� Wireless local loop base stations
� Remote access servers (RAS)
� Digital subscriber loop (DSL) systems
� Cable modems
� Multichannel telephony systems.

The TMS320C6000 platform is also an ideal solution for exciting new applica-
tions, for example:

� Personalized home security with face and hand/fingerprint recognition
� Advanced cruise control with GPS navigation and accident avoidance
� Remote medical diagnostics
� Beam-forming base stations
� Virtual reality 3-D graphics
� Speech recognition
� Audio
� Radar
� Atmospheric modeling
� Finite element analysis
� Imaging (for example, fingerprint recognition, ultrasound, and MRI).

Features and Options of the TMS320C6000 Devices

1-5Introduction

1.3 Features and Options of the TMS320C6000 Devices

The C6000 devices, with the VelociTI� architecture, execute up to eight 32-bit
instructions per cycle. The device’s core CPU consists of two general-purpose
register files, A and B, which have a 32-bit-word length and eight functional
units:

� Two multipliers
� Six arithmetic logic units (ALUs).

The C6000 generation has a complete set of optimized development tools, in-
cluding an efficient C compiler, an assembly optimizer for simplified assembly-
language programming and scheduling, and a Windows based debugger inter-
face for visibility of source code execution characteristics.

Features of the C6000 devices include:

� Advanced VLIW CPU with eight functional units, including two multipliers
and six arithmetic units

� Executes up to eight instructions per cycle for up to ten times the
performance of other DSPs

� Allows designers to develop highly effective RISC-like code for rapid
development

� Instruction packing

� Gives code size equivalence for eight instructions executed serially or
in parallel

� Reduces code size, program fetches, and power consumption

� Conditional execution of all instructions

� Reduces costly branching

� Increases parallelism for higher sustained performance

� Efficient code execution on independent functional units

� Industry’s most efficient C compiler on DSP benchmark suite

� Industry’s first assembly optimizer for fast development and improved
parallelism

� 8/16/32-bit data support, providing efficient memory support for a variety
of applications

� 40-bit arithmetic options, which add extra precision for vocoders and other
computationally intensive applications

Features and Options of the TMS320C6000 Devices

Features and Options of the TMS320C6000 Devices

 1-6

� Saturation and normalization, which provide support for key arithmetic
operations

� Field manipulation and instruction extract, set, clear, and bit counting,
which support common operations found in control and data manipulation
applications.

� Hardware support for IEEE single-precision (32–bit) and double-precision
(64–bit) instructions (C67x only).

� 32 x 32–bit integer multiply with 32– or 64–bit result

� Pin-compatible fixed-point and floating-point DSPs.

The C64x device brings the highest level of performance, with the VelociTI.2
extensions to the VelociTI architecture. Some key features include:

� Register file enhancement

� Data path extensions

� Packed data processing

� Additional functional unit hardware

� Increased orthogonality.

For more information on features and options of the TMS320C6000, see the
TMS320C6000 CPU and Instruction Set Reference Guide (SPRU 189).

Overview of TMS320C6000 Memory

1-7Introduction

1.4 Overview of TMS320C6000 Memory

The internal memory configuration varies between the different C6000 devices.
All devices include:

� Internal data/program memory
� Internal peripherals
� External memory accessed through the external memory interface

(EMIF).

TMS320C620x�/C670x�: The C620x and C670x devices each have sepa-
rate data and program memories. The internal program memory can be
mapped into the CPU address space or operated as a program cache. A
256-bit-wide path is provided from to the CPU to allow a continuous stream of
eight 32-bit instructions for maximum performance.

Data memory is accessed through the data memory controller, which controls
the following functions:

� The CPU and the direct memory access (DMA) controller accesses to the
internal data memory, and performs the necessary arbitration.

� The CPU data access to the EMIF

� The CPU access to on-chip peripherals.

The internal data memory is divided into 16-bit-wide banks. The data memory
controller performs arbitration between the CPU and the DMA controller inde-
pendently for each bank, allowing both sides of the CPU and the DMA to
access different memory locations simultaneously without contention. The
data memory controller supports configurable endianness. The LENDIAN pin
on the device selects the endianness of the device.

TMS320C621x�/C671x�/C64x�: The C621x/C671x/C64x is a cache-
based architecture, with separate level-one program and data caches. These
cache spaces are not included in the memory map and are enabled at all times.
The level-one caches are only accessible by the CPU.

The level-one program cache (L1P) controller interfaces the CPU to the L1P.
A 256-bit wide path is provided from to the CPU to allow a continuous stream
of 8 32-bit instructions for maximum performance.

The level-one data cache (L1D) controller provides the interface between the
CPU and the L1D. The L1D allows simultaneous access by both sides of the
CPU.

Overview of TMS320C6000 Memory

Overview of TMS320C6000 Memory

 1-8

On a miss to either L1D or L1P, the request is passed to the L2 controller. The
L2 controller facilitates these functions:

� The CPU and the enhanced direct memory access (EDMA) controller
access to internal memory, and performance of the necessary arbitration.

� The CPU data access to the EMIF

� The CPU accesses to on-chip peripherals

� Sending requests to EMIF for an L2 data miss.

The internal SRAM of the C621x/C671x/C64x is a unified program and data
memory space. The L2 memory space may be configured as all memory-
mapped SRAM, all cache, or a combination of the two.

Overview of TMS320C6000 Peripherals

1-9Introduction

1.5 Overview of TMS320C6000 Peripherals

Peripherals available on the TMS320C6000 devices are shown in Table 1–2.

Table 1–2. TMS320C6000 Peripherals

Peripheral C6201 C6202(B)
C6203(B)

C6204 C6205 C621x C6414 C6415 C6701 C671x

Direct memory access
(DMA) controller

Y Y Y Y N N N Y N

Enhanced direct
memory access
(EDMA) controller

N N N N Y Y Y N Y

Host-port interface
(HPI)

Y N N N Y Y Y� Y Y

Expansion bus (XBUS) N Y Y N N N N N N

PCI N N N Y N N Y� N N

External memory
interface (EMIF)

1 1 1 1 1 2 2 1 1

Boot configuration Y Y Y Y Y Y Y Y Y

Multichannel buffered
serial ports (McBSPs)

2 3 2 2 2 3 3� 2 2

UTOPIA N N N N N N Y� N N

Interrupt selector Y Y Y Y Y Y Y Y Y

32-bit timers 2 2 2 2 2 3 3 2 2

Power-down logic Y Y Y Y Y Y Y Y Y

GPIO peripheral N N N N N Y Y� N N

† The C6415 peripheral set is selected at device reset. For details, see Chapter 11, Boot Modes and Configuration, and the specific
device datasheet.

The user-accessible peripherals are configured via a set of memory-mapped
control registers. The peripheral bus controller performs the arbitration for
accesses of on-chip peripherals. The Boot Configuration logic is interfaced
through external signals only, and the Power-down logic is accessed directly
by the CPU.

Figure 1–1 shows the peripherals in the block diagram for the
TMS320C620x/C670x devices. Figure 1–2 shows a block diagram for the
TMS320C621x/C671x devices. Figure 1–3 shown a block diagram for the
TMS320C64x devices.

Overview of TMS320C6000 Peripherals

 1-10

Figure 1–1. TMS320C620x/C670x Block Diagram

EMIF

HPI/
Expansion Bus/

PCI

Data Access
Controller

Internal Data
Memory

Internal Program
Memory

D
M

A
 B

us

P
er

ip
he

ra
l C

on
tr

ol
 B

us
Interrupt
Selector

Program
Access/Cache

Controller

Direct Memory Access
Controller (DMA)

PLL
Power Down

Logic

Boot
Configuration

C6000 DSP core

Instruction Fetch

Instruction Dispatch

Instruction Decode

Data Path A

A Register File

L1 S1 M1 D1

Control
Registers

Control Logic

Test

In–Circuit
Emulation

Interrupt
Control

Data Path B

B Register File

L2S2M2D2

Note: Refer to the specific device datasheet for its peripheral set.

McBSPs

Timers

Overview of TMS320C6000 Peripherals

1-11Introduction

Figure 1–2. TMS320C621x/C671x Block Diagram

C6000 DSP core

Instruction Fetch

Instruction Dispatch

Instruction Decode

Data Path A

A Register File

L1 S1 M1 D1

Control
Registers

Control
LOgic

Test

In–Circuit
Emulation

Interrupt
Control

Data Path B

B Register File

L2S2M2D2

L1P Cache

L2
Memory

L1D Cache

Enhanced
DMA

Controller

Power Down Logic

EMIF

HPI

McBSPs

Timers

Boot Configuration

Interrupt
Selector

PLL

Note: Refer to the specific device datasheet for its peripheral set.

Figure 1–3. TMS32064x Block Diagram

C6000 DSP core

Instruction Fetch

Instruction Dispatch

Instruction Decode

Data Path A

A Register File

L1 S1 M1 D1

Control
Registers

Control
Logic

Test

In–Circuit
Emulation

Interrupt
Control

Data Path B

B Register File

L2S2M2D2

L1P Cache

L2
Memory

L1D Cache

Enhanced
DMA

Controller

Power Down Logic

Other
 Peripherals

EMIFB

HPI/PCI

Boot Configuration

Interrupt
Selector

PLL

Note: Refer to the specific device datasheet for its peripheral set.

EMIFA

Overview of TMS320C6000 Peripherals

 1-12

The main functions of the devices shown in the preceding figures are summa-
rized as follows:

DMA Controller: The DMA controller transfers data between address ranges
in the memory map without intervention by the CPU. The DMA controller has
four programmable channels and a fifth auxiliary channel.

EDMA Controller: The EDMA controller performs the same functions as the
DMA controller. The EDMA has 16 (C621x/C671x) or 64 (C64x) program-
mable channels, as well as a RAM space to hold multiple configurations for
future transfers.

HPI: The HPI is a parallel port through which a host processor can directly ac-
cess the CPU’s memory space. The host device has ease of access because
it is the master of the interface. The host and the CPU can exchange informa-
tion via internal or external memory. In addition, the host has direct access to
memory-mapped peripherals.

Expansion Bus: The expansion bus is a replacement for the HPI, as well as
an expansion of the EMIF. The expansion provides two distinct areas of
functionality (host port and I/O port) which can co-exist in a system. The host
port of the expansion bus can operate in either asynchronous slave mode,
similar to the HPI, or in synchronous master/slave mode. This allows the
device to interface to a variety of host bus protocols. Synchronous FIFOs and
asynchronous peripheral I/O devices may interface to the expansion bus.

PCI: The PCI module supports connection of the C6000 device to a PCI host
via the integrated PCI master/slave bus interface.

EMIF: The EMIF supports a glueless interface to several external devices, in-
cluding the following:

� Synchronous burst SRAM (SBSRAM)
� Synchronous DRAM (SDRAM)
� Asynchronous devices, including SRAM, ROM, and FIFOs
� An external shared-memory device.

Boot Configuration: The TMS320C6000 devices provide a variety of boot
configurations that determine what actions the DSP performs after device
reset to prepare for initialization. These include loading in code from an exter-
nal ROM space on the EMIF and loading code through the HPI/expansion bus
from an external host.

Overview of TMS320C6000 Peripherals

1-13Introduction

McBSP: The multichannel buffered serial port (McBSP) is based on the stan-
dard serial port interface found on the TMS320C2000� and C5000� platform
devices. In addition, the port can buffer serial samples in memory automatical-
ly with the aid of the DMA/EDMA controller. It also has multichannel capability
compatible with the T1, E1, SCSA, and MVIP networking standards. Like its
predecessors, it provides these capabilities:

� Full-duplex communication

� Double-buffered data registers that allow a continuous data stream

� Independent framing and clocking for receive and transmit

� Direct interface to industry-standard codecs, analog interface chips
(AICs), and other serially connected analog-to-digital (A/D) and digital-to-
analog (D/A) devices.

In addition, the McBSP has the following capabilities:

� Direct interface to:

� T1/E1 framers
� ST-BUS� compliant devices
� IOM-2 compliant devices
� AC97 compliant devices
� IIS compliant devices
� SPI devices

� Multichannel transmission and reception of up to 128 channels
� A wider selection of data sizes including 8-, 12-, 16-, 20-, 24-, and 32-bits
� µ-law and A-law companding
� 8-bit data transfers with LSB or MSB first
� Programmable polarity for both frame synchronization and data clocks
� Highly programmable internal clock and frame generation.

UTOPIA: The UTOPIA (Universal Test and Operations Interface for ATM) pe-
ripheral allows the DSP to be a slave ATM Controller device. The interface sup-
ports the UTOPIA level 2 interface and conforms to the ATM Forum standard
specification af-phy-0039.0000. The UTOPIA interfaces to an ATM master.

Timer: The C6000 devices have 32-bit general-purpose timers that are used
to perform these functions:

� Time events
� Count events
� Generate pulses
� Interrupt the CPU
� Send synchronization events to the DMA/EDMA controller.

 1-14

GPIO: The GPIO peripheral provides a dedicated set of general-purpose in-
put/output signals to the C6000 device. Transitions on these signals can be
used to generate interrupts to the CPU and synchronization events to the
EDMA.

Interrupt Selector: The C6000 peripheral set produces interrupt sources.
The interrupt selector allows the user to choose which interrupts their system
needs. The interrupt selector also allows you to change the polarity of external
interrupt inputs.

Power-down: The power-down logic allows reduced clocking to reduce power
consumption. Most of the operating power of CMOS logic dissipates during circuit
switching from one logic state to another. By preventing some or all of the
chip’s logic from switching, you can realize significant power savings without
losing any data or operational context.

2-1

TMS320C620x/C670x Internal Program
and Data Memory

This chapter describes the TMS320C620x/C670x� program and data memory
controller. Program memory modes, including cache operation and bootload
operation, are discussed. Also described in the chapter are the program and
data memory organizations in the C620x/C670x devices.

Topic Page

2.1 Program Memory Controller 2-2.

2.2 Internal Program Memory 2-3.

2.3 Data Memory Controller 2-13.

2.4 Internal Data Memory 2-15.

2.5 Peripheral Bus 2-27.

Chapter 2

Program Memory Controller

 2-2

2.1 Program Memory Controller

The program memory controller, shaded in Figure 2–1, performs the following
tasks:

� Performs CPU and DMA requests to internal program memory and the
necessary arbitration

� Performs CPU requests to external memory through the external memory
interface (EMIF)

� Manages the internal program memory when it is configured as cache.

Figure 2–1. TMS320C620x/C670x Program Memory Controller in the Block Diagram

EMIF

Other
 Peripherals

HPI/
Expansion Bus/

PCI

Data Access
Controller

Internal Data
Memory

Internal Program
Memory

D
M

A
 B

us

P
er

ip
he

ra
l C

on
tr

ol
 B

us

Interrupt
Selector

Program
Access/Cache

Controller

Direct Memory Access
Controller (DMA)

PLL
Power Down

Logic

Boot
Configuration

C6000 DSP core

Instruction Fetch

Instruction Dispatch

Instruction Decode

Data Path A

A Register File

L1 S1 M1 D1

Control
Registers

Control Logic

Test

In–Circuit
Emulation

Interrupt
Control

Data Path B

B Register File

L2S2M2D2

Note: Refer to the specific device datasheet for its peripheral set.

Internal Program Memory

2-3TMS320C620x/C670x Internal Program and Data Memory

2.2 Internal Program Memory

The TMS320C6201/C6204/C6205/C6701 internal program memory is user-
configurable as cache or memory-mapped program space. It contains 64K by-
tes of RAM or, equivalently, 2K 256-bit fetch packets or 16K 32-bit instructions.
The CPU, through the program memory controller, has a single-cycle through-
put, 256-bit-wide connection to internal program memory.

In the TMS320C6202(B)/C6203(B), the memory/cache program space is ex-
panded to the sizes shown in Table 2–1. In addition, the C6202(B)/
C6203(B) provides another block of memory that operates as a memory-
mapped block. These two blocks can be accessed independently. This allows
the CPU to perform program fetch from one block of program memory, without
interfering with a DMA transfer from the other block.

Table 2–1 and Table 2–2 compare the internal memory and cache configura-
tions available on the current TMS320C6x0x devices. Figure 2–2 shows a
block diagram of the connections between the C6201/ C6204/C6205/C6701
CPU, PMEMC, and memory blocks. Figure 2–3 shows a block diagram of the
connections between the CPU, PMEMC, and memory blocks in the C6202/
C6202B/C6203(B). The addresses shown in Figure 2–2 and Figure 2–3 are
for operation in memory map mode 1.

Table 2–1. TMS320C6000 Internal Memory Configurations

Device CPU

Internal
Memory
Architecture

Total Memory
(Bytes)

Program Memory
(Bytes)

Data Memory
(Bytes)

C6201 6200 Harvard 128K 64K (map/cache) 64K (map)

C6701 6700 Harvard 128K 64K (map/cache) 64K (map)

C6202(B) 6200 Harvard 384K 128K (map)
128K (map/cache)

128K (map)

C6203(B) 6200 Harvard 896K 256K (map)
128K (map/cache)

512K (map)

C6204 6200 Harvard 128K 64K (map/cache) 64K (map)

C6205 6200 Harvard 128K 64K (map/cache) 64K (map)

Internal Program Memory

 2-4

Table 2–2. TMS320C6000 Cache Architectures

Cache Space
Size

(Bytes) Associativity
Line Size
(Bytes)

C6201 program 64K Direct mapped 32

C6701 program 64K Direct mapped 32

C6202(B) program 128K Direct mapped 32

C6203(B) program 128K Direct mapped 32

C6204 program 64K Direct mapped 32

C6205 program 64K Direct mapped 32

Internal Program Memory

2-5TMS320C620x/C670x Internal Program and Data Memory

Figure 2–2. TMS320C6201/C6204/C6205/C6701 Program Memory Controller Block Diagram

P
rogram

 D
ata

P
rogram

 A
ddress

C
ontrol

256

Program memory
controller
(PMEMC)

C62x/C67x CPU

Program fetch

DMA
bus

controller

External
memory
interface

256 cached or
mapped

Cached/Mapped�

(64K bytes)

0000 0000h

0000 FFFFh

� Note: Addresses shown in Map 1 mode (section 2.2.2)

Internal Program Memory

 2-6

Figure 2–3. TMS320C6202(B)/C6203(B) Program Memory Controller Block Diagram

P
rogram

 D
ata

P
rogram

 A
ddress

C
ontrol

256

Program memory
controller
(PMEMC)

C62x CPU

Program fetch

DMA
bus

controller

External
memory
interface

256256

C6203(B)
Address Range:
0000 0000h to
0003 FFFFh

C6202(B)
Address Range:
0000 0000h to
0001 FFFFh

Block 0 Mapped�

(128K bytes – C6202(B))
(256K bytes – C6203(B))

Block 1 Cached/Mapped�

(128K bytes – C6202(B))
(128K bytes – C6203(B))

C6202(B)
Address Range:
0002 0000h to
0003 FFFFh

C6203(B)
Address Range:
0004 0000h to
0005 FFFFh

� Note: Addresses shown in Map 1 mode (section 2.2.2)

Internal Program Memory

2-7TMS320C620x/C670x Internal Program and Data Memory

2.2.1 Internal Program Memory Modes

The cached/mapped block of the internal program memory can be used in any
of four modes which are selected by the program cache control (PCC) field
(bits 7–5) in the CPU control and status register (CSR) as shown in Table 2–3.
The modes are:

� Mapped: In mapped mode, program fetches from the cached/mapped
block of the internal program memory address return the fetch packet at
that address. In the other modes, CPU accesses to this address range
return undefined data. Mapped mode is the default state of the internal
program memory at reset. The CPU cannot access internal program
memory through the data memory controller. (See section 2.2.2 for a de-
tailed description of the memory mapped operations. See Chapter 11,
Boot Modes and Configuration, for information about how to select the
memory map.)

� Cache enabled: In cache enabled mode, any initial program fetch at an ad-
dress causes a cache miss. In a cache miss, the fetch packet is loaded from
the external memory interface (EMIF) and stored in the internal cache
memory, one 32-bit instruction at a time. While the fetch packet is being
loaded, the CPU is halted. The number of wait states incurred depends on
the type of external memory used, the state of that memory, and any conten-
tion for the EMIF with other requests, such as the DMA controller or a CPU
data access. Any subsequent read from a cached address causes a cache
hit, and that fetch packet is sent to the CPU from the internal program
memory without any wait states. Changing from program memory mode to
cache enabled mode flushes the program cache. This mode transition is the
only means to flush the cache.

� Cache freeze: During a cache freeze, the cache retains its current state.
A program read of a frozen cache is identical to a read of an enabled cache
except that on a cache miss the data read from the external memory inter-
face is not stored in the cache. Cache freeze ensures that critical program
data is not overwritten in the cache.

� Cache bypass: When the cache is bypassed, any program read fetches
data from external memory. The data is not stored in the cache memory.
As in cache freeze, the cache retains its state in cache bypass. This mode
ensures that external program data is being fetched.

Internal Program Memory

 2-8

Table 2–3. Internal Program Memory Mode Summary

Internal Program
Memory Mode

PCC
Value Description

Mapped 000 Cache disabled (default state at reset)

Cache enabled 010 Cache accessed and updated on reads

Cache freeze 011 Cache accessed but not updated on reads

Cache bypass 100 Cache not accessed or updated on reads

Other Reserved

Note:

If the operation mode of the PMEMC is changed, use the following assembly
routine to ensure correct operation of the PMEMC. This routine enables the
cache. To change the PMEMC operation mode to a state other than cache
enable, modify line four of the routine to correspond the the value of PCC that
is to be moved into B5. For example, to put the cache into mapped mode
0000h should be moved into B5. The CPU registers used in this example
have no significance. Any of the registers A0–A15 or B0–B15 can be used
in the program. The user must ensure that no interrupts occur during the exe-
cution of this assembly routine to prevent unexpected modification of the
CSR.

.align 32
MVC .S2 CSR,B5 ;copy control status register

|| MVK .S1 0xff1f,A5
AND .L1x A5,B5,A5 ;clear PCC field of CSR value

|| MVK S2 0x0040,B5 ;set cache enable mask
OR .L2x A5,B5,B5 ;set cache enable bit
MVC .S2 B5,CSR ;update CSR to enable cache
NOP 4
NOP

2.2.2 Memory Mapped Operation

When the PCC field of the CPU control status register is programmed for
Mapped mode, all of the internal program RAM is mapped into internal program
space. Table 2–4 shows the address space for the internal program RAM for the
map mode selected at device reset.

Internal Program Memory

2-9TMS320C620x/C670x Internal Program and Data Memory

Table 2–4. Internal Program RAM Address Mapping in Memory Mapped Mode

Device Block (See Note) Map 0 Map 1

C6201 ––– 0140 0000h – 0140 FFFFh 0000 0000h – 0000 FFFFh

C6202(B) Block 0
Block 1

0140 0000h – 0141 FFFFh
0142 0000h – 0143 FFFFh

0000 0000h – 0001 FFFFh
0002 0000h – 0003 FFFFh

C6203(B) Block 0
Block 1

0140 0000h – 0143 FFFFh
0144 0000h – 0145 FFFFh

0000 0000h – 0003 FFFFh
0004 0000h – 0005 FFFFh

C6204 ––– 0140 0000h – 0140 FFFFh 0000 0000h – 0000 FFFFh

C6205 ––– 0140 0000h – 0140 FFFFh 0000 0000h – 0000 FFFFh

C6701 ––– 0140 0000h – 0140 FFFFh 0000 0000h – 0000 FFFFh

Note: TMS320C6201/C6204/C6205/C6701 has only one block of internal program memory.

In mapped mode, both the CPU and the DMA can access all locations in the
RAM. Any access outside of the address space that the internal RAM is
mapped to is forwarded to the EMIF. If the CPU and DMA attempt to access
the same block of RAM at the same time, then the DMA is stalled until the CPU
completes its accesses to that block. After the CPU access is complete, the
DMA is allowed to access the RAM.

For the C6202(B)/C6203(B), the DMA can only access one of the two blocks
of RAM at a time. The CPU and DMA can access the internal RAM without in-
terference as long as each accesses a different block. The DMA cannot cross
between Block 0 and Block 1 in a single transfer. Separate DMA transfers must
be used to cross block boundaries.

2.2.3 Cache Operation

When the PCC field of the CPU Control Status Register is programmed for one
of the Cache modes, all internal program memory in the C6201/C6204/
C6205/C6701 device is used as a cache. For the C6202(B)/C6203(B) device,
block 1 operates as a cache while block 0 remains mapped into internal pro-
gram space. Table 2–5 shows the addresses occupied by the C6202/
C6202B/C6203(B) RAM that is not used for cache, for each map mode.

Table 2–5. TMS320C6202(B)/C6203(B) Internal Program RAM Address Mapping in
Cache Mode

Device Block Map 0 Map 1

C6202(B) 0 0140 0000h – 0141 FFFFh 0000 0000h – 0001 FFFFh

C6203(B) 0 0140 0000h – 0143 FFFFh 0000 0000h – 0003 FFFFh

Internal Program Memory

 2-10

Any CPU or DMA access to the memory range that was occupied by the cache
RAM returns undefined results. For the C6202(B)/C6203(B), as in the map
mode simultaneous accesses to block 0 by the CPU and DMA stalls the DMA
until the CPU has completed its access. It is necessary to ensure that all DMA
accesses to block 1 have completed before the cache is enabled.

2.2.4 Cache Architecture

The C620x/C670x cache is a direct mapped architecture. The width of the cache
(the line size) is 256 bits, or eight 32-bit instructions. Each line in the cache is one
fetch packet. Therefore, for the C6201/C6204/C6205/C6701, the 64K byte cache
contains 2K fetch packets (2K lines). For the C6202(B)/C6203(B) device, the
128k-byte cache contains 4K fetch packets (4K lines).

2.2.4.1 Cache Usage of CPU Address

How the cache uses the fetch packet address from the CPU is shown in
Figure 2–4 for the C6201/C6204/C6205/C6701 and Figure 2–5 for the
C6202(B)/C6203(B). These functions are described below:

� Fetch packet alignment: The five LSBs of the address are assumed to
be 0 because all program fetch requests are aligned on fetch packet
boundaries (eight words or 32 bytes).

� Tag block offset: The device characteristics are as follows:

� For the C6201/C6204/C6205/C6701, any external address maps to
only one of the 2K lines. Any two fetch packets that are separated by
an integer multiple of 64K bytes map to the same line. Thus bits 15:5 of
the CPU address create the 11-bit block offset that determines the
specific line, of the 2K lines, to which any particular fetch packet maps.

� For the C6202(B)/C6203(B), any external address maps to only one of
the 4K lines. Any two fetch packets that are separated by an integer
multiple of 128K bytes map to the same line. Thus bits 16:5 of the CPU
address create the 12-bit block offset that determines the specific line,
of the 4K lines, to which any particular fetch packet maps.

� Tag: The cache assumes a maximum external address space of 64M by-
tes (from 00000000h–03FFFFFFh). The following bits of the address cor-
respond to the tag that determines the original location of the fetch packet
in external memory space:

� For C6201/C6204/C6205/C6701, bits 25:16. The cache has a sepa-
rate 2K × 11 tag RAM that holds all the tags.

� For C6202(B)/C6203(B), bits 25:17. The cache has a separate 4K x
10 tag RAM that holds all the tags.

Internal Program Memory

2-11TMS320C620x/C670x Internal Program and Data Memory

Each address location in the tag RAM contains the tag, plus a valid bit that
is used to record line validity information.

Figure 2–4. Logical Mapping of Cache Address (C6201/C6204/C6205/C6701)

31 26 25 16 15 5 4 0

Outside external range.
assumed to be 0

Tag Block offset
Fetch packet alignment.

Assumed 0

Figure 2–5. Logical Mapping of Cache Address (C6202(B)/C6203(B))

31 26 25 17 16 5 4 0

Outside external range.
assumed to be 0

Tag Block offset
Fetch packet alignment.

Assumed 0

2.2.4.2 Cache Flush

A dedicated valid bit in each address location of the tag RAM indicates whether
the contents of the corresponding cache line is valid data. During a cache line,
all of the valid bits are cleared to indicate that no cache lines have valid data.
Cache flushes occur only at the transition of the internal program memory from
mapped mode to cache enabled mode. You initiate this transition by setting the
cache enable pattern in the PCC field of the CPU control and status register.
The CPU is halted during a cache flush. For the C6202(B)/C6203(B), a DMA
access to block 0 while the cache is flushed continues without stalling.

2.2.4.3 Line Replacement

A cache miss is detected when the tag corresponding to the block offset of
the fetch packet address requested by the CPU does not correspond to the
tag field of the fetch packet address or if the valid bit at the block offset loca-
tion is clear. If enabled, the cache loads the fetch packet into the correspond-
ing line, sets the valid bit, sets the tag to bits of the requested address, and
delivers this fetch packet to the CPU after all eight instructions are available.

2.2.5 Bootload Operation

At reset, the program memory system is in mapped mode, allowing the DMA
controller to boot load code into the internal program memory.

See Chapter 11, Boot Modes and Configuration, for more information on boot-
loading code.

Internal Program Memory

 2-12

2.2.6 DMA Controller Access to Program Memory

The DMA controller can read and write to internal program memory when the
memory is configured in mapped mode. Only 32–bit words accesses can be
made to the program memory via the DMA. The CPU always has priority over
the DMA controller for access to internal program memory regardless of the
value of the PRI bit for that DMA channel. DMA controller accesses are post-
poned until the CPU stops making requests. To avoid losing future requests
that occur after arbitration and while a DMA controller access is in progress,
the CPU incurs one wait state per DMA controller access to the same program
memory block. The maximum throughput to the DMA is one access every oth-
er cycle. In cache mode, a DMA controller write is ignored by the program
memory controller, and a read returns an undefined value. For both DMA
reads and writes in cache modes, the DMA controller is signaled that its re-
quest has finished.

Data Memory Controller

2-13TMS320C620x/C670x Internal Program and Data Memory

2.3 Data Memory Controller

As shown in Figure 2–6, the data memory controller connects:

� The CPU and direct memory access (DMA) controller to internal data
memory and performs the necessary arbitration.

� CPU to the external memory interface (EMIF).

� The CPU to the on chip peripherals through the peripheral bus controller.

The peripheral bus controller performs arbitration between the CPU and DMA
for the on-chip peripherals.

Figure 2–6. TMS320C620x/C670x Block Diagram

EMIF

Other
 Peripherals

HPI/
Expansion Bus/

PCI

Data Access
Controller

Internal Data
Memory

Internal Program
Memory

D
M

A
 B

us

P
er

ip
he

ra
l C

on
tr

ol
 B

us

Interrupt
Selector

Program
Access/Cache

Controller

Direct Memory Access
Controller (DMA)

PLL
Power Down

Logic

Boot
Configuration

C6000 DSP core

Instruction Fetch

Instruction Dispatch

Instruction Decode

Data Path A

A Register File

L1 S1 M1 D1

Control
Registers

Control Logic

Test

In–Circuit
Emulation

Interrupt
Control

Data Path B

B Register File

L2S2M2D2

Note: Refer to the specific device datasheet for its peripheral set.

Data Memory Controller

 2-14

2.3.1 Data Memory Access

The data memory controller services all CPU and DMA controller data requests
to internal data memory. The directions of data flow and the master (requester)
and slave (resource) relationships between the modules are shown in Sec-
tion 2.4 Figure 2–7, Figure 2–8, Figure 2–9, and Figure 2–10. These figures
show:

� The CPU requests data reads and writes to:

� Internal data memory
� On-chip peripherals through the peripheral bus controller
� EMIF

� The DMA controller requests reads and writes to internal data memory.

� The CPU cannot access internal program memory through the data
memory controller.

The CPU sends requests to the data memory controller through the two ad-
dress buses (DA1 and DA2). Store data is transmitted through the CPU data
store buses (ST1 and ST2). Load data is received through the CPU data load
buses (LD1 and LD2). The CPU data requests are mapped, based on address,
to either the internal data memory, internal peripheral space (through the
peripheral bus controller), or the external memory interface. The data memory
controller also connects the DMA controller to the internal data memory and
performs arbitration between the CPU and DMA controller.

See Chapter 5, DMA and CPU Data Access Performance for a detailed descrip-
tion of data access performance to the internal data memory, the EMIF, and the
peripheral bus.

Internal Data Memory

2-15TMS320C620x/C670x Internal Program and Data Memory

2.4 Internal Data Memory

The following sections describe the memory organization of each C620x and
C670x device.

2.4.1 TMS320C6201/C6204/C6205

The 64K bytes of internal data RAM are organized as two blocks of 32K bytes
located from address 8000 0000h to 8000 7FFFh and 8000 8000h to
8000 FFFFh, as shown in Table 2–6, Figure 2–7, and Table 2–7. The DMA
controller or side A and side B of the CPU can simultaneously access any
portion of the internal memory without conflict, when using different blocks.
Both blocks are organized as four 4K banks of 16-bit halfwords. Since
accesses to different blocks never cause performance penalties, it is not
necessary to consider the address within a block if simultaneous accesses
occur to different blocks. Both CPU and DMA can simultaneously access data
that resides in different banks within the same block without a performance
penalty. The two CPU data ports, A and B, can simultaneously access
neighboring 16-bit data elements inside the block without a resource conflict.
To avoid performance penalties, it is necessary to give attention to address
LSBs when the two accesses involve data in the same block. With this memory
configuration, the maximum data access each cycle is three 32-bit accesses
made by CPU data port A, B, and the DMA controller to different banks.

Table 2–6. Data Memory Organization (TMS320C6201/C6204/C6205)

Bank 0 Bank 1 Bank 2 Bank 3

First address
(Block 0)

80000000
80000008

�

�

�

80007FF0

80000001
80000009

�

�

�

80007FF1

80000002
8000000A

�

�

�

80007FF2

80000003
8000000B

�

�

�

80007FF3

80000004
8000000C

�

�

�

80007FF4

80000005
8000000D

�

�

�

80007FF5

80000006
8000000E

�

�

�

80007FF6

80000007
8000000F

�

�

�

80007FF7

Last address
(Block 0)

80007FF8 80007FF9 80007FFA 80007FFB 80007FFC 80007FFD 80007FFE 80007FFF

Bank 0 Bank 1 Bank 2 Bank 3

First address
(Block 1)

80008000
80008008

�

�

�

8000FFF0

80008001
80008009

�

�

�

8000FFF1

80008002
8000800A

�

�

�

8000FFF2

80008003
8000800B

�

�

�

8000FFF3

80008004
8000800C

�

�

�

8000FFF4

80008005
8000800D

�

�

�

8000FFF5

80008006
8000800E

�

�

�

8000FFF6

80008007
8000800F

�

�

�

8000FFF7

Last address
(Block 1)

8000FFF8 8000FFF9 8000FFFA 8000FFFB 8000FFFC 8000FFFD 8000FFFE 8000FFFF

Internal Data Memory

 2-16

Figure 2–7. Data Memory Controller Interconnect to Other Banks
(TMS320C6201/C6204/C6205)

Block 0
(32K bytes)(32K bytes)

Block 1

Bank 3

Bank 2

Bank 1

Bank 0

Bank 3

Bank 2

Bank 1

Bank 0

DMA
controller

Peripheral
bus

controller

External
memory
interface

16

16

16

16

Data memory controller
(DMEMC)

323232

16

16

16

16

Side ASide B

C62x CPU

3232 32 32

C
on

tr
ol

D
A

2
ad

dr
es

s

S
T

2
st

or
e

da
ta

LD
2

lo
ad

 d
at

a

C
on

tr
ol

D
A

1
ad

dr
es

s

S
T

1
st

or
e

da
ta

LD
1

lo
ad

 d
at

a

0
2

1
3

4
6

5
7

8
A

9
B

C
E

D
F

0
2

1
3

4
6

5
7

8
A

9
B

C
E

D
F

80
00

 F
F

F
F

h

80
00

 7
F

F
F

h

80
00

 8
00

0h

80
00

 0
00

0h

Table 2–7. Internal Data RAM Address Mapping

Block 0 8000 0000h – 8000 7FFFh

Block 1 8000 8000h – 8000 FFFFh

2.4.2 TMS320C6701

The 64K bytes of internal data RAM are organized as two blocks of 32K by-
tes located from address 8000 0000h to 8000 7FFFh and 8000 8000h to
8000 FFFFh, as shown in Table 2–8, Figure 2–8, and Table 2–9. Side A and
side B of the CPU or the DMA Controller can simultaneously access any
portion of the internal data memory without conflict, when using different blocks.
Since accesses to different blocks never cause performance penalties, it is not
necessary to consider the address within a block if simultaneous accesses
occur to different blocks. It is only necessary to give attention to the address
when the two accesses occur in the same block. Both blocks are organized

Internal Data Memory

2-17TMS320C620x/C670x Internal Program and Data Memory

as eight 2K banks of 16-bit halfwords. Both the CPU and DMA controller can
still simultaneously access data that resides in different banks within the same
block without performance penalty. The two CPU data ports, A and B, can
simultaneously access neighboring 16-bit data elements inside the same block
without a resource conflict. To avoid performance penalties, it is necessary to
give attention to address LSBs when two accesses involve data in the same
block. With this memory configuration, the maximum data access each cycle is
two 64-bit CPU accesses (LDDW only) and a 32-bit DMA access.

Table 2–8. Data Memory Organization (TMS320C6701)

Bank 0 Bank 1 Bank 2 Bank 3

First address
(Block 0)

80000000 80000001 80000002 80000003 80000004 80000005 80000006 80000007

Last address
(Block 0)

80007FF0 80007FF1 80007FF2 80007FF3 80007FF4 80007FF5 80007FF6 80007FF7

Bank 4 Bank 5 Bank 6 Bank 7

First address
(Block 0)

80000008 80000009 8000000A 8000000B 8000000C 8000000D 8000000E 8000000F

Last address
(Block 0)

80007FF8 80007FF9 80007FFA 80007FFB 80007FFC 80007FFD 80007FFE 80007FFF

Bank 0 Bank 1 Bank 2 Bank 3

First address
(Block 1)

80008000 80008001 80008002 80008003 80008004 80008005 80008006 80008007

Last address
(Block 1)

8000FFF0 8000FFF1 8000FFF2 8000FFF3 8000FFF4 8000FFF5 8000FFF6 8000FFF7

Bank 4 Bank 5 Bank 6 Bank 7

First address
(Block 1)

80008008 80008009 8000800A 8000800B 8000800C 8000800D 8000800E 8000800F

Last address
(Block 1)

8000FFF8 8000FFF9 8000FFFA 8000FFFB 8000FFFC 8000FFFD 8000FFFE 8000FFFF

Internal Data Memory

 2-18

Figure 2–8. Data Memory Controller Interconnect to Other Blocks (TMS320C6701)

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 1

Bank 2

Bank 0

16

16

16

16

Bank 3

Bank 2

Bank 1

Bank 0

16

16

16

16

Block 0
(32K bytes)(32K bytes)

Block 1

Bank 7

Bank 6

Bank 5

Bank 4

DMA
controller

Peripheral
bus

controller

External
memory
interface

16

16

16

16

Data memory controller
(DMEMC)

323232

16

16

16

16

Side ASide B

C67x CPU

32 64 6432

C
on

tr
ol

D
A

2
ad

dr
es

s

S
T

2
st

or
e

da
ta

LD
2

lo
ad

 d
at

a

C
on

tr
ol

D
A

1
ad

dr
es

s

S
T

1
st

or
e

da
ta

LD
1

lo
ad

 d
at

a

D
C

B
A

0
1

2
3

4
5

6
7

9
8

F
E

D
C

B
A

0
1

2
3

4
5

6
7

9
8

F
E

80
00

 F
F

F
F

h

80
00

 7
F

F
F

h

80
00

 8
00

0h

80
00

 0
00

0h

Table 2–9. Internal Data RAM Address Mapping

Block 0 8000 0000h – 8000 7FFFh

Block 1 8000 8000h – 8000 FFFFh

Internal Data Memory

2-19TMS320C620x/C670x Internal Program and Data Memory

2.4.3 TMS320C6202(B)

The TMS320C6202(B) data memory controller (DMEMC) provides all of the func-
tionality available in the TMS320C6201 revision 3. The C6202(B) DMEMC con-
tains 128K bytes of RAM organized in two blocks of four banks each. Each bank
is 16 bits wide. The DMEMC for the C6202(B) operates identically to the C6201
DMEMC, the DMA controller or side A or side B of the CPU can simultaneously
access two different banks without conflict. Figure 2–9 shows a block diagram
of the connections between the C6202(B) CPU, DMEMC, and memory blocks.
Table 2–10 shows the memory range occupied by each block of internal data
RAM.

Figure 2–9. TMS320C6202(B) Data Memory Controller Block Diagram

Block 1
(64K bytes)(64K bytes)

Block 0

Bank 3

Bank 2

Bank 1

Bank 0

Bank 3

Bank 2

Bank 1

Bank 0

controller
DMA bus

controller
bus

Peripheral

interface
memory
External

16

16

16

16

(DMEMC)
Data memory controller

323232

16

16

16

16

Data path AData path B

C62x CPU

3232 32 32

C
on

tr
ol

D
A

2
ad

dr
es

s

S
T

2
st

or
e

da
ta

LD
2

lo
ad

 d
at

a

C
on

tr
ol

D
A

1
ad

dr
es

s

S
T

1
st

or
e

da
ta

LD
1

lo
ad

 d
at

a

80
01

 0
00

0h

80
01

 F
F

F
F

h

80
00

 F
F

F
F

h

80
00

 0
00

0h

0
2

1
3

4
6

5
7

8
A

9
B

C
E

D
F

0
2

1
3

4
6

5
7

8
A

9
B

C
E

D
F

Table 2–10. Internal Data RAM Address Mapping

Block 0 8000 0000h – 8000 FFFFh

Block 1 8001 0000h – 8001 FFFFh

Internal Data Memory

 2-20

2.4.4 TMS320C6203(B)

The TMS320C6203(B) data memory controller (DMEMC) provides all of the
functionality available in the TMS320C6201 revision 3. The C6203(B)
DMEMC contains 512K bytes of RAM organized in two blocks of four banks
each. Each bank is 16 bits wide. The DMEMC for the C6203(B) operates iden-
tically to the C6201 DMEMC, the DMA controller or side A or side B of the CPU
can simultaneously access two different banks without conflict. Figure 2–10
shows a block diagram of the connections between the C6203(B) CPU,
DMEMC, and memory blocks. Table 2–11 shows the memory range occupied
by each block of internal data RAM.

Figure 2–10. TMS320C6203(B) Data Memory Controller Block Diagram

Block 1
(256K bytes)(256K bytes)

Block 0

Bank 3

Bank 2

Bank 1

Bank 0

Bank 3

Bank 2

Bank 1

Bank 0

controller
DMA bus

controller
bus

Peripheral

interface
memory
External

16

16

16

16

(DMEMC)
Data memory controller

323232

16

16

16

16

Data path AData path B

C62x CPU

3232 32 32

C
on

tr
ol

D
A

2
ad

dr
es

s

S
T

2
st

or
e

da
ta

LD
2

lo
ad

 d
at

a

C
on

tr
ol

D
A

1
ad

dr
es

s

S
T

1
st

or
e

da
ta

LD
1

lo
ad

 d
at

a

80
00

 0
00

0h

0
2

1
3

4
6

5
7

8
A

9
B

C
E

D
F

0
2

1
3

4
6

5
7

8
A

9
B

C
E

D
F

80
03

 F
F

F
F

h

80
04

 0
00

0h

80
07

 F
F

F
F

h

Table 2–11. Internal Data RAM Address Mapping

Block 0 8000 0000h – 8003 FFFFh

Block 1 8004 0000h – 8007 FFFFh

Internal Data Memory

2-21TMS320C620x/C670x Internal Program and Data Memory

2.4.5 Data Alignment

The following data alignment restrictions apply:

Doublewords: (C6701 only) Doublewords are aligned on even 8-byte (double-
word) boundaries, and always start at a byte address where the three LSBs are
0. Doublewords are used only on loads triggered by the LDDW instruction. Store
operations do not use doublewords.

Words: Words are aligned on even 4-byte (word) boundaries, and always start
at a byte address where the two LSBs are 0. A word access requires two adja-
cent 16-bit-wide banks.

Halfwords: Halfwords are aligned on even 2-byte (halfword) boundaries, and
always start at byte addresses where the LSB is 0. Halfword accesses require
the entire 16-bit-wide bank.

Bytes: There are no alignment restrictions on byte accesses.

2.4.6 Dual CPU Accesses to Internal Memory

Both the CPU and DMA can read and write 8-bit bytes, 16-bit halfwords, and
32-bit words. The data memory controller performs arbitration individually for
each 16-bit bank. Although arbitration is performed on 16-bit-wide banks, the
banks have byte enables to support byte-wide accesses. However, a byte
access prevents the entire 16 bits containing the byte from simultaneously be-
ing used by another access.

As long as multiple requesters access data in separate banks, all accesses are
performed simultaneously with no penalty. Also, when two memory accesses
involve separate 32K byte memory blocks, there are no memory conflicts,
regardless of the address. For multiple data accesses within the same block,
the memory organization also allows simultaneous multiple memory accesses
as long as they involve different banks. In one CPU cycle, two simultaneous
accesses to two different internal memory banks occur without wait states.
Two simultaneous accesses to the same internal memory bank stall the entire
CPU pipeline for one CPU clock, providing two accesses in two CPU clocks.
These rules apply regardless of whether the accesses are loads or stores.

Internal Data Memory

 2-22

Loads and stores from the same execute packet are seen by the data memory
controller during the same CPU cycle. Loads and stores from future or previous
CPU cycles do not cause wait states for the internal data memory accesses in
the current cycle. Thus, internal data memory access causes a wait state only
when a conflict occurs between instructions in the same execute packet access-
ing the same 16-bit wide bank. This conflict is an internal memory conflict. The
data memory controller stalls the CPU for one CPU clock, serializes the ac-
cesses, and performs each access separately. In prioritizing the two accesses,
any load occurs before any store access. A load in parallel with a store always
has priority over the store. If both the load and the store access the same re-
source (for example, the EMIF, or peripheral bus, internal memory block), the
load always occurs before the store. If both accesses are stores, the access
from DA1 takes precedence over the access from DA2. If both accesses are
loads, the access from DA2 takes precedence over the access from DA1.
Figure 2–11 and Figure 2–12 show what access conditions cause internal
memory conflicts when the CPU makes two data accesses (on DA1 and DA2).

Figure 2–11.Conflicting Internal Memory Accesses to the Same Block
(TMS320C6201/C6202(B)/C6203(B)/C6204/C6205)

DA1 Byte Halfword Word

DA2 2:0 000 001 010 011 100 101 110 111 000 010 100 110 000 100

Byte 000

001

010

011

100

101

110

111

Halfword 000

010

100

110

Word 000

100

Note: Conflicts shown in shaded areas.

Internal Data Memory

2-23TMS320C620x/C670x Internal Program and Data Memory

Figure 2–12. Conflicting Internal Memory Accesses to the Same Block (TMS320C6701)

DA1 Byte Halfword Word
Double
-word

D
A
2 3–0

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

0
0
0
0

0
0
1
0

0
1
0
0

0
1
1
0

1
0
0
0

1
0
1
0

1
1
0
0

1
1
1
0

0
0
0
0

0
1
0
0

1
0
0
0

1
1
0
0

0
0
0
0

1
0
0
0

0000

0001

0010

0011

0100

0101

B
0110

B
y 0111y
t
e

1000
e

1001

1010

1011

1100

1101

1110

1111

0000

0010

H
a 0100a
l
f

0110
f
w
o

1000
o
r
d

1010
d

1100

1110

W
0000

W
o 0100

r
d 1000d

1100

D
W

0000
W

1000

Note: Conflicts shown in shaded areas.

Internal Data Memory

 2-24

2.4.7 DMA Accesses to Internal Memory

The DMA controller can accesss any portion of one block of internal data
memory while the CPU is simultaneously accessing any portion of another
block. If both the CPU and the DMA controller are accessing the same block,
and portions of both accesses are to the same 16-bit bank, the DMA operation
can take place first or last, depending on the CPU/DMA priority settings.
Figure 2–11 and Figure 2–12 can be used to determine DMA versus CPU
conflicts. Assume that one axis represents the DMA access and the other rep-
resents the CPU access from one CPU data port. Then, perform this analysis
again for the other data port. If both comparisons yield no conflict, then there
is no CPU/DMA internal memory conflict. If either comparison yields a conflict,
then there is a CPU/DMA internal memory conflict. In this case, the priority is
resolved by the PRI bit of the DMA channel as described in Chapter 3,
TMS320C621x/C671x/C640x Two–Level Internal Memory. If the DMA chan-
nel is configured as higher priority than the CPU (PRI = 1), any CPU accesses
are postponed until the DMA accesses finish and the CPU incurs a 1-CPU-
clock wait state. If both CPU ports and the DMA access the same memory
block, the number of wait states increases to two. If the DMA has multiple con-
secutive requests to the block required by the CPU, the CPU is held off until
all DMA accesses to the necessary blocks finish. In contrast, if the CPU has
higher priority (PRI = 0), then the DMA access is postponed until the both CPU
data ports stop accessing that bank. In this configuration, a DMA access re-
quest never causes a wait state.

2.4.8 Data Endianness

Two standards for data ordering in byte-addressable microprocessors exist:

� Little-endian ordering, in which bytes are ordered from right to left, the
most significant byte having the highest address

� Big-endian ordering, in which bytes are ordered from left to right, the most
significant byte having the lowest address

Both the CPU and the DMA controller support a programmable endianness.
This endianness is selected by the LENDIAN pin on the device. LENDIAN = 1
selects little-endian, and LENDIAN = 0 selects big-endian. Byte ordering within
word and half word data resident in memory is identical for little-endian and
big-endian data. Table 2–12 shows which bits of a data word in memory are
loaded into which bits of a destination register for all possible CPU data loads
from big- or little-endian data. The data in memory is assumed to be the same
data that is in the register results from the LDW instruction in the first row.
Table 2–13 and Table 2–14 show which bits of a register are stored in which
bits of a destination memory word for all possible CPU data stores from big-

Internal Data Memory

2-25TMS320C620x/C670x Internal Program and Data Memory

and little-endian data. The data in the source register is assumed to be the
same data that is in the memory results from the STW instruction in the first
row.

Table 2–12. Register Contents After Little-Endian or Big-Endian Data Loads (TMS320C620x
and TMS320C670x)

Instruction
Address Bits

(1:0)
Big-Endian
Register Result

Little-Endian
Register Result

LDW 00 BA987654h BA987654h

LDH 00 FFFFBA98h 00007654h

LDHU 00 0000BA98h 00007654h

LDH 10 00007654h FFFFBA98h

LDHU 10 00007654h 0000BA98h

LDB 00 FFFFFFBAh 00000054h

LDBU 00 000000BAh 00000054h

LDB 01 FFFFFF98h 00000076h

LDBU 01 00000098h 00000076h

LDB 10 00000076h FFFFFF98h

LDBU 10 00000076h 00000098h

LDB 11 00000054h FFFFFFBAh

LDBU 11 00000054h 000000BAh

Note: The contents of the word in data memory at location xxxx xx00 is BA987654h.

Internal Data Memory

 2-26

Table 2–13. Register Contents After Little-Endian or Big-Endian Data Loads
(TMS320C6701 only)

Instruction
Address Bits

(2:0)
Big-Endian
Memory Result

Little-Endian
Memory Result

LDDW
(C6701 only)

000 FEDC BA98
7654 3210h

FEDC BA98
7654 3210h

LDW 000 FEDC BA98h 7654 3210h

LDW 100 7654 3210h FEDC BA98h

Note: The contents of the doubleword in data memory at location xxxx x000 before the ST
instruction executes is FEDC BA98 7654 3210h.

Table 2–14. Memory Contents After Little-Endian or Big-Endian Data Stores
(TMS320C620x/C670x)

Instruction Address Bits (1:0)
Big-Endian
Memory Result

Little-Endian
Memory Result

STW 00 BA98 7654h BA98 7654h

STH 00 7654 1970h 0112 7654h

STH 10 0112 7654h 7654 1970h

STB 00 5412 1970h 0112 1954h

STB 01 0154 1970h 0112 5470h

STB 10 0112 5470h 0154 1970h

STB 11 0112 1954h 5412 1970h

Note: The contents of the word in data memory at location xxxx xx00 before the ST instruction
executes is 01121970h. The contents of the source register is BA987654h.

Peripheral Bus

2-27TMS320C620x/C670x Internal Program and Data Memory

2.5 Peripheral Bus

The peripherals are controlled by the CPU and the DMA controller through
accesses of control registers. The CPU and the DMA controller access these
registers through the peripheral data bus. The DMA controller directly accesses
the peripheral bus controller, whereas the CPU accesses it through the data
memory controller.

2.5.1 Byte and Halfword Access

The peripheral bus controller converts all peripheral bus accesses to word
accesses. However, on read accesses both the CPU and the DMA controller
can extract the correct portions of the word to perform byte and halfword ac-
cesses properly. Any side-effects caused by a peripheral control register read
occur regardless of which bytes are read. In contrast, for byte or halfword
writes, the values the CPU and the DMA controller only provide correct values
in the enabled bytes. The values that are always correct are shown in
Table 2–15. Undefined results are written to the nonenabled bytes. If you are
not concerned about the values in the disabled bytes, this is acceptable. Other-
wise, access the peripheral registers only via word accesses.

Table 2–15. Memory Contents After Little-Endian or Big-Endian Data Stores

Access
Type

Address Bits
(1:0)

Big-Endian
Register

Little-Endian
Memory Result

Word 00 XXXXXXXX XXXXXXXX

Halfword 00 XXXX???? ????XXXX

Halfword 10 ????XXXX XXXX????

Byte 00 XX?????? ??????XX

Byte 01 ??XX???? ????XX??

Byte 10 ????XX?? ??XX????

Byte 11 ??????XX XX??????

Note: X indicates nibbles correctly written,
? indicates nibbles with undefined value after write.

Peripheral Bus

 2-28

2.5.2 CPU Wait States

Isolated peripheral bus controller accesses from the CPU causes six CPU wait
states. These wait states are inserted to allow pipeline registers to break up
the paths between traversing the on-chip distances between the CPU and
peripherals as well as for arbitration time.

2.5.3 Arbitration Between the CPU and the DMA Controller

As shown in Figure 2–7, Figure 2–8, Figure 2–9, and Figure 2–10, the peripher-
al bus controller performs arbitration between the CPU and the DMA controller
for the peripheral bus. Like internal data access, the PRI bits in the DMA controller
determine the priority between the CPU and the DMA controller. If a conflict
occurs between the CPU (via the data memory controller) the lower priority
requester is held off until the higher priority requester completes all accesses
to the peripheral bus controller. The peripheral bus is arbitrated as a single
resource, so the lower priority resource is blocked from accessing all peripherals,
not just the one accessed by the higher priority requester.

3-1

TMS320C621x/C671x/C64x
Two-Level Internal Memory

The TMS320C621x/C671x/C64x provides a two-level memory architecture
for the internal program bus and the data bus. The two-level memory consists
of the program cache and the data cache.

Topic Page

3.1 Overview 3-2.

3.2 TMS320C621x/C671x/C64x Cache Definitions 3-7.

3.3 TMS320C621x/C671x Two-Level Memory 3-10.

3.4 TMS320C64x Two-Level Memory 3-16.

3.5 L1P Operation 3-29.

3.6 L1D Operation 3-32.

3.7 L2 Operation 3–38.

Chapter 3

Overview

 3-2

3.1 Overview
The TMS320C621x/C671x/C64x has a two-level memory architecture for pro-
gram and data. The first level program cache is designated L1P, and the first
level data cache is designated L1D. Both the program and data memory share
the second level memory, designated L2. L2 is configurable as partial cache
and partial SRAM.

Figure 3–1 and Figure 3–2 show the block diagram of the C621x/C671x and
C64x, respectively. Table 3–1 summarizes the internal layout of these de-
vices. Figure 3–3 illustrates the bus connections between the CPU, internal
memories, and the enhanced DMA for the TMS320C6000.

Figure 3–1. TMS320C621x/C671x Block Diagram

Note: Refer to the specific device datasheet for its peripheral set.

C6000 DSP core
Instruction Fetch

Instruction Dispatch

Instruction Decode

Data Path A

A Register File

L1 S1 M1 D1

Control
Registers

Control
Logic

Test

In–Circuit
Emulation

Interrupt
Control

Data Path B

B Register File

L2S2M2D2

L1P Cache

L2
Memory

L1D Cache

Enhanced
DMA

Controller

Power Down
Logic

EMIF

Other
Peripherals

Boot
Configuration

Interrupt
Selector

PLL

Overview

3-3TMS320C621x/C671x/C64x Two-Level Internal Memory

Figure 3–2. TMS320C64x Block Diagram

Note: Refer to the specific device datasheet for its peripheral set.

C6000 DSP core
Instruction Fetch

Instruction Dispatch

Instruction Decode

Data Path A

A Register File

L1 S1 M1 D1

Control
Registers

Control
Logic

Test

In–Circuit
Emulation

Interrupt
Control

Data Path B

B Register File

L2S2M2D2

L1P Cache

L2
Memory

L1D Cache

Enhanced
DMA

Controller

Power Down
Logic

EMIFA

Other
Peripherals

EMIFB

Boot
Configuration

Interrupt
Selector

PLL

Overview

 3-4

Figure 3–3. TMS320C6000 Two-Level Internal Memory Block Diagram

LD
1 load data

S
T

1 store data

D
A

1 address

LD
2 load data

S
T

2 store data

D
A

2 address

C6000 CPU

Program fetch

Data path A Data path B

L2 cache
controller

RAM

EDMA

data

address

data

snoop address

L1 data cache
controller

Cache RAM

data

address

L1 program cache
controller

Cache RAM

snoop address

Program
address

Program
data

Overview

3-5TMS320C621x/C671x/C64x Two-Level Internal Memory

Table 3–1. TMS320C621x/C671x/C64x Internal Memory Details

TMS320C621x/C671x TMS320C64x

Internal Memory Structure Two Level Two Level

L1P size 4 Kbytes 16 Kbytes

L1P organization Direct mapped Direct mapped

L1P CPU access time 1 cycle 1 cycle

L1P line size 64 bytes 32 bytes

L1P banking 1 x 256 bit bank 8 x 32 bit banks

L1P read miss allocation 1 line allocated in L1P 1 line allocated in L1P

L1P read hit allocation Data read from L1P Data read from L1P

L1P write miss allocation L1P writes not supported L1P writes not supported

L1P write hit allocation L1P writes not supported L1P writes not supported

L1P –> L2 request size 2 fetches/L1P line 1 fetch/L1P line

L1P Protocol Read Allocate Read Allocate; Pipelined Misses

L1P Memory Single Cycle RAM Single cycle RAM

L1P –> L2 request CPU stall 5 cycles 8 cycles

L1D size 4 Kbytes 16 Kbytes

L1D organization 2-way set associative 2-way set associative

L1D CPU access time 1 cycle 1 cycle

L1D line size 32 bytes 64 bytes

L1D replacement strategy 2-way Least Recently Used 2-way Least Recently Used

L1D banking 64 bit wide dual ported RAM 8 x 32 bit banks

L1D read miss allocation 1 line allocated in L1D 1 line allocated in L1D

L1D read hit allocation Data read from L1D Data read from L1D

L1D write miss allocation No allocation in L1D, data sent to L2 No allocation in L1D, data sent to L2

L1D write hit allocation Data is written into hit L1D location Data is written into hit L1D location

L1D Protocol Read Allocate Read allocate, Pipelined Misses

L1D –> L2 request size 2 fetches/L1D line 2 fetch/L1D line

L1D –> L2 request CPU stall 4 cycles 6 cycles / SRAM

8 cycles / L2 Cache hit

Overview

 3-6

Table 3–1. TMS320C621x/C671x/C64x Internal Memory Details

TMS320C64xTMS320C621x/C671x

L2 size 64 Kbytes 1024Kbytes

L2 Cache Size 0/16/32/48/64KB 0/32/64/128/256KB

L2 SRAM Size 64/48/32/16/0 KB 1024/992/960/896/768KB

L2 organization 1/2/3/4-way set associative. 4-way set associative Cache

L2 line size 128 bytes 128 bytes

L2 replacement strategy 1/2/3/4-way Least Recently Used 4-way Least Recently Used

L2 banking 4 x 64 bit banks 8 x 64 bit banks

L2-L1P protocol Coherency snoop invalidates Coherency snoop invalidates

L2-L1D protocol Coherency snoop Coherency snoops

L2 protocol Read and Write Allocate Read and Write Allocate

L2 read miss allocation Data read from EDMA, stored in L2 Data read from EDMA, stored in L2;

L2 read hit allocation Data read from L2 Data read from L2

L2 write miss allocation Data is read from EDMA into LRU L2
line and modified with new data

Data is read from EDMA into LRU L2
line and modified with new data

L2 write hit allocation Data is written into hit L2 location Data is written into hit L2 location

L2 –> L1P read path width 256 bit 256bit

L2 –> L1D read path width 128 bit 256 bit

L1D –> L2 write path width 32 bit 64 bit

L1D –> L2 victim path width 128 bits 256 bit

L2 –> EDMA read path width 64 bit 64 bit

L2 –> EDMA write path width 64 bit 64 bit

TMS320C621x/C671x/C64x Cache Definitions

3-7TMS320C621x/C671x/C64x Two-Level Internal Memory

3.2 TMS320C621x/C671x/C64x Cache Definitions

The following is a list of terms that relate to the operation of the
TMS320C621x/C671x/C64x two-level caches. These terms are used
throughout the document.

Allocate – Allocation refers to the process of finding a location in the cache to store
new, uncached data.

Associativity – Associativity refers to the number of line frames in each set.

Clean – When a cache line holds data that is valid and not modified, that cache line is
clean.

Coherency – When a system uses a two-level memory system it is possible for the
same address to be stored in both levels at the same time. If the lower level data has
been modified, but the higher level memory has not been updated with the modification,
then the two levels are said to be incoherent. If the same data resides in both levels of
the memory hierarchy, then the two levels are said to be coherent.

Direct mapped cache – A direct mapped cache contains only one line that a specific
higher level memory can be cached in. This does not mean that the cache contains as
many lines as the memory it is caching, but instead that a memory location will only be
cached in one specific line. For example if a memory location is cached in a direct
mapped cache at location A, then cleaned out of the cache and then re-cached, it still
can only be cached in location A.

DMA – Direct memory access, this is a transaction of a block of data from one memory
space to another. It executes on the EDMA engine.

Dirty – When a cache line holds data that is valid and modified by the CPU but the modi-
fication has not been updated in the next higher level memory, that cache line is dirty.

Eviction – When a victim line contains dirty data, the data must be written out to the
next level memory to maintain coherency. This process of writing dirty data to the next
level memory is eviction. This is caused by a matching line address missing and being
brought in to cache.

Execute Packet – An execute packet consists of a block of instructions that begin exe-
cution in parallel in a single cycle.

Fetch Packet – A fetch packet is a block of 8 instructions that are fetched in a single
cycle some or all of these instructions are not necessarily executed in that cycle.

Higher Level Memory – A memory that is closer to the system memory. In this case
the L2 is the higher level memory. It is closer to the physical memory external to the
processor.

Hit – A cache hit occurs when the data for a requested memory location is present in
the cache. A cache hit minimizes stalling, since the data can be fetched from the cache
much faster than from the source memory.

Least recently used (LRU) allocation – For a set associative cache, least recently
used allocation refers to the method used to choose which line frame to allocate space
in on an allocation. When all of the lines in the set that the address maps to contain valid
data, the line that was least recently read or written is allocated to store new data. In
other words, the most recently used stays.

TMS320C621x/C671x/C64x Cache Definitions

 3-8

Line – A cache line is the amount of data fetched from the next higher level memory
on a cache miss. The cache line can be larger than the size of the data request that
forced the cache miss. For example a load byte instruction could force the L1D to miss
but the cache will fetch an entire cache line from L2, not just the requested byte.

Line Frame – A line frame is a location in a cache that holds cached data (one line),
an associated address tag and line state data. The state data indicates if the line is valid
or dirty.

Load through – When a CPU request misses both a first level and the second level
cache, the data is fetched from the external memory and stored to both the first level
and second level cache simultaneously. A cache that stores data ,and sends that data
to the lower cache at the same time, is a load-through cache. Using a load-through
cache reduces the stall time compared to a cache which first stores the data, then
sends it to the next lower level cache.

Long distance access – Accesses made by the CPU which are to a non-cacheable
memory space are long distance accesses, and should be thought of as accesses di-
rectly to external memory. These are also used when a memory mapped control regis-
ter is accessed.

Lower Level Memory – This is a memory that is closest to the CPU and furthest away
from the physical memory system. In this case it would be the L1D and L1P being the
lowest-level memories.

Memory Ordering – This is the process of defining what order the data will be pro-
cessed in memory. There are two types, strong and relaxed. In the strong case all read
and write operations take place strictly in program order. When accesses occur in paral-
lel, the writes always take place before reads. If there are multiple reads or multiple
writes, the data from the A datapath must be read first or written first depending on
whether the execute packet is made up of loads or stores in parallel. Strong memory
ordering is intuitive to normal software data flow.

Miss – A cache miss occurs when the data for a requested memory location is not in
the cache. A miss causes the CPU to stall while the data is fetched from the next ‘higher’
level cache.

Miss Pipelining – When a single miss occurs many events have to occur to fetch the
missing line into the lower-level memory. This includes fetching the data, writing to the
tag memories, and writing back the evicted line. When multiple misses occur, this over-
head is spread out over all of the misses. Only the overhead is seen for the first miss.
Subsequent misses see much less overhead per miss.

Read allocate – A read allocate cache only allocates space in the cache on a read
miss. A write miss does not cause an allocate to occur, instead the write data is passed
on to the next ‘higher’ level cache.

Set – A set is a collection of line frames in which a line can reside. A direct mapped
cache contains one line per set, an n-way set-associative cache contains n lines per
set.

Set-associative cache – A set-associative cache contains multiple lines that each
higher level memory location can be cached in. For example, memory location X can

TMS320C621x/C671x/C64x Cache Definitions

3-9TMS320C621x/C671x/C64x Two-Level Internal Memory

be cached in a set-associative cache at line A, B, or C. Location X is fetched and stored
in line A, then it is cleaned out of the cache. When X is re-fetched, it can be cached in
line A, B, or C depending on which line is allocated. Lines A, B, and C make up a set
in this cache.

Snoop – Snooping is a method by which a high-level memory queries a lower-level
memory to determine if the two memories contain data for the same address. In a two-
level memory system, when data is moved out of the higher-level memory the lower-
level memory must be snooped to determine if the address which is being evicted is
incoherent with the same address in the lower-level memory.

Tag – The tag is a storage element containing the most significant bits of the line ad-
dress. These are stored in the tag memories. The tag memories are queried to deter-
mine whether a range of addresses is present in the cache. This gives either a hit or
a miss.

Thrash – When the CPU makes alternating accesses to multiple addresses which all
map to the same cache line, each access will force the previous access out of the
cache. Any subsequent access to the first location will again have to fetch the data from
the next higher level memory since the data was evicted from the cache. This process
of loading data into the cache, writing over the data, and reloading the data from the
next-level memory is referred to as “thrashing the cache”.

Valid – When a cache line holds data that has been fetched from the next level memory,
that cache line is valid.

Victim – When space is allocated in a cache, but all of the lines in the set that the ad-
dress maps to contain valid data, then the data in the least recently used line is overwrit-
ten with the new data. The line that is overwritten is known as the victim line.

Writeback – A writeback cache will modify only its data on a write hit; it will not notify
the next higher level memory that the write occurred. Thus the cache and the next -level
memory will be incoherent, but the cache will hold the correct data.

Write allocate – A write-allocate cache allocates space for either a read or write miss.
On a write miss, the space is allocated in the cache and the data is written into the
cache; the data is not sent to the next level cache.

Write Merging – If writes have the same double word address, they can be merged
into a single write. For example, two word stores to the same double word could be
merged into a single write.

TMS320C621x/C671x Two-Level Memory

 3-10

3.3 TMS320C621x/C671x Two-Level Memory

3.3.1 L1P Description

On the TMS320C621x/C671x, the L1P is a 4 Kbyte direct mapped cache with
a 64 byte line size and 64 sets. A 32-bit CPU program address is divided into
three pieces to determine the physical L1P location where the data can reside.
The six least significant bits indicate the byte offset of the first word in the pro-
gram fetch packet. Since the CPU requires one fetch packet per fetch, the five
least significant bits of this offset are ignored and only the upper bit is used to
determine which half of the line is sent to the CPU. The next six bits of the pro-
gram address are used to indicate in which set the data can reside. Since the
L1P is a direct mapped cache, each the data for each address can only reside
in one of the possible 64 sets. The remaining 20 most significant address bits
are used as a unique tag to label what data is currently residing in that cache
line. Figure 3–4 illustrates a 32 bit address divided into the tag, set, and offset
fields.

Figure 3–4. TMS320C621x/C671x L1P Address Allocation

31 12 11 6 5 0

Tag Set Index Offset

For example, the address 0x801ef183 would be split into the following: Offset
= 0x3, Set Index = 0x6; Tag = 0x801ef.

The L1P operation is controlled by the CPU control status register (CSR), L1P
flush base address register (L1PFBAR), L1P flush word count register
(L1PFWC), and the cache configuration register (CCFG). Refer to section 3.5
for a detailed description of the operation of these registers.

An L1P hit completes in one cycle, without stalling the CPU. An L1P miss that
hits in L2 stalls the CPU for 5 cycles. An L1P miss that misses in L2 stalls the
CPU until the L2 retrieves the data from external memory and transfers the
data to the L1P, which then returns the data to the CPU.

3.3.2 L1D Description

The TMS320C621x/C671x L1D is a 4 Kbyte, two-way set associative cache
with a 32-byte line size and 64 sets. A physical address from the CPU is divided
into four regions to select the appropriate cache set to allocate the data in and
to select the correct word from that set. The lower two address bits are a word
offset into the address. The next three bits select the word in the set that con-

TMS320C621x/C671x Two-Level Memory

3-11TMS320C621x/C671x/C64x Two-Level Internal Memory

tains the requested data. The next six bits identify the appropriate set to search
for the requested data. The remaining 21 bits are the tag value for the address.
Figure 3–5 illustrates a 32 bit address divided into the tag, set, word, and offset
fields.

Figure 3–5. TMS320C621x/C671x L1D Address Allocation

31 11 10 5 4 2 1 0

Tag Set Index Word Offset

The L1D operation is controlled by the CPU control status register (CSR), L1D
flush base address register (L1DFBAR), L1D flush word count register
(L1DFWC) and the cache configuration register (CCFG). Refer to section 3.6
for a detailed description of the operation of these registers.

An L1D hit completes in one cycle, without stalling the CPU. An L1D miss
which hits in L2 stalls the CPU for 4 cycles. An L1D miss which misses in L2
stalls the CPU until the L2 retrieves the data from external memory and trans-
fers the data to the L1D, which then returns the data to the CPU.

A write buffer exists between the L1D and L2 caches. This buffer can hold the
data for up to four write-misses words. As long as this buffer is not full, then
new L1D write miss or victim operations can be accepted without stalling the
CPU. A L1D write miss, or a snoop that hits an entry in the write buffer, will stall
the CPU until the buffer has been flushed.

The write path between the L1D and L2 is 32 bits wide for the C621x/C671x.
This path can transmit two 16-bit write misses to different L2 banks in one
cycle. If the two write misses are to the same bank, then they will be serialized
and transmitted in 2 cycles. An L1D victim write requires 2 cycles, since only
one half of the L1D line can be transmitted down the victim path in each cycle.

3.3.3 L2 Description

The L2 operates in four operation modes, depending on the state of the CCFG
register. Figure 3–6 shows the division of the L2 SRAM into mapped memory
space and cache for each TMS320C621x/C671x L2 Mode. It also shows how
the memory configuration for the L2 affects the proportion of cache and SRAM.

TMS320C621x/C671x Two-Level Memory

 3-12

Figure 3–6. TMS320C621x/C671x L2 Memory Configuration

16 Kbytes

16 Kbytes

16 Kbytes

ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ

16 Kbytes

1/
4

S
R

A
M

3–
W

ay
 C

ac
he

1/
2

S
R

A
M

2–
W

ay
 C

ac
he

1–
W

ay
 C

ac
he

3/
4

S
R

A
M

0x00000000

0x0000C000

0x00008000

0x00004000

A
ll

S
R

A
M

Block Base AddressL2 Mode

000 011010001

4–
W

ay
 C

ac
he

111

L2 Memory

In the TMS320C621x/C671x, the L2 is a 64 Kbyte memory that can operate
in several modes. The L2 operation is controlled by the cache configuration
register (CCFG), the L2 flush base address register (L2FBAR), the L2 flush
word count register (L2FWC), the L2 clean base address register (L2CBAR),
the L2 clean word count register (L2CWC), the L2 flush register (L2FLUSH),
and the L2 clean register (L2CLEAN). Refer to section 3.7 for a detailed de-
scription of the operation of these registers and of the L2. Figure 3–7,
Figure 3–8, and Figure 3–9 show how the 32-bit address is split into the tag,
set index and offset fields.

TMS320C621x/C671x Two-Level Memory

3-13TMS320C621x/C671x/C64x Two-Level Internal Memory

Figure 3–7. TMS320C621x/C671x L2 Address Allocation 64K/48K Cache
(L2MODE = 011b or 111b)

31 15 14 5 4 0

Tag Set Index Offset

Figure 3–8. TMS320C621x/C671x L2 Address Allocation 32K Cache (L2MODE = 010b)

31 14 13 5 4 0

Tag Set Index Offset

Figure 3–9. TMS320C621x/C671x L2 Address Allocation 16K Cache (L2MODE = 001b)

31 13 12 5 4 0

Tag Set Index Offset

3.3.4 TMS320C621x/C671x Data Alignment

The following data alignment restrictions apply:

� Double words – For C67x, double words are aligned on even 8-byte
(double word) boundaries, and always start at a byte address where the
three LSBs are 0. Double words are used only on loads triggered by the
LDDW instruction. Store operations on the C67x do not use double words.
Load and store operations in the C62x do not use double words.

� Words – Words are aligned on even 4-byte (word) boundaries, and al-
ways start at a byte address where the two LSBs are 0. A word access re-
quires two adjacent 16-bit-wide banks.

� Halfwords – Halfwords are aligned on even 2-byte (halfword) boundaries,
and always start at byte addresses where the LSB is 0. Halfword accesses
require the entire 16-bit-wide bank.

� Bytes – There are no alignment restrictions on byte accesses.

TMS320C621x/C671x Two-Level Memory

 3-14

3.3.5 Control Registers

In addition to the aforementioned cache control registers, the memory attribute
registers (MARs) control the TMS320C621x/C671x cache operation.
Figure 3–10 shows the format of the memory attribute registers for the
TMS320C621x and TMS320C671x devices. Refer to section 3.7.4 for a de-
tailed description of the MARs bit field and its effect on the caches.

Figure 3–10. TMS320C621x/C671x L2 Memory Attribute Registers (MAR0 – MAR15)

31 1 0

Reserved CE

RW,+x RW,+0

Table 3–2 lists the control registers that affect the TMS320C621x/C671x and
their address in the TMS320C621x/C671x memory map.

Table 3–2. TMS320C621x/C671x Internal Memory Control Registers Addresses

Register Address,
Bytes Register Mnemonic Register Name

01840000h CCFG Cache configuration register

01844000h L2FBAR L2 flush base address register

01844004h L2FWC L2 flush word count register

01844010h L2CBAR L2 clean base address register

01844014h L2CWC L2 clean word count register

01844020h L1PFBAR L1P flush base address register

01844024h L1PFWC L1P flush word count register

01844030h L1DFBAR L1D flush base address register

01844034h L1DFWC L1D flush word count register

01845000h L2FLUSH L2 flush register

01845004h L2CLEAN L2 clean register

01848200h MAR0 Controls CE0 range 80000000h – 80FFFFFFh

01848204h MAR1 Controls CE0 range 81000000h – 81FFFFFFh

01848208h MAR2 Controls CE0 range 82000000h – 82FFFFFFh

0184820Ch MAR3 Controls CE0 range 83000000h – 83FFFFFFh

TMS320C621x/C671x Two-Level Memory

3-15TMS320C621x/C671x/C64x Two-Level Internal Memory

Table 3–2. TMS320C621x/C671x Internal Memory Control Registers Addresses (Continued)

Register Address,
Bytes Register NameRegister Mnemonic

01848240h MAR4 Controls CE1 range 90000000h – 90FFFFFFh

01848244h MAR5 Controls CE1 range 91000000h – 91FFFFFFh

01848248h MAR6 Controls CE1 range 92000000h – 92FFFFFFh

0184824Ch MAR7 Controls CE1 range 93000000h – 93FFFFFFh

01848280h MAR8 Controls CE2 range A0000000h – A0FFFFFFh

01848284h MAR9 Controls CE2 range A1000000h – A1FFFFFFh

01848288h MAR10 Controls CE2 range A2000000h – A2FFFFFFh

0184828Ch MAR11 Controls CE2 range A3000000h – A3FFFFFFh

018482C0h MAR12 Controls CE3 range B0000000h – B0FFFFFFh

018482C4h MAR13 Controls CE3 range B1000000h – B1FFFFFFh

018482C8h MAR14 Controls CE3 range B2000000h – B2FFFFFFh

018482CCh MAR15 Controls CE3 range B3000000h – B3FFFFFFh

TMS320C64x Two-Level Memory

 3-16

3.4 TMS320C64x Two-Level Memory

3.4.1 L1P Description

The L1P on the C64x is a 16 Kbyte direct mapped cache with a 32-byte line
size and 512 sets. A 32-bit CPU program address is divided into three pieces
to determine the physical L1P location where the data can reside. The five
least significant bits indicate the byte offset of the program fetch packet. The
next nine bits of the program address are used to indicate in which set the data
can reside. Since the L1P is a direct mapped cache, each address’s data can
only reside in one of the possible 512 sets. The remaining 18 most significant
address bits are used as a unique tag to label what data is currently residing
in that cache line. Figure 3–11 illustrates a 32-bit address divided into the tag,
set, and offset fields.

Figure 3–11.TMS320C64x L1P Address Allocation

31 14 13 5 4 0

Tag Set Index Offset

The L1P operation is controlled by the CPU control status register (CSR), the
L1P flush base address register (L1PFBAR), the L1P flush word count register
(L1PFWC) and the cache configuration register (CCFG). Refer to section 3.5
for a detailed description of the operation of these registers.

An L1P hit completes in one cycle, without stalling the CPU. An L1P miss which
hits in L2 stalls the CPU from 0 to 7 cycles, depending on the parallelism of the
execute packet and the execute phase of the pipeline when the miss occurs.
(For more information on the phase of the C6000 pipeline refer to the
SPRU189 TMS320C6000 CPU Instruction Set Reference Guide, which is de-
scribed in the Related Documentation from Texas Instruments section.)

The performance of the pipelining is constant, regardless of the alignment of
the execute packets. On the C64x architecture, execute packets can span
fetch packet boundaries. For example, three execute packets of 5, 5 and 6 in-
structions only occupy two fetch packets.

An L1P miss that misses in L2 cache stalls the CPU until the L2 retrieves the
data from external memory and transfers the data to the L1P, which then re-
turns the data to the CPU. This delay will depend upon the type of external
memory used to hold the external program.

TMS320C64x Two-Level Memory

3-17TMS320C621x/C671x/C64x Two-Level Internal Memory

3.4.2 L1D Description

The TMS320C64x L1D is a 16 Kbyte cache, with a 64-bit wide write bus from
the L1D to the L2 memory. It is a two-way set associative cache with a 64 byte
line size and 128 sets. A physical address from the CPU is divided into four
regions to select the appropriate cache set to allocate the data in and to select
the correct word from that set. The lower two address bits are a word offset into
the address. The next four bits select the word in the set that contains the re-
quested data. The next seven bits identify the appropriate set to search for the
requested data. The remaining 20 bits are the tag value for the address.
Figure 3–12 illustrates a 32-bit address divided into the tag, set, word, and off-
set fields.

Figure 3–12. TMS320C64x L1D Address Allocation

31 13 12 6 5 2 1 0

Tag Set Index Word Offset

The L1D operation is controlled by the CPU control status register (CSR), the
L1D flush base address register (L1DFBAR), the L1D flush word count register
(L1DFWC) and the cache configuration register (CCFG). Refer to section 3.6
for a detailed description of the operation of these registers.

An L1D hit completes in one cycle, without stalling the CPU. An L1D miss
which hits in L2 stalls the CPU for between 2 and 8 cycles. The 2 cycle penalty
refers to the steady state case of the average penalty for a large number of
continuous misses (See section 3.4.3). The worst case of a single miss in L1D,
where L2 is configured as cache and there is a L2 cache hit causes a 8 cycle
stall. An L1D miss which misses in L2 stalls the CPU until the L2 retrieves the
data from external memory and transfers the data to the L1D, which then re-
turns the data to the CPU. The external miss penalty will vary depending on
the type and width of external memory used to hold external data.

The L1D is a read allocate cache only. Any write misses to L1D are passed on
to L2 and do not cause a line to be fetched into L1D.

When a read miss occurs that causes a victim to occur of a dirty line, the least
recently used line is written back to L2 and then overwritten in L1D. This write-
back operation can be pipelined with the read request and other outstanding
write-backs.

If there are two accesses to a line in the same cycle, only one miss penalty will
occur. Similarly if there are two accesses in succession to the same line, and
the first one is a miss, the second access will not incur any additional miss pen-
alty.

TMS320C64x Two-Level Memory

 3-18

3.4.3 Pipelining Cache Misses

Unlike the C621x/C671x architecture, the C64x architecture provides a mech-
anism to reduce the penalty for first level cache misses. This technique is
known as “miss pipelining”. If misses occur in clusters, the retrieval of the
missed lines can be overlapped. This amortizes the overhead of a cache miss
and causes the average miss penalty to be significantly less than that of an
isolated miss. An isolated cache miss causes a CPU stall of 8 clock cycles. If
another cache miss occurs in either the same clock cycle or in the next clock
cycle, the number of stalls incurred will not be 8, as in the first miss, but only
2. This technique reduces the average stalls per miss from 8 clock cycles to
5 clock cycles. The averaging effect improves when there are more cache
misses in parallel. This technique is used in both L1P and L1D and is explained
in sections 3.5.1 and 3.6.3 respectively.

3.4.4 Memory Banking Structure

The C64x has a different memory banking structure than that of the
C621x/C671x. The C621x/C671x least significant bit (LSB) banks are on
16-bit boundaries. Therefore any memory accesses where the 2 LSBs of the
addresses are the same will access the same bank. If these memory accesses
are in parallel, the CPU will stall for one cycle. On the C64x the memory banks
are on 32-bit boundaries. Therefore any memory accesses where the 3 LSBs
of the addresses are the same will access the same bank. C64x memory ac-
cesses to the same bank will cause a stall except in the following cases:

� The accesses are to the same bank, but they are in the same L1D cache
line. In other words, they are adjacent accesses to the same 32-bit ad-
dress, but the 2 LSBs are not the same.

� There will be no stall if the parallel accesses are 8 or 16 bits wide to the
same 32 bit bank, provided the accesses have different 2 LSBs. On the
C621x/C671x, any parallel 8-bit wide accesses to the same 16-bit bank
but with different first LSB would cause a stall. This is not the case on the
C64x.

� Non-aligned accesses will never cause a memory bank stall as they can-
not occur in parallel.

TMS320C64x Two-Level Memory

3-19TMS320C621x/C671x/C64x Two-Level Internal Memory

3.4.5 Memory Ordering Support

The C64x enforces a strong memory ordering model in the CPU and its local
memories such as L1D, and L2. The L1P is read only and thus its memory or-
dering with respect to L1D and L2 is irrelevant. Strong memory ordering en-
forces the order in which the data is written to and read from memory. Strong
memory ordering enforces the exact same order in which the data is requested
in the program flow. This program order is defined in section 3.2 of the cache
definitions.

This ordering restriction guarantees correctness of the program execution and
any complex interactions with peripherals. This currently includes any host
processor interactions with the local memory (L2). Section 3.4.6 describes
certain C64x stall cases that are not implemented on the C621x/C671x.

3.4.6 L1D – L2 Write Buffer

A write buffer exists between the L1D and L2 caches. There can be up to four
non-mergeable write misses outstanding in the write buffer without stalling the
CPU. If a write miss occurs when the write buffer is full, the CPU will stall until
the L2 is no longer busy processing read or write misses. This is done to guar-
antee correct memory ordering requirements.

The write buffer allows merging of write requests. It will merge two write misses
into a single transaction providing the following rules are obeyed:
� The double-word address of the two accesses is the same
� The two accesses are to L2 configured as SRAM
� The oldest write has just been placed in the write buffer queue
� The newest write has not been placed in the buffer.queue

When two stores are adjacent and L2 is configured as SRAM, the two stores
are merged into a single double word store. This case is quite common. By
merging smaller writes together, the likelihood of a full store buffer decreases.
This in turn reduces the chance of a CPU stall taking place.

Once an access has been written into the write buffer, it is invisible to the L2
snoop hardware. The snoop hardware cannot see what is in the write buffer,
so it waits until the buffer empties. This behavior prevents memory ordering
violations. The L2 snoop hardware also queries what data is present in L1D;
this prevents data coherency problems.

TMS320C64x Two-Level Memory

 3-20

Here are some examples of the behaviors mentioned above:

1) A write miss occurs in L1D and this miss is passed into the write buffer. In
a subsequent cycle, a write hit occurs in L1D. The L2 cannot snoop the
write buffer so both the CPU and L1D hit is stalled until the write buffer has
emptied. The ordering rule being observed here is that all writes must oc-
cur in the order that they are dispatched in the program flow.

2) A write miss occurs in L1D and is passed into the write buffer. In the next
cycle, a read miss occurs in L1D. The CPU and L1D will stall until the write
buffer has been emptied. The strong memory ordering rule being ob-
served here is that writes have to complete before reads.

3) A host CPU writes to an area of L2 memory. The L2 will snoop L1D for the
memory addresses sought by the host and will invalidate the relevant lines
in L1D.

4) A host CPU reads an area of L2 memory. The L2 will snoop L1D for the
memory addresses sought by the host and will copy back the data from
the lines that contain the data for the addresses sought by the host CPU.

3.4.7 L2 Description

The L2 operates in five modes, depending on the state of the CCFG register.
Figure 3–13 shows the division of the L2 SRAM into mapped memory space
and cache for each TMS320C64x L2 Mode.

TMS320C64x Two-Level Memory

3-21TMS320C621x/C671x/C64x Two-Level Internal Memory

Figure 3–13. TMS320C64x L2 Memory Configuration

3/
4

S
R

A
M

4–Way

7/
8

S
R

A
M

4–
W

ay
 C

ac
he

4–
W

ay

31
/3

2
S

R
A

M

0x00000000

A
ll

S
R

A
M

011010001

4–
W

ay
 C

ac
he

111

64 Kbytes

32Kbytes

32Kbytes

0x000E0000

128Kbytes

768Kbytes

0x000C0000

0x000F0000

0x000F8000

0x00100000

15
/1

6
S

R
A

M

000

L2 Mode L2 Memory Block Base Address

TMS320C64x Two-Level Memory

 3-22

The C64x L2 is a 1024 Kbyte memory that can operate in several modes. The
L2 operation is controlled by the cache configuration register(CCFG), the L2
flush base address register (L2FBAR), the L2 flush word count register
(L2FWC), the L2 clean base address register (L2CBAR), the L2 clean word
count register (L2CWC), the L2 flush register (L2FLUSH), and the L2 clean
register (L2CLEAN). Refer to section 3.7 for a detailed description of the op-
eration of these registers and of the L2. Figure 3–14, Figure 3–15,
Figure 3–16, and Figure 3–17 show how the 32-bit address is separated out
into the tag, set index, and offset fields for the various CCFG modes.

Figure 3–14. TMS320C64x L2 Address Allocation, 256K Cache (L2MODE = 111b)

31 17 16 5 4 0

Tag Set Index Offset

Figure 3–15. TMS320C64x L2 Address Allocation, 128K Cache (L2MODE = 011b)

31 16 15 5 4 0

Tag Set Index Offset

Figure 3–16. TMS320C64x L2 Address Allocation, 64K Cache (L2MODE = 010b)

31 15 14 5 4 0

Tag Set Index Offset

Figure 3–17. TMS320C64x L2 Address Allocation, 32K Cache (L2MODE = 001b)

31 14 13 5 4 0

Tag Set Index Offset

TMS320C64x Two-Level Memory

3-23TMS320C621x/C671x/C64x Two-Level Internal Memory

3.4.8 TMS320C64x Data Alignment

The following data alignment restrictions apply:

� Doublewords – The C64x can access double words on any byte bounda-
ry. For doublewords aligned on an even 8-byte boundary an LDDW in-
struction is used for loads and an STDW is used for double word stores.
For doublewords not aligned on an even 8-byte boundary, the C64x can
use the LDNDW and STNDW instructions for loads and stores respective-
ly.

� Words – The C64x can access words on any byte boundary. For words
aligned on an even 4-byte (word) boundary an LDW instruction is use for
loads and an STW is used for stores. Words are aligned on even 4-byte
(word) boundaries, and always start at a byte address where the two LSBs
are 0. For words not aligned on an even 4-byte boundary, the C64x can
use the LDNW and STNW instructions for loads and stores respectively.

� Halfwords – Halfwords are aligned on even 2-byte (halfword) boundaries,
and always start at byte addresses where the LSB is 0. Halfword accesses
require the entire 16-bit-wide bank.

� Bytes – There are no alignment restrictions on byte accesses.

Note: The LDNDW, STNDW, LDNW, STNW instructions can occur on any
byte boundary, but only one of these instructions can occur per cycle. A
single non–aligned access can cause two L1D misses. If a non-aligned ac-
cess occurs that has parts from different lines, these two accesses are not
forced to be strongly ordered with respect to one another.

TMS320C64x Two-Level Memory

 3-24

3.4.9 Control Registers

The L1P and L1D caches may need to change modes more frequently within
an application than the L2. Their functionality is controlled via the PCC and
DCC bits in the internal CPU control status register(CSR). Figure 3–18 shows
the control status register (CSR). Section 3.5 and section 3.6 explain the op-
eration of the PCC and DCC bits, respectively.

Figure 3–18. TMS320C64x Control Status Register (CSR)

31 24 23 16

CPU-ID Revision ID

R R

15 10 9 8 7 5 4 2 1 0

PWRD SAT EN PCC DCC PGIE GIE

RW,+0 R,C,+0 R,+0 RW,+0 RW,+0 RW,+0 RW,+0

Along with other cache control registers, the memory attribute registers
(MARs) control the C64x cache operation. Figure 3–19 shows the format of
the memory attribute registers for the C64x. Refer to section 3.7.4 for a de-
tailed description of the MARs bit field and its effects on the caches. Bit CE al-
lows the address range to be cached in L2 cache.

Figure 3–19. TMS320C64x L2 Memory Attribute Registers (MAR0 – MAR255)

31 1 0

Reserved CE

RW,+x RW,+0

TMS320C64x Two-Level Memory

3-25TMS320C621x/C671x/C64x Two-Level Internal Memory

Table 3–3 shows the MAR registers for the various ranges in the entire
memory map.

The C64x MAR registers are compatible with the C621x/C671x MAR regis-
ters. They have the same register address corresponding to the same memory
range. For example, MAR128 on C64x at address 0x01848200 controls ad-
dress range 80000000h to 80FFFFFFh. On C621x/C671x this same register
was named MAR0.

The L2 allocation registers (L2ALLOC0, L2ALLOC1, L2ALLOC2, and L2AL-
LOC3) shown in Figure 3–20 allow the user to specify the maximum number
of outstanding L2 transfer requests on each priority level transfer request
queue. The defaults for the L2 allocate field (L2ALLOC) of the L2ALLOC0,
L2ALLOC1, L2ALLOC2 and L2ALLOC3 registers are 6,2,2,2 respectively. Us-
ers can specify which of the transfer priority levels the L2 should use for all
cache related accesses by programming the P field of the CCFG register (sec-
tion 3.7). For example, to use the high priority level (Queue 1) for L2 controller
transfers, P must be set to 001b and the L2ALLOC field in the L2ALLOC1 must
be set to a non-zero value. See Chapter 6, EDMA Controller, for details.

Figure 3–20. TMS320C64x L2 Allocation Registers (L2ALLOC0 – L2ALLOC3)

L2ALLOC0

31 3 2 0

Reserved L2ALLOC

R,+0 RW,+110

L2ALLOC1

31 3 2 0

Reserved L2ALLOC

R,+0 RW,+010

L2ALLOC2

31 3 2 0

Reserved L2ALLOC

R,+0 RW,+010

L2ALLOC3

31 3 2 0

Reserved L2ALLOC

R,+0 RW,+010

Table 3–3 lists all the C64x control registers.

TMS320C64x Two-Level Memory

 3-26

Table 3–3. TMS320C64x Internal Memory Control Registers Addresses

Register
Address,

Bytes
Register

Mnemonic Register Description

01840000h CCFG Cache configuration register

01842000h L2ALLOC0 L2 allocation register 0

01842004h L2ALLOC1 L2 allocation register 1

01842008h L2ALLOC2 L2 allocation register 2

0184200Ch L2ALLOC3 L2 allocation register 3

01844000h L2FBAR L2 flush base address register

01844004h L2FWC L2 flush word count register

01844010h L2CBAR L2 clean base address register

01844014h L2CWC L2 clean word count register

01844020h L1PFBAR L1P flush base address register

01844024h L1PFWC L1P flush word count register

01844030h L1DFBAR L1D flush base address register

01844034h L1DFWC L1D flush word count register

01845000h L2FLUSH L2 flush register

01845004h L2CLEAN L2 clean register

 01848000h to
0184817Ch

MAR0 to
MAR95

Reserved

01848180h MAR96 Controls EMIFB CE0 range 60000000h – 60FFFFFFh

01848184h MAR97 Controls EMIFB CE0 range 61000000h – 61FFFFFFh

01848188h MAR98 Controls EMIFB CE0 range 62000000h – 62FFFFFFh

0184818Ch MAR99 Controls EMIFB CE0 range 63000000h – 63FFFFFFh

01848190h MAR100 Controls EMIFB CE1 range 64000000h – 64FFFFFFh

01848194h MAR101 Controls EMIFB CE1 range 65000000h – 65FFFFFFh

01848198h MAR102 Controls EMIFB CE1 range 66000000h – 66FFFFFFh

0184819Ch MAR103 Controls EMIFB CE1 range 67000000h – 67FFFFFFh

018481A0h MAR104 Controls EMIFB CE2 range 68000000h – 68FFFFFFh

018481A4h MAR105 Controls EMIFB CE2 range 69000000h – 69FFFFFFh

018481A8h MAR106 Controls EMIFB CE2 range 6A000000h – 6AFFFFFFh

018481ACh MAR107 Controls EMIFB CE2 range 6B000000h – 6BFFFFFFh

018481B0h MAR108 Controls EMIFB CE3 range 6C000000h – 6CFFFFFFh

018481B4h MAR109 Controls EMIFB CE3 range 6D000000h – 6DFFFFFFh

018481B8h MAR110 Controls EMIFB CE3 range 6E000000h – 6EFFFFFFh

018481BCh MAR111 Controls EMIFB CE3 range 6F000000h – 6FFFFFFFh

018481C0h to
018481FCh

MAR112 to
MAR127

Reserved

TMS320C64x Two-Level Memory

3-27TMS320C621x/C671x/C64x Two-Level Internal Memory

Table 3–3. TMS320C64x Internal Memory Control Registers Addresses (Continued)

Register
Address,

Bytes Register Description
Register

Mnemonic

01848200h MAR128 Controls EMIFA CE0 range 80000000h – 80FFFFFFh

01848204h MAR129 Controls EMIFA CE0 range 81000000h – 81FFFFFFh

01848208h MAR130 Controls EMIFA CE0 range 82000000h – 82FFFFFFh

0184820Ch MAR131 Controls EMIFA CE0 range 83000000h – 83FFFFFFh

01848210h MAR132 Controls EMIFA CE0 range 84000000h – 84FFFFFFh

01848214h MAR133 Controls EMIFA CE0 range 85000000h – 85FFFFFFh

01848218h MAR134 Controls EMIFA CE0 range 86000000h – 86FFFFFFh

0184821Ch MAR135 Controls EMIFA CE0 range 87000000h – 87FFFFFFh

01848220h MAR136 Controls EMIFA CE0 range 88000000h – 88FFFFFFh

01848224h MAR137 Controls EMIFA CE0 range 89000000h – 89FFFFFFh

01848228h MAR138 Controls EMIFA CE0 range 8A000000h – 8AFFFFFFh

0184822Ch MAR139 Controls EMIFA CE0 range 8B000000h – 8BFFFFFFh

01848230h MAR140 Controls EMIFA CE0 range 8C000000h – 8CFFFFFFh

01848234h MAR141 Controls EMIFA CE0 range 8D000000h – 8DFFFFFFh

01848238h MAR142 Controls EMIFA CE0 range 8E000000h – 8EFFFFFFh

0184823Ch MAR143 Controls EMIFA CE0 range 8F000000h – 8FFFFFFFh

01848240h MAR144 Controls EMIFA CE1 range 90000000h – 90FFFFFFh

01848244h MAR145 Controls EMIFA CE1 range 91000000h – 91FFFFFFh

01848248h MAR146 Controls EMIFA CE1 range 92000000h – 92FFFFFFh

0184824Ch MAR147 Controls EMIFA CE1 range 93000000h – 93FFFFFFh

01848250h MAR148 Controls EMIFA CE1 range 94000000h – 94FFFFFFh

01848254h MAR149 Controls EMIFA CE1 range 95000000h – 95FFFFFFh

01848258h MAR150 Controls EMIFA CE1 range 96000000h – 96FFFFFFh

0184825Ch MAR151 Controls EMIFA CE1 range 97000000h – 97FFFFFFh

01848260h MAR152 Controls EMIFA CE1 range 98000000h – 98FFFFFFh

01848264h MAR153 Controls EMIFA CE1 range 99000000h – 99FFFFFFh

01848268h MAR154 Controls EMIFA CE1 range 9A000000h – 9AFFFFFFh

0184826Ch MAR155 Controls EMIFA CE1 range 9B000000h – 9BFFFFFFh

01848270h MAR156 Controls EMIFA CE1 range 9C000000h – 9CFFFFFFh

01848274h MAR157 Controls EMIFA CE1 range 9D000000h – 9DFFFFFFh

01848278h MAR158 Controls EMIFA CE1 range 9E000000h – 9EFFFFFFh

0184827Ch MAR159 Controls EMIFA CE1 range 9F000000h – 9FFFFFFFh

01848280h MAR160 Controls EMIFA CE2 range A0000000h – A0FFFFFFh

01848284h MAR161 Controls EMIFA CE2 range A1000000h – A1FFFFFFh

TMS320C64x Two-Level Memory

 3-28

Table 3–3. TMS320C64x Internal Memory Control Registers Addresses (Continued)

Register
Address,

Bytes Register Description
Register

Mnemonic

01848288h MAR162 Controls EMIFA CE2 range A2000000h – A2FFFFFFh

0184828Ch MAR163 Controls EMIFA CE2 range A3000000h – A3FFFFFFh

01848290h MAR164 Controls EMIFA CE2 range A4000000h – A4FFFFFFh

01848294h MAR165 Controls EMIFA CE2 range A5000000h – A5FFFFFFh

01848298h MAR166 Controls EMIFA CE2 range A6000000h – A6FFFFFFh

0184829Ch MAR167 Controls EMIFA CE2 range A7000000h – A7FFFFFFh

018482A0h MAR168 Controls EMIFA CE2 range A8000000h – A8FFFFFFh

018482A4h MAR169 Controls EMIFA CE2 range A9000000h – A9FFFFFFh

018482A8h MAR170 Controls EMIFA CE2 range AA000000h – AAFFFFFFh

018482ACh MAR171 Controls EMIFA CE2 range AB000000h – ABFFFFFFh

018482B0h MAR172 Controls EMIFA CE2 range AC000000h – ACFFFFFFh

018482B4h MAR173 Controls EMIFA CE2 range AD000000h – ADFFFFFFh

018482B8h MAR174 Controls EMIFA CE2 range AE000000h – AEFFFFFFh

018482BCh MAR175 Controls EMIFA CE2 range AF000000h – AFFFFFFFh

018482C0h MAR176 Controls EMIFA CE3 range B0000000h – B0FFFFFFh

018482C4h MAR177 Controls EMIFA CE3 range B1000000h – B1FFFFFFh

018482C8h MAR178 Controls EMIFA CE3 range B2000000h – B2FFFFFFh

018482CCh MAR179 Controls EMIFA CE3 range B3000000h – B3FFFFFFh

018482D0h MAR180 Controls EMIFA CE3 range B4000000h – B4FFFFFFh

018482D4h MAR181 Controls EMIFA CE3 range B5000000h – B5FFFFFFh

018482D8h MAR182 Controls EMIFA CE3 range B6000000h – B6FFFFFFh

018482DCh MAR183 Controls EMIFA CE3 range B7000000h – B7FFFFFFh

018482E0h MAR184 Controls EMIFA CE3 range B8000000h – B8FFFFFFh

018482E4h MAR185 Controls EMIFA CE3 range B9000000h – B9FFFFFFh

018482E8h MAR186 Controls EMIFA CE3 range BA000000h – BAFFFFFFh

018482ECh MAR187 Controls EMIFA CE3 range BB000000h – BBFFFFFFh

018482F0h MAR188 Controls EMIFA CE3 range BC000000h – BCFFFFFFh

018482F4h MAR189 Controls EMIFA CE3 range BD000000h – BDFFFFFFh

018482F8h MAR190 Controls EMIFA CE3 range BE000000h – BEFFFFFFh

018482FCh MAR191 Controls EMIFA CE3 range BF000000h – BFFFFFFFh

 01848100h to
018481FCh

MAR192 to
MAR255

Reserved

L1P Operation

3-29TMS320C621x/C671x/C64x Two-Level Internal Memory

3.5 L1P Operation

The L1P only operates as a cache and cannot be memory mapped. The L1P
does not support freeze or bypass modes. The only values allowed for the
program cache control (PCC) field in the CPU control and status register
(CSR) are 000b/010b. All other values for PCC are reserved, as shown
Table 3–4.

Table 3–4. Level 1 Program Cache Mode Setting

Cache Mode PCC Value Description

Cache enable 010/000 Direct mapped cache

Other Reserved

Any initial program fetch of an address causes a cache miss to occur. The data
is requested from the L2 and stored in the internal cache memory. Any subse-
quent read from a cached address causes a cache hit and that data is loaded
from the L1P memory.

There are two methods for user controlled invalidation of data in the L1P. With
the first method, writing a 1 to the IP bit of the cache configuration register
(CCFG) invalidates all cache tags in the L1P tag RAM. This is a write-only bit,
and a read of this bit will always return a 0. Any CPU access to the L1P while
invalidation is being processed stalls the CPU until the invalidation has com-
pleted and the CPU request has been fetched. The CCFG is shown in
Figure 3–28 and described in Table 3–9.

The second method for invalidating the L1P requires the L1PFBAR register
and L1PFWC register. This is useful for invalidating a block of data in the L1P.
The user must first write a word-aligned address into the L1PFBAR register.
This value is the starting address for the invalidation. The number of words
invalidated is equal to the value written into the L1PFWC register. The L1P
searches for, and invalidates, all lines whose memory address falls within the
range from L1PFBAR to L1PFBAR+L1PFWC–1. If L1PFBAR or L1PFWC are
not aligned to the L1P line size, all lines which contain any address in the speci-
fied range are invalidated. Using this block invalidation will not stall any pend-
ing CPU accesses. The block invalidation begins when the L1PFWC is written,
therefore the user should take care to ensure that the L1PFBAR register is set
up correctly prior to writing the L1PFWC. When the entire invalidation is com-
plete, the L1PFWC register will contain the value 0. The L1PFBAR and
L1PFWC are shown in Figure 3–21 and Figure 3–22, respectively. Refer to
section 3.7.11 for a summary of this L1P flush operation.

L1P Operation

 3-30

Figure 3–21. L1P Flush Base Address Register (L1PFBAR)

31 0

L1P Flush Base Address

RW,+x

Figure 3–22. L1P Flush Word Count Register (L1PFWC)

31 16 15 0

Reserved L1P Flush Word Count

R,+x RW,+x

3.5.1 TMS320C64x L1P Miss Pipelining

The C64x L1P cache supports the pipelining of misses. When there is an iso-
lated L1P miss, the CPU is stalled for 8 cycles. However, the overhead of fetch-
ing the missed line from L1P can be spread out if there are multiple misses.

Before discussing the effect of pipelining multiple misses, let us first examine
the effect of the number of execute packets in a fetch packet for a single miss.
A fetch packet consists of eight instructions. An execute packet is a set of in-
structions that are executed in parallel. When an execute packet equals a fetch
packet, eight instructions execute in a single cycle. This case illustrates one
cycle of execution per fetch packet.

More than one execute packet can reside in a fetch packet. For example, you
can have a fetch packet that consists of two execute packets and each execute
packet contains four instructions. In this case there are two cycles of execution
in the fetch packet of eight instructions. One of the two execution cycles per
fetch packet replaces one of the stall cycles of the missed fetch packet.

As more execute packets are placed in each fetch packet, more stalls are over-
lapped with the execute cycles. For the case where there are eight execute
packets per fetch packet or one instruction executed per cycle, no L1P misses
will be observed by the user. But if there are fewer execute packets per fetch
packet while number of instructions executed per cycle increases, the number
of stalls per cycle also increases. This increase is a non-linear function of the
number of instructions executed per cycle.

Now let us look at multiple misses in L1P. When multiple misses in L1P occur,
they are submitted to the L1P cache controller so that, in the limit, the user will
see only 3 misses per cycle, as opposed to 8 for an isolated L1P miss. More
than two instructions executed per cycle will yield one or more stalls per exe-
cute cycle. This is summarized in Table 3–6.

L1P Operation

3-31TMS320C621x/C671x/C64x Two-Level Internal Memory

Table 3–5. Miss Penalties for Large Numbers of Sequential Execute Packets

Instructions Per
Execute Packet

Average Stalls Per
Execute Packet

1 0.00

2 0.25

3 0.84

4 1.68

5 2.10

6 2.72

7 3.34

8 4.00

L1D Operation

 3-32

3.6 L1D Operation

The L1D only operates as a cache and cannot be memory mapped. The L1D
does not support freeze or bypass modes. The only values allowed for the data
cache control (DCC) field of the CPU control and status register (CSR) are
000b and 010b. All other values for DCC are reserved, as shown in Table 3–6.

Table 3–6. Level 1 Data Cache Mode Settings

Cache Mode DCC Value Description

Cache enable 000/010 2-way cache

Other Reserved

Any initial load of an address causes a cache miss to occur. The data is loaded
and stored in the internal cache memory. Any subsequent read from a cached
address will cause a cache hit and that data will be loaded from the internal
cache memory.

Operation on a cache miss depends upon the direction of the access. On a
read miss, the L1D sends a read request to the L2 to fetch the data. When the
data is returned from the L2, the L1D uses the fetch address to decode the set
mapped to by the data. The L1D controller allocates space in the line that was
least recently used and stores the new data into that line. If the data in the allo-
cated line has been modified but the corresponding address has not been up-
dated (because the cache line is dirty), that data is evicted to the L2. In this way,
cached data that has been modified will not be discarded before it is updated
in its original address. If the data in the allocated line has not been modified
(because the cache line is valid but not dirty) or the cache line is invalid, the
new data is simply written into the allocated line. If two read misses occur in
the same cycle, they are serialized by the L1D so that only one request at a
time is presented to the L2. The mechanism of miss pipelining is relevant here,
as the miss penalty of the two misses is overlapped to reduce the average per
miss.

3.6.1 Read Allocate

The L1D is a read-allocate cache. On a write miss, the L1D sends the write
request to the L2. The data is not stored in the L1D. Write requests from the
L1D to the L2 are buffered. If a write request is still pending from the L1D when
a read miss occurs, this buffer is allowed to empty before the read request is
sent to the L2. The L1D is also a write-back cache. Write hits in the L1D are
stored in the L1D and no access is performed to the L2 in this case, which
causes the L1D to be dirty. If this line is evicted in a future access then the dirty

L1D Operation

3-33TMS320C621x/C671x/C64x Two-Level Internal Memory

data is updated in the L2. In some cases the user may need to force modified
data out of the L1D cache via user-controlled invalidation. One instance where
this would be necessary is a context switch, where all modified data would be
moved to external memory. Since the L1D and L2 could be incoherent due to
write hits in the L1D, the user should perform an L1D invalidation to force any
dirty L1D data into the L2.

3.6.2 L1D Invalidation

There are two methods for user-controlled invalidation of data in the L1D. Writ-
ing a 1 to the ID bit of the cache configuration register (CCFG) invalidates all
cache tags in the L1D tag RAM. This is a write-only bit, a read of this bit will
always return a 0. Any CPU access to the L1D, while invalidation is being pro-
cessed, stalls until the invalidation has completed and the CPU request has
been fetched.

The second method for invalidating the L1D requires the L1DFBAR register
and L1DFWC register. This is useful for invalidating a block of data in the L1D.
The user must first write a word-aligned address into the L1DFBAR. This value
is used as the starting address for the invalidation. The number of words invali-
dated equals the value written into the L1DFWC register. The L1D searches
for, and invalidates, all lines whose memory address falls within the range from
L1DFBAR to L1DFBAR+L1DFWC-1. The data in these lines is sent to the L2
to be stored in the original memory location. In this way, the L2 and external
memory will remain coherent with the data that is invalidated. If L1DFBAR or
L1DFWC are not aligned to the L1D line size, all lines which contain data in
the address range specified are invalidated. However, only those words that
are contained in the range from L1DFBAR to L1DFBAR+L1DFWC-1 will be
saved to the L2. This block invalidation will occur in the background and not
stall any pending CPU accesses. The block invalidation begins when the
L1DFWC is written, therefore the user should take care to ensure that the
L1DFBAR register is set up correctly prior to writing the L1DFWC. When the
invalidation is complete, the L1DFWC register will contain the value 0. The
second method is preferred for writing data that has been cached in the L1D
to the external memory space. The L1DFBAR and L1DFWC are shown in
Figure 3–23 and Figure 3–24.

L1D Operation

 3-34

Figure 3–23. L1D Flush Base Address Register (L1DFBAR)

31 0

L1D Flush Base Address

RW,+x

Figure 3–24. L1D Flush Word Count Register (L1DFWC)

31 16 15 0

Reserved L1D Flush Word Count

R,+x RW,+x

3.6.3 TMS320C64x L1D Miss Pipelining
The C64x L1D supports pipelining misses. This means that if multiple misses
occur in the same cycle or in adjacent cycles, the overhead of a single miss
can be spread out over multiple misses. The initial miss incurs all the overhead
of a miss penalty. This includes all cache tag reads and address resolutions
(to check for cache hits), as well as RAM accesses and L2 requests. If more
than one miss occurs in the same cycle, the second miss request can begin
directly after the first. If more than two misses occur, a pipeline fills with various
stages of these multiple misses. This is shown in Figure 3–25 and
Figure 3–26. Once this pipeline has been totally filled, the incremental cost of
a new miss averages only 2.0 cycles per miss. This compares with six cycles
for a single miss to L2 SRAM, and eight cycles for a single miss to L2 Cache.

Figure 3–25 shows four L1D misses when L2 is configured as SRAM. The
pipeline signals are explained in Figure 3–27. In this scenario, the CPU re-
quests data in clock cycle 0 for read1 and read 2. In clock cycle 1 the data is
looked for in L1D. The data is not present in L1D so in cycle 2 a miss is recorded
for both read1 and read2. Also in cycle 1, the CPU requests the data for read3
and read4. In cycle 3, there is an L2 request for the data for read1 and a miss
is recorded for both read3 and read4. In cycles 4, 5 and 6 there are L2 requests
for the data for read2, read3, and read4 respectively. In cycles 7 and 8, the data
for read1 is found in L2 and placed in L1. In cycles 9 and 10, the data for read2
is found in L2 and placed in L1. In cycle 11, the data from read1 and read2 is
placed in the register file. Also, in cycle 11 and in 12, the data from read3 is
found in L2 and placed in L1. In cycles 13 and 14, the data from read4 is found
in L2 and placed in L1. In cycle 15, the data from read3 and read4 is placed
in the register file. For these four misses, the CPU was stalled for a total of 12
clock cycles. The average of this is 3 cycles, instead of 6 cycles, for a single
miss.

L1D Operation

3-35TMS320C621x/C671x/C64x Two-Level Internal Memory

Figure 3–26 shows four L1D misses when the L2 segment is configured as
cache. The pipeline signals are explained in Figure 3–27. In this scenario, the
CPU requests data in clock cycle 0 for read1 and read 2. In clock cycle 1 the
data is looked for in L1D. The data is not present in L1D so in cycle 2 a miss
is recorded for both read1 and read2. Also in cycle 1 the CPU requests the data
for read3 and read4. In cycle 3, there is an L2 request for the data for read1
and a miss is recorded for both read3 and read4. In cycles 4, 7 and 8 there are
L2 requests for the data for read2, read3, and read4 respectively. In cycles 9
and 10, the data for read1 is found in L2 and placed in L1. In cycles 11 and 12,
the data for read2 is found in L2 and placed in L1. In cycle 13, the data from
read1 and read2 is placed in the register file. Also in cycle 13 and in cycle 14
the data from read3 is found in L2 and placed in L1. In cycles 15 and 16 the
data from read4 is found in L2 and placed in L1. In cycle 17, the data from read3
and read4 is placed in the register file. For these four misses, the CPU was
stalled for a total of 14 clock cycles. This averages 4.67 cycles instead of
8 cycles for a single miss.

L1D Operation

 3-36

Figure 3–25. L1D – L2 SRAM 4 Read Miss Pipeline

Clock

Cycle 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Read1 Miss1 L2Req1 Data1a Data1b RFwr

Read2 Miss2 L2req2 Data2a Data2b RFwr

Read3 L1
Tagrd

Miss3 L2req3 Data3a Data3b RFwr

Read4 L1
Tagrd

Miss4 L2req4 Data4a Data4b RFwr

CPU
Stalls

0 1 1 1 1 1 1 1 1 1 1 1 1 0

Figure 3–26. L1D – L2 CACHE 4 Read Miss Pipeline

Clock
Cycle 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Read1 Miss1 L2Req1 L2
Tagrd

Addrgen Data1a Data1b RFwr

Read2 Miss2 L2req2 L2
Tagrd

Addrgen Data2a Data2b RFwr

Read3 L1
Tagrd

Miss3 L2req3 L2
Tagrd

Addrgen Data3a Data3b RFwr

Read4 L1
Tagrd

Miss4 L2req4 L2
Tagrd

Addrgen Data4a Data4b RFwr

CPU
Stalls

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Figure 3–27. Key to Read Miss Pipeline Signals

Signal Meaning Signal Meaning

Addrgen Address Generation L2reqn L2 memory request signal

L1 Tagrd L1 Tag Memory Read RFwr Register file write

Missn Cycle to declare a miss

Data Data Read L2 Tagrd L2 tag memory read

CPU Stage CPU execution pipeline stage Readn Actual CPU action; LDH, LDB, etc.

L1D Operation

3-37TMS320C621x/C671x/C64x Two-Level Internal Memory

Using the pipeline diagrams in Figure 3–25 and Figure 3–26, Table 3–7 and
Table 3–8 can be drawn up for a varying number of intermediate misses, M.
These show how, as the number of parallel and consecutive misses increases,
the number of stalls changes. For small numbers of misses, there is a larger
overhead for each miss. However as the number of misses increases, each
new miss causes a smaller overhead.

Table 3–7. Cycles Per Miss for Different Numbers of Misses to L1D from L2 Cache

Number of Misses Total Stall Cycles Take Mean Cycles Per Miss

1 8 8

2 10 5.0

3 12 4.0

4 14 3.5

>4 even 6 + 2 �M� 2 + 6/M�

� M = Number of intermediate misses.

Table 3–8. Cycles Per Miss for Different Numbers of Misses to L1D from L2 SRAM

Number of Misses Total Stall Cycles Take Mean Cycles Per Miss

1 6 8

2 8 4.5

3 10 3.33

4 12 3.0

>4 even 4 + 2 �M� 2 + 4/M�

� M = Number of intermediate misses.

The configuration of L2 (whether it is SRAM or cache) will affect the miss pen-
alty of an access to L1D. If misses can be queued, the miss penalty is reduced
in both cases. For example, let’s assume that there are 32 misses (M = 32),
all occurring in a single block. By substituting M into the equation above, the
average miss penalty is only 2.21 cycles per miss when L2 is cache, and 2.12
cycles per miss when L2 is SRAM. If there is a miss in L2 cache, the number
of cycles will depend on the external memory type or peripheral used and its
bandwidth connection to the external memory port.

L2 Operation

 3-38

3.7 L2 Operation

The L2 is accessible from both the L1P and the L1D. On a cache miss from
the L1P or L1D, the request is first sent to the L2 to be serviced. How the L2
services the request depends upon the selected operation mode of the L2.

Writing to the L2MODE field of the cache configuration register (CCFG) sets
the L2 operation mode. The L2 can function as a mapped SRAM and enabled
cache. In cache mode, the L2 does not support freeze or bypass operation.
Figure 3–28 shows the CCFG register for C621x/C671x and C64x. Table 3–9
and Table 3–10 describe the bit fields of this register for the C621x/C671x and
C64x, respectively. Refer to section 3.3.3 for details of the L2 operation ac-
cording to L2MODE for the TMS320C621x/C671x and to section 3.4.7 for de-
tails of the L2 operation according to L2MODE for the TMS320C64x.

Figure 3–28. Cache Configuration Register (CCFG)

31 29 28 10 9 8 7 3 2 0

P� Reserved IP ID Reserved L2MODE

RW, +000 R,+x W,+0 W,+0 R,+0 0000 RW,+000

† Applicable on C64x only. On C621x/C671x, bit field P is reserved, R, +000b.

Table 3–9. TMS320C621x/C671x Cache Configuration Register (CCFG) Field Description

Field Description

L2MODE L2 Operation Mode

L2MODE = 000b: No L2 Cache / All SRAM mode

L2MODE = 001b: 1-way cache / � mapped SRAM

L2MODE = 010b: 2-way cache / � mapped SRAM

L2MODE = 011b: 3-way cache / � mapped SRAM

L2MODE = 111b: 4-way cache

L2MODE = other: Reserved

IP L1P operation

IP = 0: Normal L1P operation

IP = 1: All L1P lines invalidated

ID Invalidate L1D

ID = 0: Normal L1D operation

ID = 1: All L1D lines invalidatedInvalidate LIP

L2 Operation

3-39TMS320C621x/C671x/C64x Two-Level Internal Memory

Table 3–10. TMS320C64x Cache Configuration Register (CCFG) Field Description

Field Description

L2MODE L2 Operation Mode

L2MODE = 000b: No L2 Cache / All SRAM mode 1Mbyte

L2MODE = 001b: 4-way Cache / 31/32 mapped SRAM

L2MODE = 010b: 4-way Cache / 15/16 mapped SRAM

L2MODE = 011b: 4-way Cache / 7/8 mapped SRAM

L2MODE = 111b: 4-way Cache / � mapped SRAM

L2MODE = other: Reserved

IP Invalidate LIP

IP = 0: Normal L1P operation

IP = 1: All L1P lines invalidated

ID Invalidate L1D

ID = 0: Normal L1D operation

ID = 1: All L1D lines invalidated

P L2 Requestor Priority

P = 000b: L2 controller requests are placed on urgent priority level

P = 001b: L2 controller requests are placed on high priority level

P = 010b: L2 controller requests are placed on medium priority level

P = 011b: L2 controller requests are placed on low priority level

The reset value of the L2MODE field is 000b, thus the L2 RAM is configured
as mapped SRAM at reset to support data boot-loading. Any L2 RAM that is
configured as cache is no longer in the memory map. For example, in L2 mode
010b the address range from 00010000h to 0001FFFFh is no longer available
in the TMS320C64x memory map. The associativity of the L2 cache RAM is
a function of the L2 Mode on the C671x and C621x but stays at four-way for
the C64x architecture. On C621x/C671x each � of SRAM added in the cache
increases the associativity by one line per set. To ensure coherency and data
integrity on an L2 mode switch, the user must perform a series of operations.

Table 3–11 specifies the required operations when either adding or removing
L2 memory as mapped SRAM. Failure to follow these guidelines could result
in data loss and undefined L2 operation.

L2 Operation

 3-40

Table 3–11. L2 Mode Switch Guidelines

To Switch From To Perform the following

Mode with L2
SRAM

Mode with less L2
mapped SRAM

1) Use EDMA to transfer any data needed out of the L2 SRAM
 space to be converted into cache.

2) Perform clean of L2 (L2CLEAN).

3) Wait until completion of EDMA or L2 clean, whichever is last.

4) Read priority queue status register (PQSR) of the EDMA to
 make sure they have completed

5) Switch L2 mode via write to CCFG.

6) Force CCFG modification via read from CCFG.

7) Execute 8 cycles of NOP.

Any L2 mode Mode with more L2
mapped SRAM

1) Perform clean of L2 cache (L2CLEAN).

2) Wait until completion of L2 clean.

3) Switch L2 mode via write to CCFG.

4) Force CCFG modification via read from CCFG.

5) Wait for all EDMA priority queue status register (PQSR) to be
 come zero.

6) Execute 8 cycles of NOP.

3.7.1 L2 Interfaces

The L2 Controller services requests from three different requestors: L1P, L1D,
and EDMA. Since the L1P only sends read requests, a single data bus trans-
fers data from the L2 to the L1P. The L1D to L2 interface consists of a read bus
from the L2 to the L1D and a write bus from the L1D to the L2. The L2 transfers
data to and from the EDMA through separate read and write busses.

3.7.2 L2 Organization

The L2 SRAM is organized as multiple banks. Two accesses can be serviced
at the same time if the two accesses do not use the same bank.

The L2 SRAM is made up of four 64-bit wide memory banks. Since the L1P
data bus is 256 bits wide, any L1P request that occurs at the same time as an
L1D or EDMA request will cause a bank collision and therefore a stall.

L2 Operation

3-41TMS320C621x/C671x/C64x Two-Level Internal Memory

Concurrent accesses between the L1D and EDMA busses to different banks
can be serviced without stalling. The following priority is assigned to the
events.

1) L1P or L1D (Hit)

2) EDMA read/writes

3) Read Fill (cache service in L2)

4) Victim Write (cache write-back from L2 to memory via EDMA)

5) Snoop (data merging with L1D)

When an L1P and L1D access to the L2 collide, the L1P request is always giv-
en priority. On a collision between a CPU and an EDMA request to the L2 the
EDMA request is prioritized over the CPU request.

When an L2 location is operating as mapped RAM, an access to that location
operates like a standard RAM. A read request reads the value stored in that
location and a write request updates that location with the new data.

3.7.3 L2 Read Requests

When an L2 location is enabled as a cache, the operation is similar to the L1D
cache. On a read request to the L2 the data is sent to the requestor if a hit oc-
curs. If the data is not in the L2 the requestor is stalled and the Least Recently
Used(LRU) line is allocated for the new data. If the allocated line contains valid
data the L1D is snooped. The L1D must be snooped even if an L1P miss sup-
plied the L2 miss address because the evicted L2 line could be cached in the
L1D. If the L1D returns data both the matching L1D line and evicted L2 line are
invalidated, otherwise only the evicted L2 line is invalidated. Both the L2 and
L1D caches must be invalidated on an L1D match to maintain coherency be-
tween the caches. If the L1D returns dirty data or if the evicted L2 line contains
dirty data that data is evicted to the external memory and the required data is
requested from the Enhanced DMA. The L2 is a load through cache, thus on
an L1/L2 read miss the requested data is forwarded to the L1 by the L2 when
it is available from the EDMA. This load through mechanism reduces the CPU
stall time. Out-of-order fetching is used to minimize the CPU stall time. The
necessary data is fetched first and the other side of the line is brought in after-
wards. When an L1 cache requests data from the L2 that also misses the L2
the portion of fetched L2 line which contains the L1 line is requested from the
EDMA first followed by the remaining L2 line portions.

L2 Operation

 3-42

3.7.4 L2 Write Requests

On a write request to the L2, operation varies according to the state of the ad-
dress in the cache. On a write hit to the L2, the data in the L2 is modified with
the new data from the CPU and the line is marked as dirty. The L2 is a write-al-
locate cache thus on a write miss the LRU line is allocated in the L2 for the new
data. If that line contains valid data then the same snoop mechanism used on
a L2 read miss is implemented to evict the data to external memory. The L2
line that contains the data that is to be modified is fetched from the external
memory, the new data from the L1 is merged with the data from external
memory and the line is marked as valid and dirty. The L2 is a writeback cache,
therefore it may be required that the user force an L2 invalidation to maintain
coherency with the external memory. Section 3.7.11 describes L2 invalidation
methods.

The memory attribute registers (MARs) can be programmed to turn on or off
caching of each of the external chip enable (CE) spaces. In this way, you can
perform single word reads to external mapped devices. Without this feature
any external read would always read an L2 line of data. Each of the CE spaces
is divided into ranges that can be made cacheable by the least significant bit
of a MAR register. If the CE bit of a MAR register is set, the L2 and L1s cache
the corresponding address range. If the CE bit of a MAR register is not set, the
L2, L1D and L1P will not cache the corresponding address range. When an
EMIF address is not cacheable any access to that address by the CPU will by-
pass all caches and fetch the data directly from the external memory.

Table 3–12 describes the operation of the MAR field. At reset, the MAR regis-
ters are set to 0. To begin caching data in the L2 and L1s, you must set the
appropriate MAR register to 1. The MARs are shown in Figure 3–10 and
Figure 3–19. Refer to Table 3–2 and Table 3–3 for details of the MAR ranges.

Table 3–12. Memory Attribute Register(MAR) Bit Field Description

Field Description

CE Cacheability Enable

CE = 0: Memory range is NOT cacheable

CE = 1: Memory range is cacheable

CAUTION

L2 Operation

3-43TMS320C621x/C671x/C64x Two-Level Internal Memory

The MAR registers define operation for the EMIF space. For C64x, both EMIFA
and EMIFB spaces are included. Accesses by the EMIF to addresses which
are not enabled as cacheable (CE = 0) are long distance accesses. On these
accesses only the requested data size is fetched, not an entire cache line. Ad-
dresses in the L2 that are operating in mapped mode are always cacheable
by the L1s.

The reset value of the memory attribute registers configures all external
memory as not cacheable. In order to use the L1 and L2 caches to store any
external data the appropriate CE field must first be set to 1.

3.7.5 L1D Cache in all L2 SRAM Mode

When the L2 SRAM is configured to be in all SRAM mode (L2MODE = 000b
in the CCFG), accesses to addresses not in the L2 SRAM occur naturally but
have two different modes of operation. The mode of operation depends on the
cacheability of the region. If the region is not cacheable (CE = 0 in the MAR
register), accesses to that region of memory will only return the exact piece of
requested data. No other data will be cached in L1D or L2.

If the region is cacheable (CE = 1 in the MAR register), the data element is still
loaded into the CPU register. In addition, the line that contains the data ele-
ment will be allocated in L1D but not L2, since L2 is set in all SRAM mode. See
Table 3–1 for the line size.

3.7.6 L1D and L2 Host-Processor Interface

Any access to the L2 SRAM from a remote CPU via the PCI or the Host Port
Interface(HPI) will have to conform to strong memory ordering rules. Remote
accesses of local memories that are reads cause the data in L1D to be copied
back to L2. If the host access is a write, the line in L1D is snooped and invali-
dated and written back if needed to support the remote request, so the next
time it is accessed by the CPU, the new line in L2 will be allocated again in L1D.

3.7.7 Host Access of L2 registers

The L2 registers are not available via the EDMA. This means an EDMA trans-
fer cannot be configured to write data into the L2 control register address
space. Thus the HPI and so a host cannot execute any operations on the DSP.
This includes all types of L2 flushes and cleans. To perform this, the host would
have to interrupt the CPU core to perform the flush or clean operation.

L2 Operation

 3-44

3.7.8 External Coherency

The C621x/C671x and C64x do not perform any external (off chip) coherency
checking. The L2 does not perform any snoops in the external address space,
covered by the MAR registers. If data from an external memory space is
cached in L2 and the data in the external memory is modified by a external
event, the data cache in L2 will not be aware of this.

This coherency maintenance would have to be performed by some form of in-
terrupt service routine to cause the invalidation by cleaning of the cached
image of external memory before it was modified. Once the data was modified
this space would automatically be updated in L2 by the natural cache mecha-
nism when the data was needed by the CPU.

3.7.9 EDMA Service

EDMA accesses are only allowed to L2 space that is configured as mapped
SRAM. When the EDMA makes a read request to the L2, the L1D is snooped
for the L2 address and the EDMA transfer is stalled until a response is retur-
ned. If the L1D returns data, that data is placed in the L2 and the EDMA request
proceeds. The C621x/C671x and C64x behave differently in this case. For the
C621x/C671x the L1D line is invalidated to maintain coherency. In the case of
the C64x the L1D line is not invalidated. At a future time when the EDMA writes
more data to this address, the appropriate line in L1D will be invalidated. This
maintains coherency but in a different way than in C621x/C671x. The L1P is
not snooped for data when an EDMA read request is received because the
CPU cannot modify data in L1P so the L1P’s data will not be incoherent.

On the C621x/C671x when the EDMA makes a write request to the L2, both
the L1P and the L1D are snooped for the L2 address. Both the L1P and the
L1D must be notified of the write because the L2 has no knowledge of the type
of data being written by the EDMA, whether program or data. If the L1P re-
sponds that it is caching the addressed data, then that line is invalidated and
the data is written into L2. Similarly, if the L1D is caching that address, then that
line in the L1D is invalidated and the data is written to L2. By invalidating the
lines in the L1P or the L1D, the correct data will be fetched from the L2 on the
next CPU request of that data. This is true in the case of program writes to L2,
L1P will be invalidated, but in the L1D on the C64x the affected lines are not
invalidated.

Any access to L2 SRAM space by the EDMA to an address which is not pres-
ent in the L2 SRAM, due to L2MODE settings, may corrupt the L2 cache state.

L2 Operation

3-45TMS320C621x/C671x/C64x Two-Level Internal Memory

3.7.10 EDMA Coherency

On the C621x/C671x, when data is written into L2 SRAM using the EDMA, the
data is then cacheable using L1D. Accesses to the locations in L2 will cause
allocation of the appropriate lines in L1D. This data can be read or written back
to and from the memory space. After processing this section of data it may be
desirable to transfer this data out again to external memory. When this occurs
a snoop notices the EDMA accessing the addresses of the lines which are allo-
cated in L1D, these L1D lines are cleaned out of L1D into L2 before they are
transferred out by the EDMA. In other words these lines are invalidated in L1D
and the data copied back to L2. The next time any data is transferred into the
same place, reads to the same memory locations will cause new misses. This
is an automatic process and maintains coherency between the data being
transferred in and out using the EDMA. It forces the L1D cache to always read
the newest data in the L2 and also forces the EDMA to always read the freshest
data in L2.

This C64x device functions differently. The same coherency is maintained ex-
cept at the point when the data from L2 is allocated in L1D and the L2 locations
are read by the EDMA. In the C621x/C671x, the data is ‘cleaned’ out of L1D;
the lines are invalidated and the data is copied back to L2. In the C64x, the data
is still copied back, but the lines are not invalidated. Therefore any future ac-
cess to those lines in L1D will result in a read hit, as opposed to a read miss
in the C621x/C671x case. Though the data has been read out using the EDMA
the data can still be accessed in L1D. On the C621x/C671x this would result
in read misses.

The example in Figure 3–29 and Figure 3–30 illustrates how the L1–L2
caches work in conjunction with DMAs to L2 on the C64x. For this example,
assume the L2 space is configured solely as SRAM (L2MODE = 000b).

Note: The parenthetical numbers in this section refer to these two figures.

L2 Operation

 3-46

Figure 3–29. Coherency Diagram, Buffers A, B Allocated in L1D

InBuff A

InBuff B

OutBuff A

OutBuff B
InBuff A

OutBuff A

EDMA

L2 SRAM Space
(Cached by L1)

L1D

1

2

3

Note: The numbers in the figure refer to the process described in this section.

The process begins with a buffer of data, InBuffA, which has been written to
L2 via the EDMA controller. For this example, it is assumed that an interrupt
from the EDMA controller was sent to the DSP to inform it that data was ready.
As the L2 space is accessed (1), it is cached into the L1D memory. As the DSP
processes the data, it might write data to a separate output buffer, OutBuffA,
in the L2 space. For this example also, assume that the DSP first read OutBuf-
fA, thus caching it into L1D (2) . This process sets the L2 copy of the L1D tags
to note that the lines containing OutBuffA data are in L1D. If this had not oc-
curred, then OutBuffA would only be resident in L2, and writes to OutBuffA
would simply fall through the aforementioned write buffer to L2. Write data to
OutBuffA is captured in the L1D image of OutBuffA, without L2’s knowledge.
Note that in the background, DMA accesses may be continuing to a separate
input buffer (InBuffB) (3) .

L2 Operation

3-47TMS320C621x/C671x/C64x Two-Level Internal Memory

Figure 3–30. Coherency Example Part 2, Data Written Back and Transferred by EDMA

InBuff A

InBuff B

OutBuff A

OutBuff B

OutBuff B

InBuff B

OutBuff A

EDMA

L2 SRAM Space

(Cached by L1)

L1D

InBuff A

8, 11

EDMA
11

9

6

5
EDMA

6

10

7

4

Note: The numbers in the figure refer to the process described in this section.

Once processing is complete, the DSP or possibly a peripheral that requires
the data in OutBuffA, performs a DMA access to L2. The L2 queries its copy
of the L1D tags, and, detecting that the data has been cached into L1D, per-
forms a snoop cycle to L1D, and waits for a response. The L1D image of Out-
BuffA is returned to L2 (4), but left valid in L1D. The data is written to the L2
SRAM, and then passed to the I/O subsystem to service the DMA (5). If the
DSP requires further use of OutBuffA, the access will hit L1D, and thus perfor-
mance is preserved.

As typical with many DSP applications, double buffering is incorporated into
this example to illustrate the coherency issues (6). As the process continues,
the DSP is interrupted once InBuffB is ready to be processed. The DSP reads
InBuffB, caching it into L1D (7). Again, this process sets the L2 copy of the L1D
tags to note that the lines containing OutBuffB are in L1D. As data is pro-
cessed, the DSP writes it to OutBuffB (8). As before, assume the DSP reads
OutBuffB first, thus caching it into L1D. Writes to OutBuffB will be captured in
L1D’s image of OutBuffB.

L2 Operation

 3-48

If OutBuffB has not been read first, the writes to OutBuffB would simply pass
through to L2 directly, and leave L1D unmodified. The reads of the output buff-
er are included to illustrate the significance of the snoop cycles the cache per-
forms for applications which perform this type of access.

As before, in the background DMA accesses may continue to buffers that may
be resident in L1D (9), as shown with InBuffA above. As DMA accesses are
performed to L2, the appropriate lines in L1D are snoop-invalidated out of L1D,
(10) to prevent the DSP from using stale data. As DMA requests are made of
OutBuffB, L1D’s copy of OutBuffB will be snooped (11) and the most up-to-
date data is passed to the I/O subsystem. In this manner, the cache hardware
maintains coherency with L2, such that the programmer’s view of the device
is just L2 SRAM.

The EDMA mechanisms for C621x/C67x and C64x are shown in Table 3–13
and Table 3–14, respectively.

Table 3–13. TMS320C621x/C671x EDMA Mechanism

Action Effect on L1D Action Taken by L2

EDMA writes data to L2 SRAM,
bufferA

Invalidation of lines in L1D Snoops monitor writes to
bufferA, L2 invalidates those
lines in L1D

Process data in bufferA Lines allocated in L1D from bufferA Nothing

EDMA reads data from L2 SRAM
from bufferA

Lines in L1D from bufferA are
invalidated

Nothing

Table 3–14. TMS320C64x EDMA Mechanism

Action Effect on L1D Action Taken by L2

EDMA writes data to L2 SRAM,
bufferA

Invalidation of lines in L1D Snoops monitor writes to
bufferA, L2 invalidates those
lines in L1D

Process data in bufferA Lines allocated in L1D from bufferA Nothing

EDMA reads data from L2 SRAM
from bufferA

Nothing Nothing

L2 Operation

3-49TMS320C621x/C671x/C64x Two-Level Internal Memory

3.7.11 Invalidation

The method for user-controlled invalidation of data in the L2 is similar to those
for the L1P and the L1D. For the L2, however, there are two types of invalida-
tion. The first type of invalidation is an L2 flush. During a flush, any modified
L2 locations are copied to external memory. Like an EDMA read or L2 data
eviction, the L1D is snooped for any modified (dirty) data that is being copied
out by the flush. The second type of L2 invalidation is a clean. The clean opera-
tion copies modified data from the L2 to the external memory space and
snoops data from the L1D. In addition, the clean operation invalidates all lines
in the L1P, L1D, and L2. Refer to Table 3–17 for a summary of the L2 flush and
clean operations.

To initiate an L2 flush of the entire L2 cache space, write a 1 to the F bit of the
L2FLUSH register. This bit remains set to 1 until the flush is complete at which
time the register is cleared to 0 by the L2 controller. Figure 3–31 shows the
L2FLUSH register. Table 3–15 describes the operation of the L2FLUSH regis-
ter. Similarly, to initiate an L2 clean of the entire L2 cache space set the C bit
of the L2CLEAN register to 1. This bit remains set to 1 until the clean is com-
plete at which time the register is cleared to 0. Figure 3–32 shows the
L2CLEAN register. Table 3–17 describes the operation of the L2CLEAN regis-
ter.

Figure 3–31. L2 Flush Register (L2FLUSH)

31 1 0

Reserved F

RW,+x RW,+0

Table 3–15. L2 Flush Register Fields Description

Field Description

F Flush L2

F = 0: Normal L2 operation

F = 1: All L2 lines flushed

Figure 3–32. L2 Clean Register (L2CLEAN)

31 1 0

Reserved C

RW,+x RW,+0

L2 Operation

 3-50

Table 3–16. L2 Clean Register Fields Description

Field Description

C Clean L2

C = 0: Normal L2 operation

C = 1: All L2 lines cleaned

It is also possible to flush and clean a range of addresses from the L2. To flush
a range of address from the L2, write the word-aligned address for the start of
the flush into the L2FBAR. The number of words to be flushed is equal to the
value written into the L2FWC register. The L2 controller then searches the L2
for all lines whose external memory address falls within the range from
L2FBAR to L2FBAR+L2FWC-1 and copies that data through the EDMA to the
external memory space. The L1D is snooped to ensure that the correct data
is stored in the original memory location. The L2 flush occurs in the back-
ground and does not stall any pending CPU accesses. The flush begins when
the L2FWC is written, therefore the user should take care to ensure that the
L2FBAR register is set up correctly prior to writing the L2FWC. When the flush
is complete, the L2FWC register will contain the value 0. Figure 3–33 shows
the L2FBAR register. Figure 3–34 shows the L2FWC register.

Figure 3–33. L2 Flush Base Address Register (L2FBAR)

31 0

L2 Flush Base Address

RW,+x

Figure 3–34. L2 Flush Word Count Register (L2FWC)

31 16 15 0

Reserved L2 Flush Word Count

R,+x RW,+x

To clean an address range from the L2, write the word-aligned address for the
start of the clean into the L2CBAR. The number of words to clean is equal to
the value written into the L2CWC register. The L2 controller then searches the
L2 for all lines whose external memory address falls within the range from
L2CBAR to L2CBAR+L2CWC-1 and copies that data, through the EDMA, to
external memory space (as well as invalidating those L2 lines). The L1D is
snooped to ensure that the correct data is stored in the original memory loca-

L2 Operation

3-51TMS320C621x/C671x/C64x Two-Level Internal Memory

tion. In addition to snooping data from the L1D, any L1P or L1D lines that cache
a cleaned address are invalidated. The L2 clean occurs in the background and
does not stall any pending CPU accesses. The clean begins when the L2CWC
is written, therefore the user should take care to ensure that the L2CBAR regis-
ter is set up correctly prior to writing the L2CWC. When the invalidation is com-
plete, the L2CWC register will contain the value 0.

The user can submit multiple CLEAN or FLUSH operations. The first one sub-
mitted will show the current flush or clean word count in the L2FWC register.
When this counts down to zero, it is loaded with the next value in the list of flush
or clean requests. A consistent zero count in this register will show that all op-
erations have completed.

If L2CBAR or L2CWC are not aligned to the L2 line size (32 words), all lines
which contain the words specified are invalidated. However only those words
that are contained in the range from L2CBAR to L2CBAR +L2CWC-1 are
saved to the external memory space. Figure 3–35 shows the L2CBAR regis-
ter. Figure 3–36 shows the L2CWC register. Refer to Table 3–17 for a summa-
ry of the L2 range flush and clean operations.

Figure 3–35. L2 Clean Base Address Register (L2CBAR)

31 0

L2 Clean Base Address

RW,+x

Figure 3–36. L2 Clean Word Count Register (L2CWC)

31 16 15 0

Reserved L2 Clean Word Count
R,+x RW,+x

L2 Operation

 3-52

Table 3–17. Cache Flush/Clean Summary

Cache
Operation

L2 Register
Usage

L1P
Effect

L1D
Effect

L2
Effect

L2 Clean L2CLEAN Invalidated
(completely)

Modified data sent to L2
and all data invalidated

Invalidated (completely);
Modified data sent to
external memory

L2 Flush L2FLUSH None Modified data sent to L2
and invalidated

Modified data written back
to external memory (but
kept valid)

L2 Range
Flush

L2FBAR/
L2FWC

None Modified data in selected
address range sent to L2
and invalidated in L1D.

Modified data written back
to external memory (but
kept valid)

L2 Range
Clean

L2CBAR/
L2CWC

All addresses
in selected
range invali-
dated

Modified data in selected
address range sent to L2
and invalidated in L1D

Modified data written back
to external memory and
invalidated

L1P Flush L1PFBAR/
L1PFWC

All addresses
in selected
range invali-
dated

None None

L1D Flush L1DFBAR/
L1DFWC

None Modified data in selected
address range sent to L2
and invalidated in L1D.

Data updated in L2

Figure 3–37 through Figure 3–40 illustrate the operation of the
C621x/C671x/C64x two-level memory system for CPU read and write re-
quests, and EDMA read and write requests. These figures only demonstrate
the operation and do not necessarily describe exact ordering of operation.

L2 Operation

3-53TMS320C621x/C671x/C64x Two-Level Internal Memory

Figure 3–37. Two-Level Cache CPU Read Operation Flowchart

Is data in L2?

Yes

No

Fetch data
from L2

Data
Request

Send data to CPU

Done

CPU requests
data

Program
Request

Is data in L1D? Is data in L1P?No

Fetch data
from L1P

Fetch data
from L1D

Yes Yes

Allocate line
in L1D

Store data in
allocated L1D line

Update tag /
Set valid bit

Is data in L2?

Yes

Fetch data
from L2

Allocate line
in L1P

Store data in
allocated L1P line

Update tag /
Set valid bit

No

NoA

B C

D

A

L2 Operation

 3-54

Figure 3–37.Two-Level Cache CPU Read Operation Flowchart (Continued)

Is victim
 data in L1D?

Write victim
data from L2

to EDMA

No

Write victim
data from L1D

to EDMA

Invalidate
L1D victim line

Invalidate
L2 victim line

Yes

Store data in
allocated L2 line

Update tag /
Set valid bit

Is L1D
victim dirty?

Yes

No
Is L2

victim dirty?

Yes

Invalidate
L1D victim line

Invalidate
L2 victim line

No

Data Request

Is victim
 data in L2?

Yes

Allocate line
in L2

Is address
cacheable?

Yes

No D

Fetch data
from EDMA

A

CB

Program Request

Snoop L1D

L2 Operation

3-55TMS320C621x/C671x/C64x Two-Level Internal Memory

Figure 3–38. Two-Level Cache CPU Write Operation Flowchart

Is data in L2?

Yes

No

Update data
in L2

Done

CPU writes
data

Is data in L1D?No

Update data
in L1D

Yes

Set L1D dirty bit

Set L2 dirty bit

Is address
cacheable?

No

Store data to
EDMA

Yes A

B

L2 Operation

 3-56

Figure 3–38.Two-Level Cache CPU Write Operation Flowchart (Continued)

Fetch data
from EDMA

Allocate line
in L2

Is victim
 data in L1D?

Write victim
data from L2

to EDMA

No

Write victim
data from L1D

to EDMA

Invalidate
L1D victim line

Invalidate
L2 victim line

Yes

Store data in
allocated L2 line

Is victim
 data in L2?

Yes

Snoop L1D

Is L1D
victim dirty?

Yes

No
Is L2

victim dirty?

Yes

Invalidate
L1D victim line

Invalidate
L2 victim line

No

No

A

B

L2 Operation

3-57TMS320C621x/C671x/C64x Two-Level Internal Memory

Figure 3–39. Two-Level Memory EDMA Read Operation Flowchart

Fetch data
from L2

Send data to
EDMA

Done

EDMA requests
data

Is data in L1D?
No

Fetch data
from L1D

Yes

Snoop L1D

Invalidate
L1D victim line

Store data in L2

L2 Operation

 3-58

Figure 3–40. Two-Level Memory EDMA Write Operation Flowchart

Write data
to L2

Done

EDMA writes
data

Is data in L1D?

No
Yes

Snoop L1D

Invalidate
L1D match line

Is data in L1P?

Yes

Snoop L1P

Invalidate
L1P match line

No

4-1

Direct Memory Access (DMA) Controller

This chapter describes the direct memory access channels and registers
available for the TMS320C620x/C670x devices.

Topic Page

4.1 Overview 4-2.

4.2 DMA Registers 4-5.

4.3 Memory Map 4-14.

4.4 Initiating a Block Transfer 4-15.

4.5 Transfer Counting 4-18.

4.6 Synchronization: Triggering DMA Transfers 4-19.

4.7 Address Generation 4-24.

4.8 Split-Channel Operation 4-30.

4.9 Resource Arbitration and Priority Configuration 4-32.

4.10 DMA Channel Condition Determination 4-35.

4.11 DMA Controller Structure 4-38.

4.12 DMA Action Complete Pins 4-45.

4.13 Emulation 4-46.

Chapter 4

Overview

 4-2

4.1 Overview

The direct memory access (DMA) controller transfers data between regions
in the memory map without intervention by the CPU. The DMA controller al-
lows movement of data to and from internal memory, internal peripherals, or
external devices to occur in the background of CPU operation. The DMA con-
troller has four independent programmable channels, allowing four different
contexts for DMA operation. In addition, a fifth (auxiliary) channel allows the
DMA controller to service requests from the host port interface (HPI). In dis-
cussing DMA operations, several terms are important:

� Read transfer: The DMA controller reads a data element from a source
location in memory.

� Write transfer: The DMA controller writes the data element that was read
during a read transfer to its destination in memory.

� Element transfer: This form refers to the combined read and write trans-
fer for a single data element.

� Frame transfer: Each DMA channel has an independently programmable
number of elements per frame. In completing a frame transfer, the DMA
controller moves all elements in a single frame.

� Block transfer: Each DMA channel also has an independently program-
mable number of frames per block. In completing a block transfer, the
DMA controller moves all frames that it has been programmed to move.

� Transmit element transfer: In split mode, data elements are read from
the source address, and written to the split destination address. See sec-
tion 4.8 for details.

� Receive element transfer: In split mode, data elements are read from the
split source address, and writing it to the destination address. See sec-
tion 4.8 for details.

The DMA controller has the following features:

� Background operation: The DMA controller operates independently of
the CPU.

� High throughput: Elements can be transferred at the CPU clock rate.
See section 4.11, DMA Controller Structure, on page 4-38 for more infor-
mation.

� Four channels: The DMA controller can keep track of the contexts of four
independent block transfers. See section 4.2, DMA Registers, on

Overview

4-3Direct Memory Access (DMA) Controller

page 4-5 for more information about saving the contents of multiple block
transfers.

� Auxiliary channel: This channel allows the host port to make requests into
the CPU’s memory space. The auxiliary channel requests may be priori-
tized relative to other channels and the CPU.

� Split-channel operation: A single channel can be used to perform both
the receive and transmit element transfers from or to a peripheral simulta-
neously, effectively acting like two DMA channels. See section 4.8 on
page 4-30 for more information.

� Multiframe transfer : Each block transfer can consist of multiple frames
of a programmable size. See Section 4.5, Transfer Counting.

� Programmable priority: Each channel has independently programmable
priorities versus the CPU.

� Programmable address generation: Each channel’s source and destina-
tion address registers can have configurable indexes for each read and
write transfer. The address can remain constant, increment, decrement, or
be adjusted by a programmable value. The programmable value allows an
index for the last transfer in a frame distinct from that used for the preceding
transfers. See section 4.7.1 on page 4-24 for more information.

� Full 32-bit address range: The DMA controller can access any region in
the memory map:

� On-chip data memory

� On-chip program memory when it is mapped into memory space
rather than being used as cache

� On-chip peripherals

� External memory via the EMIF

� Expansion memory via the expansion bus

� Programmable width transfers: Each channel can be independently
configured to transfer either bytes, 16-bit halfwords, or 32-bit words. See
section 4.7.3 on page 4-25 for more information.

� Autoinitialization: Once a block transfer is complete, a DMA channel can
automatically reinitialize itself for the next block transfer. See section 4.4.1
on page 4-15 for more information.

� Event synchronization: Each read, write, or frame transfer may be initiated
by selected events. See Section 4.6 on page 4-19 for more information.

Overview

 4-4

� Interrupt generation: On completion of each frame transfer or block trans-
fer, as well as on various error conditions, each DMA channel can send an
interrupt to the CPU. See section 4.10 on page 4-35 for more information.

Figure 4–1 shows the TMS320C6000 block diagram with the DMA-related
components shaded. Figure 4–1 summarizes the differences between the
DMAs in different C6000 devices.

Figure 4–1. DMA Controller Interconnect to TMS320C6000 Memory-Mapped Modules

EMIF

HPI/
Expansion Bus/

PCI

Data Access
Controller

Internal Data
Memory

Internal Program
Memory

D
M

A
 B

us

P
er

ip
he

ra
l C

on
tr

ol
 B

us

Other
Peripherals

Program
Access/Cache

Controller

Direct Memory Access
Controller (DMA)

PLL
Power Down

Logic

Boot
Configuration

C6000 DSP core

Instruction Fetch

Instruction Dispatch

Instruction Decode

Data Path A

A Register File

L1 S1 M1 D1

Control
Registers

Control Logic

Test

In–Circuit
Emulation

Interrupt
Control

Data Path B

B Register File

L2S2M2D2

Note: Refer to the specific device datasheet for its peripheral set.

Table 4–1. Differences in TMS320C6000 DMAs

Features Supported on Device Described
in Section

WSPOL, RSPOL, FSIG ALL C620x/C670x, except C6201/C6701 4.2.1.2

DMA Registers

4-5Direct Memory Access (DMA) Controller

4.2 DMA Registers

The DMA registers configure the operation of the DMA controller. How the
DMA control registers are mapped in memory is shown in Table 4–2, which is
in address order, and Table 4–3, which is in register name order.

These registers include the DMA global data, count reload, index, and address
registers, as well as independent control registers for each channel.

DMA Registers

 4-6

Table 4–2. DMA Control Registers by Address

Hex Byte
Address Abbreviation Name

Described
in Section

0184 0000 PRICTL0 DMA channel 0 primary control 4.2.1

0184 0004 PRICTL2 DMA channel 2 primary control 4.2.1

0184 0008 SECCTL0 DMA channel 0 secondary control 4.10

0184 000C SECCTL2 DMA channel 2 secondary control 4.10

0184 0010 SRC0 DMA channel 0 source address 4.7

0184 0014 SRC2 DMA channel 2 source address 4.7

0184 0018 DST0 DMA channel 0 destination address 4.7

0184 001C DST2 DMA channel 2 destination address 4.7

0184 0020 XFRCNT0 DMA channel 0 transfer counter 4.5

0184 0024 XFRCNT2 DMA channel 2 transfer counter 4.5

0184 0028 GBLCNTA DMA global count reload register A 4.5

0184 002C GBLCNTB DMA global count reload register B 4.5

0184 0030 GBLIDXA DMA global index register A 4.7.2

0184 0034 GBLIDXB DMA global index register B 4.7.2

0184 0038 GBLADDRA DMA global address register A 4.8

0184 003C GBLADDRB DMA global address register B 4.8

0184 0040 PRICTL1 DMA channel 1 primary control 4.2.1

0184 0044 PRICTL3 DMA channel 3 primary control 4.2.1

0184 0048 SECCTL1 DMA channel 1 secondary control 4.10

0184 004C SECCTL3 DMA channel 3 secondary control 4.10

0184 0050 SRC1 DMA channel 1 source address 4.7

0184 0054 SRC3 DMA channel 3 source address 4.7

0184 0058 DST1 DMA channel 1 destination address 4.7

0184 005C DST3 DMA channel 3 destination address 4.7

0184 0060 XFRCNT1 DMA channel 1 transfer counter 4.5

0184 0064 XFRCNT3 DMA channel 3 transfer counter 4.5

0184 0068 GBLADDRC DMA global address register C 4.8

0184 006C GBLADDRD DMA global address register D 4.8

0184 0070 AUXCTL DMA auxiliary control register 4.9.1

DMA Registers

4-7Direct Memory Access (DMA) Controller

Table 4–3. DMA Control Registers by Register Name

Name Abbreviation
Hex Byte
Address

Described
in Section

DMA auxiliary control register AUXCTL 0184 0070 4.9.1

DMA channel 0 destination address DST0 0184 0018 4.7

DMA channel 0 primary control PRICTL0 0184 0000 4.2.1

DMA channel 0 secondary control SECCTL0 0184 0008 4.10

DMA channel 0 source address SRC0 0184 0010 4.7

DMA channel 0 transfer counter XFRCNT0 0184 0020 4.5

DMA channel 1 destination address DST1 0184 0058 4.7

DMA channel 1 primary control PRICTL1 0184 0040 4.2.1

DMA channel 1 secondary control SECCTL1 0184 0048 4.10

DMA channel 1 source address SRC1 0184 0050 4.7

DMA channel 1 transfer counter XFRCNT1 0184 0060 4.5

DMA channel 2 destination address DST2 0184 001C 4.7

DMA channel 2 primary control PRICTL2 0184 0004 4.2.1

DMA channel 2 secondary control SECCTL2 0184 000C 4.10

DMA channel 2 source address SRC2 01840014 4.7

DMA channel 2 transfer counter XFRCNT2 0184 0024 4.5

DMA channel 3 destination address DST3 0184 005C 4.7

DMA channel 3 primary control PRICTL3 0184 0044 4.2.1

DMA channel 3 secondary control SECCTL3 0184 004C 4.10

DMA channel 3 source address SRC3 0184 0054 4.7

DMA channel 3 transfer counter XFRCNT3 0184 0064 4.5

DMA global address register A GBLADDRA 0184 0038 4.8

DMA global address register B GBLADDRB 0184 003C 4.8

DMA global address register C GBLADDRC 0184 0068 4.8

DMA global address register D GLLADDRD 0184 006C 4.8

DMA global count reload register A GBLCNTA 0184 0028 4.5

DMA global count reload register B GBLCNTB 0184 002C 4.5

DMA global index register A GBLIDXA 0184 0030 4.7.2

DMA global index register B GBLIDXB 0184 0034 4.7.2

DMA Registers

 4-8

4.2.1 DMA Channel Control Registers (PRICTL and SECCTL)

The DMA channel primary control register (PRICTL) and secondary control regis-
ters (SECCTL) contain fields that control each DMA channel independently. Sev-
eral new fields have been added to SECCTL. The fields in these registers are
described in this section.

4.2.1.1 DMA Channel Primary Control Register (PRICTL)

The DMA channel primary control register (PRICTL) fields are shown in
Figure 4–2. Descriptions of these fields are summarized in Table 4–4.

Figure 4–2. DMA Channel Primary Control Register (PRICTL)

31 30 29 28 27 26 25 24 23 19 18 16

DST RELOAD SRC RELOAD EMOD FS TCINT PRI WSYNC RSYNC

RW, +0 RW, +0 RW,+0 RW,+0 RW, +0 RW, +0 RW, +0 RW, +0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RSYNC INDEX
CNT

RELOAD SPLIT ESIZE DST DIR SRC DIR STATUS START

RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 R, +0 RW, +0

Table 4–4. DMA Channel Primary Control Register (PRICTL) Field Descriptions

No. Field Description Section

31 to 30 DST RELOAD Destination address reload for autoinitialization

DST RELOAD = 00b: do not reload during autoinitialization
DST RELOAD = 01b: use DMA global address register B as reload
DST RELOAD = 10b: use DMA global address register C as reload
DST RELOAD = 11b: use DMA global address register D as reload

4.4.1.1

29 to 28 SRC RELOAD Source address reload for autoinitialization

SRC RELOAD = 00b: do not reload during autoinitialization
SRC RELOAD = 01b: use DMA global address register B as reload
SRC RELOAD = 10b: use DMA global address register C as reload
SRC RELOAD = 11b: use DMA global address register D as reload

4.4.1.1

27 EMOD Emulation mode

EMOD = 0: DMA channel keeps running during an emulation halt
EMOD = 1: DMA channel pauses during an emulation halt

4.13

26 FS Frame synchronization

FS = 0: disable
FS = 1: RSYNC event used to synchronize entire frame

4.6

DMA Registers

4-9Direct Memory Access (DMA) Controller

Table 4–4. DMA Channel Primary Control Register (PRICTL) Field Descriptions
 (Continued)
No. SectionDescriptionField

25 TCINT Transfer controller interrupt

TCINT = 0: interrupt disabled
TCINT = 1: interrupt enabled

4.10

24 PRI Priority mode: DMA versus CPU

PRI = 0: CPU priority
PRI = 1: DMA priority

4.9

23 to 19 WSYNC Write transfer synchronization

WSYNC = 00000b: no synchronization
WSYNC = other: sets synchronization event

4.6

18 to 14 RSYNC Read synchronization
RSYNC = 00000b: no synchronization
RSYNC = other: sets synchronization event

4.6

13 INDEX Selects the DMA global data register to use as a programmable index

INDEX = 0: use DMA global index register A
INDEX = 1: use DMA global index register B

4.7.2

12 CNT RELOAD Transfer counter reload for autoinitialization and multiframe transfers

CNT RELOAD = 0: reload with DMA global count reload register A
CNT RELOAD = 1: reload with DMA global count reload register B

4.4.1.1

11 to 10 SPLIT Split channel mode

SPLIT = 00b: split-channel mode disabled
SPLIT = 01b: split-channel mode enabled; use DMA global address

register A as split address
SPLIT = 10b: split-channel mode enabled; use DMA global address

register B as split address
SPLIT = 11b: split-channel mode enabled; use DMA global address

register C as split address

4.8

9 to 8 ESIZE Element size

ESIZE = 00b: 32-bit
ESIZE = 01b: 16-bit
ESIZE = 10b: 8-bit
ESIZE = 11b: reserved

4.7.3

DMA Registers

 4-10

Table 4–4. DMA Channel Primary Control Register (PRICTL) Field Descriptions
 (Continued)
No. SectionDescriptionField

7 to 6 DST DIR Destination address modification after element transfers

DST DIR = 00b: no modification
DST DIR = 01b: increment by element size in bytes
DST DIR = 10b: decrement by element size in bytes
DST DIR = 11b: adjust using DMA global index register selected by INDEX

4.7.1

5 to 4 SRC DIR Source address modification after element transfers

SRC DIR = 00b: no modification
SRC DIR = 01b: increment by element size in bytes
SRC DIR = 10b: decrement by element size in bytes
SRC DIR = 11b: adjust using DMA global index register selected by INDEX

4.7.2

3 to 2 STATUS STATUS = 00b: stopped
STATUS = 01b: running without autoinitialization
STATUS = 10b: paused
STATUS = 11b: running with autoinitialization

4.4

1 to 0 START START = 00b: stop
START = 01b: start without autoinitialization
START = 10b: pause
START = 11b: start with autoinitialization

4.4

DMA Registers

4-11Direct Memory Access (DMA) Controller

4.2.1.2 DMA Channel Secondary Control Register (SECCTL)

The DMA Channel Secondary Control Register (SECCTL) fields are shown in
Figure 4–3. These fields are summarized in Table 4–5.

The DMA channel secondary control register (SECCTL) of the
C6202(B)/C6203(B)/C6204/C6205 has been expanded to include three new
fields: WSPOL, RSPOL, and FSIG. These fields are used to add control to a
frame-synchronized data transfer. The new fields are shown in gray in
Figure 4–3.

Figure 4–3. DMA Channel Secondary Control Register (SECCTL)

31 22 21 20 19 18 16

Reserved WSPOL* RSPOL* FSIG* DMAC

R, +0 RW, +0 RW, +0 RW, +0 RW, +000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WSYNC
CLR

WSYNC
STAT

RSYNC
CLR

RSYNC
STAT

WDROP
IE

WDROP
COND

RDROP
IE

RDROP
COND

BLOCK
IE

BLOCK
COND

LAST
IE

LAST
COND

FRAME
IE

FRAME
COND

SX
IE

SX
COND

RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +1 RW, +0 RW,+0 RW,+0 RW, +0 RW, +0 RW,+0 RW,+0

Note: * WSPOL, RSPOL, and FSIG bit fields are not available to the C6201 and C6701 devices. These bitfields are R+0 on the
C6201 and C6701 devices.

Table 4–5. DMA Channel Secondary Control Register (SECCTL) Field Descriptions

No. Field Description Section

21 WSPOL Write synchronization event polarity
(not applicable for C6201 and C6701 devices).

Selects the polarity of an external sync event:
1 = active low, 0 = active high
This field is valid only if EXT_INTx is selected.

4.6.3

20 RSPOL Read and frame synchronization event polarity
(not applicable for C6201 and C6701 devices).

Selects the polarity of an external sync event:
1 = active low, 0 = active high.
This field is valid only if EXT_INTx is selected.

4.6.3

DMA Registers

 4-12

Table 4–5. DMA Channel Secondary Control Register (SECCTL) Field Descriptions
(Continued)

No. SectionDescriptionField

19 FSIG Level/edge detect mode selection. FSIG must be set to “0” for
non-frame-synchronized transfers
(not applicable for C6201 and C6701 devices).

FSIG = 0: Edge detect mode (FS = 1 or FS = 0).
FSIG = 1: Level detect mode (valid only when FS = 1).
In level detect mode, synchronization inputs received during a frame
transfer are ignored unless still set after the frame transfer completes.

4.6.3

18 to 16 WSYNC CLR Write synchronization status clear:

Read as 0 write 1 to clear write synchronization status.

4.6.1

15 DMAC EN DMA action complete pins reflect status and condition.

DMAC EN = 000b: DMAC pin is held low.
DMAC EN = 001b: DMAC pin is held high.
DMAC EN = 010b: DMAC reflects RSYNC STAT.
DMAC EN = 011b: DMAC reflects WSYNC STAT.
DMAC EN = 100b: DMAC reflects FRAME COND.
DMAC EN = 101b: DMAC reflects BLOCK COND.
DMAC EN = other: reserved

4.12

14 WSYNC STAT Write synchronization status.

WSYNC STAT = 0: Synchronization is not received.
WSYNC STAT = 1: Synchronization is received.

4.6.1

13 RSYNC CLR Read synchronization status clear:

Read as 0 write 1 to clear read synchronization status.

12 RSYNC STAT Read synchronization status.

RSYNC STAT = 0: Synchronization is not received.
RSYNC STAT = 1: Synchronization is received.

4.6.1

11 WDROP IE Write synchronization dropped interrupt enable.

WDROP IE = 0: WDROP condition does not enable DMA channel
 interrupt.
WDROP IE = 1: WDROP condition enables DMA channel interrupt.

4.10.1

10 WDROP COND Write drop condition.

WDROP COND = 0 WDROP condition is not detected.
WDROP COND = 1 WDROP condition is detected.

4.10

DMA Registers

4-13Direct Memory Access (DMA) Controller

Table 4–5. DMA Channel Secondary Control Register (SECCTL) Field Descriptions
(Continued)

No. SectionDescriptionField

9 RDROP IE Read synchronization dropped interrupt enable.

RDROP IE = 0: RDROP condition does not enable DMA channel inter-
rupt.
RDROP IE = 1: RDROP condition enables DMA channel interrupt.

4.10.1

8 RDROP COND Read drop condition.

RDROP COND = 0: RDROP condition is not detected.
RDROP COND = 1: RDROP condition is detected.

4.10

7 BLOCK IE Block transfer finished interrupt enable.

BLOCK IE = 0: BLOCK condition does not enable DMA channel inter-
rupt
BLOCK IE = 1: BLOCK condition enables DMA channel interrupt

4.10.1

6 BLOCK COND Block transfer finished condition.

BLOCK COND = 0: BLOCK condition is not detected.
BLOCK COND = 1: BLOCK condition is detected.

4.10

5 LAST IE Last frame finished interrupt enable.

LAST IE = 0: LAST condition does not enable DMA channel interrupt.
LAST IE = 1: LAST condition enables DMA channel interrupt.

4.10.1

4 LAST COND Last frame finished condition.

LAST COND = 0: LAST condition is not detected.
LAST COND = 1: LAST condition is detected.

4.10

3 FRAME IE Frame complete interrupt enable.

FRAME IE = 0: FRAME condition does not enable DMA channel inter-
rupt
FRAME IE = 1: FRAME condition enables DMA channel interrupt

4.10.1

2 FRAME COND Frame complete condition.

FRAME COND = 0: FRAME condition is not detected.
FRAME COND = 1: FRAME condition is detected.

4.10

1 SX IE Split transmit overrun receive interrupt enable.

SX IE = 0: SX condition does not enable DMA channel interrupt.
SX IE = 1: SX condition enables DMA channel interrupt.

4.10.1

0 SX COND Split transmit condition.

SX COND = 0: SX condition is not detected.
SX COND = 1: SX condition is detected.

4.10

Memory Map

 4-14

4.2.2 Register Access Protocol

The following steps should be followed when setting up a DMA transfer:*

1) Set up primary control register with START = 00b.

2) Set up secondary control register with:
WSYNC_CLR = 1 and
RSYNC_CLR = 1.

3) Set up source/destination address registers and count register.

4) Start the DMA channel by writing a 01b or 11b to the START field of the primary
control register.

Note: The STATUS field in the PRICTL should equal 00b before configuring the
DMA channel.

4.3 Memory Map

The DMA controller assumes the device memory map shown in Chapter 11, Boot
Modes and Configuration. Requests are sent to one of these possible resources:

� Expansion bus (C6202(B)/C6203(B)/C6204 only)
� Host port interface (C6201/C6701 only)
� PCI (C6205 only)
� External memory interface
� Internal program memory, block 0
� Internal program memory, block 1 (C6202(B)/C6203(B) only)
� Internal peripheral bus
� Internal data memory.

The source address is assumed to point to one of these spaces throughout a
block transfer. This constraint also applies to the destination address.

Initiating a Block Transfer

4-15Direct Memory Access (DMA) Controller

4.4 Initiating a Block Transfer

Each DMA channel can be started independently, either manually through
direct CPU access or automatically through autoinitialization. Each DMA
channel can be stopped or paused independently through direct CPU access.
The status of a DMA channel can be observed by reading the STATUS field in
the DMA channel’s primary control register (PRICTL).

Once the value of START has been modified, the primary control register
should not be modified again until STATUS is equal to START.

Manual start operation: To start DMA operation for a particular channel, once
the desired values are written to all other DMA control registers the desired val-
ue should be written to the PRICTL with START = 01b. Writing this value to a
DMA channel that has already been started has no effect. Once started, the val-
ue on STATUS is 01b.

Pause operation: Once started, a DMA channel can be paused by writing
START = 10b. When paused, the DMA channel completes any write transfers
whose read transfer requests have completed. Also, if the DMA channel has all
of the necessary read synchronizations one additional element transfer is al-
lowed to finish. Once paused, the value on STATUS becomes 10b after the
DMA has completed all pending write transfers.

Stop operation: The DMA controller can be stopped by writing START = 00b.
Stop operation is identical to pause operation. Once a DMA transfer is com-
pleted, unless autoinitialization is enabled, the DMA channel returns to the
stopped state and STATUS becomes 00b after the DMA has completed all
pending write transfers.

4.4.1 DMA Autoinitialization

The DMA controller can automatically reinitialize itself after completion of a block
transfer. Some of the DMA control registers can be preloaded for the next block
transfer through selected DMA global data registers. Using this capability, some
of the parameters of the DMA channel can be set well in advance of the next block
transfer. Autoinitialization allows:

Continuous operation: The CPU is given a long slack time, during which it can
reconfigure the DMA controller for a subsequent transfer. Normally, the CPU
would have to reinitialize the DMA controller immediately after completion of the
last write transfer in the current block transfer and before the first read synchro-
nization for the next block transfer. With the reload registers, it can reinitialize
these values for the next block transfer anytime after the current block transfer
begins.

Initiating a Block Transfer

 4-16

Repetitive operation: This operation is a special case of continuous opera-
tion. Once a block transfer finishes, the DMA controller repeats the previous
block transfer. In this case, the CPU does not preload the reload registers with
new values for each block transfer. Instead, the CPU loads the registers only
before the first block transfer.

Enabling autoinitialization: By writing START = 11b in the channel’s primary
control register, autoinitialization is enabled. In this case, after completion of
a block transfer, the selected DMA channel registers are reloaded and the
DMA channel is restarted . If restarting after a pause, START must be rewritten
as 11b for autoinitialization to be enabled.

Switching from autoinitialization to non-autoinitialization : It is possible to
switch from an autoinitialized transfer to a non-autoinitialized transfer to com-
plete DMA activity on a particular channel. To switch modes, the active channel
should be paused by restoring the primary control register with START = 10b,
then restarted in the new mode by restoring the primary control register with
START = 01b.

If the active channel is operating in split-mode, then it is necessary to ensure
that the switch from autoinitialization to non-autoinitialization does not occur
at a frame boundary. If the channel is paused with the transmit source in frame
n and the receive destination in frame n – 1; then the channel must be restarted
with autoinitialization (START = 11b), then repaused before the switching of
modes occurs. This is to ensure that both transmit and receive data streams
both complete the same number of frames.

4.4.1.1 DMA Channel Reload Registers

For autoinitialization, the successive block transfers are assumed to be similar.
Thus, the reload values are selectable only for those registers that are modified
during a block transfer: the transfer counter and address registers. The DMA
channel transfer counter as well as the DMA channel source and destination ad-
dress registers have associated reload registers, as selected by the associated
RELOAD fields DST RELOAD and SRC RELOAD in the DMA channel primary
control register (see Figure 4–2).

It is possible to not reload the source or destination address register in autoin-
itialization mode. This capability allows a register to maintain its value during
a block transfer. Thus, you do not have to dedicate a DMA global data register
to a value that was static during a block transfer. A single channel can use the
same value for multiple channel registers. For example, in split-channel mode,
the source and destination address can be the same. On the other hand, multi-
ple channels can use the same reload registers. For example, two channels
can have the same transfer count reload register.

Initiating a Block Transfer

4-17Direct Memory Access (DMA) Controller

Upon completion of a block transfer, the channel registers are reloaded with
the value from the associated reload register value. In the case of the DMA
channel transfer counter register, reload occurs after the end of each frame
transfer, not just after the end of the entire block transfer. The reload value for
the DMA channel transfer counter is necessary whenever multiframe transfers
are configured, not just when autoinitialization is enabled.

As discussed in section 4.11.1.2, the DMA controller can allow read transfers
to get ahead of write transfers, and it provides the necessary buffering to facili-
tate this capability. To support this, the reload that’s necessary at the end of
blocks and frames occurs independently for the read (source) and write (des-
tination) portions of the DMA channel. Similarly, in the case of split-channel op-
eration described in section 4.8, the source and destination addresses are inde-
pendently reloaded when the associated transmit or receive element transfers
are completed.

The DMA channel transfer counter reload can be rewritten only after the next-to-
last frame in the current block transfer is completed. Otherwise, the new reload
values would affect subsequent frame boundaries in the current block transfer.
However, if the frame size is the same for the current and next block transfers,
this restriction is not relevant. See section 4.5 for more explanation of the DMA
channel transfer counter.

Note: You cannot switch from a non-XBUS or non-PCI src/dst address to an
XBUS or PCI src/dst address during autoinitialization. Similarly, you cannot
switch from an XBUS or PCI to a non-XBUS or non-PCI src/dst address.

Transfer Counting

 4-18

4.5 Transfer Counting

The DMA channel transfer counter register (XFRCNT), shown in Figure 4–4
contains fields that represent the number of frames and the number of ele-
ments per frame to be transferred. Figure 4–5 shows the DMA global count
reload register (GLBLCNT).

FRAME COUNT field: The 16-bit unsigned value in this field sets the total num-
ber of frames in the block transfer. The maximum number of frames per block
transfer is 65535. This counter is decremented upon the completion of the last
read transfer in a frame transfer. Once the last frame is transferred, the entire
counter is reloaded with the DMA controller global count reload register selected
by the CNT RELOAD field in the DMA channel primary control register (see sec-
tion 4.4.1.1). Initial values of 0 and 1 in FRAME COUNT have the same effect
of transferring a single frame.

ELEMENT COUNT field: The 16-bit unsigned value in this field sets the num-
ber of elements per frame. This counter is decremented after the read transfer
of each element. The maximum number of elements per frame transfer is
65535. Once the last element in each frame is reached, ELEMENT COUNT
is reloaded with the 16 LSBs of the DMA controller global count reload register
selected by the CNT RELOAD field in the DMA controller channel primary con-
trol register. This reloading is unaffected by autoinitialization mode. Before a block
transfer begins, the counter and selected DMA controller global count reload reg-
ister must be loaded with the same 16 LSBs to assure that the first and remaining
frames have the same number of elements per frame. In any multiframe transfer,
a reload value must always be specified, not just when autoinitialization is en-
abled. If the element count is initialized as 0, operation is undefined.

Figure 4–4. DMA Channel Transfer Counter Register (XFRCNT)

31 16 15 0

FRAME COUNT ELEMENT COUNT

RW, +0 RW, +0

Figure 4–5. DMA Global Count Reload Register (GBLCNT) Used As Transfer Counter
Reload)

31 16 15 0

FRAME COUNT RELOAD ELEMENT COUNT RELOAD

RW, +0 RW, +0

Synchronization: Triggering DMA Transfers

4-19Direct Memory Access (DMA) Controller

4.6 Synchronization: Triggering DMA Transfers

Synchronization allows DMA transfers to be triggered by events such as inter-
rupts from internal peripherals or external pins. Three types of synchronization
can be enabled for each channel:

� Read synchronization: Each read transfer waits for the selected event
to occur before proceeding.

� Write synchronization: Each write transfer waits for the selected event
to occur before proceeding.

� Frame synchronization: Each frame transfer waits for the selected event
to occur before proceeding.

Selection of Synchronization Events: The events are selected by the RSYNC
and WSYNC fields in the DMA channel primary control register. If FS = 1 in this
register, then the event selected by RSYNC enables an entire frame, and
WSNYC must be set to 00000b. If a channel is set up to operate in split mode
(SPLIT � 00b), RSYNC and WSYNC must be set to non-zero values. Up to 31
events are available. If the value of these fields is set to 00000b, no synchroniza-
tion is necessary. In this case, the read, write, or frame transfers occur as soon
as the resource is available to that channel. The association between values in
these fields and events is shown in Table 4–6. This is similar to the fields in the
interrupt selector (see section 14.5, Configuring the Interrupt Selector). The dif-
ferences are that the McBSP generates separate interrupts and DMA synchro-
nization events and that the DSPINT is located differently in the encoding.

Table 4–6. Synchronization Events

Event Number
(Binary)

Event Acronym Event Description

00000 None No synchronization

00001 TINT0 Timer 0 interrupt

00010 TINT1 Timer 1 interrupt

00011 SD_INT EMIF SDRAM timer interrupt

00100 EXT_INT4 External interrupt pin 4

00101 EXT_INT5 External interrupt pin 5

00110 EXT_INT6 External interrupt pin 6

00111 EXT_INT7 External interrupt pin 7

01000 DMA_INT0 DMA channel 0 interrupt

01001 DMA_INT1 DMA channel 1 interrupt

Synchronization: Triggering DMA Transfers

 4-20

Table 4–6. Synchronization Events (Continued)

Event Number
(Binary) Event Acronym Event Description

01010 DMA_INT2 DMA channel 2 interrupt

01011 DMA_INT3 DMA channel 3 interrupt

01100 XEVT0 McBSP 0 transmit event

01101 REVT0 McBSP 0 receive event

01110 XEVT1 McBSP 1 transmit event

01111 REVT1 McBSP 1 receive event

10000 DSPINT Host processor to DSP interrupt

10001 XEVT2 McBSP 2 transmit event

10010 REVT2 McBSP 2 receive event

Other Reserved

4.6.1 Latching of DMA Channel Event Flags

The DMA channel secondary control register (described in Table 4–5) con-
tains STAT and CLR fields for read and write synchronization (RSYNC and
WSYNC) events.

Latching of DMA Synchronization Events: A low-to-high transition (or high-to-
low transition when selected by WSPOL or RSPOL) of the selected event is
latched by each DMA channel. The occurrence of this transition causes the asso-
ciated STAT field to be set in the DMA channel secondary control register. If no
synchronization is selected, the STAT bit is always read as 1. A single event can
trigger multiple actions.

User Clearing and Setting of Events: By clearing pending events before
starting a block transfer, you can force the DMA channel to wait for the next
event. Conversely, by setting events before starting a block transfer, you can
force the synchronization events necessary for the first element transfer. You
can clear or set events (and thus the related STAT bit) by writing 1 to the corre-
sponding CLR or STAT field, respectively. Writing a 0 to either of these bits has
no effect. Also, the CLR bits are always read as 0 and have no associated stor-
age. Separate bits for setting or clearing are provided to allow clearing of some
bits without setting others and vice versa. User manipulation of events has
priority over any simultaneous automated setting or clearing of events.

Synchronization: Triggering DMA Transfers

4-21Direct Memory Access (DMA) Controller

4.6.2 Automated Event Clearing

The latched STAT for each synchronizing event is automatically cleared only
when any action associated with that event is completed. Events are cleared
as quickly as possible to reduce the minimum time between synchronizing
events. This capability effectively increases the rate at which events can be
recognized. This is described for each type of synchronization:

� Clearing read synchronization condition: The latched condition for
read synchronization is cleared when the DMA completes the request for
the associated read transfer.

� Clearing write synchronization condition: The latched condition for
write synchronization is cleared when the DMA completes the request for
the associated write transfer.

� Clearing frame synchronization condition: Frame synchronization
clears the RSYNC STAT field when the DMA completes the request for the
first read transfer in the new frame.

4.6.3 Synchronization Control

The DMA of the C6202(B)/C6203(B)/C6204/C6205 allows for more flexible
control over how external synchronization events are recognized. The polarity
of external events can be inverted to an active-low by setting WSPOL and/or
RSPOL to 1. WSPOL affects write-synchronized transfers, while RSPOL
affects read- and frame-synchronized transfers.

During a frame-synchronized transfer, the DMA channel may be configured
(by setting FSIG = 1) to not recognize an external interrupt as a synchroniza-
tion event while performing a burst. The channel will internally monitor its burst
status, and will latch its synchronization event only when a frame transfer is
not in progress.

Synchronization: Triggering DMA Transfers

 4-22

Figure 4–6 shows the scenario to produce the desired synchronizing event.
The figure illustrates both active-high and active-low operation, but the
following explanation pertains to active-low operation.

1) The transition of EXT_INTx from high to low while a burst is not in progress
triggers a synchronizing event.

2) The synchronizing event triggers a frame transfer, which gates off the
DMA synchronization event. During the synchronization event, transitions
on EXT_INTx are ignored.

3) Same as 1

4) Same as 2

5) After a read burst completes internally, a delay of 32 CPU clock cycles are
inserted before checking whether EXT_INTx is still active.

6) Because EXT_INTx is still active after the burst and delay, a new synchro-
nization event is registered inside the DMA.

7) The new DMA synchronization event triggers another burst.

Figure 4–6. Synchronization Flags

Read Burst Read Burst Read Burst

631

7542

EXT_INTx (Active Low)

EXT_INTx(Active High)

DMA Frame In Progress

DMA Synch Event

The new synchronization modes are available to better interface to an external
FIFO that is serving as a data buffer. Since a synchronization event is often
triggered off of a flag indicating the amount of data currently inside the FIFO,
there is a high likelihood that a race-condition could occur. If the DMA were to
read from the FIFO (clearing the flag that generated the synchronization
event), and a new element were written to the FIFO immediately after, then the
flag could be reset and a new frame would be synchronized to start
immediately following the current burst. By setting the DMA to ignore events
during a current burst, this situation is avoided.

Synchronization: Triggering DMA Transfers

4-23Direct Memory Access (DMA) Controller

Another feature of this is that if the synchronization event stays active through-
out a burst, then it will be latched again following the burst. This, too, was done
for a more robust FIFO interface. This is due to the fact that the transition from
active to inactive of the FLAG can only occur during a burst. For example,
when the ‘C6202 is reading from FIFO, the only way for the FIFO to go from
half-full (/HF active) to less than half-full (/HF inactive) is by reading from the
FIFO. If the flag were to stay active throughout the burst, then it is known that
the data source was able to provide another set of data to the FIFO before the
‘C6202 was able to read the frame.

After a frame is completed, the DMA waits 32 CPU clock cycles before check-
ing to determine if the flag is still active. If it is still active, the next frame will be
synchronized based on the active flag. This delay is needed to give the exter-
nal FIFO time to update its flags and give the flag time to propagate through
the internal registers before being registered inside the DMA. For example, a
FIFO typically takes approximately 1 to 3 FIFO clock cycles to update its flag
externally. Depending on the divide ratio of the output XFCLK, this can trans-
late to as long as 24 CPU cycles (for x8 mode).

These new features are only used by the DMA when WSPOL, RSPOL, or
FSIG are properly configured. If all fields are left as 0 (default) the
C6202(B)/C6203(B)/C6204/C6205 DMA functions identically to the C6201
DMA.

Address Generation

 4-24

4.7 Address Generation

For each channel, the DMA controller performs address computation for each
read transfer and write transfer. The DMA controller allows creation of a variety
of data structures. For example, the DMA controller can traverse an array incre-
menting through every nth element. Also, it can be programmed to effectively
treat the various elements in a frame as though they were coming from separate
sources and group each source’s data together.

The DMA channel source address (SRC) register, (shown in Figure 4–7) holds
the address for the next read transfer. The DMA Channel destination address
(DST) register, shown in Figure 4–8, holds the address for the next write trans-
fer.

Figure 4–7. DMA Channel Source Address Register (SRC)

31 0

SOURCE ADDRESS

RW, +x

Figure 4–8. DMA Channel Destination Address Register (DST)

31 0

DESTINATION ADDRESS

RW, +x

4.7.1 Basic Address Adjustment

As indicated in Table 4–4, the SRC DIR and DST DIR fields can do the follow-
ing: set the index to increment by element size, decrement by element size,
use a global index value, or not affect either the DMA channel source or des-
tination address registers. By default, these values are set to 00b to disable
address modification. If incrementing or decrementing is selected, the amount
of the address adjustment is determined by the size of the element size in by-
tes. For example, if the source address is set to increment and 16-bit halfwords
are being transferred, then the address is incremented by 2 after each read
transfer.

Address Generation

4-25Direct Memory Access (DMA) Controller

4.7.2 Address Adjustment With the Global Index Registers

The particular DMA global index register (GBLIDX) shown in Figure 4–9 is se-
lected via the INDEX field in the DMA channel primary control register. Unlike
basic address adjustment, this mode allows different adjustment amounts de-
pending upon whether the element transfer is the last in the current frame. The
normal adjustment value (ELEMENT INDEX) is contained in the 16 LSBs of
the selected DMA global index register. The adjustment value for the end of
the frame (FRAME INDEX) is determined by the 16 MSBs of the selected DMA
global index register. Both of these fields contain signed 16-bit values. Thus,
the index amounts can range from –32768 to 32767.

Figure 4–9. DMA Global Index Register (GBLIDX)

31 16 15 0

FRAME INDEX ELEMENT INDEX

RW, +0 RW, +0

These fields affect address adjustment as follows.

� ELEMENT INDEX field: For element transfers, except the last one in
a frame, ELEMENT INDEX determines the amount to be added to the
DMA channel source or the destination address register; as selected by
the SRC DIR or DST DIR field after each read or write transfer, respec-
tively.

� FRAME INDEX field: If the read or write transfer is the last in a frame,
FRAME INDEX (and not ELEMENT INDEX) is used for address adjustment.
This adjustment occurs in both single frame and multiframe transfers, includ-
ing transfers after the last frame in a block.

4.7.3 Element Size, Alignment, and Endianness

By using the ESIZE field in the DMA channel primary control register, you can
configure the DMA to transfer 8-bit bytes, 16-bit halfwords, or 32-bit words on
each transfer. The following registers and fields must be loaded with properly
aligned values:

� DMA channel source and destination address registers and any associat-
ed reload registers

� ELEMENT INDEX

� FRAME INDEX

Address Generation

 4-26

In the case of word transfers, these registers must contain values that are multi-
ples of 4 and thus are aligned on a word address. In the case of halfword trans-
fers, the values must be multiples of 2 and thus aligned on a halfword address.
If unaligned values are loaded, operation is undefined. There is no alignment re-
striction for byte transfers. All accesses to program memory must be 32 bits in
width. It is also necessary to be aware of the endianness when trying to read a
particular 8-bit or 16-bit field within a 32-bit register. For example, in little endian
mode an address ending in 00b selects the least significant byte; whereas in big-
endian mode an address ending in 11b selects the least significant byte .

4.7.4 Using a Frame Index to Reload Addresses

In an autoinitialized, single-frame block transfer, the FRAME INDEX can be
used in place of a reload register to recompute the next address. If the follow-
ing fields contain the values listed, a single frame transfer moves the ten bytes
from a static external address to alternating locations (skipping one byte be-
tween each two bytes):

� SRC DIR = 00b, the static source address

� DST DIR = 11b, the programmable index value

� ELEMENT INDEX = 10b, the 2-byte destination stride

� FRAME INDEX = –(9 × 2) = –18 = FFEEh, restart destination for the trans-
fer at the same location by moving 18 bytes.

Address Generation

4-27Direct Memory Access (DMA) Controller

4.7.5 Transferring a Large Single Block

ELEMENT COUNT can be used in conjunction with FRAME COUNT to allow
single-frame block transfers of more than 65535 bytes. The product of ELE-
MENT COUNT and FRAME COUNT can form a larger effective element
count. The following must be performed:

� If the address is to be adjusted using a programmable value (DIR = 11b),
FRAME INDEX must equal ELEMENT INDEX if the address adjustment is
determined by a DMA global index register. This applies to both source and
destination addresses. If the address is not to be adjusted by a program-
mable value, this constraint does not apply, because the same address ad-
justment occurs by default at element and frame boundaries.

� Frame synchronization must be disabled (that is, FS must be set to 0 in the
DMA channel primary control register). This prevents requirements for syn-
chronization in the middle of the large block.

� The number of elements in the first frame is Ei. The number of elements
in successive frames is ((F – 1) × Er). The effective element count is
((F – 1) × Er) + Ei

where:

F = Initial value of FRAME COUNT
Er = ELEMENT COUNT reload value
Ei = Initial value of ELEMENT COUNT

Thus, to transfer 128K + 1 elements, you could set F to 5, Er to 32K, and
Ei to 1.

Address Generation

 4-28

4.7.6 Sorting

The following procedure is used to locate transfers in memory by ordinal loca-
tion within a frame (i.e., the first transfer of the first frame followed by the first
transfer of the second frame):

� ELEMENT INDEX is set to F × S.
� FRAME INDEX is set to –(((E – 1) × F) – 1) × S

where:

E = Initial value of ELEMENT COUNT (the number of elements
per frame) initial value of the ELEMENT COUNT RELOAD

F = Initial value of FRAME COUNT (the total number of frames)

S = Element size in bytes

Consider a transfer with three frames (F = 3) of four halfword elements
each (E = 4, S = 2). This corresponds to ELEMENT INDEX = 3 × 2 = 6 and
FRAME INDEX = –(((4 – 1) × 3) – 1) × 2 = FFF0h. Assume that the source
address is not modified and the destination increments starting at
8000 0000h. Table 4–7 shows the data in the order in which it is trans-
ferred, and Table 4–8 shows how the data appears in memory after trans-
fers are finished.

Table 4–7. Sorting Example in Order of DMA Transfers

Frame Element Address (Hex) Postadjustment

0 0 8000 0000 +6

0 1 8000 0006 +6

0 2 8000 000C +6

0 3 8000 0012 –16

1 0 8000 0002 +6

1 1 8000 0008 +6

1 2 8000 000E +6

1 3 8000 0014 –16

2 0 8000 0004 +6

2 1 8000 000A +6

2 2 8000 0010 +6

2 3 8000 0016 –16

Address Generation

4-29Direct Memory Access (DMA) Controller

Table 4–8. Sorting in Order of First by Address

Address (Hex) Frame Element

8000 0000 0 0

8000 0002 1 0

8000 0004 2 0

8000 0006 0 1

8000 0008 1 1

8000 000A 2 1

8000 000C 0 2

8000 000E 1 2

8000 0010 2 2

8000 0012 0 3

8000 0014 1 3

8000 0016 2 3

Split-Channel Operation

 4-30

4.8 Split-Channel Operation

Split-channel operation allows a single DMA channel to service both the input
(receive) and output (transmit) streams from an external or internal peripheral
with a fixed address.

4.8.1 Split DMA Operation

Split-channel operation consists of transmit element transfers and receive ele-
ment transfers. In turn, these transfers each consist of a read and a write trans-
fer:

� Transmit element transfer

� Transmit read transfer: Data is read from the DMA channel source ad-
dress. The source address is then adjusted as configured. The transfer
count is then decremented. This event is not synchronized.

� Transmit write transfer: Data from the transmit read transfer is written
to the split destination address. This event is synchronized as indicated
by the WSYNC field. The DMA channel keeps track internally of the
number of pending receive transfers.

� Receive element transfer

� Receive read transfer: Data is read from the split source address.
This event is synchronized as indicated by the RSYNC field.

� Receive write transfer: Data from the receive read transfer is written
to the destination address. The destination address is then adjusted
as configured. This event is not synchronized.

Because only a single element count and frame count exists per channel, the
element count and the frame count are the same for both the received and the
transmitted data. For split-channel operation to work properly, both the
RSYNC and WSYNC fields must be set to non-zero synchronization events.
Also, frame synchronization must be disabled in split-channel operation.

Split-Channel Operation

4-31Direct Memory Access (DMA) Controller

The above sequence is maintained for all transfers. However, the transmit
transfers do not have to wait for all previous receive element transfers to finish
before proceeding. Therefore, it is possible for the transmit stream to get
ahead of the receive stream. The DMA channel transfer counter decrements
(or reinitialize) after the associated transmit transfer finishes. However, re-
initialization of the source address register occurs after all transmit element
transfers finish. This configuration works as long as transmit transfers do not
eight or more transfers ahead of the receive transfers. If the transmit transfers
do get ahead of the receive transfers, transmit element transfers are stopped,
possibly causing synchronization events to be missed. For cases in which
receive or transmit element transfers are within seven or less transfers of the
other, the DMA channel maintains this information as internal status.

4.8.2 Split Address Generation

The DMA global address register (GBLADDR), shown in Figure 4–10, se-
lected by the SPLIT field in the DMA primary control register determines the
address of the peripheral that is to be accessed for split transfer:

� Split source address: This address is the source for the input stream to
the C6000. The selected DMA global address register contains this split
source address.

� Split destination address: This address is the destination for the output
data stream from the C6000. The split destination address is assumed to
be one word address (four byte addresses) greater than the split source
address.

Figure 4–10. DMA Global Address Register (GBLADDR) Used for Split Address

31 3 2 0

SPLIT ADDRESS Reserved

RW, +0 R, +0

The two LSBs are fixed at 0 to force alignment at a word address. The third LSB
is 0 because the split source address is assumed to be on an even word bound-
ary. Thus, the split destination address is assumed to be on an odd word bound-
ary. These relationships hold regardless of the width of the transfer. For external
peripherals, you must design address decoding appropriately to adhere to this
convention.

Note: Split-mode cannot be used with the expansion bus. Neither the source
address, destination address, nor the split address can be within the expan-
sion bus I/O memory range.

Resource Arbitration and Priority Configuration

 4-32

4.9 Resource Arbitration and Priority Configuration

Priority decides which of competing requesters have control of a resource with
multiple requests. The requesters include:

� DMA channels
� CPU program and data accesses.

The resources include:

� Internal data memory

� Internal program memory

� Internal peripheral registers, which are accessed through the peripheral
bus

� External memory, accessed through the external memory interface
(EMIF)

� Expansion memory, accessed through the expansion bus.

Two aspects of priority are programmable:

� DMA versus CPU priority: Each DMA channel can be independently config-
ured in high-priority mode by setting the PRI bit in the associated DMA channel
primary control register. The AUXPRI field in the DMA auxiliary control register
allows the same feature for the auxiliary channel. When in high-priority mode,
the associated channel’s requests are sent to the appropriate resource with
a signal indicating the high priority status. By default, all these fields are 0, dis-
abling the high-priority mode. Each resource can use this signal in its own
priority scheme for resolving conflicts. See to resource specific documentation
for information how a particular resource uses this signal.

� Priority between DMA channels: The DMA controller has a fixed priority
scheme, with channel 0 having highest priority and channel 3 having lowest
priority. The auxiliary channel can be given a priority anywhere within this hier-
archy.

Resource Arbitration and Priority Configuration

4-33Direct Memory Access (DMA) Controller

4.9.1 DMA Auxiliary Control Register (AUXCTL) and Priority Between Channels

The fields in the DMA auxiliary control register affect the auxiliary channel. The
fields in this register are shown in Figure 4–11 and are summarized Table 4–9.

Figure 4–11.DMA Auxiliary Control Register (AUXCTL)

31 5 4 3 0

Reserved AUXPRI CH PRI

R, +0 RW, +0 RW, +0

Table 4–9. DMA Auxiliary Control Register (AUXCTL)Field Descriptions

No. Field Description

4 AUXPRI Auxiliary channel priority mode

AUXPRI = 0: CPU priority
AUXPRI = 1: DMA priority

3 to 0 CH PRI DMA channel priority. In the case when the auxiliary channel is used to service the
expansion bus host port operation, CH PRI must be 0000b (auxiliary channel highest
priority) as shown below.

CH PRI = 0000b: fixed channel priority mode auxiliary channel highest priority
CH PRI = 0001b: fixed channel priority mode auxiliary channel 2nd-highest priority
CH PRI = 0010b: fixed channel priority mode auxiliary channel 3rd-highest priority
CH PRI = 0011b: fixed channel priority mode auxiliary channel 4th-highest priority
CH PRI = 0100b: fixed channel priority mode auxiliary channel lowest priority
CH PRI = other, reserved

The priority assigned each DMA channel determines which DMA channel per-
forms a read or write transfer first, when two or more channels are ready to per-
form transfers.

The priority of the auxiliary channel is configurable by programming the CH PRI
field in the DMA auxiliary control register. By default, CH PRI contains the value
0000b at reset. This value sets the auxiliary channel as highest priority, followed
by channel 0, followed by channel 1, followed by channel 2, with channel 3 having
lowest priority.

For read and write transfers, arbitration between channels occurs independent-
ly every CPU clock cycle. Any channel that is in the process of waiting for syn-
chronization of any kind can lose control of the DMA controller to a lower priority
channel. Once that synchronization is received, that channel can regain control
of the DMA controller from a lower priority channel. This rule is applied indepen-
dently to the transmit and receive portions of a split mode transfer. The transmit
portion has higher priority than the receive portion.

Resource Arbitration and Priority Configuration

 4-34

If multiple DMA channels and the CPU are contending for the same resource,
the arbitration between DMA channels occurs first. Then, arbitration between
the highest priority DMA channel and the CPU occurs. Normally, if a channel
has lower priority than the CPU, all lower priority channels should also are low-
er priority than the CPU. Similarly, if a channel has a higher priority than the
CPU, all higher priority channels should also be higher priority than the CPU.
The arbitration between the DMA controller and the CPU is performed by the
resource for which they are contending. For more information, see resource-
specific documentation.

Note: A channel’s PRI field should be modified only when that channel is
paused or stopped.

4.9.2 Switching Channels

A higher priority channel gains control of the DMA controller from a lower priority
channel once it has received the necessary read synchronization. In switching
channels, the current channel allows all data from requested reads to be com-
pleted. The DMA controller determines which higher priority channel gains control
of the DMA controller read operation. That channel then starts its read operation.
Simultaneously, write transfers from the previous channel are allowed to finish.
See Chapter 5, DMA and CPU Data Access Performance, for more detail.

DMA Channel Condition Determination

4-35Direct Memory Access (DMA) Controller

4.10 DMA Channel Condition Determination

Several condition status flags are available to inform you of significant events
or potential problems in DMA channel operation. These flags reside in the
DMA channel secondary control register.

These registers also provide the means to enable the DMA channels to inter-
rupt the CPU through their corresponding interrupt enable (IE) fields. If a con-
dition flag and its corresponding IE bit are set, that condition is enabled to con-
tribute to the status of the interrupt signal from the associated DMA channel
to the CPU. If the TCINT bit in the DMA channel x primary control register is
set, the logical OR of all enabled conditions forms the DMA_INTx signal.
Otherwise, the DMA_INTx remains inactive. This logic is shown in
Figure 4–12. If selected by the interrupt selector, a low-to-high transition on
that DMA_INT causes an interrupt condition to be latched by the CPU.

The SX COND, WDROP COND, and RDROP COND bits in the DMA channel
secondary control register are treated as warning conditions. If these conditions
are enabled and active, they move the DMA channel from the running to the
pause state, regardless of the value of the TCINT bit.

If a condition bit’s associated IE bit is set, that condition bit cannot be cleared
automatically. A zero must be written to the COND bit to clear it. If the associat-
ed IE bit is not set, that condition bit can be cleared automatically. Writing a 1
to a COND bit has no effect. Thus, you cannot manually force one of the condi-
tions.

Most bits in this register are cleared at reset. The exception is the interrupt enable
for the block transfer complete event (BLOCK IE), which is set at reset. Thus, by
default, the block transfer complete condition is the only condition that can con-
tribute to the CPU interrupt. Other conditions can be enabled by setting the asso-
ciated IE bit.

DMA Channel Condition Determination

 4-36

Figure 4–12. Generation of DMA Interrupt for Channel x From Conditions

DMA_INTx

TCINT

RDROP COND

RDROP IE

BLOCK COND

BLOCK IE

LAST COND

LAST IE

FRAME COND

FRAME IE

SX COND

SX IE

ÁÁÁ
ÁÁÁ
ÁÁÁ

Á
Á

Á
ÁÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ
ÁÁÁ

WDROP COND

WDROP IE

4.10.1 Definition of DMA Channel Secondary Control Register (SECCTL) Conditions

Table 4–10 describes each of the condition flags in the DMA channel second-
ary control register (SECCTL).

Depending upon the system application, these conditions can represent er-
rors. The last frame condition can be used to change the reload register values
for autoinitialization. The frame index and element count reload are used every
frame. Thus, the user must wait to change these values until all but the last
frame transfer in a block transfer finishes. Otherwise, the current block transfer
is affected.

DMA Channel Condition Determination

4-37Direct Memory Access (DMA) Controller

Table 4–10. DMA Channel Secondary Control Register (SECCTL) Condition Descriptions

COND Cleared By

Bitfield Event Occurs if … If IE Enabled Otherwise

SX Split transmit overrun
receive

The split operation is enabled
and transmit element transfers
get seven or more element
transfers ahead of receive ele-
ment transfers

A user write of 0 to COND

FRAME Frame complete After the last write transfer in
each frame is written to
memory

A user write of 0
to COND

Two CPU clocks
later

LAST Last frame After all counter adjustments
for the next-to-last frame in a
block transfer finish

A user write of 0
to COND

Two CPU clocks
later

WDROP

RDROP

Dropped read/write
synchronization

A subsequent synchronization
event occurs before the last
one is cleared

A user write of 0 to COND

BLOCK Block transfer
finished

After the last write transfer in
a block transfer is written to
memory

A user write of 0
to COND

Two CPU clocks
later

DMA Controller Structure

 4-38

4.11 DMA Controller Structure

The TMS320C6000 generation DMA consists of four user-programmable chan-
nels and an auxiliary channel. Each channel is capable of bursting to high-speed
memories and can be used in split-mode for peripheral support. The DMA of the
C6201/C6701/C6202 (1.8V core supply devices) accomplish this by providing a
pair of holding registers to each channel and a 9-deep shared FIFO. The DMA
was modified slightly for the C6202B/C6203(B)/C6204/C6205 (1.5V core de-
vices) to improve performance in certain instances; and rather than a shared
FIFO, each DMA channel has a dedicated 9-deep FIFO available to use.

4.11.1 TMS320C6201/C6701/C6202 (1.8V devices) DMA Structure

Figure 4–13 shows the internal data movement paths of the 1.8V device DMA
controller, including data buses and internal holding registers.

Figure 4–13. DMA Controller Data Bus Block Diagram for 1.8V Device

Ch0 Holding

Ch1 Holding

Ch2 Holding

Ch3 Holding

Aux Holding

Burst FIFO

Expansion bus read
Data Memory read

Program Memory read
Peripheral bus read

Host write

EMIF write

Data Memory write
Program Memory write
Peripheral bus write
Host read

Expansion bus write

EMIF read

DMA Controller Structure

4-39Direct Memory Access (DMA) Controller

4.11.1.1 Read and Write Buses

Each DMA channel can independently select one of these sources and destina-
tions:

� EMIF
� Expansion bus (C6202)/host port interface (C6201/C6701)
� Internal data memory
� Internal program memory, block 0
� Internal program memory, block 1 (C6202 only).
� Internal peripheral bus.

Read and write buses from each source interface to the DMA controller.

The auxiliary channel also has read and write buses. However, since the auxiliary
channel provides address generation for the DMA, its buses have a different
naming convention. For example, data writes from the auxiliary channel through
the DMA controller are performed through the auxiliary write bus. Similarly, data
reads from the auxiliary channel through the DMA controller are performed
through the auxiliary read bus.

4.11.1.2 Shared FIFO

A 9-level DMA FIFO holding path facilitates bursting to high-performance memo-
ries, such as internal program and data memory, as well as external synchronous
DRAM (SDRAM) or synchronous burst SRAM (SBSRAM). When combined with
a channel’s holding registers, this path effectively becomes an 11-level FIFO.
Only one channel controls the FIFO at any given time. For a channel to gain con-
trol of the FIFO, all of the following conditions must be met:

� The channel does not have read or write synchronization enabled. Since
split-channel mode requires read and write synchronization, a channel in
that mode cannot use the FIFO. If only frame synchronization is enabled,
that channel can still use the FIFO.

� The channel is running.

� The FIFO is void of data from any other channel.

� The channel is the highest priority channel of those that meet the preced-
ing three conditions.

The third restriction minimizes head-of-line blocking. Head-of-line blocking oc-
curs when a DMA request of higher priority waits for a series of lower priority
requests to come in before issuing its first request. If a higher priority channel
requests control of the DMA controller from a lower priority channel, only the
last request of the previous channel must finish. After that, the higher priority

DMA Controller Structure

 4-40

channel completes its requests through its holding registers. The holding regis-
ters do not allow as high of a throughput through the DMA controller. The lower
priority channel begins no more read transfers, but flushes the FIFO by complet-
ing its write transfers in the gaps. Because the higher priority channel is not yet
in control of the FIFO, there are gaps in its access where the lower priority channel
can drain its transfer from the FIFO. Once the FIFO is clear, if the higher priority
channel has not stopped, it gains control of the FIFO.

The DMA FIFO has two purposes:

� Increasing performance
� Decreasing arbitration latency.

For increased performance the FIFO allows read transfers to get ahead of write
transfers. This feature minimizes penalties for variations in available transfer
bandwidth at either end of the element transfer. Thus, the DMA can capitalize on
separate windows of opportunity at the read and write portion of an element trans-
fer. If the requesting DMA channel is using the FIFO, the resources are capable
of sustaining read or write accesses at the CPU clock cycle rate. However, there
may be some latency in performing the first access. The handshaking between
a resource and the DMA controller controls the rate of consecutive requests and
the latency of received read transfer data.

The other function of the DMA FIFO is capturing read data from any pending
requests for a particular resource. For example, consider the situation in which
the DMA controller is reading data from external memory such as SDRAM or
SBSRAM into internal data memory. Assume that the CPU is given higher
priority over the DMA channel making requests, and that it makes a competing
program fetch request to the EMIF. Assume that simultaneously the CPU is
accessing all banks of internal memory, blocking out the DMA controller. In this
case, the FIFO allows the pending DMAs to finish and the program fetch to pro-
ceed. Due to the pipelined request structure of the DMA controller, at any time
the DMA controller can have pending read transfer requests whose data has not
yet arrived. Once enough requests to fill the empty spots in the FIFO are out-
standing, the DMA controller stops making further read transfer requests.

4.11.1.3 Internal Holding Registers

Each channel has dedicated internal holding registers. If a DMA channel is
transferring data through its holding registers rather than the internal FIFO,
read transfers are issued consecutively. Depending upon whether the DMA
controller is in split mode or not, additional restrictions can apply:

In split mode, the two registers serve as separate transmit and receive data
stream holding registers for split mode. For both the transmit and receive-read

DMA Controller Structure

4-41Direct Memory Access (DMA) Controller

transfer, no subsequent read transfer request is issued until the associated
write transfer request completes.

In nonsplit mode, once the data arrives a subsequent read transfer can be is-
sued without waiting for the associated write transfer to finish. However, be-
cause there are two holding registers, read transfers can get only one transfer
ahead of write transfers.

4.11.2 TMS320C6202B/C6203(B)/C6204/C6205 (1.5V Devices) DMA Structure

The structure of the 1.8V device DMA was redesigned for the 1.5V devices to
obtain performance improvements. By removing the arbitration for a single
burst FIFO, multiple bursting channels are more able to co-exist without loss
of throughput. Figure 4–14 shows the internal data movement paths of the
1.5V device DMA controller, including data buses and internal FIFOs.

Figure 4–14. DMA Controller Data Bus Block Diagram for 1.5V Device

Ch0 FIFO

Ch1 FIFO

Ch2 FIFO

Ch3 FIFO

Aux Holding

Expansion bus read
Data Memory read

Program Memory read
Peripheral bus read

Host write

EMIF write

Data Memory write
Program Memory write
Peripheral bus write
Host read

Expansion bus write
EMIF read

DMA Controller Structure

 4-42

4.11.2.1 Read and Write Buses

As with the 1.8V device DMA, each DMA channel can independently select
one of these sources and destinations:

� EMIF
� Expansion bus (C6202B/C6203(B)/C6204) / PCI (C6205)
� Internal data memory
� Internal program memory, block 0
� Internal program memory, block 1 (C6202B/C6203(B) only)
� Internal peripheral bus.

The auxiliary channel read and write buses are identical to those described in
Figure 4–13.

4.11.2.2 Channel FIFOs

Each 1.5V device DMA channel has a dedicated 9-deep FIFO to facilitate
bursting to high-speed memories. Each channel owns its own FIFO, which re-
duces the arbitration required for switching between high-speed bursting
channels. The individual operation by any channel is unchanged from that of
the 1.8V device DMA. The benefit of multiple FIFOs comes into play only when
switching between channels.

Dedicated FIFOs allow for a seamless transition from one bursting DMA chan-
nel to another. Since the 1.8V device DMA allows a higher-priority channel to
begin prior to the lower priority channel completing all pending writes, poten-
tially the higher-priority channel will not gain access to the FIFO. When the
source of the higher-priority transfer is the same as the destination of the low-
er-priority channel, the FIFO will be unable to flush its data. The priority
scheme of the DMA considers the DMA channel number to determine which
channel gets access to a resource. Since the higher-priority channel will own
the common resource, the lower-priority channel will be unable to access it for
its pending writes. The data will remain in the shared FIFO, which prevents the
higher-priority channel from obtaining its use.

The effect of this is that the interrupting high-priority channel is not able to burst
properly, as shown in Figure 4–15, since it does not have possession of the
FIFO. Instead it will use its holding registers as a 2-deep FIFO, which is not
deep enough to facilitate bursting. Instead of a continuous burst of data, only
two elements will be transmitted at a time.

DMA Controller Structure

4-43Direct Memory Access (DMA) Controller

Figure 4–15. Shared FIFO Resource Problem

DMEM EMIF

ÎÎÎÎ
ÎÎÎÎ

DMEM ÏÏÏÏ
ÏÏÏÏ

EMIF

ÌÌÌÌ
ÌÌÌÌEMIF

Ñ
Ñ
ÓÓ
ÓÓ

ÎÎÎÎ
ÎÎÎÎ

DMEM ÏÏÏÏ
ÏÏÏÏ

EMIF

ÌÌÌÌ
ÌÌÌÌ

EMIF ÔÔÔÔ
ÔÔÔÔ

XBUS

Source
Holding

Registers Shared FIFO Destination

Channel 0

Channel 1

Channel 0

Channel 1

Channel 0

Channel 1

1. Channel 1 currently
bursting from internal
data memory to
external memory.

2. Channel 0 obtains
the EMIF as a data
source. Channel 1 is
unable to empty the
shared FIFO.

3. Channel 0 does not
gain the use of the
shared FIFO due to the
presence of channel
1’s data.

The new structure of the 1.5V device DMA removes this bandwidth-limiting as-
pect of the 1.8V device DMA. By providing each channel with its own FIFO, it
is not necessary for the lower priority channel to flush all of its pending data
for the higher priority channel to be capable of high-speed bursts. The lower
priority channel will maintain its data within its FIFO until the higher priority
transfer completes. When it once again gains access to its destination re-
source, the transfer will resume.

In all other situations, the behavior of the 1.5V device DMA channels is identi-
cal to those of the 1.8V device.

4.11.2.3 Split Mode

When operating in split-mode, a 1.5V device DMA channel behaves identically
to a 1.8V device DMA channel. Only the first two cells of the channel’s FIFO
are used, effectively becoming the two holding registers. Each cell serves as
a holding register for the separate transmit data stream, and receive data
stream. For both the transmit-read and receive-read transfer, no subsequent
read transfer request is issued until the associated write transfer request com-
pletes.

DMA Controller Structure

 4-44

4.11.3 Operation

Reads and writes by the DMA are independent from one another. This allows
for a source to be accessed even if the destination is not ready, and vice versa.
A DMA channel continues to issue read requests until its holding registers are
full, or in the case of a burst transfer until the FIFO is full. Likewise the channel
issues write requests until its holding registers are empty. In the situation
where the DMA is both reading from and writing to the same resource, the write
will have priority.

4.11.4 DMA Performance

The DMA controller can perform element transfers with single-cycle throughput
if it accesses separate resources for the read transfer and write transfer, and
both of these resources have single-cycle throughput. An example is an unsyn-
chronized block transfer from single-cycle external SBSRAM to internal data
memory without any competition from any other channels or the CPU. The DMA
controller performance can be limited by:

� The throughput and latency of the resources it requests
� Waiting for read, write, or frame synchronization
� Interruptions by higher priority channels
� Contention with the CPU for resources.

For a detailed description, see Chapter 5, DMA and CPU Data Access Perfor-
mance.

DMA Action Complete Pins

4-45Direct Memory Access (DMA) Controller

4.12 DMA Action Complete Pins

The DMA action complete pins (DMAC0–DMAC3) provide a method of feed-
back to external logic by generating an event for each channel. If it is specified
by the DMAC EN field in the DMA channel secondary control register, the DMAC
pin can reflect the status of RSYNC STAT, WSYNC STAT, BLOCK COND, or
FRAME COND or be treated as a high or low general purpose output. If the
DMAC pin reflects RSYNC STAT or WSYNC STAT externally, then once a syn-
chronization event has been recognized, DMAC transitions from low-to-high.
Once that event has been serviced as indicated by the status bit being cleared,
DMAC changes from high-to-low. Before being sent off chip, the DMAC signals
are synchronized by CLKOUT1. The active period of these signals is a minimum
of two CLKOUT1 periods wide.

Emulation

 4-46

4.13 Emulation

When you are using the emulator for debugging, you can halt the CPU on an exe-
cute packet boundary for single-stepping, benchmarking, profiling, or other de-
bugging purposes. You can configure the DMA controller pause during this time
or to continue running. This configuration is accompanied by setting the EMOD
bit in the DMA primary control register to 0 or 1. If the DMA controller is paused,
the STATUS field reflects the paused state of the channel. The auxiliary channel
continues running during an emulation halt. This emulation closely simulates
single-stepping DMA transfers. DMA channels with EMOD = 1 can couple
multiple transfers between single steps; a successful step can require multiple
outstanding transfers to finish first.

5-1

DMA and CPU Data Access
Performance

This chapter describes the DMA and CPU data access performance to the
internal memory, the peripherals, and the external memory.

Topic Page

5.1 Overview 5-2.

5.2 Accessing Data 5-3.

5.3 Bandwidth Calculation 5-14.

5.4 Bandwidth Optimization 5-21.

Chapter 5

Overview

 5-2

5.1 Overview

In a real-time system, it is important to understand data flow and control it to
achieve high performance. By analyzing the timing characteristics for accessing
data and switching between data requestors, it is possible to maximize the
achievable bandwidth in any system. In general, one important guideline is to
use the DMA controller for background off-chip data accesses. The CPU should
only be used for sporadic (non-periodic) accesses to individual locations, other-
wise the system can incur performance degradation. Although the CPU and the
DMA controller function independently of one another, when both are performing
simultaneous data accesses it is necessary to properly schedule and configure
them in order to minimize conflict and waiting while meeting real-time require-
ments. This section provides the necessary information to understand how the
different data requestors affect one another, as well as the amount of time
required to perform data accesses. Due to the flexibility of the CPU and the
DMA, code structure and DMA activity can be tailored to maximize data I/O
bandwidth for particular situations. This section also provides guidelines on
how to maximize the available bandwidth.

Accessing Data

5-3DMA and CPU Data Access Performance

5.2 Accessing Data

The data to be accessed by the CPU and the DMA can be located in internal
data memory, on-chip peripherals, or in external memory. Whenever the CPU
data paths and the DMA contend for any of these resources, arbitration deter-
mines the order in which the requests are serviced. Data path A always has
priority over data path B, and the priority level of the DMA with respect to the
CPU is based on the priority (PRI) bit of the DMA channel’s primary control reg-
ister. This arbitration is valid for all resources. Figure 5–1 shows the CPU, data
memory controller, and peripheral bus connections.

Figure 5–1. TMS320C620x/C670x Data Paths

Data Memory Controller

Data
Memory

CPU

EMIF
data

DMA
data

Bank 1

Bank 3

Bank 2

...

...

Bank n

DA1 Address

ST1 Store Data

LD1 Load Data

DA2 Address

ST2 Store Data

LD2 Load Data

Solid line indicates data

Dashed line indicates request

Arrowheads indicate direction of data or request

EMIF
control

DMA
control

Peripheral
bus controller

Accessing Data

 5-4

5.2.1 Internal Data Memory

Internal data memory consists of high-speed SRAMs, which are divided into
several 16-bit wide banks. Each bank can be accessed once per cycle, with
distinct banks accessible in parallel. An access takes more than one cycle only
if multiple requestors contend for the same memory bank. In this case a lower-
priority requestor will be stalled until all of the banks it requests are free. For
example during a CPU access to data memory bank1 and bank 2, a DMA ac-
cess (configured to be lower priority) to bank 2 will be stalled until the CPU ac-
cess to bank 2 is completed. Arbitration for each bank occurs every cycle. The
physical arrangement, as well as the number, of data memory banks varies
slightly between the DSPs. For more details, see Chapter 2,
TMS320C620x/C670x Internal Program and Data Memory. The maximum
data access rate to the internal data memory is also described in section 2.4.

5.2.2 Peripheral Bus

The on-chip peripherals are configured via memory-mapped control registers
accessible through the peripheral bus controller. The peripheral bus controller
performs word accesses only, which affects writes to a peripheral register. A
write of a byte or halfword is treated as a 32-bit word. The values written to the
non-selected bytes are undefined. On reads, individual bytes can be accessed,
as the CPU or DMA extracts the appropriate bytes.

Accesses across the peripheral bus occur in multiple cycles, and all accesses
are serialized. A CPU access to the peripheral bus results in a CPU stall of sev-
eral cycles, as shown in Table 5–1. A single CPU access to the peripheral bus
stalls the CPU for five cycles, and parallel CPU accesses stall the CPU for nine
cycles.

Table 5–1. CPU Stalls For Peripheral Register Accesses

CPU Access CPU Stall

Single 5

Parallel 9

DMA accesses to the peripheral bus are pipelined, allowing the DMA to access
peripheral bus every three cycles.

5.2.3 External Memory Interface (EMIF)

The external memory interface (EMIF) connects the DSP to external memory,
such as synchronous dynamic RAM (SDRAM), synchronous burst static RAM
(SBSRAM), and asynchronous memory. The EMIF also provides 8-bit-wide
and 16-bit-wide memory read capability to support low-cost ROM memories
(flash, EEPROM, EPROM, and PROM).

Accessing Data

5-5DMA and CPU Data Access Performance

The EMIF supports burst capability to facilitate data transfers to/from high-
speed memories. The DMA exercises this functionality through the use of its
internal FIFO. Using the DMA, it is possible to access external memories at
the rate of one data element per memory clock cycle. The CPU must wait for
each data element required by the current execute packet before proceeding
to the next execute packet. Thus data requests to the EMIF by the CPU are
done one at a time, rather than in bursts, and do not take advantage of the burst
capability of the EMIF.

To achieve its high-throughput for burst transfers, the EMIF has multiple inter-
nal pipeline stages. Due to this pipeline, there is latency incurred for a data
transfer request both at the beginning of the burst request and at the end of
the burst request. The number of cycles required for the actual data access
depends on the type of memory being accessed.

To lessen the effects of memory access latencies, frequent data accesses to
the EMIF should be performed by the DMA in bursts. Also, if there is potential
for a frequent number of interruptions to burst activity by a higher priority re-
questor, the arbitration bit (RBTR8) can be set in the EMIF global control regis-
ter. Setting this bit ensures that a minimum of eight accesses of a current burst
is serviced before a higher priority requestor can use the EMIF. This functional-
ity reduces the number of cycles lost to arbitration.

The number of cycles required to access an external memory location de-
pends on two factors:

� Type of external memory: Different memory types have different cycle
timings for data accesses.

� Current EMIF activity: If another resource is currently accessing external
memory, the EMIF requires multiple cycles to flush its pipeline.

5.2.3.1 Memory Timings

The cycle timings for each memory type are provided in the data sheet for the
particular C6000 device.

The access latency required for an external memory to be able to either return
or receive a data element is defined in the datasheet, and it is specific to the
type of memory. The beginning of the access is marked by the transition of the
memory’s chip enable (CE) to active (low).

The time used by the EMIF at the end of an external data access is provided
in Table 5–2. This table shows the number of CLKOUT1 cycles between the
external strobe for a particular memory (AOE, AWE, SSOE, SSWE, or
SDCAS) and CE returning high for each of the memory types. These cycle
counts are referred to as CE_READ_HOLD for reads, and CE_WRITE_HOLD
for writes.

Accessing Data

 5-6

Access times to asynchronous memory are user-defined using programmable
setup, strobe, and hold values. Read and write accesses can use different set-
tings for each field. For a complete description, see Chapter 14, Interrupt Se-
lector and External Interrupts.

Note:

The SBSRAM data provided in all the tables in this chapter are for the 1/2x
rate SBSRAM. The TMS320C6201 and C6701 devices also support a 1x
SBSRAM interface, the data for which can vary by 1-2 cycles. The 1x speed
SBSRAM option is not commonly used. It is currently difficult to find devices
that conform to the timing requirements. Therefore, the 1x-specific timing are
not included in this chapter.

Table 5–2. EMIF Data Access Completion Timings in CLKOUT1 (CPU Clock) Cycles

Memory Type CE_READ_HOLD CE_WRITE_HOLD

Asynchronous 7 – READ_HOLD 4 if WRITE_HOLD = 0
3 if WRITE_HOLD > 0

SDRAM 0 0

SBSRAM 4 4

After the CE is re-asserted high at the end of a memory access, multiple cycles
occur before another external access can begin due to arbitration within the
EMIF. When the EMIF switches between requestors (or requests by the same
requestor) there can be multiple cycles between external accesses (between
active CE signals). These timings vary slightly depending on the memory type,
the requestors, and the situation of the switching request.

5.2.3.2 CPU Accesses

The CPU uses the load and store operations to access data in external memory.
Since accesses to external memory require multiple cycles to complete, the
CPU stalls during the E3 stage of the pipeline. The data memory controller han-
dles CPU accesses to the EMIF, with each request passed individually to the
EMIF. The data memory controller waits until previous accesses have com-
pleted before issuing subsequent requests. This protocol prevents the CPU
from bursting data accesses.

Table 5–3 provides the number of cycles for which the CPU stalls for an external
access. SETUP, STROBE, and HOLD values are user-programmable fields of
each CE control register in the EMIF. The CE_HOLD values (CE_READ_HOLD
or CE_WRITE_HOLD) are provided in Table 5–2. TRP and TRCD are user-pro-
grammable fields of the SDRAM control register in the EMIF. The SDRAM and

Accessing Data

5-7DMA and CPU Data Access Performance

SBSRAM timings have a range of two cycles due to the fact that the CPU re-
quest may have to wait until the appropriate phase of the external memory
clock, which is half the rate of the CPU clock.

Table 5–3. CPU Stalls for Single External Data Accesses

Memory Type Load Store

Asynchronous SETUP + STROBE + HOLD + CE_HOLD – 5 6

SDRAM (active row) 17 or 18 7 or 8

SDRAM (inactive row) 2 � (TRP + TRCD) + (25 or 26) 2 � (TRP + TRCD) + (15 or 16)

SBSRAM 15 or 16 7 or 8

The number of CPU stall cycles is at least the number given Table 5–3. Howev-
er, the number of CPU stall cycles increases if the EMIF is currently completing
a previous access. The number of cycles of additional delay depends upon
whether the CPU has a higher priority than the current access, as well as how
close the access is to completion. If the current access is a CPU store to asyn-
chronous memory, the maximum number of additional cycles for which the
CPU is stalled is SETUP+ STROBE+ HOLD+ CE_HOLD – 5. This maximum
is obtained if both CPU accesses are submitted in parallel. For every cycle of
delay between the two accesses, subtract one from the additional stall value
(until the additional delay is zero). All other loads and stores do not result in
an additional delay to a CPU access.

5.2.3.3 DMA Accesses

The DMA can burst data to and from external memory at the rate of one ele-
ment per memory clock cycle. The DMA’s internal FIFO allows for data reads
to be pipelined. Provided that the FIFO does not completely fill (which occurs
if DMA writes are held off by a higher priority requestor), the DMA does not
need to wait for a request to complete before issuing another.

A DMA access to external memory can achieve the maximum throughput rate
for any external memory. By pipelining accesses, the time required to access
a frame of data is equal to one memory clock per element for synchronous me-
mories and the user-programmed settings for asynchronous memory.

5.2.4 Resource Contention

When multiple requestors (DMA or CPU) access the same resource, the re-
source’s memory controller arbitrates which accesses the memory location first.
Data resources that can have multiple requestors include internal data memory
banks, peripheral registers, and external memory (EMIF). The expansion bus is
only accessible with the DMA.

Accessing Data

 5-8

Arbitration is performed every cycle within the memory controllers for each re-
source. For internal data memory and peripheral register accesses there is no
delay when switching between requestors. A lower-priority request will take
place on the cycle immediately following the high-priority request.

For accesses to external memory through the EMIF, the number of cycles in be-
tween accesses depends on the memory type and the direction of the accesses.
Since memory timings and latencies vary according to different memory types,
and since the external memories do not run off the CPU clock, the switching times
are not uniform across all memory types. The delay times between external ac-
cesses are provided in Table 5–4. These switching times are valid for CPU/CPU,
DMA/CPU, CPU/DMA, and DMA/DMA access boundaries.

Table 5–4. External Switching Time between Accesses by Different Requestors

Subsequent Access

ASRAM SDRAM SBSRAM

Current Access Read Write Read Write Read Write

ASRAM
Read
Write

1–2
1

1–2
1

5–7
1

5–7
1

2–3
2–3

2–3
2–3

SDRAM
Read
Write

12–15
4–5

12–15
4–5

16–18
10

18–20
8

13–17
5–7

13–17
5–7

SBSRAM
Read
Write

2–4
2–3

2–4
2–3

7–9
5–7

7–9
5–7

4–6
4

4–6
4

The switching times signify the number of CLKOUT1 (CPU Clock) cycles be-
tween the end of one access and the beginning of another. Within this chapter,
the beginning of an access is the rising edge of CLKOUT1 (CPU Clock) immedi-
ately preceding the rising edge of the memory clock used in the data sheet to ref-
erence the CE transition from 1 to 0. The end of an access is the rising edge of
CLKOUT1 (CPU Clock) immediately preceding the rising edge of the memory
clock used in the datasheet to reference the CE transition from 0 to 1. Figure 5–2
shows an example of the beginning and the end of an SBSRAM transfer. For the
C6201 SBSRAM, the memory clock SSCLK is used to reference the CE transi-
tions

Accessing Data

5-9DMA and CPU Data Access Performance

Figure 5–2. 1/2x Rate SBSRAM Read Cycle Timings

CE

READ READ READ READ

ÉÉÉÉÉ
ÉÉÉÉÉ

BE1 BE2 BE3 BE4ÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ

ÉÉÉÉÉ
A1 A2 A3 A4

ÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉ

Q1 Q2 Q3 Q4

Cycle EndCycle Begin
CLKOUT1

SSCLK

BE_ [3:0]

EA [21:2]

ED [31:0]

SSADS

SSOE

SSWE

5.2.4.1 Switching Between DMA Channels

Switching between DMA channels is different than switching between CPU
data paths or between the CPU and the DMA. Arbitration is handled within the
DMA for channels that are active at the same time. Arbitration is done in two
places: the read port and the write port. Only one DMA channel can read at
a time, and only one channel can write at a time. Priority is always granted to the
lowest-numbered DMA channel. The Auxiliary channel’s priority is programmable.

A DMA channel requests a read access as soon as it is started by the CPU,
or when its read-synchronization event is received. A write access is re-
quested as soon as data arrives at one of the channel’s holding registers, and
after any write-synchronization event. A channel’s request to either the read-
or write-controller is either passed to the desired resource or held due to a
higher priority channel using the port. Arbitration is handled every cycle.

This arbitration takes only one cycle and has virtually no impact for internal
transfers. For transfers to or from external memory, this is more noticeable.
The number of cycles between accesses by different channels depends on
three factors:

� Memory type
� Transfer direction
� Channel priority

Accessing Data

 5-10

Switching times between accesses depends on memory type and direction. The
time varies from the values in Table 5–4, depending on whether one channel in-
terrupts another, or one channel completes and a suspended channel resumes
(or begins). The switching time between accesses by different channels is equal
to the values given in Table 5–4, plus an additional offset shown in Table 5–5.

Table 5–5. Additional Switching Time between External DMA Accesses

Subsequent DMA Access

Higher-Priority Channel Lower-Priority Channel

Current DMA Access Read Write Read Write

Read 2–4 11–15 2–4 8–15

Write 0–4 0–4 4–8 0–4

If a DMA channel’s request is passed to the read- or write-controller when a low-
er priority channel is transmitting data, the lower priority channel’s new requests
are suspended and the higher priority channel is permitted to transfer.

Since most data accesses to external memory use the DMA, knowledge of the
time required to switch between DMA channels is important. A DMA channel
accessing external memory will hold off all other requests for external memory
until that access is complete. The switching time depends on the type of
memory accessed, the directions of both the current and subsequent transfers,
and whether or not either DMA channel uses the internal FIFO to burst.

5.2.4.2 Burst Interruptions

External DMA bursts can be interrupted without another requestor taking over
the EMIF. Examples of this include transfer frame boundaries, servicing of a
McBSP by a higher-priority channel, or internal auxiliary channel accesses.

Multiple Frames and Auto-initialization

The DMA channels can be configured to transmit multiple frames of equal
length, constituting a block. Also each channel can be optionally configured to
perform auto-initialization, where some or all address and counter registers are
reloaded at the end of each block, in order to continue transmission without CPU
intervention. These functions of the DMA complete quickly, each requiring only
one cycle within the DMA block.

Once a frame or block boundary is reached, the current burst ends and a new
burst begins. As shown in Table 5–6 the number of inactive cycles during an
external burst depends on the type of memory being accessed, as well as the
direction of the transfer.

Accessing Data

5-11DMA and CPU Data Access Performance

Table 5–6. CLKOUT1 (CPU Clock) Cycles between External Frame Bursts

Memory Type Cycles Between Reads Cycles Between Writes

Asynchronous 1 1

SDRAM 16 10

SBSRAM 4 4

Servicing a McBSP or Host Access

When a higher priority channel services a McBSP, or when the auxiliary channel
(higher priority) services a host access, it temporarily assumes control of the read
port and the write port of the DMA from the currently bursting channel. The
amount of time lost from this interruption depends on the memory type being ac-
cessed, as well as the direction of the current burst. Table 5–7 shows the time
between memory accesses (CE inactive) for each type of external memory. The
cycle counts assume that the data source and destination for the McBSP or host
transfers are internal data memory.

Table 5–7. Burst Interruption by McBSP/Host Service

Burst Cycles Idle When Servicing McBSP/Host

Current Access
McBSP Read/

Host Write
McBSP Write/

Host Read
McBSP Read & Write/

Host peripheral access

ASRAM Read
Write

12
2

14
2

22
13

SDRAM Read
Write

28
16

30
14

38
28

SBSRAM Read
Write

16
10

18
8

26
22

Internal Auxiliary Channel Access

External accesses by the DMA auxiliary channel act as a DMA channel that
is interrupting another DMA channel. This described in section 5.2.4.1 Switch-
ing Between DMA Channels.

5.2.5 DMA Synchronization

Each DMA channel can be synchronized by a variety of events to control its
data movement. There is latency involved with performing a synchronized
transfer that should be understood when computing response time of a sys-
tem. Table 5–8 shows the time delay from a synchronization event to the be-
ginning of a data access.

Accessing Data

 5-12

Table 5–8. DMA Synchronization Timings

CLKOUT1 (CPU Clock) Cycles for Memory Type

Timing ASRAM SDRAM SBSRAM

Internal event to setting of (R/W)SYNC_STAT bit 1 1 1

External event to setting of (R/W)SYNC_STAT bit 4 4 4

RSYNC_STAT bit set to beginning of external read 9 12 11

RSYNC_STAT bit set to beginning of external write† 16 20 17

WSYNC_STAT bit set to beginning of external write 7 11 8

† Measurement valid for read-synchronized or frame-synchronized internal-to-external DMA transfer.

5.2.6 Transferring To/From Same Resource

The DMA can transfer data to and from the same resource. Two primary ap-
plications for this would be to restructure data in internal memory, or to burst
data between its external source and an external buffer.

Using the same resource reduces the throughput achievable by the DMA. This
situation results because the DMA cannot read from and write to the same re-
source simultaneously.

DMA writes are given a higher priority than DMA reads. A DMA channel issues
write requests as long as there is data in its holding registers. Because of this,
a channel that attempts to burst to the same resource from which it is reading can-
not capitalize on the DMA FIFO. Since the write requests begin as soon as data
is in the channel’s holding registers, and the write request has priority over the
read requests, the number of elements buffered during the read burst depends
solely on the speed of the memory being read. If a slow memory is being read
(i.e. asynchronous memory) then only a few elements burst at a time. If a high-
speed memory is being read (i.e. internal data memory) then more of the FIFO
is used.

Table 5–9 lists the number of elements per burst when reading from, and writing
to, the same resource.

Accessing Data

5-13DMA and CPU Data Access Performance

Table 5–9. Burst Size for Shared Resource

Read Memory Elements/Burst

Internal Data Memory 5

Asynchronous 3*

SDRAM 6

SBSRAM 5

Note: Burst size is 2 when READ_HOLD = 3

When the DMA uses the same resource for both source and destination,
switching latency exists between reading and writing. This latency depends on
the transition. Table 5–10 lists the number of cycles between reads and writes
for transfers between external memories, in addition to those provided in
Table 5–4.

Table 5–10. Additional Switching Time for External-to-External Transfers

Burst Transition Additional Cycles

Read to Write 0 – 4

Write to Read 1 – 4

Latencies also exist between read bursts and write bursts when transferring
between locations in internal data memory. While each data access can be
performed in a single cycle, there is switching time between the read requests
and the write requests, as provided in Table 5–11.

Table 5–11. Switching Time for Internal-to-Internal Transfers

Burst Transition CLKOUT1 Cycles

Read to Write 8

Write to Read 9

Due to the burst sizes and the latencies in Table 5–10 and Table 5–11, the
throughput of a transfer with a shared resource for the source and destination
is maximized for frame sizes equal to a multiple of the above burst sizes.

Bandwidth Calculation

 5-14

5.3 Bandwidth Calculation

If the system activity is known, then the total bandwidth required by the system
can be derived from the information presented in this chapter. Such an analy-
sis allows a designer to make sure that all data processing can be performed
in the time allotted for it.

5.3.1 Simple Timing Use Example

The following simple example illustrates how to use the timing information in
this chapter. Consider the following:

� DMA channel 0 performs an unsynchronized transfer of 32-bit data from �x
SBSRAM to internal data memory with a frame count of 2 and an element
count of 20.

� DMA channel 1 performs an unsynchronized transfer of 32-bit data from
internal data memory to �x clock rate SBSRAM with a frame count of 1
and an element count of 40.

� DMA channel 1 is started immediately after channel 0.

First it is necessary to find out the bandwidth requirements for the individual
data streams. All of the timing parameters used in the calculations, along with
their location in this chapter, are described in Table 5–12.

Table 5–12. Timing Parameter Descriptions For Simple Example

Parameter Value Location Description

element_count0 20 N/A Number of elements per frame for channel 0

element_count1 40 N/A Number of elements per frame for channel 1

CE_read_setup 4 N/A Cycle count from the beginning of the access to
beginning of the first read data phase.

CE_read_hold 4 Table 5–2,
 p. 5-6

Cycle count from the last strobe in a read burst from
SBSRAM to the end of the access

CE_write_hold 4 Table 5–2,
 p. 5-6

Cycle count from the last strobe in a write burst to
SBSRAM to the end of access

read_frame_gap 4 Table 5–6,
 p. 5-11

Time between read bursts for multi-frame transfer

read_to_write 6 Table 5–4,
 p. 5-8

Switching time between a SBSRAM read access and a
SBSRAM write access

DMA_hp_read_to_lp_write 15 Table 5–5,
 p. 5-10

Additional switching time between a high priority read
access and a low priority write access

Bandwidth Calculation

5-15DMA and CPU Data Access Performance

Table 5–12. Timing Parameter Descriptions For Simple Example (Continued)

Parameter DescriptionLocationValue

start_to_sync 1 Table 5–8,
 p. 5-12

Time from setting START = 01b to the setting of
RSYNC_STAT

RSYNC_STAT_to_read 11 Table 5–8,
 p. 5-12

Latency from the setting of RSYNC_STAT to beginning
of a read access

Since channel 1 is started after channel 0, it waits until channel 0’s transfer
completes before beginning its data transfer. The total transfer time equals the
transfer time of channel 0 plus the transfer time of channel 1 plus the time be-
tween transfers, or:

Channel 0 Burst Time + Channel 0 Overhead + Channel 1 Burst Time
+ Channel 1 Overhead

The functions of each are summarized as follows:

� Channel 0 Burst Time: DMA channel 0 performs two burst transfers, one
for each frame. The cycle time required for all bursts is:

2 � [CE_read_setup + (2 ���element_count0) + CE_read_hold]

= 2 � [4 +(2 � 20) + 4] = 96 cycles

� Channel 0 Overhead: The first frame starts after the RSYNC_STAT bit is
set. Since channel 0 performs an unsynchronized transfer, RSYNC_STAT
is set 1 cycles after START = 01b is written to the channel’s primary control
register. The time between frames must also be included in the overhead
calculation, since there is a small number of cycles between bursts. This
delay is calculated as:

Start_to_sync + RSYNC_STAT_to_read + read_frame_gap

= 1 + 11 + 4 = 16 cycles

� Channel 1 Burst Time: DMA channel 1 performs only a single burst,
which requires the following number of cycles to complete:

(2 � element_count1) + CE_write_hold

= (2 � 40) + 4 = 84 cycles

Bandwidth Calculation

 5-16

� Channel 1 Overhead: Since channel 1 is started during channel 0’s trans-
fer, the delay from starting the channel to the actual beginning of the trans-
fer is not apparent. Rather than the time delay from the setting of the
START field to the beginning of the transfer (as for Channel 0), the over-
head consists only on the delay between channel 0’s transfer and channel
1’s transfer. This delay is calculated by:

read_to_write + DMA_hp_read_to_lp_write

= 6 + 15 = 21 cycles

� Total Transfer Time: The total time required for these transfers, from the
setting of START = 01b in channel 0’s primary control register to the end
of the CE period for channel 1 is:

Channel 0 Burst Time + Channel 0 Overhead + Channel 1 Burst Time
+ Channel 1 Overhead

= 96 + 16 + 84 + 21 = 217 cycles

5.3.2 Complex Bandwidth Calculation Example

A more complex example involves calculating the bandwidth requirement of a
system, ensuring that the system requirements do not exceed the capabilities
of the device. The system involves the following transfers:

� Full-duplex serial data transferred to/from a McBSP at 48 kHz

� Data input from an asynchronous memory source with setup = 2,
strobe = 4, hold = 1. Data arrives in frames of 128 elements every 10 µs.

� Data output from an asynchronous memory source with setup = 2, strobe
= 4, hold = 1. Data is output in frames of 128 elements every 15µs.

� The CPU is restricted to internal memory and is running at 200 MHz.

First, calculate the bandwidth requirements for the individual data streams.
Then, consideration for the interaction between the DMA transfers should be
included. Table 5–13 describes all of the timing parameters used in the cal-
culations, along with their location in this document.

Bandwidth Calculation

5-17DMA and CPU Data Access Performance

Table 5–13. Timing Parameter Descriptions For Complex Example

Parameter Value Location Description

element_count 128 N/A Number of elements per frame

Setup 2 Memory Timings,
p. 5-5

Read/write setup time (same in this example)

Strobe 4 Memory Timings,
p. 5-5

Read/write strobe time (same in this example)

Hold 1 Memory Timings,
p. 5-5

Read/write hold time (same in this example)

CE_read_hold 6 Table 5–2,
p. 5-6

Cycle count from the last strobe in a read burst
from asynchronous memory to the end of
access

CE_write_hold 3 Table 5–2,
p. 5-6

Cycle count from the last strobe in a write burst
to asynchronous memory to the end of access

mcbsp_read_interruption 12 Table 5–7,
p. 5-11

ASRAM burst interruption caused by a McBSP
read

mcbsp_write_interruption 14 Table 5–7,
p. 5-11

ASRAM burst interruption caused by a McBSP
write

write_to_read 1 Table 5–4,
p. 5-8

Switching time between an asynchronous write
access to an asynchronous read access

read_to_write 2 Table 5–4,
p. 5-8

Switching time between an asynchronous read
access to an asynchronous write access

DMA_lp_write_to_hp_read 4 Table 5–5,
p. 5-10

Additional switching time between a low priority
write access and a high priority read access

DMA_hp_read_to_lp_write 15 Table 5–5,
p. 5-10

Additional switching time between a high
priority read access and a low priority write
access

RSYNC_STAT_to_read 9 Table 5–8,
p. 5-12

Latency from the setting of RSYNC_STAT to
beginning of an ASRAM read access

Bandwidth Calculation

 5-18

Since this is a bandwidth calculation, rather than a latency (or completion time)
calculation, the worst case interaction of the DMA transfers must be taken into
account. The bandwidth requirement of the system will be equal to the transfer
time required by each of the channels plus any arbitration latency introduce
by channel interaction during a timing window of the least common denomina-
tor of the transfer times. This calculation is represented by:

(Input data transfer time + Output data transfer time + McBSP data transfer
overhead + Input data transfer overhead + Output data transfer overhead) /
Timeslice � 100%

McBSP Data Transfer Time: The serial output data requires a transfer from
internal data memory to the McBSP once per 4167 cycles.

The serial input data requires a transfer from the McBSP to internal data
memory once per 4167 cycles.

Input Data Transfer Time: The parallel input data requires the following num-
ber of cycles every 2000 cycles:

[(setup + strobe) � element_count] + [hold � (element_count – 1)]

+ CE_read_hold

= [(2 + 4) � 128] + [1 � (128 – 1)] + 6 = 901 cycles

Output Data Transfer Time: The parallel output data requires the following
number of cycles every 3000 cycles:

[(setup + strobe) � element_count] + [hold � (element_count – 1)]

+ CE_write_hold

= [(2 + 4) � 128] + [(1) � 127] + 3 = 898 cycles

Timeslice Calculation: The serial sync event arrives roughly every 4000
cycles, the parallel input every 2000 cycles, and the parallel output every 3000
cycles. Considering all events in a 12000 window is therefore adequate for the
entire system. The least common denominator of the transfer times is 12000.

5.3.2.1 DMA Channel Selection

The DMA channels used for each of the data transfers directly impacts the per-
formance of the system. Typically the transfers in a system should be ranked
in priority such that short bursts (such as McBSP servicing) are given the high-
est priority and long bursts (typically background paging) are given the lowest
priority. For transfers that are of similar burst lengths the more frequent transfer

Bandwidth Calculation

5-19DMA and CPU Data Access Performance

is given priority. This ensures that data being sampled at a high frequency is
never missed. System constraints and special cases can require that a differ-
ent priority scheme be used. For the example in Table 5–14, transfer priority
is ranked according to frequency. Based on the numbers shown in the time-
slice calculation the priority ranking is as shown.

Table 5–14. DMA Channel Selection Priority

Data Transfer Burst Size Event Frequency DMA channel

McBSP 1 1/4000 cycles 0

Parallel Input 128 1/2000 cycles 1

Parallel Output 128 1/3000 cycles 2

Based on this, channel 0 should be used for the serial data, channel 1 for the
parallel input data, and channel 2 for the parallel output data.

McBSP Data Transfer Overhead: DMA channel 0 will interrupt either channel
1 or 2 twice if serial frames are synchronized at the same time, but potentially
four separate times. This worst-case results in the following number of addi-
tional cycles:

2 � (CE_read_hold + mcbsp_read_interruption) for McBSP reads and
2 � (CE_write_hold + mcbsp_write_interruption) for McBSP writes

= 2 � [(6 + 12) +(3 + 14)] = 70 cycles every 12000 cycles

Input Data Transfer Overhead: DMA channel 1 interrupts channel 2 four
times, resulting in the following number of additional cycles:

4 � (CE_write_hold + write_to_read + DMA_lp_write_to_hp_read)

= 4 � (3 + 1 + 4) = 32 cycles every 12000 cycles

Output Data Transfer Time: DMA channel 2 trails channel 1 six times, result-
ing in the following number of additional cycles:

6 � (read_to_write + DMA_hp_read_to_lp_write)

= 6 � (2 + 15) = 102 cycles every 12000 cycles

Total Bandwidth Utilization: Again, this is the total bandwidth required by the
system:

(Input data transfer time + Output data transfer time + McBSP data transfer
overhead + Input data transfer overhead + Output data transfer over-
head)/Timeslice � 100%)

= ((6 � 901) + (4 � 898) + 70 + 32 + 102) / 12000 � 100%
= 9202 / 12000 � 100%
= 77%

Bandwidth Calculation

 5-20

5.3.2.2 Comparison of 1.8V/2.5V Devices to 1.5V Device

For the 1.5 V C6000 devices (such as C6202B/C6203(B)/C6204/C6205), the
bandwidth analysis ends here. Since only 9132 out of every 12000 cycles are
required for the transfers in the system, or 76%, there is no problem servicing
the I/O data streams.

For the 1.8 V (such as C6201/C6701/C6202) devices, however, some addi-
tional steps must be taken due to the shared FIFO present in the DMA. As de-
scribed in section 4.11.2.2 Channel FIFOs, having the shared FIFO can re-
duce throughput when a high-priority burst transfer interrupts a lower-priority
burst transfer, when the source of the high-priority transfer is the same re-
source as the destination of the low-priority transfer. This condition exists in
the above example when channel 1 interrupts channel 2. To solve this prob-
lem, the CPU must be used to control the burst interruption to insure that chan-
nel 1 always has use of the shared FIFO when active.

To do this, the channel should no longer be synchronized on the external
event, but rather on an unused synchronization event. The CPU should be
configured to receive an interrupt from the external event (previously used to
synchronized channel 1). The ISR for the interrupt should perform the follow-
ing tasks:

� Pause channel 2
� Set RSYNC_STAT for channel 1
� Unpause channel 2

The ISR executes six times per 12000 cycles. This switching time replaces the
32 cycles previously described for channel 1 interrupting channel 2. Instead,
the number of cycles will be:

6 � (RSYNC_STAT_to_read)

= 6 � 9
= 54 cycles every 12000 cycles

This changes the total cycle requirement to 9202 – 32 + 54 = 9224 cycles every
12000 cycles, which is still 77% bandwidth utilization. The required cycle count
will grow, however, if the ISR for channel 1 is delayed from execution. 2846
cycles remain in each 12000 window for the ISR to occur six times. In order
to provide the CPU intervention, the ISR must complete (CPU interrupt {exter-
nal event} to the setting of RSYNC_STAT) within 2846/6 = 475 cycles.

Note:

This cycle count can be an average if it is guaranteed that the completion
time for six ISRs not exceed 2846 cycles, the “free” cycles accounted for in
the calculation.

Bandwidth Optimization

5-21DMA and CPU Data Access Performance

5.4 Bandwidth Optimization

Understanding the time requirements of a system is crucial to building it success-
fully. By knowing the time requirements for data I/O, and utilizing the DSP timing
information presented in the previous sections, it is possible to tailor CPU and
DMA activity to work as efficiently as possible to meet performance goals.

There are typically multiple ways to implement tasks, both with the CPU and
with the DMA. Understanding the implications of the different options can allow
the best to be chosen.

5.4.1 Maximize DMA Bursts

The most important things to consider when accessing external memory is that
bursts are the most efficient way to access data. Data bursts are performed
through a non-synchronized or frame-synchronized DMA transfer. Each frame
is one continuous burst. To maximize data bandwidth, data should always be
transferred using the largest frame size possible, and should be transferred
as 32-bit elements regardless of the data size that will be used by the CPU.

Accessing 32-bit data with the DMA can be accomplished when the data
source is 16-or 8-bit by adding or organizing system hardware. If multiple
16-bit codecs are providing data I/O for the system, then two codecs can be
located per word address, with one on the lower 16-bits and the other on the
upper 16-bits, as shown in Figure 5–3. This allows for both to be accessed si-
multaneously. This requires synchronization of the data streams to insure that
valid data is always read.

Figure 5–3. Combining External Peripherals

0

0 0

15

15 15

1631

16-bit codec 16-bit codec

‘C6x0x EMIF

If only one 16-bit data I/O source is present, the system bandwidth is greatly
improved by providing an external latch, as shown in Figure 5–4. When an odd
16-bit data element arrives, latch it into one halfword on the data bus. When
an even 16-bit data element arrives, access both elements with a 32-bit trans-
fer. Thus, the bandwidth is effectively doubled.

Bandwidth Optimization

 5-22

Figure 5–4. Converting a 16-bit Peripheral to 32-bit

1516 031

‘C6x0x EMIF

015

16-bit latch

015

16-bit codec

If the cost is acceptable, an external FIFO could be placed between the data
source and the DSP to buffer a frame of data. A DMA channel could then burst
a full frame of data elements when the FIFO fills. By bursting data the band-
width of the system is maximized.

5.4.2 Minimizing CPU/DMA Conflict

As the CPU is optimized for internal accesses, it cannot burst data from exter-
nal memory. CPU data accesses should therefore be restricted to internal data
memory as much as possible. Using the DMA to page data in and out of inter-
nal memory allows better processing speeds to be achieved.

Conflict between DMA channels, and between the CPU and DMA should be
minimized. When a high-priority DMA or CPU access interrupts a DMA burst,
cycles are lost as the burst is broken. By performing all CPU data accesses
in a single block (i.e. one after the next in a small section of code), rather than
dispersed throughout a section of code, each data requestor can have the full
system bandwidth. The DMA burst is only interrupted a single time the transfer
rate is not heavily impacted.

In some systems the above solutions may not be practical, particularly if band-
width is restricted by hardware or by asynchronous events. If conflict cannot be
completely avoided, then bandwidth can still be efficiently used.

Sometimes the CPU must be used to access external memory. The most fre-
quent example is when all DMA channels are heavily used to perform other
tasks. In this case, it is more inefficient to save the context of a DMA channel,
then page data to internal memory, then restore the channel’s context.

Bandwidth Optimization

5-23DMA and CPU Data Access Performance

If the CPU must be used to access external memory, the accesses should be
performed consecutively—either one serial instruction after another or in par-
allel. This reduces the effect of interrupting a DMA burst to/from external
memory. Since there is a loss of several cycles in between accesses by the
DMA and CPU, as described in , these “lost” cycles can be minimized if the
DMA burst is interrupted only once per group of CPU accesses.

6-1

EDMA Controller

This chapter describes the enhanced DMA controller (EDMA) for the
TMS320C621x/C671x/C64x�. EDMA transfer parameters, types and perfor-
mance are discussed. This chapter also describes the quick DMA (QDMA) for
fast data requests by the CPU.

Topic Page

6.1 Overview 6-2.

6.2 EDMA Terminology 6-5.

6.3 Event Processing and EDMA Control Registers 6-6.

6.4 Event Encoder 6-13.

6.5 Parameter RAM (PaRAM) 6-13.

6.6 EDMA Transfer Parameters 6-16.

6.7 Initiating an EDMA Transfer 6-22.

6.8 Types of EDMA Transfers 6-26.

6.9 Element Size and Alignment 6-32.

6.10 Element and Frame/Array Count Updates 6-34.

6.11 Source/Destination (SRS/DST) Address Updates 6-35.

6.12 Linking EDMA Transfers 6-39.

6.13 Terminating an EDMA Transfer 6-41.

6.14 EDMA Interrupt Generation 6-42.

6.15 Chaining EDMA Channels by an Event 6-47.

6.16 Peripheral Device Transfers (TMS320C64x only) 6-54.

6.17 Resource Arbitration and Priority Processing 6-55.

6.18 EDMA Performance 6-59.

6.19 Quick DMA (QDMA) 6-59.

6.20 Emulation Operation 6-64.

6.21 Transfer Request Submission 6-64.

6.22 Transfer Examples 6-69.

Chapter 6

Overview

 6-2

6.1 Overview

The enhanced direct memory access (EDMA) controller handles all data trans-
fers between the level-two (L2) cache/memory controller and the device periph-
erals on the TMS320C621x/C671x/C64x. These data transfers include cache
servicing, non-cacheable memory accesses, user-programmed data transfers,
and host accesses.

The EDMA controller in the C621x/C671x/C64x is different in architecture to the
previous DMA controller in the C620x/C670x devices. The EDMA includes
several enhancements to the DMA in that it provides 64 channels (C64x) or 16
channels C621x/C671x, with programmable priority, and the ability to link and
chain data transfers. The EDMA allows movement of data to/from any address-
able memory spaces, including internal memory (L2 SRAM), peripherals, and ex-
ternal memory.

Figure 6–1. TMS320C621x/C671x/C64x Block Diagram

Data path 2

External
memory
interface
(EMIF)

Other

Peripherals

Host port
interface

(HPI)

Power down logic

Enhanced
DMA

controller

Timers

L1P cache direct mapped

L1 S1 M1 D1 D2 M2 S2 L2

A register file

Data path 1

B register file

In
te

rr
up

t c
on

tr
ol

CPU core

Instruction fetch

Instruction dispatch

Instruction decode In-circuit emulation

Control registers

L2
 m

em
or

y
4

ba
nk

s

L1D
controller

L1D cache
2-way set

associative

L1P
controller

Overview

6-3EDMA Controller

The EDMA controller comprises:

� Event and interrupt processing registers
� Event encoder
� Parameter RAM, and
� Address generation hardware

A block diagram of the EDMA controller is shown in Figure 6–2.

Figure 6–2. EDMA Controller

encoder
Event

 to EMIF/peripherals

FSM

Address
generation

(scratch area)
Unused

params
Reload channel N

params
Reload channel 1

params
Reload channel 0

Channel N params

Channel 1 params

Channel 0 params

E
ve

nt
s

(s
er

ia
l p

or
ts

, F
IF

O
A

F
E

, e
xt

er
na

l d
ev

ic
es

)

EDMA parameter RAM
 /internal memory

EDMA events are captured in the event register. An event is a synchronization
signal that triggers an EDMA channel to start a transfer. If events occur
simultaneously, they are resolved by way of the event encoder. The transfer
parameters corresponding to this event are stored in the EDMA parameter
RAM, and are passed onto the address generation hardware, which address
the EMIF and/or peripherals to perform the necessary read and write
transactions.

Overview

 6-4

The EDMA has the capability of performing fast and efficient transfers by accept-
ing a quick DMA (QDMA) request from the CPU. A QDMA transfer is best suited
for applications that require quick data transfers, such as data requests in a tight
loop algorithm. See section 6.19 for more details. Table 6–1 summarizes the dif-
ference between the C6000 EDMAs.

Table 6–1. Differences in TMS320C6000 EDMAs

Features Supported on Device
Described
in Section

Number of channels C64x has 64 channels. C621x/C671x has 16
channels

6.1

CIPR, CIER, CCER, ER,
EER, ECR, ESR registers

For C64x, each of these registers are expanded
into two registers (low and high) to support 64
channels.

6.3

Transfer Chaining on all
channels

C64x only. On C621x/C671x, only channels 8 to
11 can be chained

6.15

Supports Peripheral Device
Transfers

C64x only 6.16

Programmable priority
queue allocation

C64x only 6.17.2.2

EDMA transfers possible
on all priority queues

C64x only. On C621x/C671x, EDMA cannot
transfer on Q0.

6.17.2.2

L2 controller transfers
possible on all priority
queues

C64x only. On C621x/C671x, L2 controller
transfers on Q0 only.

6.17.2.2

Event polarity selection C64x only 6.3.5

Alternate Transfer
Complete Chaining and
Interrupt

C64x only 6.14.2,
6.15.3

EDMA Terminology

6-5EDMA Controller

6.2 EDMA Terminology

The following definitions help in understanding some of the terms used in this
chapter:

� Element transfer: The transfer of a single data element from source to
destination. Each element can be transferred based on a synchronization
event if required. The term ’element transfer’ is used in context with 1-di-
mensional transfer, which is described below.

� Frame: A group of elements comprise a frame. The elements in a frame
can be staggered or can be contiguous. A frame can be transferred with
or without a synchronizing event. The term ‘frame’ is used in context with
1-dimensional (1D) transfer, which is defined below.

� Array: A group of contiguous elements comprise an array. Therefore, the
elements in an array cannot be spaced by an element index. The term
‘array’ is used in context with 2-Dimensional transfers. 2D transfer is de-
fined below.

� Block: A group of arrays or frames form a block. For 1-dimensional trans-
fers, a group of frames form a block. For 2-dimensional transfers, a group
of arrays form a block.

� 1-dimensional (1D) transfer: A group of frames comprise a 1D block.
The number of frames (frame count, FRMCNT) in a block can be between
1 and 65536 (corresponding to an FRMCNT value range of 0 to 65535).
The number of elements per frame can be between 1 and 65535. Either
elements or full frames can be transferred at a time.

� 2-dimensional (2D) transfer: A group of arrays comprise a 2D block. The
first dimension is the number of contiguous elements in an array, and the
second dimension is the number of such arrays. The number of arrays (ar-
ray count, FRMCNT) in a block can range from 1 to 65536 (corresponding
to an FRMCNT value range of 0 to 65535). Either arrays or the entire block
can be transferred at a time.

Event Processing and EDMA Control Registers

 6-6

6.3 Event Processing and EDMA Control Registers

Each of the 64 channels (C64x) or 16 channels (C621x/C671x) in the EDMA
has a specific synchronization event associated with it. These events trigger
the data transfer associated with that channel. The list of control registers that
perform various processing of events is shown in Table 6–2. These synchro-
nization events are discussed in detail in section 6.7.1.

Table 6–2. EDMA Control Registers

Byte
Address Acronym Register Name Section

01A0 FF9Ch EPRH Event polarity high register � 6.3.5
01A0 FFA4h CIPRH Channel interrupt pending high register � 6.14
01A0 FFA8h CIERH Channel interrupt enable high register � 6.14
01A0 FFACh CCERH Channel chain enable high register � 6.15
01A0 FFB0h ERH Event high register � 6.3.1
01A0 FFB4h EERH Event enable high register � 6.3.2
01A0 FFB8h ECRH Event clear high register � 6.3.3
01A0 FFBCh ESRH Event set high register � 6.3.4
01A0 FFC0h PQAR0 Priority queue allocation register 0 � 6.17.2.2
01A0 FFC4h PQAR1 Priority queue allocation register 1 � 6.17.2.2
01A0 FFC8h PQAR2 Priority queue allocation register 2 � 6.17.2.2
01A0 FFCCh PQAR3 Priority queue allocation register 3 � 6.17.2.2
01A0 FFDCh EPRL Event polarity low register � 6.3.5
01A0 FFE0h PQSR Priority queue status register 6.17.1
01A0 FFE4h CIPR

CIPRL

Channel interrupt pending register (C621x/C671x)

Channel interrupt pending low register (C64x)

6.14

01A0 FFE8h CIER

CIERL

Channel interrupt enable register (C621x/C671x)

Channel interrupt enable low register (C64x)

6.14

01A0 FFECh CCER

CCERL

Channel chain enable register(C621x/C671x)

Channel chain enable low register (C64x)

6.15

01A0 FFF0h ER

ERL

Event register(C621x/C671x)

Event low register (C64x)

6.3.1

01A0 FFF4h EER

EERL

Event enable register(C621x/C671x)

Event enable low register (C64x)

6.3.2

01A0 FFF8h ECR

ECRL

Event clear register(C621x/C671x)

Event clear low register (C64x)

6.3.3

01A0 FFFCh ESR

ESRL

Event set register(C621x/C671x)

Event set low register (C64x)

6.3.4

† Applicable to C64x only.

Event Processing and EDMA Control Registers

6-7EDMA Controller

6.3.1 Event Register (ER, ERL, ERH)

All events are captured in the event register (ER), even when the events are
disabled. The C621x/C671x has only one event register (ER). The C64x has
two event registers, event low register (ERL) and event high register (ERH) for
the 64 channels. For the remaining of this chapter, the term “event register”
or “ER” refers to the ER for C621x/C671x or the ERL/ERH for C64x. The ER
shown in Figure 6–3 contains one bit for each event. Section 6.7.1 describes
the type of synchronization events and the EDMA channels associated with
each of them.

Figure 6–3. Event Register (ER, ERL, ERH)

C621x/C671x: Event Register (ER)

31 16

Reserved

R, +0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EVT15 EVT14 EVT13 EVT12 EVT11 EVT10 EVT9 EVT8 EVT7 EVT6 EVT5 EVT4 EVT3 EVT2 EVT1 EVT0

R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0

C64x: Event Low Register (ERL) for events 0 to 31

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EVT31 EVT30 EVT29 EVT28 EVT27 EVT26 EVT25 EVT24 EVT23 EVT22 EVT21 EVT20 EVT19 EVT18 EVT17 EVT16

R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EVT15 EVT14 EVT13 EVT12 EVT11 EVT10 EVT9 EVT8 EVT7 EVT6 EVT5 EVT4 EVT3 EVT2 EVT1 EVT0

R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0

C64x: Event High Register (ERH) for events 32 to 63

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EVT63 EVT62 EVT61 EVT60 EVT59 EVT58 EVT57 EVT56 EVT55 EVT54 EVT53 EVT52 EVT51 EVT50 EVT49 EVT48

R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EVT47 EVT46 EVT45 EVT44 EVT43 EVT42 EVT41 EVT40 EVT39 EVT38 EVT37 EVT36 EVT35 EVT34 EVT33 EVT32

R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0 R,+0

Event Processing and EDMA Control Registers

 6-8

6.3.2 Event Enable Register (EER, EERL, EERH)

In addition to the event register, the EDMA controller also provides the user
the option of enabling/disabling events. Any of the event bits in the event en-
able register shown in Figure 6–4 can be set to ‘1’ to enable that event. The
C621x/C671x has only one event enable register (EER). The C64x has two
event enable registers, event enable low register (EERL) and event enable
high register (EERH) for the 64 channels. For the remaining of this chapter,
the term “event enable register” or “EER” refers to the EER for C621x/C671x
or the EERL/EERH for C64x.

For the C621x/C671x, events 8–11 are only available for chaining of EDMA
events. Therefore they are enabled in the Channel Chain Enable Register, de-
scribed in section 6.15. Bits 8–11 in the EER are read-only for C621x/C671x.
All events that are captured by the EDMA are latched in the ER even if that
event is disabled. This is analogous to an interrupt enable and interrupt-pend-
ing register for interrupt processing. This ensures that no events are dropped
by the EDMA. Thus, re-enabling an event with a pending event signaled in the
ER forces the EDMA controller to process that event according to its priority.
Writing a ‘0’ to the corresponding bit in the EER disables an event.

Figure 6–4. Event Enable Register (EER, EERL, EERH)

C621x/C671x: Event Enable Register (EER)

31 16

Reserved

R, +0

15 14 13 12 11 8 7 6 5 4 3 2 1 0

EE15 EE14 EE13 EE12 Reserved EE7 EE6 EE5 EE4 EE3 EE2 EE1 EE0

RW,+0 RW,+0 RW,+0 RW,+0 R, +0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

C64x: Event Enable Low Register (EERL) for events 0 to 31

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EE31 EE30 EE29 EE28 EE27 EE26 EE25 EE24 EE23 EE22 EE21 EE20 EE19 EE18 EE17 EE16

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EE15 EE14 EE13 EE12 EE11 EE10 EE9 EE8 EE7 EE6 EE5 EE4 EE3 EE2 EE1 EE0

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

Event Processing and EDMA Control Registers

6-9EDMA Controller

C64x: Event Enable High Register (EERH) for events 32 to 63

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EE63 EE62 EE61 EE60 EE59 EE58 EE57 EE56 EE55 EE54 EE53 EE52 EE51 EE50 EE49 EE48

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EE47 EE46 EE45 EE44 EE43 EE42 EE41 EE40 EE39 EE38 EE37 EE36 EE35 EE34 EE33 EE32

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

6.3.3 Event Clear Register (ECR, ECRL, ECRH)

Once an event has been posted in the ER, the event can be cleared in two ways.
If the event is enabled in the event enable register (EER), the corresponding
event bit in the ER is cleared as soon as the EDMA submits a transfer request
for that event. Alternatively, if the event is disabled in the EER, the CPU can clear
the event by way of the event clear register (ECR), shown in Figure 6–5. The
C64x has two event clear registers, event clear low register (ECRL) and event
clear high register (ECRH), for the 64 channels. For the remaining of this chap-
ter, the term “event clear register” or “ECR” refers to the ECR for C621x/C671x,
or the ECRL/ECRH for C64x. Writing a ‘1’ to any of the bits clears the corre-
sponding event; writing a ‘0’ has no effect. This feature allows the CPU to re-
lease a lock-up or error condition. Therefore, once an event bit is set in the ER,
it remains set until the EDMA submits a transfer request for that event or the
CPU clears the event by setting the relevant bit in the ECR.

Figure 6–5. Event Clear Register (ECR, ECRL, ECRH)

C621x/C671x: Event Clear Register (ECR)

31 16

Reserved

RW,+0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EC15 EC14 EC13 EC12 EC11 EC10 EC9 EC8 EC7 EC6 EC5 EC4 EC3 EC2 EC1 EC0

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

Event Processing and EDMA Control Registers

 6-10

C64x: Event Clear Low Register (ECRL) for Events 0 to 31

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EC31 EC30 EC29 EC28 EC27 EC26 EC25 EC24 EC23 EC22 EC21 EC20 EC19 EC18 EC17 EC16

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EC15 EC14 EC13 EC12 EC11 EC10 EC9 EC8 EC7 EC6 EC5 EC4 EC3 EC2 EC1 EC0

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

C64x: Event Clear High Register (ECRH) for events 32 to 61

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EC63 EC62 EC61 EC60 EC59 EC58 EC57 EC56 EC55 EC54 EC53 EC52 EC51 EC50 EC49 EC48

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EC47 EC46 EC45 EC44 EC43 EC42 EC41 EC40 EC39 EC38 EC37 EC36 EC35 EC34 EC33 EC32

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

6.3.4 Event Set Register (ESR, ESRL, ESRH)

The CPU can also set events by way of the event set register (ESR) shown in
Figure 6–6. The C64x has two event set registers, event set low register (ESRL)
and event set high register (ESRH), for the 64 channels. For the remaining of
this chapter, the term “event set register” or “ESR” refers to the ESR for
C621x/C671x or the ESRL/ESRH for C64x. Writing a ‘1’ to one of the event bits
causes the corresponding bit to be set in the event register. The event does not
have to be enabled in this case. This provides a good debugging tool and also
allows the CPU to submit EDMA requests in the system. Note that such CPU-
initiated EDMA transfers are basically unsynchronized transfers. In other words,
an EDMA transfer occurs when the relevant ESR bit is set and is not triggered
by the associated event. See also section 6.19 for a description of the QDMA,
an alternative way to perform CPU-initiated EDMA transfers.

Event Processing and EDMA Control Registers

6-11EDMA Controller

Figure 6–6. Event Set Register (ESR, ESRL, ESRH)

C621x/C671x: Event Set Register (ESR)

31 16

Reserved

RW,+0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ES15 ES14 ES13 ES12 ES11 ES10 ES9 ES8 ES7 ES6 ES5 ES4 ES3 ES2 ES1 ES0

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

C64x: Event Set Low Register (ESRL) for events 0 to 31

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ES31 ES30 ES29 ES28 ES27 ES26 ES25 ES24 ES23 ES22 ES21 ES20 ES19 ES18 ES17 ES16

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ES15 ES14 ES13 ES12 ES11 ES10 ES9 ES8 ES7 ES6 ES5 ES4 ES3 ES2 ES1 ES0

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

C64x: Event Set High Register (ESRH) for events 32 to 61

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ES63 SC62 ES61 ES60 ES59 ES58 ES57 ES56 ES55 ES54 ES53 ES52 ES51 ES50 ES49 ES48

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ES47 ES46 ES45 ES44 ES43 ES42 ES41 ES40 ES39 ES38 ES37 ES36 ES35 ES34 ES33 ES32

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

Event Processing and EDMA Control Registers

 6-12

6.3.5 Event Polarity Register (EPRL, EPRH) (C64x)

An event is signaled to the EDMA controller by positive-edge triggering (low-
to-high transition) on one of its event inputs. For the C64x the event polarity
can be changed to falling-edge triggering (high-to-low transition) through set-
ting the corresponding bits in the event polarity low register (EPRL) or event
polarity high register (EPRH) to ‘1’. Figure 6–7 shows the EPRL and EPRH.

Figure 6–7. Event Polarity Register (EPRL, EPRH) (C64x)

C64x: Event Polarity Low Register (EPRL) for events 0 to 31

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EP31 EP30 EP29 EP28 EP27 EP26 EP25 EP24 EP23 EP22 EP21 EP20 EP19 EP18 EP17 EP16

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EP15 EP14 EP13 EP12 EP11 EP10 EP9 EP8 EP7 EP6 EP5 EP4 EP3 EP2 EP1 EP0

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

C64x: Event Polarity High Register (EPRH) for events 31 to 64

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EP63 EP62 EP61 EP60 EP59 EP58 EP57 EP56 EP55 EP54 EP53 EP52 EP51 EP50 EP49 EP48

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EP47 EP46 EP45 EP44 EP43 EP42 EP41 EP40 EP39 EP38 EP37 EP36 EP35 EP34 EP33 EP32

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

Event Encoder

6-13EDMA Controller

6.4 Event Encoder

Up to 64 events (C64x) or 16 events (C621x/C671x) can be captured by the
EDMA controller’s event register. Hence, it is quite possible that events occur
simultaneously on the EDMA event inputs. For such cases, the order of proc-
essing is resolved by the event encoder. This mechanism only sorts simulta-
neous events and has nothing to do with the actual priority of the event. The
actual priority of the transfer is determined by its EDMA parameters stored in
the parameter RAM of the EDMA controller. Parameter RAM is discussed in
the next section. For events arriving simultaneously, the channel with the high-
est event number submits its transfer request first.

6.5 Parameter RAM (PaRAM)

Unlike the C620x/C670x DMA controller, which is a register-based architec-
ture, the EDMA controller is a RAM-based architecture. EDMA channels are
configured in a parameter table. The table is a 2K-byte block of internal param-
eter RAM (PaRAM) located within the EDMA. The table consists of six-word
parameter sets (entries), for a total of 85 entries.

The contents of the 2K byte PaRAM, shown in Table 6–3, comprises:

� For C621x/C671x there are 16 transfer parameter entries for the 16 EDMA
events. For C64x. there are 64 transfer parameter entries for the 64 EDMA
events. Each entry is six words or 24 bytes.

� Remaining transfer parameter sets are used for linking transfers. Each set
or entry is 24 bytes.

� 8 bytes of unused RAM that can be used as scratch pad area. Note that
a part or entire EDMA RAM can be used as a scratch pad RAM provided
this area corresponding to an event(s) is disabled. It is the user’s responsi-
bility to provide the transfer parameters when the event is eventually en-
abled.

Once an event is captured, its parameters are read from one of the top 64 en-
tries (C64x) or 16 entries (C621x/C671x) in the PaRAM. These parameters
are then sent to the address generation hardware.

 Event Encoder /Parameter RAM (PaRAM)

Parameter RAM (PaRAM)

 6-14

Table 6–3. EDMA Parameter RAM Contents

Address Parameters

01A0 0000h to 01A0 0017h Parameters for event 0 (6 words)

01A0 0018h to 01A0 002Fh Parameters for event 1 (6 words)

01A0 0030h to 01A0 0047h Parameters for event 2 (6 words)

01A0 0048h to 01A0 005Fh Parameters for event 3 (6 words)

01A0 0060h to 01A0 0077h Parameters for event 4 (6 words)

01A0 0078h to 01A0 008Fh Parameters for event 5 (6 words)

01A0 0090h to 01A0 00A7h Parameters for event 6 (6 words)

01A0 00A8h to 01A0 00BFh Parameters for event 7 (6 words)

01A0 00C0h to 01A0 00D7h Parameters for event 8 (6 words)

01A0 00D8h to 01A0 00EFh Parameters for event 9 (6 words)

01A0 00F0h to 01A0 0107h Parameters for event 10 (6 words)

01A0 0108h to 01A0 011Fh Parameters for event 11 (6 words)

01A0 0120h to 01A0 0137h Parameters for event 12 (6 words)

01A0 0138h to 01A0 014Fh Parameters for event 13 (6 words)

01A0 0150h to 01A0 0167h Parameters for event 14 (6 words)

01A0 0168h to 01A0 017Fh Parameters for event 15 (6 words)

01A0 0180h to 01A0 0197h Parameters for event 16† (6 words)

01A0 0198h to 01A0 01AFh Parameters for event 17† (6 words)

01A0 05D0h to 01A0 05E7h Parameters for event 62† (6 words)

01A0 05E8h to 01A0 05FFh Parameters for event 63† (6 words)

01A0 0600h to 01A0 0617h Reload/link parameters for event N (6 words)

01A0 0618h to 01A0 062Fh Reload/link parameters for event M (6 words)

… …
01A0 07E0h to 01A0 07F7h Reload parameters for event Z (6 words)

01A0 07F8h to 01A007FFh Scratch pad area (2 words)

† The C64x devices support up to 64 synchronization events. For the C621x/C671x device, these PARAM locations (01A0
0180h – 01A0 05FFh) can be used for reload/link parameters.

6.5.1 EDMA Transfer Parameter Entry

Each parameter entry of an EDMA event is organized in six 32-bit words or 24
bytes as shown in Figure 6–8. Access to the EDMA parameter RAM is pro-
vided only via the peripheral bus. These parameters are shown in Table 6–4.

Parameter RAM (PaRAM)

6-15EDMA Controller

Figure 6–8. Parameter Storage for an EDMA Event

31 16 15 0

Options (OPT) Word 0

SRC Address (SRC) Word 1

Array/frame count (FRMCNT) Element count (ELECNT) Word 2

DST address (DST) Word 3

Array/frame index (FRMIDX) Element index (ELEIDX) Word 4

Element count reload (ELERLD) Link address (LINK) Word 5

Table 6–4. EDMA Channel Parameters

Offset Address
As defined for …

Offset Add ress
(bytes) Parameter 1-D transfer 2-D transfer Section

0 Options Transfer configuration options. 6.6.1

4 Source address The address from which data is transferred. 6.6.2

8 Element count The number of elements
per frame.

The number of elements
per array.

6.6.3

10 Frame count (1D),
Array count (2D)

The number of frames
per block minus one.

The number of arrays
per frame minus one.

6.6.4

12 Destination address The address to which data is transferred. 6.6.2

16 Element index The address offset of
elements within a frame.

 ––– 6.6.5

18 Frame index (1D),
Array index (2D)

The address offset of
frames within a block.

The address offset of
arrays within a frame.

6.6.5

20 Link address The PaRAM address containing the parameter set
to be linked.

6.6.7

22 Element count reload The count value to be
loaded at the end of
each frame.�

 ––– 6.6.6

† This field is only valid for element-synchronized transfers.
Note: The offset provided assumes little endian mode of operation. All control registers are 32 bits wide, and the physical

location of parameters that share a single register are fixed, regardless of endian mode. Control registers should al-
ways be accessed as 32-bit words. The specific offset address entries that this note applies to are 8, 10, 16, 18, 20, and
22.

EDMA Transfer Parameters

 6-16

6.6 EDMA Transfer Parameters

Depending on the options associated with a transfer, the transfer parameters
can be updated by the EDMA. The following sections describe the parameters
shown in Table 6–5 that are common to the C621x/C671x/C64x devices, and
those in Table 6–6 that are unique to the C64x.

6.6.1 Options Parameter (OPT)

The options parameter (OPT) in the EDMA channel entry is a 32-bit field as
shown in Figure 6–9.

Figure 6–9. Options (OPT) Bit-Fields

31 29 28 27 26 25 24 23 22 21 20 19 16

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

15 14 13 12 11 10 5 4 3 2 1 0

rsvd TCCM� ATCINT� rsvd ATCC� rsvd PDTS� PDTD� LINK FS

R,+0 RW,+00 RW,+0 R,+0 RW,+0 R,+0 RW,+0 RW,+0 RW,+0 RW,+0

† Applies to C64x only. On C621x/C671x, these bits are reserved, R+0.

EDMA Transfer Parameters

6-17EDMA Controller

Table 6–5. EDMA Channel Options Parameter (OPT) Description (C621x/C671x/C64x)

Bit No. Field Description Section

31–29 PRI Priority levels for EDMA events

PRI=000b; Reserved; Urgent priority.
 For C621x/C671x, this level is reserved ONLY for L2 requests and
 not valid for EDMA transfer requests.
 For C64x, this level is available for CPU and EDMA transfer requests.

PRI=001b; High priority EDMA transfer

PRI=010b; Medium priority EDMA transfer (C64x);
 Low priority EDMA transfer (C621x/C671x).

PRI=011b; Low priority EDMA transfer (C64x);
 reserved (C621x/C671x)

PRI=100b to 111b; reserved

6.17

28–27 ESIZE Element size

ESIZE=00b; 32-bit word

ESIZE=01b; 16-bit half-word

ESIZE=10b; 8-bit byte

ESIZE=11b; reserved

6.9

26 2DS Source dimension

2DS = 0; 1-dimensional source.

2DS = 1; 2-dimensional source.

6.8 and
6.11

25–24 SUM Source address update mode

SUM = 00b; Fixed address mode. No source address modification

SUM = 01b; Source address increment depends on 2DS, and FS bit-fields

SUM = 10b; Source address decrement depends on 2DS, and FS bit-fields

SUM = 11b; Source address modified by the element index/frame index
depending on 2DS, and FS bits.

6.11

EDMA Transfer Parameters

 6-18

Table 6–5. EDMA Channel Options Parameter (OPT) Description (C621x/C671x/C64x)
(Continued)

Bit No. SectionDescriptionField

23 2DD Destination dimension

2DD = 0; 1-dimension destination.

2DD = 1; 2-dimensional destination.

6.8 and
6.11

22–21 DUM Destination address update mode

DUM = 00b; Fixed address mode. No destination address modification

DUM = 01b; Destination increment depends on 2DD, and FS bit-fields

DUM = 10b; Destination decrement depends on 2DD, and FS bit-fields

DUM = 11b; Destination modified by the element index/frame index
depending on 2DD, and FS bits.

6.11

20 TCINT Transfer complete interrupt

TCINT=0; Transfer complete indication disabled. CIPR bits are not set upon
completion of a transfer.

TCINT=1; The relevant CIPR bit is set on channel transfer completion. The
bit (position) set in the CIPR is the TCC value specified.

6.14 and
6.15

19–16 TCC Transfer complete code

TCC=0000b to 1111b; 4-bit code is used to set the relevant bit in CIPR (i.e.
CIPR[TCC] bit) provided TCINT=1, when the current set is exhausted. For
C64x, the 4-bit TCC code is used in conjunction with bit field TCCM for a 6-bit
transfer complete code.

6.14 and
6.15

1 LINK Link

LINK=0; Linking of event parameters disabled. Entry not reloaded.

LINK=1; Linking of event parameters enabled. After the current set is
exhausted, the channel entry is reloaded with the parameter set specified by
the link address. The link address must be on a 24-byte boundary and within
the EDMA PaRAM. The link address is a 16-bit address offset from the
PaRAM base address.

6.6.7 and
6.12

0 FS Frame synchronization

FS=0; Channel is element/array synchronized.

FS=1; Channel is frame synchronized. The relevant event for a given EDMA
channel is used to synchronize a frame.

6.7

EDMA Transfer Parameters

6-19EDMA Controller

Table 6–6. EDMA Channel Options Field Description (C64x only)

Bit No. Field Description Section

14–13 TCCM Most significant bits of transfer complete code. (C64x only)

For C64x, bits TCCM work in conjunction with the 4-bit TCC code to provide
a 6-bit transfer complete code. TCCM:TCC = 000000b to 111111b; 6-bit code
is used to set the relevant bit in CIPRL or CIPRH provided TCINT = 1, when
the current set is exhausted.

6.14
6.15

12 ATCINT Alternate transfer complete interrupt (C64x only)

ATCINT = 0; Alternate transfer complete indication disabled. CIPR bits are
not set upon completion of intermediate transfers in a block.

ATCINT = 1; The relevant CIPR bit is set upon completion of intermediate
transfers in a block. The bit (position) set in the CIPR is the ATCC value
specified.

6.14
6.15

10 – 5 ATCC Alternate transfer complete code (C64x only)

ATCC = 000000b to 111111b; 6-bit code is used to set the relevant bit in
CIPRL or CIPRH (i.e., CIP[ATCC] bit) provided ATCINT = 1, upon
completion of an intermediate transfer in a block.

6.14
6.15

3 PDTS Peripheral device transfer (PDT) mode for source (C64x only).

PDTS = 0; PDT read disabled.
PDTS = 1; PDT read enabled.

6.16

2 PDTD Peripheral device transfer (PDT) mode for destination (C64xonly).

PDTD = 0; PDT write disabled.
PDTD = 1; PDT write enabled.

6.16

6.6.2 SRC/DST Address (SRC/DST)

The 32-bit source/destination address fields in the EDMA parameters speci-
fies the starting byte address of the source and destination. The src/dst ad-
dresses can be modified using the SUM/DUM field in the options parameter.
See details in section 6.11.

6.6.3 Element Count (ELECNT)

Element count is a 16-bit unsigned value that specifies the number of elements
in a frame (for 1D transfers) or an array (for 2D transfers). Valid values for the
element count can be anywhere between 1 and 65535. Therefore, the maxi-
mum number of elements in a frame is 65535. The EDMA performs no trans-
fers if element count is zero. Details in section 6.10.

EDMA Transfer Parameters

 6-20

6.6.4 Frame/Array Count (FRMCNT)

Frame/array count is also a 16-bit unsigned value and it specifies the number
of frames in a 1D block or number of arrays in a 2D block. The term ’frame
count’ applies to 1D transfers, while the term ’array count’ applies to 2D trans-
fers. The maximum number of frames/arrays in a block is 65536. Therefore a
frame/array count of 0 is actually one frame/array and frame/array count of 1
corresponds to 2 frames/arrays. Details in section 6.10.

6.6.5 Element Index (ELEIDX) and Frame/Array Index (FRMIDX)

The 16-bit signed value specified in the element and frame/array index fields
are used for address modification. These fields are used by the EDMA for ad-
dress updates depending on the type of transfer chosen (1D or 2D), FS, and
SUM/DUM fields. The term ’frame index’ applies to 1D transfers, while the term
’array index’ applies to 2D transfers. The src/dst address is modified by an in-
dex whose range is between –32768 and 32767.

Element index provides an address offset to the next element in a frame. Ele-
ment index is used only for 1D transfers. This is because 2D transfers do not
allow spacing between elements, and hence the term ‘array’ is used to define
a group of contiguous elements. Frame/array index provides an offset to the
next frame/array in a block.

6.6.6 Element Count Reload (ELERLD)

The 16-bit unsigned element count reload value is used to reload the element
count field once the last element in a frame is transferred. This field is used only
for a 1D element sync (FS=0) transfer since the EDMA has to keep track of the
next element address using the element count. This is necessary for multi-
frame EDMA transfers where frame count value is greater than 0. More details
in section 6.10.1.

6.6.7 Link Address (LINK)

The EDMA controller provides a mechanism to link EDMA transfers. This is
analogous to the auto-initialization feature in the DMA. The 16-bit link address
specified in the EDMA parameter RAM specifies the lower 16-bit address in
the parameter RAM from which the EDMA loads/reloads the parameters of the
next event in the chain. Since the entire EDMA parameter RAM is located in
the 01A0 xxxxh area, only the lower 16-bit address matters.

EDMA Transfer Parameters

6-21EDMA Controller

The reload parameters are specified in the address range 01A0 0180h to 01A0
07F7h (C621x/C671x), or 01A0 0600h to 01A0 07F7h (C64x). It is the user’s
responsibility to ensure that the link address is on a 24-byte boundary. Opera-
tion is undefined if the rule is violated. This is discussed in section 6.12. In addi-
tion to the reload parameter space, the entry of any unused EDMA channel can
also be used for linking. The EDMA can always have up to 85 programmed
entries regardless of the number of channels actually used.

Initiating an EDMA Transfer

 6-22

6.7 Initiating an EDMA Transfer

There are two ways to initiate data transfer using the EDMA. One is CPU-initi-
ated EDMA and the other is an event-triggered EDMA. The latter is a more typi-
cal usage of the EDMA. This allows the submission of transfer requests to oc-
cur automatically based on system events, without any intervention by the
CPU. CPU-initiated transfer is included in the design for added control and ro-
bustness. QDMA transfers, discussed in section 6.19, are the preferred meth-
od of issuing CPU-synchronized data transfers.

Each EDMA channel can be started independently. The CPU can also disable
an EDMA channel by disabling the event associated with that channel.

� CPU-initiated EDMA or unsynchronized EDMA: The CPU can write to
the event set register, ESR (described in section 6.3) in order to start an
EDMA transfer. Writing a ‘1’ to the corresponding event in the ESR triggers
an EDMA event. Just as with a normal event, the transfer parameters in
the EDMA parameter RAM corresponding to this event are passed to the
address generation hardware, which performs the requested access of
the EMIF, L2 memory or peripherals, as appropriate. CPU-initiated EDMA
transfers are unsynchronized data transfers. The event’s enable bit does
not have to be set in the EER for CPU-initiated EDMA transfers. This is
because a CPU write to the ESR is treated as a real-time event.

� Event-triggered EDMA: As the name suggests, an event that is latched
in the event register, ER, via the event encoder (see section 6.4) causes
its transfer parameters to be passed on to the address generation hard-
ware, which performs the requested accesses. Although the event causes
this transfer, it is very important that the event itself be enabled by the CPU.
Writing a ‘1’ to the corresponding bit in EER enables an event. Alternative-
ly, an event is still latched in the ER even if its corresponding enable bit in
EER is ‘0’ (disabled). The EDMA transfer related to this event occurs as
soon as it is enabled in EER. In addition to event enable via EER, the
completion of a transfer can also trigger another EDMA transfer through
chaining and the CCER. See section 6.15 for details.

6.7.1 Synchronization of EDMA Transfers

All EDMA channels are tied to a specific synchronization event. Synchroniza-
tion allows EDMA transfers to be triggered by events either from peripherals,
interrupts from external hardware, or an EDMA transfer completion event. A
channel only requests a data transfer when it receives its event or when the
CPU manually synchronizes it (by writing to the ESR). The amount of data to
be transferred depends on the channel’s configuration. A channel can submit

Initiating an EDMA Transfer

6-23EDMA Controller

an entire frame/block when frame/block-synchronized, or a subset of a frame
(element or array, depending on dimension) when element/array-synchro-
nized.

Table 6–7 and Table 6–8 list the synchronization events associated with each
of the programmable EDMA channels for the C621x/C671x and C64x, respec-
tively.

The association of an event to a channel is fixed. Unlike the existing
C6201-type DMA, each of EDMA channels have one specific event associat-
ed with it. For example, if bit 4 (event 4) in EER is set, then an external interrupt
on EXT_INT4 pin initiates a transfer on EDMA channel 4.

Events originate from a peripheral such as the McBSP (R/XEVT), or an exter-
nal device in the form of an external interrupt (EXT_INTn). The source of
C621x/C671x synchronization events is listed in Table 6–7. The source of
C64x synchronization events, listed in Table 6–8, is a superset of the
C621x/C671x events. The event is specific to a channel, the priority of each
event can be specified independently in the transfer parameters stored in the
EDMA parameter RAM.

Table 6–7. EDMA Channel Synchronization Events – TMS320621x/C671x

EDMA
Channel
Number Event Acronym Event Description

0 DSPINT Host to DSP interrupt

1 TINT0 Timer 0 interrupt

2 TINT1 Timer 1 interrupt

3 SD_INT EMIF SDRAM timer interrupt

4 EXT_INT4 External interrupt pin 4

5 EXT_INT5 External interrupt pin 5

6 EXT_INT6 External interrupt pin 6

7 EXT_INT7 External interrupt pin 7

8 EDMA_TCC8 † EDMA transfer complete code 1000b interrupt

9 EDMA_TCC9 † EDMA TCC 1001b interrupt

10 EDMA_TCC10 † EDMA TCC 1010b interrupt

11 EDMA_TCC11 † EDMA TCC 1011b interrupt

12 XEVT0 McBSP0 transmit event

13 REVT0 McBSP0 receive event

14 XEVT1 McBSP1 transmit event

15 REVT1 McBSP1 receive event

† Channels 8 to 11 are used for transfer chaining only. See section 6.15 for details.

Initiating an EDMA Transfer

 6-24

Table 6–8. EDMA Channel Synchronization Events – TMS320C64x †

EDMA
Channel
Number Event Acronym Event Description

0 DSPINT Host-to-DSP interrupt
1 TINT0 Timer 0 interrupt
2 TINT1 Timer 1 interrupt
3 SD_INTA EMIFA SDRAM timer interrupt
4 GPINT4/EXT_INT4 GPIO event 4/External interrupt 4
5 GPINT5/EXT_INT5 GPIO event 5/External interrupt 5
6 GPINT6/EXT_INT6 GPIO event 6/External interrupt 6
7 GPINT7/EXT_INT7 GPIO event 7/External interrupt 7
8 GPINT0 GPIO event 0
9 GPINT1 GPIO event 1
10 GPINT2 GPIO event 2
11 GPINT3 GPIO event 3
12 XEVT0 McBSP0 transmit event
13 REVT0 McBSP0 receive event
14 XEVT1 McBSP1 transmit event
15 REVT1 McBSP1 receive event
16 – None
17 XEVT2 McBSP2 transmit event
18 REVT2 MCBSP2 receive event
19 TINT2 Timer 2 interrupt
20 SD_INTB EMIFB SDRAM timer interrupt
21 PCI PCI Wakeup Interrupt
22 – None
23 – None
24 – None
25 – None
26 – None
27 – None
28 – None
29 – None
30 – None

† In addition to the events shown in Table 6–8, each of the 64 channels can also be synchronized with the transfer completion
or alternate transfer completion events. See section 6.15, Chaining EDMA Channels by an Event.

Initiating an EDMA Transfer

6-25EDMA Controller

Table 6–8. EDMA Channel Synchronization Events – TMS320C64x(Continued)†

EDMA
Channel
Number Event DescriptionEvent Acronym

31 – None
32 UREVT Utopia Receive Event
33 – None
34 – None
35 – None
36 – None
37 – None
38 – None
39 – None
40 UXEVT UTOPIA transmit event
41 – None
42 – None
43 – None
44 – None
45 – None
46 – None
47 – None
48 GPINT8 GPIO event 8
49 GPINT9 GPIO event 9
50 GPINT10 GPIO event 10
51 GPINT11 GPIO event 11
52 GPINT12 GPIO event 12
53 GPINT12 GPIO event 13
54 GPINT14 GPIO event 14
55 GPINT15 GPIO event 15
56 – None
57 – None
58 – None
59 – None
60 – None
61 – None
62 – None
63 – None

† In addition to the events shown in Table 6–8, each of the 64 channels can also be synchronized with the transfer completion
or alternate transfer completion events. See section 6.15, Chaining EDMA Channels by an Event.

Types of EDMA Transfers

 6-26

6.8 Types of EDMA Transfers

The EDMA provides for two types of data transfers, 1-dimensional (1D) and
2-dimensional (2D) transfers. This is selected by setting the 2DD and 2DS bits
in the event’s options field. 2DD when set to 1 represents two-dimensional
transfer on the destination. Similarly, a 2-D transfer on the source is performed
when 2DS is equal to1. All combinations of 2DS and 2DD are supported.

The number of dimensions a transfer has determines the makeup of a frame
of data. In a 1-D transfer, frames are made up of a number of individual ele-
ments. In a 2-D transfer, blocks are made up of a number of arrays, each of
which is made up of a number of elements. See Appendix A for figures that
provide a detailed representation of all types of EDMA transfers.

6.8.1 1-Dimensional Transfers

For 1D transfers, a group of elements equal to element count constitute a
frame. Transfers focus on individual elements. Each frame of data to be trans-
ferred has a single dimension associated with it indicating the number of ele-
ments per frame. EDMA channels may be configured to transfer multiple
frames (or a block of frames), but each frame is handled individually. Frame
count is the number of frames in a 1D transfer. A 1-D transfer can be consid-
ered two dimensional, with the second dimension fixed at 1. A sample 1-D
frame is shown in Figure 6–10, with an element count of m.

Figure 6–10. 1-D Transfer Data Frame

1 2 3 m... ...

m elements per frame

: : : :: :

1 2 3 m... ...

n
frames

per
block

The elements within a block can either be all located at the same address, at
contiguous addresses, or at a configurable offset from one another. The ad-
dresses of elements within a frame can be located at a specific distance apart
(determined by element index, ELEIDX), while address of the first element of
each frame is a set distance from a particular element of the previous frame
(determined by frame index, FRMIDX). Once a complete frame is transferred,
the element count reaches zero. Therefore for multi-frame transfers, the ele-
ment count has to be reloaded by the element count reload field (ELERLD) in
the transfer entry.

Transfers may be submitted either one element at a time, when element syn-
chronized(FS = 0), or one frame at a time, when frame-synchronized (FS = 1).

Types of EDMA Transfers

6-27EDMA Controller

6.8.1.1 Element Synchronized 1D Transfer (FS=0)

If a channel is configured to be a 1-D element synchronized transfer, the
source and destination addresses are updated within the parameter table fol-
lowing the transfer request submission for each element. Therefore the ele-
ment index (ELEIDX) and frame index (FRMIDX) are based on the difference
between element addresses. Figure 6–11 shows the concept of a 1D element
synchronized transfer with 4 elements in each frame (ELECNT = 4) and a total
of three frames (FRMCNT = 2).

Figure 6–11.Transfer with Element Synchronication (FS=0)

A B C D

E F G H

I J K L

ELEIDX

FRMIDX

FRMIDX

ELEIDX ELEIDX

One element
transferred per

sync event

Frame 0

Frame 1

Frame 2

Each element in a frame is transferred from its source to destination address
upon receiving the channel-specific sync event. After the channel receives a
sync event, it sends off a transfer request for DMA service. The EDMA control-
ler then decrements the element count (ELECNT) by 1 in the parameter RAM.
When a channel sync event occurs and ELECNT = 1 (indicating the last ele-
ment in a frame), the EDMA controller first sends off the transfer request trig-
gered by the event. Afterward, element count reload occurs (reload with the
16-bit value in ELERLD) and frame count (FRMCNT) decrements by 1. User-
specified element index (ELEIDX) is used to compute the address of the next
element in a frame. Similarly, frame index (FRMIDX) is added to the last
element address in a frame to derive the next frame start address. The
address modification and count modification depends on the type of update
modes chosen. They are mentioned here only for an understanding of a 1D
transfer. Specific updates are described in sections 6.10 and 6.11.

If linking is enabled (LINK=1, see section 6.12), the complete transfer parame-
ters get reloaded (from the parameter reload space in EDMA parameter RAM)
after sending the last transfer request to the address generation hardware. This
sets up a new set of parameters in advance for the next occurrence of the event.

Types of EDMA Transfers

 6-28

6.8.1.2 Frame Synchronized 1D Transfer (FS=1)

Frame-synchronized 1D transfer allows a channel to request the transfer of an
entire frame of elements. The frame index no longer represents the difference
between the address of the last element of a frame and the address of the first
element of the subsequent frame, but rather the difference between the start-
ing addresses of each frame. A frame-synchronized 1-D transfer is functional-
ly identical to an array-synchronized 2-D transfer (assuming ELEIDX equals
the number of bytes per element). The address indexing for a frame-synchro-
nized 1-D transfer is shown in Figure 6–12.

Figure 6–12. 1D Transfer With Frame Synchronization (FS=1)

A B C D

E F G H

I J K L

ELEIDX

FRMIDX

FRMIDX

ELEIDX ELEIDX

One frame
transferred per

sync event

Frame 0

Frame 1

Frame 2

Here, the element transfer in each frame is not synchronized, but instead each
frame transfer is synchronized by the channel event. The FS bit (in options
field) should be set to ‘1’ to enable frame-synchronized transfer. A user-speci-
fied element index (ELEIDX) can be used to stagger elements in a frame.
Frame index (FRMIDX) can be added to the start element address in a frame
to derive the next frame start address. Element count reload (ELERLD) does
not apply to a 1D frame-synchronized transfer (FS = 1). The address modifica-
tion and count modification depends on the type of update modes chosen.
They are mentioned here only for an understanding of a 1D transfer. Specific
updates are described in sections 6.10 and 6.11.

If linking is enabled (LINK = 1, see section 6.12), the complete transfer param-
eters get reloaded (from the parameter reload space in EDMA parameter
RAM) after sending the last transfer request to the address generation hard-
ware.

Types of EDMA Transfers

6-29EDMA Controller

6.8.2 2-Dimensional Transfers

The 2-dimensional transfers are useful for imaging applications where contig-
uous set of elements (referred to as array) has to be transferred on receiving
a sync event. This means there is no spacing or indexing between elements
in an array, hence element index (ELEIDX) is not used in 2D transfers. The
number of elements in an array makes up for the first dimension of the transfer.
A group of arrays forms the second dimension and is called a block. Arrays can
be offset from one another by a fixed amount. A sample 2-D frame is shown
in Figure 6–13, with an array count of n and an element count of m.

Figure 6–13. 2-D Transfer Data Block

0_10_2 0_3 0_m

1_11_2 1_3 1_m

2_12_2 2_3 2_m

m elements per array

n + 1
arrays

per
block

: : :: : :

n_1n_2 n_3 n_m

The offset of the arrays is determined by the array index (FRMIDX), the value
of which depends on the synchronization mode of the transfer. Transfers can
be submitted either one array at a time, when array synchronized (FS = 0), or
one block at a time, when block synchronized (FS = 1).

Types of EDMA Transfers

 6-30

6.8.2.1 Array Synchronized 2D Transfer (FS = 0)

A channel that is configured to perform a 2-D transfer with array synchroniza-
tion updates its source and destination registers after the transfer request for
each array is submitted. The array index (FRMIDX) is the difference between
the starting addresses for each array of the block, as shown in Figure 6–14.
FRMIDX is used for all address update modes except fixed address update
mode (SUM/DUM = 00b).

Figure 6–14. 2-D Transfer with Array Synchronization (FS = 0)

A CB D

E GF H

I KJ L

FRMIDX

FRMIDX

One array
transferred per

sync event

Array 0

Array 1

Array 2

Upon receiving a synchronization event, an array (contiguous group of ele-
ments) is transferred. The example shows 4 elements in an array (ELECNT
= 4) and the number of arrays to be transferred is 3 (FRMCNT = 2). Frame
count (FRMCNT) decrements after each array is transferred. Frame index is
added to an array’s start address to derive the next array’s start address. The
actual address modification and count modification depends upon the type of
update modes selected (SUM/DUM). These modes are mentioned here only
for an understanding of a 2D transfer. Specific updates are described in sec-
tion 6.11 and section 6.12.

When FRMCNT reaches zero and if linking is enabled (LINK = 1, see sec-
tion 6.12), the complete transfer parameters get reloaded (from the parameter
reload space in EDMA parameter RAM) after sending the last transfer request
to the address generation hardware.

Types of EDMA Transfers

6-31EDMA Controller

6.8.2.2 Block Synchronized 2D Transfer (FS=1)

For a 2-D transfer, the complete block gets transferred when the channel’s
event occurs and FS = 1. Block synchronization causes the array index
(FRMIDX) to be implemented by the address generation/transfer logic. This
address update is transparent to the user and is not reflected in the parameter
RAM. The address is updated after each element in a burst. The logic first up-
dates the addresses according to the setting of SUM/DUM. If an element is the
last in a particular array and an update mode is selected (SUM/DUM ≠ 00b),
the address(es) are indexed according to the array index. The index is added
to the address after the address update occurs. FRMIDX is therefore equal to
the space between arrays of a block, as shown in Figure 6–15.

Figure 6–15. 2-D Transfer with Block Synchronization (FS=1)

A CB D

E GF H

I KJ L

FRMIDX

FRMIDX

One block
transferred
per sync

event

If linking is enabled (LINK=1), the next EDMA block transfer in the link (as spe-
cified by the link address) is performed as soon as the next block sync arrives.
See section 6.12 for details on linking.

Element Size and Alignment

 6-32

6.9 Element Size and Alignment

The ESIZE field in the options of an event parameter entry allows the user to
specify the element size that the EDMA should use for a transfer. The EDMA
controller can transfer 32-bit words, 16-bit half-words, or 8-bit bytes in a transfer.

The addresses must be aligned on the element size boundary. Word and half-
word accesses must be aligned on a word (multiple of 4) and half-word (multiple
of 2) boundary, respectively. Unaligned values can result in undefined opera-
tion.

When transferring a burst of elements to or from a 64 bit wide peripheral (e.g.
L2 or EMIFA), 64-bit elements are transferred regardless of the ESIZE pro-
grammed. This allows the EDMA to maximize the available bandwidth.

6.9.1 Fixed Address Mode Transfer Considerations

The maximum EDMA element size is 32-bit. However, the following data paths
are 64-bit wide:

� L2 SRAM

� EMIFA (64-bit EMIF, C64x only)

Care must be taken when performing a burst access via the 64-bit data paths
that have the following EDMA configurations:

� Element size is 32-bit (ESIZE = 00b)

� Fixed address mode (SUM or DUM = 00b in the options parameter)

� Frame-synchronized access (FS = 1 in the options parameter), or two-di-
mensional source or destination transfer (either 2DS or 2DD is set to 1).

� Element count is greater than 1 (ELECNT > 1).

Accesses to a 64-bit-wide data bus with the above EDMA configurations are
fixed on a 64-bit boundary. For example, when performing an N number of
32-bit accesses to the L2 SRAM or EMIFA in fixed address mode (ELECNT
= N, N>1), the EDMA actually performs N/2 number of 64-bit accesses to the
fixed doubleword address. Thus it is actually a 64-bit doubleword that is trans-
ferred.

For a write to a 64-bit-wide data bus with the above conditions, the 32-bit word
is written to both word 0 and word 1 of the fixed doubleword address. For ex-
ample, a 32-bit write to the L2 SRAM address 0x00000000 updates both word
0 (at address 0x00000000) and word 1 (at address 0x00000004) with the new
data.

Element Size and Alignment

6-33EDMA Controller

For a read from a 64-bit-wide data bus with the above conditions, both word
0 and word 1 of the fixed doubleword address are extracted. For example,
when performing an EDMA word transfer from the L2 SRAM fixed address
0x00000000 to an external memory via a 32-bit EMIF, the extracted data from
the L2 SRAM will show up at the EMIF pins ED[31:0] as “word 0”, “word 1”,
“word 0”, “word 1”…etc.

The above considerations only apply to accesses to a 64-bit-wide data bus.
For EDMA fixed address mode word access to a 32-bit internal register or a
32-/16-/8-bit external memory device, the address is fixed on a 32-bit word
boundary. Reads and writes are only performed to the word address specified.

Element and Frame/Array Count Updates

 6-34

6.10 Element and Frame/Array Count Updates

The EDMA parameter RAM has 16-bit unsigned values of element count
(ELECNT) and frame/array count (FRMCNT) each. Additionally, it also holds
16-bit signed values each for the element index (ELEIDX) and frame/array in-
dex (FRMIDX). The maximum number of elements in a frame or an array (for
2D transfers) is 65535. The maximum number of frames in a block is 65536.

The ELECNT and FRMCNT are updated in the corresponding event’s transfer
entry depending on the type of transfer (1D or 2D) and the synchronization
type as shown in Table 6–9.

Table 6–9. EDMA Element and Frame/Array Count Updates

Synchronization Transfer Mode
Element Count
Update

Frame/Array
Count Update †

Element (FS=0) 1D;

(2DS&2DD=0)

–1
(reload if
ELECNT = 1)

See
section 6.10.1

–1
(if element count = 1)

Array (FS=0) 2D;

(2DS|2DD=1)

None –1

Frame (FS=1) 1D;

(2DS&2DD=0)

None –1

Block (FS=1) 2D;

(2DS|2DD=1)

None None

† Frame count update applies to 1D transfers. Array count update applies to 2D transfers. No
frame/array count update occurs if the frame/array count is zero (FRMCNT = 0).

6.10.1 Element Count Reload (ELERLD)

There is a special condition for reloading the element count for element syn-
chronized (FS = 0) 1D transfers. In this case the address is updated by element
size or element/frame index depending on SUM/DUM fields. See the first row
in Table 6–11. Therefore, the EDMA controller keeps track of the element
count to update the address. When an element sync event occurs at the end
of a frame (ELECNT = 1), the EDMA controller sends off the transfer request,
and reloads the ELECNT from the element count reload field in the parameter
RAM. This element count reload occurs when element count is one, and the
frame count is non-zero. For all other types of transfers, the 16-bit element
count reload field is not used because the address generation hardware
(transparent to users) tracks the address directly.

Source/Destination (SRS/DST) Address Updates

6-35EDMA Controller

6.11 Source/Destination (SRS/DST) Address Updates

Depending on the SUM/DUM fields in the options word of EDMA transfer pa-
rameters, the source and/or destination addresses can be modified. The
EDMA controller performs the necessary address computation. The various
address update modes listed in Table 6–10 provide for a variety of data struc-
tures that can be created. The source and/or destination address is updated
depending on whether frame/block sync (FS) is enabled, or dimension
(2DS/2DD) of the transfer. All address updates should occur after the current
transfer request is sent. Therefore, these updates are used to set the EDMA
parameters for the next event. Table 6–12 shows the possible address update
modes for a transfer.

Table 6–10. Address Update Modes

SUM/DUM 1-D 2-D

00: No mod All elements located at the same
address.

All elements in an array are at the same
address.

01: Increment All elements are contiguous, with
subsequent elements located at a
higher address than the previous.

All elements within an array are
contiguous, with subsequent elements
located at a higher address than the
previous. Arrays are offset by FRMIDX.

10: Decrement All elements are contiguous, with
subsequent elements located at a lower
address than the previous.

All elements within an array are
contiguous, with subsequent elements
located at a lower address than the
previous. Arrays are offset by FRMIDX.

11: Index All elements within a frame are offset
from one another by ELEIDX. Frames
are offset by FRMIDX.

Reserved

Source/Destination (SRS/DST) Address Updates

 6-36

The update of the source or destination address depends on the transfer type
chosen for both the source and destination. For example, a transfer from 1D
source to a 2D destination requires that the source be updated on a frame ba-
sis (not on element basis) to provide 2D type data to the destination.
Table 6–11 shows the amount by which the source address is modified for
each of the combinations of FS, 2DD/2DS, and SUM parameters. Table 6–12
shows the destination address updates that are possible. Appendix A pro-
vides figure representations of all types of transfers.

Note that when either the source or the destination is a 2D transfer and the
transfer is block synchronized (FS=1), it means that the complete block of data
is transferred on a sync event. Therefore, address updates are not applicable
in this case because updates are transparent to the users. If LINK = 1 and the
link conditions outlined in Table 6–13 are met, no address updates occur.
Instead, the link parameters are copied directly to the event parameter.

Source/Destination (SRS/DST) Address Updates

6-37EDMA Controller

Table 6–11. EDMA SRC Address Parameter Updates

Frame Transfer Type
Source Update Mode (SUM)

Frame
Sync

Trans fer Type
(2DS:2DD) 00 01 10 11

FS = 0 00 None +ESIZE;

Increment by element size

–ESIZE;

Decrement by
element size

+ELEIDX or +FRMIDX if
ELECNT=1;

Add signed ELEIDX to
each element in a frame
except the last. Add signed
FRMIDX to the last
element in a frame when
ELECNT = 1.

01 None +(ELECNT x ESIZE
bytes);

Add ELECNT scaled by
element size to the start
address of previous frame

–(ELECNT x ESIZE
bytes);

Subtract ELECNT scaled
by element size from the
start address of previous
frame

Reserved

10 None +FRMIDX;

Add signed FRMIDX to the
first element in a frame.
Element addresses in a
frame are in increasing
order.

+FRMIDX;

Add signed FRMIDX to
the first element in a
frame. Element addresses
in a frame are in
decreasing order.

Reserved

11 None +FRMIDX;

Add signed FRMIDX to the
first element in a frame.
Element addresses in a
frame are in increasing
order.

+FRMIDX;

Add signed FRMIDX to
the first element in a
frame. Element addresses
in a frame are in
decreasing order.

Reserved

FS = 1 00 None +(ELECNT x ESIZE
bytes);

Add ELECNT scaled by
element size to the start
address of previous frame

–(ELECNT x ESIZE
bytes);

Subtract ELECNT scaled
by element size from the
start address of previous
frame

+FRMIDX;

Add signed FRMIDX to the
first element in a frame.
Element addresses in a
frame spaced by ELEIDX.

01 None None None Reserved

10 None None None Reserved

11 None None None Reserved

Note: ELECNT: Element count
ELEIDX: 16-bit signed element index value
FRMCNT: Frame/array count
FRMIDX: 16-bit signed frame index value(1D transfers)
FRMIDX: 16-bit signed array index value (2D transfers)
ESIZE:element size in bytes

Source/Destination (SRS/DST) Address Updates

 6-38

Table 6–12. EDMA DST Address Parameter Updates

Frame Transfer Type
Destination Update Mode (DUM)

Frame
Sync

Trans fer Type
(2DS:2DD) 00 01 10 11

FS = 0 00 None +ESIZE;

Increment by element
size.

–ESIZE;

Decrement by element
size.

+ELEIDX or +FRMIDX if
ELECNT = 1

Add signed ELEIDX to
each element in a frame
except the last. Add
signed FRMIDX to the last
element in a frame when
ELECNT = 1.

01 None +FRMIDX;

Add signed FRMIDX to
the first element in a
frame.
Element addresses in a
frame are in icreasing
order.

+FRMIDX;

Add signed FRMIDX to
the first element in a
frame. Element
addresses in a frame are
in dAcreasing order.

Reserved

10 None +(ELECNT x ESIZE
bytes);

Add ELECNT scaled by
element size to the start
address of previous frame

–(ELECNT x ESIZE
bytes);

Subtract ELECNT scaled
by element size from the
start address of previous
frame

Reserved

11 None +FRMIDX;

Add signed FRMIDX to
the first element in a
frame. Element
addresses in a frame are
in increasing order.

+FRMIDX;

Add signed FRMIDX to
the first element in a
frame. Element
addresses in a frame are
in decreasing order.

Reserved

FS = 1 00 None +(ELECNT x ESIZE
bytes);

Add ELECNT scaled by
element size to the start
address of previous frame

–(ELECNT x ESIZE
bytes);

Subtract ELECNT scaled
by element size from the
start address of previous
frame

+FRMIDX;

Add signed FRMIDX to
the first element in a
frame. Element
addresses in a frame
spaced by ELEIDX.

01 None None None Reserved

10 None None None Reserved

11 None None None Reserved

Note: ELECNT: Element count
ELEIDX: 16-bit signed element index value
FRMCNT: Frame/array count
FRMIDX: 16-bit signed frame index value (1D transfers)
FRMIDX: 16-bit signed array index value (2D transfers)
ESIZE:element size in bytes

Linking EDMA Transfers

6-39EDMA Controller

6.12 Linking EDMA Transfers

The EDMA controller provides linking, a feature especially useful for complex
sorting, circular buffering type of applications. If LINK = 1, upon completion of
a transfer, the EDMA link feature reloads the current transfer parameters with
the parameter pointed to by the 16-bit link address. The entire EDMA parame-
ter RAM is located in the 01A0 xxxxh area. Therefore the 16-bit link address,
which corresponds to the lower 16-bit physical address, is sufficient to specify
the location of the next transfer entry. The link address must be aligned on a
24-byte boundary. An example of a linked EDMA transfer is shown in
Figure 6–16.

Figure 6–16. Linked EDMA Transfer

Reload Event N parameters
with null parameters located at 01A0 01B0�

Event N parameters

Options (LINK=1)

Source (SRC) address

Array/Frame count Element count

Destination (DST) address

Array/Frame index Element index

Elementary count reload Link address = 0180h

Reload Event N parameters
with parameters located at 01A0 0180

Options (LINK=1)

Source (SRC) address

Array/Frame count Element count

Destination (DST) address

Array/Frame index Element index

Element count reload Link address = 01B0h

��See section 6.13 for details on null parameters

0000 0000h

0000 0000h

0000 0000h

0000 0000h

0000 0000h

0000 0000h

Linking EDMA Transfers

 6-40

The link address is evaluated only if LINK is equal to 1 and only after the event
parameters have been exhausted. An event’s parameters are exhausted
when the EDMA controller has completed the transfer associated with the re-
quest. Table 6–13 shows the channel completion conditions when the linking
of parameters is performed. There is virtually no limit to the length of linked
transfers. However, the last transfer parameter entry should have its LINK =
0 so that the linked transfer stops after the last transfer. The last entry should
be linked to a NULL parameter set. See section 6.13 for details.

Table 6–13. Channel Completion Conditions

LINK = 1 1D Transfers 2D Transfers

Element/array sync
(FS = 0)

Frame count == 0 &&
Element count == 1

Frame count == 0

Frame sync (FS = 1) Frame count == 0 Always

Linking an entry to itself replicates the behavior of autoinitialization to facilitate
the use of circular buffering and repetitive transfers. After an EDMA channel
exhausts its current entry, the parameter set is reloaded and the transfer be-
gins again.

Once the channel completion conditions are met for an event, the transfer pa-
rameters located at the link address are loaded into one of the 16 event param-
eter space (C621x/C671x) or 64 event parameter space (C64x) for the corre-
sponding event. Now, the EDMA is ready to start the next transfer. To eliminate
possible timing windows posed during this parameter reload mechanism, the
EDMA controller does not evaluate the event register during this time. Howev-
er, events are still captured in the ER, and will be processed after the parame-
ter reload is complete.

Any entry in the PaRAM can be used for a linked transfer parameter set. En-
tries in the first 16 (C621x/C671x) or 64 (C64x) locations should only be used
for linking if the corresponding event and chain event are disabled.

Terminating an EDMA Transfer

6-41EDMA Controller

6.13 Terminating an EDMA Transfer

All EDMA transfers are terminated by linking to a NULL parameter set after the
last transfer.

The NULL parameter set serves as the termination point of any EDMA transfer.
A NULL parameter set is defined as an EDMA parameter set where all the pa-
rameters (options, source/destination address, frame/element count, etc.) are
set to zero. Multiple EDMA transfers can link to the same terminating NULL
parameter set. Therefore only one NULL parameter set is required in the
EDMA parameter RAM. Figure 6–17 is an example of an EDMA transfer ter-
mination.

Figure 6–17. Terminating EDMA Transfers

Event N parameters

Options (LINK=1)

Source (SRC) address

Array/Frame count Element count

Destination (DST) address

Array/Frame index Element index

Elementary count reload Link address = 07E0h

Null parameters located at 01A0 07E0h

0000 0000h

0000 0000h

0000 0000h

0000 0000h

0000 0000h

0000 0000h

EDMA Interrupt Generation

 6-42

6.14 EDMA Interrupt Generation

The EDMA controller is responsible for generating transfer-completion
interrupts to the CPU. Unlike the C620x/C670x DMA controller which has indi-
vidual interrupts for each DMA channel, the EDMA generates a single interrupt
(EDMA_INT) to the CPU on behalf of all 16 channels (C621x/C671x) or 64
channels (C64x). The various control registers and bit fields facilitate EDMA
interrupt generation.

When TCINT bit in options entry is set to ‘1’ for a EDMA channel and a specific
transfer complete code is provided, the EDMA controller sets a bit in the chan-
nel interrupt pending register (CIPR) shown in Figure 6–18. The C64x has two
channel interrupt pending registers, channel interrupt pending low register
(CIPRL) and channel interrupt pending high register (CIPRH), for the 64 chan-
nels. For the remaining of this chapter, the term “channel interrupt pending
register” or “CIPR” refers to the CIPR for C621x/C671x, or the CIPRL/CIPRH
for C64x.

The CIPR bit number that gets set is dictated by the transfer complete code
value programmed. Lastly, the important action is to generate the EDMA_INT
to the CPU. To do this, the corresponding interrupt enable bit should be set in
the channel interrupt enable register (CIER) shown in Figure 6–19. Since the
C64x has 64 channels, it has two channel interrupt enable registers, channel
interrupt enable low register (CIERL) and channel interrupt enable high regis-
ter (CIERH). For the remaining of this chapter, the term “channel interrupt en-
able register” or “CIER” refers to the CIER for C621x/C671x, or the CIERL/
CIERH for C64x.

To configure the EDMA for any channel (or QDMA request) to interrupt the
CPU:

� Set CIEn to ‘1’ in the CIER
� Set TCINT to ‘1’ in channel options
� Set Transfer Complete Code to n in channel options

CIPR is equivalent to an interrupt pending register whose sources are the
transfer complete codes and CIER is similar to an interrupt enable register.
Note that if the CIER bit is disabled, the channel completion event is still regis-
tered in the CIPR if its TCINT=1. Once the CIER bit is enabled, the correspond-
ing channel interrupt is sent to the CPU. If the CPU interrupt (defaults to
CPU_INT8) is enabled, its ISR is executed.

EDMA Interrupt Generation

6-43EDMA Controller

Figure 6–18. Channel Interrupt Pending Register (CIPR, CIPRL, CIPRH)

C621x/C671x: Channel Interrupt Pending Register (CIPR)

31 16

Reserved

R, +0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CIP15 CIP14 CIP13 CIP12 CIP11 CIP10 CIP9 CIP8 CIP7 CIP6 CIP5 CIP4 CIP3 CIP2 CIP1 CIP0

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

C640x: Channel Interrupt Pending Low Register (CIPRL)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CIP31 CIP30 CIP29 CIP28 CIP27 CIP26 CIP25 CIP24 CIP23 CIP22 CIP21 CIP20 CIP19 CIP18 CIP17 CIP16

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CIP15 CIP14 CIP13 CIP12 CIP11 CIP10 CIP9 CIP8 CIP7 CIP6 CIP5 CIP4 CIP3 CIP2 CIP1 CIP0

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

C640x: Channel Interrupt Pending High Register (CIPRH)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CIP63 CIP62 CIP61 CIP60 CIP59 CIP58 CIP57 CIP56 CIP55 CIP54 CIP53 CIP52 CIP51 CIP50 CIP49 CIP48

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CIP47 CIP46 CIP45 CIP44 CIP43 CIP42 CIP41 CIP40 CIP39 CIP38 CIP37 CIP36 CIP35 CIP34 CIP33 CIP32

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

EDMA Interrupt Generation

 6-44

Figure 6–19. Channel Interrupt Enable Register (CIER, CIERL, CIERH)

C621x/C671x: Channel Interrupt Enable Register (CIER)

31 16

Reserved

R, +0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CIE15 CIE14 CIE13 CIE12 CIE11 CIE10 CIE9 CIE8 CIE7 CIE6 CIE5 CIE4 CIE3 CIE2 CIE1 CIE0

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

C64x: Channel Interrupt Enable Low Register (CIERL)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CIE31 CIE30 CIE29 CIE28 CIE27 CIE26 CIE25 CIE24 CIE23 CIE22 CIE21 CIE20 CIE19 CIE18 CIE17 CIE16

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CIE15 CIE14 CIE13 CIE12 CIE11 CIE10 CIE9 CIE8 CIE7 CIE6 CIE5 CIE4 CIE3 CIE2 CIE1 CIE0

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

C64x: Channel Interrupt Enable High Register (CIERH)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CIE63 CIE62 CIE61 CIE60 CIE59 CIE58 CIE57 CIE56 CIE55 CIE54 CIE53 CIE52 CIE51 CIE50 CIE49 CIE48

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CIE47 CIE46 CIE45 CIE44 CIE43 CIE42 CIE41 CIE40 CIE39 CIE38 CIE37 CIE36 CIE35 CI34 CIE33 CIE32

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

In the C621x/C671x, the transfer complete code is specified in the TCC field,
with values between 0000b to 1111b. In the C64x, which has a total of 64 chan-
nels, the transfer complete code is expanded to a 6-bit value that accomodates
the 64 channels. The 6-bit transfer complete code of the C64x is comprised
of the new TCCM bits (most significant bits of the transfer complete code), in
addition to the TCC field in the options parameter. The transfer complete code
is directly mapped to the CIPR bits as shown in Table 6–14 for the
C621x/C671x and Table 6–15 for the C64x. For example, if TCC = 1100b (and
also TCCM = 00 for the C64x), CIPR[12] (C621x/C671x) or CIPRL[12] (C64x)
is set to 1 after the transfer is complete, and this generates a CPU interrupt only

EDMA Interrupt Generation

6-45EDMA Controller

if CIER[12] = 1. The user can program the transfer complete code to be any
value in Table 6–14 for any EDMA channel. In other words, there need not nec-
essarily be a direct relation between the channel number and the transfer com-
plete code value. This allows multiple channels having the same transfer com-
plete code value to cause the CPU to execute the same ISR (for different chan-
nels). Alternatively, the same channel can set multiple complete codes de-
pending on the transfers performed.

Table 6–14. Transfer Complete Code (TCC) to EDMA Interrupt Mapping

TCC
in Options
(TCINT=1)

CIPR
Bits Set

TCC
in Options
(TCINT=1)

CIPR Bits
Set

0000b CIP0 1000b CIP8

0001b CIP1 0001b CIP9

0010b CIP2 0010b CIP10

0011b CIP3 0011b CIP11

0100b CIP4 0110b CIP12

0101b CIP5 1101b CIP13

0110b CIP6 1110b CIP14

0111b CIP7 1111b CIP15

Table 6–15. C64x Transfer Complete Code (TCC) to EDMA Interrupt Mapping

TCC
in Options
(TCINT=1)

CIPRL
Bits Set �

TCC
in Options
(TCINT=1)

CIPRH
Bits Set �

000000b CIP0 100000b CIP32

000001b CIP1 100001b CIP33

000010b CIP2 100010b CIP34

000011b CIP3 100011b CIP35

000100b CIP4 100110b CIP36

...

...

...

011110b CIP30 111110b CIP62

011111b CIP31 111111b CIP63

† Bit fields CIP[0:31] correspond to bits 0 to 31 in CIPRL.
Bit fields CIP[32:63] correspond to bits 0 to 31 in CIPRH.

EDMA Interrupt Generation

 6-46

6.14.1 EDMA Interrupt Servicing by the CPU

Since the EDMA controller is aware of when the EDMA channel transfer is
complete, it sets the appropriate bit in the CIPR as per the transfer complete
code specified by the user. The CPU ISR should read the CIPR and determine
what, if any events/channels have completed and perform the operations nec-
essary. The ISR should clear the bit in CIPR upon servicing the interrupt, there-
fore enabling recognition of further interrupts. Writing a ‘1’ to the relevant bit
can clear CIPR bits, writing a ‘0’ has no effect.

By the time one interrupt is serviced, many others could have occurred and
relevant bits set in CIPR. Each of these bits in CIPR would probably need dif-
ferent types of service. The ISR should check for all pending interrupts and
continue until all the posted interupts are serviced.

6.14.2 TMS320C64x Alternate Transfer Complete Code Interrupt

In addition to the transfer complete interrupt, the C64x EDMA allows channel
interrupt upon completion of intermediate transfers in a block. This is referred
to as the alternate transfer complete interrupt. For example, in a 1D element-
synchronized transfer, alternate transfer complete interrupt may be generated
upon transfer completion of each element.

Two new fields, the alternate transfer complete interrupt (ATCINT) and the al-
ternate transfer complete code (ATCC), are added to the options parameters.
The function of the alternate transfer interrupt is similar to the function of the
transfer complete interrupt. Similar to the TCCM:TCC, the ATCC can be set
to any values betwen 000000b to 111111b (see Table 6–14).

To enable alternate transfer complete interrupt, configure the EDMA channel
options parameter as follows:

� Set CIEn to ’1’ in the CIER

� Set ATCINT to ’1’ in channel options

� Set ATCC to ’n’ in channel options.

When alternate transfer complete interrupt is enabled by ATCINT, an interrupt
is set (and sent to the CPU if CIER is set) upon completion of each intermediate
transfer of the current channel. Upon completion of the entire channel transfer
(See channel completion conditions in Table 6–13), the transfer complete in-
terrupt applies instead, provided transfer complete interrupt is enabled by
TCINT. Alternate transfer complete interrupt does not apply to 2-dimensional
frame-synchronized transfers, since there are no intermediate transfers in this
mode.

Chaining EDMA Channels by an Event

6-47EDMA Controller

6.15 Chaining EDMA Channels by an Event

The channel chaining capability for the EDMA allows the completion of an
EDMA channel transfer to trigger another EDMA channel transfer. Table 6–13
shows the channel complete conditions.

Chaining is different from linking. The EDMA link feature (section 6.12) reloads
the current channel parameter with the linked parameter. The EDMA chaining
feature does not modify or update any channel parameters. It simply provides
a synchronization event to the chained channel. The channel chain enable
register (CCER) is shown in Figure 6–20.

Figure 6–20. Channel Chain Enable Register (CCER, CCERL, CCERH)

C621x/C671x: Channel Chain Enable Register (CCER)

31 16

Reserved

R, +0

15 12 11 10 9 8 7 0

Reserved CCE11 CCE10 CCE9 CCE8 Reserved

R,+0 RW,+0 RW,+0 RW,+0 RW,+0 R,+0

C64x: Channel Chain Enable Low Register (CCERL) for Events 0 to 31

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CCE31 CCE30 CCE29 CCE28 CCE27 CCE26 CCE25 CCE24 CCE23 CCE22 CCE21 CCE20 CCE19 CCE18 CCE17 CCE16

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCE15 CCE14 CCE13 CCE12 CCE11 CCE10 CCE9 CCE8 CCE7 CCE6 CCE5 CCE4 CCE3 CCE2 CCE1 CCE0

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

C64x Channel Chain Enable High Register (CCERH) for Events 32 to 63

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CCE63 CCE62 CCE61 CCE60 CCE59 CCE58 CCE57 CCE56 CCE55 CCE54 CCE53 CCE52 CCE51 CCE50 CCE49 CCE48

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCE47 CCE46 CCE45 CCE44 CCE43 CCE42 CCE41 CCE40 CCE39 CCE38 CCE37 CCE36 CCE35 CCE34 CCE33 CCE32

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

Chaining EDMA Channels by an Event

 6-48

6.15.1 TMS320C621x/C671x EDMA Transfer Chaining

For the C621x/C671x, four of the user-specified 4-bit transfer complete codes
(TCC values 8, 9, 10, and 11) can be used to trigger another EDMA channel
transfer. The purpose of these events triggering an EDMA transfer is to provide
the user the ability to chain several EDMA channels from one event that is driv-
en by a peripheral or external device. By setting the TCC to 8, 9, 10, or 11, any
EDMA channel can synchronize any of these four channels.

To enable the EDMA controller to chain channels by way of a single event, the
TCINT bit must be set to ‘1’. Additionally, the relevant bit in the channel chain
enable register (CCER) in Figure 6–20 should be set to trigger off the next
channel transfer specified by TCC. Since events 8 to 11 are the only EDMA
channels that support chaining, only these bits are implemented in CCER.
Reading unused bits returns a ‘0’ and writing to them has no effect. Therefore,
one can still specify a TCC value between 8 and 11, and need not necessarily
initiate the transfer on channels 8-11. However, the event is still captured in the
ER[11:8] even if the corresponding bit in CCER is disabled. This allows selec-
tive enabling and disabling of these 4 specific events.

For example, if CCER[8] = 1 and TCC = 1000b are specified for EDMA channel
4, an external interrupt on EXT_INT4 initiates the EDMA transfer. Once
channel 4 transfer is complete (all of the parameters are exhausted), the
EDMA controller initiates (TCINT = 1) the next transfer specified by EDMA
channel 8. This is because TCC = 1000b (channel 4 transfer completion code)
is the sync event for EDMA channel 8. The corresponding CIPR bit 8 is set after
channel 4 completes and generates an EDMA_INT (provided CIER[8] = 1) to
the CPU. If the CPU interrupt is not desired, the corresponding interrupt enable
bit, CIER[8] must be set to ‘0’. If channel 8 transfer is not desired, CCER[8]
must be set to ‘0’.

6.15.2 TMS320C64x EDMA Transfer Chaining

The C64x EDMA transfer chaining is an expansion of the C621x/C671x trans-
fer chaining. Any of the 64 transfer completion codes of the C64x EDMA can
be used to trigger another channel transfer. The user-specified transfer com-
plete code is expanded to a 6-bit value TCCM:TCC. The 4 bits in the TCC field
(bits 19 to 16) of the options parameter are the least significant bits of the trans-
fer complete code, while the new TCCM bit fields are the most significant bits
of the transfer complete code. For example, if the transfer complete code
(TCCM:TCC) is 010001b (i.e. TCCM = 01, TCC = 0001b) and CCERL[17] =
1 is specified for EDMA channel 4, the completion of the channel 4 transfer will
initiate the next transfer specified by EDMA channel 17, provided that the
channel 4 TCINT = 1.

Chaining EDMA Channels by an Event

6-49EDMA Controller

6.15.3 TMS320C64x Alternate Transfer Chaining

The alternate transfer complete interrupt field (ATCINT) and alternate transfer
complete code (ATCC), described in section 6.14.2, allow the C64x EDMA to
perform channel chaining upon completion of intermediate transfers in a block.
The function of the alternate transfer chaining is similar to the function of the
transfer complete chaining.

When alternate transfer complete chaining is enabled, the next EDMA channel
(specified by the ATCC of the current channel) is synchronized upon comple-
tion of each intermediate transfer of the current channel. Upon completion of
the entire channel transfer (see channel completion conditions in Table 6–13),
transfer complete chaining applies instead, provided transfer complete chain-
ing is enabled. Alternate transfer complete chaining does not apply to 2-di-
mensional block-synchronized transfers, since there are no intermediate
transfers in this mode. Alternate transfer chaining allows one channel to trigger
another once for each transfer request it makes (i.e. once per sync event re-
ceived), rather than only once per block.

To enable alternate transfer complete chaining, configure the EDMA channel
parameter as follows:

� Set ATCINT = 1 in the options parameter

� Set the ATCC value to the next EDMA channel in the chain

� Set the relevant bit in the channel chain enable register (bit CCER[ATCC]).

Note: Alternate transfer complete code chaining does not affect linking opera-
tions described in section 6.12.

6.15.4 C64x Alternate Transfer Chaining Example

The following examples explain the alternate transfer complete chaining func-
tion in detail.

Chaining EDMA Channels by an Event

 6-50

6.15.4.1 Servicing Input/Output FIFOs with a Single Event

Most common systems for ADSL, networking, and video applications require
the use of a pair of external FIFOs that must be serviced at the same rate. One
FIFO is used to buffer data input, and the other is used to buffer data output.
The EDMA channels that are used to service these FIFOs can be set up for
2D transfers. While each FIFO is serviced with a different set of parameters,
both can be signaled from a single event. For example, an external interrupt
pin can be tied to the status flags of one of the FIFOs. When this event arrives,
the EDMA needs to perform servicing for both the input and output streams.
Without the alternate transfer complete chaining feature this would have re-
quired two events, and thus two external interrupt pins. The alternate transfer
complete chaining feature allows the use of a single external interrupt pin (e.g.
EXT_INT7). The EDMA setup and illustration for this example is shown in
Figure 6–21.

Chaining EDMA Channels by an Event

6-51EDMA Controller

Figure 6–21. Alternate Transfer Complete Chaining Example

Array 0 Array 0

Alternate
Transfer Complete†

HARDWIRED EVENT
(tied to EXT_INT7, event 7)

event 7

CHAINED EVENT
(event 16)

Array 1 Array 1

Alternate
Transfer Complete†

event 7

Array 2 Array 2

Alternate
Transfer Complete†

event 7

Array 3 (last array) Array 3
Transfer Complete‡

event 7

NOTE: † Alternate transfer complete chaining synchronizes event
16 (ATCC = 010000b) and sets CIPRL[16] = 1

‡ Transfer complete chaining synchronizes event 16
(TCCM:TCC = 010000b) and sets CIPRL[16] = 1

Transfer complete sets
CIPRL[15] = 1
(TCCM:TCC =
 001111b).

If CIERL[15] = 1, interrupt
EDMA_INT sent to CPU.

SETUP

Channel 7 Parameters
for Chaining

� Enable Transfer
Complete Chaining:
TCINT = 1
TCCM:TCC =
 010000b

� Enable Alternate Transfer
Complete Chaining
ATCINT = 1
ATCC = 010000b

Channel 16 Parameters
for Chaining Event Enable Register (EER)

Channel Chain Enable Register
 (CCER)

� Enable Transfer
Complete Chaining:
TCINT = 1
TCCM:TCC =
 001111b

� Disable Alternate Transfer
Complete Chaining
ATCINT = 0
ATCC = don’t care

� Enable Channels 7:
EERL[7] = 1

� Enable Chaining to
Channel 16:
CCERL[16] = 1

Chaining EDMA Channels by an Event

 6-52

An EXT_INT7 event triggers a channel 7 array transfer. Upon completion of
each intermediate array transfer of channel 7, alternate transfer complete
chaining sets bit CIPRL[16] (specified by channel 7 ATCC) and provides a syn-
chronization event to channel 16. Upon completion of the last array transfer
of channel 7, transfer complete chaining—not alternate transfer complete
chaining—sets bit CIPRL[16] (specified by its TCCM:TCC) and provides a
synchronization event to channel 16. The completion of channel 16 sets bit
CIPRL[15] (specified by its TCCM:TCC), which can generate an interrupt to
the CPU if CIERL[15] = 1.

6.15.4.2 Breaking up Large Transfers with ATCC

Another very useful feature of the alternate transfer completion code is for
breaking up large transfers. A large transfer may lock out other transfers of the
same priority level (section 6.17) for the duration of the transfer. For example,
a large transfer with high priority from the internal memory to the external
memory via the EMIF may lock out other EDMA transfers on the high priority
queue. In addition, this large high priority transfer may lock out the EMIF for
a long period of time from lower priority channels.Therefore large transfers
should be done on a low priority level. Figure 6–22 shows the EDMA setup and
illustration of an example single large block transfer.

Figure 6–22. Single Large Block Data Transfer

16 KBytes Data Transfer

All other transfers on the same priority level
locked out for the duration of this transfer

event 8 (CPU writes 1 to ESRL[8]) Element Count (ELECNT) = 4069 (16 KB)

Frame Count (FRMCNT) = 0 (1 frame)

ATCC = don’t care

ATCINT = 0

EDMA Channel 8 SETUP

1D transfer of 16 KByte elements

A solution to the above problem is to use the alternate transfer completion
code to break up a large transfer into smaller transfers. For example, to move
a single large block of memory (16K bytes), the EDMA is set up to actually per-
form a 2D array synchronized transfer. The element count is set to a “reason-
able” value, where reasonable is derived from the amount of time it would take
to move this smaller amount of data. Assume 1K byte is a reasonable small
transfer in this example. The EDMA is set up to transfer 16 arrays of 1K byte
elements, for a total of 16K byte elements. The ATCC field in the options pa-
rameter is set to the same value as the channel number. In this example,
EDMA channel 8 is used and ATCC is also set to 8. The transfer complete code
TCCM:TCC may be set to a different value to cause an interrupt to the CPU
at the end of the transfer.

Chaining EDMA Channels by an Event

6-53EDMA Controller

The CPU starts the EDMA transfer by writing to the appropriate bit of the event
set register (ESRL[8]). The EDMA transfers the first 1K-byte array. Upon
completion of the first array (an intermediate transfer), alternate transfer com-
plete code chaining generates a synchronization event to channel 8, a value
specified by the ATCC field. This ATCC-generated synchronization event
causes EDMA channel 8 to transfer the next 1K-byte array. This process con-
tinues until the transfer parameters are exhausted, at which point the EDMA
will have completed the 16K-byte transfer. This method breaks up a large
transfer into smaller packets, thus providing natural time slices in the transfer
such that other events may be processed. Figure 6–23 shows the EDMA set-
up and illustration of the broken up smaller packet transfers.

Figure 6–23. Smaller Packet Data Transfers

1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K

event 8 (CPU writes 1 to ESRL[8])
ATCC=8 causes channel 8 to be

synchronized again

Time gaps allow other transfers on the same priority level to be performed

Element Count (ELECNT) = 256 (1KB)

Array Count (FRMCNT) = 15 (16 frames)

ATCC = 8

ATCINT = 1

EDMA Channel 8 SETUP

Array Index (FRMIDX) = 1024 (1KB strides)

2D transfer of 16 1KByte arrays
Array sync (FS) = 0

CCER[8] = 1�

† If another channel that has a system event (such as channel 4) is used, both the event enable and channel chain enable must
be set (EER[4] and CCER[4]) for the channel to transfer after both the external sync and the ATCC are received.

Peripheral Device Transfers (TMS320C64x only)

 6-54

6.16 Peripheral Device Transfers (TMS320C64x only)

The C64x EDMA supports the peripheral device transfer mode (PDT), which
provides an efficient way to transfer large amounts of data between an external
peripheral device and an external memory device that share the same data
pins. In normal operation, this type of transfer requires an EMIF read of the ex-
ternal source followed by an EMIF write to the external destination. When PDT
is enabled, data is driven by the external source directly, and written to the ex-
ternal destination in the same data bus transaction. Refer to Chapter 10, Exter-
nal Memory Interface for a detailed description of PDT.

PDT transfers are classified in terms of the memory on the EMIF. A PDT write
is a transfer from a peripheral to memory (memory is physically written). To en-
able a PDT write from an external peripheral source to an external memory
destination, the PDTD field in the EDMA options field must be set to 1.

A PDT read is a transfer from memory to a peripheral (memory is physically
read). To enable a PDT read from an external memory source to an external
peripheral destination, the PDTS field in the EDMA options field must be set
to 1.

PDT writes and PDT reads are mutually exclusive. In other words, PDTS and
PDTD cannot both be set to 1.

Resource Arbitration and Priority Processing

6-55EDMA Controller

6.17 Resource Arbitration and Priority Processing

The EDMA channels can have programmable priority. The PRI bit in options
specifies the priority levels. The highest priority available in the system is level
0 or the urgent priority. L2 requests comprise of data and program requests
from the CPU, L1 and L2 controllers. Table 6–16 shows the available priority
levels for the different requestors.

Table 6–16. Programmable Priority Levels for Data Requests

PRI(31:29) C621x/C671x
Priority Level

C621x/C671x
Requestors

C64x Priority Level C64x Requesters

000b Level0; urgent priority L2 controller Level0; urgent priority L2 controller, EDMA,
QDMA

001b Level1; high priority EDMA, QDMA
and/or HPI

Level1; high priority L2 controller, EDMA,
QDMA

010b Level2; low priority EDMA, QDMA Level 2; medium priority L2 controller, EDMA,
QDMA and/or HPI/
PCI

011b Reserved Reserved Level 3, low priority L2 controller, EDMA,
QDMA

100b –111b Reserved Reserved Reserved Reserved

The user should take care in not over-burdening the system by not submitting
all requests in high priority. Oversubscribing requests in one priority level can
cause EDMA stalls. This can be alleviated by balanced bandwidth distribution
in the different levels of priority. Refer to section 6.18.

6.17.1 Priority Queue Status Register (PQSR)

The priority queue status register (PQSR) shown in Figure 6–24
(C621x/C671x) and Figure 6–25 (C64x) indicates whether the transfer re-
quest queue is empty on the priority level queues. Status bits PQ in the PQSR
provide the status of the queues. A ’1’ in the PQ bit indicates that there are no
requests pending in the respective priority level queue. If PQSR[0] is ’1’, this
means all L2 requests for data movement have been completed and there are
no requests pending in the priority level 0 queue.

Resource Arbitration and Priority Processing

 6-56

Figure 6–24. Priority Queue Status Register(PQSR)(C621x/C671x)

31 3 2 1 0

rsvd PQ2 PQ1 PQ0

R, +0 R, +1 R, +1 R, +1

Figure 6–25. Priority Queue Status Register(PQSR)(C64x)

31 3 2 1 0

rsvd PQ3 PQ2 PQ1 PQ0

R, +0 R, +1 R, +1 R, +1 R, +1

The PQ bits are mainly used for emulation, context switching for multitasking
applications, and submitting requests with a higher priority – when possible.
For the emulation case, the PQ0 bit is used to ensure that all cache requests
via L2 are completed before updating any memory windows for the emulation
halt. Another use is to determine the right time to do a task switch. For exam-
ple, allocating L2 SRAM to a new task after ensuring that there are no EDMA
transfer requests in progress which might write to L2 SRAM. Lastly, the PQ bits
in PQSR can be used to allocate or submit requests judiciously on the lower
priority levels (by the EDMA or HPI) depending on which priority queue is
empty. Therefore a low-priority request can be upgraded to a high priority if re-
quired. This helps prevent all requests from being queued under the same
priority level which could lead to EDMA stalls.

6.17.2 Transfer Request Queue Length

6.17.2.1 TMS320C621x/C671x Transfer Request Queues

The C621x/C671x has three transfer request queues: Q0, Q1, and Q2. The
different priority level transfer requests (PRI field in the options parameter) are
sorted into Q0, Q1, and Q2 as shown in Table 6–17. Urgent priority queue Q0
is reserved for L2 controller transfer requests. The lower priority queues Q1
and Q2 can be used for EDMA, QDMA, and HPI transfers. Table 6–17 also
shows how each queue is divided among the different requesters.

Resource Arbitration and Priority Processing

6-57EDMA Controller

Table 6–17. Transfer Request Queues (C621x/C671x)

Queue Priority Level (PRI) Total Queue
Length (fixed)

Maximum Queue Length Available to Requester

Q0 0; urgent priority 6 L2 controller 6

Q1 1; high priority 13 EDMA
QDMA
HPI

8
3
2

Q2 2; low priority 11 EDMA
QDMA

8
3

6.17.2.2 Priority Queue Allocation Registers (PQAR) (C64x only)

The C64x has four transfer request queues—Q0, Q1, Q2, and Q3. The differ-
ent priority level transfer requests (PRI field) are sorted into the corresponding
queues, as shown in Table 6–18. Table 6–18 shows how Q0, Q1, Q2, and Q3
are divided among the different requesters. The queue length available to
EDMA requests is programmable via the priority queue allocation registers,
(PQARs), shown in Figure 6–26, Figure 6–27, Figure 6–28, and Figure 6–29.

L2 requests on C64x can be programmed on any one of the queues via the
cache configuration register (CCFG). The queue length available for L2 re-
quests is programmable via the L2 allocation registers. See Chapter 3,
TMS320C621x/C671x/C64x Two-Level Internal Memory for details.

Table 6–18. Transfer Request Queues (C64x)

Queue
Priority Level
(PRI)

Total Queue
Length (fixed) Default Queue Length Available to Requester

Q0 0; urgent priority 16 L2 controller/QDMA

EDMA

6 (programmable in L2ALLOC0)

2 (programmable in PQAR0)

Q1 1; high priority 16 EDMA

L2 controller/QDMA

6 (programmable in PQAR1)

2 (programmable in L2ALLOC1)

Q2 2; medium priority 16 EDMA

L2 controller QDMA

HPI/PCI

2 (programmable in PQAR2)

2 (programmable in L2ALLOC2)

4

Q3 3; low priority 16 EDMA

L2 controller/QDMA

6 (programmable in PQAR3)

2 (programmable in L2ALLOC3)

Resource Arbitration and Priority Processing

 6-58

Figure 6–26. Priority Queue Allocation Register 0 (PQAR0) (C64x only)

31 3 2 1 0

rsvd PQA2 PQA1 PQA0

R,+0 RW,+1 RW,+1 RW,+0

Figure 6–27. Priority Queue Allocation Register 1 (PQAR1) (C64x only)

31 3 2 1 0

rsvd PQA2 PQA1 PQA0

R,+0 RW,+1 RW,+1 RW,+0

Figure 6–28. Priority Queue Allocation Register 2 (PQAR2) (C64x only)

31 3 2 1 0

rsvd PQA2 PQA1 PQA0

R,+0 RW,+0 RW,+1 RW,+0

Figure 6–29. Priority Queue Allocation Register 3 (PQAR3) (C64x only)

31 3 2 1 0

rsvd PQA2 PQA1 PQA0

R,+0 RW,+1 RW,+1 RW,+0

A new transfer request submission to a full queue will cause an EDMA stall un-
til the existing request in the queue is processed to make room in the queue.
See section 6.21 for details on transfer requests submission.

Note: Writes to the PQSRs should be performed only when the correspond-
ing queues are empty of all outstanding transfer requests. This can be
achieved by event disabling and by checking the PQ bits in the PQSR (sec-
tion 6.17.1).

EDMA Performance

6-59EDMA Controller

6.18 EDMA Performance

The EDMA can perform element transfers with single-cycle throughput,
provided that the source and destination are two different resources that pro-
vide a single-cycle throughput. The following can limit performance:

� EDMA stalls: when there are multiple transfer requests on the same prior-
ity level

� EDMA accesses to L2 SRAM with lower priority than CPU.

6.19 Quick DMA (QDMA)

Quick DMA (QDMA) provides one of the most efficient ways to move data.
QDMA supports nearly all of the same transfer modes of the EDMA. However,
as the name implies, QDMA submits transfer requests more quickly than the
EDMA. In a typical system, the user will use the EDMA for periodic real-time
peripheral servicing, such as providing the McBSP with transmit data at a regu-
lar rate. For some applications, however, data must be moved in blocks under
direct control of the code running on the CPU. For these applications, the
QDMA is ideally suited to issue single, independent transfers to quickly move
data.

6.19.1 QDMA Registers

Since the QDMA is used for quick, one-time transfers it does not have the ca-
pability to reload a count or link. The count reload/link address register is there-
fore not available to the QDMA. The QDMA can be used for chaining transfers.
The QDMA registers are not updated during or after a transfer by the hard-
ware. They retain the values that were submitted. All EDMA transfers are sub-
mitted using frame synchronization (1D) or block synchronication (2D). See
section 6.19.3.

The QDMA consists of two sets of memory mapped, write-only registers, simi-
lar to an EDMA parameter entry. Figure 6–30 shows the first set, which is a
direct mapping of the five QDMA registers required to configure a transfer.
There is no count reload, no link address, and the LINK field of the options pa-
rameter is reserved. Writing to the QDMA registers configures, but does not
submit, a QDMA transfer request. Figure 6–31 shows the pseudo registers for
this set. Writing to the pseudo registers submits a transfer request.

EDMA Performance / Quick DMA (QDMA)

Quick DMA (QDMA)

 6-60

Figure 6–30. QDMA Registers‡

31 0

QDMA_OPT QDMA options�

0200 0000h W, + 0

31 0

QDMA_SRC SRC address

0200 0004h W, + 0

31 16 15 0

QDMA_CNT Array/frame count Element count

0200 0008h W, + 0 W, + 0

31 0

QDMA_DST DST address

0200 000ch W, + 0

31 16 15 0

QDMA_IDX Arrary/frame index Element index

0200 0010h W, + 0 W, + 0
† The fields in this register are shown in Figure 6–32.
‡ For C64x, QDMA registers are readable and writeable (RW).

Figure 6–31. QDMA Pseudo Registers

31 0

QDMA_S_OPT QDMA options�

0200 0020h W, + 0

31 0

QDMA_S_SRC SRC address

0200 0024h W, + 0

31 16 15 0

QDMA_S_CNT Arrary/frame count Element count

0200 0028h W, + 0 W, + 0

31 0

QDMA_S_DST DST address

0200 002Ch W, + 0

31 16 15 0

QDMA_S_IDX Arrary/frame index Element index

0200 0030h W, + 0 W, + 0
† The fields in this register are shown in Figure 6–32.

Quick DMA (QDMA)

6-61EDMA Controller

Figure 6–32. QDMA Options Register (QDMA_OPT, QDMA_S_OPT)

31 29 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 1 0

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC Rsvd TCC5 TCC4 Rsvd FS

W, +0 W, +0 W, +0 W, +0 W, +0 W, +0 W, +0 W, +0 W,+0 W,+0 W,+0 W,+0 W,+0

Note: TCCM apply to C64x only. For C621x/C671x, bit 15 is reserved W, +0.

Although the QDMA mechanism does not support event linking, it supports
completion interrupts, as well as QDMA transfer complete chaining with
EDMA events. QDMA completion interrupts are enabled and set in the same
way as EDMA completion interrupts; through the use of the TCINT and TCC
fields in the options register, and the CIPR and CIER of the EDMA. QDMA
transfer-complete chaining and alternate transfer-complete chaining with
EDMA events are enabled through setting the appropriate bits in the QDMA
options register and CCER of the EDMA. QDMA transfer requests have the
same priority restrictions as the EDMA. See section 6.17 for details.

6.19.2 QDMA Register Access

For C621x/C671x, each of the QDMA registers is write only. Reads of the
QDMA registers will return invalid data. For C64x, the QDMA registers are
readable and writeable. Access to each of the above registers is limited to
32-bits only. Halfword and byte writes to the QDMA registers will write the en-
tire register, and thus should be avoided.

6.19.3 Initiating a QDMA Transfer

A QDMA transfer requires only one to five cycles to submit, depending on the
number of registers that need to be configured. A typical QDMA transfer is per-
formed by writing four of the parameter values to their registers followed by the
write of the fifth parameter to its corresponding pseudo-register. All QDMA
transfers are submitted using frame synchronization (1D) or block synchro-
nization (2D), therefore the QDMA always requests a transfer of one complete
frame (1D) or block (2D) of data. The value in the FS field of the QDMA options
register is “don’t care.” There are no intermediate transfers in a QDMA trans-
fer. Only one request is sent for any QDMA submission, and the number of ele-
ments transferred is shown in Table 6–19.

Table 6–19. QDMA Transfer Length

Transfer Dimension Elements Transferred

1-D to 1-D One frame, regardless of frame count

Other One block, all arrays transferred

Quick DMA (QDMA)

 6-62

Thus, a typical submission sequence might look like the following:

QDMA_SRC = SOME_SRC_ADDRESS;
QDMA_DST = SOME_DST_ADDRESS;
QDMA_CNT = (NUMFRAME–1)<<16 | NUM_ELEMENTS;// Array Frame Count
QDMA_IDX = 0x00000000; // no indexing specified
QDMA_S_OPT = 0x21B80001; // frame synchronized 1D-SRC to 2D-DST,send

// completion code 8 when finished
// and submit transfer

6.19.4 QDMA Performance

The QDMA mechanism is extremely efficient at submitting DMA requests.
Stores to the QDMA registers are passed to L2 as regular writes rather than
peripheral writes. A QDMA transfer requires only one to five cycles (one cycle
write for each of the five QDMA registers) to submit, depending upon the num-
ber of registers that need to be configured. Therefore, the QDMA registers can
be used within the context of tight loop algorithms if desired.

Furthermore, all of the QDMA registers retain their value after the request is
submitted, so if a second transfer is to be performed with any of the same pa-
rameter settings, they do not need to be rewritten by the CPU. Only the
changed registers must be rewritten, with the final parameter written to the ap-
propriate pseudo-register to submit the transfer. As a result, subsequent
QDMA requests can be processed in as little as one cycle per request.

6.19.5 QDMA Stalls and Priority

The QDMA has several stalling conditions. Once a write has been performed
to one of the pseudo-registers (resulting in a pending QDMA transfer request),
future writes to the QDMA registers are stalled until the transfer request is sent.
Normally this will occur for 2–3 EDMA cycles, as this is how long it takes to sub-
mit a transfer. The L2 controller includes a write buffer, so that stalls are not
generally seen by the CPU.

Because the QDMA and the L2 cache controller share the same transfer re-
quest node, cache activity requiring the use of this transfer request node may
delay submission of the QDMA transfer request. The L2 controller is given
priority during this sort of arbitration, as in general it is assumed the cache re-
quests have a greater likelihood of eventually stalling the CPU. The L2 write
buffer typically keeps the CPU from being affected by this stall condition.

Similar to the EDMA channels, QDMA can have programmable priority in the
lower levels as described in section 6.17. The PRI bit-field in the QDMA_OPT
register specifies the priority level of the QDMA. Once again, level 0 (urgent
priority) is reserved for L2 cache accesses. QDMA requests with level 0 or re-
served values will be discarded.

Quick DMA (QDMA)

6-63EDMA Controller

In the case when an EDMA request and a QDMA request happen simulta-
neously, the QDMA request will get submitted first. However, this only applies
to the order of request submission. The PRI field determines the actual priority
of the request. An EDMA request with level 1 priority has higher priority than
a QDMA request with level 2 priority, even if the two events happen simulta-
neously and the QDMA request gets submitted first. Therefore, it is very impor-
tant that the user programs the PRI field to specify the priority of an EDMA/
QDMA request, rather than relying on the order of the requests.

Emulation Operation

 6-64

6.20 Emulation Operation

During debug using the emulator, the CPU may be halted on an execute pack-
et boundary for single stepping, benchmarking, profiling, or other debug uses.
During an emulation halt, EDMA operations continue.

6.21 Transfer Request Submission

6.21.1 Request Chain

All transfer requestors to the EDMA are connected to the transfer request
chain. This is shown in Figure 6–33. A transfer request, once submitted, is
shifted through the chain to the transfer crossbar (TC), where it is prioritized
and processed. The transfer request can be for a single data element or for
a large number of elements, as described in sections 6.7 and 6.8.

Figure 6–33. EDMA Block Diagram

stall

request

Channel 0
Channel 1
Channel 2
Channel 3
Channel 4
Channel 5
Channel 6

..

..

..

..

..

..

..

..

Channel N

EDMA Channels

Transfer Request Queues

L2
Controller:

Cache
miss/

QDMA

HPI/PCI

TR

request

request

request
stall

stall

stall
token

request

stall
TR

Address
Generation/

Transfer
Logic

S
ynchronization logic

TCC/ATCC

TR

request
stall
token

token

Transfer Crossbar

All other
synchronization

events

Q1

Q2

Q3 (See Note)

Q0: UrgentDownstream node

Upstream node

flow

Note: Q3 is available to C64x only. See section 6.17.2.2 for details.

Emulation Operation / Transfer Request Submission

Emulation Operation

6-65EDMA Controller

The request chain provides an inherent priority scheme to the requestors. As-
suming each makes a submission on the same cycle, the requestor closest to
the TC (downstream requestor) arrives first, and the farthest (upstream re-
questor) arrives last. Once a request is within the request chain, it has priority
over new submissions, such that the requests at the end of the chain do not
get starved for servicing.

To prevent possible deadlock situations that would occur if a downstream re-
questor was held off from submission due to continuous submissions by up-
stream requestors, there is a round-robin scheme implemented within the
chain’s logic. A token is passed around the chain (for the token, it is a loop) in
the downstream direction every CPU clock cycle. The transfer request node
that has the token inverts the priority levels of its two requestors. Rather than
giving priority to an existing request in the chain, located in the upstream node,
priority is given to the local requestor with the token to submit a new request.
Although this is a safeguard implanted into the EDMA, the high bandwidth of
the EDMA relative to the speed at which requests are submitted has shown
this to be inconsequential.

The requesters include the L2 controller, the EDMA channels, and the HPI/
PCI.

6.21.1.1 L2 Controller Transfer Requests

The L2 controller submits all transfer requests for cache servicing, for access-
ing non-cacheable memory, and for QDMA transfers. See Chapter 3,
TMS320C621x/C671x/C64x for details on the cacheability of memory.

For C621x/C671x, cache servicing requests are always made on the urgent
priority level and are not visible to the user. For read requests, the cache con-
troller always requests an L2 line in two parts, requesting the “missed” portion
of the line first. The data transfers requested are based on the data location
within the L2 line, as shown in Table 6–20. For write requests, as a result of
flush/clean operations or eviction, the burst size is one complete L2 line.

Table 6–20. TMS320C621x/C671x Cache Controller Data Transfers

Data Location First Transfer Second Transfer

First 1/4 Front 1/2 line Back 1/2 line

Second 1/4 Back 3/4 Front 1/4 line

Third 1/4 Back 1/2 line Front 1/2 line

Fourth 1/4 Back 1/4 line Front 3/4 line

Emulation Operation

 6-66

For TMS320C64x, cache servicing requests can be made on any priority lev-
els as specified in the P bits in the CCFG register. For read requests, the cache
controller always requests an L2 line in two bursts of 64 Kbytes each, request-
ing the “missed” portion of the line first. For write requests, as a result of flush/
clean operations or eviction, the cache controller transfers one complete L2
line in two bursts of 64 Kbytes each.

For both C621x/C671x and C64x, transfer requests by the L2 controller for
non-cacheable memory are always equal to a single element and are used to
load/store data from/to a non-cacheable location in external memory. These
requests are also submitted with an urgent priority and are invisible to the user.

QDMA transfer requests have the same restrictions as the EDMA channels.
See section 6.19 for details.

6.21.1.2 HPI/PCI Transfer Requests

The HPI/PCI automatically generates transfer requests to service host activity.
These transfer request submissions are submitted only with a high priority and
are invisible to the user. The HPI/PCI submits a transfer request for a single
element read or write for fixed mode host accesses and a transfer request for
a short data burst for autoincrement transfers. The burst size is always for eight
or fewer elements. See section 6.17 for available HPI transfer request priority.

6.21.1.3 EDMA Channel Transfer Requests

The EDMA channel transfers can be submitted with either high, medium (C64x
only), or low priority; with the recommendation that high priority be reserved
for short bursts and single element transfers and low priority be used for longer
(background) block moves. It is also recommended that transfers be divided
between the two priority levels when applicable, as this helps to maximize the
device performance.

6.21.2 Transfer Crossbar

Once a transfer request is at the end of the request chain, it is sent to the trans-
fer crossbar (TC). Within the TC, the transfer request is shifted into one of the
transfer request queues to await processing. The queue to which it is sub-
mitted is determined by the priority associated with it. The C621x/C671x has
three fixed-length queues (Q0, Q1, Q2). The C64x has four priority level
queues with programmable lengths. See section 6.17.2.2.

Emulation Operation

6-67EDMA Controller

Once the transfer request reaches the head of its queue, it is submitted to the
address generation/transfer logic to be processed. Only one transfer request
from each queue can be serviced at a time by the address generation/transfer
logic. To maximize the data transfer bandwidth in a system, all queues should
be utilized.

6.21.3 Address Generation/Transfer Logic

The address generation/transfer logic block, shown in Figure 6–34, controls
the transferring of data by the EDMA. There is one register set for each priority
queue, which monitors the progress of a transfer. Within the register set for a
particular queue, the current source address, destination address, and count
are maintained for a transfer. These registers are not memory-mapped and
are not available to the CPU.

The queue registers essentially function as a traditional DMA. They maintain
the transfer parameters (source, destination, count, etc) during the data trans-
fer. The queue registers send requests for data to be transferred. These re-
quests are for small bursts, which are less than or equal to the total data size
of the submitted transfer request. The actual size depends on the port perform-
ing the data reads or writes and is fixed by the hardware to maximize perfor-
mance. This allows transfers initiated by different queues to occur simulta-
neously to one another. Due to the fact that the registers send requests for data
transfers, the actual data movement occurs as soon as the ports are ready. So
if the different queues request transfers to/from different ports then the trans-
fers can occur at the same time. Transfer requests made to the same port(s)
are arbitrated for priority.

Figure 6–34. Address Generation/Transfer Logic Block Diagram

Queue

Registers

Routing Unit

Read Command/
Pre-write command
Broadcast to all ports

Write Command/
Write Data:
Broadcast to all ports

Read Data:
Separate data paths
from each port

Source Pipeline

Transfer Request
from queues

Destination Pipeline

Emulation Operation

 6-68

Each queue register set submits its transfer request to the appropriate source/
destination pipeline to initiate a data transfer. There are three commands gen-
erated by the queue registers: pre-write, read, and write. Commands can be
submitted to both source/destination pipelines once per cycle by any of the
queue registers. The TC arbitrates every cycle (separately for each pipeline)
to allow the highest priority command that is pending in the source/destination
pipeline to be submitted. The pre-write command is issued to notify the des-
tination that it is going to receive data. All ports have a small buffer available
to receive a burst of data at the internal clock rate. Once the destination has
available space to accommodate the incoming data, it sends an acknowledge-
ment to the EDMA that it is ready.

After receiving the acknowledgement from the destination, a read command
is issued to the data source. Data is read at the maximum frequency of the
source and passed to the EDMA routing unit to be sent to the destination.

Once the routing unit receives the data, the data is sent along with a write com-
mand to its destination.

Due to the EDMA’s capability to wait for the destination to be ready to receive
data, the source resource is free to be accessed for other transfers until the
destination is ready. This provides an excellent utilization of resources, and is
referred to as write-driven processing. All commands and write data are sent
from the EDMA to all resources on a single bus. The information is passed at
the clock speed of the EDMA, and data from multiple transfers are interlaced
when occurring simultaneously. Provided that multiple transfers (from different
queues) have different sources, the transfers occur simultaneously.

The read data arrives on unique busses from each resource. This is to prevent
contention and to ensure that data can be read at the maximum rate possible.
Once the data arrives to the routing unit, the data that is available for the high-
est priority transfer is moved from its read bus to the write bus and sent to the
destination.

Transfer Examples

6-69EDMA Controller

6.22 Transfer Examples

A wide variety of transfers can be performed by the EDMA depending on the
parameter configuration. The more basic transfers can be performed either by
an EDMA channel, or by submitting a QDMA. More complicated transfers or
repetitive transfers require an EDMA channel to be used.

6.22.1 Block Move Example

The most basic transfer that can be performed by the EDMA is that of a block
move. Often during device operation it is necessary to transfer a block of data
from one location to another, usually between on- and off-chip memory.

In this example, a section of data is to be copied from external memory to inter-
nal L2 SRAM. The data block is 256 words and resides at address
0xA0000000 (CE2). It is to be transferred to internal address 0x00002000 (L2
block 0). The data transfer is shown in Figure 6–35.

Figure 6–35. Block Move Diagram

0xA0000000 0x00002000

......

......

255254253

7654321 8

1514131211109 16

20191817 21

247246245244 248

252251250249 256

......

......

255254253

7654321 8

1514131211109 16

20191817 21

247246245244 248

252251250249 256

The fastest way to perform this transfer is through a QDMA request. The
QDMA request can be submitted in several different ways, the most basic be-
ing a frame-synchronized 1-D to 1-D transfer. This type of transfer is valid for
block sizes of less than 64k elements. The transfer must be frame-synchro-
nized so that all of the elements are transferred once the entry is submitted.
QDMA submits all requests as frame-synchronized transfers, regardless of
the FS bit value.

The parameters for this transfer are shown in Figure 6–36. Those that must
be configured are QDMA options, source address, destination address, and
element count.

Transfer Examples

 6-70

Figure 6–36. Block Move QDMA Parameters

0x41200001
0xA0000000

0x00002000
0x0000 0x0100

Don’t care Don’t care

0010 00 01 0 01 0 0000 000000000000 1
31 29 28 27 26 25 24 23 22 21 20 19 16 15 1 0

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC Reserved FS
0 0

14 1213

TCC4

0

Options
Source address

Destination address
Frame | Element count

Frame | Element index

Rsvd TCC5

Note: PRI (bits 31:29) is set to 010b (C621x/C671x) or 011b (C64x) for low priority background transfer. TCCM (bits 14:13) are
reserved on C621x/C671x.

The source address for the QDMA is set to the start of the data block in external
memory, and the destination address is set to the start of the data block in L2.
Since all data is contiguous, SUM and DUM are both set to 01b (increment).
The priority (PRI) is set to low-priority for background transfer.

The CPU requires four cycles to submit the request for this transfer, one cycle
for each register write. Fewer registers are required if any of the QDMA regis-
ters are already configured, with a minimum of one cycle. Three of the QDMA
parameters must be written to their proper QDMA registers and one parameter
must be written to its pseudo-register, which initiates the transfer. A sample
QDMA submission for the above transfer is as follows:

…

QDMA_SRC = 0xA0000000; /* Set source address */

QDMA_DST = 0x00002000; /* Set destination address */

QDMA_CNT = 0x00000100; /* Set frame/element count */

QDMA_S_OPT = 0x41200001; /* Set options and submit */

…

A block that contains greater than 64k elements requires the use of both ele-
ment count and array/frame count. Since the element count field is only 16 bits,
the largest count value that can be represented is 65535. Any count larger than
this needs to be represented with an array count as well. In order to transmit
this amount of data a QDMA can still be used. Rather than a frame-synchro-
nized 1-D to 1-D transfer, the QDMA needs to be configured as a block-syn-
chronized (FS=1) 2-D to 2-D transfer.

Transfer Examples

6-71EDMA Controller

6.22.2 Sub-frame Extraction Example

The EDMA has an efficient way of extracting a small frame of data from a larger
one. By performing a 2-D to 1-D transfer, the EDMA can retrieve a portion of
data for the CPU to process. In this example, a 640 x 480-pixel frame of video
data is stored in external memory, CE2. Each pixel is represented by a 16-bit
halfword. A 16 x 12-pixel sub-frame of the image is extracted for processing
by the CPU. To facilitate more efficient processing time by the CPU, the EDMA
places the sub-frame in internal L2 SRAM. Figure 6–37 depicts the transfer of
the sub-frame from external memory to L2.

Figure 6–37. Sub-Frame Extraction

0_100_1 0_2 0_3 0_4 0_5 0_6 0_7 0_8 0_9 0_A 0_B 0_C 0_D 0_E 0_F

1_101_1 1_2 1_3 1_4 1_5 1_6 1_7 1_8 1_9 1_A 1_B 1_C 1_D 1_E 1_F

2_102_1 2_2 2_3 2_4 2_5 2_6 2_7 2_8 2_9 2_A 2_B 2_C 2_D 2_E 2_F

3_103_1 3_2 3_3 3_4 3_5 3_6 3_7 3_8 3_9 3_A 3_B 3_C 3_D 3_E 3_F

4_104_1 4_2 4_3 4_4 4_5 4_6 4_7 4_8 4_9 4_A 4_B 4_C 4_D 4_E 4_F

5_105_1 5_2 5_3 5_4 5_5 5_6 5_7 5_8 5_9 5_A 5_B 5_C 5_D 5_E 5_F

6_106_1 6_2 6_3 6_4 6_5 6_6 6_7 6_8 6_9 6_A 6_B 6_C 6_D 6_E 6_F

7_107_1 7_2 7_3 7_4 7_5 7_6 7_7 7_8 7_9 7_A 7_B 7_C 7_D 7_E 7_F

8_108_1 8_2 8_3 8_4 8_5 8_6 8_7 8_8 8_9 8_A 8_B 8_C 8_D 8_E 8_F

9_109_1 9_2 9_3 9_4 9_5 9_6 9_7 9_8 9_9 9_A 9_B 9_C 9_D 9_E 9_F

A_10A_1 A_2 A_3 A_4 A_5 A_6 A_7 A_8 A_9 A_A A_B A_C A_D A_E A_F

B_10B_1 B_2 B_3 B_4 B_5 B_6 B_7 B_8 B_9 B_A B_B B_C B_D B_E B_F

0

479

0 6
3
9

0xA0000788

0xA0000000

0xA0025580

0x00002000

To perform this transfer, the CPU can issue a QDMA request for a block-syn-
chronized (FS=1) 2-D to 1-D transfer. Since the source is 2-D and the transfer
is block-synchronized, the QDMA requests a transfer of the entire sub-frame.
The parameters required for the QDMA registers to request this transfer are
shown in Figure 6–38.

Figure 6–38. Sub-Frame Extraction QDMA Parameters

0x4D200001
0xA0000788

0x00002000
0x000B 0x0010

Don’t care Don’t care

1010 01 01 0 01 0 0000 000000000000 1
31 29 28 27 26 25 24 23 22 21 20 19 16 15 1 0

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC Reserved FS
0 0

14 1213

TCC4

0

Options
Source address

Destination address
Frame | Element count

Frame | Element index

Rsvd TCC5

Note: PRI (bits 31:29) is set to 010b (C621x/C671x) or 011b (C64x) for low priority transfer. TCCM is reserved on C621x/C671x.

Transfer Examples

 6-72

All of the address updates occur within the address generation/transfer logic.
The array index provided is therefore the space between arrays of the sub-
frame. Since each array of the video image is 640 pixels in length and each
array of the sub-frame is 16 pixels in length, the array index is set to 2 bytes/
element * (640 – 16) elements = 1248 bytes (0x4=0). The sub-frame is trans-
ferred to a block of contiguous memory. The element count (ELECNT) is set
to 16, the number of elements per sub-frame array, and the array count
(FRMCNT) is set to 11, one less than the number of arrays. The QDMA request
is sent to the low-priority queue so that it does not interfere with any data ac-
quisition that could be occurring.

Inversely, a 1-D to 2-D transfer can be used to perform the insertion of a sub-
frame into a larger frame of data. For instance, with this example the sub-frame
could be inserted back into the larger image after some processing by the
CPU.

6.22.3 Data Sorting Example

Many applications require the use of multiple data arrays; it is often desirable
to have the arrays arranged such that the first elements of each array are adja-
cent, the second elements are adjacent, and so on. Often this is not the format
in which the data is presented to the device. Either data is transferred via a pe-
ripheral, with the data arrays arriving one after the other, or the arrays are lo-
cated in memory, with each array occupying a portion (frame) of contiguous
memory spaces. For these instances, the EDMA can be configured to reorga-
nize the data into the desired format. Figure 6–39 shows the data sorting of
element arrays.

Figure 6–39. Data Sorting Example Diagram

A_
1023

...

...

A_
3

A_
2

A_
1

A_
1024

B_
1023

...

...

B_
3

B_
2

B_
1

B_
1024

C_
1023

...

...

C_
3

C_
2

C_
1

C_
1024

D_
1023

...

...

D_
3

D_
2

D_
1

D_
1024

0xA0000000

0x00002000

A_
1023

......
A_
3

A_
2

A_
1

A_
1024

B_
1023

......
B_
3

B_
2

B_
1

B_
1024

C_
1023

......
C_
3

C_
2

C_
1

C_
1024

D_
1023

......
D_
3

D_
2

D_
1

D_
1024

A_
1022

B_
1022

C_
1022

D_
1022

A_
1022

B_
1022

C_
1022

D_
1022

Transfer Examples

6-73EDMA Controller

The following values can be used to determine the fields required to use
QDMA requests to organize the data in memory by ordinal position:

� F = The initial value of Frame Count

� E = The initial value of Element Count, as well as the Element Count Reload value

� S = The element size in bytes

The QDMA can again be used to transfer this data. However, due to the ar-
rangement of the data in the destination, it is not possible to accomplish this
with a single submission. Instead a separate QDMA transfer request is sub-
mitted for each frame. If it is necessary to use an EDMA channel to perform
this transfer, then an entry must be provided for each frame in the transfer in
PaRAM. Also, the transfer must use the chaining feature to self-synchronize
each frame on the completion of the previous. See section 6.15 for details.

This example focuses on the second case mentioned above, in which equal
sized data arrays are located in external memory. It is not necessary for the
arrays to be of equal length. In the case that the lengths vary, each QDMA sub-
mission or each EDMA reload parameter set in PaRAM would contain the cor-
responding new count value.

For this example it is assumed that the 16-bit data is located in external RAM,
beginning at address 0xA0000000 (CE2). The QDMA is used to bring four
frames of 1k half-words from their locations in RAM to internal data memory
beginning at 0x00008000. The index value required is ELEIDX = F x S =
4 x 2 = 8.

Since separate QDMA transfer requests are to be submitted for each frame,
only the ELEIDX value is used in the QDMA parameters. The CPU updates
the destination address for each new frame. For the first frame of data, the val-
ues shown in Figure 6–40 are assigned to the QDMA registers:

Figure 6–40. Sorting QDMA Parameters

0x49600001
0xA0000000

0x00002000
0x0000 0x0400

Don’t care Don’t care

0010 01 01 0 11 0 0000 000000000000 1
31 29 28 27 26 25 24 23 22 21 20 19 16 15 1 0

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC Reserved FS
0 0

14 1213

TCC4

0

Options
Source address

Destination address
Frame | Element count

Frame | Element index

Rsvd TCC5

Note: PRI (bits 31:29) is set to 010b (C621x/C671x) or 011b (C64x) for low priority transfer. TCCM is reserved on C621x/C671x.

Transfer Examples

 6-74

The QDMA submitted with the above parameters only transfers the first frame.
For each subsequent frame the CPU must perform two stores to change the
source address and the destination address manually. It is not necessary for
the CPU to wait for each frame to complete before submitting a request for the
next. The subsequent transfer requests submitted are stored in the transfer
queues to await processing.

To summarize, the CPU performs four writes to configure the options field, the
source address, the count, and the destination address (or any four of the five
fields). The CPU then performs a write to the index pseudo-register (or the reg-
ister still not configured) to submit the transfer request for the first frame. For
each additional frame the CPU increments the source address by E x S
(= 1024 x 2 = 2048) and stores this value to the source address register, and
also increments the destination address by S and stores this value to the des-
tination address pseudo-register to submit the transfer request.

If it is desired to have the EDMA notify the CPU when all of the transfers have
completed, then the transfer request for the last frame should also have a mod-
ified options field to include a Transfer Complete Code value (and have TCINT
= 1). See section 6.14 for details.

6.22.4 Peripheral Servicing Examples

An important capability of the EDMA is its ability to service peripherals in the
background of CPU operation, without requiring any CPU intervention.
Through proper initialization of the EDMA channels, they can be configured
to continuously service on- and off-chip peripherals throughout the device op-
eration. Each event available to the EDMA has its own dedicated channel, and
all channels operate simultaneously. This means that all data streams can be
handled independently with little or no consideration for what else is going on
in the EDMA.

Since all EDMA channels are always synchronized, there are no special set-
ups required to configure a channel to properly service a particular event. The
only requirements are to use the proper channel for a particular transfer and
to enable the channel’s event in the EER or CCER (unless the CPU synchro-
nizes the channel).

When programming an EDMA channel to service a peripheral, it is necessary
to know how data is to be presented to the DSP. Data is always provided with
some kind of synchronization event, and is either one element per event (non-
bursting), or multiple elements per event (bursting).

Transfer Examples

6-75EDMA Controller

6.22.5 Non-bursting Peripherals

Non-bursting peripherals include the on-chip McBSPs and many external de-
vices such as codecs. Regardless of the peripheral, the EDMA channel config-
uration is the same.

The on-chip McBSPs are the most commonly used peripherals in a C6000 sys-
tem. EDMA channels 12 and 13 are dedicated to McBSP0 transmit and re-
ceive events, and channels 14 and 15 are dedicated to McBSP1 transmit and
receive events. The transmit and receive data streams are treated indepen-
dently by the EDMA. While a standard DMA channel could be used in split-
mode to handle transmit and receive data, there are a number of restrictions
with this due to the sharing of resources. The EDMA channels do not have
these restrictions. Although most serial applications call for similar data for-
mats both to and from the McBSP, this is not a requirement for reliable opera-
tion with the EDMA. The transmit and receive data streams can have com-
pletely different counts, data sizes, and formats.

If the previous block move example were changed such that the 256 words
were received by McBSP0 to be transferred to internal L2 SRAM, this is easily
handled by EDMA channel 13, which is synchronized by REVT0. A block dia-
gram of this transfer is shown in Figure 6–41.

Figure 6–41. McBSP Servicing for Incoming Data

0x30000000

0x00002000

......

......

255254253

7654321 8

1514131211109 16

20191817 21

247246245244 248

DRRRBRRSR

REVT0
1
:

2

:

3

:

252251250249 256

To transfer the incoming data stream to its proper location in L2 memory, the
EDMA channel must be set up for a 1-D to 1-D transfer with element synchro-
nization (FS = 0). Since an event (REVT0) is generated for every word as it
arrives, it is necessary to have the EDMA issue the transfer request for each
element individually. The channel entry for this transfer is shown in
Figure 6–42.

Transfer Examples

 6-76

Figure 6–42. EDMA Parameters for Servicing Incoming McBSP Data

0x20200000
0x30000000

0x00002000
0x0000 0x0100

Don’t care Don’t care
Don’t care Don’t care

0001 00 00 0 01 0 0000 000000000000 0
31 29 28 27 26 25 24 23 22 21 20 19 16 15 0

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC FS
0 0

14 13

TCC4

0
Rsvd TCC5

Options
Source address

Destination address
Frame | Element count

Frame | Element index
Count reload | Link address

12 1

Note: TCCM is reserved on C621x/C671x.

The source address of the EDMA channel is set to the DRR address for
McBSP0, and the destination address is set to the start of the data block in L2.
Since the address of the DRR is fixed, SUM is set to 00b (no modification). The
destination address is left at 01b (increment) as in the previous example. The
priority level chosen in this example is based on the premise that serial data
is typically a high priority, so that samples are not missed. Each transfer re-
quest by this channel are made on the high-priority queue (Q1).

6.22.5.1 Bursting Peripherals

Higher bandwidth applications require that multiple data elements be present-
ed to the DSP for every sync event. This frame of data can either be from multi-
ple sources that are working simultaneously or a single high-throughput pe-
ripheral that streams data to/from the DSP.

In this example a video framer is receiving a video frame from a camera and
presenting it to the DSP one array at a time. The video image is 640 x 480 pix-
els, with each pixel represented by a 16-bit element. The image is to be stored
in external memory. A diagram depicting this is shown in Figure 6–43.

Figure 6–43. Bursting Peripheral

......

.
:

... ...

... ...

.
:

.
:

.
:

......

... ...

... ...

0x90010000

0xA0000000 0_
640

0_
639

0_
638

0_
3

0_
2

0_
1

1_
640

1_
639

1_
2

1_
1

2_
1

Video Input

EXT_INT4

0_1...

2_
640

479_
640

479_
639

479_
638

479_
3

479_
2

479_
1

478_
640

478_
639

478_
2

478_
1

477_
1

477_
640

0xA0000500

0xA0000A00

0xA0095100

0xA0095600

0xA0095B00

:

:
0_2...1_1... ...1_2...

Transfer Examples

6-77EDMA Controller

To transfer data from an external peripheral to an external buffer one array at
a time based on EXT_INT4, channel 4 must be configured. There are two
types of transfers that are suitable for this: a 1-D to 1-D transfer with frame syn-
chronization (FS = 1) or a 1-D to 2-D transfer with array synchronization
(FS = 0); they are functionally identical. Due to the nature of the data (a video
frame made up of arrays of pixels) the destination is essentially a 2-D entity.
The parameter options to service the incoming data with a 1-D to 2-D transfer
are shown in Figure 6–44.

Figure 6–44. EDMA Parameters to Service Peripheral Bursts

0x28A00000
0x90010000

0xA0000000
0x01DF 0x0280

0x0500 Don’t care
Don’t care Don’t care

Options
Source address

Destination address
Array | Element count

Array \ Element index
Count reload | Link address

0001 01 00 1 01 0 0000 00000000000 0
31 29 28 27 26 25 24 23 22 21 20 19 16 15 0

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC FS

0 0
14 13

TCC4

0
Rsvd TCC5

12 2

0
1

LINKReserved

Note: TCCM is reserved on C621x/C671x.

The source address is set to the location of the video framer peripheral, and
the destination address to the start of the data buffer. Since the input address
is static, SUM is set to 00b. The destination is made up of arrays of contiguous,
linear elements. Therefore DUM is set to 01b (increment). The element count
is equal to the number of pixels in an array, 640. The array count is equal to
one less than the total number of arrays in the block, 479. An array index, equal
to the difference between the starting addresses of each array, is required.
Since each pixel is represented by a halfword, the array index is equal to twice
the element count, or 1280 bytes.

6.22.5.2 Continuous Operation

Configuring an EDMA channel to receive a single frame of data can be useful,
and is applicable to some systems. A majority of the time, however, data is go-
ing to be continuously transmitted and received throughout the entire opera-
tion of the DSP. In this case, it is necessary to implement some form of linking
such that the EDMA channels continuously reload the necessary parameter
sets.

In this example, McBSP0 is configured to transmit and receive data on a T1
array. To keep the example simple, only two channels are active for both trans-
mit and receive data streams. Each channel receives packets of 128 ele-
ments. The packets are transferred from the serial port to L2 memory and from
L2 memory to the serial port, as shown in Figure 6–45.

Transfer Examples

 6-78

Figure 6–45. Continuous McBSP Servicing by EDMA

0x30000000

0x00002000

......

A7iA6iA5iA4iA3iA2iA1i

A13iA12iA11iA10iA9i

A8i

DRRRBRRSR

...B5...A5...B4...A4...B3...A3...B2...A2...B1...A1

......

B7iB6iB5iB4iB3iB2iB1i

B13iB12iB11iB10iB9i

B8i

......

A7oA6oA5oA4oA3oA2oA1o

A13oA12oA11oA10oA9o

A8o

......

B7oB6oB5oB4oB3oB2oB1o

B13oB12oB11oB10oB9o

B8o

0x00002080

0x00002100

0x00002180

A1...B1...A2...B2...A3...B3...A4...B4...A5...B5...

XSR DXR

XEVT0

REVT0

0x30000000

The McBSP generates REVT0 for every element received and XEVT0 for ev-
ery element transmitted. To service the data streams, EDMA channels 12 and
13 must be set up for 1-D to 1-D transfers with element synchronization
(FS = 0). In order to service the McBSP continuously throughout DSP opera-
tion, the channels must be linked to a duplicate entry in the parameter RAM.
After all frames have been transferred, the EDMA channels reload and contin-
ue. The channel entries for these transfers are shown in Figure 6–46.

Transfer Examples

6-79EDMA Controller

Figure 6–46. EDMA Parameters for Continuous McBSP Servicing

0001 10 00 0 11 0 0000 00000000000 0
31 29 28 27 26 25 24 23 22 21 20 19 16 15 0

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC FS

0 0
14 13

TCC4

0
Rsvd TCC5

12 2

1
1

LINKReserved

0001 10 11 0 00 0 0000 00000000000 0
31 29 28 27 26 25 24 23 22 21 20 19 16 15 0

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC FS

0 0
14 13

TCC4

0
Rsvd TCC5

12 2

1
1

LINKReserved

0x30600002
0x30000000

0x00002000
0x007F 0x0002

0xFF81 0x0080

Options
Source address

Destination address
Frame | Element count

Frame | Element index
0x0002 0x0198 Count reload | Link address

0x33000002
0x00002100

0x30000000
0x007F 0x0002

0xFF81 0x0080
0x0002 0x0180

EDMA ch13 (0x01A00138) EDMA ch12 (0x01A00120)

Ch13 reload parameters (0x01A00198)
0x30600002
0x30000000

0x00002000
0x007F 0x0002

0xFF81 0x0080
0x0002 0x0198

Ch12 reload parameters (0x01A00180)
0x33000002
0x00002100

0x30000000
0x007F 0x0002

0xFF81 0x0080
0x0002 0x0180

Note: TCCM is reserved on C621x/C671x.

Receive Channel

EDMA channel 13 is used to service the incoming data stream of McBSP0. As
in the previous example, the source address is set to that of the DRR register,
and the destination address is set to the first element of the data block. Since
there are two data channels being serviced, A and B, and they are to be located
separately within the L2 SRAM, the destination address update mode uses
element and frame indexing (DUM = 11b). The element index is set to the offset
between the first element of each channel’s data section and the frame index
is the offset between the second element of channel A and the first element
of channel B. Since elements are 8-bit, the ESIZE field is set to 10b.

In order to facilitate continuous operation, a copy of the channel entry is placed
in parameter RAM at address 0x01A01980. The LINK option is set and the link
address is provided in the entry. Upon exhausting channel 13’s element and
frame counts, the parameters located at the link address are loaded into chan-
nel 13’s parameter set and operation continues. This function continues
throughout DSP operation until halted by the CPU.

The parameter table must keep track of the element count within the frame
since each element is sent individually (FS = 0). It is therefore required that an
element count reload is provided in the parameter set. This value is reloaded
to the element count field every time the element count reaches zero.

Transfer Examples

 6-80

Transmit Channel

EDMA channel 12 services the outgoing data stream of McBSP0. Its configu-
ration is essentially the opposite of channel 13’s for this application since the
input and output data is symmetrical. The element and frame counts are identi-
cal, as are the index values. The options are reversed, such that the source
is updated using the programmed index values while the destination address
is held constant. The source address provided to the channel is that of the be-
ginning of channel A’s output data, and the destination address is that of the
DXR. Linking is also used to allow for continuous operation by the EDMA chan-
nel, with a duplicate entry in the parameter RAM.

6.22.5.3 Ping-Pong Buffering

Although the configuration presented above allows the EDMA to service a pe-
ripheral continuously, there are a number of restrictions it presents to the CPU.
Since the input and output buffers are continuously being filled/emptied, in or-
der for the CPU to process the data, it must match the pace of the EDMA very
closely. The EDMA receive data must always be placed in memory before the
CPU accesses it, and the CPU must provide the output data before the EDMA
transfers it. Though not impossible, this is an unnecessary challenge. It is par-
ticularly difficult in a two-level cache system.

A simple technique to implement, which allows the CPU activity to be dis-
tanced from the EDMA activity, is to use ping-pong buffering. This simply
means that there are multiple (usually two) sets of data buffers for all incoming
and outgoing data streams. While the EDMA is transferring data in to and out
of the ping buffers, the CPU is manipulating the data in the pong buffers. When
both CPU and EDMA activity completes, they switch. The EDMA then writes
over the old input data and transfers the new output data. The ping-pong
scheme for this example is shown in Figure 6–47.

Transfer Examples

6-81EDMA Controller

Figure 6–47. Ping-Pong Buffering for McBSP Data

0x30000000

0x00002000

DRR

RBR

RSR

0x00002080

0x00002100

0x00002180

XSR

DXR

XEVT0

REVT0

0x00002200

0x00002280

0x00002300

0x00002380

Ping Pong

0x30000000

......

A7iA6iA5iA4iA3iA2iA1i

A13iA12iA11iA10iA9i

A8i

...B5...A5...B4...A4...B3...A3...B2...A2...B1...A1

......

B7iB6iB5iB4iB3iB2iB1i

B13iB12iB11iB10iB9i

B8i

......

A7oA6oA5oA4oA3oA2oA1o

A13oA12oA11oA10oA9o

A8o

......

B7oB6oB5oB4oB3oB2oB1o

B13oB12oB11oB10oB9o

B8o

A1...B1...A2...B2...A3...B3...A4...B4...A5...B5...

......

A7iA6iA5iA4iA3iA2iA1i

A13iA12iA11iA10iA9i

A8i

......

B7iB6iB5iB4iB3iB2iB1i

B13iB12iB11iB10iB9i

B8i

......

A7oA6oA5oA4oA3oA2oA1o

A13oA12oA11oA10oA9o

A8o

......

B7oB6oB5oB4oB3oB2oB1o

B13oB12oB11oB10oB9o

B8o

To change the continuous operation example such that a ping-pong buffering
scheme is used, the EDMA channels need only a moderate change. Instead
of one parameter set, there are two; one for transferring data to/from the ping
buffers, one for transferring data to/from the pong buffers. As soon as one
transfer completes, the channel loads the entry for the other and the data
transfers continue. The EDMA channel configuration required for this is shown
in Figure 6–48.

Transfer Examples

 6-82

Figure 6–48. EDMA Parameters for Ping-Pong Buffering

0x307D0002
0x30000000

0x00002000
0x007F 0x0002

0xFF81 0x0080

Options
Source address

Destination address
Frame | Element count

Frame | Element index
0x0002 0x01B0 Count reload | Link address

0x331C0002
0x00002100

0x30000000
0x007F 0x0002

0xFF81 0x0080
0x0002 0x0180

EDMA ch13 (0x01A00138) EDMA ch12 (0x01A00120)

Ch13 pong parameters (0x01A001B0)
0x307D0002
0x30000000

0x00002200
0x007F 0x0002

0xFF81 0x0080
0x0002 0x01C8

Ch12 pong parameters (0x01A00180)
0x331C0002
0x00002300

0x30000000
0x007F 0x0002

0xFF81 0x0080
0x0002 0x0198

Ch13 ping parameters (0x01A001C8)
0x307D0002
0x30000000

0x00002000
0x007F 0x0002

0xFF81 0x0080
0x0002 0x01B0

Ch12 ping parameters (0x01A00198)
0x331C0002
0x00002100

0x30000000
0x007F 0x0002

0xFF81 0x0080
0x0002 0x0180

0001 10 00 0 11 1 1101 00000000000 0
31 29 28 27 26 25 24 23 22 21 20 19 16 15 0

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC FS

0 0
14 13

TCC4

0
Rsvd TCC5

12 2

1
1

LINKReserved

0001 10 11 0 00 1 1100 00000000000 0
31 29 28 27 26 25 24 23 22 21 20 19 16 15 0

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC FS

0 0
14 13

TCC4

0
Rsvd TCC5

12 2

1
1

LINKReserved

Note: TCCM is reserved on C621x/C671x.

Each channel has two parameter sets, ping and pong. The EDMA channel is
initially loaded with the ping parameters. The link address for the ping entry is
set to the PaRAM offset of the pong parameter set, and vice versa. The chan-
nel options, count values, index values are all identical between the ping and
pong parameters for each channel. The only differences are the link address
provided and the address of the data buffer in internal memory.

Synchronization with the CPU

In order to utilize the ping-pong buffering technique, it is necessary to signal
to the CPU when it can begin to access the new data set. After the CPU finishes
processing an input buffer (ping), it waits for the EDMA to complete before
switching to the alternate (pong) buffer.

In this example, both channels provide their channel numbers as their report
word and set TCINT to ‘1’ to generate an interrupt after completion. When
channel 13 fills an input buffer CIP13 is set to ‘1’ and when channel 12 empties
an output buffer CIP12 is set to ‘1’. The CPU must manually clear these bits.

Transfer Examples

6-83EDMA Controller

With the channel parameters set as above, the CPU can simply poll the CIPR
to determine when to switch. The EDMA and CPU could alternatively be con-
figured such that the channel completion interrupts the CPU. By doing this, the
CPU would be able to service a background task while waiting for the EDMA
to complete.

7-1

Host-Port Interface

This chapter describes the host-port interface that external processors use to
access the memory space. The host–port control registers and signals are
described.

Topic Page

7.1 Overview 7-2.

7.2 HPI External Interface 7-5.

7.3 HPI Signal Descriptions 7-9.

7.4 HPI Bus Access 7-15.

7.5 HPI Registers 7-24.

7.6 Host Access Sequences 7-28.

7.7 HPI Transfer Priority Queue – TMS320C621x/C671x/C64x 7-41.

7.8 Memory Access Through the HPI During Reset 7-41.

Chapter 7

Overview

 7-2

7.1 Overview

The host-port interface (HPI) is a parallel port through which a host processor
can directly access the CPU’s memory space. The host device functions as
a master to the interface, which increases ease of access. The host and CPU
can exchange information via internal or external memory. The host also has
direct access to memory-mapped peripherals. Connectivity to the CPU’s
memory space is provided through the DMA/EDMA controller. Both the host
and the CPU can access the HPI control register (HPIC). The host can access
the HPI address register (HPIA), the HPI data register (HPID), and the HPIC
by using the external data and interface control signals. For the C64x, the CPU
can also access the HPIA.

Figure 7–1 shows the host-port components in the block diagram of the
C620x/C670x. Figure 7–2 shows the HPI in the C621x/C671x/C64x block dia-
gram. Table 7–1 summarizes the differences between the C6000 HPIs.

Figure 7–1. TMS320C620x/C670x Block Diagram

EMIF

HPI

Data Access
Controller

Internal Data
Memory

Internal Program
Memory

D
M

A
 B

us

P
er

ip
he

ra
l C

on
tr

ol
 B

us

Other
Peripherals

Program
Access/Cache

Controller

Direct Memory Access
Controller (DMA)

PLL
Power Down

Logic

Boot
Configuration

C6000 DSP core

Instruction Fetch

Instruction Dispatch

Instruction Decode

Data Path A

A Register File

L1 S1 M1 D1

Control
Registers

Control Logic

Test

In–Circuit
Emulation

Interrupt
Control

Data Path B

B Register File

L2S2M2D2

Note: Refer to the specific device datasheet for its peripheral set.

Overview

7-3Host-Port Interface

Figure 7–2. TMS320C621x/C671x/C64x Block Diagram

C6000 DSP core

Instruction fetch

Instruction dispatch

Instruction decode

A register file

Data path A

L1 S1 M1 D1

Control
registers

Control
logic

Test

In-circuit
emulation

Interrupt
control

B register file

Data Path B

L2S2M2D2

L1P cache

L2
memory

L1D cache

Enhanced
DMA

controller

Power down logic

Other
peripherals

HPI

Boot configuration PLL

Note: Refer to the specific device datasheet for its peripheral set.

EMIF

Overview

 7-4

Table 7–1. Differences Between the C62x/C67x and C64x HPI

C62x/C67x C64x

Features C620x/C670x C621x/C671x C64x HPI16 C64x HPI32 Section

Data Bus Width 16–bit 16–bit 16-bit 32–bit 7.2

Byte enable
HBE[1:0] pins

yes no no no 7.3.4

HHWIL used used used not used 7.3.3

Single halfword
access support

yes no no no 7.6.6

HPIA access By host only By host only

By host or CPU.
HPIA consists
of HPIAR and

HPIAW.

By host or CPU.
HPIA consists
of HPIAR and

HPIAW.

7.5.1

HRDY
operation

Not–ready after
each word

access

Not–ready only
if internal read/

write buffers
not ready

Same as
C621x/C671x

Same as
C621x/C671x

7.4.1
7.4.2
7.4.3

Internal read
buffer

no yes, 8–deep yes, 16–deep yes, 16–deep 7.4.2

Internal write
buffer

no yes, 8–deep

yes, 32–deep
Flushes after in-

ternal timer
times out

yes, 32–deep
Flushes after in-

ternal timer
times out

7.4.2
7.4.3

HPI External Interface

7-5Host-Port Interface

7.2 HPI External Interface

The following sections discuss the external interface of the C6000 HPIs. See
section 7.3 for a detailed description of the interface signals.

7.2.1 TMS320C620x/C670x HPI

Figure 7–3 is a simplified diagram of the C620x/C670x HPI.

The HPI provides 32-bit data to the CPU with an economical 16-bit external
interface by automatically combining successive 16-bit transfers. When the
host device transfers data through HPID, the DMA auxiliary channel accesses
the CPU’s address space.

The 16-bit data bus, HD[15:0], exchanges information with the host. Because
of the 32-bit-word structure of the chip architecture, all transfers with a host
consist of two consecutive 16-bit halfwords. On HPI data (HPID) write
accesses, the HBE[1:0] byte enables select the bytes to be written. For HPIA,
HPIC, and HPID read accesses, the byte enables are not used. The dedicated
HHWIL pin indicates whether the first or second halfword is being transferred.
An internal control register bit determines whether the first or second halfword
is placed into the most significant halfword of a word. For a full word access,
the host must not break the first halfword/second halfword (HHWIL low/high)
sequence of an ongoing HPI access.

Figure 7–3. HPI Block Diagram

INTERRUPT

Ready

BE
(if used)

ALE

Host

DATASTROBE

Data[15:0]

Address

HINT

HRDY

HBE[1:0]

HAS

HCS

HDS2

HDS1

HD[15:0]

HR/W

HHWIL

HCNTL[1:0]

C620x/C670x

R/W

HPIC

DMA
auxiliary
channel

HPID

HPIA

Peripheral
Bus

HPI External Interface

 7-6

The two data strobes (HDS1 and HDS2), the read/write select (HR/W), and the
address strobe (HAS) enable the HPI to interface to a variety of industry-standard
host devices with little or no additional logic. The HPI can easily interface to hosts
with a multiplexed or dedicated address/data bus, a data strobe and a read/write
strobe, or two separate strobes for read and write.

The HCNTL[1:0] control inputs indicate which HPI register is accessed. Using
these inputs, the host can specify an access to the HPIA (which serves as the
pointer into the source or destination space), HPIC, or HPID. These inputs,
along with HHWIL, are commonly driven directly by host address bus bits or
a function of these bits. The host can interrupt the CPU by writing to the HPIC;
the CPU can activate the HINT output to interrupt the host.

The host can access HPID with an optional automatic address increment of
HPIA. This feature facilitates reading and writing to sequential word locations. In
addition, during an HPID read with autoincrement, data is prefetched from the
autoincremented address to reduce latency on the subsequent host read
request.

The HPI ready pin (HRDY) allows insertion of host wait states. Wait states may
be necessary, depending on latency to the point in the memory map accessed
via the HPI, as well as on the rate of host access. The rate of host access can
force not-ready conditions if the host attempts to access the host port before any
previous HPID write access or prefetched HPID read access finishes. In this
case, the HPI simply holds off the host via HRDY. HRDY provides a convenient
way to automatically adjust the host access rate to the rate of data delivery from
the DMA auxiliary channel (no software handshake is needed). In the cases of
hardware systems that cannot take advantage of the HRDY pin, an HRDY bit
in the HPIC is available for use as a software handshake.

7.2.2 TMS320C621x/C671x HPI

The C621x/C671x pin interface (shown in Figure 7–4) is similar to the C620x HPI
interface, except that byte enables (HBE[1:0] in C620x/C670x) are not supported.
All accesses through the 16-bit data bus HD[15:0] have to be in pairs.

Unlike the C620x HPI interface, which uses the DMA auxiliary channel to perform
accesses, the C621x/C671x HPI ties directly into internal address generation
hardware. No specific EDMA channel is used for performing C621x/C671x HPI
accesses. Instead the internal address generation hardware, which is not visible
to users, handles the read/write requests and accesses.

HPI External Interface

7-7Host-Port Interface

Figure 7–4. HPI Block Diagram of TMS320C621x/C671x

HCNTRL[1:0]
Address

Host

R/W

C621x/C671x

HHWIL
HR/W
HD[15:0]Data[15:0]
HDS1

DATASTROBE

HCS
HDS2

ALE (if used) HAS
HRDYReady
HINTINTERRUPT

HPIC

EDMA
Address

generation
hardware

HPID

HPIA

Internal
configuration

bus

7.2.3 TMS320C64x HPI16 or HPI32

As shown in Figure 7–5, the C64x has 32 external data pins HD[31:0]. As a
result, the C64x HPI supports either a 16-bit or 32-bit external pin interface.
The C64x HPI is called the HPI16 when operating as a 16-bit-wide host port,
and it is called the HPI32 when operating as a 32-bit-wide host port. The C64x
selects either the HPI16 or the HPI32 via the boot and device configuration
pins at reset. See Chapter 11, Boot Modes and Configuration, for details.

The HPI16 is an enhanced version of the C621x/C671x HPI. The HPI16 pro-
vides 32-bit data to the CPU with a 16-bit external interface. In addition to all
the C621x/C671x HPI functions, the HPI16 allows the DSP to access the HPI
address register HPIA. Furthermore, as shown in Figure 7–5, the HPIA is sep-
arated into two registers, HPIA Write (HPIAW) and HPIA Read (HPIAR). See
section 7.5.1 for details.

HPI External Interface

 7-8

The HPI32 has similar functions to the HPI16. The followings are the only dif-
ferences between the HPI16 and the HPI32:

� Data Bus Size: As the name implies, the HPI16 has a 16-bit data bus. The
HPI16 combines successive 16-bit transfers to provide 32-bit data to the
CPU. For compatibility with other C6000 devices, the HPI16 uses
HD[15:0] as data pins regardless of the endian mode selected at reset.
The HPI32 has a 32-bit data bus. With this increased bus width, all trans-
fers consist of one 32-bit word instead of two consecutive 16-bit halfwords.
As a result, throughput is increased when the HPI operates in HPI32
mode.

� HHWIL Input: The HHWIL input is used on the HPI16 to identify the first
or second halfword of a word transfer. The HHWIL is not used on the
HPI32, as all data transfers are performed in 32-bit words.

Figure 7–5. HPI Block Diagram of TMS320C64x

HCNTRL[1:0]
Address

Host

R/W

C64x

HHWIL�

HR/W

HD[15:0]Data[15:0]
HDS1

DATASTROBE

HCS
HDS2

ALE (if used) HAS
HRDYReady
HINTINTERRUPT

HD[31:16]�Data[31:16]�

HPIC

EDMA
Address

generation
hardware

HPID

HPIAR

Internal
configuration

bus

HPIAW

HPIA

† HHWIL applies to HPI16 only.
‡ HD[31:16] apples to HPI32 only.

HPI Signal Descriptions

7-9Host-Port Interface

7.3 HPI Signal Descriptions

The external HPI interface signals implement a flexible interface to a variety
of host devices. Table 7–2 lists the HPI pins and their functions. The remainder
of this section discusses the pins in detail.

Table 7–2. HPI External Interface Signals

Signal
Name Signal Type �

Signal
Count Host Connection Signal Function

HD[15:0] or
HD[31:0]�

I/O/Z 16 or 32� Data bus

HCNTL[1:0] I 2 Address or control lines HPI access type control

HHWIL� I 1 Address or control lines Halfword identification input

HAS I 1 Address latch enable
(ALE), address strobe,
or unused (tied high)

Differentiation between address and
data values on multiplexed address/
data host

HBE[1:0]� I 2 Byte enables Data write byte enables

HR/W I 1 Read/write strobe,
address line, or multi-
plexed address/data

Read/write select

HCS I 1 Address or control lines Data strobe inputs

HDS[1:2] I 1

1

Read strobe and write
strobe or data strobe

Data strobe inputs

HRDY O 1 Asynchronous ready Ready status of current HPI access

HINT O 1 Host interrupt input Interrupt signal to host

† I = input, O = output, Z = high impedance
‡ HD[31:16] applies to C64x or HPI32 only.
§ HHWIL does not apply to C64x HPI32.
¶ HBE[1:0] applies to C620x/C670x only.

7.3.1 Data Bus: HD[15:0] or HD[31:0]

HD[15:0] or HD[31:0] is a parallel, bidirectional, 3-state data bus. HD is placed
in the high-impedance state when it is not responding to an HPI read access.
Pins HD[31:16] apply to the C64x HPI32 only. See section 7.2.3.

HPI Signal Descriptions

 7-10

7.3.2 Access Control Select: HCNTL[1:0]

HCNTL[1:0] indicate which internal HPI register is being accessed. The states
of these two pins select access to the HPI address (HPIA), HPI data (HPID), or
HPI control (HPIC) registers. Additionally, the HPID register can be accessed
with an optional automatic address increment. Table 7–3 describes the
HCNTL[1:0] bit functions.

Table 7–3. HPI Input Control Signals Function Selection Descriptions

HCNTL1 HCNTL0 Description

0 0 Host reads from or writes to the HPI control register
(HPIC).

0 1 Host reads from or writes to the HPI address register
(HPIA).

1 0 Host reads or writes to the HPI data register (HPID) in
autoincrement mode. The HPI address register (HPIA) is
postincremented by a word address (four byte address-
es).

1 1 Host reads or writes to the HPI data register (HPID) in
fixed address mode. HPI address register (HPIA) is not
affected.

7.3.3 Halfword Identification Select: HHWIL

HHWIL identifies the first or second halfword of a transfer, but not the most sig-
nificant or least significant halfword. The status of the HWOB bit of the HPIC
register, described later in this chapter, determines which halfword is least
significant or most significant. HHWIL is low for the first halfword and high for
the second halfword.

Since byte enable pins HBE[1:0] are removed from the C621x/C671x and
C64x HPI, HHWIL in combination with HWOB specify the half-word position
in the data register, HPID. This is shown in Table 7–4 along with the LSB ad-
dress bits depending on endianness. HHWIL does not apply to the C64x
HPI32.

HPI Signal Descriptions

7-11Host-Port Interface

Table 7–4. HPI Data Write Access

Data-Type
Little-Endian (LE)/
Big-Endian (BE) HWOB

First Write
(HHWIL=0) /
Logical LSB
Address Bits

Second Write
(HHWIL=1) /
Logical LSB
Address Bits

Half-word:
Little endian (LE)
Big endian (BE)

0 MS half-word
LE = 10
BE = 00

LS half-word
LE = 00
BE = 10

Half-word:
Little endian (LE)
Big endian (BE)

1 LS half-word
LE = 00
BE = 10

MS half-word
LE = 10
BE = 00

Word:
Little endian (LE)
Big endian (BE)

0 MS half-word
LE = 00
BE = 00

LS half-word
LE = 00
BE = 00

Word:
Little endian (LE)
Big endian (BE)

1 LS half-word
LE = 00
BE = 00

MS half-word
LE = 00
BE = 00

7.3.4 Byte Enables: HBE[1:0] (C620x/C670x only)

On HPID writes, the value of HBE[1:0] indicates which bytes of the 32-bit word
are written. On HPID writes, HBE0 enables the least significant byte in the half-
word and HBE1 enables the most significant byte in the halfword. Table 7–5 lists
the valid combinations of byte enables. For byte writes, only one HBE in either
of the halfword accesses can be enabled. For halfword data writes, both the
HBEs must be held active(low) in either (but not both) halfword access. For word
accesses, both HBEs must be held active (low) in both halfword accesses. No
other combinations are valid. The selection of byte enables and the endianness
of the CPU (selected via the LENDIAN pin) determine the logical address im-
plied by the access.

Note: The HPI only performs word reads. Therefore the byte enables HBE[1:0] are
don’t care during a host read access.

HPI Signal Descriptions

 7-12

Table 7–5. Byte Enables for HPI Data Write Access (C620x/C670x only)

HBE[1:0]

HWOB = 0
First Write
HHWIL = 0

Second Write
HHWIL = 1

Effective Logical Address
LSBs (Binary)

Data Write
Type HWOB = 1

Second Write
HHWIL = 1

First Write
HHWIL = 0 Little Endian Big Endian

Byte 11 10 00 11

Byte 11 01 01 10

Byte 10 11 10 01

Byte 01 11 11 00

Halfword 11 00 00 10

Halfword 00 11 10 00

Word 00 00 00 00

7.3.5 Read/Write Select: HR/W

HR/W is the host read/write select input. The host must drive HR/W high to
read and low to write HPI. A host without either a read/write select output or
a read or write strobe can use an address line for this function.

7.3.6 Ready: HRDY

When active (low), HRDY indicates that the HPI is ready for a transfer to be
performed. When inactive, HRDY indicates that the HPI is busy completing the
internal portion of a current read access or a previous HPID read prefetch or
write access. HCS enables HRDY; HRDY is always low when HCS is high.

7.3.7 Strobes: HCS , HDS1, HDS2

HCS, HDS1, and HDS2 allow connection to a host that has either:

� A single strobe output with read/write select (HR/W)

� Separate read and write strobe outputs. In this case, read or write select
can be done by using different addresses.

Figure 7–6 shows the equivalent circuit of the HCS, HDS1, and HDS2 inputs.

Figure 7–6. Select Input Logic

HSTROBE (internal signal)HDS2

HDS1 ÁÁÁ
ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

HCS

HPI Signal Descriptions

7-13Host-Port Interface

Used together, HCS, HDS1, and HDS2 generate an active (low) internal
HSTROBE signal. HSTROBE is active (low) only when both HCS is active and
either (but not both) HDS1 or HDS2 is active. The falling edge of HSTROBE
when HAS is tied inactive (high) samples HCNTL[1:0], HHWIL, and HR/W.
Therefore, the latest of HDS1 , HDS2, or HCS controls the sampling time. HCS
serves as the enable input for the HPI and must be low during an access. How-
ever, because the HSTROBE signal determines the actual boundaries be-
tween accesses, HCS can stay low between successive accesses as long as
both HDS1 and HDS2 transition appropriately.

Hosts with separate read and write strobes connect these strobes to either
HDS1 or HDS2. Hosts with a single data strobe connect it to either HDS1 or
a HDS2, tying the unused pin high. Regardless of HDS1 and HDS2 connec-
tions, HR/W is required to determine the direction of transfer. Because HDS1
and HDS2 are internally exclusive-NORed, hosts with an active high data
strobe can connect this strobe to either HDS1 or HDS2 with the other signal
tied low.

HSTROBE is used for four purposes:

� On a read, the falling edge of HSTROBE initiates HPI read accesses for
all access types.

� On a write, the rising edge of HSTROBE initiates HPI write accesses for
all access types.

� The falling edge latches the HPI control inputs, including HHWIL, HR/W,
and HCNTL[1:0]. HAS also affects latching of control inputs. See sec-
tion 7.3.8 for a description of HAS.

� The rising edge of HSTROBE latches the HBE[1:0] input (C620x/C670x
only) as well as the data to be written.

HCS gates the HRDY output. In other words, a not-ready condition is indicated
by the HRDY pin being driven high only if HCS is active (low). Otherwise HRDY
is active (low).

7.3.8 Address Strobe Input: HAS

HAS allows HCNTL[1:0], HR/W, and HHWIL to be removed earlier in an access
cycle, which allows more time to switch bus states from address to data informa-
tion. This feature facilitates interface to multiplexed address and data buses. In
this type of system, an address latch enable (ALE) signal is often provided and
is normally the signal connected to HAS.

HPI Signal Descriptions

 7-14

Hosts with a multiplexed address and data bus connect HAS to their ALE pin
or an equivalent pin. HHWIL, HCNTL[1:0], and HR/W are latched on the falling
edge of HAS. When used, HAS must precede the latest of HCS, HDS1, or
HDS2. Hosts with separate address and data buses can tie HAS high. In this
case, HHWIL, HCNTL[1:0], and HR/W are latched by the latest falling edge of
HDS1, HDS2, or HCS while HAS stays inactive (high).

7.3.9 Interrupt to Host: HINT

HINT is the host interrupt output that is controlled by the HINT bit in the HPIC. This
signal is described in more detail in section 7.5.5. The HINT bit is set to 0 when
the chip is being reset. Thus, the HINT pin is high at reset.

HPI Bus Access

7-15Host-Port Interface

7.4 HPI Bus Access

7.4.1 HPI Bus Access for C620x/C670x

HPI access timing in different cases for the C620x/C670x HPI are shown in
Figure 7–7, Figure 7–8, Figure 7–9, and Figure 7–10. HSTROBE represents
the internally generated strobe described in Figure 7–6. Control signals:
HCNTL[1:0], HR/W, HHWIL, and HBE[1:0] are inputs typically driven by the
host. HCNTL[1:0] and HR/W should have the same values for both halfword
accesses. HHWIL must be low for the first halfword transfer and high for the
second. For correct operation, the host should monitor and detect HRDY low
before any HPI transfer (this includes HPID, HPIA, and HPIC accesses).

7.4.1.1 Latching Control Signals

The control signals are latched differently, depending upon whether HAS is
used. If HAS is tied high and not used (Figure 7–7 and Figure 7–9), the falling
edge of HSTROBE latches the control signals. If HAS is used (Figure 7–8 and
Figure 7–10), the falling edge of HAS latches these control signals. In the latter
case, the falling edge of HAS must precede the falling edge of HSTROBE.

7.4.1.2 C620x/C670x HPID Read

On a read, data is valid at some time after the falling edge of HSTROBE. If valid
data is not already present in the HPID, HRDY goes not–ready (high). Once
data is available, HRDY goes ready (low). Data is set up at the falling edge of
HRDY and held until the rising edge of HSTROBE. Therefore the host should
not end a read cycle (HSTROBE rising edge) until HRDY is detected ready
(low).

HRDY goes not–ready (high) in one of the following conditions:

� After HCS falling edge if prefetch from the previous autoincrement ad-
dress mode access has not completed (Case 1 in Figure 7–7 and
Figure 7–8)

� After HSTROBE falling edge if HAS is not used and valid data is not in
HPID (Case 2 in Figure 7–7 and Figure 7–8)

� After HAS falling edge if HAS is used, and valid data is not in HPID (Case
2 in Figure 7–7 and Figure 7–8)

� After HSTROBE rising edge if the read access is in autoincrement address
mode

HPI Bus Access

 7-16

Fixed Address Mode HPID Read (HCNTL[1:0] = 11b)

For a fixed address mode read, the HPI sends the read request to the DMA
auxiliary channel and HRDY becomes not–ready (high). HRDY remains not–
ready (high) until the requested data is loaded into HPID. Since the DMA auxil-
iary channel performs word reads, the data is already present in the HPID at
the beginning of the second halfword read access. Thus, the second halfword
HPID read never encounters a not–ready condition, and HRDY remains low.

Autoincrement Address Mode HPID Read (HCNTL[1:0] = 10b)

For the first autoincrement address mode read, the HPI sends the read re-
quest to the DMA auxiliary channel and HRDY goes not–ready, as shown in
Case 2 in Figure 7–7 and Figure 7–8. The data pointed to by the next address
is fetched immediately upon completion of the current read. HRDY becomes
not–ready (high) when the HPI is busy pre–fetching data.

7.4.1.3 C620x/C670x HPID Write

On a write, the host must set up data and HBE[1:0] on the rising edge of
HSTROBE. The C620x/C670x HPI provides 32–bit data to the CPU through
a 16–bit external interface by automatically combining two successive half-
word transfers.

During an HPID write access, two halfword portions of the HPID are trans-
ferred from the host. At the end of this write access, (with the second rising
edge of HSTROBE), the contents of HPID are transferred as a 32–bit word to
the address specified by HPIA.

The host should not end (with an HSTROBE rising edge) a write cycle until
HRDY is detected ready (low). HRDY goes not–ready (high) in one of the fol-
lowing conditions:

� After HCS falling edge if the previous write access has not yet completed

� After HSTROBE rising edge to service the HPID write

See Figure 7–9 and Figure 7–10 for details on HPID write.

7.4.1.4 C620x/C670x HPIC or HPIA Access

For correct operation, a HPIC or HPIA write must occur before switching from
HPID read to HPID write, or vice versa. The host should monitor and detect
HRDY low before reading or writing to the HPIA/HPIC.

HPI Bus Access

7-17Host-Port Interface

Figure 7–7. HPI Read Timing (HAS Not Used, Tied High)
HAS

HCNTL[1:0]

HR/W

HHWIL

HSTROBE

HCS

1st halfword

HD[15:0] (output)

HRDY (case 1)

HRDY (case 2)

2nd halfword

Figure 7–8. HPI Read Timing (HAS Used)

ÎÎÎ
ÎÎÎ

HAS�

HCNTL[1:0]

HR/W

HHWIL

HSTROBE

1st halfword

HCS

HD[15:0] (output)

HRDY (case 1)

HRDY (case 2)�

2nd halfword

† For correct operation, strobe the HAS signal only once per HSTROBE cycle.
‡ For C620x/C670x, if HAS is used, HRDY goes not ready after HAS falling edge. For all other devices, HRDY goes not–ready

after HSTROBE falling edge, even if HAS is used.

HPI Bus Access

 7-18

Figure 7–9. HPI Write Timing (HAS Not Used, Tied High)

HAS

HCNTL[1:0]

HR/W

HHWIL

HSTROBE

HCS

HBE[1:0]

1st halfword

HRDY

2nd halfword

HD[15:0]
(input)

Figure 7–10. HPI Write Timing (HAS Used)

HAS�

HCNTL[1:0]

HR/W

HHWIL

HSTROBE

HCS

HBE[1:0]

1st halfword

HRDY

2nd halfword

HD[15:0]
(input)

† For correct operation, strobe the HAS signal only once per HSTROBE cycle.

HPI Bus Access

7-19Host-Port Interface

7.4.2 HPI Bus Access for C621x/C671x

The C621x/C671x HPI shares the same bus interface as the C620x/C670x
HPI. In addition, the C621x/C671x HPI has internal read and write buffers to
improve throughput in both read and write accesses. For correct operation, the
host should monitor and detect HRDY low before any HPI transfer (this in-
cludes HPID, HPIA, and HPIC accesses).

7.4.2.1 Latching Control Signals

Similar to the C620x/C670x, the C621x/C671x HPI latches control signals dif-
ferently depending upon whether HAS is used. See section 7.4.1.1.

7.4.2.2 C621x/C671x HPI Read

Fixed Address Mode HPID Read (HCNTL[1:0] = 11b)

For a fixed address mode read, the HPI sends the read request to the EDMA
internal address generation hardware and HRDY becomes not–ready (high).
This is shown in Case 2 in Figure 7–7 and Figure 7–8. HRDY remains not–
ready until the requested data is loaded into HPID. Since the EDMA internal
address generation hardware performs word reads, the data is already pres-
ent in the HPID at the beginning of the second halfword read access. Thus,
the second halfword HPID read never encounters a not–ready condition, and
HRDY remains low.

Autoincrement Address Mode HPID Read (HCNTL[1:0] = 10b)

The C621x/C671x HPI has an internal read buffer that helps to improve
throughput in autoincrement mode. For the first host read of the HPID, the HPI
deasserts HRDY high (not ready) after HSTROBE falling edge, as shown in
Case 2 in Figure 7–7 and Figure 7–8. During this time, the EDMA internal ad-
dress generation hardware begins fetching enough words to fill the internal
read buffer. As soon as the first valid data is ready, the HPI presents it on the
HD bus and HRDY goes ready. If the next data is already present in the internal
read buffer when the current read finishes, HRDY remains ready at the begin-
ning of the next host read (HSTROBE falling edge). The HPI continues to per-
form subsequent data fetches and places the data in the internal read buffer
before the actual host read occurs. This reduces the subsequent host read
data access time. A read cycle is terminated by a host write to the HPIA or
HPIC, at which point the HPI automatically empties the internal read buffer,
and HRDY goes not–ready. Note that a read cycle does not have to be termi-
nated immediately when a read burst completes. The normal process of rein-
itializing the HPIA register for a new address range will force the internal read
buffer to flush in anticipation of a new read command.

HPI Bus Access

 7-20

For all modes of HPI read, the host should not end (HSTROBE rising edge)
a read cycle until HRDY is detected ready (low). HRDY goes not–ready (high)
in one of the following conditions:

� After HCS falling edge

� After HSTROBE falling edge for first halfword transfer (HHWIL low)

� After HSTROBE rising edge for second halfword transfer (HHWIL high).

7.4.2.3 C621x/C671x HPID Write

On a write, the host must set up data on the rising edge of HSTROBE. All
C621x/C671x writes must consist of two successive halfword transfers.

Fixed Address Mode HPID Write (HCNTL[1:0] = 11b)

This operation is identical to the C620x/C670x fixed address mode HPID write.
See section 7.4.1.3 for details.

Autoincrement Address Mode HPID Write (HCNTL[1:0] = 10b)

The C621x/C671x HPI has an internal write buffer that helps to improve
throughput in autoincrement mode. At the end of a word write in autoincrement
mode, the data is copied from the HPID to the internal write buffer to wait for
service by the EDMA internal address generation hardware. The DSP does
not actually service this host write until the internal write buffer is half full, or
if the write cycle is terminated. A write cycle is terminated by a host access to
the HPIA or the HPIC, at which point the DSP services the HPI by transferring
all remaining elements from the internal write buffer to their destinations.

Since the data is copied to the internal write buffer, the HPID is immediately
ready for the next data write from the host. Thus under normal conditions,
HRDY remains ready at the beginning of the next host write access
(HSTROBE active).

The host should not end (with an HSTROBE rising edge) a write cycle until
HRDY is detected ready (low). HRDY goes not–ready (high) in one of the fol-
lowing conditions:

� After HCS falling edge

� After HSTROBE rising edge for second halfword transfer (HHWIL high)

� After HSTROBE falling edge for first halfword transfer (HHWIL low) if the
internal write buffer is full.

7.4.2.4 C621x/C671x HPIC or HPIA Access

For correct operation, a HPIC or HPIA write must occur before switching from
HPID read to HPID write, or vice versa. A HPIC or HPIA register write termi-
nates a burst read/write access in autoincrement mode. HRDY may go not–
ready while the internal read buffer is being emptied (for reads), or while the
internal write buffer is being serviced by the DSP (for writes).

HPI Bus Access

7-21Host-Port Interface

7.4.3 HPI Bus Access for C64x

With a 32–bit data bus, the C64x HPI is an enhanced version of the
C621x/C671x HPI. The C64x HPI can be configured at reset to operate in ei-
ther HPI16 or HPI32 mode. See Chapter 11 Boot Modes and Configuration.

The HPI16 operation is similar to the C621x/C671x 16–bit HPI. See section
7.4.2. In addition to the operation described in section 7.4.2, the C64x HPI in-
ternal write buffer will flush when an internal timer times out after 128 CPU
clock cycles.

The HPI32 operation is similar to the HPI16 operation, with exceptions due to
the expanded 32–bit data bus. Since the HPI32 data bus is expanded to 32
bits, all read and write transfers consist of one 32–bit word access (HD[0:31])
instead of two consecutive 16–bit halfword accesses. Also, the HHWIL signal
is not used on the HPI32 interface. The HPI32 read and write timings are
shown in Figure 7–11, Figure 7–12, Figure 7–13, and Figure 7–14. The re-
maining HPI32 operations are identical to the HPI16.

HPI Bus Access

 7-22

Figure 7–11.HPI32 Read Timing (HAS Not Used, Tied High) for C64x only

HAS

HCNTL[1:0]

HR/W

HSTROBE

HCS

HD[31:0]
(output)

HRDY
(case 1)

HRDY
(case 2)

Figure 7–12. HPI32 Read Timing (HAS Used) for C64x only

HAS�

HCNTL[1:0]

HR/W

HSTROBE

HCS

HD[31:0]
(output)

HRDY
(case 1)

HRDY
(case 2)

† For correct operation, strobe the HAS signal only once per HSTROBE cycle.

HPI Bus Access

7-23Host-Port Interface

Figure 7–13. HPI Write Timing (HAS Not Used, Tied High) for C64x only

HAS

HCNTL[1:0]

HR/W

HSTROBE

HCS

HD[31:0]
(input)

HRDY

Figure 7–14. HPI Write Timing (HAS Used) for C64x only

HAS�

HCNTL[1:0]

HR/W

HSTROBE

HCS

HD[31:0]
(input)

HRDY

† For correct operation, strobe the HAS signal only once per HSTROBE cycle.

HPI Registers

 7-24

7.5 HPI Registers

The registers that the HPI uses for communication between the host device and
the CPU are summarized in Table 7–6 (C62x/C67x) and Table 7–7 (C64x). HPID
contains the data that was read from the memory accessed by the HPI if the cur-
rent access is a read or the data that is written to the memory if the current access
is a write. The HPIA and HPIC are discussed in detail in the following sections.

Table 7–6. HPI Registers for C62x/C67x

Register
Abbreviation

Register
Name

Host
Read/Write

Access

CPU
Read/Write

Access

CPU Read/Write
(Hex Byte
Address)

HPID HPI data RW – –

HPIA HPI address RW – –

HPIC HPI control RW RW 0188 0000h

Table 7–7. HPI Registers for C64x

Register
Abbreviation

Register
Name

Host
Read/Write

Access

CPU
Read/Write

Access

CPU Read/Write
(Hex Byte
Address)

HPID HPI data RW – –

HPIC HPI control RW RW 01880000h

HPIA
(HPIAW)†

HPI address
(write)

RW RW 0188 0004h

HPIA
(HPIAR)†

HPI address
(read)

RW RW 0188 0008h

† Host access to the HPIA updates both HPIAW and HPIAR. The CPU can access HPIAW and
HPIAR independently.

HPI Registers

7-25Host-Port Interface

7.5.1 HPI Address Register (HPIA)

The HPIA contains the address of the memory accessed by the HPI at which
the current access occurs. This address is a 30-bit word address, so the two
LSBs are unaffected by HPIA writes and are always read as 0. The C62x/C67x
HPIA register is only accessible by the host. It is not mapped to the DSP
memory.

The C64x HPIA register is accessible by both the host and the CPU. Further-
more, the HPIA register is separated into two registers internally: the HPI ad-
dress write register (HPIAW), and the HPI address read register (HPIAR). By
separating the HPIA into HPIAW and HPIAR internally, the CPU can update
the read and write memory address independently to allow the host to perform
read and write to different address ranges.

For the C64x, a host access to the HPIA register is identical to the operation
of the C62x/C67x HPI. The HCNTL[1:0] control bits are set to 01b to indicate
an access to the HPIA register. A host write to the HPIA register updates both
the HPIAW and HPIAR internally. A host read of the HPIA returns the value in
the most recently used HPIAx register. For example, if the most recent HPID
access was a read, then an HPIA read by the external host will return the value
in HPIAR. If the most recent HPID access was a write, then an HPIA read by
the external host will return the value in HPIAW.

Systems which update HPIAR/HPIAW internally via the CPU must not allow
HPIA updates via the external bus and vice versa. The HPIAR/HPIAW regis-
ters can be read independently by both the CPU and the external host. The
system must not allow HPID accesses via the external host while the DSP is
updating the HPIAR/W registers internally. This can be controlled by any
conveninet means, including the use of general–purpose input/output pins to
perform handshaking between the host and the DSP.

7.5.2 HPI Control Register (HPIC)

The HPIC register, shown in Figure 7–15 and summarized in Table 7–8, is nor-
mally the first register accessed to set configuration bits and initialize the inter-
face. The HPIC is organized as a 32-bit register whose high halfword and low
halfword contents are the same. On a host write, both halfwords must be iden-
tical. The low halfword and the high halfword are actually the same storage
locations. No storage is allocated for the read-only reserved values. Only CPU
writes to the lower halfword affect HPIC values and HPI operation.

HPI Registers

 7-26

Figure 7–15. HPIC Register

31 30 24 23 22 21 20 19 18 17 16

rsvd� rsvd rsvd† rsvd FETCH HRDY HINT DSPINT HWOB

HRW,CRW,+0 HR,CR,+0 HRW,CRW,+0 HR,CR,+0 HRW,CR,+0 HR,CR,+0 HR,CR,+0 HRW,CR,+0 HRW,CR,+0

15 14 8 7 6 5 4 3 2 1 0

rsvd† rsvd rsvd† rsvd FETCH HRDY HINT DSPINT HWOB

HRW,CRW,+0 HR,CR,+0 HRW,CRW,+0 HR,CR,+0 HRW,CR,+0 HR,CR,+1 HR,CRW,+0 HRW,CRW,+0 HRW,CR,+0

† For C62x/C67x, bits 7, 15, 23, 31 are read-only; HR,CR,+0. For C64x, bits 7, 15, 23, and 31 are writable fields and must be written
with 0. Otherwise, operation is undefined.

Table 7–8. HPI Control Register (HPIC) Bit Descriptions

Bit Description Section

HWOB Halfword ordering bit

If HWOB = 1, the first halfword is least significant. If HWOB = 0, the first halfword
is most significant. HWOB affects both data and address transfers. Only the host
can modify this bit. HWOB must be initialized before the first data or address reg-
ister access.

For HPI32, HWOB is not used and the value of HWOB is irrelevant.

7.6

DSPINT The host processor-to-CPU/DMA interrupt 7.5.4

HINT DSP-to-host interrupt. The inverted value of this bit determines the state of the
CPU HINT output.

7.5.5

HRDY Ready signal to host. Not masked by HCS (as the HRDY pin is).

If HRDY = 0, the internal bus is waiting for an HPI data access request to finish.

7.5.3

FETCH Host fetch request

The value read by the host or CPU from this register field is always 0.

The host writes a 1 to this bit to request a fetch into HPID of the word at the
address pointed to by HPIA. The 1 is never actually written to this bit, however.

7.5.3

7.5.3 Software Handshaking Using HRDY and FETCH

As described previously, the HRDY pin can indicate to a host that an HPID
access has not finished. For example, the current HPID access can be waiting
for a previous HPID access write to finish or for a previous HPID prefetched read
to finish. Also, the current HPID read access can be waiting for its requested
data to arrive. The HRDY and FETCH bits in the HPIC register allow for a soft-
ware handshake that allows an HPI connection in systems in which a hardware
ready control is not desired.

HPI Registers

7-27Host-Port Interface

The FETCH and HRDY bits can be used to perform a read transfer as follows:
1) The host polls the HPIC register for HRDY = 1.
2) The host writes the desired HPIA value. This step is skipped if HPIA is

already set to the desired value.
3) The host writes a 1 to the FETCH bit.
4) The host polls again for HRDY = 1.
5) The host performs an HPID read operation. In this case, the HPI is already

in the ready state (HRDY = 1).
6) If this was a read with postincrement, go to step 4. For a read from the same

location, go to step 3.For a read to a different address, go to step 2.

The HRDY bit can be used alone for write operations as follows:
1) The host polls for HRDY = 1.
2) The host writes the desired HPIA value. (This step is skipped if HPIA is

already set to the desired value.)
3) The host performs an HPID write operation. For another write operation,

go to step 1.

7.5.4 Host Device Using DSPINT to Interrupt the CPU

The host can interrupt the CPU by writing to the DSPINT bits in the HPIC. The
DSPINT bit is tied directly to the internal DSPINT signal. By writing
DSPINT = 1 when DSPINT = 0, the host causes a low–to–high transition on
the DSPINT signal. If the user programs the selection of the DSPINT interrupt
with interrupt selector, the CPU detects the transition of DSPINT as an inter-
rupt condition. Unlike a host write, a CPU write of DSPINT = 1 when DSPINT
= 0 has no effect. The CPU can clear the DSPINT bits by writing a 1 to DSPINT
when DSPINT = 1. Neither a host, nor a CPU write of DSPINT = 0, affects the
DSPINT bit or signal in any case.

7.5.5 CPU Using HINT to Interrupt the Host

The CPU can send an active interrupt condition on the HINT signal by writing
to the HINT bit in the HPIC. The HINT bit is inverted and tied directly to the HINT
pin. The CPU can set HINT active by writing HINT = 1. The host can clear the
HINT to inactive by writing a 1 to HINT. Neither a host nor a CPU write to HPIC
with HINT = 0 affects either the HINT bit or the HINT signal.

The HINT bit is read twice on the host interface side. The first and second half-
word reads by the host can yield different data if the CPU changes the state of
this bit between the two read operations.

Host Access Sequences

 7-28

7.6 Host Access Sequences

The host begins HPI accesses by performing the following tasks in this order:

1) Initializing the HPIC register

2) Initializing the HPIA register

3) Writing data to or reading data from HPID register

Reading from or writing to HPID initiates an internal cycle that transfers the de-
sired data between the HPID register and the DMA auxiliary channel in the
C620x/C670x or the internal address generation hardware in the
C621x/C671x/C64x. For the 16-bit HPI, host access of any HPI register re-
quires two halfword accesses on the HPI bus: the first with HHWIL low and the
second with HHWIL high. Typically, the host must not break the first halfword/
second halfword (HHWIL low/high) sequence. If this sequence is broken, data
can be lost, and undesired operation can result. The first halfword access may
have to wait for a previous HPI request to finish. Previous requests include
HPID writes and prefetched HPID reads. Thus, the HPI deasserts HRDY
(drives HRDY high) until the HPI can begin this request. The second halfword
access always has HRDY active because all previous accesses have been
completed for the first halfword access. The C64x HPI32 combines two half-
word transfers into a single-word transfer.

7.6.1 Initialization of HPIC and HPIA

Before any data access, the HPIC and HPIA must be initialized. On the
C62x/C67x, only the host has access to the HPIA register. On the C64x, either
the host or the CPU can be used to initialize the HPIC and HPIA registers. The
following sections discuss the host initialization sequence for the 16-bit-wide
host port (C62x/C67x HPI and C64x HPI16) and the 32-bit-wide host port
(HPI32) respectively.

7.6.1.1 Initialization of HPIC and HPIA – C62x/C67x HPI and C64x HPI16

Before accessing data, the HWOB bit of the HPIC register and the HPIA must
be initialized (in this order, because HWOB affects the HPIA access). After ini-
tializing HWOB, the host (or the CPU for C64x) can write to HPIA with the correct
halfword alignment. Table 7–9 and Table 7–10 summarize the initialization
sequence for HWOB = 1 and HWOB = 0, respectively. In these examples, HPIA
is set to 80001234h. In all these accesses, the HRDY bits in the HPIC register
are set. A question mark in these tables indicates that the value is unknown.

Host Access Sequences

7-29Host-Port Interface

Table 7–9. Initialization of HWOB = 1 and HPIA

Value During Access Value After Access

Event HD HBE[1:0] HR/W HCNTL[1:0] HHWIL HPIC HPIA HPID

Host writes HPIC
1st halfword

0001 xx 0 00 0 00090009 ???????? ????????

Host writes HPIC
2nd halfword

0001 xx 0 00 1 00090009 ???????? ????????

Host writes HPIA
1st halfword

1234 xx 0 01 0 00090009 ????1234 ????????

Host writes HPIA
2nd halfword

8000 xx 0 01 1 00090009 80001234 ????????

Note: A ? in this table indicates the value is unknown.
For the C64x, a host write to HPIA updates both HPIAR and HPIAW internally.

Table 7–10. Initialization of HWOB = 0 and HPIA

Value During Access Value After Access

Event HD HBE[1:0] HR/W HCNTL[1:0] HHWIL HPIC HPIA HPID

Host writes HPIC
1st halfword

0000 xx 0 00 0 00080008 ???????? ????????

Host writes HPIC
2nd halfword

0000 xx 0 00 1 00080008 ???????? ????????

Host writes HPIA
1st halfword

8000 xx 0 01 0 00080008 8000???? ????????

Host writes HPIA
2nd halfword

1234 xx 0 01 1 00080008 80001234 ????????

Note: A ? in this table indicates the value is unknown.
For the C64x, a host write to HPIA updates both HPIAR and HPIAW internally.

7.6.1.2 Initialization of HPIC and HPIA — HPI32

For the HPI32, either the host or the CPU can be used to initialize the HPIC
and HPIA. All accesses are 32-bit wide. The HWOB bit in the HPIC is not used.
Therefore it may not be necessary to initialize the HPIC if the default value is
desired. Table 7–11 summarizes the HPIC and HPIA initialization sequence
for HPI32.

Host Access Sequences

 7-30

Table 7–11. Initialization of HPIC and HPIA

Value During Access Value After Access

Event HD HR/W HCNTL[1:0] HPIC HPIA HPID

Host writes HPIC 00000000 0 00 00080008 ???????? ????????

Host writes HPIA 80001234 0 01 00080008 80001234 ????????

Note: The “?” in this table indicate the value is unknown.

7.6.2 HPID Read Access in Fixed Address Mode

Assume that once the HPI is initialized, the host wishes to perform a read ac-
cess to an address in fixed address mode. Assume that the host wants to read
the word at address 80001234h and that the word value at that location is
789ABCDEh. The following sections discuss a HPID read access in fixed ad-
dress mode for the 16-bit-wide host port (C62x/C67x HPI and C64x HPI16)
and the 32-bit-wide host port (HPI32), respectively.

7.6.2.1 HPID Read in Fixed Address Mode — C62x/C67x HPI and C64x HPI16

The host must read the 32-bit HPID in two 16-bit halfwords. Table 7–12 and
Table 7–13 summarize this access for HWOB = 1 and HWOB = 0, respectively.
On the first halfword access, the HPI waits for any previous requests to finish.
During this time, HRDY pin is held high. Then, the HPI sends the read request
to the DMA auxiliary channel (C620x/C670x) or the internal address genera-
tion hardware (C621x/C671x/C64x). If no previous requests are pending, this
read request occurs on the falling edge of HSTROBE. HRDY pin remains high
until the requested data is loaded into HPID. Because all internal reads are
word reads, at the beginning of the second read access, the data is already
present in HPID. Thus, the second halfword HPID read never encounters a
not-ready condition, and HRDY pin remains active. The byte enables are not
important in this instance, because the HPI performs only word reads.

Host Access Sequences

7-31Host-Port Interface

Table 7–12. Data Read Access to HPI in Fixed Address Mode: HWOB = 1

Value During Access Value After Access

Event HD HBE[1:0] HR/W HCNTL[1:0] HRDY HHWIL HPIC HPIA HPID

Host reads
HPID 1st half-
word

Data not ready

???? xx 1 11 1 0 00010001 80001234 ????????

Host reads
HPID 1st half-
word

Data ready

BCDE xx 1 11 0 0 00090009 80001234 789ABCDE

Host reads
2nd halfword

789A xx 1 11 0 1 00090009 80001234 789ABCDE

Note: The “?” in this table indicate the value is unknown.

Table 7–13. Data Read Access to HPI in Fixed Address Mode: HWOB = 0

Value During Access Value After Access

Event HD HBE[1:0] HR/W HCNTL[1:0] HRDY HHWIL HPIC HPIA HPID

Host reads
HPID1st half-
word

Data not ready

???? xx 1 11 1 0 00000000 80001234 ????????

Host reads
HPID 1st half-
word

Data ready

789A xx 1 11 0 0 00080008 80001234 789ABCDE

Host reads
HPID 2nd half-
word

BCDE xx 1 11 0 1 00080008 80001234 789ABCDE

Note: The “?” in this table indicate the value is unknown.

Host Access Sequences

 7-32

7.6.2.2 HPID Read in Fixed Address Mode — HPI32

The host access sequence to the HPID of the HPI32 is similar to the sequence
for the HPI16. The difference is that an HPI32 host access is done in one 32-bit
word instead of two 16-bit halfwords. Table 7–14 shows an example of this
read access in fixed address mode. In this example, the host reads the word
at address 80001234h, which has a value of 789ABCDEh.

Table 7–14. Data Read Access in Fixed Address Mode for HPI32

Value During Access Value After Access

Event HD HR/W HCNTL[1:0] HRDY HPIC HPIA HPID

Host reads HPIC

Data not ready

???????? 1 11 1 00000000 80001234 ????????

Host writes HPID
Data ready

789ABCDE 1 11 0 00080008 80001234 789ABCDE

Note: The “?” in this table indicate the value is unknown.

7.6.3 HPID Read Access in Autoincrement Mode

The autoincrement feature results in efficient sequential host accesses. For
both HPID read and write accesses, this removes the need for the host to load
incremented addresses into HPIA. For read accesses, the data pointed to by
the next address is fetched immediately after the completion of the current
read. Because the intervals between successive reads are used to prefetch
data, the latency for the next access is reduced. For the C62x/C67x. prefetch-
ing also occurs after a host write of FETCH = 1 to the HPIC register. If the next
HPI access is an HPID read, then the data is not refetched and the prefetched
data is sent to the host. Otherwise, the HPI must wait for the prefetch to finish.

7.6.3.1 HPID Read in Autoincrement Mode – C62x/C67x HPI and C64x HPI16

Table 7–15 summarizes a read access with autoincrement. After the first half-
word access is complete (with the rising edge of the first HSTROBE), the ad-
dress increments to the next word, or 80001238h in this example. Assume that
the data at that location is 87654321h. This data is prefetched and loaded into
HPID. For the C62x/C67x, prefetching begins on the rising edge of HSTROBE
in the second halfword read. The C64x HPI has an internal read buffer that al-
lows prefetching to occur to fill the internal buffer upon the first HPID read ac-
cess (HSTROBE falling edge). See section 7.4.2.2 for details.

Host Access Sequences

7-33Host-Port Interface

Table 7–15. Read Access to HPI With Autoincrement: HWOB = 1

Value During Access Value After Access

Event HD HBE[1:0] HR/W HCNTL[1:0] HRDY HHWIL HPIC HPIA HPID

Host reads HPID
1st halfword

Data not ready

???? xx 1 10 1 0 00010001 80001234 ????????

Host reads HPID
1st halfword

Data ready

BCDE xx 1 10 0 0 00090009 80001234 789ABCDE

Host reads HPID
2nd halfword

789A xx 1 10 0 1 00090009 80001234 789ABCDE

Prefetch�

Data not
ready

???? xx x xx 1 x 00010001 80001238 789ABCDE

Prefetch�

Data ready

???? xx x xx 0 x 00090009 80001238 87654321

† For the C64x, prefetch occurs immediately after the first host read request. (Row 1 in this table).

Note: The “?” in this table indicate the value is unknown.

Table 7–16. Read Access to HPI With Autoincrement: HWOB = 0

Value During Access Value After Access

Event HD HBE[1:0] HR/W HCNTL[1:0] HRDY HHWIL HPIC HPIA HPID

Host reads
1st halfword

Data not
ready

???? xx 1 10 1 0 00000000 80001234 ????????

Host reads
1st halfword

Data ready

789A xx 1 10 0 0 00080008 80001234 789ABCDE

Host reads
2nd halfword

BCDE xx 1 10 0 1 00080008 80001234 789ABCDE

Prefetch�

Data not
ready

???? xx x xx 1 x 00000000 80001238 789ABCDE

Prefetch�

Data ready

???? xx x xx 0 x 00080008 80001238 87654321

† For the C64x, prefetch occurs immediately after the first host read request. (Row 1 in this table).

Note: The “?” in this table indicate the value is unknown.

Host Access Sequences

 7-34

7.6.3.2 HPID Read in Autoincrement Mode – HPI32

Table 7–17 summarizes a read access with autoincrement for the HPI32. In
autoincrement mode, the first HPID read access causes the HPI to not only
fetch the current data, but also to prefetch extra data to fill the internal read buf-
fer. This throughput improvement internal read buffer is discussed in
section 7.4.2.2.

Table 7–17. Read Access to HPI with Autoincrement for HP132

Value During Access Value After Access

Event HD HR/W HCNTL[1:0] HRDY HPIC HPIA HPID

Host reads HPID

Data not ready.

Prefetch data to
fill internal read
buffer

???????? 1 10 1 00000000 80001234 ????????

Host reads HPID
Data ready

789ABCDE 1 10 0 00080008 80001234 789ABCDE

Address autoin-
crement.

Next data ready

???????? ? ?? 0 00080008 80001238 87654321

Note: The “?” in this table indicate the value is unknown.

7.6.4 Host Data Write Access Without Autoincrement

7.6.4.1 HPID Write in Fixed Address Mode – C62x/C67x and C64x HPI16

During a write access to the HPI, the first halfword portion of HPID (the least
significant halfword or most significant halfword, as selected by HWOB) is over-
written by the data coming from the host, and the first HBE[1:0] pair is latched
while the HHWIL pin is low. The second halfword portion of HPID is overwritten
by the data coming from the host, and the second HBE[1:0] pair is latched on the
rising edge of HSTROBE while the HHWIL pin is high. At the end of this write ac-
cess (with the second rising edge of HSTROBE), HPID is transferred as a 32-bit
word to the address specified by HPIA with the four related byte enables.

Table 7–18 and Table 7–19 summarize an HPID write access with HWOB = 1
and HWOB = 0, respectively. The host writes 5566h to the 16 LSBs of location
80001234h, which is already pointed to by HPIA. This location is assumed to
start with the value 0. The HPI delays the host until any previous transfers are
completed by setting HRDY high. If there are no pending writes waiting in HPID,

Host Access Sequences

7-35Host-Port Interface

then write accesses normally proceed without a not-ready time. For the
C620x/C670x the HBE[1:0] pair is enabled only for the transfer of the 16 LSBs.
For the C621x, C671x and C64x HPI16, the HBE[1:0] pins do not exist. Only
word writes are allowed, and all 16-bit write accesses must be made in pairs.
The entire 32-bit word is transferred.

Table 7–18. Data Write Access to HPI in Fixed Address Mode: HWOB = 1�

Value During Access Value After Access
Location

Event HD HBE[1:0] HR/W HCNTL[1:0] HRDY HHWIL HPIC HPIA HPID
Location
80001234

Host writes HPID
1st halfword

Waiting for previous
access to complete

5566 00 0 11 1 0 00010001 80001234 ???????? 00000000

Host writes HPID
1st halfword

5566 00 0 11 0 0 00090009 80001234 ????5566 00000000

Host writes HPID
2nd halfword

wxyz 11 0 11 0 1 00090009 80001234 wxyz5566 00000000

Waiting for access
to complete

???? ?? ? ?? 1 ? 00010001 80001234 wxyz5566 00005566

† For C620x/C670x HPI, wxyz represents a “don’t care” value on the HD pins. The HBE[1:0] value indicates that only 16-bit is
transferred. For C621x/C671x and C64x HPI, however, wxyz should be 0000 on the HD pins. The entire 32-bit word is trans-
ferred.

Note: The “?” in this table indicate the value is unknown.

Table 7–19. Data Write Access to HPI in Fixed Address Mode: HWOB = 0�

Value During Access Value After Access
Location

Event HD HBE[1:0] HR/W HCNTL[1:0] HRDY HHWIL HPIC HPIA HPID
Location
80001234

Host writes HPID
1st halfword

Waiting for previous
access to complete

wxyz 11 0 11 1 0 00000000 80001234 ???????? 00000000

Host writes HPID
1st halfword

wxyz 11 0 11 0 0 00080008 80001234 wxyz???? 00000000

Host writes HPID
2nd halfword

5566 00 0 11 0 1 00080008 80001234 wxyz5566 00000000

Waiting for access
to complete

???? ?? ? ?? 1 ? 00080008 80001234 wxyz5566 00005566

† For C620x/C670x HPI, wxyz represents a “don’t care” value on the HD pins. The HBE[1:0] value indicates that only 16-bit is
transferred. For C621x/C671x and C64x HPI, however, wxyz should be 0000 on the HD pins. The entire 32-bit word is trans-
ferred.

Note: The “?” in this table indicate the value is unknown.

Host Access Sequences

 7-36

7.6.4.2 HPID Write in Fixed Address Mode — HPI32

HPID write of the HPI32 is similar to the HPI16. However, the host can write
to the HPID register in one 32-bit write access. Table 7–20 summarizes an
HPID write access for HPI32 in fixed address mode.

Table 7–20. Data Write Access to HPI in Fixed Address Mode for HPI32

Value During Access Value After Access

Event HD HR/W HCNTL[1:0] HRDY HPIC HPIA HPID

Location

80001234

Host writes HPID

Waiting for pre-

vious access to

complete.

00005566 0 11 1 00000000 80001234 ???????? 00000000

Host writes

HPID.

Ready

00005566 0 11 0 00080008 80001234 00005566 00000000

Waiting for ac-

cess to com-

plete.

???????? ? ?? 0 00080008 80001234 87654321 00005566

Note: The “?” in this table indicate the value is unknown.

7.6.5 HPID Write Access in Autoincrement Mode

7.6.5.1 HPID Write in Autoincrement Mode – C62x/C67x HPI and C64x HPI16

Table 7–21 and Table 7–22 summarize a host data write with autoincrement
for HWOB = 1 and HWOB = 0, respectively. These examples are identical to
the ones in section 7.6.4, except for the HCNTL[1:0] value and a subsequent
write at address 8000 1238h. The increment occurs on the rising edge of
HSTROBE on the next HPID write access. If the next access is an HPIA or
HPIC access or an HPID read, the autoincrement does not occur.

For the C64x HPI in autoincrement mode, data written by the host is immedi-
ately copied from the HPID to the internal write buffer. Therefore if the internal
write buffer is not full, HRDY remains ready, and row 4 and 7 in Table 7–21 and
Table 7–22 do not apply. In addition, the DSP only services the HPI write ac-
cess in autoincrement mode when the internal write buffer is half full, or when
the write cycle is terminated. Locations 80001234h and 80001238h in
Table 7–16 and Table 7–17 do not get updated to the correct values
(00005566h, 33000000h) until the internal write buffer is serviced.

Host Access Sequences

7-37Host-Port Interface

Table 7–21. Write Access to HPI With Autoincrement: HWOB = 1�

Value During Access Value After Access

Event HD
HBE
[1:0] HR/W

HCNTL
[1:0] HRDY HHWIL HPIC HPIA HPID

Location
80001234

Location
80001238

Host writes HPID
1st halfword

Waiting for
previous access
to complete

5566 00 0 10 1 0 00010001 80001234 ???????? 00000000 00000000

Host writes HPID
1st halfword

Ready

5566 00 0 10 0 0 00090009 80001234 ????5566 00000000 00000000

Host writes HPID
2nd halfword

wxyz 11 0 10 0 1 00090009 80001234 wxyz5566 00000000 00000000

Host writes HPID
1st halfword

Waiting for
previous access to
complete

nopq 11 0 10 1 0 00010001 80001234 wxyz5566 00005566 00000000

Host writes HPID
1st halfword

nopq 11 0 10 0 0 00090009 80001238 wxyznopq 00005566 00000000

Host writes HPID
2nd halfword

33rs 01 0 10 0 1 00090009 80001238 33rsnopq 00005566 00000000

Waiting for
access to
complete

???? ?? ? ?? 1 ? 00010001 80001238 33rsnopq 00005566 33000000

† For C620x/C670x HPI, wxyz, rs, and nopq represent don’t care values on the HD pins. For C621x/C671x, and C64x HPI, howev-
er, wxyz+0000, rs=00, and nopq=0000 on the HD pins. The entire 32-bit word is transferred.

Note: The “?” in this table indicate the value is unknown.

Host Access Sequences

 7-38

Table 7–22. Write Access to HPI With Autoincrement: HWOB = 0�

Value During Access Value After Access

Event HD
HBE
[1:0] HR/W

HCNTL
[1:0] HRDY HHWIL HPIC HPIA HPID

Location
80001234

Location
80001238

Host writes
HPID
1st halfword

Waiting for
previous access
to complete

wxyz 11 0 10 1 0 00000000 80001234 ???????? 00000000 00000000

Host writes HPID
1st halfword

Ready

wxyz 11 0 10 0 0 00080008 80001234 wxyz??? 00000000 00000000

Host writes HPID
2nd halfword

5566 00 0 10 0 1 00080008 80001234 wxyz5566 00000000 00000000

Host writes HPID
1st halfword

Waiting for
previous access
to complete

33rs 01 0 10 1 0 00000000 80001234 wxyz5566 00005566 00000000

Host writes HPID
1st halfword

33rs 01 0 10 0 0 00080008 80001238 33rs5566 00005566 00000000

Host writes HPID
2nd halfword

nopq 11 0 10 0 1 00080008 80001238 33rsnopq 00005566 00000000

Waiting for
access to
complete

???? ?? ? ?? 1 ? 00000000 80001238 33rsnopq 00005566 33000000

† For C620x/C670x HPI, wxyz, rs, and nopq represent don’t care values on the HD pins. For C621x/C671x, and C64x HPI, howev-
er, wxyz+0000, rs=00, and nopq=0000 on the HD pins. The entire 32-bit word is transferred.

Note: The “?” in this table indicate the value is unknown.

7.6.5.2 HPID Write in Autoincrement Mode – HPI32

As described in section 7.6.5.1, data written in autoincrement mode by the
C64x HPI host is immediately copied from the HPID to the internal write buffer.
Therefore if the internal write buffer is not full, HRDY remains ready. The DSP
only services the HPI write access in autoincrement mode when the internal
write buffer is half full, or when the write cycle is terminated. Locations
80001234h and 80001238h in Table 7–21 and Table 7–22 do not get updated
to the correct values (00005566h, 33000000h) until the internal write buffer is
serviced. Table 7–23 summarizes a HPID write in autoincrement mode for the
HPI32.

Host Access Sequences

7-39Host-Port Interface

Table 7–23. Write Access to HPI with Autoincrement: HPI32

Value During Access Value After Access
Location Location

Event HD HR/W HCNTL[1:0] HRDY HHWIL HPIC HPIA HPID
Location
80001234†

Location
80001238†

Host writes
HPID

Waiting for
previous access
to complete

00005566 0 10 1 0 00000000 80001234 ???????? 00000000 00000000

Host writes HPID

Ready

00005566 0 10 0 0 00080008 80001234 00005566 00000000 00000000

Host writes HPID

Ready

33000000 0 10 0 1 00080008 80001238 33000000 00000000 00000000

† Location 80001234h and 80001238h do not get updated until the HPI internal write buffer is serviced. This occurs when the
internal write buffer is half full, or when the write cycle terminates.

‡ The data in HPID is immediately copied to the internal write buffer if it is not full. Therefore, HRDY is ready.

Note: The “?” in this table indicate the value is unknown.

7.6.6 Single Halfword Cycles (C620x/C670x only)

In normal operation, every transfer must consist of two halfword accesses.
However, the C620x/C670x HPI allows single halfword accesses to speed up
operation. These can be useful in performing the following tasks:

� Writes to and reads from HPIC: In Table 7–9, the entire HPIC was written
to correctly after the first write. When writing the HPIC, the host does not
have to be concerned about HHWIL, nor does it have to perform two con-
secutive writes to both halfwords. Similarly, the host can choose to read
the HPIC only once, because both halves contain the same value.

� Writes to and reads from HPIA: In Table 7–9, the portion of HPIA accesses
selected by HHWIL and HWOB is updated automatically after each half-
word access. Thus, to change either the upper or the lower 16 bits of HPIA,
the host must select the half to modify through a combination of the HHWIL
and HWOB bits. The host can also choose to read only half of HPIA.

� HPID read accesses: Read accesses are actually triggered by the first
halfword access (HHWIL low). Thus, if on reads the host is interested only
in the first halfword (the least or most significant halfword, as selected by
HWOB), the host does not need to request the second address. However,
prefetching does not occur unless the second halfword is also read. A sub-
sequent read of the first halfword (HHWIL low) or a write of a new value
to HPIA overrides any previous prefetch request. On the other hand, a
read of just the second halfword (HHWIL high) is not allowed and results
in undefined operation.

Host Access Sequences

 7-40

� Write accesses: Write accesses are triggered by the second halfword access
(HHWIL word high). Thus, if the host desires to change only the portion of
HPID selected by HHWIL high (and the associated byte enables) during con-
secutive write accesses, only a single cycle is needed. This technique’s pri-
mary use is for memory fills: the host writes both halfwords of the first write
access with HBE[1:0] = 00. On subsequent write accesses, the host writes
the same value to the portion of HPID selected by HHWIL as the first write
access did. In this case, the host performs autoincrementing writes
(HCNTL[1:0] = 10) on all write accesses.

Memory Access Through the HPI During Reset

7-41Host-Port Interface

7.7 HPI Transfer Priority Queue — TMS320C621x/C671x/C64x

All C621x/C671x HPI transfers are placed in the high priority transfer queue,
Q1. All C64x HPI transfers are placed in the medium priority queue, Q2. Refer
to Chapter 6 EDMA Controller, Section 6.17 Resource Arbitration and Priority
Processing, for details on transfer priority.

7.8 Memory Access Through the HPI During Reset

During reset, when HCS is active low, HRDY is inactive high, and when HCS is
inactive, HRDY is active. The HPI cannot be used while the chip is in reset. How-
ever, certain boot modes can allow the host to write to the CPU’s memory space
(including configuring EMIF configuration registers to define external memory be-
fore accessing it) upon the rising edge of the RESET signal. Although the device
is not in reset during these boot modes, the CPU itself is in reset until the boot
completes. See Chapter 11, Boot Modes and Configuration, for more details.

Host Access Sequences / Memory Access Through the HPI During Reset

8-1

Expansion Bus

This chapter describes the expansion bus (XBUS) used by the CPU to access
off-chip peripherals, FIFOs and PCI interface chips.

Topic Page

8.1 Overview 8-2.

8.2 Expansion Bus Signals 8-5.

8.3 Expansion Bus Registers 8-7.

8.4 Expansion Bus I/O Port Operation 8-11.

8.5 Expansion Bus Host Port Operation 8-22.

8.6 Expansion Bus Arbitration 8-45.

8.7 Boot Configuration Control via Expansion Bus 8-50.

Chapter 8

Overview

 8-2

8.1 Overview

The expansion bus (XBUS) is a 32-bit wide bus that supports interfaces to a
variety of asynchronous peripherals, asynchronous or synchronous FIFOs,
PCI bridge chips, and other external masters.

The XBUS offers a flexible bus arbitration scheme, implemented with two sig-
nals, XHOLD and XHOLDA. The XBUS can operate with the Internal arbiter
enabled, in which case any external hosts must request the bus from the DSP.
For increased flexibility, the internal arbiter can be disabled, and the DSP re-
quests the bus from an external arbiter.

The XBUS has two major sub blocks—the I/O port and host port interface. A
block diagram of the XBUS is shown in Figure 8–1.

Figure 8–1. Expansion Bus Block Diagram

Expansion bus

XCLKIN

Expansion bus host channel

XFCLK

XD[31:0]

XCE[3:0]

XBE[3:0]/XA[5:2]

XOE
XRE

XWE/XWAIT

XCS

XAS
XCNTL
XW/R
XRDY
XBLAST
XBOFF

XHOLD
XHOLDA

Shared signals

I/O Port:
asynchronous
peripheral/
FIFO interface

Host port interface

Bus arbitration signals

DMA controller

Overview

8-3Expansion Bus

The I/O port has two modes of operation, which can coexist in a single system:
asynchronous I/O mode and synchronous FIFO mode. These modes are
selectable for each of four XCE spaces in the XBUS. The first mode
(asynchronous I/O mode) provides output strobes, which are highly
programmable like the asynchronous signals of the external memory interface
(EMIF). The XBUS interface provides four output address signals in this mode,
with external decode this provides for up to 16 devices per XCE space. The
FIFO mode provides a glueless interface to a single synchronous read FIFO,
or up to four synchronous write FIFOs. With a minimal amount of glue, this can
be extended to up to 16 read and 16 write FIFOs per XCE space. Connectivity
of the XBUS I/O port and DSP memory is provided through the DMA controller.

The second sub-block of the XBUS consists of the host port interface. This in-
terface can operate in one of two modes: synchronous and asynchronous. The
synchronous mode offers master and slave functionality, and has multiplexed
address and data signals. The asynchronous mode is slave only, and is similar
to the HPI on the C6201/C6211/C6701/C6711, but is extended to a 32-bit data
path. The asynchronous host port mode is used to interface to microproces-
sors which utilize an asynchronous bus.

Connectivity of the XBUS host port interface and the DSP memory space is
provided by the DMA auxiliary port. Dedicated address and data registers con-
nect the host port interface to the XBUS host channel. An external master ac-
cesses these registers using external data and interface control signals.
Through a dedicated port the DMA provides connectivity between the proces-
sor and the XBUS I/O port. To initiate transfers via the synchronous host port
interface, the CPU has to configure a set of registers. Figure 8–2 shows the
C620x/C670x chip-level block diagram.

Overview

 8-4

Figure 8–2. Expansion Bus Interface in TMS320C620x/C670x Block Diagram

EMIF

Other
 Peripherals

Expansion Bus

Data Access
Controller

Internal Data
Memory

Internal Program
Memory

D
M

A
 B

us

P
er

ip
he

ra
l C

on
tr

ol
 B

us

Interrupt
Selector

Program
Access/Cache

Controller

Direct Memory Access
Controller (DMA)

PLL
Power Down

Logic

Boot
Configuration

C6000 DSP core

Instruction Fetch

Instruction Dispatch

Instruction Decode

Data Path A

A Register File

L1 S1 M1 D1

Control
Registers

Control Logic

Test

In–Circuit
Emulation

Interrupt
Control

Data Path B

B Register File

L2S2M2D2

Note: Refer to the specific device datasheet for its peripheral set.

Expansion Bus Signals

8-5Expansion Bus

8.2 Expansion Bus Signals

Table 8–1 lists the XBUS signals and their functionality in each mode. If only
the I/O port of the XBUS is used (or if the XBUS is not used at all), the XBUS
signals should be pulled inactive according to Table 8–2.

Table 8–1. Expansion Bus Signals

I/O Port Mode
(Non-Exclusive)

Mutually Exclusive
Host Port Modes

XBUS
Signal (I/O/Z)

Async
Signal (I/O/Z)

Sync FIFO
Signal (I/O/Z)

Sync
Mode (I/O/Z) Async Mode

XD[31:0] I/O/Z D[31:0] I/O/Z D[31:0] I/O/Z D[31:0] I/O/Z D[31:0]

XFCLK O XFCLK

XCLKIN I CLK

XCE0 O CS O RE/WE/CS

XCE1 O CS O RE/WE/CS

XCE2 O CS O RE/WE/CS

XCE3 O CS O RE/WE/CS

XBE0/XA2 O/Z XA2 O/Z XA2 I/O/Z BE0 I BE0

XBE1/XA3 O/Z XA3 O/Z XA3 I/O/Z BE1 I BE1

XBE2/XA4 O/Z XA4 O/Z XA4 I/O/Z BE2 I BE2

XBE3/XA5 O/Z XA5 O/Z XA5 I/O/Z BE3 I BE3

XOE O OE O OE

XRE O RE O RE

XWE/XWAIT O WE O WE O WAIT

XAS I/O/Z AS

XRDY I XRDY I/O/Z READY O/Z READY

XW/R I/O/Z W/R I W/R

XBLAST I/O/Z BLAST

XHOLD I/O/Z HOLD I/O/Z HOLD I/O/Z HOLD I/O/Z HOLD

XHOLDA I/O/Z HOLDA I/O/Z HOLDA I/O/Z HOLDA I/O/Z HOLDA

XCNTL I CNTL I CNTL

XBOFF I BOFF

XCS I CS I CS

Expansion Bus Signals

 8-6

Table 8–2. Signal State for Disabled Host Port

XBUS Signa l
I/O Port Mode
(I/O/Z)

External
Connection

XD[31:0] I/O/Z According to system
(See section 8.7)

XFCLK O N/C
XCLKIN I Pull up
XCE[3:0] O N/C
XBE[3:0]/XA[5:2] O/Z Pull down
XOE O N/C
XRE O N/C
XWE O N/C
XAS I/O/Z Pull up
XRDY I/O/Z Pull up
XW/R I/O/Z Pull up
XBLAST I/O/Z Pull up if BLPOL = 0;

Pull down if BLPOL = 1
XHOLD I/O/Z Pull down
XHOLDA I/O/Z Pull down
XCNTL I Pull up
XBOFF I Pull down
XCS I Pull up

Expansion Bus Registers

8-7Expansion Bus

8.3 Expansion Bus Registers

Control of the XBUS and the peripheral interfaces is maintained through
memory-mapped registers within the XBUS. The memory-mapped registers
are shown in Table 8–3.

Table 8–3. Expansion Bus Memory Mapped Registers

Byte Address,
Hex

Abbreviation Name Described
in Section

0188 0000 XBGC Expansion Bus Global Control Register 8.3.2

0188 0004 XCECTL1 XCE1 Space Control Register 8.3.3

0188 0008 XCECTL0 XCE0 Space Control Register 8.3.3

0188 000c XBHC Expansion Bus Host Port Interface Control Register 8.5.1.5

0188 0010 XCECTL2 XCE2 Space Control Register 8.3.3

0188 0014 XCECTL3 XCE3 Space Control Register 8.3.3

0188 0018 — Reserved —

0188 001c — Reserved —

0188 0020 XBIMA Expansion Bus Internal Master Address Register 8.5.1.3

0188 0024 XBEA Expansion Bus External Address Register 8.5.1.4

Expansion Bus Registers

 8-8

8.3.1 Expansion Bus Host Port Registers

The external master on the XBUS uses the XCNTL signal to select which inter-
nal register is being accessed. The state of this pin selects whether access is
made to the XBUS internal slave address (XBISA) register or, expansion bus
data (XBD) register. In addition to that, the external master has access to the
entire memory map of the DSP, including memory-mapped registers.

Table 8–4 summarizes the registers that the XBUS host port uses for commu-
nication between the host device and the CPU.

Table 8–4. Expansion Bus Host Port Registers

Register
Abbreviation

Register
Name

Host Read/
Write Access

DSP Read/
Write Access

Memory
Mapped
Address

XBHC Expansion
Bus Host
Port Control

— RW 0x0188 000C

XBEA Expansion
Bus External
Address

— RW 0x0188 0024

XBIMA Expansion
Bus Internal
Master
Address

— RW 0x0188 0020

XBISA Expansion
Bus Internal
Slave Address

RW — —

XBD Expansion
Bus Data

RW — —

Expansion Bus Registers

8-9Expansion Bus

8.3.2 Expansion Bus Global Control Register (XBGC)

The XBUS global control register (XBGC), shown in Figure 8–3 and described
in Table 8–5, configures parameters of the XBUS that are common to all inter-
faces. The XBUS global control register must not be modified while I/O port
transactions are in progress.

Figure 8–3. Expansion Bus Global Control Register (XBGC)

31 16 15 14 13 12 11 10 0

Reserved FMOD XFCEN XFRAT XARB Reserved

R, +0 R,+x RW,+0 RW,+00 R,+x RW,+x

Table 8–5. Expansion Bus Global Control Register (XBGC) Field Description

Field Description Section

FMOD FIFO mode set by boot-mode selection.FMOD = 0: Glue is used for FIFO read interface
in all XCE spaces operating in FIFO mode FMOD = 1: Glueless read FIFO interface. If
XCE3 is selected for FIFO mode, then XOE acts as FIFO output enable and XCE3 acts
as FIFO read enable. XOE is disabled in all other XCE spaces regardless of MType
setting.

8.4.2

XFCEN FIFO clock enable

XFCEN = 0: XFCLK held high

XFCEN = 1: XFCLK enabled to clock.

The FIFO clock enable cannot be changed while a DMA request to XCE space is active.

8.4.2

XFRAT FIFO clock rate

XFRAT = 00: XFCLK = 1/8 CPU clock rate

XFRAT = 01: XFCLK = 1/6 CPU clock rate

XFRAT = 10: XFCLK = 1/4 CPU clock rate

XFRAT = 11: XFCLK = 1/2 CPU clock rate

The FIFO clock setting cannot be changed while a DMA request to XCE space is active.

8.4.2

XARB Arbitration mode, set by boot-mode selection

XARB=0: internal arbiter disabled

XARB=1: internal arbiter enabled

8.6

Expansion Bus Registers

 8-10

8.3.3 XCE Space Control Registers (XCExCTL)

The four XCE space control registers (XCExCTL), shown in Figure 8–4 and
described in Table 8–6, correspond to the four XCE memory spaces sup-
ported by the XBUS.

Figure 8–4. Expansion Bus XCE(0/1/2/3) Space Control Register Diagram (XCExCTL)

31 28 27 22 21 20 19 16 15 14 13 8 7 6 4 3 2 1 0

WRITE
SETUP

WRITE
STROBE

WRITE HOLD
READ

SETUP
rsvd

READ
STROBE

rsvd MTYPE rsvd READ HOLD

RW, +1111 RW, +111111 RW, +11 RW, +1111 R, +00 RW, +111111 R, +0 R,+xx R, +00 RW, +11

Table 8–6. Expansion Bus XCE(0/1/2/3) Space Control Register (XCExCTL) Field
Description

Field Description Section

Read
Setup/
Write
Setup

Setup width. Number of CLKOUT1 cycles of setup time
for byte–enable/address (XBE/XA) and chip enable (XCE)
before read strobe or write strobe falls. For asynchronous
read accesses, this is also the setup time of XOE before
XRE falls.

8.4.1

Read
Strobe/
Write
Strobe

Strobe width. The width of read strobe (XRE) and write
strobe (XWE) in CLKOUT1 cycles.

8.4.1

MTYPE Memory type is configured during boot using pullup or
pulldown resistors on the expansion bus.

MTYPE=010b: 32-bit wide asynchronous interface.

MTYPE=101b: 32-bit wide FIFO interface.

8.7

Read
Hold/
Write
Hold

Hold width. Number of CLKOUT1 cycles that byte–en-
able/address (XBE/XA) and chip enable (XCE) are held
after read strobe or write strobe rises. For asynchronous
read accesses, this is also the hold time of XCE after
XRE rising.

8.4.1

Expansion Bus I/O Port Operation

8-11Expansion Bus

8.4 Expansion Bus I/O Port Operation

For external I/O port accesses on the XBUS, the XBE signals act as address
signals XA[5:2]. You can use the address signals to address as many as 16 dif-
ferent R/W peripherals or 32 FIFOs in each XCE space. For the FIFO interface,
32 devices are possible since a separate Read and Write FIFO can be located
at each address.

Access to the XBUS I/O port can only be done through the DMA channels 0
through 3. The DMEMC does not have direct access to the XBUS. Therefore,
load and store (LD/ST) commands to the memory spaces of the XBUS I/O port
via the CPU are not allowed, and result in undefined operation. A DMA transfer
cannot occur from one XCE space to another XCE space. Also, a host port
transaction cannot access any of the XCE spaces.

For reads, care must be taken to ensure that contention on the data bus does
not occur when switching from one peripheral to the next in the same XCE
space. The DMA can accomplish this since inactive cycles occur when the
DMA switches from one frame to the next. The DMA can be set up to read (or
write) a frame from each of the peripherals or FIFOs in turn. For example, the
element index can be set to 0 and the frame index can be set to a multiple of
4 (ensure word strides), thus incrementing to a different location after each
frame has completed.

Although the XBUS does not explicitly support memory widths of less than
32 bits, the DMA can be used to read/write to 8-bit or 16-bit peripherals or FI-
FOs by controlling the byte/half-word logical addressing. For example, if an
8-bit-wide FIFO is in XCE2, then the DMA ESIZE bit-field can specify 8-bit
transfers. The lower two address bits in the DMA source or destination address
register determines the byte lane used for accessing the I/O port. If the bottom
two bits are 00b (word aligned), then only XD[7:0] is used for valid data. If
A[1:0] = 01b, then XD[15:8] is used (see Figure 8–5 and Table 8–7).

Alternatively, if 16-bit (or 8-bit) peripherals are used, the DMA element index
can be set up such that the stride value causes a read from alternating byte
lanes during each read transfer. For example, the first access can be to ad-
dress A[5:0] = xxxx00b, causing the lower half of the data bus to be driven by
the peripheral. If the next address is A[5:0] = xxxx10b, the top half of the data
bus is driven by the other peripheral (or FIFO) and no bus contention occurs.
The only address signals which are externally provided are A[5:2]. If address
decoding is required to address a specific peripheral or FIFO, these should be
modified as necessary by the DMA to ensure that peripherals are only ad-
dressed when appropriate (see Figure 8–6 and Table 8–8).

Expansion Bus I/O Port Operation

 8-12

Figure 8–5 illustrates how to interface four 8-bit FIFOs to the I/O port (memory
map for this case is described in Table 8–8). Figure 8–6 is an example of inter-
face between two 16-bit FIFOs and the I/O port.

Figure 8–5. Example of the Expansion Bus Interface to Four 8-Bit FIFOs

Decoder

XD[31:24]

XD[23:16]

XD[15:8]

XD[7:0]

XA[3]

WENCLK

FIFO #3

D[7:0]
OE REN

FIFO #2

WEN
REN

CLK
OE
D[7:0]

XA[2]

XRE
XCE

XD[31:0]

XOE

XFCLK

CLK

D[7:0]
OE

FIFO #4

REN
WEN

XD[31:0]

FIFO #1

REN
WEN

D[7:0]
OE
CLK

Table 8–7. Addressing Scheme – Case When Expansion Bus is Interfaced to
Four 8-Bit FIFOs

Logical Address A[31:6] A5 A4 A3 A2 A1 A0

FIFO #1 Address X X X 0 0 0 0

FIFO #2 Address X X X 0 1 0 1

FIFO #3 Address X X X 1 0 1 0

FIFO #4 Address X X X 1 1 1 1

Physical Address XA5 XA4 XA3 XA2

Expansion Bus I/O Port Operation

8-13Expansion Bus

Figure 8–6. Example of the Expansion Bus Interface to Two 16-Bit FIFOs

XA[2]

XRE
XCE

XD[31:0]

XOE
XFCLK

CLK

D[15:0]
OE

FIFO #2

REN
WEN

XD[31:0]

XD[31:16]

XD[15:0]

FIFO #1

REN
WEN

D[15:0]
OE
CLK

Table 8–8. Addressing Scheme – Case When the Expansion Bus is Interfaced to Two
16-Bit FIFOs

Logical Address A[31:6] A5 A4 A3 A2 A1 A0

FIFO #1 Address X X X X 0 0 0

FIFO #2 Address X X X X 1 1 0

Physical Address XA5 XA4 XA3 XA2

8.4.1 Asynchronous Mode

The asynchronous cycles of the XBUS are identical to the asynchronous
cycles provided by the EMIF. During asynchronous peripheral accesses,
XRDY acts as an active-high ready input and XBE[3:0]/XA[5:2] operate as
address signals XA[5:2]. The remaining asynchronous peripheral signals
operate exactly like their EMIF counterpart. For a complete description, see
the External Memory Interface section. The following minimum values apply
to the asynchronous parameters:

� SETUP + STROBE + HOLD ≥ 3
� SETUP ≥ 1
� STROBE ≥ 1

� If XRDY used to extend STROBE then HOLD ≥ 2.

Expansion Bus I/O Port Operation

 8-14

Notes:

1) XRDY is active (low) during host-port accesses.

2) XBE[3:0]/XA[5:2] operate as XBE[3:0] during host-port accesses.

8.4.2 Synchronous FIFO Modes

The synchronous FIFO mode of the XBUS offers a glueless and/or low glue
interface to standard synchronous FIFOs.

The XBUS can interface up to four write FIFOs without using glue logic (one
per XCE space) or three write FIFOs and a single read FIFO (in XCE3 only).
However, with a minimal amount of glue, up to 16 read and write FIFOs can
be used per XCE space.

The XOE, XRE, XWE, and XCEn signals are not tri-stated while the DSP re-
leases control of the XBUS.

A pin description of synchronous FIFO is in Table 8–9.

Expansion Bus I/O Port Operation

8-15Expansion Bus

Table 8–9. Synchronous FIFO Pin Description

Signal
Signal Function

Signal
Name (I/O/Z) Signal Purpose R/W Mode Read Mode

XFCLK O FIFO clock output Programmable to either 1/2, 1/4, 1/6, or 1/8 of the CPU clock
frequency. If CPU clock = 250 MHz, then XFCLK = 125, 62.5, 41.7 or
31.25 MHz. The XFCLK continues to clock even when the DSP
releases ownership of the XBUS.

XD[31:0] I/O/Z Data Data lines

XCEx O FIFO read
enable/write
enable/chip Select

Active for both read and write
transactions. They should be
logically OR-ed with output control
signals externally to create
dedicated controls for a FIFO. Also
can be used directly as FIFO write
enable signal for a single write FIFO
per XCE space.

Acts as read enable
signal(XCE3 only)

XWE O FIFO write enable Write-enable signal for FIFO. Must
be logically OR-ed with
corresponding XCE signal to
ensure that only one FIFO is
addressed at a time.

XRE O FIFO read enable Read-enable signal for FIFO. Must
be logically OR-ed with
corresponding XCE signal to
ensure that only one FIFO is
addressed at a time.

XOE O FIFO output
enable

Shared output enable signal. Must
be logically OR-ed with
corresponding XCE signal to
ensure that only one FIFO is
addressed at a time.

Dedicated output enable signal
in XCE3 if FIFO read mode is
selected. If selected, this signal
is disabled for all other modes.

XBE[3:0]/
XA[5:2]

O/Z Expansion bus
address

Operate as XA[5:2]. Can be de-
coded to specify up to 16 different
addresses, enabling interface with
glue to 16 Read FIFOs and 16 Write
FIFOs in a single XCE space.

Expansion Bus I/O Port Operation

 8-16

8.4.2.1 Write Interface

During write accesses to a memory space configured for read/write FIFO
mode, the XCE signal and XWE signal are both active for a single rising edge
of XFCLK. So, depending on the specific system environment, the write
interface can be accomplished either with glue or without glue.

The glueless interface can be used if only a single write FIFO is used in a given
XCE space (see Figure 8–7), since the XCE signal is used as the write enable
signal. If this is true, the XCE signal is tied directly to the write enable input of
the FIFO. If a read FIFO is also used in the same XCE space, glue must be
used, since the XCE signal also goes low for reads from the read FIFO.

Figure 8–8 shows an interface to a read FIFO and a write FIFO in the same
XCE space. For this example, the XCE signal is used to gate the appropriate
read/write strobes to the FIFOs. The FIFO write timing diagram for this
interface is shown in Figure 8–9.

Several FIFOs can be accessed in a single XCE space if address decode logic
is used to access each FIFO separately.

Figure 8–7. Glueless Write FIFO Interface

OE

Q[31:0]

REN
RCLK

FIFO
Synchronous

D[31:0]
HF
FF
EF

WEN
WCLK

bus
Expansion

XD[31:0]

EXT_INTx
XRE
XWE

XCEn
XFCLK

Expansion Bus I/O Port Operation

8-17Expansion Bus

Figure 8–8. Read and Write FIFO Interface With Glue

OE

RCLK
REN

WCLK
WEN

FIFO
Synchronous

Q[31:0]

FF
EF

HF
Q[31:0]

EXT_INTy
D[31:0]

WEN
WCLK

FIFO
Synchronous

Q[31:0]
HF
FF
EF

OE
REN
RCLK

bus
Expansion

XD[31:0]

EXT_INTx

XWE
XOE

XRE
XCEx

XFCLK

Figure 8–9. FIFO Write Cycles

XA2 XA3 XA4 XA5

D2 D3 D4 D5

XFCLK

XCEx

XBE[3:0] / XA[5:2]

XWE

WEN = XCEx + XWE

XD[31:0]

Expansion Bus I/O Port Operation

 8-18

8.4.2.2 Read FIFO Interface

The read FIFO interface can be accomplished gluelessly in XCE3 space or
with a small amount of glue in any XCE space. If a glueless read FIFO interface
is used (specified by boot configuration selection), the XOE signal is only en-
abled in XCE3 space, and is dedicated to use for the FIFO interface. If this
mode is selected at boot, the XOE signal is disabled in all other XCE spaces.
In this mode, XCE3 is used as the read enable signal and XOE is used as the
output enable signal of the FIFO. Figure 8–10 shows this interface
(Figure 8–11 shows the timing diagram for this interface). If the glueless read
FIFO mode is not chosen, then a minimal amount of glue can be used in any
XCE space specified as a FIFO interface. Figure 8–8 shows the required glue.
Figure 8–12 shows the timing diagram for the case when glue logic is used to
read from FIFO.

Figure 8–10. Glueless Read FIFO Interface

D[31:0]

WEN
WCLK

FIFO
Synchronous

Q[31:0]
HF
FF
EF

OE
REN
RCLK

bus
Expansion

XD[31:0]

EXT_INTx
XRE
XWE
XOE

XCE3
XFCLK

Figure 8–11.FIFO Read Mode – Read Timing (glueless case)

D5D4D3D2D1XD[31:0]

XOE

XCE3

XFCLK

Sample5
Sample4

Sample3
Sample2

DSP Sample1

Expansion Bus I/O Port Operation

8-19Expansion Bus

Figure 8–12. FIFO Read Mode – With Glue

XA1 XA2 XA3 XA4

D1 D2 D3 D4

XFCLK

XCEx

XBE[3:0], XA[5:2]

XWE

XRE

XOE

REN = XCEx + XRE

OE = XCEx + XOE

XD[31:0]

8.4.2.3 Programming Offset Register

The programmable offset registers of the FIFO are used to hold the offset val-
ues for the flags that indicate the condition of the FIFO contents.

The programmable offset registers of the FIFO must be programmed in con-
secutive cycles and read in consecutive cycles. In addition, the reader cannot
read from the FIFO until the writer has programmed the offset registers. This
should not be a problem, since the FIFO is not read until it has been written
to. The writer should not write to the FIFO until the offset registers have been
programmed.

For programming (or reading) the offset registers, back-to-back accesses
must be done. For example, the first XFCLK edge with the program input to
the FIFO low programs the PAE register, and then the second XFCLK edge
programs the PAF register. Also, for 9-bit or large 18-bit FIFOs, it is common
to require two or three write cycles to fully program each register. The first write
programs the LSB, the second write programs the middle bits and the third
write programs the high bits.

A general-purpose output (DMACx or TOUTx) can be used to control whether
FIFO reads/writes are done to the FIFO memory or to the programmable offset
register of the memory. Or the XA[5:2] signals can be decoded to control when
the FIFO offset register is accessed.

Expansion Bus I/O Port Operation

 8-20

8.4.2.4 Flag Monitoring

To efficiently control bursts to and from the dedicated FIFO interfaces, the in-
terrupt signals EXT_INT4, EXT_INT5, EXT_INT6, and EXT_INT7 are used as
flags to control DMA transfers. The flag polarity used to start transfer can be
programmed in the DMA secondary control register. The CPU EXT_INT and
DMA EXT_INT polarity are controlled separately. For more details see the
DMA section.

8.4.3 DMA Transfer Examples

8.4.3.1 Example 1 (single frame transfer)

Peripherals located on the I/O port of the XBUS are accessible only via DMA
transactions. This section gives a very simple example used to transfer a
single frame of 256 words from a FIFO located in XCE0 into internal data
memory at 8000 0000h. This example simply sets up the source and destina-
tion registers, and starts the DMA with incrementing destination address and
a non-changing source address. The source address does not change, since
the FIFO is located in a fixed memory location. The content of relevant regis-
ters and DMA channel primary control register are shown in Table 8–10 and
Table 8–11.

Table 8–10. Content of Relevant Registers (single frame transfer)

Register Contents

DMA primary control register 0000 0041h

DMA source 4000 0000h

DMA destination 8000 0000h

Transfer counter register 0000 0100h

Table 8–11. Content of DMA Channel Primary Control Register Fields

DST
reload

SRC
reload EMOD FS TCINT PRI WSYNC RSYNC INDEX

CNT
reload SPLIT ESZISE

DST
DIR

SRC
DIR STATUS START

00 00 0 0 0 0 00000 00000 0 0 00 00 01 00 00 01

Expansion Bus I/O Port Operation

8-21Expansion Bus

8.4.3.2 Example 2 (transfer with frame synchronization)

In this example ten frames of 256 words from a FIFO located in XCE0 are
transferred into internal data memory at 8000 0000h. This example simply
sets up the source and destination registers, and starts the DMA with incre-
menting destination address and a non-changing source address. The source
address does not change, since the FIFO is located in a fixed memory location.
Active(high) EXT_INT4 is used for frame synchronization. The content of the
relevant registers, and the content of the DMA channel primary and secondary
control register fields are shown in Table 8–12, Table 8–13, and Table 8–14.

Table 8–12. Content of Relevant Registers (multiple frame transfer)

Register Content

DMA Primary Control Register 0401 0041h

DMA Secondary Control Register 0008 0000h

DMA Source 4000 0000h

DMA Destination 8000 0000h

Transfer Counter Register 000A 0100h

Global Counter Reload Register A 0000 0100h

Table 8–13. Content of DMA Primary Control Register

DST
reload

SRC
reload EMOD FS TCINT PRI WSYNC RSYNC INDEX

CNT
reload SPLIT ESZISE

DST
DIR

SRC
DIR STATUS START

00 00 0 1 0 0 00000 00100 0 0 00 00 01 00 00 01

Table 8–14. Content of DMA Secondary Control Register

Reserved
SYNC
CNTL DMAC EN

WSYNC CLR/WSYNC STAT/RSYNC CLR/RSYNC STAT/WDROP IE/WDROP COND/WDROP
COND/RDROP IE/RDROP COND/BLOCK IE/BLOCK COND/LAST IE/LAST COND/FRAME IE

0000 0000 00 001 0 00 0000 0000 0000 0000

Expansion Bus Host Port Operation

 8-22

8.5 Expansion Bus Host Port Operation

The Expansion Bus (XBUS) Host Port has two modes of operation which en-
able interfaces to external processors, PCI bridge chips, or other external per-
ipherals. These two operation modes are the synchronous host port mode and
the asynchronous host port mode. The synchronous host port mode can inter-
face with minimum glue to PCI bridge chips and many common microproces-
sors. The asynchronous host port mode enables interfacing to genuine asyn-
chronous devices.

The XBUS host port block diagram is shown in Figure 8–13.

Figure 8–13. Expansion Bus Host Port Interface Block Diagram

XCS
XCNTL
XBOFF

XBLAST
XW/R

XAS
XRDY

XBE[3:0]

XD[31:0]

XHOLDA

XHOLD

DSP

block
Control

arbitration
Bus

MUX

(XBGC, XBHC)
registers
control

host port
Expansion bus

bus
peripheral
controller
memory

Data

latches
address
XBEA

XBD data
latches

latches
address
XBISA

channel
auxiliary

DMA
Enhanced

XWAIT

Using pull-up/down resistors on the data bus during reset sets the host port
operational mode, the DSP bootmode, and endianness.

Expansion Bus Host Port Operation

8-23Expansion Bus

8.5.1 Expansion Bus Host Port Registers Description

8.5.1.1 Expansion Bus Data Register (XBD)

The expansion bus data (XBD) register, shown in Figure 8–14, contains the
data that was read from the memory accessed by the XBUS host port if the
current access is a read, or the data that is written to the memory if the current
access is a write. The host can perform single 32–, 16–, or 8–bit accesses to
the XBD. Bursts longer than one word to the XBD should always be 32–bits
wide.

This register is used when the XBUS host port operates either in synchronous
or asynchronous mode.

Figure 8–14. Expansion Bus Data Register (XBD)

31 0

XBD

HRW,+0000 0000 0000 0000 0000 0000 0000 0000

8.5.1.2 Expansion Bus Internal Slave Address Register (XBISA)

The expansion bus internal slave address (XBISA) register is used when the
external XBUS master initiates data transfer. This register controls the
memory location in the DSP memory map being accessed by the external
mastering data transactions. This address is a 30-bit word address. The two
LSB bits in this register are used by the host to enable or disable autoincrement
of XBISA register, and to trigger the interrupt (by setting the DSPINT bit).The
host can only perforem 32–bit accesses to the XBISA. The XBISA register is
shown in Figure 8–15 and described in Table 8–15.

Figure 8–15. Expansion Bus Internal Slave Address Register (XBISA)

31 2 1 0

XBSA AINC DSPINT

HRW,+0000 0000 0000 0000 0000 0000 0000 00 HRW, +0 HRW, +0

Expansion Bus Host Port Operation

 8-24

Table 8–15. Expansion Bus Internal Slave Address Register (XBISA) Description

Field Description

DSPINT The external master to DSP interrupt. Used to wake up the DSP
from reset. This bit is cleared by corresponding bit in the XBHC.

AINC Autoincrement mode. (Asynchronous mode only)
AINC = 0: XBD register is accessed with autoincrement of XBSA

field.
AINC = 1: XBD register is accessed without autoincrement of

XBSA field.

XBSA 30-bit word address. The XBSA bit-field controls memory location
in the DSP memory map being accessed by the host.

This register is used when the host port operates either in synchronous or
asynchronous mode. The DSP does not have access to the XBISA register
content. Burst transfers in the synchronous host-port mode are always
expected to occur with autoincrement (AINC bit should be set to zero). In auto-
increment mode (AINC = 0), operation is undefined if an external host attempts
to access the last 2 word locations in the Internal Data RAM. This is because
the DSP tries to pre-fetch data from reserved locations above the Internal Data
RAM.

8.5.1.3 Expansion Bus Internal Master Address Register (XBIMA)

The expansion bus internal master address (XBIMA) register, shown in
Figure 8–16, specifies the source or destination address in the DSP memory
map where the transaction starts. This register is set by the DSP when the DSP
wants to initiate transfer on the expansion bus. Since all tranfers have a width
of one word, the XBIMA register is incremented by four after each transfer.

This register is used when the host port operates in synchronous mode.

Figure 8–16. Expansion Bus Internal Master Address Register (XBIMA)

31 0

XBIMA

RW,+0000 0000 0000 0000 0000 0000 0000 0000

8.5.1.4 Expansion Bus External Address Register (XBEA)

The expansion bus external address (XBEA) register is set by the DSP when
it is ready to initiate transfer on the XBUS. The content of the XBEA register,
shown in Figure 8–17, appears on the XD[31:0] lines during an address phase
of the transfer initiated by the DSP. The XBEA register specifies where the data

Expansion Bus Host Port Operation

8-25Expansion Bus

is accessed in the external slave memory map. Since all tranfers have a width
of one word, the XBEA register is incremented by four after each transfer.

This register is used when the host port operates in synchronous mode.

Figure 8–17. Expansion Bus External Address Register (XBEA)

31 0

XBEA

RW,+0000 0000 0000 0000 0000 0000 0000 0000

8.5.1.5 Expansion Bus Host Port Interface Control Register (XBHC)

The expansion bus host port interface control (XBHC) register (shown in
Figure 8–18 and described in Table 8–16) configures expansion bus host port
parameters.

The START bit field in the XBHC register is not cleared to zero after a transfer
is completed. Writing ’00’ to the the START field, when a transfer in progress
is stalled by XRDY high, aborts the transfer. When a transfer is aborted the
XBIMA and XBEA registers and the XFRCT transfer counter reflect the state
of the aborted transfer. Using this state information, the transfer can be re-
started. Writing other values than ’00’ to the START field is not recommended.

Figure 8–18. Expansion Bus Host Port Interface Control Register (XBHC)

31 16

XFRCT

RW,+0000 0000 0000 0000

15 6 5 4 3 2 1 0

Reserved INTSRC START Reserved DSPINT Reserved

R,+0000 0000 00 RW, +0 RW, +00 RW, +0

Note: R = Read, W = Write, +0 =Reset value

Expansion Bus Host Port Operation

 8-26

Table 8–16. Expansion Bus Host Port Interface Control Register (XBHC) Description

Field Description

DSPINT The external master to DSP interrupt (used to wake up the DSP
from reset) is cleared when this bit is set.

START[1:0] Start bus master transaction

Start = 01: starts a write burst transaction from address
pointed by XBIMA to address pointed by XBEA

Start = 10: starts a read burst transaction from address
 pointed by XBEA to address pointed by XBIMA

Start = 11 reserved

Writing ’00’ to the the START field, while an active transfer is
stalled by XRDY high, aborts the transfer. When a transfer is
aborted the XBUS registers reflect the state of the aborted
transfer. Using this state information, you can restart the
transfer.

INTSRC The XBUS host port interrupt can be caused either by DSPINT
bit or by XFRCT counter. The INTSRC selects interrupt source
between DSPINT and XFRCT counter.

INTSRC=0: interrupt source is DSPINT bit

INTSRC=1: interrupt is generated at the completion of the
master transfer initiated by writing to the START bit-field.

XFRCT Transfer counter controls the number of 32-bit words
transferred between the expansion bus and an external slave
when the CPU is mastering the bus (range of up to 64k).

Expansion Bus Host Port Operation

8-27Expansion Bus

8.5.2 Synchronous Host Port Mode

In this mode host port has address and data signals multiplexed and is i960Jx
compatible. This allows a minimum glue interface to the PCI bus, since major
PCI interface chip manufacturers adopted the i960 bus for local bus on their
chips.

The synchronous host port can also easily interface to many other common
processors, and essentially act in a slave only mode. This is done by simply
not initiating transactions on the XBUS.

The XBUS has the capability to initiate and receive burst transfers.

Table 8–17 lists pin function in the XBUS synchronous host port mode:

Table 8–17. Expansion Bus Pin Description (Synchronous Host Port Mode)

Signal
Symbol

Signal
Type

Signal
Count

Signal
Name Signal Function

XCLKIN I 1 Clock
Input

XBUS clock (maximum clock speed is 1/4 of the CPU clock
speed.

XCS I 1 Chip
Select

Selects the DSP as a target of an external master.

XHOLD I/O/Z 1 Hold
Request

Case 1 (Internal bus arbiter enabled)
XHOLD is asserted by external device to request use of the
XBUS. The DSP asserts XHOLDA when control is granted.

Case 2 (Internal bus arbiter disabled)

The DSP wakes up from reset as slave on the bus.

XHOLD is asserted by the DSP to request use of the XBUS.
The XBUS arbiter asserts XHOLDA when control is
granted.

XHOLDA I/O/Z 1 Hold
acknowledge

Case 1 (Internal bus arbiter disabled)

The DSP wakes up from reset as slave on the bus.

The XBUS arbiter asserts XHOLDA when control is granted
in response to XHOLD. The bus should not be granted to
the DSP unless requested by XHOLD.

Case 2 (Internal bus arbiter enabled)

The DSP wakes up from reset as master of the bus.

XHOLDA is asserted by the DSP when control is granted in
response to XHOLD.

XD[31:0] I/O/Z 32 Address/
data bus

Data

Expansion Bus Host Port Operation

 8-28

Table 8–17. Expansion Bus Pin Description (Synchronous Host Port Mode) (Continued)

Signal
Symbol Signal Function

Signal
Name

Signal
Count

Signal
Type

XBLAST I/O/Z 1 Burst last Signal driven by the current XBUS master to indicate the
last transfer in a bus access. Input polarity selected at boot.
Output polarity is always active low.

XAS I/O/Z 1 Address
Strobe

Indicates a valid address and the start of a new bus access.
Asserted for the first clock of a bus access.

XCNTL I 1 Control
signal

This signal selects between XBD and XBISA register.

XCNTL=0: access is made to the XBD register

XCNTL=1: access is made to the XBISA register

XBE[3:0]/
XA[5:2]

I/O/Z 4 Byte
enables

During host-port accesses these signals operate as
XBE[3:0].

BE3 byte enable 3: XD[31:24]

BE2 byte enable 2: XD[23:16]

BE1 byte enable 1: XD[15:8]

BE0 byte enable 0: XD[7:0]

Note:
For XBD access:
 8-bit data must be byte-aligned
 16-bit data must be halfword-aligned
 32-bit data must be word-aligned.
For XBISA access, all XBE[3:0] must be active low.

XW/R I/O/Z 1 Read/write Write/read enable

Polarity of this signal is configured during boot.

XRDY I/O/Z 1 Ready out
Ready in

Active(low) during host-port access. XRDY is an input when
the DSP owns the bus. When the DSP does not own the
bus, XRDY is not driven until a request is made to the DSP.

XBOFF I 1 Bus
Back-Off

When asserted, suspends the current access and the DSP
releases ownership of the XBUS.

XWAIT O 1 Wait Ready output when the DSP intitiates transfers on the
XBUS.

Expansion Bus Host Port Operation

8-29Expansion Bus

8.5.2.1 TMS320C62x Master on the Expansion Bus

When the C62x is the master of the XBUS, it can initiate a burst read or write
to a peripheral on the bus.

When the DSP controls the bus, data flow is controlled in a manner similar to
a DMA transfer; however, the XBUS host channel controls the actual data
transfer. The event flow is as follows:

1) The DSP must initialize the XBEA, which dictates where in the external
slave memory map that data is accessed.

2) The XBIMA must be set to specify the source or destination address in the
DSP memory map where the transaction starts.

3) The XFRCT field of the expansion bus host port control (XBHC) register
field is set to control the number of 32-bit words being transferred.
Note: Only 32-bit transfers are supported by the XBUS when the DSP is
the master in synchronous host port mode.

4) The start field is written,controlling whether the external access is a read
or write burst.

An interrupt is generated at the completion of the transfer if specified by the
INTSRC bit in the XBHC register.

Figure 8–19 and Figure 8–20 show examples of timing diagrams for a burst
read and write when the DSP is mastering the bus. In this case internal bus
arbiter is disabled (XHOLD is output and XHOLDA is input) and DSP wakes
up from reset as slave on the XBUS.

The XWAIT signal prevents data overflow/underflow when the DSP is a master
on the XBUS. The XWAIT signal, which is multiplexed with the XWE signal,
can be thought of as a ready output when the DSP initiates transfers on the
XBUS. When the DSP has initiated a transaction, the DSP indicates that it is
not ready to deliver/receive new data by asserting the XWAIT signal low.

Note: XWAIT is an output only signal in synchronous host port mode.

Expansion Bus Host Port Operation

 8-30

Burst Read Transfer

The timing presented in Figure 8–19 can be referenced for a visual description
of the steps required to complete a burst read initiated by the DSP and throttled
by the XWAIT and XRDY signals.

Figure 8–19. Read Transfer Initiated by the DSP and Throttled by
XWAIT and XRDY (Internal Bus Arbiter Disabled)

XCLKIN (input)

XHOLD (output)

XHOLDA (input)

XAS (output)

XW/R (output)

XBLAST (output)

XBE[3:0] (output)

XD[31:0] (i/o)

XRDY (input)

XWAIT (output)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

BE

D1 D2 D3 D4 D5 D6 D7 D8AD

This is the step-by-step description of the events marked above the wave-
forms in Figure 8–19:

1) The DSP requests the XBUS by asserting XHOLD output.

2) The DSP waits for the XBUS.

3) The external bus arbiter asserts the XHOLDA signal, and the DSP starts
driving the bus. The XAS, XW/R, XBLAST, XBE[3:0] signals become
outputs, and the XRDY signal becomes an input.

4) Address phase: During this phase, XAS is asserted and the address is
presented on the XBUS.

Expansion Bus Host Port Operation

8-31Expansion Bus

5) Data phase: The external device is not ready to deliver data, as indicated
by XRDY high.

6) Same as step 5.

7) Same as step 5.

8) Same as step 5.

9) The external device presents requested data (D1), and asserts XRDY.

10) The external device is not ready to deliver next data. The XRDY is ne-
gated.

11) Same as step 10

12) Same as step 10

13) The external device presents next data (D2), and asserts XRDY.

14) The external device presents next data (D3), and XRDY stays asserted.

15) The external device presents next data (D4), and XRDY stays asserted.

16) The external device presents next data (D5), and XRDY stays asserted.
The DSP can not accept the new data (D5), and asserts XWAIT.

17) The external device recognizes XWAIT, and keeps the D5 on the XBUS.
The XRDY is asserted and indicates that the external device is ready wait-
ing for the DSP to accept the data.

18) The DSP deasserts XWAIT, and accepts D5.

19) The external device presents next data (D6), and XRDY stays asserted.

20) The external device presents next data (D7), and XRDY stays asserted.

21) The external device presents the last data (D8), and the DSP asserts the
XBLAST.

22) The recovery cycle.

23) The DSP negates the XBUS request (XHOLD), and turns off the outputs.

Note: XWAIT is an output only signal in synchronous host port mode.

Expansion Bus Host Port Operation

 8-32

Burst Write Transfer

The timing presented in Figure 8–20 can be referenced for a visual description
of the steps required to complete a burst write initiated by the DSP and throttled
by the XWAIT and XRDY signals.

Figure 8–20. Write Transfer Initiated by the DSP and Throttled by
 XWAIT and XRDY (Internal Bus Arbiter Disabled)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

XCLKIN (input)

XHOLD (output)

XHOLDA (input)

XAS (output)

XW/R (output)

XBLAST (output)

XBE[3:0] (output)

XD[31:0] (i/o)

XRDY (input)

XWAIT (output)

BE

AD D1 D2 D3 D4 D5 D6 D7 D8

This is the step-by-step description of the events marked above the wave-
forms in Figure 8–20:

1) The DSP requests the XBUS (XHOLD asserted).

2) The DSP waits for the XHOLDA signal to be asserted by the external arbi-
ter.

3) The external bus arbiter asserts the XHOLDA signal, the XAS, XW/R,
XBLAST, and XBE[3:0] signals become outputs, and the XRDY signal be-
comes an input.

4) Address phase: During this phase, the XAS is asserted and the address
is presented on the XBUS.

Expansion Bus Host Port Operation

8-33Expansion Bus

5) Data phase: During this phase, data (D1) is presented by the DSP and the
external device is ready to accept the data, which is indicated by XRDY
being active.

6) The DSP presents next data (D2). The external device indicates not ready
condition, which is indicated by XRDY being inactive.

7) The DSP is holding data D2 on the XBUS since the external device is still
not ready.

8) External device finally accepts the D2.

9) The DSP presents next data (D3). The external device is ready to take D3.

10) The DSP presents next data (D4). The external device is ready to take D4.

11) The DSP presents next data (D5). The external device is ready to take D5.

12) The DSP is not ready to present D6 and asserts XWAIT. The external de-
vice is waiting for the DSP to present new data.

13) Same as step12.

14) Same as step 12.

15) The DSP presents next data (D6), and negates XWAIT. The external de-
vice is ready to take D6.

16) The DSP presents next data (D7). The external device is ready to take D7.

17) The DSP presents the last data (D8), and asserts XBLAST. The external
device is ready to take D8.

18) Recovery cycle

19) The DSP removes the bus request (XHOLD), and is turns off the outputs.

Note: XWAIT is an output only signal in synchronous host port mode.

To prevent contention on the XBUS, one recovery state between the last data
transfer and next address cycle is inserted.

Expansion Bus Host Port Operation

 8-34

Preventing Deadlocks with Backoff

The XBUS has the XBOFF signal to prevent deadlocks while the DSP is per-
forming a master transfer. When asserted, XBOFF suspends the current
access and causes the DSP to release ownership of the XBUS. Figure 8–21
is timing diagram for the XBOFF signal.

The backoff is only recognized during active master transfers when XRDY
indicates a not-ready status and one of the following conditions exists:

1) The external device is requesting the XBUS (XHOLD = 1), when the internal
bus arbiter is enabled (XARB = 1)

or

2) The DSP is the XBUS master (XHOLD = 1 and XHOLDA = 1), and the
internal bus arbiter is disabled (XARB = 0).

The backoff request is not serviced until all current master transfers are
completed internally. This allows read data to be flushed out of the pipeline.
The XBOFF signal is not recognized during I/O port transfers.

Figure 8–21. External Device Requests the Bus From the DSP Using XBOFF

XCLKIN

XHOLD (output)

XHOLDA (input)

XHOLD (input)

XHOLDA (output)

XAS (output)

XW/R (output)

XBLAST (output)

XD[31:0]

XRDY

XBOFF (input)

1 2 3 4 5 6 7 8

AD AD D0 D1 D2 D3

In
te

rn
al

B
us

A
rb

ite
r

D
is

ab
le

d

In
te

rn
al

B
us

A
rb

ite
r

E
na

bl
ed

Expansion Bus Host Port Operation

8-35Expansion Bus

The timing diagram shown in Figure 8–21 can be referenced for a visual
description of the steps involved in release of the XBUS ownership as initiated
by the XBOFF signal. The diagram illustrates the backoff condition for both in-
ternal bus arbiter enabled and internal bus arbiter disabled . The step-by-step
description of the events in Figure 8–21 follows:

1) The DSP is the XBUS master and initiates address phase of a read trans-
action. The XAS signal is active and valid address is presented.

2) The XRDY signal is high indicating that the external device is not ready to
perform the transaction. Also, the external device drives XHOLD active,
indicating a bus request.

3) The DSP is still holding the XBUS waiting for XRDY to become low.
4) The external device asserts XBOFF, indicating a potential deadlock condi-

tion.
5) The DSP responds by releasing the XBUS. When the internal bus arbiter is

enabled, the DSP asserts XHOLDA. When the internal bus arbiter is dis-
abled the DSP deasserts XHOLD. It can take a several clock cycles before
the DSP responds to XBOFF. Figure 8–21 shows the fastest response
time, one cycle.

6) The XBUS ownership changes. The new master drives the XBUS. XBOFF
is deasserted.

7) The external device releases the bus after performing the desired transac-
tions.

8) The XHOLDA is removed, and the DSP resumes the XBUS ownership.
9) The DSP performs a burst read of four words.

The DSP automatically tries to restart the transfer interrupted by a backoff from
the point where the interruption took place. The transfer restart is completely
transparent to the user.

Expansion Bus Host Port Operation

 8-36

8.5.2.2 TMS320C62x Slave on the Expansion Bus

The external host can access the different expansion bus host port registers
by driving the XCNTL signal as follows:

� XCNTL = 0
Reads or writes the expansion bus data (XBD) register.

� XCNTL = 1
Reads or writes the expansion bus internal slave address (XBISA)
register.

Every transaction initiated by the host on the XBUS is a two-step process.
First, the host has to set the XBISA register, and then transfer the data to/from
the address pointed by XBISA register. Bursts longer than one word must take
place with auto-incrementing of the XBISA register. Therefore, the AINC bit
must always be cleared to 0.

To read/write from the DSP memory space, the host must follow the following
sequence:

1) The host writes the transfer source/destination address to the XBISA reg-
ister and clears the AINC bit (bit one of the XBISA register).

2) The host reads/writes to/from the address specified by XBISA. Read or
write is dictated by the XBISA XW/R signal. The XBISA register is autoin-
cremented since bit one of the XBISA register must be cleared by the ex-
ternal host.

3) If the transfer is a burst, dictated by the BLAST signal, data is continuously
read or written. If a multi-word burst is being done, all XBEx signals must
be low, because only 32-bit word bursts are allowed. If less than 32 bits are
transferred (specified by XBEx signals), then only single element transfers
are allowed.

Note: XWAIT is not used in slave mode.

Expansion Bus Host Port Operation

8-37Expansion Bus

Cycle Description

Each access initiated by the external host can be broken up into distinct cate-
gories:

� Address phase (Ta): During the address phase, the DSP is selected with
the XCS input and the address phase is started with a low pulse on the
XAS signal. During this phase, the DSP determines if the external master
is doing a read or write cycle (XW/R input) and which XBUS register is be-
ing accessed (via the XCNTL input).

� Wait/data phase (Tw/Td): Immediately after the address phase, the
transaction enters either the wait phase or data phase. For a read cycle,
there is at least one wait phase before the DSP presents the data to the
external host. This is controlled via the XRDY output of the DSP. If the
XRDY signal is high, this indicates to the external host that the DSP is not
ready to receive data for a write, or is not ready to present data for a read,
and is in the wait phase. The data phase is entered when the DSP asserts
XRDY signal, indicating that read data should be latched by the external
host or that write data has been latched by the DSP.

� Recovery phase (Tr): The recovery phase is entered after final data
phase of a burst access or after the data phase of a single access. When
the DSP is a slave, if the external master has a multiplexed address/data
bus, it is recommended that the external master insert at least one recov-
ery phase between a read data phase and a subsequent address phase
in order to avoid potential bus contention.

Expansion Bus Host Port Operation

 8-38

Burst Write Transfer

The timing diagram shown in Figure 8–22 can be referenced for a visual
description of the steps required to complete a burst write initiated by an
external host and throttled by the XRDY signal.

Figure 8–22. Expansion Bus Master Writes a Burst of Data to the DSP

D4D3D2D1

9

Ready

8765

Ready

43

Wait

21

DSP latches CNTL

XCLKIN

XCS
(input)

XCNTL
(input)

XW/R
(input)

XBE[3:0]
(input)

XBLAST
(input)

XAS
 (input)

XD[31:0]

XRDY
 (output)

Write

0000 = Word

0 = XBD1 = XBISA

Write

10 11

Internal src/dst addr

Ready

The boot configuration for XBLAST and XW/R: BLPOL = 0 and RWPOL = 0.
See Table 8–17 for more details.

Expansion Bus Host Port Operation

8-39Expansion Bus

The step-by-step description of the events marked above the waveforms in
Figure 8–22 follows:

1) The XCS, XAS and XCNTL signals are low, low, and high respectively, in-
dicating XBISA register as the destination for the following transaction.
The XW/R is high specifying that a write access is taking place.

2) The DSP begins driving the XRDY output in response to a transfer initiated
by the external host. A high XRDY indicates that the DSP is not ready.

3) The data is written to the XBISA register when the DSP asserts the XRDY-
output low.

4) The DSP inserts one or more not-ready cycles (XRDY=1) between the ad-
dress phase and the first data phase.

5) The XAS and XCNTL signals are both low (and XCS is low), indicating
XBD register as the destination for the following transaction. The XW/R is
high specifying that a write access is taking place.

6) The DSP inserts one not-ready cycle (XRDY=1).
7) The XBUS master presents the valid data. The data is written to the XBD

register on the rising edge of the XCLKIN when XRDY is active-low.
8) Same as step 7.
9) The DSP is not ready to accept next data, which is indicated by XRDY

high.
10) Same as step 7.
11) The XBUS master indicates that the last write transaction is taking place

by asserting the XBLAST signal. The data is written to the XBD register on
the rising edge of the XCLKIN.

Note: XWAIT is not used in slave mode.

Expansion Bus Host Port Operation

 8-40

Burst Read Transfer

The timing diagram shown in Figure 8–23 can be referenced for a visual
description of the steps required to complete a burst read initiated by an
external host and throttled by the XRDY signal.

Figure 8–23. The Bus Master Reads a Burst of Data From the DSP

D4D3D2D1

98765

Ready

43

Wait

21

DSP latches CNTL

XCLKIN

XCS
(input)

XCNTL
(input)

XW/R
(input)

XBE[3:0]
(input)

XBLAST
(input)

XAS
 (input)

XD[31:0]

XRDY
 (output)

Read

0000 = Word

Internal src/dst addr

0 = XBD1 = XBISA

Write

10 11

Wait

The boot configuration for XBLAST and XRW: BLPOL = 0 and RWPOL = 0.
See Table 8–17 for more details.

Expansion Bus Host Port Operation

8-41Expansion Bus

The step-by-step description of the events marked above the waveforms in
Figure 8–23 follows:

1) The XCS, XAS and XCNTL signals are low, low and high respectively,
indicating XBISA register as the destination for the following transaction.
The XW/R is high specifying that a write access is taking place.

2) The DSP begins driving the XRDY output in response to a transfer initiated
by the external host. A high XRDY indicates that the DSP is not ready.

3) The data is written to the XBISA register when the DSP asserts the XRDY
output low.

4) The DSP inserts one or more not-ready cycles (XRDY=1) between the ad-
dress phase and the first data phase.

5) The XAS and XCNTL signals are both low (and XCS is low), indicating
XBD register as the destination for the following transaction. The XW/R is
low specifying that a read access is taking place.

6) The DSP inserts one not-ready cycle (XRDY=1).
7) The ‘DSP presents the valid data, and drives XRDY low.
8) Same as step 7.
9) The DSP is not ready to present the next data, which is indicated by XRDY

high.
10) Same as step 7.
11) The XBUS master indicates that the last read transaction is taking place by

asserting the XBLAST signal.

Note: XWAIT is not used in slave mode.

Expansion Bus Host Port Operation

 8-42

8.5.3 Asynchronous Host Port Mode

This mode is slave only, it uses a 32-bit data path, and it is similar to the HPI
on the C6201. The asynchronous host port mode is used to interface to asyn-
chronous microprocessor buses.

A list of the signals when the XBUS operates in the asynchronous host port
mode is given in Table 8–18.

Table 8–18. Expansion Bus Pin Description (Asynchronous Host Port Mode)

Signal
Symbol

Signal
Type

Signal
Count Signal Name Signal Function

XCS I 1 Chip Select Selects the DSP as a target of an external master.

XD[31:0] I/O/Z 32 Data Bus

XBE[3:0] I 4 Byte Enables Functionality of these signals is the same as on the
DSP HPI (during a read XBE do not matter). During a
write:

BE3 byte enable 3– XD[31:24]

BE2 byte enable 2– XD[23:16]

BE1 byte enable 1– XD[15:8]

BE0 byte enable 0– XD[7:0]

Note:
8-bit data must be byte-aligned.
16-bit data must be halfword-aligned.
32-bit data must be word-aligned.

XCNTL I 1 Control Signal This signal selects between XBD and XBISA register.

XCNTL=0, access is made to the XBD register

XCNTL=1, access is made to the XBISA register

XW/R I 1 Read/Write Polarity of this signal is configured during boot.

XRDY O/Z 1 Ready Out Ready signal indicates normally not ready condition.
This signal is always driven in asynch host mode when
the DSP does not own the bus.

The XCNTL signal selects which internal register the host is accessing. The
state of this pin selects if access is made to the expansion bus internal slave
address (XBISA) register or, expansion bus data (XBD) register.

Expansion Bus Host Port Operation

8-43Expansion Bus

If the XBUS host port operates in the asynchronous mode, every transaction
initiated by the host on the XBUS is a two-step process. The host first has to
set the XBISA register, and then transfer the data to/from the address pointed
to by the XBISA register. The data transfer can take place with or without auto-
incrementing the XBISA register. Whether or not the XBISA gets auto-increm-
ented is determined by AINC bit-field in bit one of the XBISA register.

In order to read/write from the DSP memory spaces, the host must follow the
following sequence:

1) Host writes address to the XBISA register, and sets AINC accordingly in
bit one of XBISA.

2) Host reads/writes to/from the address specified by the XBISA register.
Read or write is dictated by the XW/R signal. The XBISA register is auto-in-
cremented or not, depending upon what is written to the AINC bit during
step 1.

If the XBUS host port is configured to operate in asynchronous mode the XCS
signal is used for four purposes:

1) To select the XBUS host port as a target of an external master.
2) On a read, the falling edge of XCS initiates read accesses.
3) On a write, the rising edge of XCS initiates write accesses.
4) The XCS falling edge latches XBUS host port control inputs including:

XW/R and XCNTL.

The XRDY signal of the DSP functions differently than the C6201 HPI READY
signal. The XRDY signal indicates normally not ready condition (active low
READY signal is internally OR-ed with XCS signal in order to obtain XRDY).

Read and write timing diagrams for asynchronous the XBUS host port opera-
tion in the asynchronous mode are shown in Figure 8–24.

Expansion Bus Host Port Operation

 8-44

Figure 8–24. Timing Diagrams for Asynchronous Host Port Mode of the Expansion Bus

XCNTL (input)

word

word

XR/W (input)

XCS (input)

XRDY (output)

XCNTL (input)

XD[31:0]

XBE[3:0] (input)

XR/W (input)

XCS (input)

XRDY (output)

XD[31:0]

XBE[3:0] (input)

Asynchronous Host Port Write Timing

Asynchronous Host Port Read Timing

Expansion Bus Arbitration

8-45Expansion Bus

8.6 Expansion Bus Arbitration

Two signals, XHOLD and XHOLDA, are provided for expansion bus arbitra-
tion. The internal bus arbiter is disabled or enabled depending on the value on
the expansion data bus during reset.

The XARB bit in the expansion bus global control (XBGC) register indicates
if the internal bus arbiter is enabled or disabled. This is shown in Table 8–19.

Table 8–19. XARB Bit Value and XHOLD/XHOLDA Signal Functionality

XARB Bit (Read Only) XHOLD XHOLDA

0 (Indicates disabled internal bus arbiter) Output Input

1 (Indicates enabled internal bus arbiter) Input Output

If the internal bus arbiter is enabled, the DSP wakes up from reset as the bus
master. If internal bus arbiter is disabled, the DSP wakes up from reset as the
bus slave. The DMA controller releases the XBUS between frames if a DMA
block transfer is in progress. When the DSP releases the XBUS, the host port
signals become tristated, except for the I/O port signals (XWE/XWAIT, XOE,
XRE, XCE[3:0], and XFCLK) which are not affected.

8.6.1 Internal Bus Arbiter Enabled

In this mode the DSP owns the XBUS by default. The DSP wakes up from reset
as the master of the XBUS, and all other devices must request the bus from
DSP. This mode is preferred when connecting one DSP to a PCI interface chip.

When the DSP owns the XBUS, both XHOLD (input) and XHOLDA (output)
are low. XHOLD is asserted by an external device to request use of the XBUS.
The DSP asserts XHOLDA when bus request is granted. The XBUS is not
granted unless requested by XHOLD.

Figure 8–25 illustrates XHOLD and XHOLDA functionality when the internal
bus arbiter is enabled. In this mode the DSP grants the XBUS to the requester
only if no internal transfer requests to the XBUS are pending.

During a synchronized slave single word write to the XBD, if XHOLD input is
de-asserted quickly enough after XBLAST = 0 (in the same cycle) the transfer
gets corrupted. No single word slave write with the simultaneous removal of
the XHOLD and assertion of the XBLAST should be allowed (XARB =1). In
these cases the XHOLD should be registered before connecting it to the
XHOLD input on the DSP.

Expansion Bus Arbitration

 8-46

Figure 8–25. Timing Diagrams for Bus Arbitration – XHOLD/XHOLDA
(Internal Bus Arbiter Enabled)

OUTPUTS

XHOLD(input)

XHOLDA(output)

External Device Mastering the Bus

8.6.2 Internal Bus Arbiter Disabled

In this mode, the DSP acts as slave on the XBUS by default. This mode is pre-
ferred if the DSP is interfacing to an external host, or if multiple DSPs are con-
nected to a PCI interface chip.

When the DSP owns the XBUS, both XHOLD (output) and XHOLDA (input)
are high. To request the XBUS (for example to access a FIFO) the DSP asserts
XHOLD. The external XBUS arbiter asserts XHOLDA when control is granted.
The XBUS should not be granted to the DSP unless requested by XHOLD.

Figure 8–26 illustrates XHOLD and XHOLDA functionality in this mode.

Figure 8–26. Timing Diagrams for Bus Arbitration XHOLD/XHOLDA
(Internal Bus Arbiter Disabled)

OUTPUTS

XHOLD(output)

XHOLDA(input)

The DSP is Master of the Bus

When the internal bus arbiter is disabled (XARB = 0) and the XBUS master
transfer is initiated by writing to the start bit field of the XBHC register, the DSP
asserts its XHOLD request. If the host initiates a transfer to the DSP instead
of granting the DSP access to the XBUS, the DSP drops its XHOLD request,
as shown in Figure 8–27.

The DSP drops the bus request only if the pending request is for a transfer to
the XBUS host port. The DSP will reassert the bus request for pending master
transfers after the host completes its transfer (see Figure 8–27). For more de-
tail see Table 8–20.

Expansion Bus Arbitration

8-47Expansion Bus

Figure 8–27. XHOLD Timing When the External Host Starts a Transfer to DSP Instead of
Granting the DSP Access to the Expansion Bus(Internal Bus Arbiter Disabled)

XHOLDA (input)

XAS (input)

XBLAST (input)

XCS (input)

XHOLD (output)

Table 8–20 shows possible scenarios that can happen when the internal bus
arbiter is disabled (XARB =0).

Table 8–20. Possible Expansion Bus Arbitration Scenarios
(Internal Bus Arbiter Disabled)

XARB = ’0’

XBOFF
asserted

Current
External Host
Activity Current DSP state Actions

DMA request to the
XBUS I/O port pend-
ing

� If the DMA request comes before or at the same time
when the host started the transfer, the DSP asserts
the XHOLD and keeps it asserted during the host
transfer.

� If the DMA request came after the host started the
transfer, the DSP waits for the host transfer to com-
plete and then asserts XHOLD.

N/A
Host transfer
to the XBUS in
progress

DMA request to
XBUS I/O port, and
auxiliary DMA re-
quests are pending

After the DSP gets the XBUS the pending auxiliary
DMA request is executed first (since for the expansion
bus, the aux. DMA channel always has priority over the
other DMA channels). After the DMA transfer is com-
pleted, the DSP starts the auxiliary DMA transfer and
does not drop the XHOLD between these two transfers.

Auxiliary DMA re-
quest pending

� If the auxiliary DMA request comes prior to the host
starting the transfer, the DSP asserts the XHOLD and
keeps it asserted until the host starts the transfer.
Once the host starts the transfer, the DSP drops the
request (see Figure 8–19). The DSP re-asserts the
XHOLD after the host completes the transfer.

� If the auxiliary DMA request comes after the host is
started the transfer, the DSP waits for the host trans-
fer to complete and asserts the XHOLD.

Expansion Bus Arbitration

 8-48

Table 8–20. Possible Expansion Bus Arbitration Scenarios
(Internal Bus Arbiter Disabled)

XARB = ’0’

Actions
XBOFF

asserted ActionsCurrent DSP state

Current
External Host
Activity

DMA request to
XBUS I/O port pend-
ing

The DSP asserts the XHOLD, and once it gets the
XBUS the transfer starts.

NO NONE
DMA request to
XBUS I/O port, and
auxiliary DMA re-
quests are pending

After the DSP gets the XBUS the pending auxiliary
DMA request is executed first (since for the XBUS, the
auxiliary DMA channel always has priority over the rest
of the DMA channels). After the auxiliary DMA transfer
is completed, the DSP will start the DMA transfer and
does not drop the XHOLD between these two transfers.

Auxiliary DMA re-
quest pending

The DSP asserts the XHOLD, and once it gets the
XBUS the transfer starts.

DMA transfer to
XBUS I/O port in
progress

XBOFF is ignored if a DMA transfer to the XBUS I/O
port is in progress.

YES N/A

Auxiliary DMA trans-
fer in progress

The DSP releases ownership of the XBUS as soon as
possible. After that, the DSP requests the XBUS to
complete the transfer interrupted by the XBOFF.

YES N/A

Auxiliary DMA trans-
fer in progress, and
DMA request to
XBUS I/O port pend-
ing

The DSP stops the current auxiliary DMA transfer in
progress, and starts executing the pending DMA trans-
fer to the XBUS I/O port. After the pending DMA trans-
fer is completed, the DSP releases the XBUS to the
external device. Some time afterwards, the DSP re-
quests the XBUS to complete the transfer interrupted
by the XBOFF.

Expansion Bus Arbitration

8-49Expansion Bus

8.6.3 Expansion Bus Requestor Priority

The auxiliary DMA channel for the XBUS is always given the highest priority,
followed by the standard DMA priority (DMA0 highest).

Priority Description

Highest Auxiliary channel

DMA0

DMA1

DMA2

Lowest DMA3

In many situations the priority between the auxiliary channel and the standard
DMA channels is first come first serve, because the auxiliary channel cannot
preempt the standard DMA channels during a frame transfer and the standard
DMA channels cannot preempt the auxiliary channel. The standard DMA
channels can preempt each other.

The auxiliary channel can only acquire the bus between DMA frames or if no
other DMA activity is occurring. For example, if an unsynchronized DMA trans-
fer is set up to perform 4 frames of 32 elements each, and an auxiliary transfer
becomes pending, either by an external host asserting the XHOLD request
signal if the internal arbiter is enabled or by the DSP attempting to begin a
master transfer by writing to the start bits of the XBHC register(internal arbiter
enabled or disabled), the auxiliary request will be ignored during the frame
transfer to the expansion memory. After the first frame, however, the auxiliary
request is recognized and the DMA transfer to the expansion memory stops
to allow the host transfer to begin.

To allow host transfers sufficient access to the XBUS, DMA transactions
should be set up so that the frame length is as short as possible. The size of
frame transfers to the XBUS I/O port define the longest amount of time that
host transactions can be blocked from accessing the XBUS.

Boot Configuration Control via Expansion Bus

 8-50

8.7 Boot Configuration Control via Expansion Bus

The pull up/pull down resistors on the expansion bus XD[31:0] pins are used
to determine the boot and device configurations during reset. The boot and de-
vice configurations include:

� Boot-mode of the device
� Lendian mode selection
� FIFO mode
� Internal expansion bus arbiter enable/disable
� Expansion bus host port mode
� Polarity of read/write XW/R and XBLAST control signals
� Memory type used in each XBUS memory space.

See Chapter 11, Boot Modes and Configuration, for details.

9-1

PCI

This chapter describes the PCI port of the TMS320C6000� devices. Also refer
to the PCI Specification revision 2.2 for details on PCI interface.

Topic Page

9.1 Overview 9-2.

9.2 PCI Architecture 9-6.

9.3 PCI Registers 9-9.

9.4 TMS320C6000/PCI Memory Map 9-16.

9.5 Byte Addressing 9-18.

9.6 PCI Address Decode 9-18.

9.7 PCI Transfers to/from Program Memory (C62/C67x) 9-19.

9.8 Slave Transfers 9-20.

9.9 Master Transfers 9-23.

9.10 Interrupts and Status Reporting 9-31.

9.11 Reset 9-39.

9.12 Boot Configuration for PCI Port 9-40.

9.13 EEPROM Interface 9-41.

9.14 Error Handling 9-48.

9.15 Power Management (TMS320C62x/C67x only) 9-50.

9.16 PCI Configuration Registers Bit Field Descriptions 9-60.

Chapter 9

Overview

 9-2

9.1 Overview

The PCI port supports the following PCI features:

� Conforms to PCI specification revision 2.2
� Conforms to power management interface specification revision1.1
� Meets requirements of PC99
� PCI master/slave interface
� 32-bit address/data bus at 33 MHz
� Single function device
� Medium address decode
� PCI access to all on-chip RAM, peripherals, and external memory (via EMIF)
� Supports memory read, memory read multiple, memory read line, and memory

write commands
� Unlimited slave-access burst lengths
� Master transfers of up to 64K bytes
� Single-word transfers for I/O read/writes
� Single-word transfers for configuration register access
� 5-V or 3.3-V input signaling, 3.3-V output signaling
� Many configuration register contents (subsystem ID/subsystem vendor ID, etc.)

initialized from an external serial EEPROM at PCI reset.
� Supports 4-wire serial EEPROM interface
� EEPROM interface used directly by PCI port without DSP intervention on PCI re-

set. DSP software control of EEPROM after PCI reset.
� PCI interrupt request under DSP program control
� DSP interrupt via PCI I/O cycle
� DSP power control via software
� Peripheral power control via software
� Software-controlled assertion of PME from D0, D1, D2, D3hot
� Hardware-controlled assertion of PME on power wakeup active from D3cold. Op-

tional hardware-controlled assertion of PME from D0, D1, D2, D3hot.
� Supports D0, D1, D2, D3hot, D3cold power management modes
� Implements PCI power management control status register “sticky” bits from logic

powered by 3.3Vaux
� Four FIFOs for efficient data transfer (master write, master read, slave write, slave

read)
� Independent master/slave operation
� Independent slave read/slave write operation
� Three PCI base address registers (prefetchable memory, non-prefetchable

memory, I/O)
� Disconnect with retry on memory read line, memory read multiple to prefetchable

memory
� No wait states inserted by DSP on PCI master or slave transactions
� TMS320C6000 contains the logic required to implement a fully compliant PCI

Specification revision 2.2 bursting master/slave with access into the DSP’s
memory map (peripherals, on-chip RAM, and external through the EMIF).

Overview

9-3PCI

The PCI Module does not support:

� PCI special cycles
� PCI interrupt acknowledge cycles
� PCI lock
� PCI memory caching
� 64-bit bus operation
� Operation at frequencies greater than 33 MHz
� Master address/data stepping
� Master combining (for write posting)
� Collapsing
� Merging
� Cache line-wrap accesses
� Reserved accesses
� Message-signaling Interrupts
� Vital product data
� Compact PCI hot swap
� Master-initiated I/O cycles
� Master-initiated configuration cycles

The PCI port for the TMS320C6000 supports connection of the DSP to a PCI
host via the integrated PCI master/slave bus interface. For C62x/C67x, the
PCI port interfaces to the DSP via the auxiliary channel of the DMA Controller.
For C64x, the PCI port interfaces to the DSP via the EDMA internal address
generation hardware. This architecture allows for both PCI Master and slave
transactions, while keeping the DMA/EDMA channel resources available for
other applications.

The C62x/C67x PCI port provides the auxiliary DMA with a source/destination
address in the DSP memory. Address decode is performed by the DMA to se-
lect the appropriate interface (data memory, program memory, register I/O, or
external memory). The auxiliary channel of the DMA controller should be pro-
grammed for the highest priority in order to achieve the maximum throughput
on the PCI interface. Figure 9–1 depicts the PCI interface to the auxiliary chan-
nel of the DMA controller in C62x/C67x.

The C64x uses the EDMA internal address generation hardware to perform
address decode instead. Figure 9–2 shows the C64x PCI interface to the
EDMA.

Overview

 9-4

Figure 9–1. TMS320C62x/C67x Block Diagram

EMIF

PCI

Data Access
Controller

Internal Data
Memory

Internal Program
Memory

D
M

A
 B

us

P
er

ip
he

ra
l C

on
tr

ol
 B

us

Other
Peripherals

Program
Access/Cache

Controller

Direct Memory Access
Controller (DMA)

PLL
Power Down

Logic

Boot
Configuration

C6000 DSP core

Instruction Fetch

Instruction Dispatch

Instruction Decode

Data Path A

A Register File

L1 S1 M1 D1

Control
Registers

Control Logic

Test

In–Circuit
Emulation

Interrupt
Control

Data Path B

B Register File

L2S2M2D2

Note: Refer to the specific device datasheet for its peripheral set.

Overview

9-5PCI

Figure 9–2. TMS320C64x Block Diagram

C6000 DSP core

Instruction fetch

Instruction dispatch

Instruction decode

A register file

Data path A

L1 S1 M1 D1

Control
registers

Control
logic

Test

In-circuit
emulation

Interrupt
control

B register file

Data Path B

L2S2M2D2

L1P cache

L2
memory

L1D cache

Enhanced
DMA

controller

Power down logic

Other
peripherals

EMIFB

PCI

Boot configuration PLL

Note: Refer to the specific device datasheet for its peripheral set.

EMIFA

Table 9–1 lists the differences between the C62x/C67x and C64x PCI ports.

Table 9–1. Differences Between the C62x/C67x and C64x PCI

Features C62x/C67x PCI C64x PCI Section

Memory-mapped register location 01A4xxxxh and 01A8xxxxh
address range

01C0xxxxh and 01C2xxxxh
address range

9.3.3

Internal transfer Auxiliary DMA EDMA internal address
generation hardware

9.1

Byte addressing Word-aligned Master
transactions

Doubleword-aligned master
transactions

9.5

HALT register Supported Does not apply 9.9.7

Supported EEPROM size, bits 1K, 2K, 4K, 16K 4K 9.13

PCI bus clock. Minimum
requirement.

� 4P� � 8P� 9.1

Power management support yes no 9.15

� P= CPU clock period

PCI Architecture

 9-6

9.2 PCI Architecture

The PCI port supports four types of PCI data transactions:

� Slave Writes —External PCI master writes to DSP slave
� Slave Reads —External PCI master reads from DSP slave
� Master Writes —DSP master writes to external slave
� Master Reads —DSP master reads from external slave

The PCI port block diagram, shown in Figure 9–3, consists of the following pri-
mary blocks:

� PCI Bus Interface Unit

The PCI bus protocol is implemented in the PCI bus interface unit (PBIN). To maxi-
mize PCI bus bandwidth, the PCI interface does not insert wait states for slave or
master burst transactions. If the corresponding FIFO goes full or empty, the PCI
interface will disconnect the current transfer.

The PCI bus interface unit will insert the following delays on the PCI bus:

� Slave Writes :
Zero wait state initial transfer
Zero wait state subsequent transfers
Disconnect if FIFO is full, or previous frame is not complete

� Slave Reads:
Prefetchable: Initial access disconnected with retry
Up to 16 wait states inserted for single-word transfers
Zero wait state initial transfer (prefetchable retry)
Zero wait state subsequent transfers (prefetchable retry)
Disconnect if FIFO is empty, or other slave read frame is in progress.

� Master Writes:
Zero wait state initial transfer
Zero wait state subsequent transfers

� Master Reads:
Zero wait state initial transfer
Zero wait state subsequent transfers

� EEPROM Controller

The EEPROM controller interfaces to the 4-wire serial EEPROM interface. On PCI
reset, this controller reads the EEPROM and provides the PCI bus interface unit
with the configuration data. During normal operation, the EEPROM can be ac-
cessed by the DSP via the memory-mapped registers.

� DSP Slave Write Block

The DSP slave write block contains a multiplexer, and a FIFO to transfer data (writ-
ten by the external PCI master) from the PCI bus interface unit to the DSP.

� DSP Slave Read Block

The DSP slave read block contains a multiplexer, and a FIFO to transfer data from
the DSP to the PCI bus interface unit. The external PCI master is the requester of
this data.

PCI Architecture

9-7PCI

� DSP Master Block

The DSP master block is divided into the read and write portions. The write portion
of the DSP master block contains a data multiplexer, and a FIFO for DSP master
writes. It transfers data from the DSP (master) to an external slave via the PCI bus
interface unit. The read portion of the DSP master block contains a data multiplex-
er, and a FIFO for DSP master reads. It transfers data from the PCI bus interface
unit to the DSP (master). The device cannot perform both read and write opera-
tions simultaneously.

� PCI I/O Interface

The I/O interface contains the PCI I/O mapped registers. These registers control
the DMA/EDMA page for slave transactions, indicate the host status, and can in-
terrupt or reset the DSP core.

� DSP Register Interface

The DSP register interface contains DSP memory-mapped registers for the con-
trol of the master interface, PCI host interrupts, and power management.

PCI Architecture

 9-8

Figure 9–3. PCI Port Block Diagram

PCI I/O
interface

PCI bus

Peripheral bus

Aux DMA
/ EDMA

Peripheral
bus

Errors, interrupts, power management

HSR, HDCR, DSPP

EEPROM
Controller

4–wire interface

Aux DMA
 / EDMA

Aux DMA
 / EDMA

DSP slave write block

FIFO

DSP slave read block

FIFO

DSP master block

FIFO

FIFO

PCI bus
interface

unit

DSP
register
interface

PCI Registers

9-9PCI

9.3 PCI Registers

There are three types of PCI registers as follows:

� PCI Configuration Registers —accessible by external PCI host only.
� PCI I/O Registers —accessible by external PCI host only.
� PCI Memory-Mapped Peripheral Registers —accessible by DSP, and accessi-

ble by external PCI host via base address registers.

In addition, there are three resets related to the PCI registers. Each can have
a different effect on the PCI registers, as indicated in the register descriptions
in the following sections. These are the three resets:

� RESET—the main chip reset pin
� Warm Reset —generated by the PCI host (or power management event)
� PRST—the PCI reset signal.

9.3.1 PCI Configuration Registers (Accessible by External PCI Host Only)

The DSP supports all standard PCI configuration registers. These registers,
which can only be accessed from the external host PCI, contain the standard
PCI configuration information (vendor ID, device ID, class code, revision num-
ber, base addresses, power management, etc.).

Depending on the boot and device configuration settings at device reset, the
PCI configuration registers can be autoloaded from an EEPROM at power-on
reset or can be initialized with default values at power-on reset.

If no EEPROM is present, the PCI configuration registers will be initialized with
default data (see section 9.16). If an EEPROM is present, and autoinitialization
is configured, the PCI Configuration Registers cannot be properly accessed
by the host until they are fully read from the EEPROM. PCI host access to the
PCI configuration registers before the completion of autoinitialization will result
in a disconnect with retry.

The CFGDONE and CFGERR bits in the PCI interrupt source register (PCIIS)
and in the DSP reset source/status register (RSTSRC) indicate the status of
the PCI configuration registers autoinitialization. See section 9.10.1 and sec-
tion 9.10.3 for details. The PCI port asserts retries to prevent the host from per-
forming any reads or writes to the PCI configuration registers until
CFGDONE = 1, indicating that the PCI configuration registers have success-
fully been initialized with EEPROM or default values.

Table 9–2 shows the PCI configuration registers. Reads from the reserved
fields return zeros, and writes to them have no effect. These registers conform
to the PCI Specification revision 2.2. Refer to this specification and Power
Management Specification revision 1.1 for more details on the registers and
their operation.

PCI Registers

 9-10

The registers shaded in Table 9–2 can be autoloaded from the EEPROM at
device power up. All registers are reset or loaded at PCI reset (PRST).

In addition to the values indicated above, the EEPROM can also contain val-
ues for the power data, which can be selected by the power management con-
trol/status register (PMCSR). The power data stored in EEPROM are as fol-
lows:

� PC_D0 Power consumed D0
� PC_D1 Power consumed D1
� PC_D2 Power consumed D2
� PC_D3 Power consumed D3
� PD_D0 Power dissipated D0
� PD_D1 Power dissipated D1
� PD_D2 Power dissipated D2
� PD_D3 Power dissipated D3

Table 9–2. PCI Configuration Registers

Address Byte 3 Byte 2 Byte 1 Byte 0

00h read only Device ID Vendor ID

04h read/write Status Command

08h read only Class Code Revision ID

0Ch read/write Reserved Header Type Latency Timer Cache Line Size

10h read/write Base 0 Address (4 Mbyte prefetchable)

14h read/write Base 1 Address (8 Mbyte non-prefetchable)

18h read only Base 2 Address (4 words I/O)

24h read only Reserved

2Ch read only Subsystem ID Subsystem Vendor ID

30h read only Reserved

34h read only Reserved Capabilities Pointer

38h read only Reserved

3Ch read/write Max Latency Min_Grant Interrupt Pin Interrupt Line

40h read only Power Management Capabilities Next_Item_Ptr Cap_ID

44h read only Power Data Reserved Power Management Control/Status

48h FFh Reserved

Note: Shaded registers can be autoloaded from EEPROM at autoinitialization.

PCI Registers

9-11PCI

See section 9.13.2 for details on the EEPROM memory map. See section 9.16
for a detailed description of the PCI configuration registers.

9.3.2 PCI I/O Registers (Accessible by External PCI Host Only)

The PCI I/O registers are located in the PCI host I/O space. They can only be
accessed by the PCI host in the base 1 or base 2 address ranges specified in
the base 1 address register and the base 2 address register, respectively. The
base 1 address register and base 2 address register are PCI configuration reg-
isters, described in section 9.3.1. The locations of the different base addresses
are discussed in section 9.4. All PCI I/O registers are byte-addressable.
Table 9–3 shows the PCI I/O register locations accessed via the I/O base ad-
dress (base 2 address).

Table 9–3. PCI I/O Registers Accessed via I/O Space (Base 2 Memory)

Register/Port Accessed

Address † Reads Writes

I/O Base Addr + 00h HSR HSR

I/O Base Addr + 04h HDCR HDCR

I/O Base Addr + 08h DSPP DSPP

I/O Base Addr + 0Ch Reserved Reserved

† I/O Base Addr is specified in the Base 2 Address Register. See section 9.3.1.

For processors that do not support I/O access, it can also access the PCI I/O
registers via non-prefetchable reads and writes to the base 1 memory. The
memory-mapping is as shown in Table 9–4. The DSP cannot access the I/O
registers at these locations. They are accessible by the PCI host only. No
memory reads/writes or DSP memory-mapped register access will occur at
these locations for base 1 access. Base 0 access to these locations will be
mapped to the DSP memory-mapped registers (not I/O registers).

Table 9–4. PCI I/O Registers Accessed via Base 1 Memory

C62x/C67x Address C64x Address Register/Port Accessed

0x01A7FFF0 0x01C1FFF0 HSR

0x01A7FFF4 0x01C1FFF4 HDCR

0x01A7FFF8 0x01C1FFF8 DSPP

0x01A7FFFC 0x01C1FFFC Reserved

PCI Registers

 9-12

9.3.2.1 Host Status Register (HSR)

The host status register (HSR) is shown in Figure 9–4 and summarized in
Table 9–5.

Figure 9–4. Host Status Register (HSR)
31 5 4 3 2 1 0

Reserved EEREAD CFGERR INTAM INTAVAL INTSRC

HR, +0 HR, +x HR, +0 HR/W,+1 HR, +0 HRW,+0

Table 9–5. Host Status Register (HSR) Bit Field Description

Bits Name
Reset

Source Description

0 INTSRC PRST PCI IRQ source active since last HSR clear. This bit, when 1, indicates that the
DSP asserted the PINTA interrupt by writing the INTREQ bit in the RSTSRC
register, and the INTAM bit in the HSR was a 0.

This bit can be cleared by the PCI Host by writing a 1 to this bit. This will also
negate the PINTA signal.

Reads
INTSRC = 0: PINTA was not asserted after last clear
INTSRC = 1: PINTA was asserted after last clear

Writes
INTSRC = 0: no affect
INTSRC = 1: deassert PINTA

1 INTAVAL PRST Indicates the current PINTA pin value. Writes to this bit have no effect. PINTA
can be deasserted by the PCI host by writing the INTSRC field in the HSR with
a 1 or by the DSP by writing a 1 to the INTRST field in the RSTSRC.
INTAVAL = 0: PINTA is not asserted (inactive)
INTAVAL = 1: PINTA is asserted (active)

2 INTAM PRST PINTA mask. Disables DSP assertion of PINTA.
INTAM = 0: PINTA can be asserted by the DSP setting the INTREQ field in
RSTSRC.
INTAM = 1: PINTA will not be asserted.
Only written by the PCI host (during D1, D2, D3 the PINTA is masked by the
power management logic).

3 CFGERR PRST Indicates an autoinitialization configuration error occurred
CFGERR = 0: No error.
CFGERR = 1: Autoinitialization configuration error.

4 EEREAD PRST Indicates if the PCI configuration registers were initialized from EEPROM or
not.
EEREAD = 0: default values for configuration used
EEREAD = 1: EEPROM values for configuration used

PCI Registers

9-13PCI

9.3.2.2 Host-to-DSP Control Register (HDCR)

The Host-to-DSP control register (HDCR) is shown in Figure 9–5 and summa-
rized in Table 9–6.

Figure 9–5. Host-to-DSP Control Register (HDCR)
31 3 2 1 0

Reserved PCIBOOT DSPINT WARMRESET

HR, +0 HR, +0 HW, +0 HW, +0

Table 9–6. Host-to-DSP Control Register (HDCR) Bit Field Description

Bits Name
Reset

Source Description

0 WARMRESET RESET DSP warm reset. Host write only.

WARMRESET = 0: A write of 0 is ignored.

WARMRESET = 1: Resets the DSP. The DSP will be held in reset for 16 PCI
cycles. The DSP cannot be accessed until 16 PCI clocks after
WARMRESET is written.

WARMRESET only applies in D0. WARMRESET should not be used if the
core is in power management state D1, D2 or D3 (I/O access is disabled in
these states).

1 DSPINT PRST DSP interrupt. Host writes only. Reads return 0.

DSPINT = 0: A write of 0 is ignored.

DSPINT = 1: Generates a host interrupt to the DSP.

The interrupt will be generated to the core via the HOSTSW bit in the PCIIS
register. If booting from the PCI interface, this interrupt will take the core out
of reset. In all other cases, the DSP core must have its clock running and the
HOSTSW bit in the PCIIEN register unmasked in order to latch the interrupt.

2 PCIBOOT RESET PCI boot mode. Host read only.
PCIBOOT = 0: Indicates DSP does not boot from the PCI.
PCIBOOT = 1: Indicates DSP boot via the PCI.

PCI Registers

 9-14

9.3.2.3 DSP Page Register (DSPP) Bit Field Description

The DSP page register (DSPP) is shown in Figure 9–6 and summarized in
Table 9–7.

Figure 9–6. DSP Page Register (DSPP)
31 11 10 9 0

Reserved MAP PAGE

HR, +0 HR, +x HRW, +0

Table 9–7. DSP Page Register (DSPP) Bit Field Description

Bits Name Reset
Source

Description

9:0 PAGE PRST Locates a 4M-byte memory window within DSP address map for prefetchable (base
0) memory accesses.

10 MAP RESET Indicates which memory map is being used by the DSP (C62x/C67x only)
MAP = 0: Map 0
MAP = 1: Map 1

PCI Registers

9-15PCI

9.3.3 PCI Memory-Mapped Peripheral Registers

Table 9–8 shows all the registers that are mapped into DSP space for DSP
control/observation of the PCI interface. These registers can be accessed by
both the DSP and the PCI host.

Table 9–8. PCI Memory-Mapped Peripheral Registers

DSP Data Space Address Register Accessed

C62x/C67x C64x Reads Writes Section

01A4 0000h 01C0 0000h RSTSRC RSTSRC 9.10.3

01A4 0004h 01C0 0004h PMDCSR PMDCSR 9.15.4

01A4 0008h 01C0 0008h PCIIS PCIIS 9.10.1

01A4 000Ch 01C0 000Ch PCIIEN PCIIEN 9.10.2

01A4 0010h 01C0 0010h DSPMA DSPMA 9.9.1

01A4 0014h 01C0 0014h PCIMA PCIMA 9.9.2

01A4 0018h 01C0 0018h PCIMC PCIMC 9.9.3

01A4 001Ch 01C0 001Ch CDSPA – 9.9.4

01A4 0020h 01C0 0020h CPCIA – 9.9.5

01A4 0024h 01C0 0024h CCNT – 9.9.6

01A4 0028h 01C0 0028h HALT� HALT� 9.9.7

01A8 0000h 01C2 0000h EEADD EEADD 9.13.4

01A8 0004h 01C2 0004h EEDAT EEDAT 9.13.4

01A8 0008h 01C2 0008h EECTL EECTL 9.13.4

† HALT register applies to C62x/C67x only.

TMS320C6000/PCI Memory Map

 9-16

9.4 TMS320C6000/PCI Memory Map

The PCI port has full visibility into the DSP’s memory map via three base ad-
dress registers:

� Base 0: 4M-byte prefetchable maps to all of DSP memory with the DSP Page reg-
ister. Prefetch reads have all bytes valid.

� Base 1 : 8M-byte non-prefetchable maps to DSP’s memory-mapped registers.
Non-prefetch supports byte enables.

� Base 2: 16-byte I/O contains I/O registers for the PCI host

These three registers belong to the group of PCI configuration registers. PCI
host accesses to DSP (prefetchable) memory are mapped to a 4M-byte win-
dow in the PCI memory space. The PCI port contains a PCI I/O register — the
DSP page register (DSPP) — that specifies the address mapping from the PCI
address to the DSP address. This address mapping is used when the DSP is
a slave on the PCI local bus.

The DSPP, described in section 9.3.2.3, is used to locate the 4M-byte window
within DSP’s memory map. Bits 21:0 of the PCI address are concatenated with
bits 9:0 of the DSPP register to form the DSP address for PCI slave access to
the DSP. This is shown in Figure 9–7.

Figure 9–7. PCI Base Slave Address Generation (Prefetchable)

31 22 21 0

DSPP Register (9:0) Current PCI Address 21:0

The PCI base 1 register on the DSP is configured for an 8M-byte non-prefetch-
able region. This memory is mapped into the DSP memory-mapped registers
(0180 0000h). Bits 22:0 of the PCI address are concatenated with a fixed offset
to map the base 1 access into the memory mapped registers. This is shown
in Figure 9–8.

Figure 9–8. PCI Base 1 Slave Address Generation (Non-prefetchable)

31 23 22 0

0000 0001 1 Current PCI Address 22:0

Base address register 2 is configured for a 16-byte I/O region for the PCI host
to access the PCI I/O registers. See section 9.3.2.

TMS320C6000/PCI Memory Map

9-17PCI

The PCI bus interface provides two access methods for PCI host access to
DSP’s memory. The 4M-byte Base 0 region is used for prefetchable data, and
the 8M-byte base 1 region is used for non-prefetchable (register) access. All
transfers to the non-prefetchable region will transfer single words and then dis-
connect.

Data access to the prefetchable region may be transferred in bursts limited
mainly by the host system setup (PCI bridge latency timer, burst length count).
Prior to transferring data, the PCI host must first write the DSP page register
(DSPP) to locate the 4M-byte window within DSP’s memory map.

PCI master transactions issued by the DSP will attempt using bursts. Through
disconnects, however, the external slave can force the DSP master to perform
single-word transfers.

Internal to the DSP, all data transfers are handled by the auxiliary channel of
the DMA controller (C62x/C67x) or the EDMA internal address generation
hardware (C64x).

Note: Users must ensure that no PCI transactions will cross port boundaries
of the DMA/EDMA controller. A port boundary is the address boundary be-
tween external memory and internal memory, between external memory and
the peripheral address space, or between internal memory and the peripheral
address space.

Note: Users must ensure that no PCI transactions will cross port bound-
aries of the DMA/EDMA controller. A port boundary is the address boundary
between external memory and internal memory, between external memory
and the peripheral address space, or between internal memory and the pe-
ripheral address space.

Byte Addressing

 9-18

9.5 Byte Addressing

The PCI interface is byte-addressable. The PCI interface can read and write
8-bit bytes, 16-bit halfwords, 24-bit words, and 32-bit words. Words are aligned
on an even four-byte boundary. Words always start at a byte address where
the two LSBs are 00. Halfwords always start at a byte address where the last
LSB is 0.

PCI slave transactions are fully byte-addressable.

PCI master transactions must start on a word-aligned address for C62x/C67x.
For C64x, PCI master transactions must start on a doubleword-aligned ad-
dress.

9.6 PCI Address Decode

The TMS320C6000 PCI port supports “medium” address decode of the PCI
address for memory and I/O cycles. The PDEVSEL signal is asserted two PCI
clock periods after PFRAME is sampled and asserted.

Byte Addressing / PCI Address Decode

PCI Transfers to/from Program Memory (TMS320C62x/C67x)

9-19PCI

9.7 PCI Transfers to/from Program Memory (TMS320C62x/C67x)

The CPU has priority over the DMA (and auxiliary DMA) for access to program
memory. Since the CPU can access the program memory on every CPU clock,
it can possibly lock out the DMA from accessing the program memory.

If the PCI port is requesting program memory transfers via the auxiliary chan-
nel, all the other four DMA channels are halted. Thus, no DMA channel activity
will occur during the PCI port requests, even if a DMA channel is accessing a
different memory (EMIF/peripheral/data memory). If the CPU has higher prior-
ity, all DMA activity can be blocked while the CPU is executing a tightly coded
routine from program memory.

The HALT register prevents this situation. The HALT register prevents the PCI
port from performing master/slave auxiliary channel requests. If the HALT bit
is set, all auxiliary transfers are prevented. Any current PCI master transaction
will complete its DMA cycle. The PCI transaction will not commence until the
HALT bit is deasserted. This prevents DMA lockup when a PCI transaction is
in progress and the DSP is executing a packed section of code. The other DMA
channels are free to access memory when the PCI master is halted.

The HALT register does not apply to C64x, because the DMA lockup condition
does not apply. The C64x EDMA uses a priority queue implementation. Only
EDMA transfers placed in the same priority queue as the PCI transfer will be
stalled in the above condition. Refer to Chapter 6, EDMA Controller, for details
on priority queues.

Slave Transfers

 9-20

9.8 Slave Transfers

9.8.1 DSP Memory Slave Writes

The slave write FIFO in the DSP slave write block (section 9.2, Figure 9–3) is
used to efficiently handle PCI host writes to the DSP slave.

The address for a DSP slave write is derived from the PCI address concate-
nated with the fixed offset in the DSPP register, as described in section 9.4.
No wait states will be inserted by the slave PCI port. DSP slave writes execute
with zero wait states on all data phases for both single and burst accesses. The
PCI interface supports unlimited length memory burst transfers.

Slave write access to DSP will only be disconnected when the FIFO is full, or
when the FIFO is not empty from a previous PCI slave write frame. Slave reads
and master read/write transactions have no effect on slave write PCI transac-
tions.

Internally, the auxiliary DMA or EDMA internal address generation hardware
service the slave write FIFO when:

� FIFO is at least half-full
� PCI transaction has terminated (PFRAME deasserted).

The DSP slave write address is autoincremented internally. DSP memory
writes continue until there are no longer any valid data in the FIFO. This applies
to both single and burst PCI transactions. For single access transactions, the
internal transfer request will be made after the PCI transaction has terminated.

9.8.2 DSP Memory Slave Reads

Similar to slave writes, the slave read FIFO in the DSP slave read block (sec-
tion 9.2, Figure 9–3) is used to efficiently handle PCI host reads from the DSP
slave. The PCI slave read interface supports unlimited length memory burst
transfers. All PCI slave accesses to DSP must be 32-bit word-aligned.

The PCI port uses the cache line size and PCI command to determine the num-
ber of bytes transferred for a slave read. The type of PCI access is indicated
by the PCBEx signals during the address phase. The following slave read
commands are supported:

� Memory read
� Memory read multiple
� Memory read line

All of the above PCI slave reads can be prefetchable and non-prefetchable.

Slave Transfers

9-21PCI

9.8.2.1 Non-Prefetchable Slave Reads

For non-prefetchable slave Reads, the PCI port inserts wait cycles until a
single word is written to the FIFO. The word is then transferred on the PCI bus,
and the cycle is terminated regardless if the command was a memory read,
a memory read multiple or a memory read line.

9.8.2.2 Prefetchable Slave Reads

Prefetchable Memory Read

For these reads, the PCI port inserts wait cycles until the requested word is
ready. The PCI port adheres to the 16-clock rule. If data is not ready in 16 PCI
clocks, the memory read is disconnected with retry.

Prefetchable Memory Read Multiple and Prefetchable Memory Read Line

These requests are initially terminated on the PCI bus with a disconnect with
retry. Subsequently, the auxiliary DMA or EDMA internal address generation
hardware services the PCI port by transferring read data to the FIFO. The PCI
slave transfer occurs when the original master re-attempts the initial transfer.
Non-related slave requests are terminated with a disconnect.

For memory read line commands, the number of bytes transferred to the slave
read FIFO is based on the cache-line size register. For memory read multiple
commands, the DSP slave read will continuously fill the FIFO with data until
the PCI master terminates the transaction (PFRAME de-asserted), at which
point the last PCI valid data sample is transferred and the FIFO is flushed.

The auxiliary DMA or EDMA internal address generation hardware bursts until
the slave read FIFO is full. Subsequent burst size is half of the FIFO length,
or the number of words left to be transferred.

Memory read line and memory read multiple commands transfer data with
zero wait states inserted by the DSP PCI port, when the requestor retries the
command and the FIFO has data. The FIFO request is also terminated if the
PCI transaction is disconnected prematurely by the master.

Slave Transfers

 9-22

9.8.3 PCI Target Initiated Termination

The DSP issues target terminations under these conditions:

� Data transfer with disconnect if the master issues a burst memory access with an
addressing mode that is not supported.

� Retry with data transfer if the master attempts a burst access to the configuration
space (see section 9.3.1)

� Retry with data transfer if the master attempts a burst access to the I/O space (see
section 9.3.2).

� Disconnect for slave memory or I/O writes and a transaction is waiting in the inter-
nal slave read FIFO.

� Disconnect for slave memory reads if the PCI address value does not match the
address in the internal read prefetch buffer.

� Once a prefetch has been started, retry for all other memory and I/O reads until
the original posted transaction is repeated by the PCI bus master and the pre-
fetched data is transferred.

The PCI interface meets all 16-clock and 8-clock rules for data transfers within
single access and burst accesses.

Master Transfers

9-23PCI

9.9 Master Transfers

Master transfers are initiated under DSP control. The following PCI memory-
mapped peripheral registers are used to configure a DSP master transfer:

� DSP master address register (DSPMA)
� PCI master address register (PCIMA)
� PCI master control register (PCIMC)

The following PCI memory-mapped peripheral registers indicate the status of
the current master transfer:

� Current DSP address register (CDSPA)
� Current PCI address register (CPCIA)
� Current byte count register (CCNT).

For C62x/C67x, the PCI transfer halt register (HALT) allows the DSP to termi-
nate internal transfer requests to the auxiliary DMA channel.

9.9.1 DSP Master Address Register (DSPMA)

The DSP master address register (DSPMA) contains the DSP’s address for
the location of destination data for DSP master reads, or the address location
of source data for DSP master writes. The register also contains bits to control
the address modification. The DSPMA is shown in Figure 9–9 and summa-
rized in Table 9–9.

Figure 9–9. DSP Master Address Register (DSPMA)
31 2 1 0

ADDRMA AINC Rsvd

RW, +0 RW, +0 R, +0

Table 9–9. DSP Master Address Register (DSPMA) Bit Field Description

Bits Name Reset Source Description

1 AINC RESET
WARM

Autoincrement mode of DSP master address
AINC = 0: Autoincrement of ADDRMA enabled
AINC = 1: ADDRMA will not autoincrement

31:2 ADDRMA RESET
WARM

DSP’s word address for PCI master transactions

Master Transfers

 9-24

9.9.2 PCI Master Address Register (PCIMA)

The PCI master address register (PCIMA) contains the PCI word address
(C62x/C67x) or doubleword address (C64x). For DSP master reads, PCIMA
contains the source address. For DSP master writes, the PCIMA contains the
destination address. The PCIMA is shown in Figure 9–10 and summarized in
Table 9–10.

Figure 9–10. PCI Master Address Register (PCIMA)
31 2 1 0

ADDRMA Rsvd

RW, +0 R, +00

Table 9–10. PCI Master Address Register (PCIMA) Bit Field Description

Bits Name Reset Source Description

31:2 ADDRMA RESET
WARM

PCI word address (C62x/C67x) or doubleword address (C64x) for
PCI master transactions.

Master Transfers

9-25PCI

9.9.3 PCI Master Control Register (PCIMC)

The PCI master control register (PCIMC) contains:

� Start bits to initiate the transfer between DSP and PCI
� The transfer count, which specifies the number of bytes to transfer (65K bytes

maximum)
� Reads indicate transfer status

The PCIMC is shown in Figure 9–11 and summarized in Table 9–11.

Figure 9–11.PCI Master Control Register (PCIMC)
31 16 15 2 1 0

CNT Reserved START

RW, +0000h R, +0 RW, +00

Table 9–11. PCI Master Control Register (PCIMC) Bit Field Description

Bits Name
Reset

Source Description

1:0 START RESET
WARM
PRST

Start the read or write master transaction
START = 00b: transaction not started/flush current transaction
START = 01b: Start a master write transaction
START = 10b: Start a master read transaction to prefetchable memory
START = 11b: Start a master read transaction to non-prefetchable memory

START will return to 00b when the transaction is complete.

If the START command is changed during a transfer, the transfer will stop and
the FIFOs will be flushed.

If the PCI bus is reset during a transfer, the transfer will stop and the FIFOs will
be flushed. (A CPU interrupt can be generated on a PRST transition.)

START will only get set if bits 31:16 ≠ 0000h

31:16 CNT RESET
WARM

Transfer Count . It specifies the number of bytes to transfer

Master Transfers

 9-26

9.9.4 Current DSP Address Register (CDSPA)

The current DSP address register (CDSPA) contains the current DSP address
for master transactions. The CDSPA is shown in Figure 9–12 and summarized
in Table 9–12.

Figure 9–12. Current DSP Address (CDSPA)
31 0

CDSPA

R, +0

Table 9–12. Current DSP Address (CDSPA) Bit Field Description

Bits Name Reset Source Description

31:0 CDSPA RESET
WARM

The current DSP address for master transactions

9.9.5 Current PCI Address Register (CPCIA)

The current PCI address register (CPCIA) contains the current PCI address
for master transactions. The CPCIA is shown in Figure 9–13 and summarized
in Table 9–13.

Figure 9–13. Current PCI Address Register (CPCIA)
31 0

CPCIA

R, +0

Table 9–13. Current PCI Address Register (CPCIA) Bit Field Description

Bits Name Reset Source Description

31:0 CPCIA RESET
WARM
PRST

The current PCI address for master transactions

Master Transfers

9-27PCI

9.9.6 Current Byte Count Register (CCNT)

The current byte count register CCNT contains the number of bytes left on the
current master transaction. The CCNT is shown in Figure 9–14 and summa-
rized in Table 9–14.

Figure 9–14. Current Byte Count Register (CCNT)
31 16 15 0

Reserved CCNT

R, +0 R, +0

Table 9–14. Current Byte Count Register (CCNT) Bit Field Description

Bits Name
Reset

Source Description

15:0 CCNT RESET
WARM
PRST

The number of bytes left on the master transaction.

9.9.7 PCI Transfer Halt Register (HALT) — C62x/C67x only

The PCI transfer halt register (HALT) allows the C62x/C67x DSP to terminate
internal transfer requests to the auxiliary DMA channel. The HALT register is
shown in Figure 9–15 and summarized in Table 9–15.

Figure 9–15. PCI Transfer Halt Register (HALT)
31 1 0

Reserved HALT

R, +0 RW, +0

Table 9–15. PCI Transfer Halt Register (HALT) Bit Field Description

Bits Name
Reset

Source Description

0 HALT RESET
WARM
PRST

Halt internal transfer requests
HALT = 0: No effect.
HALT = 1: HALT prevents the PCI port from performing master/slave auxiliary
DMA transfer requests.

Master Transfers

 9-28

9.9.8 DSP Master Writes

The master write FIFO in the DSP master block (see section 9.2, Figure 9–3)
is used to efficiently handle DSP master writes to an external slave. The mas-
ter write interface supports burst lengths of up to 65K bytes.

Master writes are initiated under DSP control via the DSP master address reg-
ister (DSPMA), the PCI master address register (PCIMA), and the PCI master
control register (PCIMC).

For DSP master writes, the ADDRMA field in the DSPMA contains the word-
aligned source address (DSP address). If AINC = 0 in the DSPMA, the source
address is autoincremented by 4 bytes after each internal data transfer. The
PCIMA contains the word-aligned (C62x/C67x) or doubleword-aligned (C64x)
destination address (PCI address). An internal register keeps track of the PCI
master address.

A master write is initiated by enabling the START bits in the PCIMC. The auxil-
iary DMA or EDMA transfers data from the source address (pointed to by
DSPMA) to the master write FIFO. It either fills up the FIFO or transfers only
the number of words desired if that number is less than the FIFO length. Sub-
sequent internal data transfers are performed when the FIFO is half-full or
less. Internal data transfer continues until the FIFO is full or until the transfer
is completed.

Once the FIFO has valid data, a PCI bus request is made and data is trans-
ferred from the FIFO to the PCI slave. DSP master writes execute with zero
wait states on all data phases of both single and burst accesses. The PCI com-
mand/byte enable signals (PCBEx) indicate the master write bytes on the PCI
interface.

Internal data transfers will stop once all master write data has been transferred
from the DSP source to the master write FIFO. For C62x/C67x, internal data
transfers and the current PCI bus cycle can also be terminated by asserting
the HALT bit in the HALT register. The PCI bus Interface monitors the PCI inter-
face for disconnects, retries and target-aborts. The PCI port complies with PCI
Specification revision 2.2 and retries the exact same cycle during retries.

If the cycle is terminated with a master abort or a target abort, the current trans-
fer will be terminated internally and externally on both the PCI bus. The master
Write FIFO is flushed and either the master abort (PCIMASTER) or target
abort (PCITARGET) bit will be set in PCI interrupt source register (PCIIS).
These error conditions can generate a CPU interrupt if the corresponding bits
are set in the PCI interrupt enable register (PCIIEN).

Master Transfers

9-29PCI

If the PCI latency timer (specified in the PCI configuration register space, sec-
tion 9.3.1) times out, the PCI master will give up the bus. The master will re-
quest the bus later, and complete the necessary transfers.

The progress of the transfer can be polled by reading the PCI master control
register (PCIMC). The START field goes to 00b when the transfer is complete
on both the DSP and PCI side. Alternatively, the master can be programmed
to generate an interrupt upon completion of a frame transfer by setting the
MASTEROK bit in the PCIIEN.

9.9.9 DSP Master Reads

The master read FIFO in the DSP master block (section 9.2, Figure 9–3) is
used to efficiently handle DSP master reads from an external slave. The mas-
ter read interface supports burst lengths of up to 64K bytes.

Master reads are initiated under DSP control via the DSP master address reg-
ister (DSPMA), the PCI master address register (PCIMA), and the PCI master
control register (PCIMC).

For DSP master reads, the PCIMA contains the external PCI slave source ad-
dress. The ADDRMA field in the DSPMA contains the word-aligned destina-
tion address (DSP address). If AINC = 0 in the DSPMA, the destination ad-
dress is autoincremented by 4 bytes after each internal data transfer.

A master read is initiated by enabling the START bits in the PCIMC. The PCI
port performs a PCI bus request. Once a PCI bus request is granted, a PCI bus
cycle is initiated. The type of cycle initiated depends on the number of bytes
to be transferred and the cache line size. The following master read com-
mands are supported:

� Memory read
� Memory read multiple
� Memory read line

The user can initiate two types of reads, based on the START bits in the
PCIMC. Prefetchable reads (START = 10b) use the memory read multiple and
memory read line commands for transfers greater than one word. A memory
read command is used for transfers of one word.

Non-prefetchable reads (START = 11b) always use a memory read command.
A transfer size of N words is broken up into N one-word read cycles on the PCI
bus. Users should read from prefetchable memory whenever possible.

Master Transfers

 9-30

No wait states are inserted on the initial data phase or subsequent data phases
of the PCI master read access. Read data is written to the master read FIFO.
An internal auxiliary DMA or EDMA data transfer request occurs when the
FIFO is at least half full, or when the PCI transaction has terminated. The auxil-
iary DMA channel or EDMA transfers data from the master read FIFO to the
DSP destination address (ADDRMA field in the DSPMA). All master read
transactions are word-aligned for C62x/C67x, and doubleword-aligned for
C64x.

Auxiliary DMA or EDMA transfers continue until there are no longer any valid
data in the FIFO. This applies to both single access and burst PCI transactions.
For single access transactions, the internal data transfer occurs after the PCI
transaction has terminated (PFRAME deasserted).

Internal data transfers will stop once all master read data has been transferred
from the master read FIFO to the DSP destination. For C62x/C67x, internal
data transfers and the current PCI bus cycle can also be terminated by assert-
ing the HALT bit in the HALT register. The PCI bus interface monitors the PCI
interface for disconnects, retries and target-aborts. The PCI port complies with
PCI Specification revision 2.2 and retries the exact same cycle during retries.

If the cycle is terminated with a master abort or a target abort, the current trans-
fer will be terminated both internally and externally on the PCI bus. The master
Read FIFO is flushed and either the master abort (PCIMASTER) or target
abort (PCITARGET) bit will be set in PCI interrupt source register (PCIIS).
These error conditions can generate a CPU interrupt if the corresponding bits
are set in the PCI interrupt enable register (PCIIEN).

If the PCI latency timer (specified in the PCI configuration register space, sec-
tion 9.3.1) times out, the PCI master will give up the bus. The master will re-
quest the bus later, and complete the necessary transfers.

The progress of the transfer can be polled by reading the PCI master control
register (PCIMC). Alternatively, the master can be programmed to generate
an interrupt upon completion of frame transfer by setting the MASTEROK bit
in the PCIIEN.

Interrupts and Status Reporting

9-31PCI

9.10 Interrupts and Status Reporting

The PCI port can generate the following CPU interrupts:

� PCI_WAKEUP: This is dedicated to power wake-up events.
� ADMA_HLT (C62x/C67x only): This interrupt is generated when the auxiliary

DMA is halted (DMAHALTED). This interrupt only applies to the C62x/C67x.
� DSPINT: This interrupt is asserted, and enabled in the PCI interrupt enable register

(PCIIEN), when any of these events occurs: PWRMGMT, PCITRAGET, PCIMAS-
TER, HOSTSW, PWRLH, PWRHL, MASTEROK, CFGDONE, CFGERR, EERDY,
PRST.

The PCI master/slave interface status/errors are shown in the PCI interrupt
source register (PCIIS). All status/error conditions can generate a CPU inter-
rupt if they are enabled in the DSP interrupt enable register (PCIIEN). Status
bits in the PCIIS will still be set, even if the interrupt is not enabled. If an enabled
interrupt occurs, it sends a DSPINT interrupt to the DSP. Writing a 1 to the cor-
responding PCIIS bit(s) clears the interrupt. If an interrupt bit is still set, a new
interrupt will then occur. Thus, upon a PCI interrupt, the user should perform
the following in the interrupt service routine:

� Read the PCIIS register
� Clear the appropriate PCIIS bits by writing a 1 to them

Interrupts and Status Reporting

 9-32

9.10.1 PCI Interrupt Source Register (PCIIS)

The PCI interrupt source register (PCIIS) shows the status of the interrupt
sources. Writing a 1 to the bit(s) clears the condition. Writes of zero to, and
reads from, the bit(s) have no effect. The PCIIS is shown in Figure 9–16 and
summarized in Table 9–16.

Figure 9–16. PCI Interrupt Source Register (PCIIS)
31 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rsvd
DMA

HALTED
PRST Rsvd EERDY

CFG
ERR

CFG
DONE

MASTER
OK

PWRHL PWRLH HOSTSW
PCI

MASTER
PCI

TARGET
PWR

MGMT

R, +0 RW, +0 RW, +0 R, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +0

Table 9–16. PCI Interrupt Source Register (PCIIS) Bit Field Description

Bits Name
Reset

Source Description

0 PWRMGMT RESET
WARM

PWRMGMT = 0: No power management state transition interrupt
PWRMGMT = 1: Power management state transition interrupt (will not be
set if the DSP clocks are not running)

1 PCITARGET RESET
WARM

PCITARGET = 0: No target abort received
PCITARGET = 1: Target abort received

2 PCIMASTER RESET
WARM

PCIMASTER = 0: No master abort received
PCIMASTER = 1: Master abort received

3 HOSTSW RESET
WARM

HOSTSW = 0: No host software requested interrupt
HOSTSW = 1: Host software requested interrupt
(this bit must be set after boot from PCI to wake up DSP)

4 PWRLH RESET
WARM

PWRLH = 0: No low-to-high transition on PWRWKP
PWRLH = 1: Low-to-high transition on PWRWKP

5 PWRHL RESET
WARM

PWRHL = 0: No high-to-low transition on PWRWKP
PWRHL = 1: High-to-low transition on PWRWKP

6 MASTEROK RESET
WARM

MASTEROK = 0: No PCI master transaction complete interrupt
MASTEROK = 1: PCI master transaction complete interrupt

7 CFGDONE RESET
WARM

CFGDONE = 0: Configuration of PCI Configuration Registers not com-
plete
CFGDONE = 1: Configuration of PCI Configuration Registers is com-
plete.
– set after an initialization due to PRST asserted.
– set after WARM if initialization has been done

Interrupts and Status Reporting

9-33PCI

Table 9–16. PCI Interrupt Source Register (PCIIS) Bit Field Description (Continued)

Bits Description
Reset

SourceName

8 CFGERR RESET
WARM

CFGERR = 0: No Checksum failure during PCI autoinitialization
CFGERR = 1: Checksum failed during PCI autoinitialization.
– set after an initialization due to PRST asserted and checksum error
– set after WARM if initialization has been done, but had checksum error.

9 EERDY RESET
WARM

EERDY = 0: The EEPROM is not ready to accept a new command
EERDY = 1: The EEPROM is ready to accept a new command and the
data register can be read.

11 PRST RESET
WARM

PRST = 0: No change of state on PCI reset
PRST = 1: PCI reset (/PRST) changed state

12 DMA-
HALTED

RESET
WARM

DMAHALTED = 0: Auxiliary DMA transfers are not halted.
DMAHALTED = 1: Auxiliary DMA transfers have stopped (C62x/C67x
only, reserved on C64x)

Interrupts and Status Reporting

 9-34

9.10.2 PCI Interrupt Enable Register (PCIIEN)

The bits in the PCI interrupt enable register PCIIEN enable the PCI interrupts.
In order for the DSP to see the interrupts, the DSP software must also set the
appropriate bits in the control status register (CSR) and interrupt enable regis-
ter (IER).

The only interrupt enabled after device reset (RESET) is the HOSTSW inter-
rupt. In this way, the PCI host can wake up the DSP by writing the DSPINT bit
in the Host-to-DSP control register (HDCR). The PCIIEN is shown in
Figure 9–17 and summarized in Table 9–17.

Figure 9–17. PCI Interrupt Enable Register (PCIIEN)
31 12 11 10 9 8 7 6 5 4 3 2 1 0

Rsvd PRST Rsvd EERDY
CFG
ERR

CFG
DONE

MASTER
OK

PWRHL PWRLH HOSTSW
PCI

MASTER
PCI

TARGET
PWR

MGMT

R, +0 RW, +0 R, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +1 RW, +0 RW, +0 RW, +0

Table 9–17. PCI Interrupt Enable Register (PCIIEN) Bit Field Description

Bits Name
Reset

Source Description

0 PWRMGMT RESET
WARM

PWRMGMT = 0: Power management state transition interrupts not
enabled
PWRMGMT = 1: Power management state transition interrupt enabled

1 PCITARGET RESET
WARM

PCITARGET = 0: PCI target abort interrupt not enabled
PCITARGET = 1: PCI target abort interrupt enabled

2 PCIMASTER RESET
WARM

PCIMASTER = 0: PCI master abort interrupt not enabled
PCIMASTER = 1: PCI master abort interrupt enabled

3 HOSTSW RESET
WARM

HOSTSW = 0: Host software requested interrupts not enabled
HOSTSW = 1: Host software requested interrupt enabled

4 PWRLH RESET
WARM

PWRLH = 0: Low-to-high PWRWKP interrupts not enabled
PWRLH = 1: Low-to-high PWRKWP interrupts enabled

5 PWRHL RESET
WARM

PWRHL = 0: High-to-low PWRWKP interrupts not enabled
PWRHL = 1: High-to-low PWRWKP interrupts enabled

6 MASTEROK RESET
WARM

MASTEROK = 0: PCI master transaction complete interrupts not enabled
MASTEROK = 1: PCI master transaction complete interrupts enabled

7 CFGDONE RESET
WARM

CFGDONE = 0: Configuration complete interrupts not enabled
CFGDONE = 1: Configuration complete interrupts enabled

8 CFGERR RESET
WARM

CFGERR = 0: Configuration error interrupts not enabled
CFGERR = 1: Configuration error interrupts enabled

Interrupts and Status Reporting

9-35PCI

Table 9–17. PCI Interrupt Enable Register (PCIIEN) Bit Field Description (Continued)

Bits Description
Reset

SourceName

9 EERDY RESET
WARM

EERDY = 0: EEPROM ready interrupts not enabled
EERDY = 1: EEPROM ready interrupts enabled

11 PRST RESET
WARM

PRST = 0: PRST transition interrupts not enabled
PRST = 1: PRST transition interrupts enabled

Interrupts and Status Reporting

 9-36

9.10.3 DSP Reset Source/Status Register (RSTSRC)

The DSP reset source/status register (RSTSRC) shows the reset status of the
DSP. It gives the DSP visibility to which reset source caused the last reset. The
RSTSRC is shown in Figure 9–18 and summarized in Table 9–18. The RST,.
PRST, and WARMRST fields are cleared by a read of the RSTSRC.

Figure 9–18. DSP Reset Source/Status Register (RSTSRC)
31 7 6 5 4 3 2 1 0

Reserved CFGERR CFGDONE INTRST INTREQ WARMRST PRST RST

R, +0 R, +0 R, +0 W, +0 W, +0 R, +0 R, +0 R, +1

Table 9–18. DSP Reset Source/Status Register (RSTSRC) Bit Field Description

Bits Name
Reset

Source Description

0 RST RESET Indicates a device reset (RESET) occurred since last RSTSRC read.

Cleared by read of RSTSRC. Writes have no effect.
RST = 0: No device reset (RESET) since last RSTSRC read
RST = 1: device reset (RESET) has occurred since last RSTSRC read.

1 PRST RESET Indicates occurrence of a PRST reset since last RSTSRC read or
RESET assertion.

Cleared by read of RSTSRC or by RESET active. Writes have no effect.
When PRST is held active (low), this bit will always read as 1.
PRST = 0: No PRST reset since last RSTSRC read
PRST = 1: PRST reset has occurred since last RSTSRC read.

2 WARMRST RESET A host software reset of DSP or a power management warm reset
occurred since last RSTSRC read or last RESET.

It is set by a host write of 0 to WARMRST bit of the HDCR or a power
management request from D2 or D3. Cleared by read of RSTSRC or
RESET assertion. Writes have no effect.
WARMRST = 0: No warm reset since last RSTSRC read or RESET
WARMRST = 1: Warm reset since last RSTSRC read or RESET

3 INTREQ RESET
WARM

Request a DSP-to-PCI interrupt when written with a 1. Causes assertion
of PINTA if the INTAM bit in HSR is 1. Writes of 0 have no effect. Always
reads as 0.

4 INTRST RESET
WARM

When a 1 is written to this bit, PINTA is deasserted. Writes of 0 have no
effect. Always reads as 0.

Interrupts and Status Reporting

9-37PCI

Table 9–18. DSP Reset Source/Status Register (RSTSRC) Bit Field Description
(Continued)

Bits Description
Reset

SourceName

5 CFGDONE RESET EEPROM has finished loading PCI configuration registers
CFGDONE = 0: Configuration registers have not been loaded
CFGDONE = 1: Configuration registers load from EEPROM is complete

6 CFGERR PRST An error occurred when trying to load the configuration registers from
EEPROM. (Checksum failure)
CFGERR = 0: No configuration error
CFGERR = 1: Checksum error during EE autoinitialization

Interrupts and Status Reporting

 9-38

9.10.4 PCI Interrupts

The PCI port can generate interrupts to both the CPU and the PCI host (via
the PINTA pin). The following sections describe these two types of interrupts.

9.10.4.1 Host Interrupt to the DSP

The PCI host generates an interrupt to the DSP by writing the DSPINT bit in
the PCI I/O Host-to-DSP control register. Writing this bit will cause the
HOSTSW interrupt if it is enabled in the PCI interrupt enable register (PCIIEN).

9.10.4.2 DSP to Host Interrupt

The DSP can generate an interrupt to the PCI host via the PINTA pin. Interrupts
to the host are generated only under DSP software control.

The interrupt is generated by writing a 1 to the INTREQ bit of the DSP reset
source/status register (RSTSRC). This will cause the PINTA pin to be asserted
on the local PCI bus, if the INTAM bit of the HSR is 0. The PINTA pin is negated
by writing a 1 to the INTRST bit in the RSTSRC.

Reset

9-39PCI

9.11 Reset

9.11.1 PCI Reset of DSP

The PCI host can reset the DSP via the Host-to-DSP control register (HDCR).
Setting the WARMRESET bit to 1 causes a DSP reset, which resets all of the
internal CPU and peripheral logic.

9.11.2 FIFO Resets

The PCI FIFOs and control logic are held in reset when either the DSP is reset
or the PCI pin PRST is asserted.

9.11.3 PCI Configuration Register Reset

The PCI configuration registers read from the EEPROM are initialized on the
PCI bus (PRST) reset. Neither the DSP core reset, nor the power on reset, af-
fects them.

Boot Configuration for PCI Port

 9-40

9.12 Boot Configuration for PCI Port

The following PCI port configurations, along with other device configurations,
are determined at device reset via the boot configuration pins:

� EEPROM autoinitialization (EEAI)
Determines if PCI uses default values or read configure values from EEPROM

� EEPROM size selection (EESZ[2:0])
Determines EEPROM size

For details on device and PCI boot configurations, refer to Chapter 11, Boot
Modes and Configuration, and the device datasheet. The EEPROM interface
is discussed in section 9.13.

9.12.1 PCI Boot

The PCI port supports boot from the PCI bus. The CPU is held in reset while
the remainder of the device awakes from reset. During this period, the PCI host
can initialize DSP’s memory as necessary through the PCI. Once the PCI host
is finished with all necessary initialization, it writes a 1 to the DSPINT bit of the
host-to-DSP control register (HDCR) to remove the DSP core from it’s reset
state. The DSP then begins execution from address 0.

The sequence of events for PCI boot is as follows:

1) PCI BOOTMODE is selected via configuration pins at reset. Refer to Chapter 11,
Boot Modes and Configuration, and the device datasheet for details.

2) The PCI interface autoinitializes the PCI configuration registers via EEPROM (if
selected)

3) PCI Host sets memory and I/O enable

4) The PCI master writes the DSP page register (DSPP).

5) The PCI master transfers the data to DSP memory-mapped space, starting at ad-
dress 0h.

6) The PCI master can also access data memory, peripheral registers, EMIF.

7) The PCI master writes the DSPINT bit of the HDCR with a 1 to release the DSP
from reset.

8) DSP begins executing code from the program memory-mapped at 0h.

EEPROM Interface

9-41PCI

9.13 EEPROM Interface

The DSP supports the 4-wire serial EEPROM interface. The I2C and SPI inter-
faces are not supported. The interface consists of the pins shown in
Table 9–19.

Table 9–19. EEPROM Serial Interface

Pin I/O/Z Description

XSP_CLK O Serial EEPROM Clock

XSP_CS O Serial EEPROM Chip Select

XSP_DI† I Serial EEPROM Data In

XSP_DO O Serial EEPROM Data out

† The XSP_DI pin should be pulled down.

The serial EEPROM clock is derived from the DSP peripheral clock. Normally,
it will be divided down by 2048 to drive the XSP_CLK pin. The XSP_CLK pin
will only be active during EEPROM access to minimize power.

For C62x/C67x, the state of the boot configuration pins EESZ[2:0] at power-on
reset determines if a serial EEPROM is present, and if so, what size. See
Chapter 11, Boot Modes and Configuration, for details on EESZ[2:0].
Table 9–20 summarizes the EEPROM sizes supported by the C62x/C67x.
The C64x only supports 4K EEPROM, and EESZ[2:0] does not exist.

Table 9–20. TMS320C62x/C67x EEPROM Size Support

EESZ[2:0] EEPROM Size Supported on C62x/C67x

000 No EEPROM present

001 1K

010 2K

011 4K

100 16K

All others Reserved

The EEPROM interface will access the EEPROM as a 16-bit device only. The
ORG pin of the EEPROM must be connected to VCC.

EEPROM Interface

 9-42

9.13.1 PCI Autoinitialization from EEPROM

The DSP allows some of the PCI configuration registers to be loaded from an
external serial EEPROM. The PCI port without DSP intervention performs the
autoinitialization process.

The state of the boot configuration pins EEAI and EESZ[2:0] (C62x/C67x only)
at device reset determine if autoinitialization is enabled. Table 9–21 shows
how the EEAI pin selects autoinitialization at reset.

Table 9–21. EEPROM Autoinitialization (EEAI)

EEAI Autoinitialization

0 Use default values

1 Read values from EEPROM

Autoinitialization is enabled if:

1) Configuration pin EEAI = 1: Autoinitialization enabled.
2) (C62x/C67x only) Configuration pins EESZ[2:0] ≠ 00b. Indicates an EEPROM is

present.
3) PCI operation is selected.

If any of these conditions are not met, default values are used for the PCI con-
figuration registers and the EEPROM is not accessed. When all of these condi-
tions are met, the contents from the EEPROM are loaded into some of the PCI
configuration registers by the PCI interface (section 9.3.1). The size of the seri-
al EEPROM is required to determine the serial protocol. See Chapter 11, Boot
Modes and Configuration, for more details.

9.13.2 EEPROM Memory Map

The DSP requires a specific format for the data stored in the serial EEPROM.
The first 28 bytes of the EEPROM are reserved for autoinitialization of PCI
configuration registers. The remaining locations are not used for autoinitializa-
tion and can be used for storing other data. The EEPROM is always accessed
as a 16-bit device. Table 9–22 summarizes the EEPROM memory map for the
first 28 bytes. See also section 9.3.1 for details.

EEPROM Interface

9-43PCI

Table 9–22. EEPROM Memory Map

Address Contents (msb … lsb)

0h Vendor ID

1h Device ID

2h Class Code [7:0]/Revision ID

3h Class Code [23:8]

4h Subsystem Vendor ID

5h Subsystem ID

6h Max_Latency/Min_Grant

7h PC_D1/PC_D0 (power consumed D1, D0)

8h PC_D3/PC_D2 (power consumed D3, D2)

9h PD_D1/PD_D0 (power dissipated D1, D0)

Ah PD_D3/PD_D2 (power dissipated D3, D2)

Bh Data_scale (PD_D3….PC_D0)

Ch 0000 0000 PMC[14:9] , PMC[5], PMC[3]

Dh Checksum

9.13.3 EEPROM Checksum

The configuration data contained in the EEPROM is checked against a check-
sum. The checksum is a 16-bit cumulative XOR of the configuration data
words contained in the EEPROM starting with an initial value of AAAAh. The
user must ensure that the proper 16-bit checksum value is written to address
0Dh when programming the EEPROM.

Checksum = AAAA XOR Data(00h) XOR Data(01h)….. XOR Data(ODh)

If the checksum fails, the CFGERR bit in the PCIIS and in the HSR registers
are set, and optionally, an interrupt to the DSP is generated. The DSP may or
may not catch the interrupt, depending on the state of the core at the time. If
the PCI is booting the device, the core is held in reset and will miss the inter-
rupt.

The EEREAD bit in the HSR is set if EEPROM autoinitialization is used at pow-
er-on reset.

EEPROM Interface

 9-44

If the serial EEPROM is not accessed for PCI configuration purposes (i.e.,
EEAI = 0, EESZ[2:0] = 00b at reset), then the checksum is not performed.

Failed checksums will result in the PCI configuration registers being initialized
with default data. Refer to the specific PCI configuration registers to determine
their default values (section 9.16).

After successful PCI configuration register initialization (auto or default), the
DSP reset source/status register (RSTSRC) configuration hold bit CFGDONE
is updated to allow DSP to respond to reads, rather than terminating the cycle
with disconnect retry. The CFGERR bit in the RSTSRC will be set if a check-
sum error occurred and default values for the PCI configuration registers are
being used.

9.13.4 DSP EEPROM Interface

The EEPROM can also be used by the DSP via three memory-mapped regis-
ters: EEPROM Address Register (EEADD), EEPROM Data Register (EED-
AT), and EEPROM Control Register (EECTL). These registers are shown in
Figure 9–19, Figure 9–20, and Figure 9–21, respectively. They are summa-
rized in Table 9–23, Table 9–24, and Table 9–25.

Figure 9–19. EEPROM Address Register (EEADD)
31 10 9 0

Reserved EEADD

R, +0 RW, +0

Table 9–23. EEPROM Address Register (EEADD) Bit Field Description

Bits Name Reset Source Description

9:0 EEADD RESET
WARM

EEPROM address

Figure 9–20. EEPROM Data Register (EEDAT)
31 16 15 0

Reserved EEDAT

R, +0 RW, +0

Table 9–24. EEPROM Data Register (EEDAT) Bit Field Description

Bits Name Reset Source Description

15:0 EEDAT RESET
WARM

EEPROM data

EEPROM Interface

9-45PCI

Figure 9–21. EEPROM Control Register (EECTL)
31 9 8 7 6 5 3 2 1 0

Reserved CFGDONE CFGERR EEAI EESZ READY EECNT

R, +0 R, +0 R, +0 R, +x R, +x R, +0 RW, +00

Table 9–25. EEPROM Control Register (EECTL) Bit Field Description

Bits Name
Reset

Source Description

1:0 EECNT RESET
WARM

EEPROM op code.
Writes to this field cause the serial operation to commence

2 READY RESET
WARM

Indicates that the EEPROM is ready for a new command. Cleared on
writes to EECNT
READY = 0: EEPROM not ready for new command
READY = 1: EEPROM ready for new command

5:3 EESZ RESET Indicates the state of the EESZ[2:0] pins at power-on reset
EESZ = 000b: No EEPROM
EESZ = 001b: 1K (C621x/C671x only)
EESZ = 010b: 2K (C621x/C671x only)
EESZ = 011b: 4K
EESZ = 100b: 16K (C621x/C671x only)

6 EEAI RESET Indicates state of EEAI pin at power-on reset.
EEAI = 0: PCI uses default values
EEAI = 1: Read PCI configuration register values from EEPROM

7 CFGERR RESET Checksum failed error
CFGERR = 0: No checksum error.
CFGERR = 1: Checksum error.

8 CFGDONE RESET Configuration Done
CFGDONE = 0: Configuration not done
CFGDONE = 1: Configuration done

The DSP EEPROM interface is available immediately after reset. The
CFGDONE bit in the RSTSRC indicates when the EEPROM has been read
for PCI autoinitialization.

Serial EEPROM device operation is controlled by seven instructions. The in-
struction opcode consists of 2 bits. Valid opcodes are presented in Table 9–26.

EEPROM Interface

 9-46

Table 9–26. EEPROM Command Summary

Op Code Instruction Description

10 READ Reads data at specified address

00 (Address = 11XXXX) EWEN Write enable

11 ERASE Erase memory at address

01 WRITE Write memory at address

00 (Address = 10XXXX) ERAL Erases all memory locations

00 (Address = 01XXXX) WRAL Writes all memory locations

00 (Address = 00XXXX) EWDS Disables programming instructions

The EEPROM control register EECTL has fields for the 2-bit opcode, as well
as read-only bits that indicate the size of the EEPROM (EESZ latched from the
EESZ[2:0] bits on power-on reset). The READY bit in the EECTL indicates
when the last operation is complete, and the EEPROM is ready for a new in-
struction. The READY bit is cleared when a new op code is written to the
EECNT field. An interrupt can also be generated on EEPROM command
completion. The EERDY bit in the PCIIS and PPIIEN registers control the op-
eration of the interrupt.

The EEDAT register is used to clock out user data to the EEPROM on writes
and store EEPROM data on reads. For EEPROM writes, data written to the
EEDAT is immediately transferred to an internal register. A DSP read from the
EEDAT at this point will not return the value of the EEPROM data just written.
The write data (stored in the internal register) is shifted out on the pins as soon
as the two-bit op code is written to the EECNT field of the EECTL. For EE-
PROM reads, data is available in the EEDAT as soon as READY = 1 in the
EECTL.

EEPROM Interface

9-47PCI

The EEPROM protocol is as follows:

1) Wait for the CFGDONE bit in RSTSRC to be set. The READY bit in the EECTL,
and the EERDY bit in the PCIIS will be set as well.

2) Write EEPROM address to EEADD (address register, the EESZ determines which
bits are significant)

3) For EEPROM reads, skip this step. For EEPROM writes (instruction WRITE/
WRAL), write data to EEDAT. This data is immediately transferred to an internal
register. Therefore a DSP read from the EEDAT will return invalid data.

4) Write the two-bit op code to the EECNT field of the EECTL.
5) The EEPROM interface then clocks out the EEPROM serial sequence
6) Poll for READY = 1 in the EECTL register, or wait for interrupt (EERDY = 1 in

PCIIS).
7) For EEPROM writes, skip this step. For EEPROM reads (instruction READ), read

data from EEDAT.

The EEPROM serial sequence is initiated on writes to the EECNT op code
field. If the EECNT field is written before the current command is complete
(READY = 1), the command will be executed after the current command com-
pletes. However, the EEDAT field and the READY field of the EECTL from the
previous command will be corrupted. Users should always poll for READY to
be asserted before issuing new commands to the EEPROM controller.

Error Handling

 9-48

9.14 Error Handling

The PCI configuration registers allow the DSP to handle error conditions. The
following sections describe the handling of different error conditions. Refer to
section 9.16 for a detailed discussions of the register fields.

9.14.1 PCI Parity Error Handling

If the DSP is mastering the bus, the data parity reported bit (bit 15) in the PCI
status register (one of the PCI configuration registers) is set under either of the
following conditions:

� Parity error during the data phase of a read transaction
� PPERR has been asserted by the target during the data phase of a write transac-

tion.

The data parity detected bit (bit 8) in the PCI status register will be set under
any of the following conditions:

� DSP is PCI bus master, and it detects a data parity error during a read transaction.
� DSP is PCI bus target, and it detects a data parity error during a write transaction.
� An address parity error is detected.

The PCI port will assert PPERR if the parity error reporting enable bit (bit 6)
in the PCI command register (one of the PCI configuration registers) is set and
the data parity detected bit (bit 8 of PCI status register) is set. The assertion
of PPERR will remain valid until the second clock after the cycle in which the
error occurred.

If a parity error is detected during a transfer involving DSP, the transaction will
be allowed to complete unless the PCI port is the master and a target discon-
nect is detected. The DSP will not master abort due to a parity error.

The PCI bus interface provides parity generation and verification for PCI bus
data, and PCI address parity. The PCI port asserts PSERR or PPERR for one
PCI clock period and sets a flag in the PCI Command Register if it identifies
a parity error.

Error Handling

9-49PCI

9.14.2 PCI System Error Handling

An internal system error occurs if any of the following conditions are true:

� An address parity error is detected on the PCI bus (even if DSP is not the target
of the transaction) and the parity error reporting enable bit (bit 6) is set in the PCI
command register (one of the PCI configuration registers).

� DSP detected PPERR asserted, while mastering the bus.
� DSP received a target abort (disconnect without retry) while mastering the bus.

DSP asserts PSERR if the system error reporting enable bit (bit 8) in the PCI
command register is set, and the internal system error flag is set.

DSP will halt and wait for software or hardware reset after PSERR has been
asserted.

DSP will set the signaled system error bit (bit 14) in the PCI status register
whenever PSERR is asserted.

9.14.3 PCI Master Abort Protocol

In the event that a master abort occurs while DSP is the master on the PCI bus,
the current transfer is terminated on both the PCI bus and the Auxiliary DMA
or EDMA interface. The received master abort signal will be set in the PCI sta-
tus register. The PCIMASTER bit in PCIIS register will be set, and optionally
an interrupt generated.

A received master abort will reset the START bits in the PCIMC register to 00b.
Any master transactions in progress will stop.

9.14.4 PCI Target Abort Protocol

In the event that a target abort occurs while DSP is the master on the PCI bus,
the current transfer is terminated on the PCI bus and Auxiliary DMA or EDMA
interface. The received target abort signal will be set in the status register. The
PCITARGET bit in the PCIIS register will be set, and optionally an interrupt
generated.

The target abort follows the same procedure as disabling a master transaction.
The received target abort signal is used to reset the START bits in the PCIMC
to 00b. Further writes to DSP’s memory will be prevented. The interrupt will
indicate to the user that the transfer did not succeed.

Power Management (TMS320C62x/C67x only)

 9-50

9.15 Power Management (TMS320C62x/C67x only)

9.15.1 Power Management for PCI

PCI Power Management Specification revision 1.1 defines power manage-
ment states D0unitialized, D0active, D1, D2, D3hot, and D3cold. These power
management states are discussed below.

D0unitialized : Entered upon power up of the chip or any assertion of PRST. The
PCI configuration registers have not been initialized from EEPROM. When the
DSP is in this state and autoinitialization is enabled, a PCI configuration regis-
ter read or write will generate a retry. If autoinitialization is not enabled, default
values are loaded into the registers and PCI accesses can proceed normally.
Once the configuration registers are loaded from EEPROM, the host can ini-
tialize the base register and I/O address register. This state is exited and enters
D0active after the configuration registers have been initialized from EEPROM
or default values, and the PCI I/O access enable bit (bit 0) and/or memory ac-
cess enable bit (bit 1) in the PCI command register (one of the PCI configura-
tion registers) are set.

D0active : This is the normal operating state. In this state, the device supports
full operation, and all peripherals are available. Transitions from D0active are
accomplished by a power management request, PRST assertion, or removal
of VDDcore. If the transition from D0active is a power management request, the
PCI can generate an interrupt to the DSP via the PWRMGMT bit in the PCIIS.

D1: This is the first power management state. The exact operation of the chip
in this mode is determined by DSP software. D1 power consumption is less
than D0, but it is the responsibility of the DSP software to reduce chip power.
The memory and I/O access enable bits of the PCI configuration command
register will be disabled by a hardware mask to prevent memory and I/O
cycles. DSP will respond to PCI configuration accesses. Transitions from D1
are accomplished by a power management request, PRST assertion, or re-
moval of VDDcore. When the transition from D1 is a power management re-
quest, an interrupt to the DSP can be generated via the PWRMGMT bit in the
PCIIS. This will allow wake up from DSP power down PD1 mode only, not PD2
or PD3.

D2: This is the next power management state. The exact operation of the chip
in this mode is determined by DSP software. D2 power consumption is less
than that of D1, but it is the function of the DSP software to reduce chip power.
The memory and I/O access enable bits of the PCI configuration command
register will be disabled by a hardware mask to prevent memory and I/O
cycles. DSP will respond to PCI configuration accesses. Transitions from D2

Power Management (TMS320C62x/C67x only)

9-51PCI

are accomplished by a power management request, PRST assertion, or re-
moval of VDDcore. When the transition from D2 is a power management re-
quest, an internal DSP warm reset is generated. This will allow wake up from
DSP power down PD1, PD2 or PD3 mode.

D3hot : This is the next power management state. The exact operation of the
chip in this mode is determined by DSP software. D3hot power consumption
should be less than that of D2, but it is the responsibility of the DSP software
to reduce chip power. The memory and I/O access enable bits of the PCI con-
figuration command register will be disabled by a hardware mask to prevent
memory and I/O cycles. DSP will respond to PCI configuration accesses. Tran-
sitions from D3hot are accomplished by a power management request, PRST
assertion, or removal of VDDcore. When the transition from D3hot is a power
management request, an internal DSP warm reset is generated. This will allow
wake up from DSP PD1, PD2 or PD3 modes.

D3cold : VDDcore is removed and the device is totally shut down. The most sig-
nificant power savings is achieved in this mode. A small amount of logic is pow-
ered from 3.3 Vaux to assert PME upon assertion of PWR_WKP. Transition
from D3cold to D0unitialized is accomplished by restoring VDDcore and a RESET
or PRST.

Figure 9–22 illustrates DSP’s power state transitions. The DSP’s power man-
agement strategy is different from PCI Power Management Specification revi-
sion 1.1 in the following ways:

� DSP core power savings modes can only be changed via software instructions.
To transition into a power-savings mode, the DSP core must first be fully operation-
al in order to execute the software. Direct transitions from D1 to D2, from D1 to
D3hot, or from D2 to D3hot are not supported, as shown by the dotted lines. The
core must always transition to D0 active before proceeding to the desired power
state.

� It is important to remember that the DSP software determines the power reduction
mechanism for states D1, D2, and D3hot.

Transitions from D3hot to D0 will generate an internal DSP reset and an internal
PCI reset. The requested state will transition to D0uninitialized .

Power Management (TMS320C62x/C67x only)

 9-52

Figure 9–22. PCI Port Power Management State Transition Diagram

D3cold

D0unitialized

D2 (PD2)
Soft reset

D0 active

Mem access enable
I/O access enable

DSP
instruction

EEPROM contest

DSP
Instruction

DSP
interrupt

Soft reset

D3hot (PD3)D1 (PD1)

DSP
instruction

loaded on PRST

Reset PRST

PRST and VDD core restored

VDD core power
removed–any state

Since power management of DSP is performed by DSP software, no power
management is supported unless boot is from valid external memory or until
the software is downloaded into internal DSP RAM and DSP is released from
reset. The DSP software, either internal or external, must be able to handle the
host initiated power management requests.

The PCI external host can not issue a PME until the DSP is in the D0 active
state, as is required by the Power Management Specification revision 1.1.

Power Management (TMS320C62x/C67x only)

9-53PCI

9.15.2 DSP Power Management Strategy

The DSP responds to PCI bus activity to trigger DSP software-controlled tran-
sitions between the power management states. The DSP software is responsi-
ble for deciding the exact operation of the device in the power savings mode.
The states are as follows:

� D0active : active state, no power savings
� D1: DSP PD1 mode where CPU is halted (except for the interrupt logic).
� D2: DSP PD2 mode (CPU off, peripherals off).
� D3hot : DSP PD3 mode (CPU off, peripherals off, PLL disabled).
� D3cold: similar to D3hot, except VDDcore is now removed. A small amount of logic

powered by 3.3 Vaux can be left powered to generate a PME on assertion of
PWR_WKP.

The host requests for power state transitions by writing to the PWRSTATE bit
of the PMCSR (one of the PCI configuration registers). If the PWRSTATE bit
is different than that of the CURSTATE bit of the PMDCSR (one of the PCI pe-
ripheral registers), one of the following events will occur, depending on the cur-
rent power management state of the DSP:

� D0 or D1 state: an interrupt is generated to wake up the core via the PWRMGMT
bit in the PCIIS. Upon wake up, the DSP software must read the requested state
(REQSTATE in the PMDCSR). The software must then update the bit CURSTATE
in the PMDCSR. At this time the software can shut down peripherals, etc. as ap-
propriate, with the execution of the appropriate power savings instruction. Direct
transitions from D1 to D2, or from D1 to D3, are not supported because the DSP
power savings are under software control.

� D2 or D3 state: a warm reset is generated to the DSP core. The warm reset will
wake up the core from any power-savings mode that it may be in. The PCI I/O and
memory access enable bits in the PCI command register maintain their states dur-
ing the warm reset. After the core has waked up from the warm reset, it will be in
the D0active state. Upon wake up, the DSP software must read the request state
(REQSTATE in the PMDCSR). The software must then update the CURSTATE bit
in the PMDCSR. At this time, the software can shut down peripherals, etc. as ap-
propriate with the execution of the appropriate power savings instruction. As noted
earlier, direct transitions from D2 to D3 are not supported because the DSP’s pow-
er savings are under software control.

The I/O access enable (bit 0) and memory access enable (bit 1) bits in the PCI
command register are disabled by hardware in D1, D2 and D3 to disable
memory and I/O cycles, as indicated in the Power Management Specification
revision 1.1. If a PME to D0 is requested, the bits will be enabled and take on
their original values.

Power Management (TMS320C62x/C67x only)

 9-54

9.15.3 DSP Resets

This section discusses the various types of resets, which is vital to the under-
standing of DSP’s power management strategy. Each type of reset and its ef-
fect is discussed below:

Power on reset (RESET): This is the pin reset applied during power up or hard
reset. The state of the autoinitialization pins are sampled on the rising edge
of the reset (EESZ[2:0], EEAI). All logic on the DSP is reset including the core
and the peripherals. The EEPROM is autoinitialized on PRST, not RESET.

Warm reset: This reset applies to the core and peripherals. The PCI host can
generate the warm reset by setting WARMRESET = 1 in the HDCR register.
The warm reset can also be generated on power management requests from
D2 or D3. All logic on the DSP is reset including the core and the peripherals.
However, the PCI Configuration Registers will maintain their state. In addition,
the Memory Access Enable (bit 1) and I/O Access Enable (bit 0) bits of the PCI
Command Register (one of the PCI Configuration Registers) are not affected
by warm reset.

In summary, warm reset is generated by any one of the following:

� D2 or D3 power management requests (D2WARMONWKP and
D3WARMONWKP bits set in the PMDCSR)

� Write to the WARMRESET bit of the HDCR by the PCI I/O during state D0
� PWR_WKP if D2 or D3 and D2WARMONWKP, D3WARMONWKP set.

PCI reset (PRST): This reset applies to the PCI Bus Interface Unit (section 9.2,
Figure 9–3) and the PCI FIFOs. PCI reset (PRST) initializes the PCI Configu-
ration Registers to their default states (if EEAI = 0), or autoinitializes them with
values from the EEPROM (if EEAI = 1). The PCI base address registers (part
of the PCI configuration registers), the memory access enable (bit 1) and I/O
access enable (bit 0) bits of the PCI command register are also reset by PRST.

PRST is generated from the PRST pin, or from power management requests
of D3 to D0.

The reset to the DSP core is the logical AND of the power-on reset (RESET)
and the warm reset, both of which are active low.

Power Management (TMS320C62x/C67x only)

9-55PCI

9.15.4 DSP Support for Power Management

The power management DSP control/status register (PMDCSR) is one of the
PCI memory-mapped peripheral registers that allows power management
control. The PMDCSR is shown in Figure 9–23 and summarized in
Table 9–27.

Figure 9–23. Power Management DSP Control/Status Register (PMDCSR)
31 19 18 11 10 9 8 7 6 5 4 3 2 1 0

Rsvd HWPMECTL
D3WARM
ONWKP

D2WARM
ONWKP

PMEEN PWRWKP PMESTAT PMEDRVN
AUXDE-

TECT
CURSTATE REQSTATE

R, +0 RW, +88h R, +x R, +x RW, +x R, +x R,+x;
W, +0

R, +0 R,+x RW,+00 R, +00

Table 9–27. Power Management DSP Control/Status Register (PMDCSR) Bit Field
Description

Bits Name
Reset

Source Description

1:0 REQSTATE RESET
PRST

Last requested power state.
Last value written by host to PCI PWRSTATE bits in the PMCSR.
Cleared to 00b on RESET or PRST.

3:2 CURSTATE RESET
(unaffected
by PRST

warm reset)

Current power state.
Reflects the current power management state of the chip. On
changing state, the chip must change CURSTATE. The value
written here will be used for PCI reads of PWRSTATE bits in the
PMCSR.

4 AUXDETECT RESET
WARM

3.3VauxDET pin value
Status of PCIs 3.3 VauxDET pin.
AUXDETECT = 0: 3.3 VauxDET is low
AUXDETECT = 1: 3.3 VauxDET is high

5 PMEDRVN RESET
WARM

PME driven high.
The DSP has driven the PME pin active high. Set whenever the
PMEEN and PMESTAT bits in the PMCSR are high. Cleared by
DSP read of PMDCSR, but would be set if PMEEN and PMESTAT
are both still high.

6 PMESTAT None PMESTAT sticky bit value
Reads return the current status of the PMESTAT sticky bit in
PMCSR.

RESET
WARM

Write a 1 to this bit to force PMESTAT in the PMCSR to 1.

If PMESTAT and PMEEN are written with a 1 at the same time the
clear to the PMEEN and PMESTAT will occur. Write of 0 have no
effect.

7 PWRWKP None PWRWKP pin value
PWRWKP = 0: PWR_WKP pin is low
PWRWKP = 1: PWR_WKP pin is high

Power Management (TMS320C62x/C67x only)

 9-56

Table 9–27. Power Management DSP Control/Status Register (PMDCSR) Bit Field
Description (Continued)

Bits Description
Reset

SourceName

8 PMEEN None PME assertion enable
Reads return current value of PMEEN bit in PMCSR sticky bit.
PMEEN = 0: PMEEN bit in PMCSR is 0; PME assertion is disabled.
PMEEN = 1: PMEEN bit in PMCSR is 1; PME assertion is enabled.

RESET
WARM

Writes of 1 clear both the PMEEN and PMESTAT sticky bits of
PMCSR. Writes of 0 have no effect

9 D2WARMONWKP RESET Warm reset from D2
D2WARMONWKP = 0: no warm reset will be generated on
PWR_WKP asserted (low). Default.
D2WARMONWKP = 1: warm reset will be generated on
PWR_WKP asserted if the current state is D2.

Warm resets will only be generated from PWR_WKP if the above
conditions are true and:
• PRST (PCI Reset) is deasserted
• PCLK is active.

10 D3WARMONWKP RESET Warm reset from D3
D3WARMONWKP = 0: no warm reset will be generated on
PWR_WKP asserted (low). Default.
D3WARMONWKP = 1: warm reset will be generated on
PWR_WKP asserted if the current state is D3.

Warm resets will only be generated from PWR_WKP if the above
conditions are true and:
• PRST (PCI reset) is deasserted
• PCLK is active.

18:11 HWPMECTL RESET Hardware PME control
Allows PME to be generated automatically by hardware on active
PWR_WKP if the corresponding bit is set.

Bit Set Assert PME from hardware
 0x11 Current state = 00
 0x12 Current state = 01
 0x13 Current state = 10
 0x14 Current state = 11
 0x15 Requested state = 00
 0x16 Requested state = 01
 0x17 Requested state = 10
 0x18 Requested state = 11

Power Management (TMS320C62x/C67x only)

9-57PCI

9.15.4.1 PMCSR Sticky Bits (PMESTAT and PMEEN)

The PMESTAT and PMEEN bits in the PMCSR are powered from the 3.3 Vaux
input. These bits are cleared on power-on transitions of 3.3 Vaux. PRST, warm
reset, and RESET do not affect the state of these bits. Therefore they are
called “sticky” bits.

In power managed PCs, the 3.3 Vaux is applied during D3cold. Sticky bits are
only reset during initial power up.

In power non-managed PCs, the 3.3 Vaux transitions with device I/O power
VDD. Sticky bits are reset every time the system transitions from D3cold to D0.
They are also reset on PRST reset.

PMESTAT bit

The PMESTAT bit is set to a 1 by assertion of PWR_WKP when in D3cold (RE-
SET active) or by a DSP write to the PMESTAT bit of the PMDCSR if not in
D3cold, regardless of the value of PMEEN.

The PMESTAT sticky bit is cleared by writing a 1 to the PMESTAT bit in the
PMCSR (one of the PCI configuration registers). It is also cleared by a DSP
write of 1 to the PMEEN bit of the PMDCSR. PMCSR writes when PMESTAT
is a 0 have no effect on this bit. If the 3.3 VauxDET pin is low, no support of PME
assertion from D3cold, then a PRST clears this bit. If the 3.3 VauxDET pin is
high, support of PME assertion from D3cold, the a RESET, PRST or warm reset
does not affect this bit.

PMEEN bit

The PMEEN bit is set to 1 only when PCI configuration register (PMCSR) is
written with the PMEEN set to 1. The DSP cannot set the PMEEN bit via the
PMDCSR.

The PMEEN bit is cleared by a DSP write of 1 to PMEEN bit of the PMDCSR.
PMCSR writes with the PMEEN = 0 will also clear the PMEEN bit. The DSP
can observe the value of PMEEN by reading the PMEEN bit in the PMDCSR.
If the 3.3 VauxDET pin is low, no support of PME assertion from D3cold, then
a PRST clears this bit. If the 3.3 VauxDET pin is high, support of PME assertion
from D3cold, then a RESET, PRST or warm reset does not affect this bit.

The output of the PMEEN bit is used to prevent assertion of the PME pin when
PMEEN is a 0. The PME pin may be asserted only if PMEEN is a 1.

The PMEDRVN bit in the PMDCSR indicates to the DSP that the PME pin was
driven active. This bit is cleared by DSP reads of PMDCSR only, but would be
immediately set again if the PMEEN and PMESTAT in the PMCSR are still both
set.

Power Management (TMS320C62x/C67x only)

 9-58

9.15.4.2 3.3 Vaux Presence Detect Status Bit (AUXDETECT)

The 3.3 VauxDET pin is used to indicate the presence of 3.3 Vaux when VDDcore
is removed. The DSP can observe this pin by reading the AUXDETECT bit in
the PMDCSR. The PMEEN bit in the PMCSR is held clear by the 3.3 VauxDET
pin being low.

9.15.4.3 PCI Port Response to PWR_WKP and PME Generation

The PCI port responses differently to an active PWR_WKP input, depending
on whether VDDcore is alive when 3.3 Vaux is alive. The PCI port response to
PWR_WKP is powered by 3.3 Vaux.

When VDDcore is alive and 3.3 Vaux is alive (i.e., all device power states but
D3cold), bits are set in the PCIIS register for the detection of the PWR_WKP
high-to-low and low-to-high transition. The PWR_WKP signal is directly con-
nected to DSP’s PCI_WAKEUP interrupt. See section 9.10.

When VDDcore is shut down and 3.3 Vaux is alive (i.e. in D3cold), PWR_WKP
transition causes the PMESTAT bit in the PMCSR to be set (regardless of
PMEEN). If PMEEN is set, PWR_WKP activity also causes the PME pin to be
asserted and held active.

The PCI port can also generate PME depending on the HWPMECTL bits in the
PMDCSR. The PME can be generated from any state or on transition to any
state on active PWR_WKP signal if the corresponding bit in the HWPMECTL
is set.

Transitions on the PWR_WKP pin can cause a CPU interrupt (PCI_WAKEUP,
see section 9.10). The PWRHL and PWRLH bits of the PCIIS indicate a high-
to-low or low-to-high transition on the PWR_WKP pin. If the corresponding in-
terrupts are enabled in the PCIIEN, a PCI_WAKEUP interrupt is generated to
the CPU.

If 3.3 Vaux is not powered, the PME pin is in high-impedance. Once PME is driv-
en active by the DSP, it is only deasserted when the PMESTAT bit of the
PMCSR is written with a 1 or the PMEEN bit is written with a 0. Neither PRST,
RESET, or warm reset active can cause PME to go into high-impedance if it
was already asserted before the reset.

Power Management (TMS320C62x/C67x only)

9-59PCI

9.15.4.4 DSP Interrupt Indicating that PWRSTATE has Changed

If a PCI PMCSR write causes a change in the PWRSTATE field, a CPU inter-
rupt is generated. The PWRMGMT bit in the PCIIS is set when the PWRSTATE
is different than the current state. The CPU interrupt cannot be generated if the
DSP clocks are not running. PMCSR changes due to RESET do not cause a
CPU interrupt. A CPU interrupt will occur when PRST occurs, since a PRST
assertion causes an implicit write of 0 to the PWRSTATE bit of PMCSR.

PCI Configuration Registers Bit Field Descriptions

 9-60

9.16 PCI Configuration Registers Bit Field Descriptions

This section discusses the PCI configuration registers in detail. These regis-
ters are only accessible from the external host PCI. Table 9–28 to summarize
the bit fields in the PCI configuration registers. Table 9–51 ists the power man-
agement states in the PWRDATA register. See section 9.3.1.

Table 9–28. Vendor ID Register Bit Field Description

Bits Access Default Description

15:0 R 104Ch Device manufacturer ID

Table 9–29. Device ID Register Bit Field Description

Bits Access Default Description

15:0 R A106h Vendor-defined device ID

When the PWRSTATE bit of the PMCSR indicates D1, D2 or D3, the DSP must
not respond to PCI activity to its I/O or memory spaces, and must not assert
PINTA. The DSP hardware will monitor the PWRSTATE bit and mask the I/O
access enable bit and the memory access enable bit in the PCI command reg-
ister, and prevent PINTA assertion when current PWRSTATE is D0, D1, D2 or
D3. The PCI command register bit fields are summarized in Table 9–30.

Table 9–30. PCI Command Register Bit Field Description

Bits Access Default Description

0 R/W 0 I/O Access Enable

1 R/W 0 Memory Access Enable

2 R/W 0 Master functionality

3 R 0 No Special Cycle recognition

4 R 0 Memory Write and Invalidate is not supported

5 R 0 Not a VGA device

6 R/W 0 Parity Error Reporting Enable

7 R 0 Data Stepping is not used

8 R/W 0 System Error Reporting Enable

9 R/W 0 Master back-to-back transaction

15:10 R 00h Reserved

PCI Configuration Registers Bit Field Descriptions

9-61PCI

Table 9–31. PCI Status Register Bit Field Description

Bits Access � Default Description

3:0 R 00h Reserved

4 R 1 Capabilities List implemented (Power
Management)

5 R 0 33 MHz maximum frequency

6 R 0 Reserved

7 R 0 Fast Back-to-Back capable

8 R/W–C 0 Master Data Parity Detected Error. Writing 1
resets this bit. Writing 0 has no effect.

10:9 R 01 Device Select signal timing: Medium

11 R/W–C 0 Signaled Target Abort. Writing 1 resets this bit.
Writing 0 has no effect.

12 R/W–C 0 Received Target Abort. Writing 1 resets this bit.
Writing 0 has no effect.

13 R/W–C 0 Received master Abort. Writing 1 resets this
bit. Writing 0 has no effect.

14 R/W–C 0 Signaled System Error. Writing 1 resets this bit.
Writing 0 has no effect.

15 R/W–C 0 Data Parity Reported Error. Writing 1 resets
this bit. Writing 0 has no effect.

† R/W–C indicates that writing a 1 resets this bit. Writing 0 has no effect.

Table 9–32. Revision ID Register Bit Field Description

Bits Access Default Description

7:0 R 01h Device-specific revision ID

Table 9–33. Class Code Register Bit Field Description

Bits Access Default Description

7:0 R 00h Register-level programming interface

15:8 R 00h Sub-class.

23:16 R 00h Base Class of device.

Table 9–34. Cache Line Size Register Bit Field Description

Bits Access Default Description

7:0 R/W 00h Cache Line Size

PCI Configuration Registers Bit Field Descriptions

 9-62

Table 9–35. Latency Timer Register Bit Field Description

Bits Access Default Description

7:0 R/W 00h Latency Timer

Table 9–36. Header Type Register Bit Field Description

Bits Access Default Description

6:0 R 00h Configuration layout for typical PCI master/tar-
get device.

7 R 0h Single function device.

Table 9–37. Base 0 Address Register Bit Field Description

Bits Access Default Description

31:0 R/W FFC0
0008

Mask for 4 Mbytes, prefetchable memory

Table 9–38. Base 2 Address Register Bit Field Description

Bits Access Default Description

31:0 R/W FF80
0000

Mask for 8 Mbytes, non-prefetchable memory

Table 9–39. Base 1 Address Register Bit Field Description

Bits Access Default Description

31:0 R/W FFFF
FFF1

Mask for 16 Bytes, I/O space

Table 9–40. Subsystem ID Register Bit Field Description

Bits Access Default Description

15:0 R 00h Add-in board or subsystem identifier

Table 9–41. Subsystem Vendor ID Register Bit Field Description

Bits Access Default Description

15:0 R 00h Add-in board or subsystem vendor identifier

Table 9–42. Capabilities Pointer Register Bit Field Description

Bits Access Default Description

7:0 R 040h Offset to the Power Management Capability
Block

PCI Configuration Registers Bit Field Descriptions

9-63PCI

Table 9–43. Interrupt Line Register Bit Field Description

Bits Access Default Description

7:0 R/W 000h Interrupt Line routing information

Table 9–44. Min_Gnt Register Bit Field Description

Bits Access Default Description

7:0 R 00h Minimum grant

Table 9–45. Max_Lat Register Bit Field Description

Bits Access Default Description

7:0 R 00h Maximum Latency

Table 9–46. Capability ID Register Bit Field Description

Bits Access Default Description

7:0 R 01h PCI Power Management ID

Table 9–47. Next Item Pointer Register Bit Field Description

Bits Access Default Description

7:0 R 00h Next Item in Capabilities List Pointer
(‘0’ – last item)

Table 9–48. Power Management Capabilities Register (PMC) Bit Field Description

Bits Access Default Description

15 R No default
value

PME_Support in D3cold state. Read value depends on presence of 3.3V
on 3.3VauxDET pin.
0: 3.3VauxDET pin is low
1: 3.3VauxDET pin is high

14:11 R 0h PME_Support: states that board may assert PME.

10 R 0h D2_Support

9 R 0h D1_Support

8:6 R 000 Auxiliary Supply Max Current – Because the PWRDATA register is imple-
mented, this field returns 000.

5 R 0h Device Specific Initialization is or is not required.

4 R 0 Reserved

3 R 0 PME Clock: PCI clock is not required to assert PME.

2:0 R 010 Version of Power Management

PCI Configuration Registers Bit Field Descriptions

 9-64

Table 9–49. Power Management Control/Status Register (PMCSR) Bit Field Description

Name Bits Access � Default Description

PMESTAT 15 R/W–C User-
defined

or 0

Power Management Event Status

PMESTAT = 0: No Power management event has
occurred.

PMESTAT = 1: Power management event has
occurred. If PMEEN is 1, then the PME pin is also
asserted.

Writing 1 clears this bit. Writing 0 has no effect. If
3.3VauxDET is low, this bit resets to 0. If 3.3VauxDET
is high, this bit is 0 on power reset.

PMESTAT is a sticky bit (i.e., maintained when main
PCI bus power is off) powered from PCI 3.3Vaux pin.

DATASCALE 14:13 R 00 Data Scale
Scaling factor for data read from PWRDATA register.
This field changes with DATASEL values, and is
initialized with PWRDATA initialization data.
DATASCALE = 00b: Reserved
DATASCALE = 01b: 0.1 Watt * value from PWRDATA
DATASCALE = 10b: 0.01 Watt * value from
PWRDATA
DATASCALE = 11b: 0.001 Watt * value from
PWRDATA

PCI Configuration Registers Bit Field Descriptions

9-65PCI

Table 9–49. Power Management Control/Status Register (PMCSR) Bit Field Description
(Continued)

Name DescriptionDefaultAccess �Bits

DATASEL 12:9 R/W 0h Data Select
Select bits for PWRDATA register, DATASCALE field:
DATASEL = 0000b: PWRDATA reads return D0 power
consumed
DATASEL = 0001b: PWRDATA reads return D1 power
consumed
DATASEL = 0010b: PWRDATA reads return D2 power
consumed
DATASEL = 0011b: PWRDATA reads return D3hot
power consumed
DATASEL = 1000b: PWRDATA reads return D0 power
dissipated
DATASEL = 1001b: PWRDATA reads return D1 power
dissipated
DATASEL = 1010b: PWRDATA reads return D2 power
dissipated
DATASEL = 1011b: PWRDATA reads return D3hot
power dissipated
others: PWRDATA reads return 0

PMEEN 8 R/W User-
defined

or 0

PME assertion enable
1 enables assertion of PME pin,
0 disables PME assertion. If 3.3VauxDET is low, this
bit resets to 0. If 3.3VauxDETis high, this bit is 0 on
power up reset.

PMEEN is a sticky bit (i.e., maintained when main PCI
bus power is off) powered from PCI’s 3.3Vaux pin.

PCI Configuration Registers Bit Field Descriptions

 9-66

Table 9–49. Power Management Control/Status Register (PMCSR) Bit Field Description
(Continued)

Name DescriptionDefaultAccess �Bits

7:2 R 00h Reserved

PWRSTATE 1:0 R/W 00b Power State
Reads of PWRSTATE return current power state as
provided by the CURSTATE bit of the PMDCSR.

Writes of PWRSTATE are the requested power state
by the host. Writes where the bits are not the same as
the value currently in the REQSTATE field of the
PMDCSR cause a power management interrupt or
warm reset to the DSP and update REQSTATE with
the value from these bits. Writes where the value is
the same as the current value of REQSTATE do not
cause the interrupt.
PWRSTATE = 00b: Power state D0
PWRSTATE = 01b: Power State D1
PWRSTATE = 10b: Power State D2
PWRSTATE = 11b: Power State D3

Only Power State writes to legal transitions will be
processed. All writes will terminate properly on the
PCI bus, but illegal transitions will not be processed
by the core. If software attempts to write an
unsupported, optional state to this field, the write
operation must complete normally on the bus;
however, the data is discarded and no state change
occurs.

† R/W–C indicates that writing a 1 resets this bit. Writing 0 has no effect.

Table 9–50. Power Data Register (PWRDATA) Bit Field Description

Name Bits Access Default Description

PWRDATA 7:0 R 00h Power Data
Reads return power consumed or dissipated in device
power management state selected by PMCSR DATA-
SEL bits. The implemented subset is shown in
Table 9–51.

PCI Configuration Registers Bit Field Descriptions

9-67PCI

Table 9–51. Power Data Register (PWRDATA) DATASCALE Description

DATASEL PWRDATA, PMCSR DATASCALE Reported

0000 Power consumed in D0 state

0001 Power consumed in D1 state

0010 Power consumed in D2 state

0011 Power consumed in D3hot state

0100 Power dissipated in D0 state

0101 Power dissipated in D1 state

0110 Power dissipated in D2 state

0111 Power dissipated in D3hot state

1XXX Returns 0

10-1

External Memory Interface

This chapter describes the external memory interface used by the CPU to
access off-chip memory. This chapter also describes the EMIF control
registers and their fields, and it explains how to reset the EMIF. Various
memory interfaces are described, along with diagrams showing the
connections between the EMIF and each supported memory type.

Topic Page

10.1 Overview 10-2.

10.2 EMIF Registers 10-14.

10.3 Memory Width and Byte Alignment 10-29.

10.4 Command-to-Command Turnaround Time 10-33.

10.5 SDRAM Interface 10-34.

10.6 SBSRAM Interface 10-72.

10.7 Programmable Synchronous Interface (TMS320C64x) 10-83.

10.8 Asynchronous Interface 10-91.

10.9 Peripheral Device Transfers (PDT) (TMS320C64x) 10-103.

10.10 Resetting the EMIF 10-107.

10.11 Hold Interface 10-108.

10.12 Memory Request Priority 10-110.

10.13 Boundary Conditions When Writing to EMIF Registers 10-112.

10.14 Clock Output Enabling 10-113.

10.15 Emulation Halt Operation 10-114.

10.16 Power Down 10-114.

Chapter 10

Overview

 10-2

10.1 Overview

The external memory interfaces (EMIFs) of all TMS320C6000 devices support
a glueless interface to a variety of external devices, including:

� Pipelined synchronous-burst SRAM (SBSRAM)
� Synchronous DRAM (SDRAM)
� Asynchronous devices, including SRAM, ROM, and FIFOs
� An external shared-memory device

The TMS320C620x/C670x EMIF services requests of the external bus from
four requesters:

� On-chip program memory controller that services CPU program fetches
� On-chip data memory controller that services CPU data fetches
� On-chip DMA controller
� External shared-memory device controller (via EMIF arbitration signals)

If multiple requests arrive simultaneously, the EMIF prioritizes them and performs
the necessary number of operations. A block diagram of the C620x/C670x is
shown in Figure 10–1, and the signals shown there are summarized in
Table 10–2. The C620x/C670x EMIF has a 32–bit data bus interface.

The C621x/C671x/C64x services requests of the external bus from two re-
questors:

� On-chip enhanced direct-memory access (EDMA) controller
� External shared-memory device controller

A block diagram of the C621x/C671x is shown in Figure 10–2. A block diagram
of the C64x is shown in Figure 10–3.

The C64x EMIF offers additional flexibility by replacing the SBSRAM mode
with a programmable synchronous mode, which supports glueless interfaces
to the following:

� ZBT (Zero Bus Turnaround) SRAM
� Synchronous FIFOs
� Pipeline and flow-thru SBSRAM

The C64x has two EMIFs, EMIFA and EMIFB, per device. The suffix “A” and
“B” indicate the EMIF data bus width as follows:

� EMIFA – 64-bit data bus interface
� EMIFB – 16-bit data bus interface

In this chapter, EMIFA and EMIFB are also referred to as EMIF.

Overview

10-3External Memory Interface

Figure 10–1. External Memory Interface in the TMS320C620x/C670x Block Diagram

EMIF

HPI/
Expansion Bus/

PCI

Data Access
Controller

Internal Data
Memory

Internal Program
Memory

D
M

A
 B

us

P
er

ip
he

ra
l C

on
tr

ol
 B

us

Interrupt
Selector

Program
Access/Cache

Controller

Direct Memory Access
Controller (DMA)

PLL
Power Down

Logic

Boot
Configuration

C6000 DSP core

Instruction Fetch

Instruction Dispatch

Instruction Decode

Data Path A

A Register File

L1 S1 M1 D1

Control
Registers

Control Logic

Test

In–Circuit
Emulation

Interrupt
Control

Data Path B

B Register File

L2S2M2D2

Note: Refer to the specific device datasheet for its peripheral set.

Other
Peripherals

Overview

 10-4

Figure 10–2. External Memory Interface in the TMS320C621x/C671x Block Diagram

C6000 DSP core

Instruction Fetch

Instruction Dispatch

Instruction Decode

L1 S1 M1 D1

Control
Registers

Control
Logic

Test

In–Circuit
Emulation

Interrupt
Control

B Register File

L2S2M2D2

L1P Cache

L2
Memory

L1D Cache

Enhanced
DMA

Controller

Power Down Logic

EMIF

Other Peripherals

Boot Configuration

Interrupt
Selector

PLL

Note: Not all peripherals exist on all C621x/C671x devices. Refer to the specific device datasheet for its peripheral set.

Data Path A

A Register File

Data Path B

Figure 10–3. External Memory Interface in the TMS320C640x Block Diagram

C6000 DSP core

Instruction Fetch

Instruction Dispatch

Instruction Decode

Data Path A

A Register File

L1 S1 M1 D1

Control
Registers

Control
Logic

Test

In–Circuit
Emulation

Interrupt
Control

Data Path B

B Register File

L2S2M2D2

L1P Cache

L2
Memory

L1D Cache

Enhanced
DMA

Controller

Power Down Logic

Other
 Peripherals

EMIFB

Boot Configuration

Interrupt
Selector

PLL

Note: Refer to the specific device datasheet for its peripheral set.

EMIFA

Overview

10-5External Memory Interface

Table 10–1 summarizes the differences between the C6000 EMIF devices.

Table 10–1. TMS320C6000 EMIF Summary

C62x/C67x C64x

Features C6201
C6701

Other C620x
Other C670x

C621x
C671x† EMIFA EMIFB

Bus Width 32 32 32† 64 16

Number of
Memory Spaces

4 4 4 4 4

Addressable
Space (Mbytes)

52 52 512† 1024 256

Synchronous
Clocking

CPU clock
and/or 1/2x
CPU clock

1/2x CPU clock
Independent

ECLKIN

Independent
ECLKIN, 1/4x
CPU clock or

1/6x CPU clock

Independent
ECLKIN, 1/4x
CPU clock or

1/6x CPU clock

Width Support
32 bit;

8-/16-bit ROM
32 bit;

8-/16-bit ROM
8-/16-/32-bit†

8–, 16–, 32–, or
64–bit

8–/16–bit

Supported
memory type
at CE1

Asynchronous
memory

Asynchronous
memory

All types All types All types

Control signals Separate
Muxed

synchronous
signals

Muxed all
control signals

Muxed all
control signals

Muxed all
control signals

Synchronous
memory in
system

Both SDRAM
and SBSRAM

Either SDRAM
or SBSRAM

Both SDRAM
and SBSRAM

All synchronous All synchronous

Additional
registers

— — SDEXT
SDEXT

CExSEC
SDEXT

CExSEC

PDT support No No No Yes Yes

ROM/Flash � � � � �

Asynchronous
memory I/O

� � � � �

Pipeline
SBSRAM

� � � � �

Flow thru
SBSRAM

� �

ZBT SRAM � �

Standard Syn-
chronous FIFO

� �

FWFT FIFO � �

† C6712 EMIF is only 16-bit wide. Addressable space is 256 Mbytes. It supports memory widths of 8 bits and 16 bits.

Overview

 10-6

10.1.1 EMIF Signals

The following sections describe the EMIF signals on the TMS320C6000 de-
vices.

10.1.1.1 TMS320C6201/C6701 External Memory Interface

The EMIF signals of the C6201/C6701 are shown in Figure 10–4. The
C6201/C6701 provides separate clock and control signals for the SBSRAM
and SDRAM interface. The SDRAM runs off SDCLK, while the SBSRAM runs
off SSCLK. All three memory types (SDRAM, SBSRAM, and asynchronous
devices) can be included in a system. Asynchronous interface is supported on
all CE spaces, but CE1 is used for asynchronous interface only.

Figure 10–4. TMS320C6201/C6701 External Memory Interface

interface
Bus hold

control
SDRAM

control
SBSRAM

control
Asynchronous

interfaces
all external
Shared by

Program
memory

controller

Data
memory

controller

controller
DMA

(EMIF)
interface
memory
External

HOLDA

HOLD

SDCLK

SDA10

SDWE

SDCAS

SDRAS

SSCLK

SSWE

SSOE

SSADS

AWE

ARE

AOE

ARDY

BE[3:0]

CE[3:0]

EA[21:2]

ED[31:0]

CLKOUT2

CLKOUT1

Internal peripheral bus

Control
registers

Overview

10-7External Memory Interface

10.1.1.2 TMS320C6202(B)/C6203(B)/C6204/C6205 External Memory Interface

The EMIF signals are shown in Figure 10–5. These C620x/C670x devices
have combined the SDRAM and SBSRAM signals. Only one of these two
memory types can be used in a system. These memories run off CLKOUT2
(EMIF clock cycle), which is equal to half the CPU clock rate.

Asynchronous interface is supported on all CE spaces, but CE1 is used for
asynchronous interface only.

Figure 10–5. TMS320C6202(B)/C6203(B)/C6204/C6205 External Memory Interface

CLKOUT2

ED[31:0]

CE[3:0]

BE[3:0]

ARDY

AOE

ARE

AWE

SDRAS/SSOE

SDCAS/SSADS

SDWE/SSWE

EA[21:2]

SDA10

Shared by
all external
interfaces

Asynchronous
control

Synchronous
control

External
memory
interface
(EMIF)

Control
registers

Internal
peripheral bus

Data
memory
controller

Program
memory
controller

DMA
controller

CLKOUT1

10.1.1.3 TMS320C621x/C671x External Memory Interface

The EMIF signals of the C621x/C671x are shown in Figure 10–6. The
C621x/C671x has the following features:

� The C621x/C671x EMIF requires that an external clock source (ECLKIN)
be provided by the system. The ECLKOUT signal is produced internally
(based on ECLKIN). All of the memories interfacing with the C621x/C671x
should operate off of ECLKOUT (EMIF clock cycle). If desired, the
CLKOUT2 output can be routed back to the ECLKIN input.

Overview

 10-8

� The SDRAM, SBSRAM, and asynchronous signals are combined. All
three memory types can be included in a system, since no background re-
fresh is performed.

� Unlike the C620x/C670x, the C621x/C671x EMIF space CE1 supports all
three types of memory.

� The synchronized memory interfaces use a four-word burst length which
is optimized for the two-level cache architecture.

� The SDRAM interface is flexible, allowing interfaces to a wide range of
SDRAM configurations.

� The SDA10 pin has been removed. Address pin EA[12] serves the func-
tion of the SDA10 pin for the SDRAM memories.

Figure 10–6. TMS320C621x/C671x External Memory Interface

ED[31:0]†

CE[3:0]

BE[3:0]

ARDY

AOE/SDRAS/SSOE

ARE/SDCAS/SSADS

AWE/SDWE/SSWE

EA[21:2]

Internal
peripheral bus

External
memory
interface
(EMIF)

Control
registers

Shared by
all external
interfaces

MUXed
Asynch/SDRAM/SBSRAM
control

ECLKIN

Enhanced
data

memory
controller

HOLDA

HOLD

BUSREQ

ECLKOUT

† C6712 uses ED[15:0].

Overview

10-9External Memory Interface

10.1.1.4 TMS320C64x External Memory Interface

The EMIF signals of the C64x are shown in Figure 10–7. These signals apply
to both EMIFA and EMIFB with the exception of the SDCKE signal, which ap-
plies to EMIFA only. The C64x EMIF is an enhanced version of the C621x
EMIF. It includes all the C621x/C671x features plus the following new features:

� The data bus on EMIFA is 64 bit wide. The data bus on EMIFB is 16-bit
wide.

� The EMIF clocks ECLKOUTx are generated internally based on the EMIF
input clock. At device reset, users can configure one of the following three
clocks as the EMIF input clock: internal CPU clock rate divide by 4, internal
CPU clock rate divide by 6, or external ECLKIN. See Chapter 11 Boot
Modes and Configuration for details. All of the memories interfacing with
the C64x should operate off of ECLKOUTx (EMIF clock cycle). The ECLK-
OUT1 frequency equals to EMIF input clock frequency. The ECLKOUT2
frequency is programmable to be EMIF input clock frequency divided by
1, 2, or 4.

� The SBSRAM controller is replaced with a more flexible programmable
synchronous memory controller. The SBSRAM control pins are also re-
placed with synchronous control pins.

� The PDT pin provides external-to-external transfer support.

Overview

 10-10

Figure 10–7. TMS320C64x External Memory Interface (EMIFA and EMIFB)

ED†

CE†

BE†

ARDY

AOE/SDRAS/SOE

ARE/SDCAS/SADS/SRE

AWE/SDWE/SWE

EA†

Internal
peripheral bus

External
memory
interface
(EMIF)

Control
registers

Shared by
all external
interfaces

MUXed
Asynch/SDRAM/
synchronous memory control

ECLKIN

EDMA

HOLDA

HOLD

BUSREQ

ECLKOUT2

ECLKOUT1

SOE3

PDT

SDCKE�

† See Table 9–2 for ED, EA, CE, and BE pins on EMIFA and EMIFB.
‡ SDCKE applies to EMIFA only.

Overview

10-11External Memory Interface

Table 10–2. EMIF Signal Descriptions

Device
Group †‡ Pin (I/O/Z) Description

1 2 3 4 5

� � � CLKOUT1 O Clock output. Runs at the CPU clock rate.

� � � CLKOUT2 O Clock output. Runs at 1/2 the CPU clock rate. Used for synchronous
memory interface on Group 2 devices.

� � CLKOUT4 O/Z Clock output. Runs at 1/4 the CPU clock rate. On C64x, the CLKOUT4
pin is MUXed with the GP1 (general purpose input/output 1 pin). By de-
fault, it functions as CLKOUT4.

� � CLKOUT6 O/Z Clock output. Runs at 1/6 the CPU clock rate. On C64x, the CLKOUT6
pin is MUXed with the GP2 (general purpose input/output 2 pin). By de-
fault, it functions as CLKOUT6.

� � � ECLKIN I EMIF clock input. Must be provided by the system on C621x/C671x. Op-
tionally provided by the system on C64x.

� ECLKOUT O EMIF clock output. All EMIF I/O are clocked relative to ECLKOUT.

� � ECLKOUT1 O/Z EMIF output clock at EMIF input clock (ECLKIN, CPU/4 clock, or CPU/6
clock) frequency.

� � ECLKOUT2 O/Z EMIF output clock at EMIF input clock (ECLKIN, CLKOUT4, or
CLKOUT6) frequency divide by 1, 2, or 4.

� ED[15:0] I/O/Z EMIF 16-bit data bus I/O

� � � ED[31:0]§ I/O/Z EMIF 32-bit data bus I/O§

� ED[63:0] I/O/Z EMIF 64-bit data bus I/O

� EA[20:1] O/Z External address output. Drives bits 20–1 of the byte address.
(Effectively a half-word address.)

� � � EA[21:2] O/Z External address output. Drives bits 21–2 of the byte address.
(Effectively a word address.)

� EA[22:3] O/Z External address output. Drives bits 22–3 of the byte address.
(Effectively a double-word address.)

� � � � � CE0 O/Z Active-low chip select for memory space CE0

� � � � � CE1 O/Z Active-low chip select for memory space CE1

� � � � � CE2 O/Z Active-low chip select for memory space CE2

� � � � � CE3 O/Z Active-low chip select for memory space CE3
† “M” indicates a multiplexed output signal.
‡ Group1 devices include: C6201/C6701.

Group 2 devices include: all C620x/C670x except C6201/C6701.
Group 3 devices include: C621x/C671x.
Group 4 devices include: C64x EMIFA.
Group 5 devices include: C64x EMIFB.

§ C6712 has a 16-bit bus; therefore, ED[31:16] do not apply.

Overview

 10-12

Table 10–2. EMIF Signal Descriptions (Continued)

Device
Group †‡ Description(I/O/Z)Pin

1 2 3 4 5

� BE[1:0] O/Z Active-low byte enables.On C64x, byte-enables go active for only the
appropriate byte lane for both writes and reads.

� � � BE[3:0] O/Z Active-low byte enables. Individual bytes and halfwords can be selected for
write cycles. For read cycles, all four byte-enables are active.

� BE[7:0] O/Z Active-low byte enables.On C64x, byte-enables go active for only the
appropriate byte lane for both writes and reads.

� � � � � ARDY I Ready. Active-high asynchronous ready input used to insert wait states
for slow memories and peripherals.

� � M M M AOE O/Z Active-low output enable for asynchronous memory interface

� � M M M AWE O/Z Active-low write strobe for asynchronous memory interface

� � M M M ARE O/Z Active-low read strobe for asynchronous memory interface

� M M SSADS O/Z Active-low address strobe/enable for SBSRAM interface

� M M SSOE O/Z Active low output buffer enable for SBSRAM interface

� M M SSWE O/Z Active-low write enable for SBSRAM interface

� SSCLK O/Z SBSRAM interface clock. Programmable to either the CPU clock rate or
half of the CPU clock rate.

� M M M M SDRAS O/Z Active-low row address strobe for SDRAM memory interface

� M M M M SDCAS O/Z Active-low column address strobe for SDRAM memory interface

� M M M M SDWE O/Z Active-low write enable for SDRAM memory interface

� � SDA10 O/Z SDRAM A10 address line. Address line/autoprecharge disable for
SDRAM memory.

� SDCKE O/Z SDRAM clock enable (used for self-refresh mode). If SDRAM is not in
the system, SDCKE can be used as a general-purpose output.

� SDCLK O/Z SDRAM interface clock. Runs at 1/2 the CPU clock rate. Equivalent to
CLKOUT2.

M M SADS/SRE O/Z Synchronous memory address strobe or read enable (selected by
RENEN in CE space secondary control register).

† “M” indicates a multiplexed output signal.
‡ Group1 devices include: C6201/C6701.

Group 2 devices include: all C620x/C670x except C6201/C6701.
Group 3 devices include: C621x/C671x.
Group 4 devices include: C64x EMIFA.
Group 5 devices include: C64x EMIFB.

§ C6712 has a 16-bit bus; therefore, ED[31:16] do not apply.

Overview

10-13External Memory Interface

Table 10–2. EMIF Signal Descriptions (Continued)

Device
Group †‡ Description(I/O/Z)Pin

1 2 3 4 5

M M SOE O/Z Synchronous memory output enable

� � SOE3 O/Z Synchronous memory output enable for CE3 (intended for glueless
FIFO interface).

M M SWE O/Z Synchronous memory write enable

� � � � � HOLD I Active-low external bus hold (3-state) request

� � � � � HOLDA O Active-low external bus hold acknowledge

� � � BUSREQ O Active-high bus request signal. Indicates pending refresh or memory
access.

� � PDT O/Z Peripheral data transfer data. This signal is active during the data phase
of PDT transfers.

† “M” indicates a multiplexed output signal.
‡ Group1 devices include: C6201/C6701.

Group 2 devices include: all C620x/C670x except C6201/C6701.
Group 3 devices include: C621x/C671x.
Group 4 devices include: C64x EMIFA.
Group 5 devices include: C64x EMIFB.

§ C6712 has a 16-bit bus; therefore, ED[31:16] do not apply.

EMIF Registers

 10-14

10.2 EMIF Registers

Control of the EMIF and the memory interfaces it supports is maintained through
memory-mapped registers within the EMIF. The memory-mapped registers are
listed in Table 10–3.

Table 10–3. EMIF Memory-Mapped Registers

Byte Address Abbreviation EMIF Register Name

EMIF/EMIFA EMIFB‡

0180 0000h 01A8 0000h GBLCTL EMIF global control

0180 0004h 01A8 0004h CE1CTL EMIF CE1 space control

0180 0008h 01A8 0008h CE0CTL EMIF CE0 space control

0180 000Ch 01A8 000Ch Reserved

0180 0010h 01A8 0010h CE2CTL EMIF CE2 space control

0180 0014h 01A8 0014h CE3CTL EMIF CE3 space control

0180 0018h 01A8 0018h SDCTL EMIF SDRAM control

0180 001Ch 01A8 001Ch SDTIM EMIF SDRAM refresh control

0180 0020h 01A8 0020h SDEXT§ EMIF SDRAM extension§

0180 0024h to

0180 0040h

01A8 0024h to

01A8 0040h

– Reserved

0180 0044h 01A8 0044h CE1SEC¶ EMIF CE1 space secondary control¶

0180 0048h 01A8 0048h CE0SEC¶ EMIF CE0 space secondary control¶

0180 004Ch 01A8 004Ch – Reserved

0180 0050h 01A8 0050h CE2SEC¶ EMIF CE2 space secondary control¶

0180 0054h 01A8 0054h CE3SEC¶ EMIF CE3 space secondary control¶

‡ EMIFB exists only on C64x.
§ Register does not exist on C620x/C6701 devices.
¶ Register exists only on C64x.

EMIF Registers

10-15External Memory Interface

10.2.1 Global Control Register (GBLCTL)

The EMIF global control register (shown in Figure 10–8 and summarized in
Table 10–4) configures parameters common to all the CE spaces.

Figure 10–8. EMIF Global Control Register (GBLCTL)

C6201/C6701:

31 16

Rsv

R, +0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rsv Rsv† Rsv† Rsv† Rsv ARDY HOLD HOLDA
NO

HOLD
SDCEN SSCEN CLK1EN CLK2EN SSCRT RBTR8 MAP

R,+0 RW,+0 RW,+1 RW,+1 R, +0 R, +x R, +x R, +x RW, +0 RW, +1 RW, +1 RW, +1 RW, +1 RW, +0 RW, +0 R, +x

C6202(B)/C6203(B)/C6204/C6205:

31 16

Rsv

R, +0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rsv Rsv† Rsv† Rsv† Rsv ARDY HOLD HOLDA
NO

HOLD
SDCEN SSCEN CLK1EN Rsv Rsv RBTR8 MAP

R,+0 RW,+0 RW,+1 RW,+1 R, +0 R, +x R, +x R, +x RW, +0 RW, +1 RW, +1 RW, +1 RW, +1 R, +0 RW, +0 R, +x

C621x/C671x:

31 16

Rsv

R, +0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rsv Rsv† Rsv† Rsv† BUSREQ ARDY HOLD HOLDA
NO

HOLD
Rsv Rsv CLK1EN CLK2EN Rsv Rsv Rsv

R,+0 RW,+0 RW,+1 RW,+1 R, +0 R, +x R, +x R, +x RW, +0 R, +1 R, +1 RW, +1 RW, +1 R, +0 R, +0 R, +0

C64x:
31 20 19 18 17 16

Rsv EK2RATE EK2HZ EK2EN

R,+0 RW, +10 RW, +0 RW, +1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rsv BRMODE Rsv BUSREQ ARDY HOLD HOLDA
NO

HOLD
EK1HZ EK1EN CLK4EN CLK6EN Rsv Rsv Rsv

R,+0 RW,+1 R,+0 R, +0 R, +x R, +x R, +x RW, +0 RW, +1 RW, +1 RW, +1 RW, +1 RW, +1 R, +0 R, +0

† The reserved bit fields should always be written with their default values when modifying the GBLCTL.

EMIF Registers

 10-16

Table 10–4. EMIF Global Control Register (GBLCTL) Field Descriptions

Field Description

Apply to
Device
Group †

MAP Map mode, contains the value of the memory map mode of the device
MAP = 0: map 0 selected. External memory located at address 0.
MAP = 1: map 1 selected. Internal memory located at address 0.

1,2

RBTR8 Requester arbitration mode
RBTR8 = 0: The requester controls the EMIF until a high-priority request occurs.
RBTR8 = 1: The requester controls the EMIF for a minimum of eight
accesses.

1,2

SSCRT SBSRAM clock rate select
SSCRT = 0: SSCLK runs at 1/2x CPU clock rate
SSCRT = 1: SSCLK runs at 1x CPU clock rate

1

CLK1EN CLKOUT1 enable
CLK1EN = 0: CLKOUT1 held high
CLK1EN = 1: CLKOUT1 enabled to clock

1,2,3

CLK2EN CLKOUT2 enable
CLK2EN = 0: CLKOUT2 held high
CLK2EN = 1: CLKOUT2 enabled to clock

CLKOUT2 is enabled/disabled using SSCEN/SDCEN on the
C6202(B)/C6203(B)/C6204/C6205

1,3

CLK4EN CLKOUT4 enable
CLK4EN = 0, CLKOUT4 held high
CLK4EN = 1, CLKOUT4 enabled to clock

For C64x, CLKOUT4 pin is muxed with GP1 pin. Upon exiting reset, CLKOUT4 is
enabled and clocking. After reset, CLKOUT4 maybe be configured as GP1 via the
GPIO enable register GPEN.

4,5

CLK6EN CLKOUT6 enable
CLK6EN = 0, CLKOUT6 held high
CLK6EN = 1, CLKOUT6 enabled to clock

For C64x, CLKOUT6 pin is muxed with GP2 pin. Upon exiting reset, CLKOUT6 is
enabled and clocking. After reset, CLKOUT6 maybe be configured as GP2 via the
GPIO enable register GPEN.

4,5

SSCEN SSCLK enable
SSCEN = 0: SSCLK held high
SSCEN = 1: SSCLK enabled to clock

 SSCEN enables CLKOUT2 on the C6202(B)/C6203(B)/C6204/C6205 if SBSRAM is
used in the system (specified by the MTYPE field in in the CE space control
register).

1,2

† Group1 devices include: C6201/C6701.
Group 2 devices include: all C620x/C670x except C6201/C6701.
Group 3 devices include: C621x/C671x.
Group 4 devices include: C64x EMIFA.
Group 5 devices include: C64x EMIFB.

EMIF Registers

10-17External Memory Interface

Field

Apply to
Device
Group †Description

SDCEN SDCLK enable
SDCEN = 0: SDCLK held high
SDCEN = 1: SDCLK enabled to clock

SDCEN enables CLKOUT2 on C6202(B)/C6203(B)/C6204/C6205 if SDRAM is used
in system (specified by the MTYPE field in in the CE space control register).

1,2

EK1EN ECLKOUT1 enable
ECLK1EN = 0, ECLKOUT1 held low
ECLK1EN = 1, ECLKOUT1 enabled to clock

4,5

EK2EN ECLKOUT2 enable
ECLK2EN = 0, ECLKOUT2 held low
ECLK2EN = 1, ECLKOUT2 enabled to clock

4,5

EK1HZ ECLKOUT1 High-Z control
ECLK1HZ = 0, ECLKOUT1 continues clocking during Hold
ECLK1HZ = 1, ECLKOUT1 High-Z during Hold

4,5

EK2HZ ECLKOUT2 High-Z control
ECLK2HZ = 0, ECLKOUT2 continues clocking during Hold
ECLK2HZ = 1, ECLKOUT2 High-Z during Hold

4,5

EK2RATE ECLKOUT2 Rate. ECLKOUT2 runs at:
ECLK2RT = 00, 1x EMIF input clock (ECLKIN, CPU/4 clock, or CPU/6 clock) rate
ECLK2RT = 01, 1/2x EMIF input clock (ECLKIN, CPU/4 clock, or CPU/6 clock) rate
ECLK2RT = 10, 1/4x EMIF input clock (ECLKIN, CPU/4 clock, or CPU/6 clock) rate

4,5

NOHOLD External HOLD disable
NOHOLD = 0: hold enabled
NOHOLD = 1: hold disabled

1,2,3,4,5

HOLDA HOLDA = 0: HOLDA output is low. External device owns EMIF.
HOLDA = 1: HOLDA output is high. External device does not own EMIF.

1,2,3,4,5

HOLD HOLD = 0: HOLD input is low. External device requesting EMIF.
HOLD = 1: HOLD input is high. No external request pending.

1,2,3,4,5

ARDY ARDY = 0: ARDY input is low. External device not ready.
ARDY = 1: ARDY input is high. External device ready.

1,2,3,4,5

BUSREQ BUSREQ = 0; BUSREQ ouput is low. No access/refresh pending.
BUSREQ = 1; BUSREQ output is high. Access/refresh pending or in progress. See
also BRMODE.

3,4,5

BRMODE Bus Request Mode
BRMODE = 0, BUSREQ indicates memory access pending or in progress
BRMODE = 1, BUSREQ indicates memory access or refresh pending/in progress

4,5

† Group1 devices include: C6201/C6701.
Group 2 devices include: all C620x/C670x except C6201/C6701.
Group 3 devices include: C621x/C671x.
Group 4 devices include: C64x EMIFA.
Group 5 devices include: C64x EMIFB.

In order to support as many common programming practices as possible
between the C620x/C670x devices, SSCEN and SDCEN are used in

EMIF Registers

 10-18

C6202(B)/C6203(B)/C6204/C6205 to enable the memory interface clock,
CLKOUT2. If SBSRAM is used in the system, (specified with the MTYPE field
in the CEn Control register) then SSCEN enables and disables CLKOUT2. If
SDRAM is used, then SDCEN enables and disables CLKOUT2. This is
possible since only one synchronous memory type can exist in a given system.

The C621x/C671x contains the BUSREQ field to indicate if the EMIF has ac-
cess/refresh pending or in progress. For C64x, the BRMODE field determines
if BUSREQ shows memory refresh status. If BRMODE = 0, BUSREQ only indi-
cates memory access status. If BRMODE = 1, BUSREQ indicates both
memory access and refresh status.

The C64x has bit fields (EK1EN, EK2EN, EK1HZ, EK2HZ, and EK2RATE) to
control ECLKOUTx outputs, as shown in Table 10–4. See also section 10.14.

10.2.2 EMIF CE Space Control Registers

The CE space control registers (CExCTL) are shown in Figure 10–9 and sum-
marized in Table 10–5. These registers correspond to the CE memory spaces
supported by the EMIF. For all EMIF, there are four CE space control registers
corresponding to the four external CE signals.

The MTYPE field identifies the memory type for the corresponding CE space.
If the MTYPE field selects a synchronous memory type (SDRAM, SBSRAM
for C62x/C67x, or programmable synchronous for C64x), the remaining fields
in the register have no effect. If an asynchronous type is selected (ROM or
asynchronous), the remaining fields specify the shaping of the address and
control signals for access to that space. These features are discussed in sec-
tion 10.8.

The MTYPE field in the CExCTL should only be set once during system initiali-
zation except when CE1 is used for ROM boot mode. In this mode, the CE
space can be configured to another asynchronous memory type.

For the C6202(B)/C6203(B)/C6204/C6205, only one synchronous memory
type is supported in a system. This is because these devices support SDRAM
background refresh and they have shared synchronous memory control sig-
nals. SBSRAM accesses could be corrupted during SDRAM refresh if both
memory types are present. Therefore, software must ensure that when a CE
space is set up as a synchronous memory type, no other CE spaces are set
up as a different synchronous memory type. For example, if a CE space is set
as SBSRAM, then no other CE spaces should be set as SDRAM. Similarly, if
a CE space is set as SDRAM, then no other CE spaces should be set as
SBSRAM.

The programmed values in the CExCTL refer to CLKOUT1 for the
C620x/C670x, ECLKOUT for the C621x/C671x, and ECLKOUT1 for the C64x.

EMIF Registers

10-19External Memory Interface

Figure 10–9. TMS320C62x/C67x/C64x EMIF CE Space Control Register (CExCTL)

C620x/C670x:
31 28 27 22 21 20 19 16

Write setup Write strobe Write hold Read setup

RW, +1111 RW, +111111 RW, +11 RW, +1111

15 14 13 8 7 6 4 3 2 1 0

Reserved Read strobe Rsvd MTYPE Reserved Read hold

R, +00 RW, +111111 R, +0 RW, +010 R, +0 RW, +11

C621x/C671x/C64x:
31 28 27 22 21 20 19 16

Write setup Write strobe Write hold Read setup

RW, +1111 RW, +111111 RW, +11 RW, +1111

15 14 13 8 7 4 3 2 0

TA Read strobe MTYPE Write hold MSB� Read hold

R, +11 RW, +111111 RW, +0010† RW, +0 RW, +011

† MTYPE default value is RW, +0000.
‡ For C621x/C671x, this field is reserved. R,+0.

EMIF Registers

 10-20

Table 10–5. EMIF CE Space Control Registers (CExCTL) Field Descriptions

Field Description

Read setup
Write setup

Setup width. Number of clock† cycles of setup time for address (EA), chip enable (CE), and
byte enables (BE[0-3]) before read strobe or write strobe falls. For asynchronous read ac-
cesses, this is also the setup time of AOE before ARE falls.

Read strobe
Write strobe

Strobe width. The width of read strobe (ARE) and write strobe (AWE) in clock† cycles

Read hold
Write hold

Hold width. Number of clock† cycles that address (EA) and byte strobes (BE[0-3]) are held
after read strobe or write strobe rises. For asynchronous read accesses, this is also the hold
time of AOE after ARE rising.

MTYPE Memory type of the corresponding CE spaces for C620x/C670x

MTYPE Definitions for C620x/C670x

MTYPE = 000b: 8-bit-wide ROM (CE1 only)
MTYPE = 001b: 16-bit-wide ROM (CE1 only)
MTYPE = 010b: 32-bit-wide asynchronous interface
MTYPE = 011b: 32-bit-wide SDRAM (CE0, CE2, CE3 only)
MTYPE = 100b: 32-bit-wide SBSRAM

MTYPE Definitions for C621x/C671x/C64x‡

MTYPE = 0000b: 8-bit-wide asynchronous interface
MTYPE = 0001b: 16-bit-wide asynchronous interface
MTYPE = 0010b: 32-bit-wide asynchronous interface
MTYPE = 0011b: 32-bit-wide SDRAM
MTYPE = 0100b: 32-bit-wide SBSRAM (C621x/C671x)

32-bit-wide programmable synchronous memory (C64x)
MTYPE = 1000b: 8-bit-wide SDRAM
MTYPE = 1001b: 16-bit-wide SDRAM
MTYPE = 1010b: 8-bit-wide SBSRAM (C621x/C671x)

8-bit-wide programmable synchronous memory (C64x)
MTYPE = 1011b: 16-bit-wide SBSRAM (C621x/C671x)

16-bit-wide programmable synchronous memory (C64x)
MTYPE = 1100b: 64-bit-wide asynchronous interface (C64x only)
MTYPE = 1101b: 64-bit-wide SDRAM (C64x only)
MTYPE = 1110b: 64-bit-wide programmable synchronous memory (C64x only)

TA Turn-around time (C621x/C671x/C64x only). Turn-around time controls the number of
ECLKOUT cycles between a read, and a write, or between reads, to different CE spaces
(asynchronous memory types only).

† Clock cycles are in terms of CLKOUT1 for C620x/C670x, ECLKOUT for the C621x/C671x, and ECLKOUT1 for the C64x.
‡ 32-bit and 64–bit interfaces (MTYPE=0010b, 0011b, 0100b, 1100b, 1101b, 1110b) do not apply to C6712 and C64x EMIFB.

EMIF Registers

10-21External Memory Interface

For the C64x, a secondary CE space control register is added for the program-
mable synchronous interface. This register controls the cycle timing of pro-
grammable synchronous memory accesses, and the clock used for synchro-
nization for the specific CE space. The CE space secondary control register
(CExSEC) is shown in Figure 10–10 and summarized in Table 10–6. The CEx-
SEC applies only to C64x programmable synchronous memory interface.

Figure 10–10. CE Space Secondary Control Register (CExSEC) – TMS320C64x Only

31 16

Reserved

R, +0

15 9 8 7 6 5 4 3 2 1 0

Reserved Rsv† Rsv SNCCLK RENEN CEEXT SYNCWL SYNCRL

R,+0 RW, +0 R, +0 RW, +0 RW, +0 RW, +0 RW, +00 RW, +10

† RW reserved bit fields should always be written with their default values when modifying the CExSEC.

EMIF Registers

 10-22

Table 10–6. CE Space Secondary Control Register (CExSEC) Field Descriptions
(TMS320C64x only)

Field Description

SYNCRL Synchronous interface data read latency

SYNCRL = 00: 0 cycle read latency
SYNCRL = 01: 1 cycle read latency
SYNCRL = 10: 2 cycle read latency
SYNCRL = 11: 3 cycle read latency

SYNCWL Synchronous interface data write latency

SYNCWL = 00: 0 cycle write latency
SYNCWL = 01: 1 cycle write latency
SYNCWL = 10: 2 cycle write latency
SYNCWL = 11: 3 cycle write latency

CEEXT CE extension register

CEEXT = 0: CE goes inactive after the final command has been issued (not necessarily
when all the data has been latched).

CEEXT = 1: On read cycles, the CE signal will go active when SOE goes active and will
stay active until SOE goes inactive. The SOE timing is controlled by SYNCRL. (used for
synchronous FIFO reads with glue, where CE gates OE)

RENEN Read Enable Enable

RENEN = 0: ADS mode. SADS/SRE signal acts as SADS signal. SADS goes active for
reads, writes, and deselect. Deselect is issued after a command is completed if no new
commands are pending from the EDMA. (used for SBSRAM or ZBT SRAM interface)

RENEN = 1: Read Enable mode. SADS/SRE signal acts as SRE signal. SRE goes low
only for reads. No deselect cycle is issued. (used for FIFO interface)

SNCCLK Synchronization Clock

SNCCLK = 0, control/data signals for this CE space are synchronized to ECLKOUT1

SNCCLK = 1, control/data for this CE space are synchronized to ECLKOUT2

EMIF Registers

10-23External Memory Interface

10.2.3 EMIF SDRAM Control Register

The SDRAM control register (shown in Figure 10–11) controls SDRAM pa-
rameters for all CE spaces that specify an SDRAM memory type in the MTYPE
field of the associated CE space control register. Because the SDRAM control
register controls all SDRAM spaces, each space must contain SDRAM with
the same refresh, timing, and page characteristics. The fields in this register
are shown in Figure 10–11 and described in Table 10–7. These registers
should not be modified while accessing SDRAM.

Figure 10–11. EMIF SDRAM Control Register (SDCTL)

C620x/C670x:
31 28 27 26 25 24 23 20 19 16

Reserved Rsv SDWID RFEN INIT TRCD TRP

RW, +000 R,+0 RW, +0 RW, +1 W, +1 RW, +1000 RW, +1000

15 12 11 0

TRC Reserved

RW, +1111 R, +0000 0000 0000

C621x/C671x:
31 30 29 28 27 26 25 24 23 20 19 16

Rsv SDBSZ SDRSZ SDCSZ RFEN INIT TRCD TRP

R,+0 RW, +0 RW, +00 RW, +0 RW, +1 W, +1 RW, +0100 RW, +1000

15 12 11 0

TRC Reserved

RW, +1111 R, +0000 0000 0000

C64x:
31 30 29 28 27 26 25 24 23 20 19 16

Rsv SDBSZ SDRSZ SDCSZ RFEN INIT TRCD TRP

R,+0 RW, +0 RW, +00 RW, +0 RW, +1 W, +1 RW, +0100 RW, +1000

15 12 11 1 0

TRC Reserved SLFRFR†

RW, +1111 R, +000 0000 0000 RW, +0

† SLFRFR only applies to EMIFA. Bit 0 is reserved, RW+0, on EMIFB.

EMIF Registers

 10-24

Table 10–7. EMIF-to-SDRAM Control Register (SDCTL) Field Descriptions

Field Description

TRC Specifies the tRC value of the SDRAM in EMIF clock cycles
TRC = tRC / tcyc† – 1

TRP Specifies the tRP value of the SDRAM in EMIF clock cycles
TRP = tRP / tcyc† – 1

TRCD‡ Specifies the tRCD value of the SDRAM in EMIF clock cycles‡

TRCD = tRCD / tcyc† – 1

INIT Forces initialization of all SDRAM present

INIT = 0: no effect
INIT = 1: initialize SDRAM in each CE space configured for SDRAM. EMIF automatically
changes INIT back to 0 after SDRAM initialization is performed.

RFEN Refresh enable

RFEN = 0: SDRAM refresh disabled
RFEN = 1: SDRAM refresh enabled

SDWID SDRAM column width select (C620x/C670x)

SDWID = 0: 9 column address pins (512 elements per row)
SDWID = 1: 8 column address pins (256 elements per row)

SDCSZ SDRAM column size (C621x/C671x/C64x)

SDCSZ = 00: 9 column address pins (512 elements per row)
SDCSZ = 01: 8 column address pins (256 elements per row)
SDCSZ = 10: 10 column address pins (1024 elements per row)
SDCSZ = 11: reserved

SDRSZ SDRAM row size (C621x/C671x/C64x)

SDRSZ = 00: 11 row address pins (2048 rows per bank)
SDRSZ = 01: 12 row address pins (4096 rows per bank)
SDRSZ = 10: 13 row address pins (8192 rows per bank)
SDRSZ = 11: reserved

† tcyc refers to the EMIF clock period, which is equal to CLKOUT2 period for the C620x/C670x, ECLKOUT period for the
C621x/C671x, or ECLKOUT1 period for the C64x.

‡ On the C64x, TRCD specifies the number of ECLKOUT1 cycles between an ACTV command and a READ or WRT command
(CAS). The specified separation is maintained while driving write data one cycle earlier.

EMIF Registers

10-25External Memory Interface

Table 10–7. EMIF-to-SDRAM Control Register (SDCTL) Field Descriptions
(Continued)

Field Description

SDBSZ SDRAM bank size (C621x/C671x/C64x)

SDBSZ = 0: one bank-select pin (two banks)
SDBSZ = 1: two bank-select pins (four banks)

SLFRFR Self-refresh mode (C64x)

If SDRAM is used in the system,
SLFRFR = 0: self-refresh mode disabled
SLFRFR = 1: self-refresh mode enabled

If SDRAM is not used,
SLFRFR = 0: general-purpose output SDCKE = 1
SLFRFR = 1: general-purpose output SDCKE = 0

† tcyc refers to the EMIF clock period, which is equal to CLKOUT2 period for the C620x/C670x, ECLKOUT period for the
C621x/C671x, or ECLKOUT1 period for the C64x.

‡ On the C64x, TRCD specifies the number of ECLKOUT1 cycles between an ACTV command and a READ or WRT command
(CAS). The specified separation is maintained while driving write data one cycle earlier.

The EMIF automatically clears the INIT field to zero after it performs SDRAM
initialization. When RESET goes inactive, none of the CE spaces will be con-
figured as SDRAM, so the INIT field will quickly change from 1 to 0. The CPU
should initialize all of the CE space control registers and the SDRAM extension
register before it sets the INIT bit back to 1.

For C64x, the SLFRFR bit enables the self refresh mode, in which the EMIF
places the external SDRAM in a low power mode to maintain valid data while
consuming a minimal amount of power. If SDRAM is not in use by the system,
then the SLFRFR bit can be used to control SDCKE as a general-purpose out-
put. See section 10.5.5 for details.

EMIF Registers

 10-26

10.2.4 EMIF SDRAM Timing Register (SDTIM)

The SDRAM timing register controls the refresh period in terms of EMIF clock
cycles. Optionally, the period field can send an interrupt to the CPU. Thus, this
counter can be used as a general-purpose timer if SDRAM is not used by the
system. The counter field can be read by the CPU. When the counter reach-
es 0, it is automatically reloaded with the period and SDINT (synchronization
event to EDMA and interrupt source to CPU) is asserted. See section 10.5.4
for more information on SDRAM refresh.

Figure 10–12 and Table 10–8 describe the fields of the SDRAM timing register.

The C621x/C671x/C64x can control the number of refreshes performed when
the refresh counter expires via the XRFR field. Up to four refreshes can be per-
formed when the refresh counter expires.

Figure 10–12. EMIF SDRAM Timing Register (SDTIM)

31 26 25 24 23 12 11 0

Reserved XRFR‡ COUNTER PERIOD

R, +0000 00
R, +00†

RW,+00‡
R, +0000 1000 0000†

R, +0101 1101 1100‡
RW, +0000 0100 0000†

RW, +0101 1101 1100‡
† Applies to C620x/C670x
‡ Applies to C621x/C671x/C64x

Table 10–8. EMIF SDRAM Timing Register Field Descriptions

Field Description

PERIOD Refresh period in EMIF clock cycles†

COUNTER Current value of the refresh counter

XRFR‡ Extra refreshes: controls the number of refreshes performed
to SDRAM when the refresh counter expires.‡

† For C620x/C670x, EMIF clock cycles = CLKOUT2 cycles.
For C621x/C671x, EMIF clock cycles = ECLKOUT cycles.
For C64x, EMIF clock cycles = ECLKOUT1 cycles.

‡ Applies to C621x/C671x/C64x only.

For the C621x/C671x/C64x, the initial value for the COUNTER field and also the
PERIOD field has been increased to 0x5DC (1500 clock cycles). With a 10-ns
EMIF cycle time, there is a 15-µs time between refresh operations. SDRAMs
typically require 15.625 µs per refresh.

EMIF Registers

10-27External Memory Interface

The XRFR field controls the number of refreshes that take place when the
counter reaches zero (“00” for 1, “01” for 2, “10” for 3, and “11” for 4). As an
example, since all banks must be deactivated to perform a refresh, it might be
desirable to perform two refreshes half as often.

For the C621x/C671x/C64x, all refresh requests are considered high priority.
When it is time to refresh, the refresh is performed immediately (though trans-
fers in progress are allowed to complete). All banks are deactivated before a
refresh command is issued. When the refresh command is complete, the
banks are not restored to their state before refresh.

10.2.5 TMS320C621x/C671x/C64x SDRAM Extension Register (SDEXT)

The SDRAM extension register of the C621x/C671x/C64x allows program-
ming of many parameters of SDRAM. The programmability offers two distinct
advantages. First, it allows an interface to a wide variety of SDRAMs and is not
limited to a few configurations or speed characteristics. Second, the EMIF can
maintain seamless data transfer from external SDRAM due to features like
hidden precharge and multiple open banks. Figure 10–13 shows the SDRAM
extension register and Table 10–9 discusses these parameters.

Figure 10–13. TMS320C621x/C671x/C64x SDRAM Extension Register (SDEXT)

31 21 20 19 18 17 16 15 14 12 11 10 9 8 7 6 5 4 3 1 0

Rsvd WR2RD WR2DEAC WR2WR R2WDQM RD2WR RD2DEAC RD2RD THZP TWR TRRD TRAS TCL

R, +0 RW,+1 RW,+01 RW,+1 RW,+11†

RW,+10‡
RW,+101 RW,+11 RW,+1 RW,+10 RW,+01 RW,+1 RW,+111 RW,+1

† Applies to C621x/C671x.
‡ Applies to C64x.

EMIF Registers

 10-28

Table 10–9. TMS320C621x/C671x/C64x SDRAM Extension Register (SDEXT)
Field Descriptions

Field Description †

TCL Specified CAS latency of the SDRAM in ECLKOUT cycles
TCL = 0: CAS latency = 2 ECLKOUT cycles
TCL = 1: CAS latency = 3 ECLKOUT cycles

TRAS Specifies tRAS value of the SDRAM in ECLKOUT cycles
TRAS = tRAS / tcyc

‡ – 1

TRRD Specifies tRRD value of the SDRAM in ECLKOUT cycles
TRRD = 0, then TRRD = 2 ECLKOUT cycles
TRRD = 1, then TRRD = 3 ECLKOUT cycles

TWR Specifies tWR value of the SDRAM in ECLKOUT cycles
TWR = tWR / tcyc

‡ – 1

THZP Specifies tHZP (also known as tROH) value of the SDRAM in ECLKOUT cycles
THZP = tHZP / tcyc

‡ – 1

RD2RD Specifies number of cycles between READ to READ command (same CE space) of the
SDRAM in ECLKOUT cycles
RD2RD = 0: READ to READ = 1 ECLKOUT cycle
RD2RD = 1: READ to READ = 2 ECLKOUT cycle

RD2DEAC Specifies number of cycles between READ to DEAC/DCAB of the SDRAM in ECLKOUT cycles
RD2DEAC = (# of cycles READ to DEAC/DCAB) – 1

RD2WR Specifies number of cycles between READ to WRITE command of the SDRAM in ECLKOUT
cycles
RD2WR = (# of cycles READ to WRITE) – 1

R2WDQM Specifies number of of cycles that BEx signals must be high preceding a WRITE interrupting
a READ
R2WDQM = (# of cycles BEx high) – 1

WR2WR Specifies minimum number of cycles between WRITE to WRITE command of the SDRAM in
ECLKOUT cycles
WR2WR = (# of cycles WRITE to WRITE) – 1

WR2DEAC Specifies minimum number of cycles between WRITE to DEAC/DCAB command of the
SDRAM in ECLKOUT cycles
WR2DEAC = (# of cycles WRITE to DEAC/DCAB) – 1

WR2RD Specifies minimum number of cycles between WRITE to READ command of the SDRAM in
ECLKOUT cycles
WR2RD = (# of cycles WRITE to READ) – 1

† For C64x, ECLKOUT referenced in this table is equivalent to ECLKOUT1.
‡ tcyc refers to the EMIF clock period, which is equal to ECLKOUT period for the C621x/C671x, ECLKOUT1 period for C64x.

Memory Width and Byte Alignment

10-29External Memory Interface

10.3 Memory Width and Byte Alignment

10.3.1 C620x/C670x Memory Width and Byte Alignment

The C620x/C670x EMIF supports 32-bit-wide ASRAM, SDRAM, and
SBSRAM interface in both big- and little-endian modes. CE1 space supports
x16 and x8 read-only memory (ROM) interfaces. The packing format in ROM
is always little-endian, regardless of the value of the LENDIAN configuration
bit. Table 10–10 summarizes the addressable memory ranges on the
C620x/C670x device.

Table 10–10. TMS320C620x/C670x Addressable Memory Ranges

Memory type Memory
width

Maximum
addressable
bytes per CE

space

Address
output

on EA[21:2]
Represents

ASRAM x32 4M A[21:2] Word address

SBSRAM x32 4M A[21:2] Word address

SDRAM x32 16M
See

section 10.5
Word address

10.3.2 C621x/C671x Memory Width and Byte Alignment

The C621x/C671x EMIF supports memory widths of 8 bits, 16 bits, and
32 bits, including reads and writes of both big- and little-endian devices. The
C6712 EMIF supports memory widths of 8 bits and 16 bits only. There is no
distinction between ROM and asynchronous interface. For all memory types,
the address is internally shifted to compensate for memory widths of less than
32 bits. The least-significant address bit is always output on external address
pin EA2, regardless of the width of the device. Accesses to 8-bit memories
have logical address bit 0 output on EA2. Table 10–11 summarizes the ad-
dressable memory ranges on the C621x/C671x device.

Memory Width and Byte Alignment

 10-30

Table 10–11. TMS320C621x/C671x Addressable Memory Ranges

Memory
type

Memory
width

Maximum
addressable
bytes per CE

space

Address
output on
EA[21:2]

Represents

ASRAM x8 1M A[19:0] Byte address

x16 2M A[20:1] Halfword address

x32† 4M A[21:2] Word address

SBSRAM x8 1M A[19:0] Byte address

x16 2M A[20:1] Halfword address

x32† 4M A[21:2] Word address

SDRAM x8 32M
See

section 10.5
Byte address

x16 64M
See

section 10.5
Halfword address

x32† 128M
See

section 10.5
Word address

† 32-bit interface does not apply to C6712.

For C621x/C671x, packing and unpacking is automatically performed by the
EMIF for word accesses to external memories of less than 32 bits. For a 32-bit
write to an 8-bit memory, the data is automatically unpacked into bytes such
that the bytes are written to byte address N, N+1, N+2, then N+3. Likewise for
32-bit reads from a 16-bit memory, data is taken from halfword address N then
N+1, packed into a 32-bit word, then written to its destination. The byte lane
used depends on the endianness of the system as shown in Figure 10–14.

Memory Width and Byte Alignment

10-31External Memory Interface

Figure 10–14. TMS320C621x/C671x Byte Alignment by Endianness

little endian
device
8-bit

little endian
16-bit device

big endian
device
8-bit

big endian
16-bit device

32-bit device

ED[7:0]ED[15:8]ED[23:16]ED[31:24]
TMS320C621x/C671x†

† ED[31:16] do not apply to C6712.

Memory Width and Byte Alignment

 10-32

10.3.3 C64x Memory Width and Byte Alignment

EMIFA supports memory widths of 8 bits, 16 bits, 32 bits, and 64 bits. EMIFB
supports memory widths of 8 bits and 16 bits. Table 10–12 summarizes the ad-
dressable memory ranges on the C64x device. Both big- and little-endian for-
mats are supported.

Table 10–12. TMS320C64x Addressable Memory Ranges

Memory type Memory width

Maximum
addressable
bytes per CE

space

Address output on
EA[22:3] (EMIFA)
EA[20:1] (EMIFB) †

Represents

ASRAM x8 1M A[19:0] Byte address

x16 2M A[20:1] Halfword address

x32 4M A[21:2] Word address

x64 8M A[22:3] Doubleword address

Programmable Sync
Memory

x8 1M A[19:0] Byte address
Memory

x16 2M A[20:1] Halfword address

x32 4M A[21:2] Word address

x64 8M A[22:3] Doubleword address

SDRAM x8 32M See section 10.5 Byte address

x16 64M See section 10.5 Halfword address

x32 128M See section 10.5 Word address

x64 256M See section 10.5 Doubleword address

† The shaded rows (x32 and x64 interface) do not apply to EMIFB.

Similar to the C621x/C671x, packing and unpacking is automatically per-
formed by the C64x EMIF for accesses to external memories of less than
64 bits (EMIFA) or 16 bits (EMIFB).

Figure 10–15 shows the byte lane used on C64x. The external memory is al-
ways right aligned to the ED[7:0] side of the bus. The endianness mode deter-
mines whether byte lane 0 (ED[7:0]) is accessed as byte address 0 (little en-
dian) or as byte address N (big endian), where 2N is memory width in bytes.
ressed as either byte address 0 (big endian) or as byte address N (little en-
dian).

Command-to-Command Turnaround Time

10-33External Memory Interface

Figure 10–15. TMS320C64x Byte Alignment by Endianness

EMIFA (64-bit bus):

TMS320C64X EMIFA

ED[63:56] ED[55:48] ED[47:40] ED[39:32] ED[31:24] ED[23:16] ED[15:8] ED[7:0]

64-bit device

32-bit device

16-bit device

8-bit device

EMIFB (16-bit bus):

TMS320C64x EMIF A

ED[15:8] ED[7:0]

16-bit device

8-bit device

10.4 Command-to-Command Turnaround Time

All C6000 EMIF have a one cycle command–to–command turnaround time.
At least 1 data dead cycle is always included between commands so that read
data and write data are never driven in the same cycle.

SDRAM Interface

 10-34

10.5 SDRAM Interface

The C6000 EMIF supports SDRAM commands shown in Table 10–13.
Table 10–14 shows the signal truth table for the SDRAM commands. The
16M-bit and 64M-bit SDRAM interfaces are shown in Figure 10–16,
Figure 10–17, Figure 10–18, and Figure 10–19. Table 10–15, Table 10–16,
and Table 10–17 list all of the possible SDRAM configurations available via the
C6000. Table 10–18 summarizes the pin connection and related signals specif-
ic to SDRAM operation.

The C620x/C670x EMIF allows programming of the SDRAM column size. A
single page can be open in each CE space.

The C621x/C671x/C64x EMIF allows programming of the addressing charac-
teristics of the SDRAM, including the number of column address bits (page
size), the row address bits (pages per bank), and banks (maximum number of
pages which can be opened). Using this information, the C621x/C671x/C64x
is able to open up to four pages of SDRAM simultaneously. The pages can all
be in different banks of a single CE space, or distributed across multiple CE
spaces. Only one page can be open per bank at a time. The
C621x/C671x/C64x can interface to any SDRAM that has 8 to 10 column ad-
dress pins, 11 to 13 row address pins, and two or four banks.

In addition to all the C621x/C671x SDRAM interface features, the C64x EMIF
supports the SDRAM self refresh mode, and supports the Least Recently
Used (LRU) page replacement strategy instead of random replacement strate-
gy for better performance. See section 10.5.5 and section 10.5.2 for details.

Table 10–13. EMIF SDRAM Commands

Command Function

DCAB Deactivate (also known as PRECHARGE) all banks

DEAC† Deactivate a single bank†

ACTV Activates the selected bank and select the row

READ Inputs the starting column address and begins the read operation

WRT Inputs the starting column address and begins the write operation

MRS Mode register set, configures SDRAM mode register

REFR Autorefresh cycle with internal address

SLFREFR‡ Self-refresh mode‡

† TMS320C621x/C671x/C64x only
‡ TMS320C64x only

SDRAM Interface

10-35External Memory Interface

Table 10–14. Truth Table for SDRAM Commands

SDRAM: CKE CS RAS CAS W A[19:16] A[15:11] A10 A[9:0]

16-bit †

EMIF:
SDCKE CE SDRAS SDCAS SDWE EA[20:17] ‡ EA[16:12] EA11 EA[10:1]

32-bit †

EMIF:
SDCKE§ CE SDRAS SDCAS SDWE EA[21:18] ¶ EA[17:13] EA12 # EA[11:2]

64-bit †

EMIF:
SDCKE CE SDRAS SDCAS SDWE EA[22:19] ‡ EA[18:14] EA13 EA[12:3]

ACTV H L L H H 0001b
OR

0000b¶

Bank/Row Row Row

READ H L H L H X Bank/Col L Col

WRT H L H L L X Bank/Col L Col

MRS H L L L L L L/Mode Mode Mode

DCAB H L L H L X X H X

DEAC H L L H L X Bank/X L X

REFR H L L L H X X X X

SLFREFR L L L L H X X X X

Bank = Bank Address
Row = Row Address
Col = Column Address
L = 0b = Low;
H = 1b = High
Mode = Mode Select
X = Previous value

† 16-bit EMIF includes C64x EMIFB
32-bit EMIF includes all C62x/C67x EMIF.
64-bit EMIF includes C64x EMIFA.

‡ For C64x, upper address bits are used during ACTV to indicate non-PDT (0001b) vs. PDT (0000b) access. During all other
accesses, address bits indicated with X hold previous value.

§ SDCKE does not exist on C62x/C67x.
¶ For C62x/C67x, upper address bits are reserved for future use. Undefined.
SDA10 is used on C620x/C670x. EA12 is used on C621x/C671x.

SDRAM Interface

 10-36

Figure 10–16. TMS320C620x/C670x EMIF to 16M-Bit SDRAM Interface

VCC

16M-bit
SDRAM

D[31:0]

A[9:0]

A[10]

A[11]

DQM[3:0]

CKE

WE

CAS

RAS

CLK

CS

(EMIF)
interface
memory
External

ED[31:0]

EA[11:2]

SDA10

EA[13]

BE[3:0]

SDWE

SDCAS

SDRAS

Clock†

CEn

† Clock = SDCLK for C6201/C6701.
= CLKOUT2 for all other C620x/C670x.

Figure 10–17. TMS320C621x/C671x EMIF to 16M-Bit SDRAM Interface

VCC

16M-bit
SDRAM

D[31:0]

A[9:0]

A[10]

A[11]

DQM[3:0]

CKE

WE

CAS

RAS

CLK

CS

(EMIF)
interface
memory
External

ED[31:0]†
EA[11:2]†

EA[12]†
EA[13]†
BE[3:0]

SDWE

SDCAS

SDRAS

ECLKOUT

CEn

External clock

ECLKIN

† C6712,EA[12:1] and ED[15:0] are used instead.

SDRAM Interface

10-37External Memory Interface

Figure 10–18. TMS320C620x/C670x EMIF to 64M-Bit SDRAM Interface

VCC

64M-bit
SDRAM

D[31:0]

A[9:0]

A[10]

A[13:11]

DQM[3:0]

CKE

WE

CAS

RAS

CLK

CS

(EMIF)
interface
memory
External

ED[31:0]

EA[11:2]

SDA10

EA[15:13]

BE[3:0]

SDWE

SDCAS

SDRAS

Clock†

CEn

† Clock = SDCLK for C6201/C6701.
= CLKOUT2 for all other C620x/C670x.

Figure 10–19. TMS320C64x EMIFA to 64M-Bit SDRAM Interface

64M-bit
SDRAM

D[63:0]

A[13:0]

DQM[7:0]

CKE

WE

CAS

RAS

CLK

CS

(EMIF)
interface
memory
External

ED[63:0]

EA[16:3]

BE[7:0]

SDWE

SDCAS

SDRAS

ECLKOUT1

CEn

External clock

ECLKIN

SDCKE

SDRAM Interface

 10-38

Table 10–15. TMS320C620x/C670x Compatible SDRAM

SDRAM

Size

Banks Width Depth Devices/

CE

Address-

able Space,

MBytes

Column

Address

Row

Address

Bank

 Select

Pre-

charge

SDRAM A8–A0 A10–A0 A11 A10

16M

2 x8 1M 4 8M EMIF EA10–EA2 SDA10,

EA11–EA2

EA13 SDA10

16M

bit
SDRAM A7–A0 A10–A0 A11 A10

bit
2 x16 512K 2 4M EMIF EA9–EA2 SDA10,

EA11–EA2

EA13 SDA10

SDRAM A7–A0 A11–A0 A13–A12 A10

64M

4 x16 1M 2 16M EMIF EA9–EA2 SDA10,

EA13–EA2

EA15–

EA14

SDA10

64M

bit
SDRAM A7–A0 A10–A0 A12–A11 A10

bit
4 x32 512K 1 8M EMIF EA9–EA2 SDA10,

EA11–EA2

EA14–

EA13

SDA10

SDRAM A7–A0 A11–A0 A13–A12 A10

128M 4 x32 1M 1 16M EMIF EA9–EA2 EA13–EA2 EA15–

EA14

EA12

SDRAM Interface

10-39External Memory Interface

Table 10–16. TMS320C621x/C671x Compatible SDRAM

SDRAM
Size

Banks Width Depth Max
Devices/

CE

Address-
able space,

MBytes

Column
Address

Row
 Address

Bank Se-
lect

Pre-
charge

2 x4 2M 8 16M SDRAM A9–A0 A10–A0 A11 A10

EMIF EA11–EA2 EA12–EA2 EA13 EA12

16M
bit

2 x8 1M 4 8M SDRAM A8–A0 A10–A0 A11 A10
bit

EMIF EA10–EA2 EA12–EA2 EA13 EA12

2 x16 512K 2 4M SDRAM A7–A0 A10–A0 A11 A10

EMIF EA9–EA2 EA12–EA2 EA13 EA12

4 x4 4M 8 64M SDRAM A9–A0 A11–A0 A13–A12 A10

EMIF EA11–EA2 EA13–EA2 EA15–EA14 EA12

64M
4 x8 2M 4 32M SDRAM A8–A0 A11–A0 A13–A12 A10

64M
bit EMIF EA10–EA2 EA13–EA2 EA15–EA14 EA12bit

4 x16 1M 2 16M SDRAM A7–A0 A11–A0 A13–A12 A10

EMIF EA9–EA2 EA13–EA2 EA15–EA14 EA12

4 x32� 512K 1 8M SDRAM A7–A0 A10–A0 A12–A11 A10

EMIF EA9–EA2 EA12–EA2 EA14–EA13 EA12

4 x8 4M 4 64M SDRAM A9–A0 A11–A0 A13–A12 A10

EMIF EA11–EA2 EA13–EA2 EA15–EA14 EA12

128M
4 x16 2M 2 32M SDRAM A8–A0 A11–A0 A13–A12 A10

128M
bit EMIF EA10–EA2 EA13–EA2 EA15–EA14 EA12bit

SDRAM A7–A0 A11–A0 A13–A12 A10

4 x32 1M 1 16M EMIF EA9–EA2 EA13–EA2 EA15–

EA14

EA12

4 x8 8M 4 128M SDRAM A9–A0 A12–A0 A14–A13 A10

256M EMIF EA11–EA2 EA14–EA2 EA16–EA15 EA12256M
bit 4 x16 4M 2 64M SDRAM A8–A0 A12–A0 A14–A13 A10

EMIF EA10–EA2 EA14–EA2 EA16–EA15 EA12

� The x32 Width does not apply to C6712.

SDRAM Interface

 10-40

Table 10–17. TMS320C64x Compatible SDRAM

SDRAM
 Size

Banks Width Depth Max
 Devices

 /CE

Address-
able space,

MBytes

Column
Address

Row
Address

Bank
Select

Pre-
charge

2 x4 2M 16 32M SDRAM A9–A0 A10–A0 A11 A10

EMIFA EA12–EA3 EA13–EA3 EA14 EA13

EMIFB EA10–EA1 EA11–EA1 EA12 EA11

16M
bi

2 x8 1M 8 16M SDRAM A8–A0 A10–A0 A11 A10
bit EMIFA EA11–EA3 EA13–EA3 EA14 EA13

EMIFB EA9–EA1 EA11–EA1 EA12 EA11

2 x16 512K 4 8M SDRAM A7–A0 A10–A0 A11 A10

EMIFA EA10–EA3 EA13–EA3 EA12 EA11

4 x4 4M 16 128M SDRAM A9–A0 A11–A0 A13–A12 A10

EMIFA EA12–EA3 EA14–EA3 EA16–EA15 EA13

EMIFB EA10–EA1 EA12–EA1 EA14–EA13 EA11

4 x8 2M 8 64M SDRAM A8–A0 A11–A0 A13–A12 A10

EMIFA EA11–EA3 EA14–EA3 EA16–EA15 EA13

64M
bi

EMIFB EA9–EA1 EA12–EA1 EA14–EA13 EA11
bit 4 x16 1M 4 32M SDRAM A7–A0 A11–A0 A13–A12 A10

EMIFA EA10–EA3 EA14–EA3 EA16–EA15 EA13

EMIFB EA8–EA1 EA12–EA1 EA14–EA13 EA11

4 x32 512K 2 16M SDRAM A7–A0 A10–A0 A12–A11 A10

EMIFA EA10–EA3 EA13–EA3 EA15–EA14 EA13

EMIFB – – – –

4 x8 4M 8 128M SDRAM A9–A0 A11–A0 A13–A12 A10

EMIFA EA12–EA3 EA14–EA3 EA16–EA15 EA13

EMIFB EA10–EA1 EA12–EA1 EA14–EA13 EA11

4 x16 2M 4 64M SDRAM A8–A0 A11–A0 A13–A12 A10

128M EMIFA EA11–EA3 EA14–EA3 EA16–EA15 EA13

bit EMIFB EA9–EA1 EA12–EA1 EA14–EA13 EA11

SDRAM A7–A0 A11–A0 A13–A12 A10

4 x32 1M 2 32M EMIFA EA10–EA3 EA14–EA3 EA16–EA15 EA13

EMIFB EA8–EA1 EA12–EA1 EA14–EA11 EA11

4 x8 8M 8 256M SDRAM A9–A0 A12–A0 A14–A13 A10

EMIFA EA12–EA3 EA15–EA3 EA17–EA16 EA13

256M
bi

EMIFB EA10–EA1 EA13–EA1 EA15–EA14 EA11
bit 4 x16 4M 4 128M SDRAM A8–A0 A12–A0 A14–A13 A10

EMIFA EA11–EA3 EA15–EA3 EA17–EA16 EA13

EMIFB EA9–EA1 EA13–EA1 EA15–EA14 EA11

SDRAM Interface

10-41External Memory Interface

Table 10–18. SDRAM Pins

EMIF Signal
SDRAM
Signal SDRAM Function

SDA10† A10 Address line A10/autoprecharge disable. Serves as a row address bit during
ACTV commands and also disables the autoprecharging function of SDRAM.
(C620x/C670x only)

SDRAS RAS Row address strobe and command input. Latched by the rising edge of CLK to
determine current operation. Valid only if CS is active (low) during that clock
edge.

SDCAS CAS Column address strobe and command Input. Latched by the rising edge of CLK
to determine current operation. Valid only if CS is active (low) during that clock
edge.

SDWE WE Write strobe and command input. Latched by the rising edge of CLK to determine
current operation. Valid only if CS is active during that clock edge.

BEx DQMx Data/output mask. DQM is an input/output buffer control signal. When high,
disables writes and places outputs in the high impedance state during reads.
DQM has a 2-CLK-cycle latency on reads and a 0-CLK-cycle latency on writes.
DQM pins serve essentially as byte strobes and are connected to BE outputs.

CE3, CE2,
CE1‡, or CE0

CS Chip select and command enable. CS must be active (low) for a command to be
clocked into the SDRAM. CE1 does not support SDRAM on C620x/C670x.

SDCKE§ CKE CKE clock enable. For C64x, SDCKE is connected to CKE to minimize SDRAM
power consumption when self-refresh mode is enabled. For C62x/C67x SDRAM
interface, CKE is tied high (on the SDRAM device) since the Self Refresh
command is not supported.

CLKOUT2 CLK SDRAM clock input. Runs at 1/2 the CPU clock rate.Used for synchronous
memory interface on the C6202(B)/C6203(B)/C6204/C6205.

SDCLK CLK SDRAM clock input. Runs at 1/2 the CPU clock rate.Used for SDRAM interface
on C6201/C6701

ECLKOUT CLK SDRAM clock input. Used for synchronous memory interface on the
C621x/C671x/C64x. For C621x/C671x, runs at ECLKIN rate. For C64x,
ECLKOUT1 is used. ECLKOUT1 runs at EMIF input clock rate (ECLKIN, CPU/4
clock, or CPU/6 clock).

† SDA10 is used on C620x/C670x. EA12 is used on C621x/C671x. EA13 is used on C64x EMIFA. EA11 is used on C64x EMIFB.
‡ For C620x/C670x, CE1 does not support SDRAM.
§ SDCKE exists on C64x only.

Table 10–19 is an overview of similarities and differences on the C6000
SDRAM interface.

SDRAM Interface

 10-42

Table 10–19. TMS320C6000 SDRAM Interface Summary

C62x/C67x C64x

C6201
C6701

Other C620x
C670x†

C621x
C671x‡ EMIFA EMIFB

Interface width 32-bit 32-bit 32-, 16-, 8-bit‡ 64-, 32-, 16-,
8-bit

16-, 8-bit

SDRAM clock SDCLK CLKOUT2 ECLKOUT ECLKOUT1 ECLKOUT1

Registers for
SDRAM timing
parameters

SDCTL
SDTIM

SDCTL
SDTIM

SDCTL
SDTIM
SDEXT

SDCTL
SDTIM
SDEXT

SDCTL
SDTIM
SDEXT

SDRAM Control
signals

Dedicated
SDRAM control
signals

MUXed with
SBSRAM
control signals

MUXed with
SBSRAM and
Async control
signals.

MUXed with
Async and
Programmable
Sync control
signals.

MUXed with
Async and
Programmable
Sync control
signals.

Number of open
pages

Single open
page per CE
space

Single open
page per CE
space

4 open pages in
any CE space

4 open pages in
any CE space

4 open pages in
any CE space

Programmable
SDRAM
configuration

8- or 9-column
address bits

8- or 9-column
address bits

column, row,
and bank size

column, row,
and bank size

column, row,
and bank size

Burst Mode Not supported.
Performs bursts
by issuing
back-to-back
commands

Not supported.
Performs bursts
by issuing
back-to-back
commands

Supports
SDRAM burst
mode with a
4-word burst

Supports
SDRAM burst
mode with a
4-word burst

Supports
SDRAM burst
mode with a
4-word burst

Background
refresh

Yes Yes No No No

Precharge pin SDA10 SDA10 EA12 EA13 EA11

SDRAM
Self-Refresh
Mode

No No No Yes No

Page
Replacement

Fixed Fixed Random LRU LRU

† This column applies to all C620x/C670x devices except C6201/C6701.
‡ C6712 interfaces to 8- and 16-bit SDRAM only.

SDRAM Interface

10-43External Memory Interface

10.5.1 SDRAM Initialization

The EMIF performs the necessary tasks to initialize SDRAM if any of the CE
spaces are configured for SDRAM. An SDRAM initialization is requested by
a write of 1 to the INIT bit in the EMIF SDRAM control register.

The steps of an initialization are as follows:

1) Send a DCAB command to all CE spaces configured as SDRAM.
2) Send eight refresh commands.
3) Send an MRS command to all CE spaces configured as SDRAM.

The DCAB cycle is performed immediately after reset, provided the HOLD input
is not active (a host request). If HOLD is active, the DCAB command is not per-
formed until the hold condition is removed. In this case the external requester
should not attempt to access any SDRAM banks, unless it performs SDRAM
initialization and control itself.

10.5.2 Monitoring Page Boundaries

SDRAM is a paged memory type, thus the EMIF SDRAM controller monitors
the active row of SDRAM so that row boundaries are not crossed during the
course of an access. To accomplish this monitoring the EMIF stores the ad-
dress of the open row in internal page register(s), then performs compares
against that address for subsequent accesses to any SDRAM CE space.

For all C6000 devices, ending the current access is not a condition that forces
the active SDRAM row to be closed. The EMIF leaves the active row open until
it becomes necessary to close it. This decreases the deactivate–reactivate
overhead and allows the interface to capitalize fully on the address locality of
memory accesses.

10.5.2.1 C620x/C670x Monitoring Page Boundaries

The C620x/C670x storage and comparison is performed independently for
each CE space. The C620x/C670x EMIF has 4 internal page registers. Each
page register corresponds to a single CE space. If a given CE space is config-
ured for SDRAM operation (by the MTYPE field), the corresponding page reg-
ister is used for accesses to that CE space. If the CE space is not configured
for SDRAM operation, the corresponding page register is not used. Therefore,
the C620x/C670x devices can support a single open page per CE space.

Address bits are compared, during an SDRAM access, to determine whether
the page is open. The number of address bits compared is a function of the
page size programmed in the SDWID field in the EMIF SDRAM control regis-
ter. If SDWID = 0, the EMIF expects CE spaces configured as SDRAM to have

SDRAM Interface

 10-44

a page size of 512 elements (i.e., number of column address bits = NCB = 9).
Thus, the logical byte address bits compared are 23–11. Logical addresses
with the same bits 23:11 belong to the same page. If SDWID = 1, the EMIF ex-
pects CE spaces with SDRAM to have a page size of 256 elements (NCB =
8). Thus, the logical byte address bits compared are 23–10. The logical ad-
dress bits 25 to 24 (and above) determine the CE space. If a page boundary
is crossed during an access to the same CE space, the EMIF performs a DCAB
command and starts a new row access. Figure 10–20 details how a 32–bit log-
ical address maps to the page register.

Figure 10–20. TMS320C620x/C670x Logical Address to Page Register Mapping

3
1 01234567891

0
1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

SDWID = 1 (ncb=8)row/bank addressCE space BE

SDWID = 0 (ncb=9)row/bank addressCE space BE

Page Register=14 bits

Page Register=13 bits

Note: ncb = number of column address bits

10.5.2.2 C621x/C671x Monitoring Page Boundaries

For the C621x/C671x, up to four pages of SDRAM can be opened simulta-
neously. These pages can be within a single CE space, or spread over all CE
spaces. For example, two pages can be open in CE0 and CE2, or four pages
can be open in CE0. The combination controls which logical address bits are
compared to determine if a page is open: SDCSZ (which controls NCB),
SDRSZ (which controls the number of row address bits, or NRB), and SDBSZ
(which controls the number of bank address bits, or NBB) Logical address bits
above the bank address bit are not used as part of the page comparison, nor
are they used when issuing the row/column commands to the external
SDRAM. This implies that the maximum addressable space is limited by the
specific configuration of SDRAM used.

For example, a typical 2–bank × 512K × 16–bit SDRAM has settings of 8 col-
umn address bits, 11 row address bits, and 1 bank bit, With this configuration,
the maximum amount of addressable space per CE space is
2(NCB+NRB+NBB+2), or 4 Mbytes .

Note: The +2 term is appropriate for calculating the addressable space in
terms of bytes for a 32 bit interface. If only 16 bits of the bus are populated
then +1 is used, and if only 8 bits of the bus are populated then +0 is used.

SDRAM Interface

10-45External Memory Interface

Figure 10–21 details how a 32–bit logical address maps to the page register.
For 16– or 8–bit interfaces, the BE portion of the logical address is reduced to
1 bit for 16–bit SDRAM and 0 bits for 8–bit SDRAM. The NCB/NRB/NBB (and
page register) shift accordingly.

The C621x/C671x EMIF employs a random page replacement strategy when
necessary. This occurs when the total number of external SDRAM banks (not
devices) is greater than 4, since the EMIF only contains 4 page registers. This
can occur when multiple CE spaces of SDRAM are used. When the number
of total banks of SDRAM is less than or equal to 4, the page replacement strat-
egy is fixed since SDRAM requires that only 1 page can be open within a given
bank. If a page miss is detected either during an access where a different page
was previously accessed in the same CE space (fixed replacement), or if a
page must be closed within a different CE space to allow a page register to be
assigned for the current access (random replacement), the C621x/C671x per-
forms a DEAC command and starts a new row access.

SDRAM Interface

 10-46

Figure 10–21. TMS320C621x/671x Logical Address to Page register Mapping

3
1 01234567891

0
1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

1

1

1

ncb=8

ncb=8

ncb=8nrb=11

nrb=12

nrb=13

CE space

CE space

CE space

X
nbb=2 ncb=8nrb=11CE space

nbb=2 ncb=8nrb=12CE space

nbb=2 ncb=8nrb=13CE space

1

1

1

ncb=9nrb=11

nrb=12

nrb=13

CE space

CE space

CE space

nbb=2 nrb=11CE space

nbb=2 nrb=12CE space

nbb=2 nrb=13CE space

ncb=9

ncb=9
ncb=9
ncb=9
ncb=9

1

1

1

ncb=10nrb=11

nrb=12

nrb=13

CE space

CE space

CE space

nbb=2 nrb=11CE space

nbb=2 nrb=12CE space

nbb=2 nrb=13CE space BEncb=10
ncb=10
ncb=10
ncb=10
ncb=10

BE
BE
BE

BE
BE

BE
BE
BE
BE

BE
BE

BE
BE
BE
BE

BE
BE

X
X
X

X
X

X

X
X

X
X

X

X

X
X

X
X

X

Page Register= nrb + nbb

Page Register= nrb + nbb

Page Register= nrb + nbb

Note: ncb = number of column address bits; nrb = number of row address bits; nbb = number of bank address bits.

SDRAM Interface

10-47External Memory Interface

10.5.2.3 TMS320C64x Monitoring Page Boundaries

The C64x is similar to the C621x/C671x SDRAM paging scheme in that up to
four pages of SDRAM can be opened simultaneously. This can be all in one
CE space, or spread across multiple CE spaces. As in the C621x/C671x, the
number of column address bits controls the number of the least significant ad-
dress bit stored in the page register. However, the page register always stores
16 bits of address (instead of being limited by the number of row address bits
plus the number of bank address bits (NRB+NBB)). Therefore, logical address
bits above the bank address bit are used as part of the page comparison. Also,
address bits above the bank bits are used when issuing the row/column com-
mands to the external SDRAM. This allows more flexible designs and external
visibility into the internal address aliasing. For 32–, 16– or 8–bit interfaces on
EMIFA, the BE portion of the logical address is reduced to 2 bits for 32–bit
SDRAM, 1 bit for 16–bit SDRAM, and 0 bits for 8–bit SDRAM. The NCB/NRB/
NBB (and page register) shift accordingly.

The C64x EMIF employs a least recently used (LRU) page replacement strate-
gy when necessary. This occurs when the total number of external SDRAM
banks (not devices) is greater than 4, since the EMIF only contains 4 page reg-
isters. This can occur when multiple CE spaces of SDRAM are used. When
the number of total banks of SDRAM is less than or equal to 4, then the page
replacement strategy is fixed since SDRAM requires that only 1 page can be
open within a given bank. If a page miss is detected (either during an access
where a different page was previously accessed in the same CE space (fixed
replacement) or if a page must be closed within a different CE space to allow
a page register to be assigned for the current access (LRU replacement), the
C64x performs a DEAC command and starts a new row access.

Figure 10–22 details how a 64–bit logical address maps to the page register.
Figure 10–23 details how a 16–bit logical address maps to the page register.

SDRAM Interface

 10-48

Figure 10–22. TMS320C64x Logical Address to Page Register Mapping for EMIFA

3
1 01234567891

0
1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

1

1

1

ncb=8

ncb=8

ncb=8nrb=11

nrb=12

nrb=13

V

V

V

CE space

CE space

CE space X

X

X BE

BE

BE

nbb=2 ncb=8nrb=11VCE space X BE

nbb=2 ncb=8nrb=12VCE space X BE

nbb=2 ncb=8nrb=13VCE space X BE

1

1

1

ncb=9nrb=11

nrb=12

nrb=13

V

V

V

CE space

CE space

CE space

BE

BE

BE

nbb=2 nrb=11VCE space BE

nbb=2 nrb=12VCE space BE

nbb=2 nrb=13VCE space BE

ncb=9

ncb=9
ncb=9
ncb=9
ncb=9

1

1

1

ncb=10nrb=11

nrb=12

nrb=13

V

V

V

CE space

CE space

CE space

BE

BE

BE

nbb=2 nrb=11VCE space BE

nbb=2 nrb=12VCE space BE

nbb=2 nrb=13CE space BEncb=10
ncb=10
ncb=10
ncb=10
ncb=10

Page Register=16 bits

Page Register=16 bits

Page Register=16 bits

Note: ncb = number of column address bits; nrb = number of row address bits; nbb = number of bank address bits.

SDRAM Interface

10-49External Memory Interface

Figure 10–23. TMS320C64x Logical Address to Page Register Mapping for EMIFB

3
1 01234567891

0
1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

1

1

1

ncb=8

ncb=8

ncb=8nrb=11

nrb=12

nrb=13

V

V

V

CE space

X

X

X B
E

nbb=2 ncb=8nrb=11VX

nbb=2 ncb=8nrb=12VX

nbb=2 ncb=8nrb=13VX

1

1

1

ncb=9nrb=11

nrb=12

nrb=13

V

V

V

nbb=2 nrb=11V

nbb=2 nrb=12V

nbb=2 nrb=13V

ncb=9

ncb=9
ncb=9
ncb=9
ncb=9

1

1

1

ncb=10nrb=11

nrb=12

nrb=13

V

V

V

nbb=2 nrb=11V

nbb=2 nrb=12V

nbb=2 nrb=13 ncb=10
ncb=10
ncb=10
ncb=10
ncb=10

Page Register=16 bits

Page Register=16 bits

Page Register=16 bits

B
E

B
E

B
E

B
E

B
ECE space

CE space
CE space
CE space
CE space

CE space

CE space
CE space
CE space
CE space
CE space

CE space

CE space
CE space
CE space
CE space
CE space

B
E

B
E

B
E

B
E

B
E

B
E

B
E

B
E

B
E

B
E

B
E

B
E

Note: ncb = number of column address bits; nrb = number of row address bits; nbb = number of bank address bits.

10.5.3 Address Shift

The same EMIF pins determine the row and column address, thus the EMIF
interface appropriately shifts the address in row and column address selec-
tion. Table 10–20 and shows the translation between bits of the byte address
and how they appear on the EA pins for row and column addresses on the
C620x/C670x. SDRAMs use the address inputs for control as well as address.

The following factors apply to the address shifting process for the
C620x/C670x:

� The address shift is controlled completely by the SDWID field, which is pro-
grammed according to the column size of the SDRAM.

SDRAM Interface

 10-50

� The upper address bits (EA[14:11] when SDWID=0, or EA[15:10] when
SDWID=1) are latched internally by the SDRAM controller during a RAS
cycle. This ensures that the SDRAM bank select inputs are correct during
READ and WRT commands. Thus, the EMIF maintains these values as
shown in both row and column addresses.

� The EMIF forces SDA10 to be low during READ or WRT commands. This
prevents autoprecharge from occurring following a READ or WRT com-
mand.

Table 10–20. TMS320C620x/C670x Byte Address to EA Mapping for
SDRAM RAS and CAS

EMIF
Pins

E
A

[21:17]

E
A
16

E
A
15

E
A
14

E
A
13

S
D
A
10

E
A
11

E
A
10

E
A
9

E
A
8

E
A
7

E
A
6

E
A
5

E
A
4

E
A
3

E
A
2

SDRAM
Pins

SDRAM
Width SDWID

DRAM
Cmd

A
13

A
12

A
11

A
10

A
9

A
8

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

Address
bit

x16 1 RAS 23 22 21 20 19 18 17 16 15 14 13 12 11 10
bit

CAS 23 22 21 L† 19 18 9 8 7 6 5 4 3 2

Address
bit

x8 0 RAS 23 22 21 20 19 18 17 16 15 14 13 12 11
bit

CAS 23 22 L† 20 10 9 8 7 6 5 4 3 2

Legend: Bit is internally latched during an ACTV command.

Reserved for future use. Undefined.

Note: The RAS and CAS values indicate the bit of the byte address present on the corresponding EA pin during a RAS or CAS
cycle.

† L = Low; SDA10 is driven low during READ or WRT commands to disable autoprecharge.

The following factors apply to the address shifting process for the
C621x/C671x:

� The address shift is controlled completely by the column size field
(SDCSZ), and is unaffected by the bank and row size fields. The bank and
row size are used internally to determine whether a page is opened

� The address bits corresponding to the bank select bits are latched inter-
nally by the SDRAM controller during a RAS cycle. The bank select bits
are EA[13+n:13] for SDRSZ=00b (11 row pins), EA[14+n:14] for
SDRSZ=01b (12 row pins), or EA[15+n:15] for SDRSZ=11b (13 row pins);
where n=0 when SDBSZ=0, and n=1 when SDBSZ=1. This ensures that
the SDRAM bank select inputs are correct during READ and WRT com-

SDRAM Interface

10-51External Memory Interface

mands. Thus, the EMIF maintains these values as shown in both row and
column addresses.

� EA12 is connected directly to A10 signal, instead of using a dedicated pre-
charge pin SDA10.

Table 10–21 describes the addressing for a 8-, 16-, and 32-bit-wide
C621x/C671x SDRAM interface. The address presented on the pins are
shifted for 8-bit and 16-bit interfaces.

SDRAM Interface

 10-52

Table 10–21. TMS320C621x/C671x Byte Address-to-EA Mapping for 8-, 16-, and 32-Bit
Interface

of
column

dd
Interface
b s idth

DRAM
Cmd

E
A

[21:17]

E
A
16

E
A
15

E
A
14

E
A
13

E
A
12

E
A
11

E
A
10

E
A
9

E
A
8

E
A
7

E
A
6

E
A
5

E
A
4

E
A
3

E
A
2

address
bits

bus width Cmd
A
14

A
13

A
12

A
11

A
10

A
9

A
8

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

8 8 RAS ÉÉÉ
ÉÉÉ

22 ÉÉ
ÉÉ

21ÉÉ
ÉÉ

20 19 18 17 16 15 14 13 12 11 10 9 8

CAS Bank‡ L† L L 7 6 5 4 3 2 1 0

16 RAS
ÉÉÉ
ÉÉÉ

23
ÉÉ
ÉÉ

22
ÉÉ
ÉÉ

21 20 19 18 17 16 15 14 13 12 11 10 9

CAS Bank‡ L† L L 8 7 6 5 4 3 2 1

32 RAS

ÉÉÉ
ÉÉÉ
ÉÉÉ

24

ÉÉ
ÉÉ
ÉÉ

23

ÉÉ
ÉÉ
ÉÉ

22 21 20 19 18 17 16 15 14 13 12 11 10

CAS Bank‡ L† L L 9 8 7 6 5 4 3 2

9 8 RAS ÉÉÉ
ÉÉÉ

23 ÉÉ
ÉÉ

22ÉÉ
ÉÉ

21 20 19 18 17 16 15 14 13 12 11 10 9

CAS Bank‡ L† L 8 7 6 5 4 3 2 1 0

16 RAS
ÉÉÉ
ÉÉÉ24
ÉÉ
ÉÉ23
ÉÉ
ÉÉ22 21 20 19 18 17 16 15 14 13 12 11 10

CAS Bank‡ L† L 9 8 7 6 5 4 3 2 1

32 RAS ÉÉÉ
ÉÉÉ

25 ÉÉ
ÉÉ

24ÉÉ
ÉÉ

23 22 21 20 19 18 17 16 15 14 13 12 11

CAS Bank‡ L† L 10 9 8 7 6 5 4 3 2

10 8 RAS ÉÉÉ
ÉÉÉ

24 ÉÉ
ÉÉ

23ÉÉ
ÉÉ

22 21 20 19 18 17 16 15 14 13 12 11 10

CAS Bank‡ L† 9 8 7 6 5 4 3 2 1 0

16 RAS
ÉÉÉ
ÉÉÉ
ÉÉÉ

25
ÉÉ
ÉÉ
ÉÉ

24
ÉÉ
ÉÉ
ÉÉ

23 22 21 20 19 18 17 16 15 14 13 12 11

CAS Bank‡ L† 10 9 8 7 6 5 4 3 2 1

32 RAS ÉÉÉ
ÉÉÉ

26 ÉÉ
ÉÉ

25ÉÉ
ÉÉ

24 23 22 21 20 19 18 17 16 15 14 13 12

CAS Bank‡ L† 11 10 9 8 7 6 5 4 3 2

Legend: Bit is internally latched during an ACTV command.

Reserved for future use. Undefined.

ÉÉÉ
ÉÉÉ

Bit may not be driven. The number of address bits driven during a RAS cycle is equal to the number of
(row bits + bank-select bits).

† L = Low; EA12 is driven low during READ or WRT commands to disable autoprecharge.
‡ During CAS cycle for READ or WRT command, only the bank select address bits (1 or 2 bits, controlled by SDBSZ) are driven

to valid values. The address bit(s) used are determined by the number of row address bits and number of bank address bits.

SDRAM Interface

10-53External Memory Interface

The following factors apply to the address shifting process for the C64x:

� The address shift is controlled completely by the column size field
(SDCSZ), and is unaffected by the bank and row size fields. The address
bits above the bank select bits are used internally to determine whether
a page is opened.

� The address bits above the precharge bit (EA[18:14] on EMIFA, and
EA[16:12] on EMIFB) are latched internally by the SDRAM controller dur-
ing a RAS cycle. This ensures that the SDRAM bank select inputs are cor-
rect during READ and WRT commands. Thus, the EMIF maintains these
values as shown in both row and column addresses.

� EA13 is the precharge pin for EMIFA. EA11 is the precharge pin for EMIFB.

Table 10–22 describes the addressing for a 8-, 16-, 32-, and 64-bit-wide
SDRAM interface. The 32-bit and 64-bit SDRAM interfaces do not apply to
EMIFB.

SDRAM Interface

 10-54

Table 10–22. TMS320C64x Byte Address to EA Mapping for 8-, 16-, 32-, 64-bit
Interface

EMIFB

of Inter-

E
A
20

E
A
19

E
A
18

E
A

17‡

E
A
16

E
A
15

E
A
14

E
A
13

E
A
12

E
A
11

E
A
10

E
A
9

E
A
8

E
A
7

E
A
6

E
A
5

E
A
4

E
A
3

E
A
2

E
A
1# of

column
Inter -
face DRAM EMIFAcolumn

address
bits

face
bus

width

DRAM
Cmd E

A
22

E
A
21

E
A
20

E
A

19‡

E
A
18

E
A
17

E
A
16

E
A
15

E
A
14

E
A
13

E
A
12

E
A
11

E
A
10

E
A
9

E
A
8

E
A
7

E
A
6

E
A
5

E
A
4

E
A
3

A
19

A
18

A
17

A
16

A
15

A
14

A
13

A
12

A
11

A
10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

8 8 RAS L L L H/LÉÉÉ
ÉÉÉ

23ÉÉ
ÉÉ

22ÉÉ
ÉÉ

21ÉÉ
ÉÉ

20 19 18 17 16 15 14 13 12 11 10 9 8

CAS L L L H/L 23 22 21 20 19 L† L L 7 6 5 4 3 2 1 0

16 RAS L L L H/L
ÉÉÉ
ÉÉÉ

24
ÉÉ
ÉÉ

23
ÉÉ
ÉÉ

22
ÉÉ
ÉÉ

21 20 19 18 17 16 15 14 13 12 11 10 9

CAS L L L H/L 24 23 22 21 20 L† L L 8 7 6 5 4 3 2 1

32 RAS L L L H/LÉÉÉ
ÉÉÉ

25ÉÉ
ÉÉ

24ÉÉ
ÉÉ

23ÉÉ
ÉÉ

22 21 20 19 18 17 16 15 14 13 12 11 10

CAS L L L H/L 25 24 23 22 21 L† L L 9 8 7 6 5 4 3 2

64 RAS L L L H/LÉÉÉ26ÉÉ25ÉÉ24ÉÉ23 22 21 20 19 18 17 16 15 14 13 12 11

CAS L L L H/L 26 25 24 23 22 L† L L 10 9 8 7 6 5 4 3

9 8 RAS L L L H/L
ÉÉÉ
ÉÉÉ

24
ÉÉ
ÉÉ

23
ÉÉ
ÉÉ

22
ÉÉ
ÉÉ

21 20 19 18 17 16 15 14 13 12 11 10 9

CAS L L L H/L 24 23 22 21 20 L† L 8 7 6 5 4 3 2 1 0

16 RAS L L L H/LÉÉÉ
ÉÉÉ

25ÉÉ
ÉÉ

24ÉÉ
ÉÉ

23ÉÉ
ÉÉ

22 21 20 19 18 17 16 15 14 13 12 11 10

CAS L L L H/L 25 24 23 22 21 L† L 9 8 7 6 5 4 3 2 1

32 RAS L L L H/L
ÉÉÉ
ÉÉÉ

26
ÉÉ
ÉÉ

25
ÉÉ
ÉÉ

24
ÉÉ
ÉÉ

23 22 21 20 19 18 17 16 15 14 13 12 11

CAS L L L H/L 26 25 24 23 22 L† L 10 9 8 7 6 5 4 3 2

64 RAS L L L H/LÉÉÉ
ÉÉÉ

27ÉÉ
ÉÉ

26ÉÉ
ÉÉ

25ÉÉ
ÉÉ

24 23 22 21 20 19 18 17 16 15 14 13 12

CAS L L L H/L 27 26 25 24 23 L† L 11 10 9 8 7 6 5 4 3

10 8 RAS L L L H/LÉÉÉ25ÉÉ24ÉÉ23ÉÉ22 21 20 19 18 17 16 15 14 13 12 11 10

CAS L L L H/L 25 24 23 22 21 L† 9 8 7 6 5 4 3 2 1 0

16 RAS L L L H/L
ÉÉÉ
ÉÉÉ

26
ÉÉ
ÉÉ

25
ÉÉ
ÉÉ

24
ÉÉ
ÉÉ

23 22 21 20 19 18 17 16 15 14 13 12 11

CAS L L L H/L 26 25 24 23 22 L† 10 9 8 7 6 5 4 3 2 1

32 RAS L L L H/LÉÉÉ
ÉÉÉ

27ÉÉ
ÉÉ

26ÉÉ
ÉÉ

25ÉÉ
ÉÉ

24 23 22 21 20 19 18 17 16 15 14 13 12

CAS L L L H/L 27 26 25 24 23 L† 11 10 9 8 7 6 5 4 3 2

64 RAS L L L H/LÉÉÉ28ÉÉ27ÉÉ26ÉÉ25 24 23 22 21 20 19 18 17 16 15 14 13

CAS L L L H/L 28 27 26 25 24 L† 12 11 10 9 8 7 6 5 4 3

Legend: Bit is internally latched during an ACTV command.

† L = Low; logical address A10 is driven low during READ or WRT commands to disable autoprecharge.
‡ EA19 (EMIFA) and EA17 (EMIFB) are used during ACTV to indicate non-PDT vs. PDT access. For non-PDT access, this bit

is 1. For PDT access, this bit is 0 during ACTV.

SDRAM Interface

10-55External Memory Interface

10.5.4 SDRAM Refresh

The RFEN bit in the SDRAM control register selects the SDRAM refresh mode
of the EMIF. A value of 0 in RFEN disables all EMIF refreshes, and you must
ensure that refreshes are implemented in an external device. A value of 1 in
RFEN enables the EMIF to perform refreshes of SDRAM.

Refresh commands (REFR) enable all CE signals for all CE spaces selected to
use SDRAM (with the MTYPE field of the CE space control register). REFR is
automatically preceded by a DCAB command. This ensures that all CE spaces
selected with SDRAM are deactivated. Following the DCAB command, the EMIF
begins performing trickle refreshes at a rate defined by the period value in the
EMIF SDRAM control register, provided no other SDRAM access is pending.

For the C620x/C670x, the SDRAM interface monitors the number of refresh re-
quests posted to it and performs the refreshes. Within the EMIF SDRAM control
block, a 2-bit counter monitors the backlog of refresh requests. The counter in-
crements once for each refresh request and decrements once for each refresh
cycle performed. The counter saturates at the values of 11 and 00. At reset, the
counter is automatically set to 11 to ensure that several refreshes occur before
accesses begin.

The C620x/C670x EMIF SDRAM controller prioritizes SDRAM refresh re-
quests with other data access requests posted to it from the EMIF requesters.
The following rules apply:

� A counter value of 11 invalidates the page information register, forcing the
controller to close the current SDRAM page. The value 11 indicates an ur-
gent refresh condition. Thus, following the DCAB command, the EMIF
SDRAM controller performs three REFR commands, thereby decrement-
ing the counter to 00 before proceeding with the remainder of the current
access. If SDRAM is present in multiple CE spaces, the DCAB-refresh
sequence occurs in all spaces containing SDRAM.

� During idle times on the SDRAM interface(s), if no request is pending from
the EMIF, the SDRAM interface performs REFR commands as long as the
counter value is nonzero. This feature reduces the likelihood of having to
perform urgent refreshes during actual SDRAM accesses. If SDRAM is
present in multiple CE spaces, this refresh occurs only if all interfaces are
idle with invalid page information.

Unlike the C620x/C670x EMIF, the C621x/C671x/C64x REFR requests are
considered high priority, and no distinction exists between urgent and trickle
refresh. Transfers in progress are allowed to complete. The
C621x/C671x/C64x SDRAM refresh period has an extra bitfield, XRFR, which

SDRAM Interface

 10-56

controls the number of refreshes performed when the counter reaches zero.
This feature allows the XRFR field to be set to perform up to four refreshes
when the refresh counter expires.

For all C6000 devices, the EMIF SDRAM interface performs CAS-before-RAS
refresh cycles for SDRAM. Some SDRAM manufacturers call this autorefresh.
Prior to an REFR command, a DCAB command is performed to all CE spaces
specifying SDRAM to ensure that all active banks are closed. Page information
is always invalid before and after a REFR command; thus, a refresh cycle al-
ways forces a page miss. A deactivate cycle is required prior to the refresh
command. Figure 10–24 shows the timing diagram for an SDRAM refresh.

Figure 10–24. SDRAM Refresh

Clock†

CEx

BE[3:0]

EA[15:2]

SDA10

SDRAS

SDCAS

SDWE

REFR

† Clock = SDCLK for C6201/C6701.
= CLKOUT2 for all C620x/C670x except C6201/C6701.
= ECLKOUT for C621x/C671x.
= ECLKOUT1 for C64x.

SDRAM Interface

10-57External Memory Interface

10.5.5 SDRAM Self Refresh Mode (C64x Only)

The SLFRFR bit of the SDRAM control register (SDCTL) forces the EMIF to
place the external SDRAM in a low-power mode, called Self Refresh, in which
the SDRAM maintains valid data while consuming a minimal amount of power.
This mode is entered when a 1 is written to the SLFRFR bit and SDRAM exists
in the system. When the SLFRFR bit is set, the refresh enable bit RFEN in the
SDCTL must be written with a 0 simultaneously. When the SLFRFR bit is as-
serted, all open pages of SDRAM are closed (DCAB issued to all CE spaces).
In addition, a REFRESH command is issued on the same cycle that the
SDCKE signal is driven low.

It is the user’s responsibility to ensure that the SLFRFR bit is turned on/off at
appropriate times. To exit SLFRFR mode, write a 0 to the SLFRFR bit and then
immediately read back before performing other accesses. As long as
SLFRFR = 1, user should ensure that no SDRAM accesses are performed.

During self refresh mode, the SDRAM clock (ECLKOUT1) can be turned off,
if the system does not use the Hold interface, or if ECLKOUT1 is not used else-
where in the system. ECLKOUT1 must be re-enabled before exiting self re-
fresh mode. The EMIF ensures that the SDRAM is in the self refresh state for
at least TRAS cycles, where TRAS is defined in the SDEXT register. In addi-
tion, the EMIF ensures the time from SDCKE high to the next ACTV command
is at least 16 ECLKOUT1 cycles.

If SDRAM is not in use in the system, the SDCKE pin can be used as a general-
purpose output. The inverse of SLFRFR bit is driven on the SDCKE pin.

If a Hold request is detected, then before acknowledging this request with
HOLDA, the EMIF will assert the SDCKE output (as long as TRAS requirement
has been met) and clear the SLFRFR bit to wake the SDRAM from reset. If
SDRAM is not in use by the system, then Hold will have no effect on the state
of the SDCKE output or the SLFRFR field.

The effects of the SLFRFR bit with an SDRAM in the system are summarized
here:

� Write to SLFRFR while not in hold causes Self refresh mode entry/exit.

� Write to SLFRFR while in hold: write to SLFRFR is ignored, bit is not writ-
ten.

� If HOLD request occurs while SLFRFR = 1, the EMIF ensures that the de-
vice has been in self refresh mode at least TRAS cycles. Then the EMIF
exits self refresh mode (deasserts SLFRFR). After 16 ECLKOUT1 cycles,
the EMIF will acknowledge the HOLD request.

Note: The EMIF SDCKE signal must be connected to the SDRAM CKE
signal for proper SLFRFR operation.

SDRAM Interface

 10-58

10.5.6 Mode Register Set

The C620x/C670x EMIF automatically performs a DCAB command followed
by an MRS command whenever the INIT field in the EMIF SDRAM control reg-
ister is set. INIT can be set by device reset or by a user write. Like DCAB and
REFR commands, MRS commands are performed to all CE spaces config-
ured as SDRAM through the MTYPE field. Following a hold, the external re-
quester should return the SDRAM MRS register’s original value before return-
ing control of the bus to the EMIF. Alternatively, you could poll the HOLD and
HOLDA bits in the EMIF global control register and, upon detecting completion
of an external hold, reinitialize the EMIF by writing a 1 to the INIT bit in the EMIF
SDRAM control register.

The C620x/C670x EMIF always uses a mode register value of 0030h during an
MRS command. Figure 10–25 shows the mapping between mode register bits,
EMIF pins, and the mode register value. Table 10–23 shows the JEDEC stan-
dard SDRAM configuration values selected by this mode register value.
Figure 10–27 shows the timing diagram during execution of the MRS com-
mand.

Figure 10–25. TMS320C620x/C670x Mode Register Value

13 12 11 10 9 8 7

EA15 EA14 EA13 SDA10 EA11 EA10 EA9

Rsvd
Write burst

length
Rsvd

0000 0 00

6 5 4 3 2 1 0

EA8 EA7 EA6 EA5 EA4 EA3 EA2

Read latency S/I Burst length

011 0 000

Table 10–23. TMS320C620x/C670x Implied SDRAM Configuration by MRS Value

Field Selection

Write burst length 1 word

Read latency 3 cycles

Serial/interleave burst type Serial

Burst length 1 word

SDRAM Interface

10-59External Memory Interface

The C621x/C671x/C64x uses a mode register value of either 0032h or 0022h.
The register value and description are shown in Figure 10–26 and summa-
rized in Table 10–24. Both values program a default burst length of four words
for both reads and writes. The value actually used depends on the CASL pa-
rameter defined in the SDRAM extension register. If the CAS latency is three,
0032h is written. If the CAS latency is two, 0022h is written during the MRS
cycle.

Figure 10–26. TMS320C621x/C671x/C64x Mode Register Value (0032h)†

13 12 11 10 9 8 7

EA15 EA14 EA13 SDA10 EA11 EA10 EA9

Rsvd
Write burst

length
Rsvd

0000 0 00

6 5 4 3 2 1 0

EA8 EA7 EA6 EA5 EA4 EA3 EA2

Read latency‡ S/I Burst length

010 or 011‡ 0 010
† For C64x EMIFA, EA[16:3] is used instead.

For C64x EMIFB, EA[14:1] is used instead.
‡ If CASL = 1, bit 4 is 1.

If CASL = 0, bit 4 is 0.

Table 10–24. TMS320C621x/C671x/C64x Implied SDRAM Configuration by MRS

Field CASL = 0 CASL = 1

Write burst length 4 words 4 words

Read latency 2 cycles 3 cycles

Serial/interleave burst type Serial Serial

Burst length 4 words 4 words

SDRAM Interface

 10-60

Figure 10–27. SDRAM Mode Register Set: MRS Command

MRS value

Clock†

CEx

BE[3:0]

EA[15:2]‡

SDA10

SDRAS

SDCAS

SDWE

MRS

† Clock = SDCLK for C6201/C6701.
= CLKOUT2 for all C620x/C670x except C6201/C6701.
= ECLKOUT for C621x/C671x.
= ECLKOUT1 for C64x.

‡ For C64x EMIFA, EA[16:3] is used instead.
For C64x EMIFB, EA[14:1] is used instead.

SDRAM Interface

10-61External Memory Interface

10.5.7 Timing Requirements

Several SDRAM timing parameters decouple the EMIF from SDRAM speed
limitations. For the C620x/C670x, three of these parameters are program-
mable via the EMIF SDRAM control register; the remaining two are assumed
to be static values, as shown in Table 10–25. The three programmable values
ensure that EMIF control of SDRAM obeys these minimum timing require-
ments. Consult the SDRAM data sheet for information on the parameters that
are appropriate for your particular SDRAM.

Table 10–25. TMS320C620x/C670x SDRAM Timing Parameters

Parameter Description
Value in EMIF
Clock Cycles †

tRC REFR command to ACTV, MRS, or subsequent REFR command TRC + 1

tRCD ACTV command to READ or WRT command TRCD + 1

tRP DCAB command to ACTV, MRS, or REFR command TRP +1

tRAS ACTV command to DEAC to DCAB command 7

tnEP Overlap between read data and a DCAB command 2

† EMIF clock cycles = CLKOUT2 cycles for C620x/C670x

The C621x/C671x/C64x has additional programmable timing parameters that
are programmable via the SDRAM control register and the SDRAM extension
register, as shown in Table 10–26. These parameters are a superset of the pa-
rameters of the C620x/C670x. Consult the manufacturer’s data sheet for the
particular SDRAM.

The C621x/C671x/C64x also allows the user to program other functional pa-
rameters of the SDRAM controller. These parameters are listed in Table 10–9
under the SDRAM extension register field descriptions. These parameters are
not explicitly spelled out in the timing parameters of a data sheet, but the user
must ensure that the parameters are programmed to a valid value. The recom-
mended values for these SDRAM parameters are shown in Table 10–27.

SDRAM Interface

 10-62

Table 10–26. TMS320C621x/C671x/C64x SDRAM Timing Parameters

Parameter Description Value in EMIF
Clock Cycles †

tRC REFR command to ACTV, MRS, or subsequent REFR command TRC + 1

tRCD ACTV command to READ or WRT command TRCD + 1

tRP DCAB/DEAC command to ACTV, MRS, or REFR command TRP + 1

tCL CAS latency of the SDRAM TCL + 2

tRAS ACTV command to DEAC/DCAB command TRAS + 1

tRRD ACTV bank A to ACTV bank B (same CE space) TRRD + 2

tWR Write recovery, time from last data out of C6000 (write data) to
DEAC/DCAB command

TWR + 1

tHZP High Z from precharge, time from DEAC/DCAB to SDRAM outputs
(read data) in high Z

THZP + 1

† EMIF clock cycles = ECLKOUT cycles for C621x/C671x
= ECLKOUT1 cycles for C64x.

Table 10–27. TMS320C621x/C671x/C64x Recommended Values for
Command–to–Command Parameters

Parameter Description Value in EMIF
clock cycles

Suggested
value for
CL=2

Suggested
value for
CL=3

READ to
READ

READ command to READ command. Used to
interrupt a READ burst for random READ ad-
dresses

RD2RD + 1 RD2RD = 0 RD2RD = 0

READ to
DEAC

Used in conjunction with tHZP. Specifies the
minimum amount of time between READ com-
mand and DEAC/DCAB command

RD2DEAC + 1 RD2DEAC = 1 RD2DEAC = 1

READ to
WRITE

READ to WRITE command. The value pro-
grammed in this parameter depends on tCL .
READ to WRITE should be CAS latency plus 2
cycles (in EMIF clock cycles) to provide 1 turn-
around cycle before WRITE command.

RD2WR + 1 RD2WR = 3 RD2WR = 4

BEx high
before write
interrupting
read

Specifies the number of cycles that the BEx
outputs should be high before a write is al-
lowed to interrupt a read. This is related to
READ to WRITE parameter.

R2WDQM + 1 R2WDQM = 1 R2WDQM = 2

WRITE to
WRITE

Number of cycles between a WRITE interrupt-
ing a WRITE. Used for random WRITEs.

WR2WR + 1 WR2WR = 0 WR2WR = 0

WRITE to
DEAC

Number of cycles between a WRITE command
and a DEAC/DCAB command

WR2DEAC +
1

WR2DEAC =
1

WR2DEAC =
1

WRITE to
READ

Number of cycles between a WRITE command
and a READ command

WR2RD + 1 WR2RD = 0 WR2RD = 0

SDRAM Interface

10-63External Memory Interface

10.5.8 SDRAM Deactivation (DCAB and DEAC)

The SDRAM deactivation (DCAB) is performed after a hardware reset or when
INIT = 1 in the EMIF SDRAM control register. This cycle is also required by the
SDRAMs prior to REFR and MRS. On the C620x/C670x, a DCAB is issued
when a page boundary is crossed. During the DCAB command, SDA10 is driv-
en high to ensure that all SDRAM banks are deactivated. Figure 10–28 shows
the timing diagram for SDRAM deactivation.

Figure 10–28. TMS320C6000 SDRAM DCAB — Deactivate all Banks

Clock†

CEx

BE[3:0]

EA[15:2]

SDA10‡

SDRAS

SDCAS

SDWE

DCAB

† Clock = SDCLK for C6201/C6701.
= CLKOUT2 for all C620x/C670x except C6201/C6701.
= ECLKOUT for C621x/C671x.
= ECLKOUT1 for C64x

‡ SDA10 applies to C620x/C670x only. On C621x/C671x, EA12 is used. On C64x EMIFA, EA13 is used. On C64x EMIFB, EA11
is used.

The C621x/C671x/C64x also supports the DEAC command, whose operation
is depicted in Figure 10–29, which closes a single page of SDRAM specified
by the bank select signals. When a page boundary is crossed, the DEAC com-
mand is used to close the open page. The C621x/C671x/C64x still supports
the DCAB command to close all pages prior to REFR and MRS commands.

SDRAM Interface

 10-64

Figure 10–29. TMS320C621x/C671x SDRAM DEAC — Deactivate Single Bank

DEAC

Bank

Clock†

CE

BE[3:0]

EA[21:13]

EA[11:2]

ED[31:0]

SDRAS

SDWE

SDCAS

EA12‡

† Clock = ECLKOUT for C621x/C671x.
= ECLKOUT1 for C64x

‡ For C64x EMIFA, EA13 is used. For C64x EMIFB, EA11 is used.

SDRAM Interface

10-65External Memory Interface

10.5.9 Activate (ACTV)

The EMIF automatically issues the Activate (ACTV) command before a read
or write to a new row of SDRAM. The ACTV command opens up a page of
memory, allowing future accesses (reads or writes) with minimum latency.
When an ACTV command is issued by the EMIF, a delay of tRCD is incurred
before a read or write command is issued. Figure 10–30 shows an example
of an ACTV command before an SDRAM write. In this example, tRCD = 3 EMIF
clock cycles. The ACTV command for SDRAM reads are identical. Reads or
writes to the currently active row and bank of SDRAM can achieve much higher
throughput than reads or writes to random areas, because every time a new
page is accessed the ACTV command must be issued.

Figure 10–30. ACTV Command Before an Example SDRAM Write

ACTV

BE1 BE2 BE3

Bank Activate/Row Address CA1 CA2 CA3

D1 D2 D3

Row Address

Clock†

CEx

BE[3:0]

EA[15:0]

ED[31:0]

SDA10‡

SDRAS

SDCAS

SDWE

TRCD=3 cycles

Write Write Write

† Clock = SDCLK for C6201/C6701
 = CLKOUT2 for all C620x/C670x except C6201/C6701

= ECLKOUT for C621x/C671x
= ECLKOUT1 for C64x

‡ SDA10 applies to C620x/C670x only. On C621x/C671x, EA12 is used. On C64x EMIFA, EA13 is used. On C64x EMIFB, EA11
is used.

SDRAM Interface

 10-66

10.5.10 SDRAM Read

10.5.10.1 TMS320C620x/C670x SDRAM Read

During an SDRAM read, the selected bank is activated with the row address
during the ACTV command. Figure 10–31 shows the timing for the C620x/C670x
issuing three read commands performed at three different column addresses.
The EMIF uses a CAS latency of three and a burst length of one. The three-cycle
latency causes data to appear three cycles after the corresponding column ad-
dress. Following the final read command of the C620x/C670x, an idle cycle is
inserted to meet timing requirements. If required, the bank is then deactivated
with a DCAB command and the EMIF can begin a new page access. If no new
access is pending or an access is pending to the same page, the DCAB com-
mand is not performed until the page information becomes invalid. The values on
EA[15:13] during column accesses and execution of the DCAB command are the
values latched during the ACTV command.

Figure 10–31. TMS320C620x/C670x SDRAM Read

D3D2D1

CA3CA2CA1

BE3BE2BE1

latched
D3

latched
D2

latched
D1

ReadReadRead

SDWE

SDCAS

SDRAS

SDA10

ED[31:0]

EA[15:2]

BE[3:0]

CEx

Clock†

Á
Á

Á
Á

CAS latency = 3

† Clock = SDCLK for C6201/C6701.
= CLKOUT2 for all C620x/C670x except C6201/C6701

SDRAM Interface

10-67External Memory Interface

10.5.10.2 TMS320C621x/C671x SDRAM Read

Figure 10–32 shows the C621x/C671x performing a three word read burst
from SDRAM. The C621x/C671x uses a burst length of four, and has a pro-
grammable CAS latency of either two or three cycles. The CAS latency is three
cycles in this example (CASL = 1). Since the default burst length is four words,
the SDRAM returns four pieces of data for every read command. If no additional
access are pending to the EMIF, as in Figure 10–32, the read burst completes
and the unneeded data is disregarded. If accesses are pending, the read burst
can be interrupted with a new command (READ,WRT,DEAC,DCAB), controlled
by the SDRAM extension register. If a new access is not pending, the DCAB/
DEAC command is not performed until the page information becomes invalid.

Figure 10–32. TMS320C621x/C671x SDRAM Read

EA[11:2] Column

SDWE

SDRAS

ED[31:0]†

EA12

SDCAS

Á
Á

ÁÁ
ÁÁ

D4D3D2D1

EA[21:13]

BE[3:0]

Bank

BE4BE3BE2BE1

D4
ignoredlatched

D3
latched
D2

latched
D1

Read

CEx

ECLKOUT

CAS latency = 3

† ED[31:16] do not apply to C6712.

10.5.10.3 TMS320C64x SDRAM Read

The C64x also uses a burst length of four. It differs from the C621x/C671x
SDRAM Read as follows:

� During ACTV, EA19 (EMIFA) or EA17 (EMIFB) is driven high for a non-
PDT access, and driven low for a PDT access.

� For a PDT access, PDT is asserted during the data phase of the SDRAM
read.

SDRAM Interface

 10-68

Figure 10–33 shows the C64x performing a three doubleword (EMIFA) or half-
word (EMIFB) read burst from SDRAM for a PDT access. During ACTV (not
shown in Figure 10–33), SDRAS goes active low, and EA19 (EMIFA) or EA17
(EMIFB) is driven low for a PDT access. The ACTV command is not issued for
future access to the same open page.

Figure 10–33. TMS320C64x SDRAM Read
Read Data
Latched

BE1 BE2 BE3

CEx

BE[7:0]�

EA[22:14]�

EA[12:3]�

EA13�

ED[63:0]�

SDRAS

SDCAS

BE4

Bank

Column

D1 D2 D3 D4

CLKOUT1

SDWE

EA19�

PDT�

CAS Latency=3

Read Read Data
Latched

Read Data
Latched

Read Data
Latched

† EA19 is used as the PDT address pin for EMIFA. EA17 is used as the PDT address pin for EMIFB.
‡ For EMIFB, BE[1:0], EA[20:12], EA[10:1], EA11, and ED[15:0], respectively, are used instead.
§ PDT only goes active during PDT transfers (section 10.9). During normal read/write transactions, the PDT signal will not be

asserted.

SDRAM Interface

10-69External Memory Interface

10.5.11 SDRAM Write

10.5.11.1TMS320C620x/C670x SDRAM Write

All SDRAM writes have a burst length of one on the C620x/C670x. The bank is
activated with the row address during the ACTV command. There is no latency
on writes, so data is output on the same cycle as the column address. Writes to
particular bytes are disabled via the appropriate DQM inputs; this feature allows
for byte and halfword writes. Figure 10–34 shows the timing for a three-word write
on the C620x/C670x. Since the default write burst length is one-word, a new write
command is issued each cycle to perform the three word burst. Following the final
write command, the C620x/C670x inserts an idle cycle to meet SDRAM timing
requirements. The bank is then deactivated with a DCAB command, and the
memory interface can begin a new page access. If no new access is pending,
the DCAB command is not performed until the page information becomes inval-
id (see section 10.5.2). The values on EA[15:13] (if SDWID=1) or EA[14:13]
(if SDWID=0) during column accesses and the DCAB command are the values
latched during the ACTV command.

If a page boundary is crossed during the course of an access, the EMIF per-
forms a DCAB command and starts a new row access. If a write burst crosses
a page boundary, the CAS and WE signals stay active for one additional cycle
before the DCAB command. The BEx signals are inactive high during this addi-
tional cycle to prevent the EMIF from incorrectly writing an extra word.

Figure 10–34. TMS320C620x/C670x SDRAM Three-Word Write

WriteWriteWrite

D3D2D1

CA3CA2CA1

BE3BE2BE1

SDWE

SDCAS

SDRAS

SDA10

ED[31:0]

EA[15:2]

BE[3:0]

CEx

Clock†

† Clock = SDCLK for C6201/C6701.
= CLKOUT2 for all other C620x/C670x except C6201/C6701.

SDRAM Interface

 10-70

10.5.11.2TMS320C621x/C671x SDRAM Write

All SDRAM writes have a burst length of four on the C621x/C671x. The bank is
activated with the row address during the ACTV command. There is no latency
on writes, so data is output on the same cycle as the column address. Writes to
particular bytes are disabled via the appropriate DQM inputs; this feature allows
for byte and halfword writes. Figure 10–35 shows the timing for a three-word write
on the C621x/C671x. Since the default C621x/C671x write-burst length is four
words, the last write is masked out via the byte enable signals. On the
C621x/C671x, idle cycles are inserted as controlled by the parameters of the
SDRAM extension register fields (WR2RD, WR2DEAC, WR2WR, TWR). The
bank is then deactivated with a DEAC command for C621x/C671x, and the
memory interface can begin a new page access. If no new access is pending,
the DEAC command is not performed until the page information becomes inval-
id (see section 10.5.2). The values on the bank select bits (see section 10.5.3)
during column accesses and during the DEAC command are the values
latched during the ACTV command.

Figure 10–35. TMS320C621x/C671x SDRAM Three-Word Write

SDWE

SDCAS

SDRAS

ED[31:0]†

EA12

EA[11:2]

EA[21:13]

BE[3:0]

CEx

ECLKOUT

D3D2D1

Column

Bank

BE4BE3BE2BE1

Write

ÁÁ
ÁÁ

Á
Á

SDRAM
latches
D1

SDRAM
latches
D2

SDRAM
latches
D3

D4
blocked by BEx high

† ED[31:16] do not apply to C6712.

SDRAM Interface

10-71External Memory Interface

10.5.11.3TMS320C64x SDRAM Write

The C64x also uses a burst length of four. It differs from the C621x/C671x
SDRAM read as follows:
� During ACTV, EA19 (EMIFA) or EA17 (EMIFB) is driven high for a non-

PDT access, and driven low for a PDT access.
� For a PDT access, PDT is asserted during the data phase of the SDRAM

write.
� Write data is driven one cycle early.

Figure 10–36 shows the timing for a three doubleword (EMIFA) or halfword
(EMIFB) write on the C64x for a PDT access. An ACTV command is not issued
for future access to the same open page.

Figure 10–36. TMS320C64x SDRAM Write

CEx

BE[7:0]�

EA[22:14]�

EA[12:3]�

EA13�

ED[64:0]�

SDRAS

SDCAS

Bank

Column

D1 D2 D3 D4

ECLKOUT1

SDWE

EA19†

PDT�

Bank/Row

Row

Row

BE2 BE3 BE4

ACTV

TRCD = 3

Write

† EA19 is used as the PDT address pin for EMIFA. EA17 is used as the PDT address pin for EMIFB.
‡ For EMIFB, BE[1:0], EA[20:12], EA[10:1], EA11, and ED[15:0], respectively, are used instead.
§ PDT only goes active during PDT transfers (section 10.9). During normal read/write transactions, the PDT signal will not be

asserted.

SBSRAM Interface

 10-72

10.6 SBSRAM Interface

The C6000 EMIF interfaces directly to industry-standard synchronous burst
SRAMs (SBSRAMs). This memory interface allows a high-speed memory in-
terface without some of the limitations of SDRAM. Most notably, since
SBSRAMs are SRAM devices, random accesses in the same direction can oc-
cur in a single cycle. Besides supporting the SBSRAM interface, the program-
mable synchronous interface on the C64x supports additional synchronous
device interfaces. See section 10.8 for details on the C64x interface with the
other synchronous devices. This section discusses the SBSRAM interface on
all the C6000 devices.

For the C6201/C6701, the SBSRAM interface can run at either the CPU clock
speed or at 1/2 of this rate. The selection is made based on the setting of the
SSCRT bit in the EMIF global control register. For all other C620x/C670x de-
vices (except C6201/C6701), the interface operates at 1/2 rate only. For the
C621x/C671x, the SBSRAM runs off of ECLKOUT. For the C64x, the
SBSRAM runs off of ECLKOUT1 or ECLKOUT2.

The four SBSRAM control pins are latched by the SBSRAM on the rising EMIF
clock edge to determine the current operation. These pins are listed in
Table 10–28. These signals are valid only if the chip select line for the SBSRAM
is low.

Table 10–28. EMIF SBSRAM Pins

EMIF Signal † SBSRAM Signal SBSRAM Function

SSADS ADSC Address strobe

SSOE OE Output enable

SSWE WE Write enable

SSCLK/CLKOUT2/ECLKOUT‡ CLK SBSRAM clock

† For C64x, SBSRAM control signals are renamed as SADS/SRE, SOE, and SWE, respectively.
‡ For C64x, SBSRAM interface can run off of either ECLKOUT1 or ECLKOUT2.

For the C620x/C670x, the ADV signal of the SBSRAM is pulled high. This dis-
ables the internal burst advance counter of the SBSRAM. This interface allows
bursting by strobing a new address into the SBSRAM on every cycle.

The C621x/C671x interface takes advantage of the internal advance counter
of the SBSRAM. For this interface, the ADV signal is pulled low, so that every
access to the SBSRAM from the C621x/C671x is assumed to be a four word
burst. If non–incrementing addressing is required for a given access, the
C621x/C671x can perform this by overriding the burst feature of the SBSRAM

SBSRAM Interface

10-73External Memory Interface

and strobing a new command into the SBSRAM on every cycle, as done by
the other C6000 devices. Table 10–29 shows the 4 word burst sequencing of
standard SBSRAMs in linear burst mode. In order to avoid the SBSRAM wrap-
ping around to an unintended address (indicated in gray), the C621x/C671x
strobes a new address into the SBSRAM. This is also done if the burst order
should be non-incrementing or reverse order burst. After performing a read or
write command, the C621x/C671x EMIF issues a deselect command to the
SBSRAM if no accesses are pending to that CE space.

The C64x interface does not support the burst feature of the SBSRAM. On the
C64x, an address is strobed into the SBSRAM on every cycle. After performing
a read or write command, the C64x EMIF issues a deselect command to the
SBSRAM if no accesses are pending to that CE space. The C64x also sup-
ports programmable read and write latency to allow a flexible interface to differ-
ent types of synchronous memories.

The SBSRAM interfaces on the C620x/C670x are shown in Figure 10–37. The
SBSRAM interfaces on the C621x/C671x are shown in Figure 10–38. The
SBSRAM interfaces on the C64x are shown in Figure 10–39.

Table 10–29. TMS320C621x/C671x SBSRAM in Linear Burst Mode

Case 1 Case 2 Case 3 Case 4

SBSRAM Address A[1:0] A[1:0] A[1:0] A[1:0]

EMIF Address EA[3:2] EA[3:2] EA[3:2] EA[3:2]

First address 00 01 10 11

01 10 11 00

10 11 00 01

Fourth Address 11 00 01 10

SBSRAM Interface

 10-74

Figure 10–37. TMS320C620x/C670x SBSRAM Interface

SBSRAM
SSRAM/

BE[3:0]BE[3:0]

VCC

D[31:0]

A[N:0]

WE

ADV

OE

ADSC

CLK

CS

(EMIF)
interface
memory
External

ED[31:0]

EA[N+2:2]

SSWE

SSOE

SSADS

Clock†

CEn

VCC ADSP

† Clock = SSCLK for C6201/C6701.
= CLKOUT2 for all C620x/C670x except C6201/C6701.

Figure 10–38. TMS320C621x/C671x SBSRAM Interface

SBSRAM
D[31:0]

A[N:0]

BE[3:0]

WE

OE

ADV

ADSC

CLK

CS

ED[31:0]†§

EA[N+2:2]

BE[3:0]

AOE/SDRAS/SSOE

ARE/SDCAS/SSADS

CEx

GND

AWE/SDWE/SSWE

External
clock

(EMIF)
interface
memory
External

ECLKOUT

ECLKIN

† ED[31:16] do not apply to C6712.

SBSRAM Interface

10-75External Memory Interface

Figure 10–39. TMS320C64x SBSRAM Interface

SBSRAM
D[31:0]

A[N:0]

BE[3:0]

WE

OE

ADV

ADSC

CLK

CS

ED[31:0]‡

EA[N+2:2]‡

BE[3:0]‡

AOE/SDRAS/SOE

ARE/SDCAS/SADS/SRE

CEx

GND

AWE/SDWE/SWE

External
clock

(EMIF)
interface
memory
External

ECLKOUT†

ECLKIN

† ECLKOUTx used is selected by the SNCCLK bit in the CExSEC register.
‡ For interface to a 64–bit data bus, BE[7:0], EA[N+3:3, and ED[63:0] are used.

For interface to a 16–bit data bus, BE[1:0], EA[N+1:1], and ED[15:0] are used.

SBSRAMs are latent by their architecture, since read data follows address and
control information by two cycles. Consequently, the EMIF inserts cycles between
read and write commands to ensure that no conflict exists on the ED[31:0] bus.
The EMIF keeps this turnaround penalty to a minimum.

Table 10–30 provides an overview of similarities and differences on the C6000
SBSRAM interface.

SBSRAM Interface

 10-76

Table 10–30. TMS320C6000 SBSRAM Interface Summary

C62x/C67x C64x

C6201/C6701 Other
C620x/C670x† C621x/C671x EMIFA EMIFB

Interface width 32-bit 32-bit 32-, 16-, 8-bit 64-, 32-, 16-,
8-bit

16-, 8-bit

SBSRAM clock SSCLK
(1/2x or 1x CPU
rate)

CLKOUT2 ECLKOUT ECLKOUT1 or
ECLKOUT2‡

ECLKOUT1 or
ECLKOUT2‡

SBSRAM
control signals

Dedicated
SDRAM control
signals

MUXed with
SDRAM control
signals.

MUXed with
SDRAM and
Async control
signals.

MUXed with
SDRAM and
Async control
signals.

MUXed with
SDRAM and
Async control
signals.

Burst Mode Not supported.
Performs bursts
by issuing
back-to-back
commands

Not supported.
Performs bursts
by issuing
back-to-back
commands

Supports
SBSRAM burst
mode with a
4-word burst

Not supported.
Performs bursts
by issuing
back–to–back
commands. Still
issues deselect
command

Not supported.
Performs bursts
by issuing
back–to–back
commands. Still
issues deselect
command

Programmable
latency

No No No Read, Write Read, Write

† This column applies to all C620x/C670x devices except C6201/C6701.
‡ The ECLKOUTx used is selected by the SNCCLK bit in the CExSEC register.

SBSRAM Interface

10-77External Memory Interface

10.6.1 SBSRAM Reads

10.6.1.1 C620x/C670x SBSRAM Reads

Figure 10–40 shows a four-word read of an SBSRAM for the C620x/ C670x.
Every access strobes a new address into the SBSRAM, indicated by the
SSADS strobe low. The first access requires an initial start-up penalty of two
cycles; thereafter, all accesses occur in a single EMIF clock cycle.

Figure 10–40. TMS320C620x/C670x SBSRAM Four-Word Read

BE1 BE2 BE3 BE4

A1 A2 A3 A4

Q1 Q2 Q3 Q4

Clock†

CEx

BE[3:0]

EA[21:2]

ED[31:0]

SSADS

SSOE

SSWE

Read Read Read
D1
latched

Read
D2
latched

D3
latched

D4
latched

† Clock = SSCLK for C6201/C6701.
= CLKOUT2 for all C620x/C670x except C6201/C6701.

SBSRAM Interface

 10-78

10.6.1.2 C621x/C671x SBSRAM Read

Figure 10–41 shows the timing for C621x/C671x six-word read. The address
starts with EA[3:2] equal to 10b. A new address is strobed into the SBSRAM
on the third cycle to prevent the internal burst counter from rolling over to 000b.
The burst is terminated by deasserting the CEn signal while SSADS is strobed
low.

Figure 10–41. TMS320C621x/C671x SBSRAM Six-Word Read

D5 D6D3 D4D2D1

EA[4:2]=100bEA[4:2]=010b

BE5 BE6BE3 BE4BE2BE1

SSWE

SSOE

SSADS

ED[31:0]†

ECLKOUT

EA[21:2]

BE[3:0]

CE

ÁÁÁ

latched
D5

latched
D4

latched
D3

Read latchedlatched
D2
latched

Read/D1
latched latched/deselect

D6

† ED[31:16] do not apply to C6712.

SBSRAM Interface

10-79External Memory Interface

10.6.1.3 TMS320C64x SBSRAM Read

Figure 10–42 shows the timing for C64x six–element (doubleword for EMIFA,
halfword for EMIFB) read with a two-cycle read latency. Every access strobes
a new address into the SBSRAM, indicated by the SADS strobe low. The C64x
EMIF issues a deselect cycle at the end of the burst transfer.

For the standard SBSRAM interface, the following fields in the CExSEC regis-
ter must be set to their default state:

� SYNCRL = 10b; 2 cycle read latency
� SYNCWL = 00b; 0 cycle write latency
� CEEXT = 0; CE goes inactive after the final command has been issued

� RENEN = 0; SADS/SRE signal acts as SADS signal

Figure 10–42. TMS320C64x SBSRAM Six-Element Read

RL = 2

Read/D4
latched

Read/D3
latched

Read/D5
latched

BE1 BE2 BE3

D1 D2 D3

ECLKOUTx

CEx

BE[7:0]�

EA[22:3]�

ED[63:0]�

SADS

SOE

SWE

PDT†

BE4 BE5 BE6

A2A1 A3 A4 A5 A6

D4 D5 D6

Read Read
Read/D1
latched

D6 latched/
deselect

Read/D2
latched

† For PDT read from SBSRAM, PDT is asserted low during the data phase. For normal read/write transaction, the PDT signal
is not asserted.

‡ For EMIFB, BE[1:0], EA[20:1], and ED[15:0], respectively, are used instead.

SBSRAM Interface

 10-80

10.6.2 SBSRAM Writes

10.6.2.1 C620x/C670x SBSRAM Write

Figure 10–43 shows a four-word write to an SBSRAM. Every access strobes a
new address into the SBSRAM. The first access requires an initial start-up pen-
alty of two cycles; thereafter, all accesses can occur in a single EMIF clock cycle.

Figure 10–43. TMS320C620x/C670x SBSRAM Four-Word Write

D3 D4D2D1

A3 A4A2A1

Write WriteWrite

BE3 BE4BE2BE1

SSWE

SSOE

SSADS

ED[31:0]

Clock†

EA[21:2]

BE[3:0]

CEx

Write

† Clock = SSCLK for C6201/C6701.
= CLKOUT2 for all C620x/C670x except C6201/C6701.

SBSRAM Interface

10-81External Memory Interface

10.6.2.2 C621x/C671x SBSRAM Write

Figure 10–44 shows a C621x/C671x six-word write to SBSRAM. The new ad-
dress is strobed into SBSRAM on the fifth cycle to prevent the SBSRAM’s in-
ternal burst counter from rolling over to 000b.

Figure 10–44. TMS320C621x/C671x SBSRAM Write
Write

EA[4:2]=100bEA[4:2]=000b

D1 D2

BE1

D5 D6D4D3

BE3 BE4BE2

SSWE

SSOE

SSADS

ED[31:0]†

ECLKOUT

EA[21:2]

BE[3:0]

CEx

Write

BE5 BE6

Deselect

† ED[31:16] do not apply to C6712.

SBSRAM Interface

 10-82

10.6.2.3 C64x SBSRAM Write

Figure 10–45 shows a C64x six-element (doubleword for EMIFA, halfword for
EMIFB) write to SBSRAM. Every access strobes a new address into the
SBSRAM. The C64x EMIF issues a deselect cycle at the end of the burst trans-
fer.

Refer to section 10.6.1.3 for the CExSEC register setting for the C64x
SBSRAM write interface.

Figure 10–45. TMS320C64x SBSRAM Six-Element Write

BE1 BE2 BE3

D1 D2 D3

ECLKOUTx

CEx

BE[7:0]�

EA[22:3]�

ED[63:0]�

SADS

SOE

SWE

PDT�

BE4 BE5 BE6

A2A1 A3 A4 A5 A6

D4 D5 D6

WL = 0

Write Write Write Write Write DeselectWrite

† For PDT write to SBSRAM, PDT is asserted low during the data phase, and the C64x puts data in high impedance. For normal
read/write transaction, the PDT signal is not asserted.

‡ For EMIFB, BE[1:0], EA[20:1], and ED[15:0], respectively, are used instead.

Programmable Synchronous Interface (TMS320C64x)

10-83External Memory Interface

10.7 Programmable Synchronous Interface (TMS320C64x)

The C64x EMIF offers additional flexibility by replacing the SBSRAM interface
with a programmable synchronous interface. The programmable synchro-
nous interface supports glueless interfaces to the following devices:

� Pipelined and Flow-Through SBSRAM

� Zero bus turnaround (ZBT) synchronous pipeline SRAM

� Synchronous FIFOs in standard and first word fall through (FWFT) mode.

The programmable synchronous interface is configured by the CE space sec-
ondary control register (CExSEC). The bit fields in the CExSEC control the
cycle timing, and the clock used for programmable synchronous interface syn-
chronization. See section 10.2.2 for a detailed description of the bit fields.

In order to support different synchronous memory types, the C64x SBSRAM
interface is a combination of the C620x/C670x and C621x/C671x interfaces.
A new command is issued every cycle for SBSRAM bursts (similar to the
C620x/C670x), and a deselect cycle is issued at the end of the burst (similar
to the C621x/C671x). The RENEN field in the CExSEC register should be set
to 0 for SBSRAM interface to enable the SADS signal. See section 10.6 for de-
tails on SBSRAM interface.

Table 10–31 shows the programmable synchronous interface pins.

Table 10–31. TMS320C64x Programmable Synchronous Pins

EMIF Signal Signal Function

SADS/SRE Address strobe/Read enable (selected by RENEN)

SOE Output enable

SOE3 Output enable for CE3. The SOE3 pin is not muxed with
other signals. (useful for glueless FIFO interface)

SWE Write Enable

ECLKOUT1 Synchronous interface clock, runs at 1x EMIF input clock
rate

ECLKOUT2 Synchronous interface clock, runs at 1x, 1/2x, or 1/4x EMIF
input clock rate

Programmable Synchronous Interface (TMS320C64x)

 10-84

10.7.1 ZBT SRAM Interface

The programmable synchronous mode supports zero bus turnaround (ZBT)
SRAM interface.

For ZBT SRAM interface, the following fields in the CExSEC register must be
set as:

� SYNCRL = 10b; 2 cycle read latency

� SYNCWL = 10b; 2 cycle write latency

� CEEXT = 0; CE goes inactive after the final command has been issued

� RENEN = 0; SADS/SRE signal acts as SADS signal.

Figure 10–46 shows the ZBT SRAM interface.

Figure 10–46. TMS320C64x ZBT SRAM Interface

ZBT
SRAM

D[31:0]

A[N:0]

BE[3:0]

R/W

OE

ADV/LD

CLK

CE

ED[31:0]�

EA[N+3:3]�

BE[3:0]�

SOE

SADS/SRE

CEx

SWE

External
clock

(EMIF)
interface
memory
External

ECLKOUTx�

ECLKIN

† ECLKOUTx used is selected by the SNCCLK bit in the CExSEC register.
‡ For EMIFB, BE[1:0], EA[N+1:1], and ED[15:0] are used instead to interface to a 16–bit ZBT

SRAM.

10.7.1.1 ZBT SRAM Read

ZBT SRAM read waveforms are identical to the SBSRAM read waveforms,
since the register settings corresponding to the reads are the same. Refer to
section 10.6.1.3 for details.

Programmable Synchronous Interface (TMS320C64x)

10-85External Memory Interface

10.7.1.2 ZBT SRAM Write

For ZBT SRAM writes, the control signal waveforms are exactly the same as
standard SRAM writes. The write data, however, is delayed by two cycles, as
controlled by SYNCWL = 10b. Figure 10–47 shows the ZBT SRAM write tim-
ing.

Figure 10–47. TMS320C64x ZBT SRAM Six-Element Write

BE1 BE2 BE3

D1 D2 D3

ECLKOUTx

CEx

BE[3:0]�

EA[22:3]�

ED[31:0]�

SADS

SOE

SWE

PDT†

BE4 BE5 BE6

A2A1 A3 A4 A5 A6

D4 D5 D6

Write Write Write Write WriteWrite Deselect

WL = 2

† For PDT transfers, PDT is asserted low during the data phase, and data is in high impedance. For normal read/write transaction,
the PDT signal is not asserted.

‡ For EMIFB, BE[1:0], EA[21:1], and ED[15:0] are used instead.

10.7.2 Synchronous FIFO Interface

The programmable synchronous mode supports both standard timing syn-
chronous FIFO interface, and first word fall through (FWFT) FIFO interface.

For synchronous FIFO interface, the following field in the CExSEC register
must be set as stated:

� RENEN = 1; SADS/SRE signal acts as SRE signal

Figure 10–48 shows the synchronous FIFO interface with glue. Figure 10–49
and Figure 10–50 show the glueless synchronous FIFO interface at CE3
space, using the dedicated SOE3 pin.

Programmable Synchronous Interface (TMS320C64x)

 10-86

Figure 10–48. TMS320C64x Read and Write Synchronous FIFO Interface With Glue

OE

RCLK
REN

WCLK
WEN

FIFO
Synchronous

Q[31:0]

FF
EF

HF
Q[n:0�]

EXT_INTy
D[31:0]

WEN
WCLK

FIFO
Synchronous

Q[n:0�]
HF
FF
EF

OE
REN
RCLK

ED[63:0]�

EXT_INTx

SWE
SOE

SADS/SRE
CEx

ECLKOUTx�

EMIF

n

† ECLKOUTx used is selected by the SNCCLK bit in the CExSEC register.
‡ The MTYPE field selects the interface to be 8, 16, 32, or 64 bits wide. For EMIFB, only 8– and

16–bit interfaces are available. Therefore only ED[15:0] is used.

Figure 10–49. TMS320C64x Glueless Synchronous FIFO Read Interface in CE3 Space

D[31:0]

WEN
WCLK

FIFO
Synchronous

Q[n:0]�
HF
FF
EF

OE
REN
RCLK

EMIF

ED[63:0]�

EXT_INTx
SADS/SRE

SWE
SOE3
CE3�

ECLKOUTx�

n

† ECLKOUTx used is selected by the SNCCLK bit in the CExSEC register.
‡ The MTYPE field selects the interface to be 8, 16, 32, or 64 bits wide. For EMIFB, only 8– and

16–bit interfaces are available. Therefore only ED[15:0] is used.
§ Writes to CE3 must not be performed in this interface, since writes to CE3 will also cause CE3

to go active, causing data contention.

Programmable Synchronous Interface (TMS320C64x)

10-87External Memory Interface

Figure 10–50. TMS320C64x Glueless Synchronous FIFO Write Interface in CE3 Space

OE

Q[31:0]

REN
RCLK

FIFO
Synchronous

D[n:0�]
HF
FF
EF

WEN
WCLK

EMIF

ED[63:0]�

EXT_INTx
SADS/SRE

SWE

CE3§
ECLKOUTx�

n

† ECLKOUTx used is selected by the SNCCLK bit in the CExSEC register.
‡ The MTYPE field selects the interface to be 8, 16, 32, or 64 bits wide. For EMIFB, only 8– and

16–bit interfaces are available. Therefore only ED[15:0] is used.
§ Reads to CE3 must not be performed in this interface, since reads to CE3 will also cause CE3

to go active, causing data contention.

Programmable Synchronous Interface (TMS320C64x)

 10-88

10.7.2.1 Standard Synchronous FIFO Read

Figure 10–51 shows a C64x six-word read from a standard synchronous
FIFO. The CExSEC register settings are as follows:

� SYNCRL = 01b; one cycle read latency

� RENEN = 1; SADS/SRE signal acts as SRE signal

� CEEXT = 0; used for glueless FIFO interface
= 1; used for FIFO interface with glue

Figure 10–51. TMS320C64x Standard Synchronous FIFO Read

BE1 BE2 BE3

D1 D2 D3

ECLKOUTx

CEx (CEEXT = 0 or 1)�

BE[3:0]�

EA[22:3]�

ED[31:0]�

SRE (RENEN = 1)

SOE or SOE3

SWE

BE4 BE5 BE6

A2A1 A3 A4 A5 A6

D4 D5 D6

Read Read Read Read Read Read

RL = 1

† CEEXT = 0 for glueless synchronous FIFO interface. CEEXT = 1 for interface with glue.
‡ For EMIFB, BE[1:0], EA[21:1], and ED[15:0] are used instead.

Programmable Synchronous Interface (TMS320C64x)

10-89External Memory Interface

10.7.2.2 Standard Synchronous FIFO Write

Figure 10–52 shows a C64x six-word write to a standard synchronous FIFO.
The CExSEC register settings are as follows:

� SYNCWL = 00b; zero cycle write latency

� RENEN = 1; SADS/SRE signal acts as SRE signal

Figure 10–52. TMS320C64x Standard Synchronous FIFO Write

ECLKOUTx

BE1 BE2 BE3

D1 D2 D3

BE[3:0]�

EA[22:3]�

ED[31:0]�

SRE (RENEN = 1)

SOE or SOE3

SWE

BE4 BE5 BE6

A2A1 A3 A4 A5 A6

D4 D5 D6

CEx

Write Write Write Write Write Write

WL = 0

† For EMIFB, BE[1:0], EA[21:1], and ED[15:0] are used instead.

Programmable Synchronous Interface (TMS320C64x)

 10-90

10.7.2.3 FWFT Synchronous FIFO Read

Figure 10–53 shows a C64x six-word read from a FWFT synchronous FIFO.
The CExSEC register settings are as follows:

� SYNCRL = 00b; zero cycle read latency

� RENEN = 1; SADS/SRE signal acts as SRE signal

� CEEXT = 0; used for glueless FIFO interface
= 1; used for FIFO interface with glue

SYNCRL = 0 causes the SOE (or SOE3) signal go active a cycle before the
read command begins. If CEEXT=1, the CE signal will go active at the same
time as the SOE signal.

Figure 10–53. TMS320C64x FWFT Synchronous FIFO Read

Read/D3
latched

Read/D2
latched

Read/D1
latched

BE1 BE2 BE3

D1 D2 D3

ECLKOUTx

CEx (CEEXT = 0)

BE[3:0]�

EA[22:3]�

ED[31:0]�

SRE (RENEN = 1)

SOE or SOE3

SWE

BE4 BE5 BE6

A2A1 A3 A4 A5 A6

D4 D5 D6

CEx (CEEXT = 1)

RL = 0

Read/D4
latched

Read/D5
latched

Read/D6
latched

† For EMIFB, BE[1:0], EA[21:1], and ED[15:0] are used instead.

10.7.2.4 FWFT Synchronous FIFO Write

The FWFT Synchronous FIFO Write timing is identical to the standard syn-
chronous FIFO write timing. See section 10.7.2.2.

Asynchronous Interface

10-91External Memory Interface

10.8 Asynchronous Interface

The asynchronous interface offers configurable memory cycle types to interface
to a variety of memory and peripheral types, including SRAM, EPROM, and flash
memory, as well as FPGA and ASIC designs.

Table 10–32 lists the asynchronous interface pins.

Table 10–32. EMIF Asynchronous Interface Pins

EMIF
Signal Function

AOE Output enable. Active (low) during the entire period of a read access.

AWE Write enable. Active (low) during a write transfer strobe period.

ARE Read enable. Active (low) during a read transfer strobe period.

ARDY Ready. Input used to insert wait states into the memory cycle.

Figure 10–54 shows an interface to standard SRAM, and Figure 10–56,
Figure 10–57, and Figure 10–58 show interfaces to 8-, 16-, and 32-bit ROM
for the C6000. For C620x/C670x, although ROM can be interfaced at any of
the CE spaces, it is often used at CE1 because that space can be configured
for widths of less than 32 bits.

The C621x/C671x/C64x allows width of less than 32 bits on any CE space, as
shown in the MTYPE description of the CExCTL register. Figure 10–55 shows
the C621x/C671x interface to 16-bit asynchronous SRAM. The only difference
on the C621x/C671x 16–bit interface is that ED[31:16] are used instead of
ED[15:0]. The asynchronous interface signals on the C621x/C671x/C64x are
similar to the C6201, except that the signals have been combined with the
SDRAM and SBSRAM memory interface. It has also been enhanced to allow
for longer read hold time, and the 8- and 16-bit interface modes have been ex-
tended to include writable asynchronous memories, instead of ROM devices.
A programmable turnaround time (TA) also allows the user to control the num-
ber of cycles between a read and a write to avoid bus contention.

Asynchronous Interface

 10-92

Figure 10–54. EMIF to 32-bit SRAM Interface

ARDY

ARE

SRAM

UB[1:0], LB[1:0]BE[3:0]

D[31:0]

A[N:0]

R/W

OE

CS

(EMIF)
interface
memory
External

ED[31:0]

EA[N+2:2]

AWE

AOE

CEn

VDD

Figure 10–55. TMS320C621x/C671x EMIF to 16-bit SRAM (Big Endian)†

ARDY

ARE

SRAM

B[1:0]BE[3:2]

D[15:0]

A[N:0]

R/W

OE

CS

(EMIF)
interface
memory
External

ED[31:16]†
EA[N+2:2]

AWE

AOE

CEn

VDD

ECLKIN

External clock

† Figure 10–55 does not apply to C6712 because ED[31:16] do not exist on C6712.

Asynchronous Interface

10-93External Memory Interface

Figure 10–56. EMIF to 8-Bit ROM Interface

A[N:0] ROM

ARDY

D[7:0]

OE

CS

(EMIF)
interface
memory
External

ARE

ED[7:0]

EA[N+2:2]†
AOE

CE1

VDD

† For C64x EMIFA, EA[N+3:3] is used.
For C64x EMIFB, EA[N+1:1] is used.

Figure 10–57. EMIF to 16-Bit ROM Interface

A[N:0] ROM

ARDY

D[15:0]

OE

CS

(EMIF)
interface
memory
External

ARE

ED[15:0]

EA[N+2:2]†
AOE

CE1

VDD

† For C64x EMIFA, EA[N+3:3] is used.
For C64x EMIFB, EA[N+1:1] is used.

Figure 10–58. EMIF to 32-Bit ROM Interface

A[N:0] ROM

ARDY

D[31:0]

OE

CS

(EMIF)
interface
memory
External

ARE

ED[31:0]

EA[N+2:2]†
AOE

CE1

VDD

† For C64x EMIFA, EA[N+3:3] is used.
For C64x EMIFB, EA[N+1:1] is used.

Asynchronous Interface

 10-94

Table 10–33 is an overview of similarities and differences on the C6000
ASRAM interface.

Table 10–33. TMS320C6000 ASRAM Interface Summary

C620x/C670x C621x/C671x C64x

EMIFA EMIFB

Interface width 32-bit ASRAM;
x32, x16, x8 ROM

32-, 16-, 8-bit 64-, 32-, 16-, 8-bit 16-, 8-bit

Internal
sychronization

CLKOUT1 ECLKOUT ECLKOUT1 ECLKOUT1

Control signals Dedicated ASRAM
control signals

ASRAM control
signals are MUXed
with SDRAM and
SBSRAM control
signals.

ASRAM control
signals are MUXed
with SDRAM and
programmable syn-
chronous control
signals.

ASRAM control
signals are MUXed
with SDRAM and
programmable
sychronous control
signals.

Memory
Endianness

Packing format in
ROM is little-endian
only

Supports both little-
or big-endian

Supports both little-
or big-endian

Supports both little-
or big-endian

10.8.1 TMS320C620x/C670x ROM Modes

The EMIF supports 8- and 16-bit-wide ROM access modes which are selected
by the MTYPE field in the EMIF CE space control registers. In reading data
from these narrow memory spaces, the EMIF packs multiple reads into one
32-bit-wide value. This mode is primarily intended for word accesses to 8-bit
and 16-bit ROM devices. The following restrictions apply:

� Read operations always read 32 bits, regardless of the access size or the
memory width.

� The address is shifted up appropriately to provide the correct address to
the narrow memory. The shift amount is 1 for 16-bit ROM and 2 for 8-bit
ROM. Thus, the high address bits are shifted out, and accesses wrap
around if the CE space spans the entire EA bus. Table 10–34 shows the
address bits on the EA bus during an access to CE1 space for all possible
asynchronous memory widths.

� The EMIF always reads the lower addresses first and packs these into the
LSbytes. It packs subsequent accesses into the higher order bytes. Thus,
the expected packing format in ROM is always little-endian, regardless of
the value of the LENDIAN bit.

Asynchronous Interface

10-95External Memory Interface

Table 10–34. Byte Address to EA Mapping for Asynchronous Memory Widths

EA Line

21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

Width Logical Byte Address

�32 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

�16 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

�8 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10.8.1.1 8-Bit ROM Mode

In 8-bit ROM mode, the address is left-shifted by 2 to create a byte address
on EA to access byte-wide ROM. The EMIF always packs four consecutive
bytes aligned on a 4-byte boundary (byte address = 4N) into a word access,
regardless of the access size. For example, a byte read will result in the EMIF
performing 4 byte accesses on the external bus, but only one byte is returned
from the EMIF to the requestor. The bytes are fetched in the following address
order: 4N, 4N + 1, 4N + 2, 4N + 3. Bytes are packed into the 32-bit word from
MSByte to LSByte in the following little endian order: 4N + 3, 4N + 2, 4N + 1,
4N.

10.8.1.2 16-Bit ROM Mode

In 16-bit ROM mode, the address is left-shifted by 1 to create a half-word address
on EA to access 16-bit-wide ROM. The EMIF always packs two consecutive half-
words aligned on a 4-byte boundary (byte address = 4N) into a word access. The
halfwords are fetched in the following address order: 4N, 4N + 2. Halfwords are
packed into the 32-bit word from the most significant halfword to the least signifi-
cant halfword in the following little-endian order: 4N + 2, 4N.

Asynchronous Interface

 10-96

10.8.2 Programmable ASRAM Parameters

The EMIF allows a high degree of programmability for shaping asynchronous
accesses. The programmable parameters that allow this are:

� Setup: The time between the beginning of a memory cycle (CE low, ad-
dress valid) and the activation of the read or write strobe

� Strobe: The time between the activation and deactivation of the read
(ARE) or write strobe (AWE)

� Hold: The time between the deactivation of the read or write strobe and the
end of the cycle (which can be either an address change or the deactivation
of the CE signal)

For the C620x/C670x these parameters are programmable in terms of CPU
clock cycles via fields in the EMIF CE space control registers. For the
C621x/C671x/C64x, these parameters are programmed in terms of ECLK-
OUT (or ECLKOUT1) cycles. Separate set-up, strobe, and hold timing param-
eters are available for read and write accesses. Minimum values for ASRAM
are as follows:

� SETUP ≥ 1 (0 treated as 1)

� STROBE ≥ 1 (0 treated as 1)

� HOLD ≥ 0

� On the C620x/C670x first access in a set of consecutive accesses or a
single access, the setup period has a minimum count of 2.

Asynchronous Interface

10-97External Memory Interface

10.8.3 Asynchronous Reads

Figure 10–59 show an asynchronous read with the setup, strobe, and hold pa-
rameter programmed with the values 2,3, and 1, respectively. An asynchronous
read proceeds as follows:

� At the beginning of the setup period:

� CE becomes active.

� AOE becomes active.

� BE[3:0] becomes valid.

� EA becomes valid.

� For C620x/C670x, the first access has a setup period minimum value
of 2. After the first access, setup has a minimum value of 1.

� At the beginning of a strobe period, ARE becomes active

� At the beginning of a hold period:

� ARE becomes inactive (high).

� Data is sampled on the CLKOUT1 or the ECLKOUT rising edge con-
current with the beginning of the hold period (the end of the strobe pe-
riod) and just prior to the ARE low-to-high transition.

� At the end of the hold period: AOE becomes inactive as long as another
read access to the same CE space is not scheduled for the next cycle.

� For the C620x/C670x, CE stays active for seven minus the value of Read
Hold cycles after the last access (DMA transfer or CPU access). For ex-
ample, if read HOLD = 1, then CE stays active for six more cycles. This
does not affect performance and merely reflects the EMIF’s overhead.

� For the C621x/C671x/C64x, the CEn signal goes high just after the pro-
grammed hold period.

Asynchronous Interface

 10-98

Figure 10–59. Asynchronous Read Timing Example

Setup Strobe Hold CE Hold

Clock†

BE

Address

Read D

CE‡

CE§

BE[3:0]

EA[21:2]

ED[31:0]

AOE

ARE

AWE

ARDY

2 3 1 6

† Clock = CLKOUT1 for C620x/C670x
= ECLKOUT for C621x/C671x
= ECLKOUT1 for C64x

‡ CE waveform for C620x/C670x
§ CE waveform for C621x/C671x/C64x

Asynchronous Interface

10-99External Memory Interface

10.8.4 Asynchronous Writes

Figure 10–60 shows two back-to-back asynchronous write cycles with the
ARDY signal pulled high (always ready). The SETUP, STROBE and HOLD are
programmed to 2,3,and 1.

� At the beginning of the setup period:

� CE becomes active.

� BE[3:0] becomes valid.

� EA becomes valid.

� ED becomes valid.

� For C620x/C670x, the first access has a setup period minimum value
of 2. After the first access, setup has a minimum value of 1.

� At the beginning of a strobe period, AWE becomes active.

� At the beginning of a hold period:

� AWE becomes inactive.

� At the end of the hold period:

� ED goes into the high-impedance state only if another write access to
the same CE space is not scheduled for the next cycle.

� CE becomes inactive only if another write access to the same CE
space is not scheduled for the next cycle.

� For the C620x/C670x, if no write accesses are scheduled for the next
cycle and write hold is set to 1 or greater, then CE stays active for 3 cycles
after the value of the programmed hold period. If write hold is set to 0, then
CE stays active for four more cycles. This does not affect performance and
merely reflects the EMIF’s overhead.

� For the C621x/C671x/C64x, the CEn signal goes high immediately after
the programmed hold period.

Asynchronous Interface

 10-100

Figure 10–60. Asynchronous Write Timing Example

3
CE write holdHold

13
Strobe

2
SetupHoldStrobeSetup

132

D2

A2

BE2

D1

A1

BE1

ARDY

AWE

ARE

AOE

ED[31:0]

EA[21:2]

BE[3:0]

CE§

CE‡

Clock†

ÁÁ
ÁÁ

ÁÁ
ÁÁ

† Clock = CLKOUT1 for C620x/C670x
= ECLKOUT for C621x/C671x
= ECLKOUT1 for C64x

‡ CE waveform for C620x/C670x
§ CE waveform for C621x/C671x/C64x

10.8.5 Ready Input

In addition to programmable access shaping, you can insert extra cycles into
the strobe period by deactivating the ARDY input. The ready input is internally
synchronized to the CPU clock (C620x/C670x), ECLKOUT (C621x/C671x), or
ECLKOUT1 (C64x). This synchronization allows an asynchronous ARDY in-
put while avoiding metastablility.

Asynchronous Interface

10-101External Memory Interface

� TMS320C620x/C670x Operation: If ARDY is low on the third rising edge
of CLKOUT1 before the end of the programmed strobe period, then the
strobe period is extended by one CLKOUT1 cycle. For each subsequent
CLKOUT1 rising edge that ARDY is sampled low, the strobe period is ex-
tended by one CLKOUT1 cycle. Thus to effectively use CE to generate
ARDY inactive with external logic the minimum of SETUP and STROBE
should be four.

The read cycle in Figure 10–61 illustrates ready operation for the
C620x/C670x.

Figure 10–61. TMS320C620x/C670x Ready Operation

Address

BE

CE holdHoldextended
Strobe

Programmed strobeSetup
6125

Ready sampled

2

ARDY

AWE

ARE

AOE

ED[31:0]

EA[21:2]

BE[3:0]

CE

CLKOUT1 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

D

Data
latched

Asynchronous Interface

 10-102

� TMS320C621x/C671x/C64x Operation: ARDY is sampled for the first
time on the ECLKOUT cycle at the end of the programmed strobe period.
If sampled low, the strobe period is extended and ARDY is sampled again
on the next ECLKOUT cycle. Read data is latched by the C621x on the
cycle that ARDY is sampled high. The ARE signal goes high on the the
following cycle. Therefore, the strobe period is visibly extended by three
cycles in Figure 10–62, although data is latched by the C621x after the
second cycle.

Figure 10–62. TMS320C621x/C671x Ready Operation

latched
DataReady sampled

Hold
1

Strobe extended
3

Programmed strobe
4

Setup
2

Address

BE

ARDY

AWE

ARE

AOE

ED[31:0]

EA[21:2]

BE[3:0]

CE

ECLKOUT

D Á
Á

Á
Á

Peripheral Device Transfers (PDT) (TMS320C64x)

10-103External Memory Interface

10.9 Peripheral Device Transfers (PDT) (TMS320C64x)

A Peripheral Device Transfer (PDT) allows the user to directly transfer data
from an external peripheral (such as a FIFO) to another external memory
(such as SDRAM), and vice versa. Normally, this type of transfer would require
an EMIF read of a peripheral followed by an EMIF write to memory, or an EMIF
read of a memory followed by an EMIF write to a peripheral.

In a typical system, however, both the peripheral and memory are connected
to the same physical data pins, and thus an optimization can be made. In a
PDT write transfer, data is driven by the peripheral directly, and written to the
memory in the same bus transaction. In a PDT read transfer, data is driven by
the memory directly, and written to the peripheral in the same bus transaction.
Typically the memory device will be mapped to an addressable location via a
CEx signal. The peripheral device is normally not memory–mapped (it doesn’t
use a CEx signal). It is activated with the PDT signal and optionally a combina-
tion of other control signals (via external logic).

PDT transfers are classified in terms of the memory on the EMIF. A PDT write
is a transfer from a peripheral to memory (memory is physically written). A PDT
read is a transfer from memory to a peripheral (memory is physically read). For
a PDT read, the EMIF ignores the read data on the external bus. For a PDT
write, the EMIF data bus is three–stated during the transaction to allow the ex-
ternal peripheral or memory to drive the data bus.

In a PDT transaction, the EMIF:

1) Generates normal read control signals for a PDT read, or generates nor-
mal write control signals for a PDT write. For example, for a PDT read from
CE0 with an SDRAM, the EMIF asserts CE0 and generates the SDRAM
read control signals. The EMIF does not explicitly generate the control sig-
nals to the destination in a PDT read. For a PDT write to CE0 with an
SDRAM, the EMIF asserts CE0 and generates the SDRAM write control
signals. The EMIF does not explicitly generate the control signals to the
source in a PDT write.

2) Generates PDT control signal PDT, and the PDT address pin if SDRAM
is involved in the PDT transaction. PDT is asserted low during the data
phase of the transaction.

3) Drives EMIF data outputs (ED pins) to high–impedance.

Peripheral Device Transfers (PDT) (TMS320C64x)

 10-104

To perform a PDT transfer, the PDTS or PDTD bits must be set appropriately
in the EDMA options parameter. Refer to Chapter 6, EDMA Controller, for de-
tails. The PDT pin and a PDT address pin are used for PDT transfers. The PDT
address pin used in PDT is:

� EMIFA: EA19

� EMIFB: EA17

The PDT address pin is only used if SDRAM is either the source of a PDT read
transfer, or the destination of a PDT write transfer. In that case, the PDT ad-
dress pin goes active during the ACTV cycle (RAS cycle).

10.9.1 PDT Write

A PDT write transfer refers to a transfer from a peripheral to memory, in which
the memory is physically written. Figure 10–63 shows an example of a PDT
transfer from a FWFT FIFO to an SDRAM. Note in this example that no glue
is required. However, if both read and write PDT transactions are required on
the same bus, glue will be required to properly create the REN signal and WEN
signal for the FIFO.

To enable a PDT write transfer, the PDTD bit in the EDMA options field must
be set to 1.

Figure 10–63. PDT Write Transfer From FIFO to SDRAM

EMIF

CEx
ECLKIN

ECLKOUT1
SDRAS
SDCAS
SDWE

SDCKE
BE[3:0]

EA[16:3]
EA19

ED[31:0]
PDT

64M-bit
SDRAM

CS
CLK
RAS

CKE
DQM[3:0]
A[13:0]

D[31:0]

WE
CAS

FWFT
RCLK
REN
OEN
Q[31:0]

FIFO

Figure 10–63 assumes that a FWFT FIFO is used, which has a zero cycle read
latency. The PDT signal goes active ONLY during the data phase of the trans-
action. Refer to the SDRAM timing diagrams in section 10.5.11.2 for details.
The peripheral (FIFO in this example) must drive data immediately when the
PDT signal goes low.

Peripheral Device Transfers (PDT) (TMS320C64x)

10-105External Memory Interface

Both the PDT address pin and the PDT pin assertion/deassertion are timed
according to destination memory clock. If the destination memory is SDRAM,
ECLKOUT1 is used.

A PDT write transfer procedure is as follows:

1) If the destination address is to a CE space not configured as SDRAM, then
the PDT address pin is not used. If the destination address is to a CE space
set as SDRAM, then:

� If the access is to a closed page, then during the ACTV cycle, the PDT
address pin will be asserted low.

� If the access is to an open page previously accessed without a PDT
operation, then the page will be closed and reopened, with the PDT
address pin asserted low during the ACTV cycle.

� If the access is to an open page previously accessed with a PDT op-
eration, then the access will go directly to the data phase.

� The PDT address bit is used to give the system advance warning that
a PDT transaction is pending. This may be useful to activate bus
switches or other external logic which will control the actual PDT trans-
fer.

2) Normal write control signals are generated to the appropriate CE space.

3) The write transaction proceeds as normal except:

� EMIF data outputs remain High-Z. Therefore the memory will read
data from the peripheral device, instead of data from the EMIF.

� PDT asserted low on the cycle that data is to be latched by the destina-
tion device. This implies that the peripheral must drive valid data on
the same cycle that PDT is active.

The PDT signal can be tied directly to the REN and/or OE signal of the source
peripheral. Alternatively, PDT can be gated through external logic to accom-
plish more complicated transactions.

10.9.2 PDT Read

A PDT read transfer refers to a transfer from a memory to a peripheral, in which
the memory is physically read. Figure 10–64 shows an example of a PDT
transfer from an SDRAM to a FIFO. Note in this example that no glue is re-
quired. However, if both read and write PDT transactions are required on the
same bus, glue will be required to properly create the REN signal and WEN
signal for the FIFO.

To enable a PDT read transfer, the PDTS bit in the EDMA options field must
be set to 1.

Peripheral Device Transfers (PDT) (TMS320C64x)

 10-106

Figure 10–64. PDT Read Transfer From SDRAM to FIFO

EMIF 64M-bit
SDRAM

FIFO

CEx
ECLKIN

ECLKOUT1
SDRAS
SDCAS
SDWE

SDCKE
BE[3:0]

EA[16:3]
EA19

ED[31:0]
PDT

CS
CLK
RAS

WEN

WE
CKE
DQM[3:0]
A[13:0]

D[31:0]

WCLK

D[31:0]

CAS

Refer to section 10.5.10.3 for details on the SDRAM read timing diagram.

Both the PDT address pin and the PDT pin assertion/deassertion are timed
according to source memory clock. If the source memory is SDRAM, then
ECLKOUT1 is used.

A PDT read transfer procedure is as follows:

1) If the source address is to a CE space not configured as SDRAM, then the
PDT address pin is not used. If the source address is to a CE space set
as SDRAM, then:
� If the access is to a closed page, then during the ACTV cycle, the PDT

address pin will be asserted low.
� If the access is to an open page previously accessed without a PDT

operation, then the page will be closed and reopened, with the PDT
address pin asserted low during the ACTV cycle.

� If the access is to an open page previously accessed with a PDT op-
eration, then the access will go directly to the data phase.

� The PDT address bit is used to give the system advance warning that
a PDT transaction is pending. This may be useful to activate bus
switches or other external logic which will control the actual PDT trans-
fer.

2) Normal read control signals are generated to the appropriate CE space.

3) The read transaction proceeds as normal except:
� EMIF ignores data at the ED pins
� PDT asserted low on the cycle that data is to be returned by the source

device.

Resetting the EMIF

10-107External Memory Interface

10.10 Resetting the EMIF

A hardware reset using the RESET pin on the device forces all register values
to their reset state. During reset, all outputs are driven to their inactive levels,
with the exception of the clock outputs (SDCLK, SSCLK, CLKOUT1, and
CLKOUT2). During active RESET, the clock outputs behave as follows:

� SSCLK, SDCLK: driven high or low

� CLKOUT1: continues clocking unless the values on the PLL configura-
tion pins are changed.

� CLKOUT2: On the C620x/C670x, CLKOUT2 is driven high or low. On
the C621x/C671x, CLKOUT2 continues clocking.

� Other CLKOUTx: On the C64x, all CLKOUTx continues clocking.

� ECLKOUT: On the C621x/C671x, ECLKOUT will continue to clock as
long as ECLKIN is provided. ECLKIN should be provided during reset in
order to drive EMIF signals to the correct reset values.

� ECLKOUTn: On the C64x, the EK1HZ and EK2HZ bits in the EMIF Glob-
al Control Register determines the state of ECLKOUT1 and ECLKOUT2
during reset.

Hold Interface

 10-108

10.11 Hold Interface

The EMIF responds to hold requests for the external bus. The hold handshake
allows an external device and the EMIF to share the external bus. The hand-
shake mechanism uses two signals:

� HOLD: hold request input. HOLD is synchronized internally to the CPU
clock. This synchronization allows an asynchronous input while avoiding
metastability. The external device drives this pin low to request bus ac-
cess. HOLD is the highest priority request that the EMIF can receive dur-
ing active operation. When the hold is requested, the EMIF stops driving
the bus at the earliest possible moment, which may entail completion of
the current accesses, device deactivation, and SDRAM bank deactiva-
tion. The external device must continue to drive HOLD low for as long as
it wants to drive the bus. If any memory spaces are configured for SDRAM,
these memory spaces are deactivated and refreshed after HOLD is re-
leased by the external master.

� HOLDA: Hold acknowledge output. The EMIF asserts this signal active
after it has placed its signal outputs in the high-impedance state. The
external device can then drive the bus as required. The EMIF places all
outputs in the high-impedance state with the exception of BUSREQ,
HOLDA, and the clock outputs (CLKOUT1, CLKOUT2, ECLKOUT,
SDCLK, and/or SSCLK, depending on the device). For the C64x, the
EKxHZ bits in the GBLCTL register determine the state of the ECLKOUTx
signals while HOLDA is asserted. If any memory spaces are configured
for SDRAM, these memory spaces are deactivated and refreshed before
HOLDA is asserted to the external master.

� BUSREQ. Bus request output (C621x/C671x/C64x only). The EMIF as-
serts this signal active when any request is either pending to the EMIF or
is in progress. The BUSREQ signal is driven without regard to the state
of the HOLD/HOLDA signals or the type of access pending. This signal
can be used by an external master to release control of the bus if desired
and may be ignored in some systems. For C64x, the BRMODE bit in the
GBLCTL register indicates the bus request mode (section 10.2.1).

Note:

There is no mechanism to ensure that the external device does not attempt
to drive the bus indefinitely. You should be aware of system-level issues,
such as refresh, that you may need to perform.

Hold Interface

10-109External Memory Interface

During host requests, the refresh counters within the EMIF continue to log re-
fresh requests; however, no refresh cycles can be performed until bus control
is again granted to the EMIF when the HOLD input returns to the inactive level.
You can prevent an external hold by setting the NOHOLD bit in the EMIF global
control register.

10.11.1 Reset Considerations With the Hold Interface

For the C62x/C67x, if a Hold request is pending (HOLD low) upon exiting reset,
the EMIF outputs will be driven for a brief period of time
(< 5 CLKOUT2/ECLKOUT cycles) in the default state. That is, active-low out-
put strobes will be high and address outputs are driven low. If other memory
controller devices are connected on the bus, there is a potential for data con-
tention if the outputs are driven at opposite states during this short amount of
time. If multiple C62x/C67x devices are connected on the same bus and come
out of reset simultaneously, then the brief period of time that the output buffers
are all driven will not result in device damage, since the outputs are all driven
to the same logic level.

For the C64x, if a hold request is pending upon exiting reset, none of the EMIF
output signals are driven active. All output signals stay in a high-
impedance state. The HOLDA signal is asserted immediately.

Memory Request Priority

 10-110

10.12 Memory Request Priority

10.12.1 TMS320C620x/C670x Memory Request Priority

The C620x/C670x EMIF has multiple requestors competing for the interface.
Table 10–35 summarizes the priority scheme that the EMIF uses in the case of
multiple pending requests. The priority scheme may change if the DMA channel
that is issuing a request through the DMA controller is of high priority. This
mode is set in the DMA controller by setting the PRI bit in the DMA channel
primary control register.

Once a requester (in this instance, the refresh controller is considered a
requester) is prioritized and chosen, no new requests are recognized until ei-
ther the chosen requester stops making requests or a subsequent higher priority
request occurs. In this case, all issued requests of the previous requester are
allowed to finish while the new requester starts making its requests.

If the arbitration bit of the EMIF global control register is set (RBTR8 = 1) and if
a higher priority requester needs the EMIF, the higher priority requester does not
gain control until the current controller relinquishes control or until eight word re-
quests have finished. If the arbitration bit is not set (RBTR8 = 0), a requester main-
tains control of the EMIF as long as it needs the EMIF or until a higher priority
requester requests the EMIF. When the RBTR8 is not set, the current controller
is interrupted by a higher priority requester regardless of the number of requests
that have occurred.

Table 10–35. TMS320C620x/C670x EMIF Prioritization of Requests

Priority Requestor PRI = 1 Requestor PRI = 0

Highest External hold External hold

Mode register set Mode register set

Urgent refresh Urgent refresh

DMA controller DMC

DMC† PMC‡

PMC‡ DMA controller

Lowest Trickle refresh Trickle refresh

† DMC = Data Memory Controller
‡ PMC = Program Memory Controller

Memory Request Priority

10-111External Memory Interface

10.12.2 TMS320C621x/C671x/C64x Memory Request Priority

The C621x/C671x/C64x has fewer interface requestors because the data
memory controller (DMC), program memory controller (PMC), and EDMA
transactions are processed by the EDMA. Other requestors include the hold
interface and internal EMIF operations, including mode register set (MRS) and
refresh (REFR).

Table 10–36. TMS320C621x/C671x/C64x EMIF Prioritization of Requests

Priority Requestor

Highest External hold

Mode register set

refresh

Lowest EDMA†

† Refer to Chapter 6 EDMA Controller, for details on prioritization within the EDMA.

Boundary Conditions When Writing to EMIF Registers

 10-112

10.13 Boundary Conditions When Writing to EMIF Registers

The EMIF has internal registers that change memory type, asynchronous
memory timing, SDRAM refresh, SDRAM initialization (MRS COMMAND),
clock speed, arbitration type, HOLD/NOHOLD condition, etc.

The following actions can cause improper data reads or writes:

� Writing to the CE0, CE1, CE2, or CE3 space control registers
while an external access to that CE space is active

� Changing the memory type (MTYPE) in the CE space control register
while any external operation is in progress (SDRAM type while
SDRAM initialization is active)

� Changing the state of NOHOLD in the configuration while HOLD is active
at the pin

� Changing the RBTR8 in the EMIF global control register while multiple
EMIF requests are pending (C620x/C670x only)

� Initiating an SDRAM INIT (MRS) while the HOLD input or the HOLDA out-
put is active

� The EMIF global control register can be read before the SDRAM INIT
bit is set to determine if the HOLD function is active, and it must
be read immediately after the SDRAM INIT bit is written to make sure
that the two events did not occur simultaneously.

� The EMIF global control register has status on the HOLD/HOLDA,
DMC/PMC/DMA active access and false access detection.

Clock Output Enabling

10-113External Memory Interface

10.14 Clock Output Enabling

To reduce electromagnetic interference (EMI) radiation, the C62x/C67x EMIF
allows the disabling (holding high) of CLKOUT2, CLKOUT1, SSCLK, and
SDCLK. This disabling is performed by setting the CLK2EN, CLK1EN,
SSCEN, and SDCEN bits to 0 in the EMIF global control register. ECLKOUT
on the C621x/C671x cannot be disabled using software.

For the C64x, the operation of the EMIF and device clocks is highly flexible.
The CLKOUTx and ECLKOUTx can be disabled by setting the appropriate bits
(CLK4EN, CLK6EN, EK1EN, EK2EN) in the EMIF global control register
(GBLCTL). The ECLKOUT2 can be configured to run at 1x, 1/2x, or 1/4x the
ECLKIN rate for the generic synchronous interface. In addition, the EK1HZ
and EK2HZ bits in the GBLCTL configure the output EMIF clock behavior dur-
ing hold. Table 10–36 summarizes the function of the EKxEN and EKxHZ bits.
See also section 10.2.1.

On the C64x, the CLKOUT4 and CLKOUT6 pins are MUXed with the general–
purpose input/output (GPIO) pins GP1 and GP2, respectively. When these
pins are configured as GPIO pins by setting the GPIO Enable Register
(GPEN), the corresponding CLKxEN bits in the GBLCTL are ignored.

Table 10–37. EMIF Output Clock (ECLKOUTx) Operation

EKxEN EKxHZ ECLKOUTx Behavior

0 0 ECLKOUTx remains low

0 1 ECLKOUTx low, except during Hold. In high–impedance during Hold.

1 0 ECLKOUTx clocking

1 1 ECLKOUTx clocking, except during Hold. In high–impedance during Hold.

 Clock Output Enabling

Emulation Halt Operation

 10-114

10.15 Emulation Halt Operation

The EMIF continues operating during emulation halts. Emulator accesses
through the EMIF can work differently than the way the actual device works dur-
ing EMIF accesses. This discrepancy can cause start-up penalties after a halt
operation.

10.16 Power Down

In power-down 2 mode, refresh is enabled. SSCLK, CLKOUT1, and CLKOUT2
are held low during power-down 2 and power-down 3 modes. In power-down
3 mode, the EMIF acts as if it were in reset. See Chapter 15, Power-Down
Logic, for further details on power-down modes.

For the C621x/C671x/C64x, refreshes are issued to SDRAM if ECLKIN is pro-
vided.

11-1

Boot Modes and Configuration

This chapter describes the boot modes and device configuration used by the
TMS320C6000� platform. It also describes the available boot processes and
explains how the device is reset.

Topic Page

11.1 Overview 11-2.

11.2 Device Reset 11-2.

11.3 Memory Map 11-3.

11.4 Boot Configuration 11-10.

11.5 Boot Processes 11-21.

Chapter 11

Overview

 11-2

11.1 Overview

The TMS320C6000 platform uses a variety of boot configurations to determine
what actions the devices are to perform after reset for proper device initialization.
Each C6000 device has some or all of the following boot configuration options:

� Selection of the memory map, which determines whether internal or exter-
nal memory is mapped at address 0

� Selection of the type of external memory mapped at address 0 if external
memory is mapped there

� Selection of the boot process used to initialize the memory at address 0
before the CPU is released from reset.

� Device configurations

11.2 Device Reset

The external device reset uses an active (low) signal, RESET. While RESET is
low, the device is held in reset and is initialized to the prescribed reset state.
Most 3-state outputs are placed in the high-impedance state, and most other
outputs are returned to their default states. The rising edge of RESET starts the
processor running with the prescribed boot configuration. The RESET pulse
may have to be increased if the phase-locked loop (PLL) requires synchroniza-
tion following power up or when PLL configuration pins change during reset. For
reset timing refer to the specific device datasheets.

Memory Map

11-3Boot Modes and Configuration

11.3 Memory Map

11.3.1 TMS320C6201/C6204/C6205/C6701 Memory Map

The C6201/C6204/C6205/C6701 has two memory maps, MAP 0 and MAP 1,
which are summarized in Table 11–1. The maps differ in that MAP 0 has external
memory mapped at address 0, and MAP 1 has internal memory mapped at ad-
dress 0. For descriptions, refer to Chapter 2 Internal Program and Data Memory.

Table 11–1. TMS320C6201/C6204/C6205/C6701 Memory Map Summary

Size
Description of Memory Block in ...

Address Range (Hex)
Size

 (Bytes) MAP 0 MAP 1

0000 0000 – 0000 FFFF 64K External memory interface CE 0 Internal program RAM

0001 0000 – 003F FFFF 4M–64K External memory interface CE 0 Reserved

0040 0000 – 00FF FFFF 12M External memory interface CE 0 External memory interface CE 0

0100 0000 – 013F FFFF 4M External memory interface CE 1 External memory interface CE 0

0140 0000 – 0140 FFFF 64K Internal program RAM External memory interface CE 1

0141 0000 – 017F FFFF 4M–64K Reserved External memory interface CE 1

0180 0000 – 0183 FFFF 256K Internal peripheral bus EMIF registers

0184 0000 – 0187 FFFF 256K Internal peripheral bus DMA controller registers

0188 0000 – 018B FFFF 256K Internal peripheral bus HPI (C6201/C6701) or XBUS (C6204) registers�

018C 0000 – 018F FFFF 256K Internal peripheral bus McBSP 0 registers

0190 0000 – 0193 FFFF 256K Internal peripheral bus McBSP 1 registers

0194 0000 – 0197 FFFF 256K Internal peripheral bus Timer 0 registers

0198 0000 – 019B FFFF 256K Internal peripheral bus Timer 1 registers

019C 0000 – 019F FFFF 256K Internal peripheral bus interrupt selector registers

01A0 0000 – 01A3 FFFF 256K Reserved

01A4 0000 – 01A8 FFFF 320K Internal peripheral bus PCI registers (C6205 only)�

01A9 0000 – 01FF FFFF 6M–576K Internal peripheral bus (reserved)

0200 0000 – 02FF FFFF 16M External memory interface CE 2

0300 0000 – 03FF FFFF 16M External memory interface CE 3

0400 0000 – 3FFF FFFF 1G–64M Reserved

4000 0000 – 4FFF FFFF 256M Expansion bus XCE0 (C6204 only)�

5000 0000 – 5FFF FFFF 256M Expansion bus XCE1 (C6204 only)�

6000 0000 – 6FFF FFFF 256M Expansion bus XCE2 (C6204 only)�

7000 0000 – 7FFF FFFF 256M Expansion bus XCE3 (C6204 only)�

8000 0000 – 8000 FFFF 64K Internal data RAM

8001 0000 – FFFF FFFF 2G–64K Reserved

Note: ��Reserved for other devices.

Memory Map

 11-4

11.3.2 TMS320C6202(B) Memory Map

The C6202(B) has two memory maps that are supersets of the C6201/
C6701 memory maps. All valid C6201/C6701 address ranges are valid on the
C6202(B). The memory maps for the C6202(B) are shown in Table 11–2.

Table 11–2. TMS320C6202(B) Memory Map Summary

Size
Description of Memory Block In …

Address Range (Hex)
Size

(Bytes) MAP 0 MAP 1

0000 0000 – 0003 FFFF 256K External memory interface CE0 Internal program RAM

0004 0000 – 003F FFFF 4M–256K External memory interface CE0 Reserved

0040 0000 – 00FF FFFF 12M External memory interface CE0 External memory interface CE0

0100 0000 – 013F FFFF 4M External memory interface CE1 External memory interface CE0

0140 0000 – 0143 FFFF 256K Internal program RAM External memory interface CE1

0144 0000 – 017F FFFF 4M–256K Reserved External memory interface CE1

0180 0000 – 0183 FFFF 256K Internal peripheral bus EMIF registers

0184 0000 – 0187 FFFF 256K Internal peripheral bus DMA controller registers

0188 0000 – 018B FFFF 256K Internal peripheral bus expansion bus registers

018C 0000 – 018F FFFF 256K Internal peripheral bus McBSP 0 registers

0190 0000 – 0193 FFFF 256K Internal peripheral bus McBSP 1 registers

0194 0000 – 0197 FFFF 256K Internal peripheral bus timer 0 registers

0198 0000 – 019B FFFF 256K Internal peripheral bus timer 1 registers

019C 0000 – 019C 01FF 512 Internal peripheral bus interrupt selector registers

019C 0200 – 019C FFFF 256K–512 Internal peripheral bus power-down registers

01A0 0000 – 01A3 FFFF 256K Reserved

01A4 0000 – 01A7 FFFF 256K Internal peripheral bus McBSP2 registers

01A8 0000 – 01FF FFFF 5.5M Reserved

0200 0000 – 02FF FFFF 16M External memory interface CE2

0300 0000 – 03FF FFFF 16M External memory interface CE3

0400 0000 – 3FFF FFFF 1G–64M Reserved

4000 0000 – 4FFF FFFF 256M Expansion bus XCE0

5000 0000 – 5FFF FFFF 256M Expansion bus XCE1

6000 0000 – 6FFF FFFF 256M Expansion bus XCE2

7000 0000 – 7FFF FFFF 256M Expansion bus XCE3

8000 0000 – 8001 FFFF 128K Internal data RAM

8002 0000 – FFFF FFFF 2G–128K Reserved

Memory Map

11-5Boot Modes and Configuration

11.3.3 TMS320C6203(B) Memory Map

The C6203(B) Memory Map is very similar to the memory map of the C6202.
The differences exist because of the increased amount of internal memory
available on the C6203(B). The memory maps for the C6203(B) are shown in
Table 11–3.

Table 11–3. TMS320C6203(B) Memory Map Summary

Size
Description of Two Memory Blocks

Address Range (Hex)
Size

(Bytes) Map 0 Map 1

0000 0000–0005 FFFF 384K External memory interface CE0 Internal program RAM

0006 0000–003F FFFF 4M–384K External memory interface CE0 Reserved

0040 0000–00FF FFFF 12M External memory interface CE0 External memory interface CE0

0100 0000–013F FFFF 4M External memory interface CE1 External memory interface CE0

0140 0000–0145 FFFF 384K Internal program RAM External memory interface CE1

0146 0000–017F FFFF 4M–384K Reserved External memory interface CE1

0180 0000–0183 FFFF 256K Internal peripheral bus EMIF registers

0184 0000–0187 FFFF 256K Internal peripheral bus DMA controller registers

0188 0000–018B FFFF 256K Internal peripheral bus expansion bus registers

018C 0000–018F FFFF 256K Internal peripheral bus McBSP 0 registers

0190 0000–0193 FFFF 256K Internal peripheral bus McBSP 1 registers

0194 0000–0197 FFFF 256K Internal peripheral bus timer 0 registers

0198 0000–019B FFFF 256K Internal peripheral bus timer 1 registers

019C 0000–019C 01FF 512 Internal peripheral bus interrupt selector registers

019C 0200–019C FFFF 256K–512 Internal peripheral bus power-down registers

01A0 0000–01A3 FFFF 256K Reserved

01A4 0000–01A7 FFFF 256K Internal peripheral bus McBSP2 registers

01A8 0000–01FF FFFF 5.5M Reserved

0200 0000–02FF FFFF 16M External memory interface CE2

0300 0000–03FF FFFF 16M External memory interface CE3

0400 0000–3FFF FFFF 1G–64M Reserved

4000 0000–4FFF FFFF 256M Expansion bus XCE0

5000 0000–5FFF FFFF 256M Expansion bus XCE1

6000 0000–6FFF FFFF 256M Expansion bus XCE2

7000 0000–7FFF FFFF 256M Expansion bus XCE3

8000 0000–8007 FFFF 512K Internal data RAM

8008 0000–FFFF FFFF 2G–128K Reserved

Memory Map

 11-6

11.3.4 TMS320C621x/C671x Memory Map

The C621x/C671x has only one memory map, which is shown in Table 11–4. In-
ternal memory is always located at address 0, but can be used as both program
and data memory. The configuration register for those peripherals common to the
C620x/C670x and C621x/C671x are located at the same addresses in both proc-
essors. The external memory address ranges begin at location 8000 0000h in the
C621x/C671x, which is the location of internal data memory in the C620x.

Table 11–4. TMS320C621x/C671x Memory Map Summary

Address Range (Hex)
Size

(Bytes) Description of Memory Block

0000 0000 – 0000 FFFF 64K Internal RAM (L2)

0001 0000 – 017F FFFF 24M–64K Reserved

0180 0000 – 0183 FFFF 256K Internal configuration bus EMIF registers

0184 0000 – 0187 FFFF 256K Internal configuration bus L2 control registers

0188 0000 – 018B FFFF 256K Internal configuration bus HPI register

018C 0000 – 018F FFFF 256K Internal configuration bus McBSP 0 registers

0190 0000 – 0193 FFFF 256K Internal configuration bus McBSP 1 registers

0194 0000 – 0197 FFFF 256K Internal configuration bus timer 0 registers

0198 0000 – 019B FFFF 256K Internal configuration bus timer 1 registers

019C 0000 – 019F FFFF 256K Internal configuration bus interrupt selector registers

01A0 0000 – 01A3 FFFF 256K Internal configuration bus EDMA RAM and registers

01A4 0000 – 01FF FFFF 6M–256K Reserved

0200 0000 – 0200 0033 52 QDMA registers

0200 0034 – 2FFF FFFF 736M–52 Reserved

3000 0000 – 3FFF FFFF 256M McBSP 0/1 data

4000 0000 – 7FFF FFFF 1G Reserved

8000 0000 – 8FFF FFFF 256M External memory interface CE0

9000 0000 – 9FFF FFFF 256M External memory interface CE1

A000 0000 – AFFF FFFF 256M External memory interface CE2

B000 0000 – BFFF FFFF 256M External memory interface CE3

C000 0000 – FFFF FFFF 1G Reserved

Memory Map

11-7Boot Modes and Configuration

11.3.5 TMSC64x Memory Map

Similar to the C621x, the C64x has only one memory map, which is shown in
Table 11–5. Internal memory is always located at address 0, but can be used
as both program and data memory. The configuration register for those periph-
erals common to the C621x and C64x are located at the same addresses in both
processors. The external memory address ranges begin at 0x600000000 for
EMFB, and begin at 0x80000000 for EMIFA.

Table 11–5. TMS320C64x Memory Map Summary

Address Range (Hex)
Size

(Bytes) Description of Memory Block

0x00000000 – 0x000FFFFF 1M Internal RAM (L2)

0x00100000 – 0x017FFFFF 23M Reserved

0x01800000 – 0x0183FFFF 256K Internal configuration bus EMIFA registers

0x01840000 – 0x0187FFFF 256K Internal configuration bus L2 control registers

0x01880000 – 0x018BFFFF 256K Internal configuration bus HPI registers

0x018C0000 – 0x018FFFFF 256K Internal configuration bus McBSP0 registers

0x01900000 – 0x0193FFFF 256K Internal configuration bus McBSP1 registers

0x01940000 – 0x0197FFFF 256K Internal configuration bus timer 0 registers

0x01980000 – 0x019BFFFF 256K Internal configuration bus timer 1 registers

0x019C0000 – 0x019FFFFF 256K Internal configuration bus interrupt selector registers

0x01A00000 – 0x01A3FFFF 256K Internal configuration bus EDMA RAM and registers

0x01A40000 – 0x01A7FFFF 256K Internal configuration bus McBSP2 registers

0x01A80000 – 0x01ABFFFF 256K Internal configuration bus EMIFB registers

0x01AC0000 – 0x01AFFFFF 256K Internal configuration bus timer 2 registers

0x01B00000 – 0x01B3FFFF 256K Internal configuration bus GPIO registers

0x01B40000 – 0x01B7FFFF 256K Internal configuration bus UTOPIA registers��(C6415 only)

0x01B80000 – 0x01BFFFFF 512K Reserved

0x01C00000 – 0x01C3FFFF 256K Internal configuration bus PCI registers� (C6415 only)

0x01C40000 – 0x01FFFFFF 4M–256K Reserved

0x02000000 – 0x02000033 52 QDMA registers

† Address range is reserved for C6414.

Memory Map

 11-8

Table 11–5. TMS320C64x Memory Map Summary (Continued)

Address Range (Hex) Description of Memory Block
Size

(Bytes)

0x02000034 – 0x2FFFFFFF 736M–52 Reserved

0x30000000 – 0x33FFFFFF 64M McBSP0 data

0x34000000 – 0x37FFFFFF 64M McBSP1 data

0x38000000 – 0x3BFFFFFF 64M McBSP2 data

0x3C000000 – 0x3FFFFFFF 64M UTOPIA queues��(C6415 only)

0x40000000 – 0x5FFFFFFF 512M Reserved

0x60000000 – 0x63FFFFFF 64M EMIFB CE0

0x64000000 – 0x67FFFFFF 64M EMIFB CE1

0x68000000 – 0x6BFFFFFF 64M EMIFB CE2

0x6C000000 – 0x6FFFFFFF 64M EMIFB CE3

0x70000000 – 0x7FFFFFFF 256M Reserved

0x80000000 – 0x8FFFFFFF 256M EMIFA CE0

0x90000000 – 0x9FFFFFFF 256M EMIFA CE1

0xA0000000 – 0xAFFFFFFF 256M EMIFA CE2

0xB0000000 – 0xBFFFFFFF 256M EMIFA CE3

0xC0000000 – 0xFFFFFFFF 1G Reserved

† Address range is reserved for C6414.

Memory Map

11-9Boot Modes and Configuration

11.3.6 Memory at Reset Address

For C6000 processors with multiple memory maps, the boot configuration
determines the type of memory located at the reset address for processor
operation, address 0 as shown in Table 11–6. When the boot configuration se-
lects MAP 1, this memory is internal. When the device mode is in MAP 0, the
memory is external. When external memory is selected, the boot configuration
also determines the type of memory at the reset address. These options effec-
tively provide alternative reset values to the appropriate EMIF control registers.

The C621x/C671x/C64x always has internal RAM at address 0, regardless of
the boot configuration.

Boot Configuration

 11-10

11.4 Boot Configuration
Several device settings are configured at reset to determine how the device
operates. These settings include the boot configuration, the input clock mode,
endian mode, and other device-specific configurations. For the C620x/C670x,
the boot configuration is determined by the BOOTMODE[4:0] values. Table 11–6
lists all the values for BOOTMODE[4:0], as well as the associated memory maps
and boot processes for C620x/C670x. For example the value 00000b on BOOT-
MODE[4:0] selects memory map 0; indicates that the memory type at address
0 is synchronous DRAM organized as four 8-bit wide banks, and that no boot pro-
cess is selected. SDWID is a bit in the EMIF SDRAM control register.

Table 11–6. TMS320C620x/C670x Boot Configuration Summary

BOOTMODE [4:0]
Memory

Map Memory at Address 0 Boot Process

00000 MAP 0 SDRAM: four 8-bit devices (SDWID = 0) None

00001 MAP 0 SDRAM: two 16-bit devices (SDWID = 1) None

00010 MAP 0 32-bit asynchronous with default timing None

00011 MAP 0 1/2x rate SBSRAM None

00100 MAP 0 1x rate SBSRAM None

00101 MAP 1 Internal None

00110 MAP 0 External: default values Host boot (HPI/XBUS/PCI)

00111 MAP 1 Internal Host boot (HPI/XBUS/PCI)

01000 MAP 0 SDRAM: four 8-bit devices (SDWID = 0) 8-bit ROM with default timings

01001 MAP 0 SDRAM: two16-bit devices (SDWID = 1) 8-bit ROM with default timings

01010 MAP 0 32-bit asynchronous with default timing 8-bit ROM with default timings

01011 MAP 0 1/2x rate SBSRAM 8-bit ROM with default timings

01100 MAP 0 1x rate SBSRAM 8-bit ROM with default timings

01101 MAP 1 Internal 8-bit ROM with default timings

01110 Reserved

01111 Reserved

10000 MAP 0 SDRAM: four 8-bit devices(SDWID=0) 16-bit ROM with default timings

10001 MAP 0 SDRAM: two 16-bit devices (SDWID = 1) 16-bit ROM with default timings

Boot Configuration

11-11Boot Modes and Configuration

Table 11–6. TMS320C620x/C670x Boot Configuration Summary

BOOTMODE [4:0] Boot ProcessMemory at Address 0
Memory

Map

10010 MAP 0 32-bit asynchronous with default timing 16-bit ROM with default timings

10011 MAP 0 1/2x rate SBSRAM 16-bit ROM with default timings

10100 MAP 0 1x rate SBSRAM 16-bit ROM with default timings

10101 MAP 1 Internal 16-bit ROM with default timings

10110 Reserved

10111 Reserved

11000 MAP 0 SDRAM: four 8-bit devices (SDWID = 0) 32-bit ROM with default timings

11001 MAP 0 SDRAM: two 16-bit devices (SDWID = 1) 32-bit ROM with default timings

11010 MAP 0 32-bit asynchronous with default timing 32-bit ROM with default timings

11011 MAP 0 1/2x rate SBSRAM 32-bit ROM with default timings

11100 MAP 0 1x rate SBSRAM 32-bit ROM with default timings

11101 MAP 1 Internal 32-bit ROM with default timings

11110 Reserved

11111 Reserved

See the following sections for details on the boot configuration of each of the
C6000 devices.

11.4.1 TMS320C6201/C6701 Boot and Device Configuration

The C6201/C6701 latches the following configurations during device reset:

� Boot Configuration: The dedicated BOOTMODE[4:0] pins determine
the device boot configurations as shown in Table 11–6.

� Input Clock Mode: The on-chip PLL frequency multiplier is configured
through static CLKMODE input pins. Refer to the datasheet for details.

� Endian Mode: The LENDIAN input pin is used to configure the device to op-
erate in either big endian (LENDIAN = 0) or little endian (LENDIAN = 1) mode.

Boot Configuration

 11-12

11.4.2 TMS320C6202(B)/C6203(B)/C6204 Boot and Device Configuration

The input clock mode of the C6202(B)/C6202/C6204 is configured through the
CLKMODE input pins at reset. Refer to the datasheet for details. The pull-up/
pull-down resistors on the XBUS are used to determine the boot configuration
(pins XD[4:0]) and other device configurations (pins XD[31:5]) at reset. The
XD[4:0] lines directly map to BOOTMODE[4:0] described in Table 11–6. Re-
served configuration fields should be pulled-down. Detailed descriptions of
boot and device configurations are shown in Figure 11–1 and Table 11–7 .

Figure 11–1.TMSC6202(B)/C6203(B)/C6204 Boot and Device Configuration via Pull-Up/
Pull-Down Resistors on XD[31:0]

31 30 28 27 26 24 23 22 20 19 18 16

rsvd MTYPE XCE3 rsvd MTYPE XCE2 rsvd MTYPE XCE1 rsvd MTYPE XCE0

15 14 13 12 11 10 9 8 7 5 4 0

Reserved BLPOL RWPOL HMOD XARB FMOD LEND Reserved� BOOTMODE

† All reserved fields should be pulled down.

Table 11–7. TMSC6202(B)/C6203(B)/C6204 Boot and Device Configuration
Description

XD Bit Field Description

30:28
26:24
22:20
18:16

MTYPE3
MTYPE2
MTYPE1
MTYPE0

Memory type:

MTYPE=010b: 32-bit wide asynchronous interface
MTYPE=101b: 32-bit wide FIFO interface
MTYPE=other: reserved

13 BLPOL Determines polarity of the XBLAST signal when the DSP is a slave on the XBUS.

BLPOL=0: XBLAST is active low.
BLPOL=1: XBLAST is active high.

When the DSP initiates a transfer on the expansion bus XBLAST is always active low.

12 RWPOL Determines polarity of XBUS read/write signal.

RWPOL=0: XR/W. Write is active-high.
RWPOL=1, XR/W. Read is active-high.

11 HMOD Host mode (status in XB HPIC):

HMOD = 0: external host interface operates in asynchronous slave mode.
HMOD = 1: external host interface is in synchronous master/slave mode.

Boot Configuration

11-13Boot Modes and Configuration

Table 11–7. TMSC6202(B)/C6203(B)/C6204 Boot and Device Configuration
Description (Continued)

XD Bit DescriptionField

10 XARB XBUS arbiter (status in XBGC):
XARB = 0: Internal XBUS arbiter is disabled
XARB = 1: Internal XBUS arbiter is enabled.

9 FMOD FIFO mode (status in XBGC):

FMOD = 0: Glue is used for FIFO read interface in all XCE spaces operating in
FIFO mode. XOE can be used in all XCE spaces

FMOD = 1: XOE is reserved for use only in XCE3 for FIFO read mode. XOE is
disabled in all other XCE spaces.

8 LEND Little endian mode:

LEND = 0: system operates in big endian mode
LEND = 1: system operates in little endian mode

4:0 BOOT-
MODE

Dictates the boot-mode of the device. See Table 11–6.

11.4.3 TMS320C6205 Boot and Device Configuration

The C6205 CLKMODE0 input pin is used in conjunction with the EMIF data
bus pins to determine the input clock mode at reset. For details refer to the da-
tasheet. The pull-up/pull-down resistors on the EMIF data bus are also used
to determine the boot mode selection (pins ED[4:0]), and other device configu-
rations (pins ED[31:5]), at reset. The ED[4:0] lines directly map to BOOT-
MODE[4:0] described in Table 11–6. Reserved configuration fields should be
pulled down. Detailed descriptions of boot and device configuration are shown
in Figure 11–2 and Table 11–8. Refer to Chapter 9, PCI, for details on PCI
boot.

Figure 11–2.TMS320C6205 Boot and Device Configuration via Pull-Up/Pull-Down
Resistors on ED[31:0]

31 30 28 27 26 24 23 22 16

PLL_CONF2 Reserved PLL_CONF1 Reserved PLL_CONF0 Reserved�

15 14 9 8 7 5 4 0

EEAI Reserved LEND EESZ BOOTMODE

� All reserved fields should be pulled down.

Boot Configuration

 11-14

Table 11–8. TMSC6205 Boot and Device Configuration Description

ED Bit Field Function

31 PLL_CONF [2] On-chip PLL is enabled or disabled by CLKMODE0 pin

27 [1] Case 1 When CLKMODE0 = 0
On-chip PLL bypass

23 [0] Case 2 When CLKMODE0 = 1
PLL_Conf = 000b, CPU clock = CLKIN x 1 (PLL Bypass)
PLL_Conf = 001b, CPU clock = CLKIN x 4PLL_Conf = 001b, CPU clock = CLKIN x 4
PLL_Conf = 010b, CPU clock = CLKIN x 8
PLL_Conf = 011b, CPU clock = CLKIN x 10
PLL_Conf = 100b, CPU clock = CLKIN x 6_ ,
PLL_Conf = 101b, CPU clock = CLKIN x 9
PLL_Conf = 110b, CPU clock = CLKIN x 7
PLL_Conf = 111b, CPU clock = CLKIN x 11

Note that CLKMODE0 acts as a PLL enable pin while the ED pins
(pins 31, 27, and 23) choose the various PLL multiply options.

15 EEAI EEPROM autoinitialization

EEAI = 0: PCI uses default values
EEAI = 1: Read configure value from EEPROM

8 LEND LEND = 1: Little Endian
LEND = 0: Big Endian

7:5 EESZ EEPROM size selection (EEPROM is always 16-bit):

EESZ = 000b No EEPROM
EESZ = 001b 1K
EESZ = 010b 2K
EESZ = 011b 4K
EESZ = 100b 16K
EESZ = others Reserved

4:0 BOOTMODE Dictates the boot-mode of the device. See Table 11–6.

Boot Configuration

11-15Boot Modes and Configuration

11.4.4 TMSC621x/C671x Boot and Device Configuration

For the C621x/C671x, the pull-up/pull-down resistors on the host-port, along
with the CLKMODE0 input pin, are used to determine the boot and device con-
figurations at reset. The C6712 has dedicated configuration pins LENDIAN,
BOOTMODE[1:0], and CLKMODE0.

� Boot Configuration: Pins HD[4:3] of the host-port are used to determine
the boot configuration at reset. Only two of the five BOOTMODE bits are
required because the C621x/C671x only has one memory map, which
places internal memory at address 0. The HD[4:3] pins (or BOOT-
MODE[1:0] pins on C6712) map to the BOOTMODE[4:3] pins of the
C620x/C670x. The complete boot configuration shown in Table 11–6 is sig-
nificantly reduced for the C621x/C671x as shown in Table 11–9.

� Input Clock Mode: The on-chip PLL frequency multiplier is configured
through the CLKMODE0 input pin. Refer to the datasheet for details on in-
put clock mode.

� Endian Mode : The HD[8] pin of the host port (or LENDIAN pin on C6712)
is latched at reset to configure the device to operate in either big endian
(HD[8] = 0) or little endian (HD[8] =1) mode.

Table 11–9. TMS320C621x/C671x Boot Configuration Summary

HD[4:3] (C6211/C6711)
BOOTMODE [1:0] (C6712)

C620x/C670x equivalent
BOOTMODE[4:0] Boot Process

00 00xxx Host-port interface

01 01xxx 8-bit ROM with default timings

10 10xxx 16-bit ROM with default timings

11 11xxx 32-bit ROM with default timings

Boot Configuration

 11-16

11.4.5 C64x Boot and Device Configuration

For the C64x, the following configurations are latched during device reset:

� Input Clock Mode: The on–chip PLL frequency multiplier is configured
through CLKMODE input pins. Refer to the specific device datasheet for
details (see Related Documentation From Texas Instruments).

� Boot Configuration: The pull up/down resistors on the EMIFB address
bus, pin BEA[19:18], determine the boot configuration, as shown in
Table 11–10. Refer to the specific device datasheet for the internal pull up/
down resistors (See Related Documentation From Texas Instruments).

� Device Configuration: The following sections provide detailed descrip-
tions on device–specific configurations.

Table 11–10. TMS320C64x Boot Configuration Summary

BOOTMODE Boot Process

00 None

01 Host Boot�

10 EMIFB 8–bit ROM with default timings

11 Reserved

� For C6414, HPI is used for host boot.
For C6415, HPI is used for host boot if PCI_EN = 0, and PCI is used for host boot if PCI_EN = 1.

11.4.5.1 C6414 Device Configuration

The C6414 device configurations are determined by the pull up/down resistor
on the HPI data pin HD5, along with the pull up/down resistors on the EMIFB
address bus (BEA[20:1]) latched at device reset.

HPI Bus Width (HD5 pin)

The pull–up/down resistors on the HD5 pin determines the HPI bus width
(HPI_WIDTH) as follows:

� HPI_WIDTH = 0: The HPI bus width is 16 bits. HPI operates in HPI16
mode.

� HPI_WIDTH = 1: The HPI bus width is 32 bits. HPI operates in HPI32
mode.

Other Device Configurations (BEA[20:1])

Table 11–13 and Table 11–11 show the rest of the C6414 device configurations
through the EMIFB address bus pull up/down resistors.

Boot Configuration

11-17Boot Modes and Configuration

Figure 11–3.TMS320C6414 Boot and Device Configuration via Pull–Up/Pull–Down
Resistors on BEA[20:1]

20 19 18 17 16 15 14 13 1

LEND BOOTMODE AECLKIN_SEL BECLKIN_SEL Reserved�

�All reserved fields should be pulled down.

Table 11–11. TMS320C6414 Boot and Device Configuration Description

BEA Bi t Field Description

20 LEND Little endian mode

LEND = 0: system operates in big endian mode
LEND = 1: system operates in little endian mode

19:18 BOOTMODE Dictates the bootmode of the device. See Table 11–10.

17:16 AECLKIN_SEL EMIFA input clock select
AECLKIN_SEL = 00b: EMIFA runs at AECLKIN rate.

 AECKLIN must be provided by system.
AECLKIN_SEL = 01b: EMIFA runs at 1/4th of CPU clock rate
AECLKIN_SEL = 10b: EMIFA runs at 1/6th of CPU clock rate
AECLKIN_SEL = 11b: Reserved

15:14 BECLKIN_SEL EMIFB input clock select
BECLKIN_SEL = 00b: EMIFB runs at BECLKIN rate.

 BECKLIN must be provided by system.
BECLKIN_SEL = 01b: EMIFB runs at 1/4th of CPU clock rate
BECLKIN_SEL = 10b: EMIFB runs at 1/6th of CPU clock rate
BECLKIN_SEL = 11b: Reserved

11.4.5.2 C6415 Device Configuration

The C6415 device configurations are determined by the PCI_EN pin, the
MCBSP2_EN pin, the pull up/down resistor on the HPI data pin HD5, and the
pull up/down resistors on the EMIFB address bus (BEA[20:1]) latched at de-
vice reset.

Peripheral Selection (PCI_EN, MCBSP2_EN, UTOPIA_EN)

Some peripherals on the C6415 are mutually exclusive. Users can select the
desired peripherals via the following device configuration pins at reset:

� PCI Enable (PCI_EN)

� McBSP2 Enable (MCBSP2_EN)

� UTOPIA Enable (UTOPIA_EN field at BEA[11])

Boot Configuration

 11-18

Table 11–12 summarizes the selection between HPI, PCI, McBSP2, and GPIO
(pins 8 to 15) based on PCI_EN and MCBSP2_EN. Table 11–13 summarizes
the selection between UTOPIA and McBSP1 via the pull-up/down resistor on
UTOPIA_EN (BEA[11]) at reset.

Table 11–12. TMS320C6415 HPI, PCI, McBSP2, and GPIO Selection

PCI_EN MCBSP2_EN Peripherals Selected

HPI PCI McBSP2 � GPIO �

0 0 Yes Yes GPIO
Pins 0 to 15

0 1 Yes Yes GPIO
Pins 0 to 15

1 0 Yes GPIO
Pins 0 to 8 only
(No GP[9:15])

1 1 Yes.
No EEPROM

Yes GPIO
Pins 0 to 8 only
(No GP[9:15])

† GPIO pin GP8 is MUXed with McBSP2 external clock source pin CLKS2. To use this pin as GP8, bit 8 in the GPIO Enable
Register (GPEN) must be set to 1. To use this pin as CLKS2, bit 8 in the GPEN must be set to 0.

Table 11–13. TMS320C6415 UTOPIA and McBSP1 Selection

UTOPIA_EN (BEA[11]) Peripherals Selected

UTOPIA McBSP1

0 Yes

1 Yes

UTOPIA_EN is latched at reset only. The PCI_EN pin must be driven valid
(pulled up/down) at all times, and the user must not switch its value throughout
device operation. MCBSP2_EN must be driven valid at all times, but the user
can change its value dynamically after device reset. For example, at reset, the
user can initialize PCI via the serial EEPROM by setting PCI_EN = 1 and
MCBSP2_EN = 0. Upon exiting reset, the serial EEPROM may not be needed.
If not, the user can change the MCBSP2_EN input to 1 to disable the serial
EEPROM interface and enable the McBSP2 interface. Figure 11–4 shows an
example of this interface. One of the GPIO pins (GP0 to GP7) is tied to the
MCBSP2_EN configuration pin. At reset, PCI_EN is pulled up to 1, and
MCBSP2_EN is pulled down to 0 to enable the PCI EEPROM interface. Upon
exiting reset, configure the GPx as an output, and write a 1 to MCBSP2_EN
to enable the McBSP2 interface.

Boot Configuration

11-19Boot Modes and Configuration

Figure 11–4.McBSP2/EEPROM Selection Interface

VCC

PCI_EN

MCBSP2_EN

GPx†

CLKS2/GP8

CLKR2

CLKX2/XSP_CLK

FSR2

FSX2

DR2/XSP_DI

DX2/XSP_DO

XSP_CS

Serial
EEPROM

C64x

(output)

Pullup
Register

Pulldown
Register

Serial
Device

Note: After reset, use one of the general purpose pins (GP0 to GP7) to set McBSP2_EN = 1 to enable the McBSP2 interface,

and disable the EEPROM interface.

HPI Bus Width (HD5 pin)

If HPI operation is selected (PCI_EN = 0), a pull–up/down resistor on the HD5
pin determines the HPI bus width (HPI_WIDTH) as follows:
� HPI_WIDTH = 0: The HPI bus width is 16 bits. HPI operates in HPI16

mode.
� HPI_WIDTH = 1: The HPI bus width is 32 bits. HPI operates in HPI32

mode.

HPI_WIDTH is “don’t care” if PCI operation is selected instead (PCI_EN = 1).

Boot Configuration

 11-20

Other Device Configurations (BEA[20:1])

Figure 11–5 and Table 11–14 show the rest of the C6415 device configura-
tions through the EMIFB address bus pull up/down resistors.

Figure 11–5.TMS320C6415 Boot and Device Configuration via Pull–Up/Pull–Down
Resistors on BEA[20:1]

20 19 18 17 16 15 14 13 12 11 10 1

LEND BOOTMODE AECLKIN_SEL BECLKIN_SEL EEAI rsvd UTOPIA_EN Reserved�

0001000000
� CAUTION: To operate correctly, all reserved fields must be pulled up/down as shown: BEA7 must be pulled up, and all
other reserved bits (BEA12, BEA[10:8], BEA[6:1]) must be pulled down.

Table 11–14. TMS320C6415 Boot and Device Configuration Description

BEA Bit Field Description

20 LEND Little endian mode
LEND = 0: system operates in big endian mode
LEND = 1: system operates in little endian mode

19:18 BOOTMODE Dictates the bootmode of the device. See Table 10–10.

17:16 AECLKIN_SEL EMIFA input clock select
AECLKIN_SEL = 00b: EMIFA runs at AECLKIN rate.

 AECKLIN must be provided by system.
AECLKIN_SEL = 01b: EMIFA runs at 1/4th of CPU clock rate
AECLKIN_SEL = 10b: EMIFA runs at 1/6th of CPU clock rate
AECLKIN_SEL = 11b: Reserved

15:14 BECLKIN_SEL EMIFB input clock select
BECLKIN_SEL = 00b: EMIFB runs at BECLKIN rate.

 BECKLIN must be provided by system.
BECLKIN_SEL = 01b: EMIFB runs at 1/4th of CPU clock rate
BECLKIN_SEL = 10b: EMIFB runs at 1/6th of CPU clock rate
BECLKIN_SEL = 11b: Reserved

13 EEAI EEPROM Autoinitialization
EEAI = 0: PCI uses default values. EEAI must be set to 0 if PCI_EN is
disabled (PCI_EN = 0).
EEAI = 1: Read configure value from 4K EEPROM. MCBSP2_EN must be
0 to enable EEPROM operation

11 UTOPIA_EN UTOPIA Enable
The UTOPIA and McBSP1 peripherals on the C6415 are mutually
exclusive. This field enables either UTOPIA or McBSP1.
UTOPIA_EN = 0: UTOPIA disabled. McBSP1 enabled.
UTOPIA_EN = 1: UTOPIA enabled. McBSP1 disabled.

Boot Processes

11-21Boot Modes and Configuration

11.5 Boot Processes

The boot process is determined by the boot configuration selected, as described
in section 11.4. Up to three types of boot processes are available:

� No boot process: The CPU begins direct execution from the memory
located at address 0. If SDRAM is used in the system, the CPU is held until
SDRAM initialization is complete. This feature is not available on the
C621x/C671x.
Note: Operation is undefined if invalid code is located at address.

� ROM boot process : The program located in external ROM is copied to
address 0 by the DMA/EDMA controller. Although the boot process begins
when the device is released from external reset, this transfer occurs while
the CPU is internally held in reset. On C62x/C67x, this boot process also
lets you choose the width of the ROM. In this case, the EMIF automatically
assembles consecutive 8-bit bytes or 16-bit halfwords to form the 32-bit
instruction words to be moved. For the C620x/C670x, these values are
expected to be stored in little endian format in the external memory, typi-
cally a ROM device. For the C621x/C671x, the data should be stored in
the endian format that the system is using (either big or little endian). The
C64x only supports 8 bit ROM boot, where data should be stored in the
endian format that the system is using.

The transfer is automatically done by the DMA/EDMA as a single-frame
block transfer from the ROM to address 0.

After completion of the block transfer, the CPU is removed from reset and
allowed to run from address 0.

The ROM boot process differs slightly between specific C6000 devices.

� C620x/C670x: The DMA copies 64K bytes from CE1 to address 0, us-
ing default ROM timings. After the transfer the CPU begins executing
from address 0.

� C621x/C671x/C64x: The EDMA copies 1K bytes from the beginning
of CE1 (EMIFB CE1 on C64x) to address 0, using default ROM tim-
ings. After the transfer the CPU begins executing from address 0.

Boot Processes

 11-22

� Host boot process : The CPU is held in reset while the remainder of the
device is released. During this period, an external host can initialize the
CPU’s memory space as necessary through the host interface, including in-
ternal configuration registers, such as those that control the EMIF or other
peripherals. Once the host is finished with all necessary initialization, it must
set the DSPINT to complete the boot process. This transition causes the
boot configuration logic to remove the CPU from its reset state. The CPU
then begins execution from address 0. The DSPINT condition is not latched
by the CPU, because it occurs while the CPU is still in reset. Also, DSPINT
wakes the CPU from internal reset only if the host boot process is selected.
All memory may be written to and read by the host. This allows for the host
to verify what it sends to the processor, if required.

Note:

The host interface used during host boot varies between different devices,
depending on the host interface peripheral that is available on the device.
Refer to the device datasheet for the specific peripheral set. One of the fol-
lowing host interfaces is used for host boot:

� Host Port Interface: For devices with HPI, the HPI can be used for host
boot. The HPI is always a slave interface, and needs no special configu-
ration.

� Expansion Bus: For devices with XBUS, the XBUS can be used for the
host boot. The type of host interface is determined by a set of latched
signals during rest.

� PCI: For devices with PCI, the PCI can be used for the host boot.

12-1

Multichannel Buffered Serial Port

This chapter describes the operation and hardware of the multichannel buff-
ered serial port (McBSP). It also includes register definitions and timing dia-
grams for the McBSP.

Topic Page

12.1 Features 12-2.

12.2 McBSP Interface Signals and Registers 12-4.

12.3 Data Transmission and Reception 12-18.

12.4 µ-Law/A-Law Companding Hardware Operation 12-44.

12.5 Programmable Clock and Framing 12-47.

12.6 Multichannel Selection Operation 12-62.

12.7 SPI Protocol: CLKSTP 12-79.

12.8 McBSP Pins as General-Purpose I/O 12-84.

Chapter 12

Features

 12-2

12.1 Features

The multichannel buffered serial port (McBSP) for the TMS320C6000� is based
on the standard serial port interface used on the TMS320C2x, C3x, C5x, and
C54x� devices. The McBSP provides these functions:

� Full-duplex communication

� Double-buffered data registers, which allow a continuous data stream

� Independent framing and clocking for receive and transmit

� Direct interface to industry-standard codecs, analog interface chips (AICs),
and other serially connected analog-to-digital (A/D) and digital-to-analog
(D/A) devices

� External shift clock or an internal, programmable frequency shift clock for
data transfer

� Autobuffering capability through the 5-channel DMA controller.

In addition, the McBSP has the following capabilities:

� Direct interface to:
� T1/E1 framers
� MVIP switching compatible and ST-BUS compliant devices including:

� MVIP framers
� H.100 framers
� SCSA framers

� IOM-2 compliant devices
� AC97 compliant devices. (The necessary multi phase frame synchro-

nization capability is provided.)
� IIS compliant devices
� SPI� devices

� Multichannel transmit and receive of up to 128 channels

� A wide selection of data sizes, including 8, 12, 16, 20, 24, and 32 bits

� µ-Law and A-Law companding

� 8-bit data transfers with the option of LSB or MSB first

� Programmable polarity for both frame synchronization and data clocks

� Highly programmable internal clock and frame generation.

Features

12-3Multichannel Buffered Serial Port

All C6000 devices have the same McBSP. However, the C621x/C671x and
C64x McBSP has additional features and enhancements that are summarized
in Table 12–1.

Table 12–1. Enhanced Features on TMS320C6000 McBSP

Features Supported on Device Section

DXENA

DX Enabler

C621x, C671x, C64x 12.6.5

RWDREVRS/
XWDREVRS

32-bit data reversal

C621x, C671x, C64x 12.3.9

RMCME/XMCME

Enhanced multichannel
selection mode

C64x 12.6.2,
12.6.4

FREE, SOFT

Emulation control

C621x, C671x, C64x 12.2.1

McBSP Interface Signals and Registers

 12-4

12.2 McBSP Interface Signals and Registers

The multichannel buffered serial port (McBSP) consists of a data path and a
control path, which connect to external devices. Data is communicated to
these external devices via separate pins for transmission and reception. Con-
trol information (clocking and frame synchronization) is communicated via four
other pins. The device communicates to the McBSP via 32-bit-wide control
registers accessible via the internal peripheral bus.

The McBSP consists of a data path and control path, as shown in Figure 12–1.
Seven pins, listed in Table 12–2, connect the control and data paths to external
devices.

Figure 12–1. McBSP Block Diagram

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

SRGR

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁ

ÁÁ
ÁÁ

RBRÁÁÁ
ÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

CLKS

FSR

FSX

CLKR

CLKX

DX

DR

XEVT

REVT

XINT

RINT

events to DMA
Synchronization

Interrupts to CPU

bus
peripheral
32-bit

McBSP

Compand

XSR

RSR

Compress

Expand DRR

DXR

Multichannel
selection

and control
generation
frame sync
Clock and

PCR

XCER

RCER

MCR

XCR

SPCR

RCR

McBSP Interface Signals and Registers

12-5Multichannel Buffered Serial Port

Table 12–2. McBSP Interface Signals

Pin I/O/Z Description

CLKR I/O/Z Receive clock

CLKX I/O/Z Transmit clock

CLKS I External clock

DR I Received serial data

DX O/Z Transmitted serial data

FSR I/O/Z Receive frame synchronization

FSX I/O/Z Transmit frame synchronization

Note: I = Input, O = Output, Z = High Impedance

Data is communicated to devices interfacing to the McBSP via the data transmit
(DX) pin for transmission and the data receive (DR) pin for reception. Control
information (clocking and frame synchronization) is communicated via CLKX,
CLKR, FSX, and FSR. The C6000 communicates to the McBSP via 32-bit-wide
control registers accessible via the internal peripheral bus. Either the CPU or the
DMA/EDMA controller reads the received data from the data receive register
(DRR) and writes the data to be transmitted to the data transmit register (DXR).
Data written to the DXR is shifted out to DX via the transmit shift register (XSR).
Similarly, receive data on the DR pin is shifted into the receive shift register
(RSR) and copied into the receive buffer register (RBR). RBR is then copied to
DRR, which can be read by the CPU or the DMA/EDMA controller. This allows
simultaneous internal data movement and external data communications.

The McBSP registers are listed in Table 12–3. The control block consists of
internal clock generation, frame-synchronization signal generation and control
of these signals, and multichannel selection. This control block sends notifica-
tion of important interrupts to the CPU and events to the DMA/EDMA controller
via the four signals shown in Table 12–4.

For devices with the EDMA peripheral (TMS320C621x/C671x/C64x), the data
receive and transmit registers (DRR and DXR) are also mapped to memory
locations 3xxxxxxxh shown in Table 12–5. The DRR and DXR locations
018Cxxxxh/0190xxxxh/01A4xxxxh are accessible via the peripheral bus,
while the 3xxxxxxxh locations are accessible via the EDMA bus. Both the CPU
and the EDMA in these devices can access the DRR and DXR in all the
memory-mapped locations shown in Table 12–5. An access to any EDMA bus
location in Table 12–5 is equivalent to an access to the DRR/DXR of the corre-
sponding McBSP. For example, a read from any location in
30000000h–33FFFFFFh is equivalent to a read from the DRR of McBSP0 at
018C0000h. A write to any location in 30000000h–33FFFFFFh is equivalent
to a write to the DXR of McBSP0 at 018C0004h. The user has a choice of read-
ing from/writing to the DRR and DXR in either the 3xxxxxxxh or the

McBSP Interface Signals and Registers

 12-6

018Cxxxxh/0190xxxxh/01A4xxxxh location. It is recommended that the user
set up the EDMA to use the 3xxxxxxxh addresses for serial port servicing in
order to free up the peripheral bus for other functions. The McBSP control reg-
isters are accessible only via the peripheral bus, and thus are mapped only to
the 018Cxxxxh/0190xxxxh/01A4xxxxh locations.

Table 12–3. McBSP Registers

Hex Byte Address

McBSP 0 McBSP 1 McBSP 2§
Abbrevi-
ation McBSP Register Name Section

– – – RBR Receive buffer register† 12.2

– – – RSR Receive shift register† 12.2

– – – XSR Transmit shift register† 12.2

018C 0000 0190 0000 01A4 0000 DRR Data receive register‡¶ 12.2

018C 0004 0190 0004 01A4 0004 DXR Data transmit register¶ 12.2

018C 0008 0190 0008 01A4 0008 SPCR Serial port control register 12.2.1

018C 000C 0190 000C 01A4 000C RCR Receive control register 12.2.2

018C 0010 0190 0010 01A4 0010 XCR Transmit control register 12.2.2

018C 0014 0190 0014 01A4 0014 SRGR Sample rate generator register 12.5.1.1

018C 0018 0190 0018 01A4 0018 MCR Multichannel control register 12.6.1

018C 001C 0190 001C 01A4 001C RCER
RCERE0

Receive channel enable register
Enhanced receive channel enable register 0||

12.6.3.1
12.6.4.1

018C 0020 0190 0020 01A4 0020 XCER
XCERE0

Transmit channel enable register
Enhanced transmit channel enable register 0||

12.6.3.1
12.6.4.1

018C 0024 0190 0024 01A4 0024 PCR Pin control register 12.2.1

018C 0028 0190 0028 01A4 0028 RCERE1 Enhanced receive channel enable register 1� 12.6.4.1

018C 002C 0190 002C 01A4 002C XCERE1 Enhanced transmit channel enable register 1� 12.6.4.1

018C 0030 0190 0030 01A4 0030 RCERE2 Enhanced receive channel enable register 2� 12.6.4.1

018C 0034 0190 0034 01A4 0034 XCERE2 Enhanced transmit channel enable register 2� 12.6.4.1

018C 0038 0190 0038 01A4 0038 RCERE3 Enhanced receive channel enable register 3� 12.6.4.1

018C 003C 0190 003C 01A4 003C XCERE3 Enhanced transmit channel enable register 3� 12.6.4.1

† The RBR, RSR, and XSR are not directly accessible via the CPU or the DMA/EDMA controller.
‡ The CPU and DMA/EDMA controller can only read this register; they cannot write to it.
§ Applicable only to C6202(B), C6203(B), and C64x.
¶ For TMS320C621x/C671x/C64x, the DRR and DXR are also mapped at addresses shown in Table 12–5.
|| For C64x, enhanced multichannel selection mode only, RCER and XCER are replaced by RCERE0 and XCERE0, respectively.
�RCERE1, XCERE1, RCERE2, XCERE2, RCERE3, and XCERE3 are available on C64x only for enhanced multichannel selection

mode.

McBSP Interface Signals and Registers

12-7Multichannel Buffered Serial Port

Table 12–4. McBSP CPU Interrupts and DMA Synchronization Events

Interrupt Name Description Section

RINT Receive interrupt to CPU 12.3.3

XINT Transmit interrupt to CPU 12.3.3

REVT Receive synchronization event to the DMA/
EDMA controller

12.3.2.1

XEVT Transmit synchronization event to the DMA/
EDMA controller

12.3.2.2

Table 12–5. TMS320C621x/C671x/C64x Data Receive and Transmit Registers
(DRR/DXR) Mapping

Accessible Via

Serial Port Register Peripheral Bus EDMA Bus

McBSP 0 DRR
DXR

0x018C0000
0x018C0004

0x30000000–0x33FFFFFF
0x30000000–0x33FFFFFF

McBSP 1 DRR
DXR

0x01900000
0x01900004

0x34000000–0x37FFFFFF
0x34000000–0x37FFFFFF

McBSP 2† DRR
DXR

0x01A40000
0x01A40004

0x38000000––x3BFFFFFF
0x38000000––x3BFFFFFF

† Applicable only to C64x.

12.2.1 Serial Port Configuration

The serial port is configured via the serial port control register (SPCR) and the
pin control register (PCR) shown in Figure 12–2 and Figure 12–3, respective-
ly. The SPCR and PCR contain McBSP status control bits. Table 12–6 and
Table 12–7 summarize the SPCR and the PCR fields, respectively.

The PCR is also used to configure the serial port pins as general purpose in-
puts or outputs during receiver and/or transmitter reset (for more information
see Section 12.8).

McBSP Interface Signals and Registers

 12-8

Figure 12–2. Serial Port Control Register (SPCR)
31 26 25 24 23 22 21 20 19 18 17 16

reserved FREE� SOFT� FRST GRST XINTM XSYNCERR† XEMPTY XRDY XRST

R, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 R, +0 R, +0 RW, +0

15 14 13 12 11 10 8 7 6 5 4 3 2 1 0

DLB RJUST CLKSTP Rsvd DXENA‡ Rsvd RINTM RSYNCERR† RFULL RRDY RRST

RW,+0 RW, +0 RW,+0 R, +0 RW, +0 R, +0 RW, +0 RW, +0 R, +0 R, +0 RW, +0

† Writing a 1 to XSYNCERR or RSYNCERR will set the error condition when the transmiter or receiver (XRST=1 or RRST=1),
respectively, are enabled. Thus, it is used mainly for testing purposes or if this operation is desired.

‡ Available in the C621x/C671x/C64x only.

Table 12–6. Serial Port Control Register (SPCR) Field Descriptions

Bit No. Name Function Section

25 FREE Serial clock free running mode (C621x/C671x/C64x only)
This bit is used in conjunction with SOFT bit to determine state of serial
port clock during emulation halt.

FREE = 0: During emulation halt, SOFT bit determines operation of
 McBSP.

FREE = 1: During emulation halt, serial clocks continue to run.

12.2.1

24 SOFT Serial clock emulation mode (C621x/C671x/C64x only)
This bit is used in conjunction with FREE bit to determine state of serial
port clock during emulation halt. This bit has no effect if FREE=1.

SOFT = 0: In conjunction with FREE = 0, serial port clock stops immedi-
ately during emulation halt, thus aborting any transmissions.

SOFT = 1: In conjunction with FREE = 0, during emulation halt, serial
port clock stops after completion of current transmission.

12.2.1

23 FRST Frame sync generator reset

FRST = 0: Frame sync generation logic is reset. Frame sync signal is
not generated by sample rate generator.

FRST = 1: Frame sync signal is generated after eight CLKG clocks. All
frame counters are loaded with their programmed values.

12.5.3

22 GRST Sample rate generator reset

GRST = 0: Sample rate generator is reset.

GRST = 1: Sample rate generator is pulled out of reset; CLKG is driven
according to programmed values in sample rate generator
register (SRGR).

12.5.1.2

McBSP Interface Signals and Registers

12-9Multichannel Buffered Serial Port

Table 12–6. Serial Port Control Register (SPCR) Field Descriptions (Continued)

Name SectionFunctionBit No.

21–20 XINTM Transmit interrupt mode

XINTM = 00b: XINT driven by XRDY

XINTM = 01b: XINT generated by end-of-subframe in multichannel
operation

XINTM = 10b: XINT generated by a new frame synchronization

XINTM = 11b: XINT generated by XSYNCERR

12.3.3

19 XSYNCERR Transmit synchronization error

XSYNCERR = 0: No frame synchronization error

XSYNCERR = 1: Frame synchronization error detected by McBSP

12.3.7.2
12.3.7.5

18 XEMPTY Transmit shift register (XSR) empty

XEMPTY = 0: XSR is empty.

XEMPTY = 1: XSR is not empty.

12.3.7.4

17 XRDY Transmitter ready

XRDY = 0: Transmitter is not ready.

XRDY = 1: Transmitter is ready for data to be written to DXR.

12.3.2

16 XRST Transmitter reset. This resets or enables transmitter.

XRST = 0: Serial port transmitter is disabled and is in reset state.

XRST = 1: Serial port transmitter is enabled.

12.3.1

15 DLB Digital loopback mode

DLB = 0: Digital loopback mode disabled

DLB = 1: Digital loopback mode enabled

12.5.2.5
12.5.2.6
12.5.3.2

14–13 RJUST Receive data sign-extension and justification mode

RJUST = 00b: Right-justify and zero-fill MSBs in DRR.

RJUST = 01b: Right-justify and sign-extend MSBs in DRR.

RJUST = 10b: Left-justify and zero-fill LSBs in DRR.

RJUST = 11b: Reserved

12.3.8

McBSP Interface Signals and Registers

 12-10

Table 12–6. Serial Port Control Register (SPCR) Field Descriptions (Continued)

Name SectionFunctionBit No.

12–11 CLKSTP Clock stop mode

CLKSTP = 0Xb: Clock stop mode disabled. Normal clocking enabled for
non-SPI mode.

Clock stop mode enabled for various SPI� modes when:

CLKSTP = 10b and CLKXP = 0: Clock starts with rising edge without
delay.

CLKSTP = 10b and CLKXP = 1: Clock starts with falling edge without
delay.

CLKSTP = 11b and CLKXP = 0: Clock starts with rising edge with delay.

CLKSTP = 11b and CLKXP = 1: Clock starts with falling edge with delay.

12.7

7 DXENA DX Enabler – applicable only for C621x/C671x/C64x device. Enable ex-
tra delay for DX turn-on time. This bit controls Hi-Z enable on DX pin, not
the data itself, so only first bit of data is delayed.

DXENA = 0: DX enabler is off.

DXENA = 1: DX enabler is on.

12.6.5

5–4 RINTM Receive interrupt mode

RINTM = 00b: RINT driven by RRDY

RINTM = 01b: RINT generated by end-of-subframe in multichannel op-
eration

RINTM = 10b: RINT generated by a new frame synchronization

RINTM = 11b: RINT generated by RSYNCERR

12.3.3

3 RSYNCERR Receive synchronization error

RSYNCERR = 0: No frame synchronization error

RSYNCERR = 1: Frame synchronization error detected by McBSP

12.3.7.2
12.3.7.5

2 RFULL Receive shift register (RSR) full error condition

RFULL = 0: Receiver is not in overrun condition.

RFULL = 1: DRR is not read, RBR is full, and RSR is full with a new
element.

12.3.7.1

McBSP Interface Signals and Registers

12-11Multichannel Buffered Serial Port

Table 12–6. Serial Port Control Register (SPCR) Field Descriptions (Continued)

Name SectionFunctionBit No.

1 RRDY Receiver ready

RRDY = 0: Receiver is not ready.

RRDY = 1: Receiver is ready with data to be read from DRR.

12.3.2

0 RRST Receiver reset. This resets or enables receiver.

RRST = 0: Serial port receiver is disabled and is in reset state.

RRST = 1: Serial port receiver is enabled.

12.3.1

Figure 12–3. Pin Control Register (PCR)
31 16

reserved

R, +0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rsvd XIOEN RIOEN FSXM FSRM CLKXM CLKRM Rsvd CLKS_STAT DX_STAT DR_STAT FSXP FSRP CLKXP CLKRP

R,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW, +0 R,+0 RW,+0 RW,+0 R,+0 RW,+0 RW,+0 RW,+0 RW,+0

Table 12–7. Pin Control Register (PCR) Field Descriptions

Bit
No.

Name Function Section

13 XIOEN Transmitter in general-purpose I/O mode only when XRST = 0 in SPCR

XIOEN = 0: CLKS pin is not a general-purpose input. DX pin is not a general
purpose output. FSX and CLKX are not general-purpose I/Os.

XIOEN = 1: CLKS pin is a general-purpose input. DX pin is a general-purpose
output. FSX and CLKX are general-purpose I/Os. These serial port
pins do not perform serial port operation.

12.8

12 RIOEN Receiver in general-purpose I/O mode only when RRST = 0 in SPCR

RIOEN = 0: DR and CLKS pins are not general-purpose inputs. FSR and
CLKR are not general-purpose I/Os and perform serial port op-
eration.

RIOEN = 1: DR and CLKS pins are general-purpose inputs. FSR and CLKR
are general-purpose I/Os. These serial port pins do not perform se-
rial port operation.

12.8

McBSP Interface Signals and Registers

 12-12

Table 12–7. Pin Control Register (PCR) Field Descriptions (Continued)

Bit
No.

SectionFunctionName

11 FSXM Transmit frame synchronization mode

FSXM = 0: Frame synchronization signal is provided by an external
source. FSX is an input pin.

FSXM = 1: Frame synchronization generation is determined by the sample
rate generator frame synchronization mode bit FSGM in the
SRGR.

12.5.3.3

12.8

10 FSRM Receive frame synchronization mode

FSRM = 0: Frame synchronization signals are generated by an external
device. FSR is an input pin.

FSRM = 1: Frame synchronization signals are generated internally by the
sample rate generator. FSR is an output pin except when GSYNC
= 1 (see section 12.5.1.1) in SRGR.

12.5.3.2

12.8

9 CLKXM Transmitter clock mode

CLKXM = 0: Transmitter clock is driven by an external clock with CLKX as
an input pin.

CLKXM = 1: CLKX is an output pin and is driven by the internal sample rate
generator.

During SPI mode (CLKSTP in SPCR is a nonzero value):

CLKXM = 0: McBSP is a slave and (CLKX) is driven by the SPI master in
the system. CLKR is internally driven by CLKX.

CLKXM = 1: McBSP is a master and generates the transmitter clock
(CLKX) to drive its receiver clock (CLKR) and the shift clock
of the SPI-compliant slaves in the system.

12.5.2.7

12.8

12.7

8 CLKRM Receiver clock mode

Case 1: Digital loopback mode not set (DLB = 0) in SPCR

CLKRM = 0: Receive clock (CLKR) is an input driven by an external clock.

CLKRM = 1: CLKR is an output pin and is driven by the sample rate genera-
tor.

Case 2: Digital loopback mode set (DLB = 1) in SPCR

CLKRM = 0: Receive clock (not the CLKR pin) is driven by the transmit
clock (CLKX), which is based on the CLKXM bit in PCR. CLKR
is in high impedance.

CLKRM = 1: CLKR is an output pin and is driven by the transmit clock. The
transmit clock is derived from CLKXM bit in the PCR.

12.5.2.6

12.8

McBSP Interface Signals and Registers

12-13Multichannel Buffered Serial Port

Table 12–7. Pin Control Register (PCR) Field Descriptions (Continued)

Bit
No.

SectionFunctionName

6 CLKS_STAT CLKS pin status. Reflects the value on the CLKS pin when selected as a gen-
eral-purpose input.

12.8

5 DX_STAT DX pin status. Reflects the value driven onto the DX pin when selected as
a general-purpose output.

12.8

4 DR_STAT DR pin status. Reflects the value on the DR pin when selected as a general-
purpose input.

12.8

3 FSXP Transmit frame synchronization polarity

FSXP = 0: Frame synchronization pulse FSX is active high

FSXP = 1: Frame synchronization pulse FSX is active low

12.3.4.1

12.8

2 FSRP Receive frame synchronization polarity

FSRP = 0: Frame synchronization pulse FSR is active high

FSRP = 1: Frame synchronization pulse FSR is active low

12.3.4.1

12.8

1 CLKXP Transmit clock polarity

CLKXP = 0: Transmit data driven on rising edge of CLKX

CLKXP = 1: Transmit data driven on falling edge of CLKX

12.3.4.1

12.8

0 CLKRP Receive clock polarity

CLKRP = 0: Receive data sampled on falling edge of CLKR

CLKRP = 1: Receive data sampled on rising edge of CLKR

12.3.4.1

12.8

12.2.2 Receive and Transmit Control Registers: RCR and XCR
The receive control register (RCR), shown in Figure 12–4, configures pa-
rameters of the receive operations. The RCR fields are summarized in
Table 12–8.

12.2.2.1 Receive Control Register: RCR
Figure 12–4. Receive Control Register (RCR)

31 30 24 23 21 20 19 18 17 16

RPHASE RFRLEN2 RWDLEN2 RCOMPAND RFIG RDATDLY

RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +0

15 14 8 7 5 4 3 0

Reserved RFRLEN1 RWDLEN1 RWDREVRS† Reserved

R, +0 RW, +0 RW, +0 RW, +0 R, +0

† RWDREVRS 32-bit reversal feature is applicable only to the C621x/C671x/C64x device. For all other C6000 devices, it is re-
served (R, +0).

McBSP Interface Signals and Registers

 12-14

Table 12–8. Receive Control Register (RCR) Field Descriptions

Bit No. Name Function Section

31 RPHASE Receive phases

 RPHASE = 0: Single phase frame
RPHASE = 1: Dual phase frame

12.3.4.2

30–24 RFRLEN2 Receive frame length in phase 2

 RFRLEN2 = 000 0000b: 1 word per phase
RFRLEN2 = 000 0001b: 2 words per phase
�

�

�

RFRLEN2 = 111 1111b: 128 words per phase

12.3.4.3

23–21 RWDLEN2 Receive element length in phase 2

 RWDLEN2 = 000b: 8 bits
RWDLEN2 = 001b: 12 bits
RWDLEN2 = 010b: 16 bits
RWDLEN2 = 011b: 20 bits
RWDLEN2 = 100b: 24 bits
RWDLEN2 = 101b: 32 bits
RWDLEN2 = 11Xb: Reserved

12.3.4.4

20–19 RCOMPAND Receive companding mode.

RCOMPAND = 00b: No companding. Data transfer starts with MSB first.
RCOMPAND = 01b: No companding, 8-bit data. Transfer starts with

LSB first. Applicable to 8-bit data
(RWDLEN=000b), or 32-bit data in data reversal
mode.

RCOMPAND = 10b: Compand using µ-law for receive data.
Applicable to 8-bit data only (RWDLEN=000b).

RCOMPAND = 11b: Compand using A-law for receive data.
Applicable to 8-bit data only (RWDLEN=000b).

12.3.9
12.4

18 RFIG Receive frame ignore
 RFIG = 0: Unexpected receive frame synchronization pulses restart

the transfer.
 RFIG = 1: Unexpected receive frame synchronization pulses are

ignored.

12.3.6.1

17–16 RDATDLY Receive data delay

 RDATDLY = 00b: 0-bit data delay
RDATDLY = 01b: 1-bit data delay
RDATDLY = 10b: 2-bit data delay
RDATDLY = 11b: Reserved

12.3.4.6

McBSP Interface Signals and Registers

12-15Multichannel Buffered Serial Port

Table 12–8. Receive Control Register (RCR) Field Descriptions (Continued)

Name SectionFunctionBit No.

14–8 RFRLEN1 Receive frame length in phase 1

RFRLEN1 = 000 0000b: 1 word per phase
RFRLEN1 = 000 0001b: 2 words per phase

�

�

�

RFRLEN1 = 111 1111b: 128 words per phase

12.3.4.3

7–5 RWDLEN1 Receive element length in phase 1

 RWDLEN1 = 000b: 8 bits
RWDLEN1 = 001b: 12 bits
RWDLEN1 = 010b: 16 bits
RWDLEN1 = 011b: 20 bits
RWDLEN1 = 100b: 24 bits
RWDLEN1 = 101b: 32 bits
RWDLEN1 = 11Xb: Reserved

12.3.4.4

4 RWDREVRS Receive 32-bit bit reversal feature. (C621x/C671x/C64x only).

RWDREVRS = 0: 32-bit reversal disabled

RWDREVRS = 1: 32-bit reversal enabled.
32-bit data is received LSB first.
RWDLEN should be set for 32-bit operation;
RCOMPAND should be set to 01b;
else operation is undefined.

12.3.9

12.2.2.2 Transmit Control Register: XCR

The transmit control register (XCR), shown in Figure 12–5, configures pa-
rameters of the transmit operations. The XCR fields are summarized in
Table 12–9.

McBSP Interface Signals and Registers

 12-16

Figure 12–5. Transmit Control Register (XCR)

31 30 24 23 21 20 19 18 17 16

XPHASE XFRLEN2 XWDLEN2 XCOMPAND XFIG XDATDLY

RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +0

15 14 8 7 5 4 3 0

Reserved XFRLEN1 XWDLEN1 XWDREVRS† Reserved

R, +0 RW, +0 RW, +0 RW, +0 R, +0

† XWDREVRS 32-bit reversal feature is applicable only to the C621x/C671x/C64x device. For all other C6000 devices, it is re-
served (R, +0).

Table 12–9. Transmit Control Register (XCR) Field Descriptions

Bit No. Name Function Section

31 XPHASE Transmit phases

 XPHASE = 0: Single phase frame
XPHASE = 1: Dual phase frame

12.3.4.2

30–24 XFRLEN2 Transmit frame length in phase 2

XFRLEN2 = 000 0000b: 1 word per phase
XFRLEN2 = 000 0001b: 2 words per phase

�

�

XFRLEN2= 111 1111b: 128 words per phase

12.3.4.3

23–21 XWDLEN2 Transmit element length in phase 2
XWDLEN2 = 000b: 8 bits
XWDLEN2 = 001b: 12 bits
XWDLEN2 = 010b: 16 bits
XWDLEN2 = 011b: 20 bits
XWDLEN2 = 100b: 24 bits
XWDLEN2 = 101b: 32 bits
XWDLEN2 = 11Xb: Reserved

12.3.4.4

20–19 XCOMPAND Transmit companding mode.

XCOMPAND = 00b: No companding. Data transfer starts with MSB
first.

XCOMPAND = 01b: No companding, 8-bit data. Transfer starts with
LSB first. Applicable to 8-bit data
(RWDLEN=000b), or 32-bit data in data reversal
mode.

XCOMPAND = 10b: Compand using µ-law for receive data.
Applicable to 8-bit data only (RWDLEN=000b).

XCOMPAND = 11b: Compand using A-law for receive data.
Applicable to 8-bit data only (RWDLEN=000b).

12.3.9
12.4

McBSP Interface Signals and Registers

12-17Multichannel Buffered Serial Port

Table 12–9. Transmit Control Register (XCR) Field Descriptions (Continued)

Name SectionFunctionBit No.

18 XFIG Transmit frame ignore

XFIG = 0: Unexpected transmit frame synchronization pulses restart
the transfer.

XFIG = 1: Unexpected transmit frame synchronization pulses are
ignored.

12.3.6.1

17–16 XDATDLY Transmit data delay
XDATDLY = 00b: 0-bit data delay
XDATDLY = 01b: 1-bit data delay
XDATDLY = 10b: 2-bit data delay
XDATDLY = 11b: Reserved

12.3.4.6

14–8 XFRLEN1 Transmit frame length in phase 1

 XFRLEN1 = 000 0000b: 1 word per phase

XFRLEN1 = 000 0001b: 2 words per phase
�

�

�

XFRLEN1 = 111 1111b: 128 words per phase

12.3.4.3

7–5 XWDLEN1 Transmit element length in phase 1
XWDLEN1 = 000b: 8 bits
XWDLEN1 = 001b: 12 bits
XWDLEN1 = 010b: 16 bits
XWDLEN1 = 011b: 20 bits
XWDLEN1 = 100b: 24 bits
XWDLEN1 = 101b: 32 bits
XWDLEN1 = 11Xb: Reserved

12.3.4.4

4 XWDREVRS Transmit 32-bit bit reversal feature (C621/C671/C64x only).

 XWDREVRS = 0: 32-bit reversal disabled

 XWDREVRS = 1: 32-bit reversal enabled. 32-bit data is transmitted
LSB first. XWDLEN should be set for 32-bit
operation; XCOMPAND should be set to 01b; else
operation is undefined.

12.3.9

Data Transmission and Reception

 12-18

12.3 Data Transmission and Reception

As shown in Figure 12–1 on page 12-4, the receive operation is triple-buff-
ered and the transmit operation is double-buffered. Receive data arrives on
the DR and is shifted into the RSR. Once a full element (8, 12, 16, 20, 24, or
32 bits) is received, the RSR is copied to the receive buffer register (RBR) only
if the RBR is not full. The RBR is then copied to the DRR unless the DRR has
not been read by the CPU or the DMA/EDMA controller.

Transmit data is written by the CPU or the DMA/EDMA controller to the DXR.
If there is no data in the XSR, the value in the DXR is copied to the XSR. Other-
wise, the DXR is copied to the XSR when the last bit of data is shifted out on
the DX. After transmit frame synchronization, the XSR begins shifting out the
transmit data on the DX.

12.3.1 Resetting the Serial Port: (R/X)RST , GRST, and RESET

The serial port can be reset in the following two ways:

� Device reset (RESET pin is low) places the receiver, the transmitter, and
the sample rate generator in reset. When the device reset is removed
(RESET = 1), FRST = GRST = RRST = XRST = 0, keeping the entire serial
port in the reset state.

� The serial port transmitter and receiver can be independently reset by the
XRST and RRST bits in the SPCR. The sample rate generator is reset by
the GRST bit in the SPCR.

Table 12–10 shows the state of the McBSP pins when the serial port is reset
by these methods.

Table 12–10. Reset State of McBSP Pins

McBSP
Pins Direction

Device Reset
(RESET = 0) McBSP Reset

Receiver Reset (RRST = 0 and GRST = 1)

DR I Input Input

CLKR I/O/Z Input Known state if input; CLKR if output

FSR I/O/Z Input Known state if input; FSRP(inactive state) if output

CLKS I Input Input

Transmitter Reset (XRST = 0 and GRST = 1)

DX O/Z High impedance High impedance

CLKX I/O/Z Input Known state if input; CLKX if output

FSX I/O/Z Input Known state if input; FSXP(inactive state) if output

CLKS I Input Input

Data Transmission and Reception

12-19Multichannel Buffered Serial Port

� Device reset or McBSP reset: When the McBSP is reset by device reset
or McBSP reset, the state machine is reset to its initial state. All counters
and status bits are reset. This includes the receive status bits RFULL,
RRDY, and RSYNCERR and the transmit status bits XEMPTY, XRDY, and
XSYNCERR.

� Device reset: When the McBSP is reset due to device reset, the entire se-
rial port (including the transmitter, receiver, and the sample rate generator)
is reset. All input-only pins and 3-state pins should be in a known state. The
output-only pin, DX, is in the high impedance state. See section 12.5.1 for
more information on sample rate generator and its default at reset. When
the device is pulled out of reset, the serial port remains in the reset condi-
tion (RRST = XRST = FRST = GRST = 0). In this reset condition, the serial
port pins can be used as general-purpose I/O (see section 12.8).

� McBSP reset: When the receiver and transmitter reset bits, RRST and
XRST, are written with 0, the respective portions of the McBSP are reset and
activity in the corresponding section stops. All input-only pins, such as DR
and CLKS, and all other pins that are configured as inputs are in a known
state. FS(R/X) is driven to its inactive state (same as its polarity bit,
FS(R/X)P) if it is an output. If CLK(R/X) are programmed as outputs, they
are driven by CLKG, provided that GRST = 1. The DX pin is in the high-im-
pedance state when the transmitter is reset. During normal operation, the
sample rate generator can be reset by writing a 0 to GRST. GRST should
be low only when neither the transmitter nor the receiver is using the sample
rate generator. In this case, the internal sample rate generator clock CLKG,
and its frame sync signal (FSG) is driven inactive (low). When the sample
rate generator is not in the reset state (GRST = 1), FSR and FSX are in an
inactive state when RRST = 0 and XRST = 0, respectively, even if they are
outputs driven by FSG. This ensures that when only one portion of the
McBSP is in reset, the other portion can continue operation when FRST
= 1 and frame sync is driven by FSG.

� Sample-rate generator reset: As mentioned previously the sample rate
generator is reset when the device is reset or when its reset bit, GRST, is
written with 0. See section 12.5.1.2 for details on the McBSP and sample-
rate generator reset and initialization procedure.

12.3.2 Determining Ready Status

RRDY and XRDY indicate the ready state of the McBSP receiver and transmit-
ter, respectively. Writes and reads from the serial port can be synchronized by
any of the following methods:

� Polling RRDY and XRDY
� Using the events sent to the DMA or EDMA controller (REVT and XEVT)
� Using the interrupts to the CPU (RINT and XINT) that the events generate.

Data Transmission and Reception

 12-20

Note : Reading the DRR and writing to DXR affects RRDY and XRDY, respec-
tively.

12.3.2.1 Receive Ready Status: REVT, RINT, and RRDY

RRDY = 1 indicates that the RBR contents have been copied to the DRR and
that the data can be read by either the CPU or the DMA/EDMA controller. Once
that data has been read by either the CPU or the DMA/EDMA controller, RRDY
is cleared to 0. Also, at device reset or serial port receiver reset (RRST = 0),
the RRDY is cleared to 0 to indicate that no data has yet been received and
loaded into DRR. RRDY directly drives the McBSP receive event to the DMA/
EDMA controller (via REVT). Also, the McBSP receive interrupt (RINT) to the
CPU can be driven by RRDY if RINTM = 00b (default value) in the SPCR.

12.3.2.2 Transmit Ready Status: XEVT, XINT, and XRDY

XRDY = 1 indicates that the DXR contents have been copied to XSR and that
DXR is ready to be loaded with a new data word. When the transmitter transi-
tions from reset to non-reset (XRST transitions from 0 to 1), XRDY also transi-
tions from 0 to 1 indicating that the DXR is ready for new data. Once new data
is loaded by the CPU or the DMA/EDMA controller, XRDY is cleared to 0. How-
ever, once this data is copied from the DXR to the XSR, XRDY transitions
again from 0 to 1. The CPU or the DMA/EDMA controller can write to DXR al-
though XSR has not yet been shifted out on DX. XRDY directly drives the
transmit synchronization event to the DMA/EDMA controller (via XEVT). Also,
the transmit interrupt (XINT) to the CPU can be driven by XRDY if XINTM =
00b (default value) in the SPCR.

12.3.3 CPU Interrupts: (R/X)INT

The receive interrupt (RINT) and transmit interrupt (XINT) signal the CPU of
changes to the serial port status. Four options exist for configuring these inter-
rupts. These options are set by the receive/transmit interrupt mode field,
(R/X)INTM, in the SPCR. The possible values of the mode and the configura-
tions they represent are:

� (R/X)INTM = 00b. Interrupt on every serial element by tracking the
(R/X)RDY bits in the SPCR.

� (R/X)INTM = 01b. Interrupt at the end of a subframe (16 elements or less)
within a frame. See subsection 12.6.3.3 for details.

� (R/X)INTM = 10b. Interrupt on detection of frame synchronization pulses.
This generates an interrupt even when the transmitter/receiver is in reset.
This is done by synchronizing the incoming frame sync pulse to the CPU
clock and sending it to the CPU via (R/X)INT. See subsection 12.5.3.4 for
more information.

Data Transmission and Reception

12-21Multichannel Buffered Serial Port

� (R/X)INTM = 11b. Interrupt on frame synchronization error. Note that if any
of the other interrupt modes are selected, (R/X)SYNCERR may be read
when servicing the interrupts to detect this condition. See subsec-
tions 12.3.7.2 and 12.3.7.5 for more details on synchronization error.

12.3.4 Frame and Clock Configuration

Figure 12–6 shows typical operation of the McBSP clock and frame sync sig-
nals. Serial clocks CLKR and CLKX define the boundaries between bits for re-
ceive and transmit, respectively. Similarly, frame sync signals FSR and FSX
define the beginning of an element transfer. The McBSP allows configuration
of the following parameters for data and frame synchronization:

� Polarities of FSR, FSX, CLKX, and CLKR

� A choice of single- or dual-phase frames

� For each phase, the number of elements per frame

� For each phase, the number of bits per element

� Whether subsequent frame synchronization restarts the serial data
stream or is ignored

� The data delay from frame synchronization to first data bit which can be
0-, 1-, or 2-bit delays

� Right or left justification as well as sign extension or zero filling for receive
data.

The configuration can be independent for receive and transmit.

Figure 12–6. Frame and Clock Operation

D(R/X)

FS(R/X)

CLK(R/X)

B3 B2 B1 B0B5 B4B6B7A0A1
ÁÁ
ÁÁ

ÁÁ
ÁÁ

Á
Á

12.3.4.1 Frame and Clock Operation

Receive and transmit frame sync pulses (FSR/X), and clocks (CLKR/X), can
either be generated internally by the sample rate generator (see sec-
tion 12.5.1) or be driven by an external input. The source of frame sync and
clock are selected by programming the mode bits, FS(R/X)M and CLK(R/X)M
respectively, in the PCR. FSR is also affected by the GSYNC bit in the SRGR
(see section 12.5.3.2 for details).

When FSR and FSX are inputs (FSXM = FSRM = 0), the McBSP detects them
on the internal falling edge of clock, CLKR_int and CLKX_int, respectively (see

Data Transmission and Reception

 12-22

Figure 12–36 on page 12-47). The receive data arriving at the DR pin is also
sampled on the falling edge of CLKR_int. These internal clock signals are either
derived from external source via the CLK(R/X) pins or driven by the sample rate
generator clock (CLKG) internal to the McBSP.

When FSR and FSX are outputs driven by the sample rate generator, they are
generated (transition to their active state) on the rising edge of the internal
clock, CLK(R/X)_int. Similarly, data on DX is output on the rising edge of
CLKX_int. See section 12.3.4.6 for more information.

FSRP, FSXP, CLKRP, and CLKXP configure the polarities of FSR, FSX, CLKR,
and CLKX, as indicated in Table 12–7. All frame sync signals (FSR_int and
FSX_int) internal to the serial port are active high. If the serial port is configured
for external frame synchronization (FSR/FSX are inputs to the McBSP) and
FSRP = FSXP = 1, the external active (low) frame sync signals are inverted be-
fore being sent to the receiver signal (FSR_int) and transmitter signal (FSX_int).
Similarly, if internal synchronization is selected (FSR/FSX are outputs and
GSYNC = 0), the internal active (high) sync signals are inverted if the polarity bit
FS(R/X)P = 1, before being sent to the FS(R/X) pin. Figure 12–36 shows this in-
version using XOR gates.

On the transmit side, the transmit clock polarity bit, CLKXP, sets the edge used
to shift and clock out transmit data. Data is always transmitted on the rising
edge of CLKX_int. If CLKXP = 1 and external clocking is selected (CLKXM =
0 and CLKX is an input), the external falling-edge-triggered input clock on
CLKX is inverted to a rising-edge-triggered clock before being sent to the
transmitter. If CLKXP = 1 and internal clocking is selected (CLKXM = 1 and
CLKX is an output pin), the internal (rising-edge-triggered) clock, CLKX_int,
is inverted before being sent out on the CLKX pin.

Similarly, the receiver can reliably sample data that is clocked (by the transmit-
ter) with a rising-edge clock. The receive clock polarity bit, CLKRP, sets the
edge used to sample received data. The receive data is always sampled on
the falling edge of CLKR_int. Therefore, if CLKRP = 1 and external clocking
is selected (CLKRM = 0 and CLKR is an input pin), the external rising-edge
triggered input clock on CLKR is inverted to a falling-edge clock before being
sent to the receiver. If CLKRP = 1 and internal clocking is selected (CLKRM
= 1), the internal falling-edge-triggered clock is inverted to a rising edge before
being sent out on the CLKR pin.

In a system where the same clock (internal or external) is used to clock the re-
ceiver and transmitter, CLKRP = CLKXP. The receiver uses the opposite edge
as the transmitter to ensure valid setup and hold times of data around this edge.
Figure 12–7 shows how data clocked by an external serial device using a rising-
edge clock can be sampled by the McBSP receiver with the falling edge of the
same clock.

Data Transmission and Reception

12-23Multichannel Buffered Serial Port

Figure 12–7. Receive Data Clocking

DR

CLKR_int

B6B7

Data hold
Data setup

ÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁ

12.3.4.2 Frame Synchronization Phases

Frame synchronization indicates the beginning of a transfer on the McBSP.
The data stream following frame synchronization can have up to two phases,
phase 1 and phase 2. The number of phases can be selected by the phase bit,
(R/X)PHASE, in the RCR and XCR. The number of elements per frame and
bits per element can be independently selected for each phase via
(R/X)FRLEN(1/2) and (R/X)WDLEN(1/2), respectively. Figure 12–8 shows a
frame in which the first phase consists of two elements of 12 bits each followed
by a second phase of three elements of 8 bits each. The entire bit stream in
the frame is contiguous; no gaps exist either between elements or phases.
Table 12–11 shows the fields in the receive/transmit control registers (RCR/
XCR) that control the frame length and element length for each phase for both
the receiver and the transmitter. The maximum number of elements per frame
is 128 for a single-phase frame and 256 elements in a dual-phase frame. The
number of bits per element can be 8, 12, 16, 20, 24, or 32.

Note:

For a dual-phase frame with internally generated frame sync, the maximum
number of elements per phase depends on the word length. This is because
the frame period, FPER is only 12-bits wide and, therefore, provides 4096
bits per frame. Hence, the maximum number of 128 elements per single-
phase frame for a total of 256 elements per dual-phase frame applies only
when the WDLEN is 16-bits.

Figure 12–8. Dual-Phase Frame Example

D(R/X)

FS(R/X)

CLK(R/X)

Element 3
Phase 2

Element 2
Phase 2Element 1

Phase 2

Element 2
Phase 1Element 1

Phase 1

ÁÁÁÁ

ÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Data Transmission and Reception

 12-24

Table 12–11. RCR/XCR Fields Controlling Elements per Frame and Bits per Element

Serial Port
RCR/XCR field Control

Serial Port
McBSP0/1 Frame Phase Elements per Frame Bits per Element

Receive 1 RFRLEN1 RWDLEN1

Receive 2 RFRLEN2 RWDLEN2

Transmit 1 XFRLEN1 XWDLEN1

Transmit 2 XFRLEN2 XWDLEN2

12.3.4.3 Frame Length: (R/X)FRLEN(1/2)

Frame length specifies the maximum number of serial elements or logical time
slots or channels that are available for transfer per frame synchronization signal.
In multichannel selection mode, the frame length value is independent of (and
perhaps different from) the actual number of channels that the DSP is pro-
grammed to receive or transmit per frame via the MCR, RCER, and XCER regis-
ters. See section 12.6 for details on multichannel selection mode operation. The
7-bit (R/X)FRLEN(1/2) field in the (R/X)CR supports up to 128 elements per
phase in a frame, as shown in Table 12–12. (R/X)PHASE = 0 selects a single-
phase data frame, and (R/X)PHASE = 1 selects a dual-phase frame for the data
stream. For a single-phase frame, the value of FRLEN2 does not matter. Program
the frame length fields with (w minus 1), where w represents the number of ele-
ments per frame. For Figure 12–8, (R/X)FRLEN1 = 1 or 0000001b and
(R/X)FRLEN2 = 2 or 0000010b.

Table 12–12. McBSP Receive/Transmit Frame Length 1/2 Configuration

(R/X)PHASE (R/X)FRLEN1 (R/X)FRLEN2 Frame Length

0 0 ≤ n ≤ 127 x Single-phase frame; (n+1) words per frame

1 0 ≤ n ≤ 127 0 ≤ m ≤ 127 Dual-phase frame; (n+1) plus (m+1) words per frame

Data Transmission and Reception

12-25Multichannel Buffered Serial Port

12.3.4.4 Element Length: (R/X)WDLEN(1/2)

The (R/X)WDLEN(1/2) fields in the receive/transmit control register determine
the element length in bits per element for the receiver and the transmitter for
each phase of the frame, as indicated in Table 12–11. Table 12–13 shows how
the value of these fields selects particular element lengths in bits. For the exam-
ple in Figure 12–8, (R/X)WDLEN1 = 001b and (R/X)WDLEN2 = 000b. If
(R/X)PHASE = 0, indicating a single-phase frame, (R/X)WDLEN2 is not used
by the McBSP and its value does not matter.

Table 12–13. McBSP Receive/Transmit Element Length Configuration

(R/X)WDLEN
(1/2)

McBSP
Element Length

(Bits)

000 8

001 12

010 16

011 20

100 24

101 32

110 Reserved

111 Reserved

12.3.4.5 Data Packing using Frame Length and Element Length

The frame length and element length can be manipulated to effectively pack
data. For example, consider a situation in which four 8-bit elements are trans-
ferred in a single-phase frame, as shown in Figure 12–9. In this case:

� (R/X)PHASE = 0, indicating a single-phase frame
� (R/X)FRLEN1 = 0000011b, indicating a 4-element frame
� (R/X)WDLEN1 = 000b, indicating 8-bit elements

In this situation, four 8-bit data elements are transferred to and from the McBSP
by the CPU or the DMA/EDMA controller. Four reads of DRR and four writes of
DXR are necessary for each frame.

Data Transmission and Reception

 12-26

Figure 12–9. Single-Phase Frame of Four 8-Bit Elements

DX

FSX

CLKX

DR

FSR

CLKR

Element 4Element 3Element 2Element 1

DXR-to-XSR copyDXR-to-XSR copyDXR-to-XSR copyDXR-to-XSR copy

ÁÁ
ÁÁ

Á
Á

Á
Á

ÁÁ
ÁÁ

ÁÁÁ
RBR-to-DRR copy RBR-to-DRR copyRBR–to–DRR copy RBR–to-DRR copy

The example in Figure 12–9 can also be viewed as a data stream of a single-
phase frame of one 32-bit data element, as shown in Figure 12–10. In this
case:

� (R/X)PHASE = 0, indicating a single phase frame
� (R/X)FRLEN1 = 0b, indicating a 1-element frame
� (R/X)WDLEN1 = 101b, indicating 32-bit elements

In this situation, one 32-bit data element is transferred to and from the McBSP
by the CPU or the DMA/EDMA controller. Thus, one read of DRR and one write
of DXR is necessary for each frame. As a result, the number of transfers is one
fourth that of the previous case. This manipulation reduces the percentage of
bus time required for serial port data movement.

Figure 12–10. Single-Phase Frame of One 32-Bit Element

Element 1

DXR to XSR Copy

RBR to DRR copy

CLKR

FSR

DR

CLKX

FSX

DX

Data Transmission and Reception

12-27Multichannel Buffered Serial Port

12.3.4.6 Data Delay: (R/X)DATDLY

The start of a frame is defined by the first clock cycle in which frame synchro-
nization is active. The beginning of actual data reception or transmission with
respect to the start of the frame can be delayed if required. This delay is called
data delay. RDATDLY and XDATDLY specify the data delay for reception and
transmission, respectively. The range of programmable data delay is zero to
two bit clocks ((R/X)DATDLY = 00b to10b), as indicated in Table 12–8 and
Table 12–9, and shown in Figure 12–11. Typically, a 1-bit delay is selected be-
cause data often follows a 1-cycle active frame sync pulse.

Figure 12–11. Data Delay

B5B6B7

B4B5B6B7

B3B4B5B6B7

D(R/X)
data delay 2

data delay 1
D(R/X)

data delay 0
D(R/X)

FS(R/X)

CLK(R/X)

ÁÁ
ÁÁ

Á
Á

Á
Á

0-bit period

2-bit period

1-bit period

Normally a frame sync pulse is detected or sampled with respect to an edge of
serial clock CLK(R/X). Thus, on a subsequent cycle (depending on data delay
value), data can be received or transmitted. However, in the case of a 0-bit data
delay, the data must be ready for reception and/or transmission on the same
serial clock cycle. For reception, this problem is solved by receive data being
sampled on the first falling edge of CLKR when an active (high) FSR is detected.
However, data transmission must begin on the rising edge of CLKX that gener-
ated the frame synchronization. Therefore, the first data bit is assumed to be in
the XSR and DX. The transmitter then asynchronously detects the frame syn-
chronization, FSX goes active, and it immediately starts driving the first bit to be
transmitted on the DX pin.

Another common operation uses a data delay of 2. This configuration allows the
serial port to interface to different types of T1 framing devices in which the data
stream is preceded by a framing bit. During the reception of such a stream with
a data delay of two bits, the framing bit appears after a 1-bit delay and data ap-
pears after a 2-bit delay). The serial port essentially discards the framing bit from
the data stream, as shown in Figure 12–12. In transmission, by delaying the first

Data Transmission and Reception

 12-28

transfer bit, the serial port essentially inserts a blank period (a high-impedance
period) in place of the framing bit. Here, it is expected that the framing device in-
serts its own framing bit or that the framing bit is generated by another device.
Alternatively, you may pull up or pull down DX to achieve the desired value.

Figure 12–12. 2-Bit Data Delay Used to Discard Framing Bit

B7 B6 B5

2 Bit Periods

Framing Bit

CLKR

FSR

DR

12.3.4.7 Multiphase Frame Example: AC97

Figure 12–13 shows an example of the Audio Codec ’97 (AC97) standard,
which uses the dual-phase frame feature. The first phase consists of a single
16-bit element. The second phase consists of 12 20-bit elements. The phases
are configured as follows:

� (R/X)PHASE = 1b: specifying a dual-phase frame
� (R/X)FRLEN1 = 0b: specifying one element per frame in phase 1
� (R/X)WDLEN1 = 010b: specifying 16 bits per element in phase 1
� (R/X)FRLEN2 = 0001011b: specifying 12 elements per frame in phase 2
� (R/X)WDLEN2 = 011b: specifying 20 bits per element in phase 2
� CLK(R/X)P = 0: specifying that the receive data sampled on the falling edge

of CLKR and the transmit data are clocked on the rising edge of CLKX
� FS(R/X)P = 0: indicating that active frame sync signals are used
� (R/X)DATDLY = 01b: indicating a data delay of one bit clock

Figure 12–13. AC97 Dual-Phase Frame Format�

D(R/X)

FS(R/X)

P2E12P2E11P2E10P2E9P2E8P2E7P2E6P2E5P2E4P2E3P2E2P2E1P1E1

20 bits

16 bits

1-bit data delay

Á
Á† PxEy denotes phase x and element y.

Figure 12–13 shows the AC97 timing near frame synchronization. First the
frame sync pulse itself overlaps the first element. In McBSP operation, the inac-

Data Transmission and Reception

12-29Multichannel Buffered Serial Port

tive-to-active transition of the frame synchronization signal actually indicates
frame synchronization. For this reason, frame synchronization can be high for
an arbitrary number of bit clocks. Only after the frame synchronization is recog-
nized as inactive and then active again is the next frame synchronization recog-
nized.

In Figure 12–14, there is 1-bit data delay. Regardless of the data delay, trans-
mission can occur without gaps. The last bit of the previous (last) element in
phase 2 is immediately followed by the first data bit of the first element in phase
1 of the next data frame.

Figure 12–14. AC97 Bit Timing Near Frame Synchronization�

1-bit data delay

P2E12B1 P1E1B12P1E1B13P1E1B14P1E1B15P2E12B0DR

FSR

CLKR

†� PxEyBz denotes phase x, element y, and bit z.

12.3.5 McBSP Standard Operation

During a serial transfer, there are typically periods of serial port inactivity
between packets or transfers. The receive and transmit frame synchronization
pulse occurs for every serial transfer. When the McBSP is not in the reset state
and has been configured for the desired operation, a serial transfer can be initi-
ated by programming (R/X)PHASE = 0 for a single-phase frame with the required
number of elements programmed in (R/X)FRLEN1. The number of elements can
range from 1 to 128 ((R/X)FRLEN1 = 00h to 7Fh). The required serial element
length is set in the (R/X)WDLEN1 field in the (R/X)CR. If a dual-phase frame is
required for the transfer, RPHASE = 1 and each (R/X)FRLEN(1/2) can be set to
any value between 00h and 7Fh.

Figure 12–15 shows a single-phase data frame of one 8-bit element. Since the
transfer is configured for a 1-bit data delay, the data on the DX and DR pins
are available one bit clock after FS(R/X) goes active. This figure as well as all
others in this section use the following assumptions:

� (R/X)PHASE = 0, specifying a single-phase frame

� (R/X)FRLEN1 = 0b, specifying one element per frame

� (R/X)WDLEN1 = 000b, specifying eight bits per element

� (R/X)FRLEN2 = (R/X)WDLEN2 = Value is ignored.

Data Transmission and Reception

 12-30

� CLK(R/X)P = 0, specifying that the receive data is clocked on the falling
edge and that transmit data is clocked on the rising edge

� FS(R/X)P = 0, specifying that active (high) frame sync signals are used

� (R/X)DATDLY = 01b, specifying a 1-bit data delay

Figure 12–15. McBSP Standard Operation

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

 D(R/X)

 FS(R/X)

C5C6C7B0B2B3B4B5B6B7A0A1 B1

 CLK(R/X)

12.3.5.1 Receive Operation

Figure 12–16 shows serial reception. Once the receive frame synchronization
signal (FSR) transitions to its active state, it is detected on the first falling edge
of the receiver’s CLKR. The data on the DR pin is then shifted into the receive
shift register (RSR) after the appropriate data delay as set by RDATDLY. The con-
tents of RSR is copied to RBR at the end of every element on the rising edge of
the clock, provided RBR is not full with the previous data. Then, an RBR-to-DRR
copy activates the RRDY status bit to 1 on the following falling edge of CLKR. This
indicates that the receive data register (DRR) is ready with the data to be read
by the CPU or the DMA controller. RRDY is deactivated when the DRR is read
by the CPU or the DMA controller.

Figure 12–16. Receive Operation

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Read of DRR
(B)

RBR-to-DRR copy
(B)

Read of DRR
(A)

RBR-to-DRR copy
(A)

RRDY

 DR

 FSR

C5C6C7B0B2B3B4B5B6B7A0A1 B1

 CLKR

Data Transmission and Reception

12-31Multichannel Buffered Serial Port

12.3.5.2 Transmit Operation

Once transmit frame synchronization occurs, the value in the transmit shift
register, XSR, is shifted out and driven on the DX pin after the appropriate data
delay as set by XDATDLY. XRDY is activated after every DXR-to-XSR copy on
the following falling edge of CLKX, indicating that the data transmit register
(DXR) can be written with the next data to be transmitted. XRDY is deactivated
when the DXR is written by the CPU or the DMA controller. Figure 12–17 illus-
trates serial transmission. See section 12.3.7.4 for information on transmit op-
eration when the transmitter is pulled out of reset (XRST = 1).

Figure 12–17. Transmit Operation

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Write of DXR
(D)

DXR to XSR copy
(C)

Write of DXR
(C)

XRDY

 DX

 FSX

C5C6C7B0B2B3B4B5B6B7A0A1

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

B1

 CLKX

DXR to XSR copy
(B)

12.3.5.3 Maximum Frame Frequency

The frame frequency is determined by the following equation, which calculates
the period between frame synchronization signals:

Frame frequency �
Bit�clock frequency

Number of bit clocks between frame sync signals

The frame frequency may be increased by decreasing the time between frame
synchronization signals in bit clocks (which is limited only by the number of bits
per frame). As the frame transmit frequency is increased, the inactivity period
between the data frames for adjacent transfers decreases to 0. The minimum
time between frame synchronization pulses is the number of bits transferred per
frame. This time also defines the maximum frame frequency, which is calculated
by the following equation:

Maximum frame frequency �
Bit�clock frequency

Number of bits per frame

Figure 12–18 shows the McBSP operating at maximum frame frequency. The
data bits in consecutive frames are transmitted continuously with no inactivity

Data Transmission and Reception

 12-32

between bits. If there is a 1-bit data delay, as shown, the frame synchronization
pulse overlaps the last bit transmitted in the previous frame.

Figure 12–18. Maximum Frame Frequency Transmit and Receive

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁ
ÁÁ

A2 D(R/X)

 FS(R/X)

C6C7B0B2B3B4B5B6B7A0A1 B1

 CLK(R/X)

Note:

For (R/X)DATDLY = 0, the first bit of data transmitted is asynchronous to
CLKX, as shown in Figure 12–11.

12.3.6 Frame Synchronization Ignore

The McBSP can be configured to ignore transmit and receive frame synchro-
nization pulses. The (R/X)FIG bit in the (R/X)CR can be set to 0 to recognize
frame sync pulses, or it can be set to 1 to ignore frame sync pulses. This way,
you can use (R/X)FIG either to pack data, if operating at maximum frame fre-
quency, or to ignore unexpected frame sync pulses.

12.3.6.1 Frame Sync Ignore and Unexpected Frame Sync Pulses

RFIG and XFIG are used to ignore unexpected internal or external frame sync
pulses. Any frame sync pulse is considered unexpected if it occurs one or more
bit clocks earlier than the programmed data delay from the end of the previous
frame specified by ((R/X)DATDLY). Setting the frame ignore bits to 1 causes
the serial port to ignore these unexpected frame sync signals.

In reception, if not ignored (RFIG = 0), an unexpected FSR pulse discards the
contents of RSR in favor of the incoming data. Therefore, if RFIG = 0, an unex-
pected frame synchronization pulse aborts the current data transfer, sets
RSYNCERR in the SPCR to 1, and begins the reception of a new data ele-
ment. When RFIG = 1, the unexpected frame sync pulses are ignored.

In transmission, if not ignored (XFIG = 0), an unexpected FSX pulse aborts the
ongoing transmission, sets the XSYNCERR bit in the SPCR to 1, and reiniti-
ates transmission of the current element that was aborted. When XFIG = 1,
unexpected frame sync signals are ignored.

Data Transmission and Reception

12-33Multichannel Buffered Serial Port

Figure 12–19 shows that element B is interrupted by an unexpected frame sync
pulse when (R/X)FIG = 0. The reception of B is aborted (B is lost), and a new data
element (C) is received after the appropriate data delay. This condition causes a
receive synchronization error and thus sets the RSYNCERR bit. However, for
transmission, the transmission of B is aborted and the same data (B) is retrans-
mitted after the appropriate data delay. This condition is a transmit synchronization
error and thus sets the XSYNCERR bit. Synchronization errors are discussed in
sections 12.3.7.2 and 12.3.7.5.

Figure 12–19. Unexpected Frame Synchronization With (R/X)FIG = 0

A0

Current data retransmitted

New data received

(R/X)SYNCERR

DX C6C7B0B1B2B3B4B5B6B7B6B7A0

DR

 FS(R/X)

D6D7C0C2C3C4C5C6C7B6B7 C1

 CLK(R/X)

Frame sync aborts current transfer

Figure 12–20 shows McBSP operation when unexpected internal or external frame
synchronization signals are ignored by setting (R/X)FIG = 1. Here, the transfer of
element B is not affected by an unexpected frame synchronization.

Data Transmission and Reception

 12-34

Figure 12–20. Unexpected Frame Synchronization With (R/X)FIG = 1

(R/X)SYNCERR
(low)

A0D(R/X)

 FS(R/X)

C4C5C6B0B1B2B3B4B5B6B7 C7

 CLK(R/X)

Frame synchronization ignored

12.3.6.2 Data Packing using Frame Sync Ignore Bits

Section 12.3.4.5 describes one method of changing the element length and frame
length to simulate 32-bit serial element transfers, thus requiring much less bus
bandwidth than four 8-bit transfers require. This example works when there are
multiple elements per frame. Now consider the case of the McBSP operating at
maximum packet frequency, as shown in Figure 12–21. Here, each frame has
only a single 8-bit element. This stream takes one read transfer and one write
transfer for each 8-bit element. Figure 12–22 shows the McBSP configured to
treat this stream as a continuous stream of 32-bit elements. In this example,
(R/X)FIG is set to 1 to ignore unexpected subsequent frames. Only one read
transfer and one write transfer is needed every 32-bits. This configuration effec-
tively reduces the required bus bandwidth to one-fourth of the bandwidth needed
to transfer four 8-bit blocks.

Data Transmission and Reception

12-35Multichannel Buffered Serial Port

Figure 12–21. Maximum Frame Frequency Operation With 8-Bit Data

DXR-to-XSR copyDXR-to-XSR copyDXR-to-XSR copy DXR-to-XSR copy

 DX

 FSX

 CLKX

Element 4Element 3Element 2

 DR

Element 1

 FSR

 CLKR

RBR-to-DRR copyRBR-to-DRR copy RBR-to-DRR copyRBR-to-DRR copy

Figure 12–22. Data Packing at Maximum Frame Frequency With (R/X)FIG = 1

Frame ignored

Frame ignored

Frame ignored

Frame ignored

Frame ignored

Frame ignored

DXR-to-XSR copy

 DX

 FSX

 CLKX

RBR-to-DRR copy

 DR

Element 1

 FSR

 CLKR

Data Transmission and Reception

 12-36

12.3.7 Serial Port Exception Conditions

There are five serial port events that can constitute a system error:
� Receive overrun (RFULL = 1)
� Unexpected receive frame synchronization (RSYNCERR = 1)
� Transmit data overwrite
� Transmit empty (XEMPTY = 0)
� Unexpected transmit frame synchronization (XSYNCERR = 1)

12.3.7.1 Reception With Overrun: RFULL

RFULL = 1 in the SPCR indicates that the receiver has experienced overrun
and is in an error condition. RFULL is set when the following conditions are
met:

� DRR has not been read since the last RBR-to-DRR transfer.
� RBR is full and an RBR-to-DRR copy has not occurred.
� RSR is full and an RSR-to-RBR transfer has not occurred.

The data arriving on DR is continuously shifted into RSR. Once a complete
element is shifted into RSR, an RSR-to-RBR transfer can occur only if an RBR-
to-DRR copy is complete. Therefore, if DRR has not been read by the CPU or
the DMA controller since the last RBR-to-DRR transfer (RRDY = 1), an RBR-
to-DRR copy does not take place until RRDY = 0. This prevents an RSR-to-
RBR copy. New data arriving on the DR pin is shifted into RSR, and the pre-
vious contents of RSR is lost. After the receiver starts running from reset, a
minimum of three elements must be received before RFULL can be set, be-
cause there was no last RBR-to-DRR transfer before the first element.

This data loss can be avoided if DRR is read no later than two and a half CLKR
cycles before the end of the third element (data C) in RSR, as shown in
Figure 12–24.

Either of the following events clears the RFULL bit to 0 and allows subsequent
transfers to be read properly:

� Reading DRR
� Resetting the receiver (RRST = 0) or the device

Another frame synchronization is required to restart the receiver.

Figure 12–23 shows the receive overrun condition. Because element A is not
read before the reception of element B is complete, B is not transferred to DRR
yet. Another element, C, arrives and fills RSR. DRR is finally read, but not earli-
er than two and one half cycles before the end of element C. New data D over-
writes the previous element C in RSR. If RFULL is still set after the DRR is read,
the next element can overwrite D if DRR is not read in time.

Data Transmission and Reception

12-37Multichannel Buffered Serial Port

Figure 12–23. Serial Port Receive Overrun

D7A1 A0 B7 B6 B5 B4 B3 B2 B1 B0 C7 C6 C5 C4 C3 C2 C1 C0

No RBR–to–DRR copy (B)

RBR–to–DRR copy (A)

No Read of DRR (A)
No RSR–to–RBR copy(C)

No Read of DRR(A)

CLKR

FSR

DR

RRDY

RFULL

Figure 12–24 shows the case in which RFULL is set but the overrun condition
is averted by reading the contents of DRR at least two and a half cycles before
the next element, C, is completely shifted into RSR. This ensures that a RBR-
to-DRR copy of data B occurs before the next element is transferred from RSR
to RBR.

Figure 12–24. Serial Port Receive Overrun Avoided

A1 A0 B7 B6 B5 B4 B3 B2 B1 B0 C7 C6 C5 C4 C3 C2 C1 C0

CLKR

FSR

DR

RRDY

RFULL RBR–to–DRR (B)
Read of DRR (A)

RBR–to–DRR copy (A)

No Read of DRR (A) No RBR–to–DRR copy (B)

12.3.7.2 Unexpected Receive Frame Synchronization: RSYNCERR

Figure 12–25 shows the decision tree that the receiver uses to handle all incom-
ing frame synchronization pulses. The diagram assumes that the receiver has
been activated (RRST = 1). Unexpected frame sync pulses can originate from
an external source or from the internal sample rate generator. An unexpected
frame sync pulse is defined as a sync pulse which occurs RDATDLY bit clocks
earlier than the last transmitted bit of the previous frame. Any one of three cases
can occur:

� Case 1: Unexpected FSR pulses with RFIG = 1. This case is discussed in
section 12.3.6.1 and shown in Figure 12–20. Here, receive frame sync
pulses are ignored and the reception continues.

Data Transmission and Reception

 12-38

� Case 2: Normal serial port reception. There are three reasons for a receive
not to be in progress:
� This FSR is the first after RRST = 1.
� This FSR is the first after DRR has been read clearing an RFULL con-

dition.
� The serial port is in the inter-packet intervals. The programmed data

delay (RDATDLY) for reception may start during these inter-packet in-
tervals for the first bit of the next element to be received. Thus, at maxi-
mum frame frequency, frame synchronization can still be received
RDATDLY bit clocks before the first bit of the associated element.

For this case, reception continues normally, because these are not unex-
pected frame sync pulses.

� Case 3: Unexpected receive frame synchronization with RFIG = 0 (unex-
pected frame not ignored). This case was shown in Figure 12–19 for maxi-
mum packet frequency. Figure 12–26 shows this case during normal
operation of the serial port with time intervals between packets. Unex-
pected frame sync pulses are detected when they occur the value in
RDATDLY bit clocks before the last bit of the previous element is received
on DR. In both cases, RSYNCERR in the SPCR is set. RSYNCERR can
be cleared only by receiver reset or by writing a 0 to this bit in the SPCR.
If RINTM = 11b in the SPCR, RSYNCERR drives the receive interrupt
(RINT) to the CPU.

Note:

Note that the RSYNCERR bit in the SPCR is a read/write bit, so writing a 1
to it sets the error condition. Typically, writing a 0 is expected.

Data Transmission and Reception

12-39Multichannel Buffered Serial Port

Figure 12–25. Decision Tree Response to Receive Frame Synchronization Pulse

No

Yes

No

Yes

RFIG = 1 ?

Unexpected
frame sync

pulse ?

Start next reception.
Previous element is lost.

Normal reception

Set RSYNCERR.
Abort reception.

Ignore frame pulse.
Receiver continues running.

Start receiving data

sync pulse occurs
Receive frame

Case 1:

Case 2:

Case 3:

Figure 12–26. Unexpected Receive Synchronization Pulse

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

RSYNCERR

RRDY

 DR

 FSR

C1 C0B7A0

 CLKR

Unexpected frame synchronization

RBR-to-DRR copy
Read of DRR

B6 B5 B4 C7 C6 C5 C4 C3 C2A1

RBR-to-DRR copyRead of DRR

12.3.7.3 Transmit With Data Overwrite

Figure 12–27 shows what happens if the data in DXR is overwritten before it is
transmitted. Suppose you load the DXR with data C. A subsequent write to the
DXR overwrites C with D before C is copied to the XSR. Thus, C is never trans-
mitted on DX. The CPU can avoid overwriting data by polling XRDY before writ-
ing to DXR or by waiting for a programmed XINT to be triggered by XRDY
(XINTM = 00b). The DMA/EDMA controller can avoid overwriting by synchroniz-
ing data writes with XEVT.

Data Transmission and Reception

 12-40

Figure 12–27. Transmit With Data Overwrite

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁWrite of DXR (D)

D6D7B0B1B2B3B4B5B6A1

Write of DXR (E)DXR-to-XSR copy (D)Write of DXR (C)

XRDY

DX

 FSX

B7A0

 CLKX

DXR-to-XSR copy (B)

12.3.7.4 Transmit Empty: XEMPTY

XEMPTY indicates whether the transmitter has experienced under flow. Either
of the following conditions causes XEMPTY to become active (XEMPTY = 0):
� During transmission, DXR has not been loaded since the last DXR-to-XSR

copy, and all bits of the data element in the XSR have been shifted out on
DX.

� The transmitter is reset (XRST = 0 or the device is reset) and then re-
started.

During underflow condition, the transmitter continues to transmit the old data
in DXR for every new frame sync signal FSX (generated by an external device,
or by the internal sample rate generator) until a new element is loaded into
DXR by the CPU or the DMA/EDMA controller. XEMPTY is deactivated
(XEMPTY = 1) when this new element in DXR is transferred to XSR. In the
case when the FSX is generated by a DXR–to–XSR copy (FSXM=1 in the PCR
and FSGM=0 in SRGR), the McBSP does not generate any new frame sync
until new data is written to the DXR and a DXR–to–XSR copy occurs.

When the transmitter is taken out of reset (XRST = 1), it is in a transmit ready
(XRDY = 1) and transmit empty (XEMPTY = 0) condition. If DXR is loaded by
the CPU or the DMA controller before FSX goes active, a valid DXR-to-XSR
transfer occurs. This allows for the first element of the first frame to be valid
even before the transmit frame sync pulse is generated or detected. Alterna-
tively, if a transmit frame sync is detected before DXR is loaded, 0s are output
on DX.

Figure 12–28 depicts a transmit underflow condition. After B is transmitted, B
is retransmitted on DX if you fail to reload the DXR before the subsequent
frame synchronization. Figure 12–29 shows the case of writing to DXR just be-
fore a transmit underflow condition that would otherwise occur. After B is trans-
mitted, C is written to DXR before the next transmit frame sync pulse occurs

Data Transmission and Reception

12-41Multichannel Buffered Serial Port

Figure 12–28. Transmit Empty

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

B4B5

XEMPTY

B6B7B0B1B2B3B4B5B6A1

XRDY

DX

 FSX

B7A0

 CLKX

Write of DXR (C)DXR-to-XSR copy (B)

Figure 12–29. Transmit Empty Avoided

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

XEMPTY

XRDY

DX

 FSX

 CLKX

DXR-to-XSR copy (B)
Write of DXR (C)

C5C6C7B0B1B2B3B4B5B6A1 B7A0

DXR-to-XSR copy (C)

12.3.7.5 Unexpected Transmit Frame Synchronization: XSYNCERR

Figure 12–30 shows the decision tree that the transmitter uses to handle all
incoming frame synchronization signals. The diagram assumes that the trans-
mitter has been started (XRST = 1). An unexpected transmit frame sync pulse
is defined as a sync pulse that occurs XDATDLY bit clocks earlier than the last
transmitted bit of the previous frame. Any one of three cases can occur:
� Case 1: Unexpected FSX pulses with XFIG = 1. This case is discussed in

section 12.3.6.1 and shown in Figure 12–20. In this case, unexpected
FSX pulses are ignored, and the transmission continues.

� Case 2: FSX pulses with normal serial port transmission. This situation is
discussed in section 12.3.5.3. There are two possible reasons for a trans-
mit not to be in progress:
� This FSX pulse is the first one to occur after XRST = 1.
� The serial port is in the interpacket intervals. The programmed data

delay (XDATDLY) may start during these interpacket intervals before
the first bit of the next element is transmitted. Thus, if operating at

Data Transmission and Reception

 12-42

maximum packet frequency, frame synchronization can still be re-
ceived XDATDLY bit clocks before the first bit of the associated ele-
ment.

� Case 3: Unexpected transmit frame synchronization with XFIG = 0. The
case for frame synchronization with XFIG = 0 at maximum packet frequen-
cy is shown in Figure 12–19. Figure 12–31 shows the case for normal op-
eration of the serial port with interpacket intervals. In both cases, XSYN-
CERR in the SPCR is set. XSYNCERR can be cleared only by transmitter
reset or by writing a 0 to this bit in the SPCR. If XINTM = 11b in the SPCR,
XSYNCERR drives the receive interrupt (XINT) to the CPU.

Note:

The XSYNCERR bit in the SPCR is a read/write bit, so writing a 1 to it sets the
error condition. Typically, writing a 0 is expected.

Figure 12–30. Response to Transmit Frame Synchronization

No

Yes

No

Yes

XFIG = 1 ?

Unexpected
frame sync

pulse ?

Restart current transfer.

Normal transmission

Set XSYNCERR.
Abort transfer.

Ignore frame pulse.
Transmitter continues running.

Start new transmit.

Transmit frame
sync pulse occurs.

Case 1:

Case 2:

Case 3:

Data Transmission and Reception

12-43Multichannel Buffered Serial Port

Figure 12–31. Unexpected Transmit Frame Synchronization Pulse

A1 B2B3B4B5B6B7B4B5B6

XSYNCERR

XRDY

 DX

 FSX

B1 B0B7A0

 CLKX

Unexpected frame synchronization

Write of DXR (C) DXR-to-XSR (C)
Write of DXR (D)

DXR-to-XSR copy (B)

12.3.8 Receive Data Justification and Sign Extension: RJUST

RJUST in the SPCR selects whether data in the RBR is right- or left-justified
(with respect to the MSB) in the DRR. If right justification is selected, RJUST
further selects whether the data is sign-extended or zero-filled. Table 12–14
summarizes the effect that various values of RJUST have on an example
12-bit receive data value ABCh.

Table 12–14. Effect of RJUST Values With 12-Bit Example Data ABCh

RJUST value Justification Extension Value in DRR

00 Right Zero-fill MSBs 0000 0ABCh

01 Right Sign-extend MSBs FFFF FABCh

10 Left Zero-fill LSBs ABC0 0000h

11 Reserved Reserved Reserved

12.3.9 32-Bit Bit Reversal: (R/X)WDREVRS

The 32-bit bit reversal feature is only available on the C621x/C671x/C64x de-
vice. Normally all transfers are sent and received with the MSB first. However,
you can reverse the receive/transmit bit ordering of a 32-bit element (LSB first)
by setting all of the following:
� (R/X)WDREVRS = 1 in the receive/transmit control register RCR/XCR.
� (R/X)COMPAND = 01b in the RCR/XCR.
� (R/X)WDLEN(1/2) = 101b in the RCR/XCR to indicate 32-bit elements.

When you set the register fields as above, the bit ordering of the 32-bit element
is reversed before being received by or sent from the serial port. If the
(R/W)WDREVRS and (R/X)COMPAND fields are set, but the element size is
not set to 32-bit, operation is undefined.

m-Law/A-Law Companding Hardware Operation

 12-44

12.4 µ-Law/A-Law Companding Hardware Operation

Companding (compressing and expanding) hardware allows compression
and expansion of data in either µ-law or A-law format. The specification for
µ-law and A-law log PCM is part of the CCITT G.711 recommendation. The
companding standard employed in the United States and Japan is µ-law and
allows 14 bits of dynamic range. The European companding standard is A-law
and allows 13 bits of dynamic range. Any values outside these ranges are set
to the most positive or most negative value. Thus, for companding to work best
here, the data transferred to and from the McBSP via the CPU or the DMA con-
troller must be at least 16 bits wide.

The µ-law and A-law formats encode data into 8-bit code elements. Compan-
ded data is always 8-bits-wide, so the appropriate (R/X)WDLEN(1/2) must be
set to 0, indicating an 8-bit serial data stream. If companding is enabled and
either phase of the frame does not have an 8-bit element length, companding
continues as if the element length is eight bits.

When companding is used, transmit data is encoded according to the
specified companding law, and receive data is decoded to 2s-complement
format. Companding is enabled and the desired format is selected by
appropriately setting (R/X)COMPAND in the (R/X)CR, as indicated in Table 12–8
and Table 12–9. Compression occurs during the process of copying data from
DXR to XSR and expansion occurs from RBR to DRR, as shown in Figure 12–32.

Figure 12–32. Companding Flow

ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ168

32168

From CPU/DMADX

DR To CPU/DMAÁÁÁ
ÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

DRRRJUST

DXR

Expand

Compress

RBR

XSR

RSR

For transmit data to be compressed, it should be 16-bit, left-justified data, such
as LAW16 as shown in Figure 12–33. The value can be either 13 or 14 bits
wide, depending on the companding law. This 16-bit data is aligned in DXR,
as shown in Figure 12–34.

µ-LAW/A-LAW Companding Hardware Operation

m-Law/A-Law Companding Hardware Operation

12-45Multichannel Buffered Serial Port

Figure 12–33. Companding Data Formats

LAW16 15 2 1 0

µ-Law Value 0

LAW16 15 3 2 0

A-law Value 0

Figure 12–34. Transmit Data Companding Format in DXR
DXR bits

31 16 15 0

Don’t care LAW16

For reception, the 8-bit compressed data in RBR is expanded to a left-justified
16-bit data, LAW16. This can be further justified to a 32-bit data by programming
the RJUST field in the SPCR as shown in Table 12–15.

Table 12–15. Justification of Expanded Data in DRR

DRR Bits

RJUST 31 16 15 0

00 0 LAW16

01 sign LAW16

10 LAW16 0

11 Reserved

12.4.1 Companding Internal Data

If the McBSP is otherwise unused, the companding hardware can compand
internal data. This hardware can be used to:

� Convert linear data to the appropriate µ-law or A-law format

� Convert µ-law or A-law data to the linear format

� Observe the quantization effects in companding by transmitting linear
data and compressing and re-expanding this data. This is useful only if
both XCOMPAND and RCOMPAND enable the same companding format.

µ-LAW/A-LAW Companding Hardware Operation

m-Law/A-Law Companding Hardware Operation

 12-46

Figure 12–35 shows two methods by which the McBSP can compand internal
data. Data paths for these two methods are indicated by (DLB) and (non-DLB)
arrows.

� Non-DLB: When both the transmit and receive sections of the serial port
are reset, the DRR and DXR are internally connected through the com-
panding logic. Values from the DXR are compressed as determined by
XCOMPAND and then expanded as determined by RCOMPAND. RRDY
and XRDY bits are not set. However, data is available in DRR four CPU
clocks after being written to DXR. The advantage of this method is its
speed. The disadvantage is that there is no synchronization available to
the CPU and the DMA/EDMA controller to control the flow of data.

� DLB: The McBSP is enabled in digital loopback (DLB) mode with compand-
ing appropriately enabled by RCOMPAND and XCOMPAND. Receive and
transmit interrupts (RINT when RINTM = 0 and XINT when XINTM = 0) or
synchronization events (REVT and XEVT) allow synchronization of the CPU
or the DMA/EDMA controller to these conversions, respectively. Here, the
time for this companding depends on the serial bit rate selected.

Figure 12–35. Companding of Internal Data

ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ(DLB)

From CPU or
DMA/EDMA controller

DX

DR To CPU or
DMA/EDMA
controller

ÁÁÁ
ÁÁÁ

ÁÁÁ
ÁÁÁ

DRRRJUST

DXR

Expand

Compress

RBR

XSR

RSR

(non-DLB)

12.4.1.1 Bit Ordering

Normally, all transfers on the McBSP are sent and received with the MSB first.
However, certain 8-bit data protocols (that do not use companded data) require
the LSB to be transferred first. By setting the (R/X)COMPAND = 01b in the
(R/X)CR, the bit ordering of 8-bit elements is reversed (LSB first) before being
sent to the serial port. Like the companding feature, this feature is enabled only
if the appropriate (R/X)WDLEN(1/2) bit is set to 0, indicating that 8-bit elements
are to be transferred serially.

For the C621x/C671x/C64x, a 32–bit bit reversal feature is also available. See
section 12.3.9.

µ-LAW/A-LAW Companding Hardware Operation

Programmable Clock and Framing

12-47Multichannel Buffered Serial Port

12.5 Programmable Clock and Framing

The McBSP has several means of selecting clocking and framing for both the
receiver and transmitter. Clocking and framing can be sent to both portions by
the sample rate generator. Each portion can select external clocking and/or
framing independently. Figure 12–36 is a block diagram of the clock and frame
selection circuitry.

Figure 12–36. Clock and Frame Generation

0

1

1

0

CLKXM

0

1

Inset:

FSX pin

FSR pinCLKR pin

CLKX pin

FSG

FSX_intCLKX_int

Frame selectionClock selection

(R/X) IOEN

CLKG

FSR_intCLKS pin

internal clock source†

DXR to XSR

FSGM

0

1

FSR_intCLKR_int

FSRP

1

0 0

1

FSRM

FSRM & GSYNCFSRP

0

1
FSXP

See inset

FSXP

FSXM

FSXM

generator

Sample
rate

Receive

Transmit

DLB
CLKRM

CLKRM

CLKXM

CLKRP

CLKRP

CLKXP

CLKXP

See inset

See inset See inset

Yyy_int

DLB

† Internal clock source:
 CPU clock for C620x/C670x
 CPU/2 clock for C621x/C671x
 CPU/4 clock for C64x.

12.5.1 Sample Rate Generator Clocking and Framing

The sample rate generator is composed of a 3-stage clock divider that provides
a programmable data clock (CLKG) and framing signal (FSG), as shown in
Figure 12–37. CLKG and FSG are McBSP internal signals that can be pro-
grammed to drive receive and/or transmit clocking, CLK(R/X), and framing,
FS(R/X). The sample rate generator can be programmed to be driven by an inter-
nal clock source or an internal clock derived from an external clock source.

Programmable Clock and Framing

 12-48

The sample rate generator is not used when CLKX, FSX, CLKR, FSR are driven
by an external source. Therefore, the GRST field in SPCR does not need to be
enabled (GRST=1) for this setup. The three stages of the sample rate generator
circuit compute:

� Clock divide-down (CLKGDV): The number of input clocks per data bit
clock

� Frame period (FPER): The frame period in data bit clocks

� Frame width (FWID): The width of an active frame pulse in data bit clocks

In addition, a frame pulse detection and clock synchronization module allows
synchronization of the clock divide-down with an incoming frame pulse. The
operation of the sample rate generator during device reset is described in
section 12.3.1.

Figure 12–37. Sample Rate Generator

CLKS

CLKSP

FSR

GSYNC

FSG

CLKG
CLKSM

CLKGDV FPER FWID

pulse
Frame

synchronization
and clock
detection

Frame pulse

internal clock source†

1

0

CLKSRG

† Internal clock source:
 CPU clock for C620x/C670x
 CPU/2 clock for C621x/C671x
 CPU/4 clock for C64x.

12.5.1.1 Sample Rate Generator Register (SRGR)

The sample rate generator register (SRGR) shown in Figure 12–38 and
summarized in Table 12–16, controls the operation of various features of
the sample rate generator. This section describes the fields in the SRGR.

Programmable Clock and Framing

12-49Multichannel Buffered Serial Port

Figure 12–38. Sample Rate Generator Register (SRGR)
31 30 29 28 27 16

GSYNC CLKSP CLKSM FSGM FPER

RW, +0 RW, +0 RW, +1 RW, +0 RW, +0
15 8 7 0

FWID CLKGDV

RW, +0 RW, +1

Table 12–16. Sample Rate Generator Register (SRGR) Field Summary
Bit No . Name Function Section

31 GSYNC Sample rate generator clock synchronization. Used only when the external
clock (CLKS) drives the sample rate generator clock (CLKSM = 0).

GSYNC = 0: The sample rate generator clock (CLKG) is free running.

GSYNC = 1: (CLKG) is running but is resynchronized, and the frame sync
signal (FSG) is generated only after the receive frame synchro-
nization signal (FSR) is detected. Also, the frame period
(FPER) is a don’t care because the period is dictated by the ex-
ternal frame sync pulse.

12.5.2.4

30 CLKSP CLKS polarity clock edge select. Used only when the external clock CLKS
drives the sample rate generator clock (CLKSM = 0).

CLKSP = 0: The rising edge of CLKS generates CLKG and FSG.

CLKSP = 1: The falling edge of CLKS generates CLKG and FSG.

12.5.2.3

29 CLKSM McBSP sample rate generator clock mode

CLKSM = 0: The sample rate generator clock is derived from CLKS.

CLKSM = 1: (Default value) The sample rate generator clock is derived from
the internal clock source.

12.5.2.1

28 FSGM Sample rate generator transmit frame synchronization mode. Used when
FSXM = 1 in PCR.

FSGM = 0: The transmit frame sync signal (FSX) is generated on every DXR-
to-XSR copy.

FSGM = 1: The transmit frame sync signal is driven by the sample rate gen-
erator frame sync signal, FSG.

12.5.3.3

27–16 FPER Frame period. This field’s value plus 1 determines when the next frame sync
signal should become active.

Valid values: 0 to 4095

12.5.3.1

Programmable Clock and Framing

 12-50

Table 12–16. Sample Rate Generator Register (SRGR) Field Summary (Continued)
Name SectionFunctionBit No .

15–8 FWID Frame width. This field’s value plus 1 is the width of the frame sync pulse,
FSG, during its active period.

Valid values: 0 to 255

12.5.3.1

7–0 CLKGDV Sample rate generator clock divider. This value is used as the divide-down
number to generate the required sample rate generator clock frequency. The
default value is 1. Valid values: 0 to 255

12.5.2.2

12.5.1.2 McBSP and Sample Rate Generator Reset Procedure

The McBSP and sample rate generator reset and initialization procedure is as
follows:

1) Ensure that no portion of the McBSP is using the internal sample-rate gen-
erator signals CLKG and FSG (If necessary, set /RRST and/or /XRST to
0). Set /FRST=/GRST=0 in the SPCR. If the device has been reset
(/RRST=/XRST=/FRST=/GRST=0), this step is not required. CLKG and
FSG are inactive low when /GRST=0.

2) Program the SRGR as required. Other control registers can be pro-
grammed if the respective portion (receiver/transmitter) is in reset.

3) Wait two CLKSRG clocks for proper internal synchronization.

4) To use the sample rate generator, set /GRST=1 and wait two CLKG bit
clocks for synchronization. Skip this step if the internal sample rate gener-
ator is not used.

5) Set up data acquisition as desired (set up DMA/EDMA or CPU data trans-
fers).

6) Set /XRST and/or /RRST to 1 to enable the corresponding section of the
serial port. If the internal sample rate generator is not used, the McBSP
is now ready to transmit and/or receive (skip step 7 and 8).

7) On the next rising edge of CLKSRG, CLKG transitions to 1 and starts
clocking with a frequency equal to 1/(CLKGDV+1) of the sample rate gen-
erator input clock (see section 12.5.2.1). If an external device supplies the
frame synchronization signals, the McBSP is now ready to transmit and/or
receive. If the McBSP is the frame master, see also step 8.

8) Set /FRST=1 in the SPCR if an internally generated frame pulse is requi-
red. FSG is generated on an active edge after eight CLKG clocks have
elapsed.

Programmable Clock and Framing

12-51Multichannel Buffered Serial Port

Notes:

1) The appropriate fields in the serial port configuration registers SPCR,
PCR, RCR, XCR, and SRGR should be modified only when the affected
portion of the serial port is in reset.

2) The data transmit register, DXR, should be loaded by the CPU or DMA
only when the transmitter is not in reset (XRST = 1). The exception to this
rule occurs during non-digital loop-back mode, which is described in sec-
tion 12.4.1.

3) The multichannel selection registers MCR, XCER, and RCER can be
modified at any time as long as they are not being used by the current
block in the multichannel selection. See section 12.6.3.2 for more infor-
mation.

12.5.2 Data Clock Generation

When the receive/transmit clock mode is set to 1 (CLK(R/X)M = 1), the data
clocks (CLK(R/X)) are driven by the internal sample rate generator output
clock, CLKG. You can select for the receiver and transmitter from a variety of
data bit clocks including:

� The input clock to the sample rate generator, which can be either the inter-
nal clock source or a dedicated external clock source (CLKS). The
C620x/C670x uses the CPU clock as the internal clock source to the sam-
ple rate generator. The C621x/C671x uses the CPU/2 clock as the internal
clock source, while the C64x uses the CPU/4 clock as the internal clock
source to the sample rate generator.

� The input clock source (internal clock source or external clock CLKS) to
the sample rate generator can be divided down by a programmable value
(CLKGDV) to drive CLKG.

Regardless of the source to the sample rate generator, the rising edge of
CLKSRG (see Figure 12–37) generates CLKG and FSG (see sec-
tion 12.5.2.3).

12.5.2.1 Input Clock Source Mode: CLKSM

The CLKSM bit in the SRGR selects either the internal clock (CLKSM = 1) or
the external clock input (CLKSM = 0), CLKS, as the source for the sample rate
generator input clock. Any divide periods are divide-downs calculated by the
sample rate generator and are timed by this input clock selection.

12.5.2.2 Sample Rate Generator Data Bit Clock Rate: CLKGDV

The first divider stage generates the serial data bit clock from the input clock.
This divider stage uses a counter that is preloaded by CLKGDV and that con-

Programmable Clock and Framing

 12-52

tains the divide ratio value. The output of this stage is the data bit clock that
is output on the sample rate generator output, CLKG, and that serves as the
input for the second and third divider stages.

CLKG has a frequency equal to 1/(CLKGDV+1) of the sample rate generator
input clock. Thus, the sample-rate generator input clock frequency is divided
by a value between 1 and 256. When CLKGDV is odd or equal to 0, the CLKG
duty cycle is 50%. When CLKGDV is an even value (2p) the high state duration
is p + 1 cycles and the low state duration is p cycles.

Refer to the timing requirements in the device data sheet to determine the
maximum McBSP bit rate. CLKGDV should be set appropriately to ensure that
the McBSP clock rate does not exceed the bit rate limit.

12.5.2.3 Bit Clock Polarity: CLKSP

The external clock (CLKS) is selected to drive the sample rate generator clock
divider by selecting CLKSM = 0. In this case, the CLKSP bit in the SRGR
selects the edge of CLKS on which sample rate generator data bit clock
(CLKG) and frame sync signal (FSG) are generated. Since the rising edge of
CLKSRG generates CLKG and FSG, the rising edge of CLKS when CLKSP
= 0 or the falling edge of CLKS when CLKSP = 1 causes the transition on CLKG
and FSG.

12.5.2.4 Bit Clock and Frame Synchronization

When CLKS is selected to drive the sample rate generator (CLKSM = 0),
GSYNC can be used to configure the timing of CLKG relative to CLKS. GSYNC
= 1 ensures that the McBSP and the external device to which it is communicat-
ing are dividing down the CLKS with the same phase relationship. If GSYNC =
0, this feature is disabled and CLKG runs freely and is not resynchronized. If
GSYNC = 1, an inactive-to-active transition on FSR triggers a resynchronization
of CLKG and the generation of FSG. CLKG always begins at a high state after
synchronization. Also, FSR is always detected at the same edge of CLKS that
generates CLKG, regardless of the length the FSR pulse. Although an external
FSR is provided, FSG can still drive internal receive frame synchronization
when GSYNC = 1. When GSYNC = 1, FPER is a don’t care, because the frame
period is determined by the arrival of the external frame sync pulse.

Figure 12–39 and Figure 12–40 show this operation with various polarities of
CLKS and FSR. These figures assume that FWID is 0, for a FSG = 1 CLKG
wide.

These figures show what happens to CLKG when it is initially in sync and
GSYNC = 1, as well as when it is not in sync with the frame synchronization
and GSYNC = 1.

Programmable Clock and Framing

12-53Multichannel Buffered Serial Port

When GSYNC = 1, the transmitter can operate synchronously with the receiv-
er, provided that the following conditions are met:

� FSX is programmed to be driven by the sample rate generator frame sync,
FSG (FSGM = 1 in the SRGR and FSXM = 1 in the PCR). If the input FSR
has timing that enables it to be sampled by the falling edge of CLKG, it can
be used instead by setting FSXM = 0 in the PCR and connecting FSR to
FSX externally.

� The sample-rate generator clock should drive the transmit and receive bit
clock (CLK(R/X)M = 1 in the SPCR). Therefore, the CLK(R/X) pin should
not be driven by any other source.

Figure 12–39. CLKG Synchronization and FSG Generation When GSYNC = 1
and CLKGDV = 1

FSR external (FSRP = 1)

FSG

CLKG (needs resync)

CLKG (no need to resync)

FSR external (FSRP = 0)

CLKS (CLKSP = 0)

CLKS (CLKSP = 1)

Programmable Clock and Framing

 12-54

Figure 12–40. CLKG Synchronization and FSG Generation When GSYNC = 1
and CLKGDV = 3

FSR external (FSRP = 1)

FSG

CLKG (needs resync)

CLKG (no need to resync)

FSR external (FSRP = 0)

CLKS (CLKSP = 0)

CLKS (CLKSP = 1)

12.5.2.5 Digital Loopback Mode: DLB

Setting DLB = 1 in the SPCR enables digital loopback mode. In DLB mode, DR,
FSR, and CLKR are internally connected through multiplexers to DX, FSX, and
CLKX, respectively, as shown in Figure 12–36. DLB mode allows testing of se-
rial port code with a single DSP device. DLB mode cannot be used when the
McBSP is in clock stop mode (CLKSTP=1x in the SPCR). CLKK and FSX must
be enabled as outputs (CLKXM=FSXM=1) in DLB mode.

12.5.2.6 Receive Clock Selection: DLB, CLKRM

Table 12–17 shows how the digital loopback bit (DLB) and the CLKRM bit in
the PCR select the receiver clock. In digital loopback mode (DLB = 1), the
transmitter clock drives the receiver. CLKRM determines whether the CLKR
pin is an input or an output.

Programmable Clock and Framing

12-55Multichannel Buffered Serial Port

Table 12–17. Receive Clock Selection

DLB
in SPCR

CLKRM
in PCR Source of Receive Clock CLKR Function

0 0 CLKR acts as an input driven by the
external clock and inverted as deter-
mined by CLKRP before being used.

Input

0 1 The sample rate generator clock
(CLKG) drives CLKR.

Output. CLKG inverted as determined by
CLKRP before being driven out on CLKR.

1 0 CLKX_int drives the receive clock
CLKR_int as selected and is in-
verted. See Table 12–18.

High impedance

1 1 CLKX_int drives CLKR_int as se-
lected and is inverted. See
Table 12–18.

Output. CLKR (same as CLKX) inverted as
determined by CLKRP before being driven
out.

12.5.2.7 Transmit Clock Selection: CLKXM

Table 12–18 shows how the CLKXM bit in the PCR selects the transmit clock
and whether the CLKX pin is an input or output.

Table 12–18. Transmit Clock Selection

CLKXM
in PCR Source of Transmit Clock CLKX Function

0 The external clock drives the CLKX input pin.
CLKX is inverted as determined by CLKXP
before being used.

Input

1 The sample rate generator clock, CLKG,
drives the transmit clock

Output. CLKG is inverted as determined by
CLKXP before being driven out on CLKX.

Programmable Clock and Framing

 12-56

12.5.3 Frame Sync Signal Generation

Data frame synchronization is independently programmable for the receiver and
the transmitter for all data delay values. When set to 1 the FRST bit in the SPCR
activates the frame generation logic to generate frame sync signals, provided that
FSGM = 1 in SRGR. The frame sync programming options are:

� A frame pulse with a programmable period between sync pulses and a pro-
grammable active width specified in the sample rate generator register
(SRGR).

� The transmitter can trigger its own frame sync signal that is generated by
a DXR-to-XSR copy. This causes a frame sync to occur on every DXR-to-
XSR copy. The data delays can be programmed as required. However,
maximum packet frequency cannot be achieved in this method for data
delays of 1 and 2.

� Both the receiver and transmitter can independently select an external frame
synchronization on the FSR and FSX pins, respectively.

12.5.3.1 Frame Period and Frame Width: FPER and FWID

The FPER block is a 12-bit down counter that can count down the generated
data clocks from 4095 to 0. FPER controls the period of active frame sync
pulses. The FWID block in the sample rate generator is an 8-bit down counter.
The FWID field controls the active width of the frame sync pulse.

When the sample rate generator comes out of reset, FSG is in an inactive (low)
state. After this, when FRST = 1 and FSGM = 1, frame sync signals are gener-
ated. The frame width value (FWID + 1) is counted down on every CLKG cycle
until it reaches 0 when FSG goes low. Thus, the value of FWID+1 determines
an active frame pulse width ranging from 1 to 256 data bit clocks. At the same
time, the frame period value (FPER + 1) is also counting down, and when this
value reaches 0, FSG goes high again, indicating a new frame is beginning.
Thus, the value of FPER + 1 determines a frame length from 1 to 4096 data
bits. When GSYNC = 1, the value of FPER does not matter. Figure 12–41
shows a frame of 16 CLKG periods (FPER = 15 or 00001111b).

Figure 12–41. Programmable Frame Period and Width

19181716151413121110987654321

FSG

 CLKG

Frame width: (FWID + 1) � CLKG

Frame period: (FPER + 1) � CLKG

Programmable Clock and Framing

12-57Multichannel Buffered Serial Port

12.5.3.2 Receive Frame Sync Selection: DLB, FSRM, GSYNC

Table 12–19 explains how you can select various sources to provide the re-
ceive frame synchronization signal. Note that in digital loopback mode
(DLB = 1) the transmit frame sync signal is used as the receive frame sync sig-
nal and that DR is internally connected to DX.

Table 12–19. Receive Frame Synchronization Selection

DLB
in SPCR

FSR
in PCR

GSYNC
in SRGR

Source of Receive Frame
Synchronization FSR Pin Function

0 0 X External frame sync signal drives
the FSR input pin, whose signal is
then inverted as determined by
FSRP before being used as
FSR_int.

Input

0 1 0 Sample rate generator frame
sync signal (FSG) drives
FSR_int, FRST = 1.

Output. FSG is inverted as deter-
mined by FSRP before being
driven out on the FSR pin.

0 1 1 Sample rate generator frame
sync signal (FSG) drives
FSR_int, FRST = 1.

Input. The external frame sync
input on FSR is used to synchro-
nize CLKG and generate FSG.

1 0 0 FSX_int drives FSR_int. FSX is
selected as shown in Table 12–20.

High impedance

1 X 1 FSX_int drives FSR_int and is
selected as shown in Table 12–20.

Input. External FSR is not used for
frame synchronization but is used
to synchronize CLKG and gener-
ate FSG since GSYNC = 1.

1 1 0 FSX_int drives FSR_int and is
selected as shown in Table 12–20.

Output. Receive (same as transmit)
frame synchronization is inverted
as determined by FSRP before be-
ing driven out.

12.5.3.3 Transmit Frame Sync Signal Selection: FSXM, FSGM

Table 12–20 shows how you can select the source of transmit frame synchro-
nization pulses. The three choices are:

� External frame sync input
� The sample rate generator frame sync signal, FSG
� A signal that indicates a DXR-to-XSR copy has been made

Programmable Clock and Framing

 12-58

Table 12–20. Transmit Frame Synchronization Selection

FSXM
in PCR

FSGM
in SRGR

Source of Transmit Frame
Synchronization FSX Pin Function

0 X External frame sync input on the FSX
pin. This is inverted by FSXP before be-
ing used as FSX_int.

Input

1 1 Sample rate generator frame sync signal
(FSG) drives FSX_int. FRST = 1

Output. FSG is inverted by FSXP be-
fore being driven out on FSX.

1 0 A DXR-to-XSR copy activates transmit
frame sync signal.

Output. 1-bit-clock-wide signal inverted
as determined by FSXP before being
driven out on FSX.

12.5.3.4 Frame Detection for Initialization

To facilitate detection of frame synchronization, the receive and transmit CPU
interrupts (RINT and XINT) can be programmed to detect frame synchroniza-
tion by setting RINTM = XINTM = 10b in the SPCR. Unlike other types of serial
port interrupts, this one can operate while the associated portion of the serial
port is in reset (for example, RINT can be activated while the receiver is in re-
set). In that case, the FS(R/X)M and FS(R/X)P still select the appropriate
source and polarity of frame synchronization. Thus, even when the serial port
is in reset, these signals are synchronized to the CPU clock and then sent to
the CPU in the form of RINT and XINT at the point at which they feed the re-
ceive and transmit portions of the serial port. A new frame synchronization
pulse can be detected, after which the CPU can safely take the serial port out
of reset.

12.5.4 Stopping Clocks

There are two ways to stop serial clocks between data transfers. One is using
the SPI CLKSTP mode where clocks are stopped between single-element
transfers. This is described in section 12.7.

The other method is when the clocks are inputs to the McBSP (CLKXM or
CLKRM = 0) and the McBSP operates in non-SPI mode. This means that
clocks can be stopped between frames.

There are two scenarios:

� CLKR, CLKX, FSR, and FSX are all inputs to McBSP.
If the external device stops the serial clock between data transfers, it
needs to restart the clock at least three CLKR/CLKX cycles before the next
frame sync to allow proper synchronization.

Programmable Clock and Framing

12-59Multichannel Buffered Serial Port

� CLKR/CLKX are inputs; FSR/FSX are outputs generated by McBSP .
If the external device stops the serial clock between data transfers, the
McBSP interprets it as a slow-down serial clock. Ensure that there are no
glitches on the CLKR/X lines as the McBSP may interpret them as clock
edge transitions. Since restarting the serial clock is equivalent to a normal
clock transition after a slow CLKR/X cycle, it is not necessary to restart the
serial clock a few cycles early for internal synchronization.

12.5.5 Clocking Examples

12.5.5.1 Double-Rate ST-BUS Clock

Figure 12–42 shows the McBSP timing to be compatible with the Mitel ST-
Bus . The operation is running at maximum frame frequency.

� CLK(R/X)M = 1: CLK(R/X)_int generated internally by sample rate generator

� GSYNC = 1: CLKG is synchronized with the external frame sync signal in-
put on FSR. CLKG is not synchronized (it runs freely) until the frame sync
signal is active. Also, FSR is regenerated internally to form a minimum
pulse width.

� CLKSM = 0: external clock (CLKS) drives the sample rate generator

� CLKSP = 1: falling edge of CLKS generates CLKG and thus CLK(R/X)_int

� CLKGDV = 1: receive clock (shown as CLKR) is half of CLKS frequency

� FS(R/X)P = 1: active (low) frame sync pulse

� (R/X)FRLEN1 = 11111b: 32 elements per frame

� (R/X)WDLEN1 = 0: 8-bit element

� (R/X)PHASE = 0: single-phase frame and thus (R/X)FRLEN2 =
(R/X)WDLEN2 = X

� (R/X)DATDLY = 0: no data delay

Programmable Clock and Framing

 12-60

Figure 12–42. ST-BUS and MVIP Example

Sample point

E2B7E1B0E1B1E1B2E1B3E1B4E1B5E1B6E1B7

E2B7E1B0E1B1E1B2E1B3E1B4E1B5E1B6E1B7

E32B0

2.048-MHz CLKG,
 CLKR_int,

CLKX_int (first FSR)

DR, DX
 (subsequent FSR)

CLKG, CLKR_int,
 CLKX_int

(subsequent FSR)

DR, DX (first FSR)

FSG, FSR_int,
 FSX_int

FSR external

4.096-MHz CLKS

12.5.5.2 Single-Rate ST-BUS Clock

The example in Figure 12–43 is the same as the ST-BUS example, except for
the following items:

� CLKGDV = 0: CLKS drives CLK(R/X)_int without any divide down (single-
rate clock).

� CLKSP = 0: The rising edge of CLKS generates internal clocks CLKG and
CLK(R/X)_int.

Figure 12–43. Single-Rate Clock Example

E2B7E1B0E1B1E1B2E1B3E1B4E1B5E1B6E1B7

E2B7E1B0E1B1E1B2E1B3E1B4E1B5E1B6E1B7

E32B0

CLKG, CLKR_int,
 CLKX_int (first FSR)

DR, DX
 (subsequent FSR)

CLKG, CLKR_int,
CLKX_int

 (subsequent FSR)

DR, DX (first FSR)

FSG, FSR_int, FSX_int

FSR external

CLKS
Sample point

Programmable Clock and Framing

12-61Multichannel Buffered Serial Port

The rising edge of CLKS detects the external FSR. This external frame sync
pulse resynchronizes the internal McBSP clocks and generates the frame sync
for internal use. The internal frame sync is generated so that it is wide enough
to be detected on the falling edge of the internal clocks.

12.5.5.3 Double-Rate Clock

The example in Figure 12–44 is the same as the ST-BUS example except for
the following:

� CLKSP = 0: The rising edge of CLKS generates CLKG and CLK(R/X).

� CLKGDV = 1: CLKG, CLKR_int, and CLKX_int frequencies are half of the
CLKS frequency.

� GSYNC = 0: CLKS drives CLKG. CLKG runs freely and is not resynchro-
nized by FSR.

� FS(R/X)M = 0: Frame synchronization is externally generated. The fram-
ing pulse is wide enough to be detected.

� FS(R/X)P = 0: Active (high) input frame sync signal.

� (R/X)DATDLY = 1: Specifies a data delay of one bit.

Figure 12–44. Double-Rate Clock Example

E2B7E1B0E1B1E1B2E1B3E1B4E1B5E1B6E1B7E32B0

CLK(R/X)_int

 D(R/X)

 FS(R/X)_int

CLKS

Multichannel Selection Operation

 12-62

12.6 Multichannel Selection Operation

The multichannel selection mode allows the McBSP to select independent
channels (elements) for transmit and receive in a single-phase frame. Each
frame represents a time-division multiplexed data stream. For all of the C6000
McBSP, up to 32 elements in a bit stream of up to 128 elements can be enabled
at any given time. The C64x McBSP is an enhanced version that can also select
up to 128 elements at any given time (see section 12.6.4).

If a receive element is not enabled:

� RRDY is not set to 1 upon reception of the last bit of the element.

� RBR is not copied to DRR upon reception of the last bit of the element. Thus,
RRDY is not set active. This feature also implies that no interrupts or synchro-
nization events are generated for this element.

If a transmit element is not enabled:

� DX is in the high impedance state.

� A DXR-to-XSR transfer is not automatically triggered at the end of serial
transmission of the related element.

� XEMPTY and XRDY are not affected by the end of transmission of the re-
lated serial element.

An enabled transmit element can have its data masked or transmitted. When data
is masked, the DX pin is forced to the high-impedance state even though the
transmit channel is enabled.

The following control registers are used in multichannel operation:

� The multichannel control register (MCR)
� The transmit channel enable register (XCER).
� The receive channel enable register (RCER).

Note:

For the C64x enhanced multichannel selection mode only, the XCER and
RCER are replaced by XCERE0 and RCERE0, respectively. Additional reg-
isters XCERE1, XCERE2, XCERE3, RCERE1, RCERE2 and RCERE3 are
also used in this mode.

Multichannel Selection Operation

12-63Multichannel Buffered Serial Port

12.6.1 Multichannel Control Register (MCR)

The multichannel control register (MCR) contains fields that control the multi-
channel selection mode. The MCR fields are shown in Figure 12–45. Descrip-
tions of these fields are summarized in Table 12–21. The enhanced 128-chan-
nel selection mode (selected by the RMCME and XMCME fields), which allows
the McBSP to select 128 channels at any time, is only available on the C64x
(section 12.6.4).

Figure 12–45. Multichannel Control Register (MCR)
31 26 25 24 23 22 21 20 18 17 16

reserved XMCME� XPBBLK XPABLK XCBLK XMCM

R, +0000 00 RW, +0 RW, +00 RW, +00 R, +000 RW, +00

15 10 9 8 7 6 5 4 2 1 0

reserved RMCME� RPBBLK RPABLK RCBLK Rsvd RMCM

R, +0000 00 RW, +0 RW, +00 RW, +00 R, +000 R, +0 RW, +0

 Note : �XMCME and RMCME are only available on C64x. These bit fields are reserved (R, +0) on all other C6000
devices.

Table 12–21. Multichannel Control Register (MCR) Field Descriptions

Bit
No. Name Function Section

25 XMCME Enhanced transmit multichannel selection enable (C64x only). See descriptions
for RMCME.

12.6.4

24–23 XPBBLK Transmit partition B subframe

XPBBLK = 00b: Subframe 1. Element 16 to element 31

XPBBLK = 01b: Subframe 3. Element 48 to element 63

XPBBLK = 10b: Subframe 5. Element 80 to element 95

XPBBLK = 11b: Subframe 7. Element 112 to element 127

12.6.3

22–21 XPABLK Transmit partition A subframe

XPABLK = 00b: Subframe 0. Element 0 to element 15

XPABLK = 01b: Subframe 2. Element 32 to element 47

XPABLK = 10b: Subframe 4. Element 64 to element 79

XPABLK = 11b: Subframe 6. Element 96 to element 111

12.6.3

Multichannel Selection Operation

 12-64

Table 12–21. Multichannel Control Register (MCR) Field Descriptions (Continued)

Bit
No. SectionFunctionName

20–18 XCBLK Transmit current subframe

XCBLK = 000b: Subframe 0. Element 0 to element 15

XCBLK = 001b: Subframe 1. Element 16 to element 31

XCBLK = 010b: Subframe 2. Element 32 to element 47

XCBLK = 011b: Subframe 3. Element 48 to element 63

XCBLK = 100b: Subframe 4. Element 64 to element 79

XCBLK = 101b: Subframe 5. Element 80 to element 95

XCBLK = 110b: Subframe 6. Element 96 to element 111

XCBLK = 111b: Subframe 7. Element 112 to element 127

12.6.3.2

17–16 XMCM Transmit multichannel selection enable

XMCM = 00b: All elements are enabled without masking (DX is always driven
during transmission of data). DX is masked or driven to hi-Z dur-
ing inter-packet intervals, when a channel is masked (regardless
of whether it is enabled), or when an element is disabled.

XMCM = 01b: All elements are disabled and therefore masked by default. In
normal multichannel selection mode (RMCME = XMCME = 0),
required elements are selected by enabling XP(A/B)BLK and
XCER appropriately. In enhanced multichannel selection mode
(For C64x only, RMCME = XMCME = 1), required elements are
selected by enabling XCERE0 – XCERE3 appropriately. These
selected elements are not masked. DX is always driven.

XMCM = 10b: All elements are enabled but masked. In normal multichannel
selection mode (RMCME = XMCME = 0), required elements are
selected by enabling XP(A/B)BLK and XCER appropriately. In
enhanced multichannel selection mode (For C64x only,
RMCME = XMCME = 1), required elements are selected by en-
abling XCERE0 – XCERE3 appropriately. These selected ele-
ments are unmasked.

XMCM = 11b: All elements are disabled and therefore masked by default. In
normal multichannel selection mode (RMCME = XMCME = 0),
required elements are selected by enabling RP(A/B)BLK and
RCER appropriately; selected elements can be unmasked by
RP(A/B)BLK and XCER. In enhanced multichannel selection
mode (For C64x only, RMCME = XMCME = 1), required ele-
ments are selected by enabling RCERE0 – RCERE3 appropri-
ately; selected elements can be unmasked by XCERE0 –
XCERE3. XMCM = 11b is used for symmetric transmit and re-
ceive operation.

12.6.2
12.6.4

Multichannel Selection Operation

12-65Multichannel Buffered Serial Port

Table 12–21. Multichannel Control Register (MCR) Field Descriptions (Continued)

Bit
No. SectionFunctionName

9 RMCME Enhanced receive multichannel selection enable (C64x only) RMCME operates
in conjunction with XMCME. The RMCME and XMCME bit values need to be the
same.

RMCME = 0 and XMCME = 0: Normal multichannel selection mode
(Default value). Maximum 32 channels can be enabled at one time.
Multichannel operation is comparable to the C620x McBSP.

RMCME = 1 and XMCME = 1 Enhanced multichannel selection mode.
Maximum 128 channels can be enabled at one time.
All other modes reserved. Multichannel operation is undefined
if RMCME ≠ XMCME.

12.6.4

8–7 RPBBLK Receive partition B subframe

RPBBLK = 00b: Subframe 1. Element 16 to element 31

RPBBLK = 01b: Subframe 3. Element 48 to element 63

RPBBLK = 10b: Subframe 5. Element 80 to element 95

RPBBLK = 11b: Subframe 7. Element 112 to element 127

12.6.3

6–5 RPABLK Receive partition A subframe

RPABLK = 00b: Subframe 0. Element 0 to element 15

RPABLK = 01b: Subframe 2. Element 32 to element 47

RPABLK = 10b: Subframe 4. Element 64 to element 79

RPABLK = 11b: Subframe 6. Element 96 to element 111

12.6.3

Multichannel Selection Operation

 12-66

Table 12–21. Multichannel Control Register (MCR) Field Descriptions (Continued)

Bit
No. SectionFunctionName

4–2 RCBLK Receive current subframe

RCBLK = 000b: Subframe 0. Element 0 to element 15

RCBLK = 001b: Subframe 1. Element 16 to element 31

RCBLK = 010b: Subframe 2. Element 32 to element 47

RCBLK = 011b: Subframe 3. Element 48 to element 63

RCBLK = 100b: Subframe 4. Element 64 to element 79

RCBLK = 101b: Subframe 5. Element 80 to element 95

RCBLK = 110b: Subframe 6. Element 96 to element 111

RCBLK = 111b: Subframe 7. Element 112 to element 127

12.6.3.2

0 RMCM Receive multichannel selection enable

RMCM = 0: All channels are enabled.

RMCM = 1: All elements are disabled. In normal multichannel selection mode
(RMCME = XMCME = 0), required channels are selected by enab-
ling RP(A/B)BLK and RCER appropriately. In enhanced multichan-
nel selection mode(RMCME = XMCME = 1), required channels are
selected by enabling RCERE0 – RCERE3 appropriately.

12.6.2
12.6.4

12.6.2 Enabling Multichannel Selection

Multichannel mode can be enabled independently for reception and transmis-
sion by setting RMCM to 1 and XMCM to a nonzero value in the MCR, respec-
tively.

12.6.3 Enabling and Masking of Channels in Normal Multichannel Selection Mode

This section describes how to enable the channels in normal multichannel
selection mode. For the C64x, see also section 12.6.4 for the enhanced mul-
tichannel selction mode.

For all C6000 devices, a total of 32 of the available 128 elements can be en-
abled at any given time. The 128 elements comprise eight subframes (0
through 7), and each subframe has 16 contiguous elements. Further, even-
numbered subframes 0, 2, 4, and 6 belong to partition A, and odd-numbered
subframes 1, 3, 5, and 7 belong to partition B.

The number of elements enabled can be updated during the course of a frame
to allow any arbitrary group of elements to be enabled. This update is accom-

Multichannel Selection Operation

12-67Multichannel Buffered Serial Port

plished using an alternating ping-pong scheme for controlling two subframes
(one odd-numbered and the other even-numbered) of 16 contiguous elements
within a frame at any time. One subframe belongs to partition A and the other
to partition B.

Any one 16-element block from partition A and partition B can be selected, yield-
ing a total of 32 elements that can be enabled at one time. The subframes are
allocated on 16-element boundaries within the frame, as shown in
Figure 12–46. The (R/X)PABLK and (R/X)PBBLK fields in the MCR select the
subframes in partition A and B respectively. This enabling is performed indepen-
dently for transmit and receive.

Figure 12–46. Element Enabling by Subframes in Partitions A and B

112–127
3

80–95
2

48–63
1

16–31
0

0–15
0

96–111
3

64–79
2

32–47
1

0–15
0

076543210

FS(R/X)

Partition B
elements

(R/X)PBBLK

Partition A
elements

(R/X)PABLK

Subframe #

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Transmit data masking allows an element enabled for transmit to have its DX pin
set to the high-impedance state during its transmit period. In systems where sym-
metric transmit and receive provides software benefits, this feature allows trans-
mit elements to be disabled on a shared serial bus. A similar feature is not needed
for receive, because multiple receptions cannot cause serial bus contention.

Note:

DX is masked or driven to the high-impedance state:

� During inter-packet intervals
� When an element is masked regardless of whether it is enabled
� When an element is disabled.

Following are descriptions of how each XMCM value affects operation in nor-
mal multichannel selection mode:

� XMCM = 00b: The serial port transmits data over the DX pin for the number
of elements programmed in XFRLEN1. Thus, DX is driven during transmit.

� XMCM = 01b: Only those elements that need to be transmitted are se-
lected via XP(A/B)BLK and XCER. Only these selected elements are writ-

Multichannel Selection Operation

 12-68

ten to DXR and ultimately transmitted. In other words, if XINTM = 00b,
which implies that an XINT is generated for every DXR-to-XSR copy, the
number of XINT generated is equal to the number of elements selected
via XCER (and not equal to XFRLEN1).

� XMCM = 10b: All elements are enabled, which means all the elements in
a data frame (XFRLEN1) are written to DXR and DXR-to-XSR copies oc-
cur at their respective times. However, DX is driven only for those ele-
ments that are selected via XP(A/B)BLK and XCER and is placed in the
high-impedance state otherwise. In this case, if XINTM = 00b, the number
of interrupts generated due to every DXR-to-XSR copy would equal the
number of elements in that frame (XFRLEN1).

� XMCM = 11b: In this mode, symmetric transmit and receive operation is
forced. Select desired receive channels by setting the RCERA-RCERD.
Symmetric operation occurs when a device transits and receives on the
same set of subframes. These subframes are determined by setting
RP(A/B)BLK. The elements in each of these subframes can then be en-
abled/selected using the RCER register for receive. The transmit side
uses the same blocks as the receive side (thus the value of X(P/A)BLK
does not matter). In this mode, all elements are disabled, so DR and DX
are in the high-impedance state. For receiving, a RBR-to-DRR copy oc-
curs only for those elements that are selected via RP(A/BBLK and RCER.
If RINT were to be generated for every RBR-to-DRR copy, it would occur
as many times as the number of elements selected in RCER (and not the
number of elements programmed in RFRLEN1). For transmitting, the
same subframe that is used for reception is used to maintain symmetry,
so the value XP(A/B)BLK does not matter. DXR is loaded, and DXR-to-
XSR copy occurs for all the elements that are enabled via RP(A/B)BLK.
However, DX is driven only for those elements that are selected via XCER.
The elements enabled in XCER can be either a subset of, or the same as,
those selected in RCER. Therefore, if XINTM = 00b, transmit interrupts to
the CPU would be generated the same number of times as the number of
elements selected in RCER (not XCER).

Figure 12–47 shows the activity on the McBSP pins for all of the preceding
XMCM values with the following conditions:

� (R/X)PHASE = 0: Single-phase frame for multichannel selection enabled
� FRLEN1 = 011b: 4-element frame
� WDLEN1 = Any valid serial element length

In the following illustrations, the arrows indicating the occurrence of events are
only sample indications.

Multichannel Selection Operation

12-69Multichannel Buffered Serial Port

Figure 12–47. XMCM Operation

(a) XMCM = 00b

DXR to XSR
(E0)

Write of DXR
(E1)

DXR-to-XSR copy
(E1)

Write of DXR
(E2)

DXR-to-XSR copy
(E2)

DXR-to-XSR copy
(E3)

E3E2E1

Write of DXR
(E3)

XRDY

DX E0

FSX

(b) XMCM = 01b, XPABLK = 00b, XCER = 1010b

DXR-to-XSR (E1)

Write of DXR (E3)
DXR-to-XSR copy (E3)

E3E1

XRDY

DX

FSX

DXR-to-XSR copy
(E3)

(c) XMCM = 10b, XPABLK = 00b, XCER = 1010b

DXR to XSR
(E0)

Write of DXR
(E1)

DXR-to-XSR copy
(E1)

Write of DXR
(E2)

DXR-to-XSR copy
(E2)

E3E1

Write of DXR
(E3)

XRDY

DX

FSX

Multichannel Selection Operation

 12-70

Figure 12–47. XMCM Operation (Continued)

DXR-to-XSR copy
(E3)

Write of DXR
(E3)

DXR-to-XSR copy
(E1)

Read of DRR
(E1)

RBR-to-DRR copy
(E3)

E3DX

XRDY

(d) XMCM = 11b, RPABLK = 00b, XPABLK = X, RCER = 1010b, XCER = 1000b

RBR-to-DRR copy
(E3)

Read of DRR
(E3)

RBR-to-DRR copy
(E1)

E3E1

RRDY

DR

FS(R/X)

12.6.3.1 Channel Enable Registers: (R/X)CER

The receive channel enable register (RCER) and transmit channel enable regis-
ter (XCER) are used to enable any of the 32 elements for receive and transmit,
respectively. Of the 32 elements, 16 belong to a subframe in partition A and the
other 16 belong to a subframe in partition B. They are shown in Figure 12–48
and Figure 12–49. The (R/X)CEA and (R/X)CEB register fields shown in
Table 12–22 enable elements within the 16-channel elements in partitions A
and B, respectively. The (R/X)PABLK and (R/X)PBBLK fields in the MCR deter-
mine which 16-element subframes are selected.

Multichannel Selection Operation

12-71Multichannel Buffered Serial Port

Figure 12–48. Receive Channel Enable Register (RCER)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RCEB
15

RCEB
14

RCEB
13

RCEB
12

RCEB
11

RCEB
10

RCEB
9

RCEB
8

RCEB
7

RCEB
6

RCEB
5

RCEB
4

RCEB
3

RCEB
2

RCEB
1

RCEB
0

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RCEA
15

RCEA
14

RCEA
13

RCEA
12

RCEA
11

RCEA
10

RCEA
9

RCEA
8

RCEA
7

RCEA
6

RCEA
5

RCEA
4

RCEA
3

RCEA
2

RCEA
1

RCEA
0

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

Table 12–22. Receive Channel Enable Register Field Description

Name Function

RCEAn
0 ≤ n ≤ 15

Receive channel enable

RCEAn = 0: Disables reception of the nth element in an even-numbered subframe in partition A

RCEAn = 1: Enables reception of the nth element in an even-numbered subframe in partition A

RCEBn
0 ≤ n ≤ 15

Receive channel enable

(R/X)CEBn = 0: Disables reception of the nth element in an odd-numbered subframe in partition B

(R/X)CEBn = 1: Enables reception of the nth element in an odd-numbered subframe in partition B

Figure 12–49. Transmit Channel Enable Register (XCER)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XCEB
15

XCEB
14

XCEB
13

XCEB
12

XCEB
11

XCEB
10

XCEB
9

XCEB
8

XCEB
7

XCEB
6

XCEB
5

XCEB
4

XCEB
3

XCEB
2

XCEB
1

XCEB
0

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XCEA
15

XCEA
14

XCEA
13

XCEA
12

XCEA
11

XCEA
10

XCEA
9

XCEA
8

XCEA
7

XCEA
6

XCEA
5

XCEA
4

XCEA
3

XCEA
2

XCEA
1

XCEA
0

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

Multichannel Selection Operation

 12-72

Table 12–23. Transmit Channel Enable Register Field Description

Name Function

XCEAn
0 ≤ n ≤ 15

Transmit channel enable

XCEAn = 0: Disables transmission of the nth element in an even-numbered subframe in
partition A

XCEAn = 1: Enables transmission of the nth element in an even-numbered subframe in
partition A

XCEBn
0 ≤ n ≤ 15

Transmit channel enable

XCEBn = 0: Disables transmission of the nth element in anodd-numbered subframe in partition B

XCEBn = 1: Enables transmission of the nth element in an odd-numbered subframe in partition B

12.6.3.2 Changing Element Selection

Using the multichannel selection feature, a static group of 32 elements can be
enabled and remains enabled with no CPU intervention until this allocation is
modified. An arbitrary number of, group of, or all of the elements within a frame
can be accessed by updating the block allocation registers during the course of
the frame in response to the end-of-subframe interrupts (see section 12.6.3.3
for information about these interrupts).

Note:

The user must be careful not to affect the currently selected subframe when
changing the selection.

The currently selected subframe is readable through the RCBLK and XCBLK
fields in the MCR for receive and transmit, respectively. The associated channel
enable register cannot be modified if it is selected by the appropriate
(R/X)P(A/B)BLK register to point toward the current subframe. Similarly, the
(R/X)PABLK and (R/X)PBBLK fields in the MCR cannot be modified while point-
ing to or being changed to point to the currently selected subframe. If the total
number of elements is 16 or less, the current partition is always pointed to. In
this case, only a reset of the serial port can change the element enabling.

12.6.3.3 End-of-Subframe Interrupt

At the end of every subframe (16 elements or less) boundary during multichan-
nel operation, the receive interrupt (RINT) or transmit interrupt (XINT) to the
CPU is generated if RINTM = 01b or XINTM = 01b in the SPCR, respectively.
This interrupt indicates that a new partition has been crossed. You can then
check the current partition and change the selection of subframes in the A and/
or B partitions if they do not point to the current subframe. These interrupts are
two CPU-clock high pulses. If RINTM = XINTM = 01b when (R/X)MCM = 0
(nonmultichannel operation), interrupts are not generated.

Multichannel Selection Operation

12-73Multichannel Buffered Serial Port

12.6.4 Enhanced Multichannel Selection Mode (C64x only)

In addition to the normal multichannel selection mode, the C64x McBSP has
the enhanced multichannel selection mode, which allows up to 128 channels
to be enabled at any given time. The enhanced multichannel selection mode
is selected by setting the enhanced receive multichannel selection enable bit
(RMCME), and enhanced transmit mulitichannel selection enable bit
(XMCME), in the MCR to 1. This mode works in conjunction with six additional
enhanced receive/transmit channel enable registers in the C64x McBSP:
RCERE1, RCERE2, RCERE3, XCERE1, XCERE2, and XCERE3. The RCER
and XCER described in section 12.6.3.1 are replace by the RCERE0 and
XCERE1, respectively.

When RMCME = XMCME = 0, the C64x McBSP is in the normal multichannel
selection mode. See sections 12.6.2 and 12.6.3 for a detailed description. In
normal multichannel selection mode, The RCERE1–RCERE3 and
XCERE1–XCERE3 are not used. RCERE0 and XCERE0 function as RCER
and XCER, respectively.

When RMCME and XMCME = 1, the C64x McBSP has 128-channel selection
capability. The registers RCERE0–RCERE3 and XCERE0–XCERE3 are used
to enable up to 128 channels. Since up to 128 channels can be selected at one
time, the (R/X)P(A/B)BLK and (R/X)CBLK values in the MCR are “don’t cares”
and have no effect in this mode. Perform the following to enable up to 128
channels:

� Enable the selected channels in the XCERE0–XCERE3 and RCERE0–
RCERE3.

� Set RMCME = XMCME = 1 in the MCR.

� Set RMCM, XMCM in the MCR as desired.

The following are descriptions of how each XMCM value affects operation in
the enhanced multichannel selection mode (similar to its function in normal
multichannel selection mode):

� XMCM = 00b: The serial port transmits data over the DX pin for the number
of elements programmed in XFRLEN1. Thus, DX is driven during transmit.

� XMCM = 01b: Only those elements that need to be transmitted are se-
lected via XCERE0–XCERE3. Only these selected elements are written
to DXR and ultimately transmitted. In other words, if XINTM = 00b, which
implies that an XINT is generated for every DXR-to-XSR copy, the number
of XINT generated is equal to the number of elements selected via
XCERE0–XCERE3 (and not equal to XFRLEN1).

� XMCM = 10b: All elements are enabled, which means all the elements in
a data frame (XFRLEN1) are written to DXR and DXR-to-XSR copies oc-

Multichannel Selection Operation

 12-74

cur at their respective times. However, DX is driven only for those ele-
ments that are selected via XCERE0–XCERE3 and is placed in the high-
impedance state otherwise. In this case, if XINTM = 00b, the number of
interrupts generated due to every DXR-to-XSR copy would equal the num-
ber of elements in that frame (XFRLEN1).

� XMCM = 11b: In this mode, symmetric transmit and receive operation is
forced. Select desired receive channels by setting the RCERE0–
RCERE3. The elements enabled in XCERE0–XCERE3 can be either a
subset of or the same as those selected in RCERE0–XCERE3. In this
mode, all elements are disabled, so DR and DX are in the high-impedance
state. For receiving, a RBR-to-DRR copy occurs only for those elements
that are selected via RCERE0–RCERE3. If RINT were to be generated for
every RBR-to-DRR copy, it would occur as many times as the number of
elements selected in RCERE0–RCERE3 (and not the number of elements
programmed in RFRLEN1). For transmitting, DXR is loaded, and DXR-to-
XSR copy occurs for all the elements that are enabled via RCERE0–
RCERE3. However, DX is driven only for those elements that are selected
via XCER. Therefore, if XINTM = 00b, transmit interrupts to the CPU would
be generated the same number of times as the number of elements se-
lected in RCERE0–RCERE3 (not XCERE0–XCERE3).

12.6.4.1 Channel Enable Registers for Enhanced Multichannel Selection

The enhanced receive channel enable registers (RCERE0, RCERE1,
RCERE2, RCERE3) and the enhanced transmit channel enable registers
(XCERE0, XCERE1, XCERE2, XCERE3) are used to enable any of the 128
elements for receive and transmit, respectively. Partitions A and B do not apply
to the enhanced multichannel selection mode. Therefore, the bit fields in the
enhanced receive/transmit channel enable registers are numbered from 0 to
127, representing the 128 channels. Table 12–24 shows the 128 channels in
a multichannel data stream and their corresponding enable bits in registers
R/XCEREx. Figure 12–50 and Figure 12–51 show the RCEREx and XCEREx
registers, respectively. Table 12–25 describes the bit fields in these registers.

Multichannel Selection Operation

12-75Multichannel Buffered Serial Port

Figure 12–50. Enhanced Receive Channel Enable Registers

Enhanced Receive Channel Enable Register 0 (RCERE0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RCE
31

RCE
30

RCE
29

RCE
28

RCE
27

RCE
26

RCE
25

RCE
24

RCE
23

RCE
22

RCE
21

RCE
20

RCE
19

RCE
18

RCE
17

RCE
16

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RCE
15

RCE
14

RCE
13

RCE
12

RCE
11

RCE
10

RCE
9

RCE
8

RCE
7

RCE
6

RCE
5

RCE
4

RCE
3

RCE
2

RCE
1

RCE
0

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

Enhanced Receive Channel Enable Register 1 (RCERE1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RCE
63

RCE
62

RCE
61

RCE
60

RCE
59

RCE
58

RCE
57

RCE
56

RCE
55

RCE
54

RCE
53

RCE
52

RCE
51

RCE
50

RCE
49

RCE
48

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RCE
47

RCE
46

RCE
45

RCE
44

RCE
43

RCE
42

RCE
41

RCE
40

RCE
39

RCE
38

RCE
37

RCE
36

RCE
35

RCE
34

RCE
33

RCE
32

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

Enhanced Receive Channel Enable Register 2 (RCERE2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RCE
95

RCE
94

RCE
93

RCE
92

RCE
91

RCE
90

RCE
89

RCE
88

RCE3
87

RCE
86

RCE
85

RCE
84

RCE
83

RCE
82

RCE
81

RCE
80

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RCE
79

RCE
78

RCE
77

RCE
76

RCE
75

RCE
74

RCE
73

RCE
72

RCE
71

RCE
70

RCE
69

RCE
68

RCE
67

RCE
66

RCE
65

RCE
64

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

Enhanced Receive Channel Enable Register 3 (RCERE3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RCE
127

RCE
126

RCE
125

RCE
124

RCE
123

RCE
122

RCE
121

RCE
120

RCE
119

RCE
118

RCE
117

RCE
116

RCE
115

RCE5
114

RCE
113

RCE
112

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RCE
111

RCE
110

RCE
109

RCE
108

RCE
107

RCE
106

RCE
105

RCE
104

RCE
103

RCE
102

RCE
101

RCE
100

CE
99

RCE
98

RCE
97

RCE
96

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

Multichannel Selection Operation

 12-76

Figure 12–51. Enhanced Transmit Channel Enable Registers

Enhanced Transmit Channel Enable Register 0 (XCERE0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XCE
31

XCE
30

XCE
29

XCE
28

XCE
27

XCE
26

XCE
25

XCE
24

XCE
23

XCE
22

XCE
21

XCE
20

XCE
19

XCE
18

XCE
17

XCE
16

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XCE
15

XCE
14

XCE
13

XCE
12

XCE
11

XCE
10

XCE
9

XCE
8

XCE
7

XCE
6

XCE
5

XCE
4

XCE
3

XCE
2

XCE
1

XCE
0

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

Enhanced Transmit Channel Enable Register 1 (XCERE1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XCE
63

XCE
62

XCE
61

XCE
60

XCE
59

XCE
58

XCE
57

XCE
56

XCE
55

XCE
54

XCE
53

XCE
52

XCE
51

XCE
50

XCE
49

XCE
48

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XCE
47

XCE
46

XCE
45

XCE
44

XCE
43

XCE
42

XCE
41

XCE
40

XCE
39

XCE
38

XCE
37

XCE
36

XCE
35

XCE
34

XCE
33

XCE
32

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

Enhanced Transmit Channel Enable Register 2 (XCERE2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XCE
95

XCE
46

XCE
45

XCE
44

XCE
43

XCE
42

XCE
41

XCE
40

XCE3
9

XCE
38

XCE
37

XCE
36

XCE
35

XCE3
4

XCE
33

XCE
80

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XCE
79

XCE
78

XCE
77

XCE
76

XCE
75

XCE
74

XCE
73

XCE
72

XCE
71

XCE
70

XCE
69

XCE
68

XCE
67

XCE
66

XCE
65

XCE
64

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

Enhanced Transmit Channel Enable Register 3 (XCERE3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XCE
127

XCE
126

XCE
125

XCE
124

XCE
123

XCE
122

XCE
121

XCE
120

XCE
119

XCE
118

XCE
117

XCE
116

XCE
115

XCE
114

XCE
113

XCE
112

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XCE
111

XCE
110

XCE
109

XCE
108

XCE
107

XCE
106

XCE
105

XCE
104

XCE
103

XCE
102

XCE
101

XCE
100

XCE
99

XCE
98

XCE
97

XCE
96

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

Multichannel Selection Operation

12-77Multichannel Buffered Serial Port

Table 12–24. Enhanced Receive/Transmit Channel Enable Register (R/XCEREx) Field
Description

Name Function
RCEn
0 ≤ n ≤ 127

Receive channel enable
RCEn = 0: Disables reception of the nth channel
RCEn = 1: Enables reception of the nth channel.

XCEn
0 ≤ n ≤ 127

Transmit channel enable
XCEn = 0: Disables transmission of the nth channel.
XCEn = 1: Enables transmission of the nth channel.

Table 12–25. Channel Enable Bits (in RCEREx/XCEREx) for a 128-Channel Data Stream

Channel Number of a 128-Channel Data Stream

0 - 15 16 - 31 32 - 47 48 - 63 64 - 79 80 - 95 96 - 111 112–127

Register RCERE0
XCERE0

RCERE0
XCERE0

RCERE1
XCERE1

RCERE1
XCERE1

RCERE2
XCERE2

RCERE2
XCERE2

RCERE3
XCERE3

RCERE3
XCERE3

Channel R/XCE0
 to

 R/XCE15

R/XCE16
 to

 R/XCE31

R/XCE32
to

R/XCE47

R/XCE48
 to

 R/XCE63

R/XCE64
 to

 R/XCE79

R/XCE80
 to

 R/XCE95

R/XCE96
 to

 R/XCE111

R/XCE112
 to

 R/XCE127

12.6.5 DX Enabler: DXENA

The DX enabler is only available for the C621x/C671x/C64x device. The DXE-
NA field in the serial port control register (SPCR) controls the high impedance
enable on the DX pin. When DXENA = 1, the McBSP enables extra delay for
the DX pin turn-on time. This feature is useful for McBSP multichannel opera-
tions, such as in a time-division multiplexed (TDM) system. The McBSP sup-
ports up to 128 channels in a multichannel operation. These channels can be
driven by different devices in a TDM data communication line, such as the
T1/E1 line. In any multichannel operation where multiple devices transmit over
the same DX line, you need to ensure that no two devices transmit data simul-
taneously, which results in bus contention. Enough dead time should exist be-
tween the transmission of the first data bit of the current device and the trans-
mission of the last data bit of the previous device. In other words, the last data
bit of the previous device needs to be disabled to a high impedance state be-
fore the next device begins transmitting data to the same data line, as shown
in Figure 12–52.

Multichannel Selection Operation

 12-78

Figure 12–52. DX Timing for Multichannel Operation

B0 (processor 0)

CLKX

DX B7 (processor 1) B6 (processor 1)

Extra delay
if DXENA = 1 (processor 1)

Disable time
(processor 0)

Dead time
No extra delay
even with DXENA = 1

In the case when two McBSPs are used to transmit data over the same TDM
line, bus contention occurs if DXENA = 0. The first McBSP turns off the
transmission of the last data bit (changes DX from valid to Hi-Z) after a disable
time specified in the datasheet. As shown in Figure 12–52, this disable time
is measured from the CLKX active clock edge. The next McBSP turns on its
DX pin (changes from Hi-Z to valid) after a delay time. Again, this delay time
is measured from the CLKX active clock edge. Bus contention occurs because
the dead time between the two devices is not enough. You need to apply
alternative software or hardware methods to ensure proper multichannel
operation in this case.

If you set DXENA = 1 in the second McBSP, the second McBSP turns on its
DX pin after some extra delay time. This ensures that the previous McBSP on
the same DX line is disabled before the second McBSP starts driving out data.
The DX enabler controls only the high impedance enable on the DX pin, not
the data itself. Data is shifted out to the DX pin at the same time as in the case
when DXENA = 0. The only difference is that with DXENA = 1, the DX pin is
masked to high impedance for some extra CPU cycles before the data is seen
on the TDM data line. Therefore only the first bit of data is delayed. Refer to
the specific device datasheet for the exact amount of delay.

SPI Protocol: CLKSTP

12-79Multichannel Buffered Serial Port

12.7 SPI Protocol: CLKSTP

A system conforming to this protocol has a master-slave configuration. SPI
protocol is a 4-wire interface composed of serial data in (master in slave out or
MISO), serial data out (master out slave in or MOSI), shift clock (SCK), and an
active (low) slave enable (SS) signal. Communication between the master and
the slave is determined by the presence or absence of the master clock. Data
transfer is initiated by the detection of the master clock and is terminated on ab-
sence of the master clock. The slave has to be enabled during this period of
transfer. When the McBSP is the master, the slave enable is derived from the
master transmit frame sync pulse, FSX. Example block diagrams of the
McBSP as a master and as a slave are shown in Figure 12–53 and
Figure 12–54, respectively.

Figure 12–53. SPI Configuration: McBSP as the Master

McBSP master

CLKX

DX

DR

FSX

SPI compliant
slave

SCK

MOSI

MISO

SS

Figure 12–54. SPI Configuration: McBSP as the Slave

McBSP slave

CLKX

DX

DR

FSX

SPI compliant
master

SCK

MISO

MOSI

SS

The clock stop mode (CLKSTP) of the McBSP provides compatibility with the
SPI protocol. The McBSP supports two SPI transfer formats which are specified
by the clock stop mode field (CLKSTP) in the SPCR. The clock stop mode field

SPI Protocol: CLKSTP

 12-80

(CLKSTP) in conjunction with the CLKXP bit in the PCR allows serial clocks to
be stopped between transfers using one of four possible timing variations, as
shown in Table 12–26. Figure 12–55 and Figure 12–56 show the timing
diagrams of the two SPI transfer formats and the four timing variations.
Note: The digital loopback mode (DLB =1 in the SPCR cannot be used in con-
juntion with the clock stop mode (CLKSTP = 1x).

Table 12–26. SPI-Mode Clock Stop Scheme

CLKSTP CLKXP Clock Scheme

0X X Clock stop mode disabled. Clock enabled for non-SPI mode.

10 0 Low inactive state without delay. The McBSP transmits data on the rising edge
of CLKX and receives data on the falling edge of CLKR.

11 0 Low inactive state with delay. The McBSP transmits data one-half cycle ahead
of the rising edge of CLKX and receives data on the rising edge of CLKR.

10 1 High inactive state without delay. The McBSP transmits data on the falling
edge of CLKX and receives data on the rising edge of CLKR.

11 1 High inactive state with delay. The McBSP transmits data one-half cycle ahead
of the falling edge of CLKX and receives data on the falling edge of CLKR.

Figure 12–55. SPI Transfer with CLKSTP = 10b

Á
Á

Á
Á

Á
Á

Á
Á B1B2B4 B3 B0B5B6B7

B0B1B2B3B4B5B6B7

FSX/SS

D(R/X)/MISO
(from slave)‡

D(R/X)/MOSI
(from master)†

CLKX (CLKXP=1)/SCK

CLKX (CLKXP=0)/SCK

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

† If the McBSP is the SPI master (CLKXM = 1), MOSI=DX. If the McBSP is the SPI slave (CLKXM = 0), MOSI = DR.
‡ If the McBSP is the SPI master (CLKXM = 1), MISO=DR. If the McBSP is the SPI slave (CLKXM = 0), MISO = DX.

Figure 12–56. SPI Transfer with CLKSTP = 11b

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

B1B2B4 B3 B0B5B6B7

B0B1B2B3B4B5B6B7

FSX/SS

D(R/X)/MISO
(from slave)‡

D(R/X)/MOSI
(from master)†

CLKX (CLKXP=1)/SCK

CLKX (CLKXP=0)/SCK

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁ

Á
Á

Á
Á

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

† If the McBSP is the SPI master (CLKXM = 1), MOSI=DX. If the McBSP is the SPI slave (CLKXM = 0), MOSI = DR.
‡ If the McBSP is the SPI master (CLKXM = 1), MISO=DR. If the McBSP is the SPI slave (CLKXM = 0), MISO = DX.

SPI Protocol: CLKSTP

12-81Multichannel Buffered Serial Port

The CLKSTP and CLKXP fields of the serial port control register (SPCR) select
the appropriate clock scheme for a particular SPI interface, as shown in
Table 12–26. The CLKSTP and CLKXP fields in the SPCR determine the fol-
lowing conditions:

� Whether clock stop mode is enabled or not

� In clock stop mode, whether the clock is high or low when stopped

� In clock stop mode, whether the first clock edge occurs at the start of the
first data bit or at the middle of the first data bit.

The CLKXP bit selects the edge on which data is transmitted (driven) and
received (sampled), as shown in Table 12–26.

Figure 12–55 is the timing diagram when CLKSTP = 10b. In this SPI transfer
format, the transition of the first clock edge (CLKX) marks the beginning of data
transfer, provided the slave enable (FSX/SS) is already asserted. Data trans-
fer is synchronized to the first clock edge. Figure 12–56 is the timing diagram
when CLKSTP = 11b. Data transfer begins before the transition of the serial
clock. Therefore, the transition of the slave enable signal FSX/SS from high
to low, instead of the transition of the serial clock, marks the beginning of trans-
fer in this SPI transfer format. The McBSP clock stop mode requires single-
phase frames ((R/X)PHASE = 0) and one element per frame ((R/X)FRLEN =
0).

When the McBSP is configured to operate in SPI mode, both the transmitter
and the receiver operate together as a master or a slave. The McBSP is a
master when it generates clocks. When the McBSP is the SPI master, CLKX
drives both its own internal receive clock CLKR and the serial clock SCK of the
SPI slave. The FSR and CLKR signals should not be used in SPI mode. These
do not function as SPI signals like the FSX and CLKX signals. In conjunction
with CLKSTP enabled, CLKXM = 1 (in PCR) indicates that the McBSP is a
master, and CLKXM = 0 indicates that the McBSP is an SPI slave. The slave
enable signal (FSX/SS) enables the serial data input and output driver on the
slave device (the device not providing the output clock).

12.7.1 McBSP Operation as the SPI Master

When the McBSP is the SPI master, it generates the master clock CLKX and
the slave enable FSX. Therefore, CLKX should be configured as an output
(CLKXM = 1) and FSX should be configured as an output that can be con-
nected to the slave enable (SS) input on the slave device (FSXM = 1). The
DXR-to-XSR transfer of each element generates the slave enable FSX
(FSGM=0 in SRGR). Therefore to receive an element in SPI master mode, the
McBSP must also simultaneously transmit an element (write to the DXR) in or-

SPI Protocol: CLKSTP

 12-82

der to generate the necessary slave enable FSX. The FSX needs to be as-
serted (low) to enable the slave before the McBSP starts shifting out data on
the DX pin. Refer to the MOSI and FSX waveforms in Figure 12–55 and
Figure 12–56. Therefore, XDATDLY and RDATDLY must be programmed to
1. When the McBSP is the SPI master, an XDATDLY value of 0 or 2 causes
undefined operation. An RDATDLY of 0 causes the recevied data to be shifted
incorrectly.

As the SPI master, the McBSP generates CLKX and FSX through the internal
sample rate generator. As discussed in section 12.5.2.1, the CLKSM bit in the
SRGR should be set to specify either the CPU clock or the external clock input
(CLKS) as the clock source to the internal sample rate generator. The
CLKGDV (clock divide ratio) in SRGR should be programmed to generate
CLKX at the required SPI data rate. The McBSP generates a continuous clock
(CLKX) internally and gates the clock off (stops the clock) to the external inter-
face when transfers are finished. The McBSP’s receive clock is provided from
the internal continuously running clock, so the receiver and transmitter both
work internally as if clocks do not stop. Selection of the clock stop modes over-
rides the frame generator bit fields (FPER and FWID) of the the sample rate
generator register (SRGR).

12.7.2 McBSP Operation as the SPI Slave

When the McBSP is an SPI slave device, the master clock CLKX and slave
enable FSX are generated by an external SPI master, as shown in
Figure 12–54. Thus, the CLKX and FSX pins are configured as inputs by set-
ting the CLKXM and FSXM fields to zero in the PCR. In SPI mode, the FSX
and CLKX inputs are also utilized as the internal FSR and CLKR signals for
data reception. Data transfer is synchronized to the master clock CLKX and
the internal serial port logic performs transfers using only the exact number of
input clock pulses CLKX per data bit. The external master needs to assert FSX
(low) before the transfer of data begins. FSX is used in its asynchronous form
and it controls the McBSP’s initial drive of data to the DX pin.

When the McBSP is a slave, (R/X)DATDLY in the receive/transmit control
register ((R/X)CR) should be set to zero. XDATDLY = 0 ensures that the first
data to be transmitted is available on the DX pin. The MISO waveform in
Figure 12–55 and Figure 12–56 shows how the McBSP transmits data as an
SPI slave. Setting RDATDLY = 0 ensures that the McBSP is ready to receive
data from the SPI master as soon as it detects the serial clock CLKX. Depend-
ing on the clock stop mode used, data is received at various clock edges ac-
cording to Table 12–26.

Although the CLKX signal is generated externally by the master, the internal
sample rate generator of the McBSP must be enabled for proper SPI slave

SPI Protocol: CLKSTP

12-83Multichannel Buffered Serial Port

mode operation. The internal sample rate clock is then used to synchronize
the input clock (CLKX) and frame sync (FSX) from the master to the CPU
clock. Accordingly the CLKSM field of the sample rate generator (SRGR)
should be left at the default value (CLKSM = 1) to specify the CPU clock as the
clock source of the sample rate generator. Furthermore, the CLKGDV in the
SRGR must be set to a value such that the rate of the internal clock CLKG is
at least eight times that of the SPI data rate. This rate is achieved by program-
ming the sample rate generator to its maximum speed (CLKGDV = 1) for all
SPI transfer rates.

12.7.3 McBSP Initialization for SPI Mode

The operation of the serial port during device reset, transmitter reset, and
receiver reset is described in section 12.3.1. For McBSP operation as a master
or a slave in SPI mode, you must follow these steps for proper initialization:

1) Set XRST = RRST = 0 in SPCR.

2) Program the necessary McBSP configuration registers (and not the data
registers) listed in Table 12–3 as required when the serial port is in the
reset state (XRST = RRST = 0). Write the desired value into the CLKSTP
field in the SPCR. Table 12–26 shows the various CLKSTP modes.

3) Set GRST = 1 in SPCR to get the sample rate generator out of reset.

4) Wait two bit clocks for the McBSP to reinitialize.

5) Depending upon whether the CPU or DMA services the McBSP, perform
step (a) if the CPU is used, or step (b) if the DMA is used.
a) If the CPU is used to service the McBSP. set XRST = RRST = 1 to en-

able the serial port. Note that the value written to the SPCR at this time
should have only the reset bits changed to 1 and the remaining bit-
fields should have the same values as in Step 2 and 4 above.

b) If DMA is used to perform data transfers, the DMA should be initialized
first with the appropriate read/write syncs and the start bit set to run.
The DMA waits for the synchronization events to occur. Now, pull the
McBSP out of reset by setting XRST = RRST = 1.

6) Wait two bit clocks for the receiver and transmitter to become active.

McBSP Pins as General-Purpose I/O

 12-84

12.8 McBSP Pins as General-Purpose I/O

Two conditions allow the serial port pins (CLKX, FSX, DX, CLKR, FSR, DR,
and CLKS) to be used as general-purpose I/O rather than serial port pins:

� The related portion (transmitter or receiver) of the serial port is in reset:
(R/X)RST = 0 in the SPCR

� General-purpose I/O is enabled for the related portion of the serial port:
(R/X)IOEN = 1 in the PCR

Figure 12–3 shows the PCR bits that configure each of the McBSP pins as
general-purpose inputs or outputs. Table 12–27 shows how this is achieved.
In the case of FS(R/X), FS(R/X)M = 0 configures the pin as an input and
FS(R/X)M = 1 configures that pin as an output. When configured as an output,
the value driven on FS(R/X) is the value stored in FS(R/X)P. If configured as
an input, the FS(R/X)P becomes a read-only bit that reflects the status of that
signal. CLK(R/X)M and CLK(R/X)P work similarly for CLK(R/X). When the
transmitter is selected as general-purpose I/O, the value of the DX_STAT bit
in the PCR is driven onto DX. DR is always an input, and its value is held in
the DR_STAT bit in the PCR. To configure CLKS as a general-purpose input,
both the transmitter and receiver have to be in the reset state and (R/X)IOEN
has to be set to 1, because (R/X)IOEN is always an input to the McBSP and
it affects both transmit and receive operations.

Table 12–27. Configuration of Pins as General Purpose I/O

Pin
General-Purpose
I/O Enabled When...

Selected as
Output When...

Output Value
Driven From

Selected as
Input When ...

Input Value
Readable on

CLKX XRST = 0
XIOEN = 1

CLKXM = 1 CLKXP CLKXM = 0 CLKXP

FSX XRST = 0
XIOEN = 1

FSXM = 1 FSXP FSXM = 0 FSXP

DX XRST = 0
XIOEN = 1

Always DX_STAT Never N/A

CLKR RRST = 0
RIOEN = 1

CLKRM = 1 CLKRP CLKRM = 0 CLKRP

FSR RRST = 0
RIOEN = 1

FSRM = 1 FSRP FSRM = 0 FSRP

DR RRST = 0
RIOEN = 1

Never N/A Always DR_STAT

CLKS RRST = XRST = 0
RIOEN = XIOEN = 1

Never N/A Always CLKS_STAT

13-1

Timers

This chapter describes the 32-bit timer functionality, registers, and signals.

Topic Page

13.1 Overview 13-2.

13.2 Timer Registers 13-4.

13.3 Resetting the Timers and Enabling Counting: GO and HLD 13-7.

13.4 Timer Counting 13-8.

13.5 Timer Clock Source Selection: CLKSRC 13-8.

13.6 Timer Pulse Generation 13-9.

13.7 Boundary Conditions in the Control Registers 13-10.

13.8 Timer Interrupts 13-11.

13.9 Timer Pins as General-Purpose Input/Output 13-11.

13.10 Emulation Operation 13-11.

Chapter 13

Overview

 13-2

13.1 Overview

The device has 32-bit general-purpose timers that can be used to:

� Time events
� Count events
� Generate pulses
� Interrupt the CPU
� Send synchronization events to the DMA.

The timers have two signaling modes and can be clocked by an internal or an
external source. The timers have an input pin and an output pin. The input and
output pins, (TINP and TOUT) can function as timer clock input and clock out-
put. They can also be configured for general-purpose input and output,
respectively.

With an internal clock, for example, the timer can signal an external A/D
converter to start a conversion, or it can trigger the DMA controller to begin a
data transfer. With an external clock, the timer can count external events and
interrupt the CPU after a specified number of events. Table 13–1 summarizes
the differences between the C6000 timers. Figure 13–1 shows a block dia-
gram of the timers.

Table 13–1. Differences in TMS320C6000 Timers

Features C620x/C670x C621x/C671x C64x Section

Emulation halt support yes no no 13.10

Internal timer input clock
source frequency

CPU rate/4 CPU rate/4 CPU rate/8 13.5

Overview

13-3Timers

Figure 13–1. Timer Block Diagram

DATIN

TOUT pinTINP pin

Synchronizer

Internal clock
 source�

ÁÁ
ÁÁ

ÁÁ
ÁÁ
ÁÁ

ÁÁ
ÁÁ

ÁÁ
ÁÁ
ÁÁ

INVINP

FUNC
10

INVOUT

TSTAT, timer output TINT, timer
interrupt to CPU and DMA

ÁÁÁÁ
ÁÁ
ÁÁ

CLKSRC

HLD

01

Peripheral Bus to CPU and DMA

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Equals comparator

Count
zero

GOÁÁÁ
ÁÁÁ
ÁÁÁ

ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Edge detect

Count
enableÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Timer period
register

Timer counter
register

C/P

PWID

DATOUT

HLD

Pulse generator

� C62x/C67x uses CPU/4 clock as the internal clock source to the timer.
 C64x uses CPU/8 clock as the internal clock source to the timer.

Timer Registers

 13-4

13.2 Timer Registers

Table 13–2 describes the three registers that configure timer operation.

Table 13–2. Timer Registers

Hex Byte Address Name and
Description Section

Timer 0 Timer 1 Timer 2
Name and
Abbreviation Description Section

01940000 01980000 01AC0000 Timer Control
(CTL)

Determines the operating mode of the timer,
monitors the timer status, and controls the
function of the TOUT pin.

13.2.1

01940004 01980004 01AC0004 Timer Period
(PRD)

Contains the number of timer input clock
cycles to count. This number controls the
TSTAT signal frequency.

13.2.2

01940008 01980008 01AC0008 Timer Counter
(CNT)

Current value of the incrementing counter 13.2.3

13.2.1 Timer Control Register (CTL)

Figure 13–2 shows the timer control register. Table 13–3 describes the fields
in this register.

Figure 13–2. Timer Control Register (CTL)

31 12 11 10 9 8

Rsvd TSTAT INVINP CLKSRC C/P

R, +0 R, +0 RW, +0 RW, +0 RW, +0

7 6 5 4 3 2 1 0

HLD GO Rsvd PWID DATIN DATOUT INVOUT FUNC

RW, +0 RW, +0 R, +0 RW, +0 R, +X RW, +0 RW, +0 RW, +0

Timer Registers

13-5Timers

Table 13–3. Timer Control Register (CTL) Field Descriptions

No. Bitfield Description Section

31–12 Rsvd Reserved.

11 TSTAT Timer status. Value of timer output. 13.6

10 INVINP TINP inverter control. Only affects operation if CLKSRC = 0.

INVINP = 0: Uninverted TINP drives timer.
INVINP = 1: Inverted TINP drives timer.

13.5

9 CLKSRC Timer input clock source

CLKSRC = 0: External clock source drives the TINP pin.
CLKSRC = 1: Internal clock source.
 For C62x/C67x: CPU clock/4
 For C64x: CPU clock/8

13.5

8 C/P Clock/pulse mode

C/P = 0: Pulse mode. TSTAT is active one CPU clock after the timer reaches the
timer period. PWID determines when it goes inactive.

C/P = 1: Clock mode. TSTAT has a 50% duty cycle with each high and low period
one countdown period wide.

13.6

7 HLD Hold. Counter may be read or written regardless of HLD value.

HLD = 0: Counter is disabled and held in the current state.
HLD = 1: Counter is allowed to count.

13.3

6 GO GO bit. Resets and starts the timer counter.

GO = 0: No effect on the timers.
GO = 1: If HLD = 1, the counter register is zeroed and begins counting on the next
clock.

13.3

5 Rsvd Reserved.

4 PWID Pulse width. Only used in pulse mode (C/P = 0).

PWID = 0: TSTAT goes inactive one timer input clock cycle after the timer count-
er value equals the timer period value.
PWID = 1: TSTAT goes inactive two timer input clock cycles after the timer count-
er value equals the timer period value.

13.6

3 DATIN Data in: Value on TINP pin 13.5,

13.9

2 DATOUT Data output

When FUNC = 0: The DATOUT is driven on TOUT.

When FUNC = 1: The TSTAT is driven on TOUT after inversion by INVOUT.

13.9

Timer Registers

 13-6

Table 13–3. Timer Control Register (CTL) Field Descriptions (Continued)

Bitfield SectionDescriptionNo.

1 INVOUT TOUT inverter control. Used only if FUNC = 1.

INVOUT = 0: Uninverted TSTAT drives TOUT.
INVOUT = 1: Inverted TSTAT drives TOUT.

13.9

0 FUNC Function of TOUT pin

FUNC = 0: TOUT is a general-purpose output pin.
FUNC = 1: TOUT is a timer output pin.

13.6

13.2.2 Timer Period Register (PRD)

The timer period register (Figure 13–3) contains the number of timer input
clock cycles to count. This number controls the frequency of TSTAT.

Figure 13–3. Timer Period Register (PRD)

31 0

Timer Period

RW, +0

13.2.3 Timer Counter Register (CNT)

The timer counter register (Figure 13–4) increments when it is enabled to count.
It resets to 0 on the next CPU clock after the value in the timer period register
is reached.

Figure 13–4. Timer Counter Register (CNT)

31 0

Timer Counter

RW, +0

Resetting the Timers and Enabling Counting: GO and HLD

13-7Timers

13.3 Resetting the Timers and Enabling Counting: GO and HLD

Table 13–4 shows how the GO and HLD enable basic features of timer operation.

Table 13–4. Timer GO and HLD Field Operation

Operation GO HLD Description

Holding the timer 0 0 Counting is disabled.

Restarting the timer after
hold

0 1 Timer continues from the value before hold. The timer
counter is not reset.

Reserved 1 0 Undefined

Starting the timer 1 1 Timer counter resets to 0 and starts counting whenever
enabled. Once set, GO self-clears.

Configuring a timer requires three basic steps:

1) If the timer is not currently in the hold state, place the timer in hold
(HLD = 0). Note that after device reset, the timer is already in the hold
state.

2) Write the desired value to the timer period register (PRD).

3) Write the desired value to the timer control register (CTL). Do not change
the GO and HLD bits of the CTL in this step.

4) Start the timer by setting the GO and HLD bits of the CTL to 1.

Timer Counting

 13-8

13.4 Timer Counting

The timer counter runs at the CPU clock rate. However, counting is enabled
on the low-to-high transition of the timer count enable source. This transition
is detected by the edge detect circuit shown in Figure 13–1. Each time an ac-
tive transition is detected, one CPU-clock-wide clock enable pulse is gener-
ated. To the user, this makes the counter appear as if it were getting clocked
by the count enable source. Thus, this count enable source is referred to as
the timer input clock source.

Once the timer reaches a value equal to the value in the timer period register
(PRD), the timer is reset to 0 on the next CPU clock. Thus, the counter counts
from 0 to N. Consider the case where the period is 2 and the CPU clock/4 is
selected as the timer clock source (CLKSRC = 1) for C62x/C67x. Once
started, the timer counts the following sequence: 0, 0, 0, 0, 1, 1, 1, 1, 2, 0, 0,
0, 1, 1, 1, 1, 2, 0, 0, 0…. Note that although the counter counts from 0 to 2, the
period is 8 (2*4) CPU clock cycles rather than 12 (3*4) CPU clock cycles. Thus,
the countdown period is the value of TIMER PERIOD, not TIMER PERIOD+1.

13.5 Timer Clock Source Selection: CLKSRC

Low-to-high transitions (or high-to-low transitions if INVINP = 1) of the timer
input clock allow the timer counter to increment. Two sources are available to
drive the timer input clock:

� The input value on the TINP pin, selected by CLKSRC = 0. This signal is
synchronized to prevent any metastability caused by asynchronous
external inputs. The value present on the TINP pin is reflected by DATIN.

� Internal clock source, selected by CLKSRC = 1. The C62x/C67x uses
CPU clock/4 as an internal clock source. The C64x uses CPU clock/8 as
an internal clock source.

Timer Counting / Timer Clock Source Selection: CLKSRC

Timer Pulse Generation

13-9Timers

13.6 Timer Pulse Generation

The two basic pulse generation modes are pulse mode and clock mode, as
shown in Figure 13–5 and Figure 13–6, respectively. You can select the mode
with the C/P bit of the timer control register (CTL). Note that in pulse mode,
PWID in the CTL can set the pulse width to either one or two input clock peri-
ods. The purpose of this feature is to provide minimum pulse widths in the case
in which TSTAT drives the TOUT output. TSTAT drives this pin when TOUT is
used as a timer pin (FUNC = 1), and may be inverted by setting INVOUT = 1.
Table 13–5 gives equations for various TSTAT timing parameters in pulse and
clock modes.

Figure 13–5. Timer Operation in Pulse Mode (C/P = 0)

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

2 � timer clock source period (PWID = 1)

Timer counter = timer period, TINT timer interrupt period

1 � timer clock source period (PWID = 0)

Period Register � f(timer input clock)

TSTAT, TINT

Figure 13–6. Timer Operation in Clock Mode (C/P = 1)

timer counter = timer period

Timer clock source period

2 � Period Register � f(timer input clock)

TSTAT, TINT

Period

TINT timer interrupt period

Boundary Conditions in the Control Registers

 13-10

Table 13–5. TSTAT Parameters in Pulse and Clock Modes

Mode Frequency Period Width High Width Low

Pulse
f (clock source) timer period register (PWID + 1) timer period register – (PWID + 1)

Pulse
timer period register f (clock source) f (clock source) f (clock source)

f (clock source) 2 * timer period register timer period register timer period register
Clock 2 * timer period register f (clock source) f (clock source) f (clock source)

13.7 Boundary Conditions in the Control Registers

The following boundary conditions affect timer operation:

1) Timer period and counter register value is 0: After device reset and
before the timer starts counting, TSTAT is held at 0. After the timer starts
running by setting HLD = 1 and GO = 1, while the period and counter regis-
ters are zero, the operation of the timer depends on the C/P mode se-
lected. In pulse mode, the TSTAT = 1 regardless of whether or not the timer
is held. In clock mode, when the timer is held (HLD = 0), TSTAT keeps it’s
previous value and when HLD = 1, TSTAT toggles with a frequency of 1/2
of the CPU clock frequency.

2) Counter overflow: When the timer counter register (CNT) is set to a value
greater than the value of the timer period register (PRD) the counter reach-
es its maximum value (FFFF FFFFh), rolls over to 0, and continues.

3) Writing to registers of an active timer: Writes from the peripheral bus
override register updates to the CNT and new status updates to the timer
control register (CTL).

4) Small timer period values in pulse mode: Note that small periods in pulse
mode can cause TSTAT to remain high. This condition occurs when TIMER
PERIOD ≤ PWID + 1.

Timer Interrupts

13-11Timers

13.8 Timer Interrupts

The TSTAT signal directly drives the CPU interrupt, as well as a DMA synchro-
nization event. The frequency of the interrupt is the same as the frequency of
TSTAT.

13.9 Timer Pins as General-Purpose Input/Output

Upon device reset, the timer pins TINP and TOUT are general-purpose input
and output (I/O) pins, respectively. By configuring the timer control register
(CTL), the TINP and TOUT pins can operate as general-purpose pins even
when the timer is running.

The TINP pin is always a general-purpose input pin if the timer is not running.
If the timer is running, the TINP pin is a general-purpose input pin if CLKSRC
= 1 in the CTL, which indicates that an internal clock source is used instead
of the TINP pin. When TINP is a general-purpose input pin, the input value is
readable on the DATIN bit field.

The TOUT pin is a general-purpose output pin if FUNC = 0 in the CTL, indepen-
dent of timer operation. The FUNC bit field, as shown in Figure 13–1, selects
either the DATOUT or the TSTAT value to be driven on the TOUT pin.

13.10 Emulation Operation

During debug using the emulator, the CPU may be halted on an execute packet
boundary for single stepping, benchmarking, profiling, or other debug uses. For
C620x/C670x, during an emulation halt the timer halts when the CPU clock/4
is selected as the clock source (CLKSRC = 1). Here, the counter is only enabled
to count during those cycles when the CPU is not stalled due to the emulation
halt. Thus, counting will be re-enabled during single-step operation. If
CLKSRC = 0, the timer continues counting as programmed. For
C621x/C671x/C64x, the timer continues counting during emulation halt re-
gardless of clock source.

Boundary Conditions in the Control Registers / Timer Interrupts / Emulation OperationBoundary Conditions in the Control Registers / Timer Interrupts / Emulation Operation

14-1

Interrupt Selector and External Interrupts

This chapter describes the interrupt selector and registers available.

Topic Page

14.1 Overview 14–2.

14.2 Available Interrupt Sources 14-3.

14.3 External Interrupt Signal Timing 14-6.

14.4 Interrupt Selector Registers 14-7.

14.5 Configuring the Interrupt Selector 14-10.

Chapter 14

Overview

 14-2

14.1 Overview

The C6000 peripheral set has up to 32 interrupt sources. The CPU however
has 12 interrupts available for use. The interrupt selector allows you to choose
and prioritize which 12 of the 32 your system needs to use. The interrupt selec-
tor also allows you to effectively change the polarity of external interrupt inputs.

Table 14–1 summarizes the differences between the interrupt selectors of the
C6000 devices.

Table 14–1. Differences in C6000 Interrupt Selectors

Features Supported on Device Section

Available Interrupts C6000 devices have different available
interrupts according to their peripheral
sets

14.2

IACK and INUM pins C620x/C670x only 14.3

EXT_INT4–7 pins All C6000. On C64x, these pins are
MUXed with the GPIO peripheral pins

14.3

Available Interrupt Sources

14-3Interrupt Selector and External Interrupts

14.2 Available Interrupt Sources

Table 14–2, Table 14–3, and Table 14–4 list the available interrupts of the
C620x/C670x, C621x/C671x, and C64x, respectively. For more information on
interrupts, including the interrupt vector table, see the TMS320C6000 CPU and
Instruction Set Reference Guide.

Table 14–2. TMS320C620x/C670x Available Interrupts

Interrupt
Selection Number

Interrupt
Acronym Interrupt Description

00000b DSPINT Host processor to DSP interrupt

00001b TINT0 Timer 0 interrupt

00010b TINT1 Timer 1 interrupt

00011b SD_INT EMIF SDRAM timer interrupt

00100b EXT_INT4 External interrupt pin 4

00101b EXT_INT5 External interrupt pin 5

00110b EXT_INT6 External interrupt pin 6

00111b EXT_INT7 External interrupt pin 7

01000b DMA_INT0 DMA channel 0 interrupt

01001b DMA_INT1 DMA channel 1 interrupt

01010b DMA_INT2 DMA channel 2 interrupt

01011b DMA_INT3 DMA channel 3 interrupt

01100b XINT0 McBSP 0 transmit interrupt

01101b RINT0 McBSP 0 receive interrupt

01110b XINT1 McBSP 1 transmit interrupt

01111b RINT1 McBSP 1 receive interrupt

10000b Reserved

10001b XINT2

PCI_WAKEUP

McBSP 2 transmit interrupt†

PCI wake up interrupt‡

10010b RINT2

ADMA_HLT

McBSP 2 receive interrupt†

Auxiliary DMA halted interrupt‡

other Reserved

† Only available on the C6202(B), C6203(B)
‡ Only available on the C6205

Available Interrupt Sources

 14-4

Table 14–3. TMS320C621x/C671x Available Interrupts

Interrupt
Selection
Number

Interrupt
Acronym Interrupt Description

00000b DSPINT Host port host to DSP interrupt
00001b TINT0 Timer 0 interrupt
00010b TINT1 Timer 1 interrupt
00011b SD_INT EMIF SDRAM timer interrupt
00100b EXT_INT4 External interrupt 4
00101b EXT_INT5 External interrupt 5
00110b EXT_INT6 External interrupt 6
00111b EXT_INT7 External interrupt 7
01000b EDMA_INT EDMA channel (0 through 15) interrupt
01001b Reserved Not used
01010b Reserved Not used
01011b Reserved Not used
01100b XINT0 McBSP 0 transmit interrupt
01101b RINT0 McBSP 0 receive interrupt
01110b XINT1 McBSP 1 transmit interrupt
01111b RINT1 McBSP 1 receive interrupt
other Reserved

Available Interrupt Sources

14-5Interrupt Selector and External Interrupts

Table 14–4. TMS320C64x Available Interrupts

Interrupt
Selection
Number

Interrupt
Acronym Interrupt Description

00000b DSPINT Host port host to DSP interrupt
00001b TINT0 Timer 0 interrupt
00010b TINT1 Timer 1 interrupt
00011b SD_INTA EMIFA SDRAM timer interrupt
00100b GPINT4/EXT_INT4 GPIO interrupt 4/External interrupt 4
00101b GPINT5/EXT_INT5 GPIO interrupt 5/External interrupt 5
00110b GPINT6/EXT_INT6 GPIO interrupt 6/External interrupt 6
00111b GPINT7/EXT_INT7 GPIO interrupt 7/External interrupt 7
01000b EDMA_INT EDMA channel (0 through 63) interrupt
01001b Reserved Not used
01010b Reserved Not used
01011b Reserved Not used
01100b XINT0 McBSP 0 transmit interrupt
01101b RINT0 McBSP 0 receive interrupt
01110b XINT1 McBSP 1 transmit interrupt
01111b RINT1 McBSP 1 receive interrupt
10000b GPINT0 GPIO interrupt 0
10001b XINT2 McBSP 2 transmit interrupt
10010b RINT2 McBSP 2 receive interrupt
10011b TINT2 Timer 2 interrupt
10100b SD_INTB EMIFB SDRAM timer interrupt
10101b PCI_WAKEUP PCI wakeup interrupt
10110b Reserved Not used
10111b UINT UTOPIA interupt
other Reserved

External Interrupt Signal Timing

 14-6

14.3 External Interrupt Signal Timing

EXT_INT4–7 and NMI are dedicated external interrupt sources. (EXT_INT4–7
pins are MUXed with the GPIO peripheral pins on C64x.) In addition, the FSR
and FSX can be programmed to directly drive the RINT and XINT signals. Be-
cause these signals are asynchronous, they are synchronized before being sent
to either the DMA/EDMA or CPU. Refer to the TMS320C6000 CPU and Instruc-
tion Set Reference Guide (SPRU189) and the device datasheet for details on
external interrupt signals timing.

For the C620x/C670x, the NMI can interrupt a maskable interrupt’s fetch pack-
et (ISFP) just before the interrupt reaches E1. In this case an IACK and INUM
for the NMI is not seen because the IACK and INUM corresponding to the
maskable interrupt is on the pins.

Note:

The IACK and INUM pins do not exist on C621x/C671x/C64x. They only exist
on C620x/C670x.

Interrupt Selector Registers

14-7Interrupt Selector and External Interrupts

14.4 Interrupt Selector Registers

Table 14–5 shows the interrupt selector registers. The interrupt multiplexer
registers determine the mapping between the interrupt sources described in
section 14.2 and the CPU interrupts 4 through 15 (INT4–INT15). The external
interrupt polarity register sets the polarity of external interrupts.

Table 14–5. Interrupt Selector Registers

Byte
Address

Abbreviation Name Description Section

019C0000h MUXH Interrupt multiplexer
high

Selects which interrupts drive
CPU interrupts 10–15 (INT10–15)

14.4.2

019C0004h MUXL Interrupt multiplexer
low

Selects which interrupts drive
CPU interrupts 4–9 (INT4–INT9)

14.4.2

019C0008h EXTPOL External interrupt
polarity

Sets the polarity of the external
interrupts (EXT_INT4–EXT_INT7)

14.4.1

14.4.1 External Interrupt Polarity Register (EXTPOL)

The external interrupt polarity register, shown in Figure 14–1, allows the user
to change the polarity of the four external interrupts (EXT_INT4 to EXT_INT7).
When XIP is its default value of 0, a low-to-high transition on an interrupt source
is recognized as an interrupt. By setting the related XIP bit in this register to 1,
you can invert the external interrupt source and effectively have the CPU detect
high-to-low transitions of the external interrupt. Changing an XIP bit’s value
creates transitions on the related CPU interrupt (INT4–INT7) that the external
interrupt, EXT_INT, is selected to drive. For example, if XIP4 is changed from
0 to 1 and EXT_INT4 is low, or if XIP4 is changed from 1 to 0 and EXT_INT4
is high, the CPU interrupt that is mapped to EXT_INT4 becomes set. The exter-
nal interrupt polarity register only affects interrupts to the CPU, and has no effect
on DMA events.

Figure 14–1. External Interrupt Polarity Register (EXTPOL)

31 4 3 2 1 0

Rsvd XIP7 XIP6 XIP5 XIP4

R, +0 RW, +0 RW, +0 RW, +0 RW, +0

Interrupt Selector Registers

 14-8

14.4.2 Interrupt Multiplexer Register

The INTSEL fields in the interrupt multiplexer registers, shown in Figure 14–2
for the low range and Figure 14–3 for the high range, allow mapping the inter-
rupt sources in to particular interrupts. The INTSEL4–INTSEL15 correspond to
CPU interrupts INT4–INT15. By setting the INTSEL fields to the value of the
desired interrupt selection number in Table 14–2, Table 14–3, or Table 14–4,
the user can map any interrupt source to any CPU interrupt. Default mapping
of interrupt sources to CPU interrupts are shown in Table 14–6.

Figure 14–2. Interrupt Multiplexer Low Register (MUXL)
31 30 26 25 21 20 16

Reserved INTSEL9 INTSEL8 INTSEL7

R, +0 RW, +01001 RW, +01000 RW, +00111

15 14 10 9 5 4 0

Reserved INTSEL6 INTSEL5 INTSEL4

R, +0 RW, +00110 RW, +00101 RW, +00100

Figure 14–3. Interrupt Multiplexer High Register (MUXH)
31 30 26 25 21 20 16

Reserved INTSEL15 INTSEL14 INTSEL13

R, +0 RW, +00010 RW, +00001 RW, +00000

15 14 10 9 5 4 0

Reserved INTSEL12 INTSEL11 INTSEL10

R, +0 RW, +01011 RW, +01010 RW, +00011

Interrupt Selector Registers

14-9Interrupt Selector and External Interrupts

Table 14–6. Default Interrupt Mapping

CPU
Interrupt

Related
INTSEL field

INTSEL
Reset Value

Interrupt
Acronym Interrupt Description

INT4 INTSEL4 00100b EXT_INT4 External interrupt pin 4

INT5 INTSEL5 00101b EXT_INT5 External interrupt pin 5

INT6 INTSEL6 00110b EXT_INT6 External interrupt pin 6

INT7 INTSEL7 00111b EXT_INT7 External interrupt pin 7

INT8 INTSEL8 01000b DMA_INT0/
EDMA_INT

DMA Channel 0 Interrupt/
EDMA interrupt

INT9 INTSEL9 01001b DMA_INT1 DMA Channel 1 interrupt†‡

INT10 INTSEL10 00011b SD_INT

SD_INTA

EMIF SDRAM timer interrupt
(C62x/C67x)

EMIFA SDRAM timer interrupt
(C64x)

INT11 INTSEL11 01010b DMA_INT2 DMA Channel 2 interrupt†‡

INT12 INTSEL12 01011b DMA_INT3 DMA Channel 3 interrupt†‡

INT13 INTSEL13 00000b DSPINT Host port to DSP interrupt

INT14 INTSEL14 00001b TINT0 Timer 0 interrupt

INT15 INTSEL15 00010b TINT1 Timer 1 interrupt

† Reserved on C621x/C671x
‡ Reserved on C64x

Configuring the Interrupt Selector

 14-10

14.5 Configuring the Interrupt Selector

The interrupt selector registers are meant to be configured once after reset dur-
ing initialization and before enabling interrupts.

Note:

Once the registers have been set, the interrupt flag register should be cleared
by the user after some delay to remove any spurious transitions caused by the
configuration.

You may reconfigure the interrupt selector during other times, but spurious inter-
rupt conditions may be detected by the CPU on the interrupts affected by the
modified fields. For example, if EXT_INT4 is low, EXT_INT5 is high, and INT9
is remapped from EXT_INT4 to EXT_INT5, the low-to-high transition on INT9
is recognized as an interrupt and sets IF9.

15-1

Power-Down Logic

The power-down modes are described in this chapter.

Topic Page

15.1 Overview 15-2.

15.2 Power–Down Mode Descriptions 15-3.

15.3 Triggering, Wake-Up, and Effects 15-5.

15.4 Additional Power-Saving Modes for TMS320C6202(B)/C6203(B) 15-8. .

Chapter 15

Overview

 15-2

15.1 Overview

Most of the operating power of CMOS logic is dissipated during circuit switch-
ing from one logic state to another. By preventing some or all of chip’s logic
from switching, the Power–Down Modes can be used to achieve significant
power savings without losing any data or operation context. PD1, PD2, and
PD3 are three power–down modes available on the C6000 to perform this
function. In addition to PD1, PD2, and PD3 the C6202(B)/C6203(B) also has
a peripheral power–down mode, as discussed in section 15.4. Table 15–1
summarizes the differences between the power–down modes in the C6000
devices.

Table 15–1. Differences in C6000 Power–Down Modes

Features Supported on Device Section

PD pin C620x/C670x only 15.2

Peripheral Power–Down Mode C6202(B)/C6203(B) only 15.4

Overview

15-3Power-Down Logic

15.2 Power–Down Mode Descriptions

Figure 15–1 shows the power–down logic on a C6000 device. Power–down
mode PD1 blocks the internal clock inputs at the boundary of the CPU, pre-
venting most of its logic from switching. PD1 effectively shuts down the CPU.
During PD1, DMA/EDMA transactions can proceed between peripherals and
internal memory.

Additional power savings are accomplished in power–down mode PD2, where
the entire on–chip clock structure (including multiple buffers) is “halted” at the
output of the PLL (see Figure 15–1). PD3 is like PD2 but also disconnects the
external clock source (CLKIN) from reaching the PLL. Wake–up from PD3
takes longer then wake–up from PD2 because the PLL needs to be re–locked,
just as it does following power–up.

On the C620x/C670x, both the PD2 and PD3 signals also assert the PD pin
for external recognition of these two power–down modes. Although the
C621x/C671x/C64x has power–down modes identical to the other devices,
there is no PD pin driven externally. In addition to power–down modes de-
scribed in this chapter, the IDLE instruction provides lower CPU power con-
sumption by executing continuous NOPs. The IDLE instruction terminates
only upon servicing an interrupt.

Overview

 15-4

Figure 15–1. Power-Down Mode Logic

PWRD

Internal clock tree

C6000 CPU

IFR

IER

CSR

PD1

PD2

Power-
down
logic

Internal
peripheral

Clock
PLL

CLKIN RESET

CLKOUT1

TMS320C6000

PD

PD3

Internal
peripheral

Triggering, Wake-Up, and Effects

15-5Power-Down Logic

15.3 Triggering, Wake-Up, and Effects

The power–down modes and their wake–up methods are programmed by set-
ting the PWRD field (bits 10–15) of the control status register (CSR). The
PWRD field of the CSR is shown in Figure 15–2 and described in Table 15–2.
When writing to the CSR, all bits of the PWRD field should be set at the same
time. Logic 0 should be used when writing to the reserved bit (bit 15) of the
PWRD field. The CSR is discussed in detail in the TMS320C6000 CPU and
Instruction Set Reference Guide (SPRU189).

Figure 15–2. PWRD Field of the CSR Register

31 16 15 14 13 12 11 10 9 0

rsvd

Enabled
or

non-enabled
interrupt wake

Enabled
interrupt

wake
PD3 PD2 PD1

RW, +0 RW, +0 RW, +0 RW, +0 RW, +0 RW, +0

Note: Refer to the TMS320C6000 CPU and Instruction Set Reference Guide (SPRU189) for other bit
fields in the CSR.

Table 15–2. Power-Down Mode and Wake-Up Selection

PRWD Power-down mode Wake-up method

000000 no power-down –––

001001 PD1 wake by an enabled interrupt

010001 PD1 wake by an enabled or non-enabled interrupt

011010 PD2 wake by a device reset

011100 PD3 wake by a device reset

other reserved –––

Triggering, Wake-Up, and Effects

 15-6

Power-down mode PD1 takes effect eight to nine clock cycles after the instruc-
tion that caused the power down (by setting the PWRD bits in the CSR). Use
the following code segment to enter power down:

B NextInst ;branch does not effect program flow, but
NOP ; hides the move to the CSR in the delay

; slots
MVC Breg, CSR ;power-down mode is set by this instruction
NOP
NOP
NOP

NextInst: NOP
NOP5 ;CPU notifies power-down logic to initiate

; power down
INSTR2 ;normal program execution resumed here

The wake-up from PD1 can be triggered by either an enabled interrupt, or any
interrupt (enabled or not). The first case is selected by writing a logic 1 to bit 13
of the Control Status Register (PWRD field), and the second case is selected by
writing a logic 1 into bit 14 of CSR. If PD1 mode is terminated by a non-enabled
interrupt, the program execution returns to the instruction following the NOP 5.
Wake-up by an enabled interrupt executes the corresponding interrupt service
fetch packet (ISFP) first, prior to returning to the instruction following the NOP 5.
CSR register GIE bit and interrupt enable register (IER) NMIE bit must also be
set in order for the ISFP to execute, otherwise execution returns to the previous
point, rather than servicing the interrupt.

PD2 and PD3 modes can only be aborted by device reset. Table 15–3 summa-
rizes all the power–down modes.

Triggering, Wake-Up, and Effects

15-7Power-Down Logic

Table 15–3. Characteristics of the Power-Down Modes

Power-Down
Mode Trigger Action Wake-up Method Effect on Chip’s Operation

PD1 write logic 001001b
or 010001b to bits
15-10 of the CSR

internal interrupt,
external interrupt or
Reset

CPU halted (except for the interrupt logic)

PD2 write logic 011010b to
bits 15-10 of the CSR

Reset only Output clock from PLL is halted, stopping
the internal clock structure from switching
and resulting in the entire chip being
halted. Signal terminal PD is driven high.
All register and internal RAM contents are
preserved. All functional I/O “freeze” in the
last state when the PLL clock is turned
off.�

PD3 write logic 11100b to
bits 15-10 of the CSR

Reset only Input clock to the PLL stops generating
clocks. Signal terminal PD is driven high.
All register and internal RAM contents are
preserved. All functional I/O “freeze” in the
last state when the PLL clock is turned
off.� Following reset, the PLL needs time
to re-lock, just as it does following power-
up.

� When entering PD2 and PD3, all functional I/O will remain in the previous state. However, for peripherals which
are asynchronous in nature (HPI) or peripherals with an external clock source (McBSP, XBUS, timers,
C621x/C671x/C64x EMIF, UTOPIA, PCI), output signals may transition in response to stimulus on the inputs. Pe-
ripheral operation is not guaranteed under these conditions.

Peripheral Power-Down Mode for TMS320C6202(B)/C6203(B)

 15-8

15.4 Peripheral Power-Down Mode for TMS320C6202(B)/C6203(B)

In addition to the power down modes common to all of the C6x devices, the
C6202(B)/C6203(B) has the ability to turn off clocks to individual peripherals
on the device. This feature allows the user to selectively turn off peripherals
which are not being used for a specific application and not pay the extra price
in power consumption for unused peripherals.

This method can have significant savings in power consumption. In a device
which is as highly integrated as the C6000 series of DSPs a significant amount
of power can be consumed in a reset or no activity state just due to the internal
clock distribution. By selectively turning off unused portions of the device, the
effects can be minimized.

Table 15–4 shows the peripheral power down register address location, and
Figure 15–3 shows the register fields.

Table 15–4. Peripheral Power-Down Memory-Mapped Register

Byte Address Abbreviation Field

019C 0200h PDCTL Peripheral Power-Down Control

Figure 15–3. Peripheral Power-Down Control Register (PDCTL) for
TMS320C6202(B)/C6203(B)

31 5 4 3 2 1 0

Reserved PDMCSP2 PDMCSP1 PDMCSP0 PDEMIF PDDMA

R,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

Peripheral Power-Down Mode for TMS320C6202(B)/C6203(B)

15-9Power-Down Logic

Table 15–5 lists and describes the fields in the peripheral power-down control-
register (PDCTL).

Table 15–5. Peripheral Power-Down Control Register Bit Field Descriptions

Bit
No. Field Description Section

4 PDMCSP2 Enable/disable internal McBSP2 clock

PDMCSP2=0: internal McBSP2 clock allowed to clock
PDMCSP2=1: internal McBSP2 clock disabled, McBSP2 is not functional

15.4

3 PDMCSP1 Enable/disable internal McBSP1 clock

PDMCSP1=0: internal McBSP1 clock allowed to clock.
PDMCSP1=1: internal McBSP1 clock disabled, McBSP1 is not functional.

15.4

2 PDMCSP0 Enable/disable internal McBSP0 clock

PDMCSP0=0: Internal McBSP0 clock allowed to clock.
PDMCSP0=1: Internal McBSP0 clock disabled. McBSP0 is not functional.

15.4

1 PDEMIF Enable/disable internal EMIF clock

PDEMIF=0: internal EMIF clock allowed to clock
PDEMIF=1: Internal EMIF clock disabled. EMIF is not functional. HOLD

condition which exists at power down will remain active and
external clocks continue to clock.

15.4

0 PDDMA Enable/disable internal DMA clock

PDDMA=0: internal DMA clock allowed to clock
PDDMA=1: internal DMA clock disabled. DMA is not functional

15.4

Peripheral Power-Down Mode for TMS320C6202(B)/C6203(B)

 15-10

The user must be careful to not disable a portion of the device which is being
used, since the peripheral becomes non–operational once disabled. A clock-
off mode can be entered and exited depending on the needs of the application.
For example, if an application does not need the serial ports, the ports can be
disabled and then re–enabled when needed. While a peripheral is in power–
down mode, no writes to the peripheral’s registers will occur; and reads from
the peripheral will produce invalid data.

When re-enabling any of the PD bits, the CPU should wait at least 5 additional
clock cycles before attempting to access that peripheral. This delay can be ac-
complished with a NOP 5 after any write to a peripheral power down register,
as shown in Example 15–1.

Example 15–1. Assemble Code for Initializing Peripheral Power-Down Register

MVK 0x019C0200, Dest_Ptr_Reg
MVKH 0x019C0200, Dest_Ptr_Reg
STW SrcReg, *Dest_Ptr_Reg
NOP 5

16-1Designing for JTAG Emulation

Designing for JTAG Emulation

This chapter assists you in meeting the design requirements of the XDS510
emulator with respect to JTAG designs and discusses the XDS510 cable
(manufacturing part number 2617698-0001). This cable is identified by a label
on the cable pod marked JTAG 3/5 V and supports both standard 3-volt and
5-volt target system power inputs.

The term JTAG, as used in this book, refers to TI scan-based emulation, which
is based on the IEEE 1149.1 standard.

Topic Page

16.1 Designing Your Target System’s
Emulator Connector (14-Pin Header) 16-2.

16.2 Bus Protocol 16-3.

16.3 IEEE 1149.1 Standard 16-3.

16.4 JTAG Emulator Cable Pod Logic 16-4.

16.5 JTAG Emulator Cable Pod Signal Timing 16-5.

16.6 Emulation Timing Calculations 16-6.

16.7 Connections Between the Emulator and the Target System 16-8.

16.8 Mechanical Dimensions for the 14-Pin Emulator Connector 16-12. . . .

16.9 Emulation Design Considerations 16-14.

Chapter 16

Designing Your Target System’s Emulator Connector (14-Pin Header)

 16-2

16.1 Designing Your Target System’s Emulator Connector (14-Pin Header)
JTAG target devices support emulation through a dedicated emulation port.
This port is a superset of the IEEE 1149.1 standard and is accessed by the
emulator. To communicate with the emulator, your target system must have
a 14-pin header (two rows of seven pins) with the connections that are shown
in Figure 16–1. Table 16–1 describes the emulation signals.

Figure 16–1. 14-Pin Header Signals and Header Dimensions

TDO 7 8 GND

TMS 1 2 TRST

TDI 3 4 GND

TCK_RET 9 10 GND

TCK 11 12 GND

Header Dimensions:
Pin-to-pin spacing, 0.100 in. (X,Y)
Pin width, 0.025-in. square post
Pin length, 0.235-in. nominal

PD (VCC) 5 6 no pin (key)†

EMU0 13 14 EMU1

† While the corresponding female position on the cable connector is plugged to prevent improper
connection, the cable lead for pin 6 is present in the cable and is grounded, as shown in the sche-
matics and wiring diagrams in this document.

Table 16–1. 14-Pin Header Signal Descriptions

Signal Description
Emulator †

State
Target †

State
TMS Test mode select O I

TDI Test data input O I

TDO Test data output I O

TCK Test clock. TCK is a 10.368-MHz clock
source from the emulation cable pod. This
signal can be used to drive the system test
clock

O I

TRST‡ Test reset O I

EMU0 Emulation pin 0 I I/O

EMU1 Emulation pin 1 I I/O

PD(VCC) Presence detect. Indicates that the emula-
tion cable is connected and that the target is
powered up. PD should be tied to VCC in the
target system.

I O

TCK_RET Test clock return. Test clock input to the
emulator. May be a buffered or unbuffered
version of TCK.

I O

GND Ground

† I = input; O = output
‡ Do not use pullup resistors on TRST: it has an internal pulldown device. In a low-noise

environment, TRST can be left floating. In a high-noise environment, an additional pulldown
resistor may be needed. (The size of this resistor should be based on electrical current
considerations.)

Designing Your Target System’s Emulator Connector (14-Pin Header)

16-3Designing for JTAG Emulation

Although you can use other headers, recommended parts include:

straight header, unshrouded DuPont Connector Systems
part numbers: 65610–114

 65611–114

 67996–114

 67997–114

16.2 Bus Protocol

The IEEE 1149.1 specification covers the requirements for the test access port
(TAP) bus slave devices and provides certain rules, summarized as follows:

� The TMS/TDI inputs are sampled on the rising edge of the TCK signal of
the device.

� The TDO output is clocked from the falling edge of the TCK signal of the
device.

When these devices are daisy-chained together, the TDO of one device has
approximately a half TCK cycle setup to the next device’s TDI signal. This type
of timing scheme minimizes race conditions that would occur if both TDO and
TDI were timed from the same TCK edge. The penalty for this timing scheme
is a reduced TCK frequency.

The IEEE 1149.1 specification does not provide rules for bus master (emula-
tor) devices. Instead, it states that it expects a bus master to provide bus slave
compatible timings. The XDS510 provides timings that meet the bus slave
rules.

16.3 IEEE 1149.1 Standard

For more information concerning the IEEE 1149.1 standard, contact IEEE
Customer Service:

Address: IEEE Customer Service
445 Hoes Lane, PO Box 1331
Piscataway, NJ 08855-1331

Phone: (800) 678–IEEE in the US and Canada
(908) 981–1393 outside the US and Canada

FAX: (908) 981–9667 Telex: 833233

Designing Your Target System’s Emulator Connector (14-Pin Header) / Bus Protocol / IEEE 1149.1 Standard

JTAG Emulator Cable Pod Logic

 16-4

16.4 JTAG Emulator Cable Pod Logic

Figure 16–2 shows a portion of the emulator cable pod. These are the func-
tional features of the pod:

� Signals TDO and TCK_RET can be parallel-terminated inside the pod if
required by the application. By default, these signals are not terminated.

� Signal TCK is driven with a 74LVT240 device. Because of the high-current
drive (32 mA IOL/IOH), this signal can be parallel-terminated. If TCK is tied
to TCK_RET, then you can use the parallel terminator in the pod.

� Signals TMS and TDI can be generated from the falling edge of TCK_RET,
according to the IEEE 1149.1 bus slave device timing rules.

� Signals TMS and TDI are series-terminated to reduce signal reflections.

� A 10.368-MHz test clock source is provided. You may also provide your
own test clock for greater flexibility.

Figure 16–2. JTAG Emulator Cable Pod Interface

100 Ω

TL7705A
RESIN

270 Ω

JP2

180 Ω

TCK_RET (Pin 9)�

EMU1 (Pin 14)

EMU0 (Pin 13)
74AS1034

GND (Pins 4,6,8,10,12)

TRST (Pin 2)

TCK (Pin 11)�

10.368 MHz

33 Ω

33 Ω

TDI (Pin 3)

TMS (Pin 1)

TDO (Pin 7)

74LVT240

180 Ω

JP1

270 Ω
74F175

Q

Q

D

PD(VCC) (Pin 5)

+5 V

+5 V

74AS1004

Y

Y

Y

Y

A

† The emulator pod uses TCK_RET as its clock source for internal synchronization. TCK is provided
as an optional target system test clock source.

JTAG Emulator Cable Pod Signal Timing

16-5Designing for JTAG Emulation

16.5 JTAG Emulator Cable Pod Signal Timing

Figure 16–3 shows the signal timings for the emulator cable pod. Table 16–2
defines the timing parameters. These timing parameters are calculated from
values specified in the standard data sheets for the emulator and cable pod
and are for reference only. Texas Instruments does not test or guarantee these
timings.

The emulator pod uses TCK_RET as its clock source for internal synchroni-
zation. TCK is provided as an optional target system test clock source.

Figure 16–3. JTAG Emulator Cable Pod Timings

TDO

TMS/TDI

TCK_RET

6
5

4

3
2

1

1.5 V

Table 16–2. Emulator Cable Pod Timing Parameters

No. Reference Description Min Max Units

1 tc(TCK) TCK_RET period 35 200 ns

2 tw(TCKH) TCK_RET high-pulse duration 15 ns

3 tw(TCKL) TCK_RET low-pulse duration 15 ns

4 td(TMS) Delay time, TMS/TDI valid from TCK_RET low 6 20 ns

5 tsu(TDO) TDO setup time to TCK_RET high 3 ns

6 th(TDO) TDO hold time from TCK_RET high 12 ns

Emulation Timing Calculations

 16-6

16.6 Emulation Timing Calculations

The following examples help you calculate emulation timings in your system.
For actual target timing parameters, see the appropriate device data sheets.

Assumptions:

tsu(TTMS) Target TMS/TDI setup to TCK high 10 ns

td(TTDO) Target TDO delay from TCK low 15 ns

td(bufmax) Target buffer delay, maximum 10 ns

td(bufmin) Target buffer delay, minimum 1 ns

t(bufskew) Target buffer skew between two devices
in the same package:
[td(bufmax) – td(bufmin)] × 0.15

1.35 ns

t(TCKfactor) Assume a 40/60 duty cycle clock 0.4
(40%)

Given in Table 16–2 (on page 16-5):

td(TMSmax) Emulator TMS/TDI delay from TCK_RET
low, maximum

20 ns

tsu(TDOmin) TDO setup time to emulator TCK_RET
high, minimum

3 ns

There are two key timing paths to consider in the emulation design:

� The TCK_RET-to-TMS/TDI path, called tpd(TCK_RET–TMS/TDI), and
� The TCK_RET-to-TDO path, called tpd(TCK_RET–TDO).

Of the following two cases, the worst-case path delay is calculated to deter-
mine the maximum system test clock frequency.

Case 1: Single processor, direct connection, TMS/TDI timed from TCK_RET low.

t
pd �TCK_RET–TMS�TDI�

�

�td �TMSmax� � tsu �TTMS�
�

t
�TCKfactor�

�

[20ns � 10ns]
0.4

� 75ns (13.3 MHz)

tpd �TCK_RET–TDO�
�

�td �TTDO�
� tsu �TDOmin�

�

t
�TCKfactor�

�

[15ns � 3ns]
0.4

� 45ns (22.2 MHz)

In this case, the TCK_RET-to-TMS/TDI path is the limiting factor.

Emulation Timing Calculations

16-7Designing for JTAG Emulation

Case 2: Single/multiprocessor, TMS/TDI/TCK buffered input, TDO buffered output,

TMS/TDI timed from TCK_RET low.

tpd (TCK_RET–TMS�TDI) �

�td (TMSmax)
� tsu (TTMS)

� t (bufskew)
�

t
�TCKfactor�

�

�20ns � 10ns � 1.35ns�

0.4

� 78.4ns (12.7 MHz)

tpd (TCK_RET–TDO) �

�td (TTDO)
� tsu (TDOmin) � td (bufmax)

�

t
�TCKfactor�

� 70ns (14.3 MHz)

�

[15ns � 3ns � 10ns]
0.4

In this case, the TCK_RET-to-TMS/TDI path is the limiting factor.

In a multiprocessor application, it is necessary to ensure that the EMU0–1 lines

can go from a logic low level to a logic high level in less than 10 µs. This can be

calculated as follows:

tr = 5(Rpullup × Ndevices × Cload_per_device)

= 5(4.7 k� ×16 × 15 pF)

= 5.64 µs

Refer to the device datasheet for the actual Rpullup value.

Connections Between the Emulator and the Target System

 16-8

16.7 Connections Between the Emulator and the Target System

It is extremely important to provide high-quality signals between the emulator
and the JTAG target system. Depending upon the situation, you must supply
the correct signal buffering, test clock inputs, and multiple processor intercon-
nections to ensure proper emulator and target system operation.

Signals applied to the EMU0 and EMU1 pins on the JTAG target device can
be either input or output (I/O). In general, these two pins are used as both input
and output in multiprocessor systems to handle global run/stop operations.
EMU0 and EMU1 signals are applied only as inputs to the XDS510 emulator
header.

16.7.1 Buffering Signals

If the distance between the emulation header and the JTAG target device is
greater than six inches, the emulation signals must be buffered. If the distance
is less than six inches, no buffering is necessary. The following illustrations
depict these two situations.

� No signal buffering. In this situation, the distance between the header
and the JTAG target device should be no more than six inches.

VCC

Emulator Header

VCC

GND

12

10

8

6

4

5

GND

GND

GND

GND

GND

PD

TCK_RET

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

9

11

7

3

1

2

14

13

JTAG Device

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

6 Inches or Less

The EMU0 and EMU1 signals must have pullup resistors connected to VCC to
provide a signal rise time of less than 10 µs. Refer to the device datasheet for
the recommeded resistor value.

Connections Between the Emulator and the Target System

16-9Designing for JTAG Emulation

� Buffered transmission signals. In this situation, the distance between
the emulation header and the processor is greater than six inches. Emula-
tion signals TMS, TDI, TDO, and TCK_RET are buffered through the same
package.

VCC

Emulator Header
VCC

GND

12

10

8

6

4

5

GND

GND

GND

GND

GND

PD

TCK_RET

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

9

11

7

3

1

2

14

13

JTAG Device

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

Greater Than
6 Inches

� The EMU0 and EMU1 signals must have pullup resistors connected to
VCC to provide a signal rise time of less than 10 µs. Refer to the device
datasheet for the recommeded resistor value.

� The input buffers for TMS and TDI should have pullup resistors con-
nected to VCC to hold these signals at a known value when the emula-
tor is not connected. Refer to the device datasheet for the recommed-
ed resistor value.

� To have high-quality signals (especially the processor TCK and the
emulator TCK_RET signals), you may have to employ special care
when routing the PWB trace. You also may have to use termination
resistors to match the trace impedance. The emulator pod provides
optional internal parallel terminators on the TCK_RET and TDO. TMS
and TDI provide fixed series termination.

� Since TRST is an asynchronous signal, it should be buffered as
needed to insure sufficient current to all target devices.

Connections Between the Emulator and the Target System

 16-10

16.7.2 Using a Target-System Clock

Figure 16–4 shows an application with the system test clock generated in the
target system. In this application, the TCK signal is left unconnected.

Figure 16–4. Target-System-Generated Test Clock

NC

System Test Clock

VCC

Emulator Header

GND

12

10

8

6

4

5

GND

GND

GND

GND

GND

PD

TCK_RET

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

9

11

7

3

1

2

14

13

JTAG Device

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

Greater Than
6 Inches

VCC

Note: When the TMS/TDI lines are buffered, pullup resistors should be used to hold the buffer
inputs at a known level when the emulator cable is not connected.

There are two benefits to having the target system generate the test clock:

� The emulator provides only a single 10.368-MHz test clock. If you allow
the target system to generate your test clock, you can set the frequency
to match your system requirements.

� In some cases, you may have other devices in your system that require
a test clock when the emulator is not connected. The system test clock
also serves this purpose.

Connections Between the Emulator and the Target System

16-11Designing for JTAG Emulation

16.7.3 Configuring Multiple Processors

Figure 16–5 shows a typical daisy-chained multiprocessor configuration,
which meets the minimum requirements of the IEEE 1149.1 specification. The
emulation signals in this example are buffered to isolate the processors from
the emulator and provide adequate signal drive for the target system. One of
the benefits of this type of interface is that you can generally slow down the test
clock to eliminate timing problems. You should follow these guidelines for
multiprocessor support:

� The processor TMS, TDI, TDO, and TCK signals should be buffered
through the same physical package for better control of timing skew.

� The input buffers for TMS, TDI, and TCK should have pullup resistors con-
nected to VCC to hold these signals at a known value when the emulator
is not connected. Refer to the device datasheet for the recommeded resis-
tor value.

� Buffering EMU0 and EMU1 is optional but highly recommended to provide
isolation. These are not critical signals and do not have to be buffered
through the same physical package as TMS, TCK, TDI, and TDO. Unbuf-
fered and buffered signals are shown in this section (page 16-8 and
page 16-9).

Figure 16–5. Multiprocessor Connections

TDITDI TDOTDO

JTAG DeviceJTAG Device

VCC

Emulator Header

GND

12

10

8

6

4

5

GND

GND

GND

GND

GND

PD

TCK_RET

TCK

TDO

TDI

TMS

TRST

EMU1

EMU0

9

11

7

3

1

2

14

13

T
M

S

T
C

K

T
R

S
T

E
M

U
0

E
M

U
1

T
M

S

T
C

K

T
R

S
T

E
M

U
0

E
M

U
1 VCC

Mechanical Dimensions for the 14-Pin Emulator Connector

 16-12

16.8 Mechanical Dimensions for the 14-Pin Emulator Connector

The JTAG emulator target cable consists of a 3-foot section of jacketed cable,
an active cable pod, and a short section of jacketed cable that connects to the
target system. The overall cable length is approximately 3 feet 10 inches.
Figure 16–6 and Figure 16–7 (page 16-13) show the mechanical dimensions
for the target cable pod and short cable. Note that the pin-to-pin spacing on
the connector is 0.100 inches in both the X and Y planes. The cable pod box
is nonconductive plastic with four recessed metal screws.

Figure 16–6. Pod/Connector Dimensions

0.90

2.70

4.50

9.50

Refer to Figure 16–7.

Emulator Cable Pod

Short, Jacketed Cable

Connector

Note: All dimensions are in inches and are nominal dimensions, unless otherwise specified.

Mechanical Dimensions for the 14-Pin Emulator Connector

16-13Designing for JTAG Emulation

Figure 16–7. 14-Pin Connector Dimensions

0.100
Key, Pin 6

0.100

0.87

0.66

0.20

Pins 2, 4, 6, 8, 10, 12, 14Pins 1, 3, 5, 7, 9, 11, 13

Cable

Connector, Side View

Connector, Front View

Cable

Note: All dimensions are in inches and are nominal dimensions, unless otherwise specified.

Emulation Design Considerations

 16-14

16.9 Emulation Design Considerations

This section describes the use and application of the scan path linker (SPL),
which can simultaneously add all four secondary JTAG scan paths to the main
scan path. It also describes the use of the emulation pins and the configuration
of multiple processors.

16.9.1 Using Scan Path Linkers

You can use the TI ACT8997 scan path linker (SPL) to divide the JTAG
emulation scan path into smaller, logically connected groups of 4 to 16
devices. As described in the Advanced Logic and Bus Interface Logic Data
Book (literature number SCYD001), the SPL is compatible with the JTAG
emulation scanning. The SPL is capable of adding any combination of its four
secondary scan paths into the main scan path.

A system of multiple, secondary JTAG scan paths has better fault tolerance
and isolation than a single scan path. Since an SPL has the capability of adding
all secondary scan paths to the main scan path simultaneously, it can support
global emulation operations, such as starting or stopping a selected group of
processors.

TI emulators do not support the nesting of SPLs (for example, an SPL
connected to the secondary scan path of another SPL). However, you can
have multiple SPLs on the main scan path.

Although the ACT8999 scan path selector is similar to the SPL, it can add only
one of its secondary scan paths at a time to the main JTAG scan path. Thus,
global emulation operations are not assured with the scan path selector. For
this reason, scan path selectors are not supported.

You can insert an SPL on a backplane so that you can add up to four device
boards to the system without the jumper wiring required with nonbackplane
devices. You connect an SPL to the main JTAG scan path in the same way you
connect any other device. Figure 16–8 shows you how to connect a secondary
scan path to an SPL.

Emulation Design Considerations

16-15Designing for JTAG Emulation

Figure 16–8. Connecting a Secondary JTAG Scan Path to an SPL†

TDI

TCK

TDO

TRST

TMS

TDO

TRST

TCK

TMS

TDI

DTDI0

DTMS0

DTDO0

DTCK

TDO

TRST

TCK

TMS

TDI

SPL

JTAG 0

JTAG N
DTDI1

DTMS1

DTDO1

DTDI2

DTMS2

DTDO2

DTDI3

DTMS3

DTDO3

. .
 .

† Voltage translators should be used between the SPL (5V) and the C6000 (3V).

The TRST signal from the main scan path drives all devices, even those on
the secondary scan paths of the SPL. The TCK signal on each target device
on the secondary scan path of an SPL is driven by the SPL’s DTCK signal. The
TMS signal on each device on the secondary scan path is driven by the respec-
tive DTMS signals on the SPL.

DTDO on the SPL is connected to the TDI signal of the first device on the sec-
ondary scan path. DTDI on the SPL is connected to the TDO signal of the last
device in the secondary scan path. Within each secondary scan path, the TDI
signal of a device is connected to the TDO signal of the device before it. If the
SPL is on a backplane, its secondary JTAG scan paths are on add-on boards;
if signal degradation is a problem, you may need to buffer both the TRST and
DTCK signals. Although less likely, you may also need to buffer the DTMSn
signals for the same reasons.

Emulation Design Considerations

 16-16

16.9.2 Emulation Timing Calculations for SPL

The following examples help you to calculate the emulation timings in the SPL
secondary scan path of your system. For actual target timing parameters, see
the appropriate device data sheets.

Assumptions:

tsu(TTMS) Target TMS/TDI setup to TCK high 10 ns

td(TTDO) Target TDO delay from TCK low 15 ns

td(bufmax) Target buffer delay, maximum 10 ns

td(bufmin) Target buffer delay, minimum 1 ns

t(bufskew) Target buffer skew between two devices
in the same package:
[td(bufmax) – td(bufmin)] × 0.15

1.35 ns

t(TCKfactor) Assume a 40/60 duty cycle clock 0.4
(40%)

Given in the SPL data sheet:

td(DTMSmax) SPL DTMS/DTDO delay from TCK
low, maximum

31 ns

tsu(DTDLmin) DTDI setup time to SPL TCK
high, minimum

7 ns

td(DTCKHmin) SPL DTCK delay from TCK
high, minimum

2 ns

td(DTCKLmax) SPL DTCK delay from TCK
low, maximum

16 ns

There are two key timing paths to consider in the emulation design:

� The TCK-to-DTMS/DTDO path, called tpd(TCK–DTMS), and
� The TCK-to-DTDI path, called tpd(TCK–DTDI).

Emulation Design Considerations

16-17Designing for JTAG Emulation

Of the following two cases, the worst-case path delay is calculated to deter-
mine the maximum system test clock frequency.

Case 1: Single processor, direct connection, DTMS/DTDO timed from TCK low.

tpd �TCK–DTMS� �

�td �DTMSmax� � td �DTCKHmin� � tsu �TTMS�
�

t
�TCKfactor�

�

[31ns � 2ns � 10ns]
0.4

� 107.5ns (9.3 MHz)

t
pd �TCK–DTDI�

�

�t
d �TTDO�

� t
d �DTCKLmax�

� t
su �DTDLmin�

�

t
�TCKfactor�

�

[15ns � 16ns � 7ns]
0.4

� 9.5ns (10.5 MHz)

In this case, the TCK-to-DTMS/DTDL path is the limiting factor.

Case 2: Single/multiprocessor, DTMS/DTDO/TCK buffered input, DTDI buffered out-

put, DTMS/DTDO timed from TCK low.

tpd (TCK–TDMS) �

�td (DTMSmax) � t
�DTCKHmin� � tsu (TTMS) � t(bufskew)�

t
�TCKfactor�

�

[31ns � 2ns � 10ns � 1.35ns]
0.4

� 110.9ns (9.0 MHz)

tpd (TCK–DTDI) �

�td (TTDO) � td �DTCKLmax� � tsu (DTDLmin)
� td (bufskew)

t
�TCKfactor�

� 120ns (8.3 MHz)

�

[15ns � 15ns � 7ns � 10ns]
0.4

In this case, the TCK-to-DTDI path is the limiting factor.

Emulation Design Considerations

 16-18

16.9.3 Using Emulation Pins

The EMU0/1 pins of TI devices are bidirectional, three-state output pins. When
in an inactive state, these pins are at high impedance. When the pins are
active, they function in one of the two following output modes:

� Signal Event
The EMU0/1 pins can be configured via software to signal internal events.
In this mode, driving one of these pins low can cause devices to signal
such events. To enable this operation, the EMU0/1 pins function as open-
collector sources. External devices such as logic analyzers can also be
connected to the EMU0/1 signals in this manner. If such an external
source is used, it must also be connected via an open-collector source.

� External Count
The EMU0/1 pins can be configured via software as totem-pole outputs
for driving an external counter. If the output of more than one device is
configured for totem-pole operation, then these devices can be damaged.
The emulation software detects and prevents this condition. However, the
emulation software has no control over external sources on the EMU0/1
signal. Therefore, all external sources must be inactive when any device
is in the external count mode.

TI devices can be configured by software to halt processing if their EMU0/1
pins are driven low. This feature, in combination with the use of the signal event
output mode, allows one TI device to halt all other TI devices on a given event
for system-level debugging.

If you route the EMU0/1 signals between boards, they require special handling
because these signals are more complex than normal emulation signals.
Figure 16–9 shows an example configuration that allows any processor in the
system to stop any other processor in the system. Do not tie the EMU0/1 pins
of more than 16 processors together in a single group without using buffers.
Buffers provide the crisp signals that are required during a RUNB (run bench-
mark) debugger command or when the external analysis counter feature is
used.

Emulation Design Considerations

16-19Designing for JTAG Emulation

Figure 16–9. EMU0/1 Configuration

Open
Collector

Drivers

EMU0/1-IN

Backplane

Target Board m

TCK

XCNT_ENABLE

Pullup Resistor

To Emulator EMU0

PAL
Pullup
Resistor

Open
Collector

Drivers

Target Board 1

EMU0/1

Pullup Resistor

EMU0/1-OUT

. . .Device Device

EMU0/1

. . .

. . .

. . .

. . .

. . .

1 n

Device Device
1 n

Notes: 1) The low time on EMUx-IN should be at least one TCK cycle and less than 10 �s. Software will set the EMUx-OUT
pin to a high state.

2) To enable the open-collector driver and pullup resistor on EMU1 to provide rising/falling edges of less than 25 ns,
the modification shown in this figure is suggested. Rising edges slower than 25 ns can cause the emulator to detect
false edges during the RUNB command or when the external counter selected from the debugger analysis menu
is used.

These seven important points apply to the circuitry shown in Figure 16–9 and
Figure 16–10 , and the timing shown in Figure 16–11:

� Open-collector drivers isolate each board. The EMU0/1 pins are tied to-
gether on each board.

� At the board edge, the EMU0/1 signals are split to provide IN/OUT. This
is required to prevent the open-collector drivers from acting as a latch that
can be set only once.

� The EMU0/1 signals are bused down the backplane. Pullup resistors are
installed as required.

Emulation Design Considerations

 16-20

� The bused EMU0/1 signals go into a PAL� device, whose function is to
generate a low pulse on the EMU0/1-IN signal when a low level is detected
on the EMU0/1-OUT signal. This pulse must be longer than one TCK
period to affect the devices, but less than 10 µs to avoid possible conflicts
or retriggering, once the emulation software clears the device’s pins.

� During a RUNB debugger command or other external analysis count, the
EMU0/1 pins on the target device become totem-pole outputs. The EMU1
pin is a ripple carry-out of the internal counter. EMU0 becomes a
processor-halted signal. During a RUNB or other external analysis count,
the EMU0/1-IN signal to all boards must remain in the high (disabled)
state. You must provide some type of external input (XCNT_ENABLE) to
the PAL to disable the PAL from driving EMU0/1-IN to a low state.

� If sources other than TI processors (such as logic analyzers) are used to
drive EMU0/1, their signal lines must be isolated by open-collector drivers
and be inactive during RUNB and other external analysis counts.

� You must connect the EMU0/1-OUT signals to the emulation header or di-
rectly to a test bus controller.

Emulation Design Considerations

16-21Designing for JTAG Emulation

Figure 16–10. EMU0/1 Configuration With Additional AND Gate to Meet Timing
Requirements

Open
Collector

Drivers

EMU0/1-IN

Backplane

Target Board m

TCK

XCNT_ENABLE

Pullup Resistor

To Emulator EMU0

PAL
Pullup
Resistor

Open
Collector

Drivers

Target Board 1

EMU0/1

Pullup Resistor

EMU1 signal from other boards

EMU1AND

To Emulator EMU1

Circuitry required for >25-ns rising/
falling edge modification

EMU0/1-OUT

. . .Device Device

EMU0/1

. . .

. . .

. . .

. . .

. . .

. . .

1 n

Device Device
1 n

Up to
m boards

Notes: 1) The low time on EMUx–IN should be at least one TCK cycle and less than 10 �s. Software will set the EMUx–OUT
pin to a high state.

2) To enable the open-collector driver and pullup resistor on EMU1 to provide rising/falling edges of less than 25 ns,
the modification shown in this figure is suggested. Rising edges slower than 25 ns can cause the emulator to detect
false edges during the RUNB command or when the external counter selected from the debugger analysis menu
is used.

Figure 16–11. Suggested Timings for the EMU0 and EMU1 Signals

EMU0/1-IN

EMU0/1-OUT

TCK

Emulation Design Considerations

 16-22

If having devices on one target board stopped by devices on another target
board via the EMU0/1 signals is not important, then the circuit in Figure 16–12
can be used. In this configuration, the global-stop capability is lost. It is impor-
tant not to overload EMU0/1 with more than 16 devices.

Figure 16–12. EMU0/1 Configuration Without Global Stop

EMU0/1

To Emulator

Pullup Resistor

. . .

EMU0/1

. . .Device Device

EMU0/1

. . .

. . .

. . .

1 n

Device Device
1 n

. . .

Target Board m

Target Board 1

Pullup Resistor

Pullup Resistor

Note: The open-collector driver and pullup resistor on EMU1 must be able to provide rising/falling edges of less than 25 ns.
Rising edges slower than 25 ns can cause the emulator to detect false edges during the RUNB command or when the
external counter selected from the debugger analysis menu is used. If this condition cannot be met, then the EMU0/1
signals from the individual boards should be ANDed together (as shown in Figure 16–10) to produce an EMU0/1 signal
for the emulator.

Emulation Design Considerations

16-23Designing for JTAG Emulation

16.9.4 Performing Diagnostic Applications

For systems that require built-in diagnostics, it is possible to connect the
emulation scan path directly to a TI ACT8990 test bus controller (TBC) instead
of the emulation header. The TBC is described in the Texas Instruments Ad-
vanced Logic and Bus Interface Logic Data Book (literature number
SCYD001). Figure 16–13 shows the scan path connections of n devices to the
TBC.

Figure 16–13. TBC Emulation Connections for n JTAG Scan Paths†

JTAG0

JTAGN
TDI

EMU1

TMS

TDO

EMU0

TRST

TCK

TDO

TCK

TRST

EMU1

EMU0

TMS

TDI

Clock

TDI1

TDI0

TCKO

TMS5/EVNT3

TMS4/EVNT2

TMS3/EVNT1

TMS2/EVNT0

TMS1

TMS0

TDO

TCKI

VCC

TBC

† Voltage translators should be used between the TBC (5V) and the C6000 (3V).

In the system design shown in Figure 16–13, the TBC emulation signals TCKI,
TDO, TMS0, TMS2/EVNT0, TMS3/EVNT1, TMS5/EVNT3, TCKO, and TDI0
are used, and TMS1, TMS4/EVNT2, and TDI1 are not connected. The target
devices’ EMU0 and EMU1 signals are connected to VCC through pullup resis-
tors and tied to the TBC’s TMS2/EVNT0 and TMS3/EVNT1 pins, respectively.
The TBC’s TCKI pin is connected to a clock generator. The TCK signal for the
main JTAG scan path is driven by the TBC’s TCKO pin.

Emulation Design Considerations

 16-24

On the TBC, the TMS0 pin drives the TMS pins on each device on the main
JTAG scan path. TDO on the TBC connects to TDI on the first device on the
main JTAG scan path. TDI0 on the TBC is connected to the TDO signal of the
last device on the main JTAG scan path. Within the main JTAG scan path, the
TDI signal of a device is connected to the TDO signal of the device before it.
TRST for the devices can be generated either by inverting the TBC’s
TMS5/EVNT3 signal for software control or by logic on the board itself.

17-1

General Purpose Input/Output

This chapter describes the general purpose input/output (GPIO) peripheral.

Topic Page

17.1 Overview 17-2.

17.2 GPIO Registers 17-4.

17.3 General Purpose Input/Output Function 17-12.

17.4 Interrupt and Event Generation 17-14.

17.5 GPIO Interrupts/Events 17-28.

Chapter 17

Overview

 17-2

17.1 Overview

The general-purpose input/output (GPIO) peripheral provides dedicated gen-
eral-purpose pins that can be configured as either inputs or outputs. When
configured as an output, the user can write to an internal register to control the
state driven on the output pin. When configured as an input, the user can de-
tect the state of the input by reading the state of an internal register.

In addition, the GPIO peripheral can produce CPU interrupts and EDMA
events in different interrupt/event generation modes.

Figure 17–1 shows the GPIO peripheral in the TMS320C64x. Figure 17–2
shows the GPIO peripheral block diagram.

Figure 17–1. TMS320C64x Block Diagram

Note: Refer to the specific device datasheet for its peripheral set.

C6000 DSP core
Instruction Fetch

Instruction Dispatch

Instruction Decode

Data Path A

A Register File

L1 S1 M1 D1

Control
Registers

Control
Logic

Test

In–Circuit
Emulation

Interrupt
Control

Data Path B

B Register File

L2S2M2D2

L1P Cache

L2
Memory

L1D Cache

Enhanced
DMA

Controller

Power Down
Logic

EMIF

Other
Peripherals

Boot
Configuration

Interrupt
Selector

PLL

GPIO

Overview

17-3General Purpose Input/Output

Figure 17–2. GPIO Peripheral Block Diagram†

GP0

GP1

GP2

GP3

GP4

GP5

GP6

GP7

GP8

GP9

GP10

GP11

GP12

GP13

GP14

GP15

GPINT0

GPINT4

GPINT5

GPINT6

GPINT7

Control
registers

Interrupts to CPU
and

synchronization
events to EDMA‡

Internal
peripheral bus

GPIO

GPINT3

GPINT1

GPINT2

GPINT8

GPINT9

GPINT10

GPINT11

GPINT12

GPINT13

GPINT14

GPINT15

† Some of the GPx pins are MUXed with other device signals. Refer to the specific device datasheet
for details.

‡ All GPINTx are synchronization events to the EDMA. Only GPINT0 and GPINT[4:7] are available
as interrupts to the CPU.

Some GPIO pins are MUXed with other device pins. Refer to the specific de-
vice datasheet for details on specific MUXing. GPINT[0:15] are all synchro-
nization events to the EDMA. However, only GPINT0 and GPINT[4:7] are
available as interrupt sources to the CPU.

GPIO Registers

 17-4

17.2 GPIO Registers

The GPIO peripheral is configured through the registers shown in Table 17–1.

Table 17–1. GPIO Registers

Acronym Register Name Address Section

GPEN GPIO Enable Register 01B0 0000h 17.2.1

GPDIR GPIO Direction Register 01B0 0004h 17.2.2

GPVAL GPIO Value Register 01B0 0008h 17.2.3

— Reserved 01B0 000Ch —

GPDH GPIO Delta High Register 01B0 0010h 17.2.4

GPHM GPIO High Mask Register 01B0 0014h 17.2.5

GPDL GPIO Delta Low Register 01B0 0018h 17.2.4

GPLM GPIO Low Mask Register 01B0 001Ch 17.2.5

GPGC GPIO Global Control Register 01B0 0020h 17.2.6

GPPOL GPIO Interrupt Polarity Register 01B0 0024h 17.2.7

17.2.1 GPIO Enable Register (GPEN)

The GPIO enable register (GPEN) enables the GPIO pins for general-purpose
input/output functions. To use any of the GPx pins in general-purpose input/
output mode, the corresponding GPxEN bit must be set to 1. The GPEN is
shown in Figure 17–3 and described in Table 17–2.

Figure 17–3. GPIO Enable Register

31 16

Reserved

R, +0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GP15
EN

GP14
EN

GP13
EN

GP12
EN

GP11
EN

GP0
EN

GP9
EN

GP8
EN

GP7
EN

GP6
EN

GP5
EN

GP4
EN

GP3
EN

GP2
EN

GP1
EN

GP0
EN

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+1 RW,+1 RW,+1 RW,+1 RW,+1 RW,+0 RW,+0 RW,+1

GPIO Registers

17-5General Purpose Input/Output

Table 17–2. GPIO Enable Register (GPEN) Bit Field Description

No. Field Description

15:0 GPxEN GPIO Mode enable

GPxEN = 0; GPx pin is disabled as general-purpose input/output pin. It does not
function as a GPIO pin and defaults to high impedance state.

GPxEN = 1; GPx pin is enabled as general-purpose input/output pin. It defaults
to high impedance state.

Some GPIO signals are MUXed with other device signals. For these MUXed
signals, the signal functionality is controlled by the following:

� Device configuration inputs : At reset, device configuration inputs select
the MUXed signal to operate as either a GPIO pin or in the other mode.

� GPEN register bit fields : A GPxEN = 1 indicates that the GPx pin will op-
erate as a GPIO signal controlled by the remaining GPIO registers. A
GPxEN = 0 indicates that the pin is disabled as a GPIO pin; it will operate
in the other mode.

For details on signal configuration for a specific device, refer to the device da-
tasheet and Chapter 11, Boot Modes and Configuration.

17.2.2 GPIO Direction Register (GPDIR)
The GPIO direction register (GPDIR) determines if a given GPIO pin is an input
or an output. GPxDIR only applies if the corresponding GPIO signal is enabled
via the GPxEN bit field. The GPDIR is shown in Figure 17–4 and described in
Table 17–3. By default, all the GPIO pins are configured as input pins.

Figure 17–4. GPIO Direction Register (GPDIR)
31 16

Reserved

R, +0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GP15
DIR

GP14
DIR

GP13
DIR

GP12
DIR

GP11
DIR

GP10
DIR

GP9
DIR

GP8
DIR

GP7
DIR

GP6
DIR

GP5
DIR

GP4
DIR

GP3
DIR

GP2
DIR

GP1
DIR

GP0
DIR

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

Table 17–3. GPIO Direction Register (GPDIR) Bit Field Description

No. Field Description

15:0 GPxDIR GPx Direction. Controls direction (input or output) of GPIO pin. Applies when the
corresponding GPxEN bit in the GPEN register is set to 1.

GPxDIR = 0; GPx pin is an input

GPxDIR = 1; GPx pin is an output

GPIO Registers

 17-6

17.2.3 GPIO Value Register (GPVAL)

The GPIO value register (GPVAL) indicates the value to be driven on a given
GPIO output pin, or the value detected on a given GPIO input pin. The GPVAL
is shown in Figure 17–5. Table 17–4 shows the GPxVAL field description de-
pending upon the direction of the GPIO pin.

Figure 17–5. GPIO Value Register (GPVAL)

31 16

Reserved

R, +0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GP15
VAL

GP14
VAL

GP13
VAL

GP12
VAL

GP11
VAL

GP10
VAL

GP9
VAL

GP8
VAL

GP7
VAL

GP6
VAL

GP5
VAL

GP4
VAL

GP3
VAL

GP2
VAL

GP1
VAL

GP0
VAL

RW,+x RW,+x RW,+x RW,+x RW,+x RW,+x RW,+x RW,+x RW,+x RW,+x RW,+x RW,+x RW,+x RW,+x RW,+x RW,+x

Table 17–4. GPIO Value Register (GPVAL) Bit Field Description

No. Field GPxDIR Description

15:0 GPxVAL 0 Value detected at GPx input. Applies when the corresponding GPxEN bit in
the GPEN register is set to 1.

GPxVAL = 0; A value of 0 is latched from the GPx input pin

GPxVAL = 1; A value of 1 is latched from the GPx input pin

1 Value driven on GPx output. Applies when the corresponding GPxEN bit in
the GPEN register is set to 1.

GPxVAL = 0; GPx signal is driven low.

GPxVAL = 1; GPx signal is driven high

17.2.4 GPIO Delta Registers (GPDH, GPDL)

The GPIO Delta High Register (GPDH) indicates whether a given GPIO input
has undergone a transition from low to high. Similarly, the GPIO Delta Low
Register (GPDL) indicates whether a given GPIO input has undergone a tran-
sition from high to low. If the given GPIO pin is configured as an output, the
corresponding bit in the GPDH and GPDL maintains its previous value. Writing
a ‘1’ to the corresponding field clears the bit, writing a ‘0’ has no effect. The
GPDH is shown in Figure 17–6 and described in Table 17–5. The GPDL is
shown in Figure 17–7 and described in Table 17–6.

GPIO Registers

17-7General Purpose Input/Output

Figure 17–6. GPIO Delta High Register (GPDH)

31 16

Reserved

R, +0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GP15
DH

GP14
DH

GP13
DH

GP12
DH

GP11
DH

GP10
DH

GP9
DH

GP8
DH

GP7
DH

GP6
DH

GP5
DH

GP4
DH

GP3
DH

GP2
DH

GP1
DH

GP0
DH

RW,+x RW,+x RW,+x RW,+x RW,+x RW,+x RW,+x RW,+x RW,+x RW,+x RW,+x RW,+x RW,+x RW,+x RW,+x RW,+x

Table 17–5. GPIO Delta High Register (GPDH) Bit Field Description

No. Field Description

15:0 GPxDH GPx Delta High. A low-to-high transition is detected on the GPx input. Applies when the
corresponding GPx pin is enabled as an input (GPxEN = 1, GPxDIR = 0)

GPxDH = 0; a low-to-high transition is not detected on GPx

GPxDH = 1; a low-to-high transition is detected on GPx

Figure 17–7. GPIO Delta Low Regiser (GPDL)

31 16

Reserved

R, +0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GP15
DL

GP14
DL

GP13
DL

GP12
DL

GP11
DL

GP10
DL

GP9
DL

GP8
DL

GP7
DL

GP6
DL

GP5
DL

GP4
DL

GP3
DL

GP2
DL

GP1
DL

GP0
DL

RW,+x RW,+x RW,+x RW,+x RW,+x RW,+x RW,+x RW,+x RW,+x RW,+x RW,+x RW,+x RW,+x RW,+x RW,+x RW,+x

Table 17–6. GPIO Delta Low Register (GPDL) Bit Field Description

No. Field Description

15:0 GPxDl GPx Delta Low. A high-to-low transition is detected on the GPx input. Applies when the
corresponding GPx pin is enabled as an input (GPxEN = 1, GPxDIR = 0).

GPxDL = 0; a high-to-low transition is not detected on GPx.

GPxDL = 1; a high-to-low transition is detected on GPx.

GPIO Registers

 17-8

17.2.5 GPIO Mask Registers (GPHM, GPLM)

The GPIO high mask register (GPHM) and the GPIO low mask register
(GPLM) are used to enable a given general-purpose input to cause a CPU in-
terrupt, or an EDMA event generation. If a GPHM or GPLM bit is disabled, the
value or transition on the corresponding GPx pin will not cause an interrupt/
event generation. If the mask bit is enabled, the corresponding GPx input may
cause an interrupt/event to be generated depending upon the interrupt mode
selected in the GPIO Global Control Register. Refer to section 17.4 for details
on the function of the GPHM and GPLM in interrupt/event generation.
Figure 17–8 and Figure 17–9 show the GPHM and GPLM, respectively.
These registers are described in Table 17–7 and Table 17–8.

Figure 17–8. GPIO High Mask Register (GPHM)

31 16

Reserved

R, +0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GP15
HM

GP14
HM

GP13
HM

GP12
HM

GP11
HM

GP10
HM

GP9
HM

GP8
HM

GP7
HM

GP6
HM

GP5
HM

GP4
HM

GP3
HM

GP2
HM

GP1
HM

GP0
HM

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

Table 17–7. GPIO High Mask Register (GPHM) Bit Field Description

No. Field Description

15:0 GPxHM GPx high mask. Enable interrupt/event generation based on either the corresponding
GPxDH or GPxVAL bit in the GPDH and GPVAL registers, respectively. Applies when
the corresponding GPxEN bit is enabled as an input (GPxEN = 1, GPxDIR = 0)

GPxHM = 0; Interrupt/event generation disabled for GPx. The value or transition on
GPx does not cause an interrupt/event generation.

GPxHM = 1; Interrupt/event generation enabled for GPx.

GPIO Registers

17-9General Purpose Input/Output

Figure 17–9. GPIO Low Mask Register (GPLM)

31 16

Reserved

R, +0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GP15
LM

GP14
LM

GP13
LM

GP12
LM

GP11
LM

GP10
LM

GP9
LM

GP8
LM

GP7
LM

GP6
LM

GP5
LM

GP4
LM

GP3
LM

GP2
LM

GP1
LM

GP0
LM

RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0 RW,+0

Table 17–8. GPIO Low Mask Register (GPLM) Bit Field Description

No. Field Description

15:0 GPxLM GPx low mask. Enable interrupt/event generation based on either the corresponding
GPxDL or inverted GPxVAL bit in the GPDL and GPVAL registers, respectively. Applies
when the corresponding GPxEN bit is enabled as an input (GPxEN = 1, GPxDIR = 0)

GPxLM = 0; Interrupt/event generation disabled for GPx. The value or transition on
GPx does not cause an interrupt/event generation.

GPxLM = 1; Interrupt/event generation enabled for GPx.

17.2.6 GPIO Global Control Register (GPGC)

The GPIO Global Control Register (GPGC) configures the interrupt/event gen-
eration of the GPIO peripheral. The GPGC is shown in Figure 17–10 and de-
scribed in Table 17–9.

Figure 17–10. GPIO Global Control Register (GPGC)

31 6 5 4 3 2 1 0

Reserved GP0M GPINT0M Rsv GPINTPOL LOGIC GPINTDV

R,+0 RW,+0 RW,+0 R,+0 RW,+0 RW,+0 RW,+0

GPIO Registers

 17-10

Table 17–9. Global Control Register (GPGC)Bit Field Description

No. Field Description Section

5 GP0M GP0 Output Mode. Applies only if GP0 is configured as an output
(GP0DIR = 1 in the GPDIR register).

GP0M = 0; GPIO Mode—GP0 output is based on GP0 value (GP0VAL
in GPVAL register)

GP0M = 1; Logic Mode—GP0 output is based on the value of internal
Logic Mode interrupt/event signal GPINT.

17.3

17.4.3

4 GPINT0M GPINT0 interrupt/event generation mode.

GPINT0M = 0; Pass Through Mode—GPINT0 interrupt/event
generation is based on GP0 input value (GP0VAL in the GPVAL
register).

GPINT0M = 1; Logic Mode—GPINT0 interrupt/event generation is
based on GPINT.

17.4

17.4.3

2 GPINTPOL GPINT Polarity. Applies to Logic Mode (GPINT0M = 1) only.

GPINTPOL = 0; GPINT is active (high) when the logic combination of
the GPIO inputs is evaluated true.

GPINTPOL = 1; GPINT is active (high) when the logic combination of
the GPIO inputs is evaluated false.

17.4.2

1 LOGIC GPINT Logic. Applies to Logic Mode (GPINT0M = 1) only.

LOGIC = 0; OR Mode—GPINT is generated based on the logical-OR
of all GPx events enabled in the GPHM or GPLM registers.

LOGIC = 1; AND Mode—GPINT is generated based on the
logical-AND of all GPx events enabled in the GPHM or GPLM
registers.

17.4.2

0 GPINTDV GPINT Delta/Value Mode. Applies to Logic Mode (GPINT0M = 1) only.

GPINTDV = 0; Delta Mode—GPINT is generated based on a logic
combination of transitions on the GPx pins. The corresponding bits in
the GPHM and/or GPLM registers must be set.

GPINTDV = 1; Value Mode—GPINT is generated based on a logic
combination of values on the GPx pins. The corresponding bits in the
GPHM and/or GPLM registers must be set.

17.4.2

GPIO Registers

17-11General Purpose Input/Output

17.2.7 GPIO Interrupt Polarity Register (GPPOL)

The GPIO interrupt polarity register (GPPOL) selects the polarity of the
GPINTx interrupt/event signals in Pass Through Mode (section 17.4.1). Refer
to specific device datasheet and the SPRU190 TMS320C6000 Peripherals
Reference Guide in the Related Documentation section for details on interrupt/
event mapping. The GPINT0M bit in the GPIO global control register (GPGC)
must be set to 0 to use GPINT0 in Pass Through Mode. The GPPOL is shown
in Figure 17–11 and described in Table 17–10.

Figure 17–11. GPIO Interrupt Polarity Register (GPPOL)

31 8 7 6 5 4 3 2 1 0

Reserved GPINT7POL GPINT6POL GPINT5POL GPINT4POL Reserved GPINT0POL

R,+0 RW,+0 RW,+0 RW,+0 RW,+0 R+W RW,+0

Table 17–10. GPIO Interrupt Polarity Register (GPPOL) Bit Field Description

No. Field Description

7:30 GPINTxPOL GPINTx Polarity. Applies to Pass Through Mode only.

GPINTxPOL = 0; GPINTx is asserted (high) based on a rising edge of GPx (effec-
tively based on the value of the corresponding GPxVAL)

GPINTxPOL = 1; GPINTx is asserted (high) based on a falling edge of GPx (effec-
tively based on the inverted value of the corresponding GPxVAL)

General Purpose Input/Output Function

 17-12

17.3 General Purpose Input/Output Function

A GPIO pin can operate as a general-purpose input/output once it is enabled
in the GPIO enable register GPEN. The user can independently configure
each GPIO pin as either an input or an output via the GPDIR register. When
configured as an output (GPxDIR = 1), the value in the GPxVAL bit in the
GPVAL register is driven on the corresponding GPx pin. When configured as
an input (GPxDIR = 0), the state of the input can be read from the correspond-
ing GPxVAL bit. Refer to section 17.2.1 , section 17.2.2 , and section 17.2.3
for details on the GPEN, GPDIR, and GPVAL registers.

In addition to the general-purpose input/output function, the edge detect logic
in the GPIO peripheral reflects whether a transition has occurred on a given
GPIO signal that is configured as an input (GPxDIR = 0). GPIO signal transition
is reflected in the GPIO delta registers, GPDH or GPDL, respectively. The
GPxDH bit in the GPDH is set to 1 when the corresponding enabled input un-
dergoes a transition from low to high. Similarly, the GPxDL bit in the GPDL is
set to 1 when the corresponding enabled input undergoes a transition from low
to high.

Figure 17–12 shows the general-purpose input/output and edge detect logic
of the GPIO peripheral.

General Purpose Input/Output Function

17-13General Purpose Input/Output

Figure 17–12. General-Purpose Input/Output Functiuonal Block Diagram

GP0 pin

GP0DIR

GP0VAL

GP1DIR

GP1VAL

GP15DIR

GP15VAL

Edge
Detect

Edge
Detect

Edge
Detect

GP1 pin

GP15 pin

GP0DL

GP0DH

GP1DL

GP1DH

GP15DL

GP15DH

:
:
:
:

To configure GP0 as a general-purpose output, in addition to setting GP0DIR = 1, the GP0M bit in
the GPIO Global Control Register must also be set to 0. See section 17.4.3 for details on GP0 con-
figurations.

Interrupt and Event Generation

 17-14

17.4 Interrupt and Event Generation

The GPIO peripheral can generate interrupts to the CPU, and synchronization
events to the EDMA, in two modes:

� Pass Through Mode
� Logic Mode

The Pass Through Mode allows each GPx signal configured as an input to di-
rectly trigger a CPU interrupt and an EDMA event. The Logic Mode allows the
user to determine which GPIO signals will be used as inputs to a semi-pro-
grammable logic function. The output of this logic function, GPINT, is MUXed
with the Pass Through Mode internal output GPINT0_int to generate a CPU
interrupt and an EDMA event, GPINT0. In addition, the Logic Mode output
GPINT can be driven out of the GP0 pin for use at the board level (section
17.4.3). Figure 17–13 shows the GPIO interrupt/event generation logic.

Figure 17–13. GPIO Interrupt and Event Generation Block Diagram

GP15

GP3

GP2

GP1

GP0

Pass Through Mode Logic

Pass Through Mode Logic

Pass Through Mode Logic

Pass Through Mode Logic

Logic Mode Logic

GPINT0

GPINT

GPINT0_int

GPINT2

GPINT3

GPINT15

GPIO Interrupt Logic

To CPU
Interrupt
Selector

and EDMA
Events†

Pass Through Mode Logic

GPINT1

GPINT0M

0

1

† All GPINTx are synchronization events to the EDMA. Only GPINT0 and GPINT[4:7] are available as interrupts to the CPU.

Interrupt and Event Generation

17-15General Purpose Input/Output

17.4.1 Pass Through Mode

The Pass Through Mode applies to all GPIO signals. In Pass Through Mode,
a transition on the GPx input pin can generate an interrupt event to the CPU
and a synchronization event to the EDMA. Note that although all GPINTx are
synchronization events to the EDMA, only GPINT0 and GPINT[4:7] are avail-
able as interrupts to the CPU. Figure 17–14 shows the Pass Through Mode
interrupt/event generation block diagram. The user must configure the follow-
ing bits correctly to use a GPx pin in the Pass Through Mode:

� GPxEN = 1: enable GPx to function as a GPIO pin.

� GPxDIR = 0: the GPx pin is an input

� Set GPINTxPOL = 0 if an interrupt/event is desired upon a rising edge tran-
sition on the corresponding GPx pin. Set GPINTxPOL = 1 if an interrupt/
event is desired upon a falling edge transition on the corresponding GPx
pin.

As shown in Figure 17–14, to use the GP0 in Pass Through Mode the
GPINT0M bit in the GPGC register must also be set to 0. The GPINT0_int out-
put from the Pass Through Mode logic is MUXed with the GPINT output from
the Logic Mode logic to generate the GPINT0 interrupt/event. This is shown
in Figure 17–13 and Figure 17–14. Refer to section 17.2.6 and section 17.4.3
for details.

If a GPx is configured as an output, the corresponding GPINTx signal is dis-
abled.

Interrupt and Event Generation

 17-16

Figure 17–14. GPINTx Generation in Pass Through Mode

GP0 pin

GP15VAL

GP3VAL

GP0VAL
GPINT0_int

GPINT3

GPINT15

To interrupt
selector and
EDMA
events†

GPINT0POL

GPINT3POL

GPINT15POL

GP3 pin

GP15 pin

0

0

0

1

1

1

0

1

GPINT0M

GPINT signal
from logic mode GPINT0

Applies to GPIO0 only.

† All GPINTx are synchronization events to the EDMA. Only GPINT0 and GPINT[4:7] are available as interrupts to the CPU.

17.4.2 Logic Mode

In the Logic Mode, an interrupt/event is generated based on a logic combina-
tion of the GPIO inputs. The output of this logic function, GPINT, can be gener-
ated upon detection of a specific edge (rising, falling, or both) on any GPIO in-
put signal(s), or upon detection of specific value(s) on any GPIO input sig-
nal(s). Disabled GPIO signals or enabled GPIO outputs cannot be used for in-
terrupt/event generation. The Logic Mode output GPINT is MUXed with the
Pass Through Mode output GPINT0_int to generate a CPU interrupt and an
EDMA event. In order to use the Logic Mode to generate an interrupt/event,
GPINT0M in the GPGC register must be set to 1. The GPINT signal can also
be driven out of the GP0 pin for use at the board level. See section 17.4.3.

Figure 17–15 shows the block diagram of the Logic Mode logic. By default,
GPINT is asserted (high) when the logic combination of the input(s) is evaluat-
ed true. By setting GPINTPOL = 1 in the GPGC register, GPINT is asserted
(high) when the logic combination of the input(s) is evaluated false. This nega-
tive function of the GPINT is useful in indicating signal de-assertions at the
GPIO pins.

Interrupt and Event Generation

17-17General Purpose Input/Output

Figure 17–15. Logic Mode Interrupt/Event Generation Block Diagram

GPINT0

GPINT0M

To CPU
interrupt
selector

and EDMA
events

Mask Logic for:

Delta OR
Delta AND
Value AND

GPINTPOL

GPINT0_int

GPINT

From Pass Through
Mode Logic

GP0 pin

GP1 pin

GP15 pin

0

1

0

1

Logic Mode Logic

The GPINT generation can operate in 1 of 3 modes: Delta OR, Delta AND, or
Value AND mode. The GPINT generation is configured via two control bits in
the GPGC register—GPINTDV and LOGIC, in addition to the mask bits in the
GPHM and GPLM registers. The GPINTDV bit in the GPGC divides the Logic
Mode into either Delta or Value Mode as follows:

� Delta Mode – Inputs to the interrupt/event mask logic are sourced from the
GPDH and GPDL registers. GPINT is caused by the logic combination of
the transition on the GPIO pin(s).

� Value Mode – Inputs to the interrupt/event mask logic are sourced from the
GPxVAL register. GPINT is caused by the logic combination of the value
on the GPIO pin(s).

The source to the Logic Mode mask logic is gated by the GPHM and GPLM
registers. In Delta Mode, the GPxDH bit is gated with the GPxHM bit, and the
GPxDL bit is gated with the GPxLM bit. In Value Mode, the value from the pin
is gated with the GPxHM bit and the inverted value from the pin is gated with
the GPxLM bit.

Interrupt and Event Generation

 17-18

The LOGIC bit in the GPGC controls whether an interrupt/event is generated
based on ALL the mask outputs being true or ANY one of the mask outputs
being true:

� OR Mode – Interrupt/event generated based on ANY one of the mask out-
puts being true.

� AND Mode – Interrupt/event generated based on ALL of the mask outputs
being true.

Table 17–11 summarizes the three modes in Logic Mode and the setup of the
GPINTDV and LOGIC bits in the GPGC.

Table 17–11. Logic Mode Truth Table

GPINTDV LOGIC Logic Mode Description Section

0 0 Delta OR 17.4.2.1

0 1 Delta AND 17.4.2.2

1 0 Reserved —

1 1 Value AND 17.4.2.3

In summary, the GPIO global control register (GPGC) must be configured as
follows in Logic Mode:

� GPINT0M = 1 to enable Logic Mode interrupt/event generation. The inter-
rupt/event signal to the DSP (GPINT0) is based on the logic function out-
put GPINT.

� GPINTPOL = 0 if the interrupt/event is based upon the logic evaluating
true; or
GPINTPOL = 1 if the interrupt/event is based upon the logic evaluating
false.

� GPINTDV = 0 for Delta Mode, or GPINTDV = 1 for Value Mode.

� LOGIC = 0 for OR Mode, or LOGIC = 1 for AND Mode.

Interrupt and Event Generation

17-19General Purpose Input/Output

17.4.2.1 Delta OR Mode (GPINTDV = 0; LOGIC = 0)

Delta OR Mode allows the generation of an interrupt/event upon the first transi-
tion among a set of enabled GPIO inputs. The logic function output GPINT is
driven active when ANY of the GPxDH or GPxDL bits and the corresponding
GPxHM or GPxLM bits are set. Since the GPxDH and GPxDL bits operate in-
dependently from one another and have separate masks (GPxHM and
GPxLM), an interrupt can be generated based on a signal transitioning to a
specific state (high or low) or transitioning at all (either state).

To generate an interrupt/event in Delta OR Mode, the GPINTDV and LOGIC
bits in the GPIO global control register must be configured as follows:

� GPINTDV = 0; Delta Mode
� LOGIC = 0; OR Mode

In addition, the GPHM and GPLM registers must be configured properly to en-
able the corresponding GPxDH and GPxDL bits to be inputs to the logic func-
tion. The following examples show the GPHM and GPLM setup. All the given
GPIO pins in these examples are enabled as inputs (GPxEN = 1; GPxDIR =
0).

Example 1: GPINT based on low-to-high transition on GP1

� GPHM setup: GP1HM = 1
� GPLM setup: don’t care
� GPINT generation is caused by GP1DH = 1

� If GP1 is high when entering this mode, a high-to-low transition
(GP1DL = 1) followed by a low-to-high transition (GP1DH = 1) on GP1
will generate GPINT.

� If GP1 is low when entering this mode, a low-to-high transition
(GP1DH = 1) on GP1 will generate GPINT.

Example 2: GPINT based on any transition on GP1

� GPHM setup: GP1HM = 1
� GPLM setup: GP1LM = 1
� GPINT generation is caused by GP1DH = 1 or GP1DL = 1

� Regardless of the initial state of GP1, the first transition on GP1 will
generate GPINT. This first transition can either be a low-to-high transi-
tion (GP1DH = 1), or a high-to-low transition (GP1DL = 1).

Interrupt and Event Generation

 17-20

Example 3: GPINT based on a low-to-high transition on GP1 or GP2

� GPHM setup: GP1HM = 1, GP2HM = 1
� GPLM setup: don’t care
� GPINT generation is caused by GP1DH = 1 or GP2DH = 1

� The first low-to-high transition (GPxDH = 1) on either GP1 or GP2 will
generate GPINT.

Example 4: GPINT based on a low-to-high transition on GP1 or a high-to-
low transition on GP2

� GPHM setup: GP1HM = 1, GP2HM = don’t care
� GPLM setup: GP1LM = don’t care, GP2LM = 1
� GPINT generation is caused by GP1DH = 1 or GP2DL = 1

� The first low-to-high transition on GP1 (GP1DH = 1), or a high-to-low
transition on GP2 (GP2DL = 1), will generate GPINT.

Example 5: GPINT based on any transition on GP1 or any transition on
GP2

� GPHM setup: GP1HM = 1, GP2HM = 1
� GPLM setup: GP1LM = 1, GP2LM = 1
� GPINT generation is caused by GP1DH, GP1DL, GP2DH, or GP2DL = 1.

� The first transition on GP1 (GP1DH or GP1DL = 1) or the first transition
on GP2 (GP2DH or GP2DL = 1) will generate GPINT.

Figure 17–16 shows the block diagram of the Delta OR mode.

Interrupt and Event Generation

17-21General Purpose Input/Output

Figure 17–16. GPINT Generation, Delta OR Mode

Edge
Detect

GP0DH

GP0DL

GP0HM

GP0LM

Edge
Detect

GP1DH

GP1DL

GP1HM

GP1LM

Edge
Detect

GP15DH

GP15DL

GP15HM

GP15LM

GP0 pin

GPINT_OR

GPINT_AND

LOGIC

0

1

GPINTPOL

0

1

GPINT

GP1 pin

GP15 pin

from Delta AND
function output

17.4.2.2 Delta AND Mode (GPINTDV = 0; LOGIC = 1)

Delta AND Mode allows the generation of an interrupt/event after all of a set
of specified signals have undergone some specified transitions. GPINT is driv-
en active when BOTH of the following conditions are true:

� ALL of the GPxDH bits are asserted for the group of GPIO signals with the
GPxHM bits set.

� ALL of the GPxDL bits are asserted for the group of GPIO signals with the
GPxLM bits set.

Since the GPxDH and GPxDL bits operate independently from one another
and have separate masks (GPxHM and GPxLM), GPINT can be generated
based on a signal transitioning from one state to another and back to the origi-
nal state.

Interrupt and Event Generation

 17-22

To generate an interrupt/event in Delta AND Mode, the GPINTDV and LOGIC
bits in the GPIO Global Control Register must be configured as follows:

� GPINTDV = 0; Delta Mode

� LOGIC = 1; AND Mode

In addition, the GPHM and GPLM registers must be configured properly to en-
able the corresponding GPxDH and GPxDL bits to be inputs to the logic func-
tion. The following examples show the GPHM and GPLM setup. All the given
GPIO pins in these examples are enabled as inputs (GPxEN = 1; GPxDIR =
0).

Example 1: GPINT based on low-to-high transition on GP1

� GPHM setup: GP1HM = 1
� GPLM setup: don’t care
� GPINT generation is caused by GP1DH = 1

� If GP1 is high when entering this mode, a high-to-low transition
(GP1DL = 1) followed by a low-to-high transition (GP1DH = 1) on GP1
will generate GPINT.

� If GP1 is low when entering this mode, a low-to-high transition
(GP1DH = 1) on GP1 will generate GPINT.

Example 2: GPINT based on a low-to-high and a high-to-low transition on
GP1

� GPHM setup: GP1HM = 1
� GPLM setup: GP1LM = 1
� GPINT generation is caused by GP1DH = 1 and GP1DL = 1

� If GP1 is high when entering this mode, a high-to-low transition
(GP1DL = 1) followed by a low-to-high transition (GP1DH = 1) on GP1
will generate GPINT.

� If GP1 is low when entering this mode, a low-to-high transition
(GP1DH = 1) followed by a high-to-low transition (GP1DL = 1) on GP1
will generate GPINT.

Example 3: GPINT based on a low-to-high transition on both GP1 and
GP2

� GPHM setup: GP1HM = 1, GP2HM = 1
� GPLM setup: don’t care
� GPINT generation is caused by GP1DH = 1 and GP2DH = 1

� Both GP1 and GP2 must undergo a low-to-high transition (GP1DH = 1
and GP2DH = 1) to generate GPINT. If either (or both) signal starts out

Interrupt and Event Generation

17-23General Purpose Input/Output

high, GPINT is not generated until this signal undergoes a high-to-low
followed by a low-to-high transition.

Example 4: GPINT based on a low-to-high transition on GP1 and a high-
to-low transition on GP2

� GPHM setup: GP1HM = 1, GP2HM = don’t care
� GPLM setup: GP1LM = don’t care, GP2LM = 1
� GPINT generation is caused by GP1DH = 1 and GP2DL = 1

� Regardless of the initial state, GP1 must undergo a low-to-high transi-
tion (GP1DH = 1), AND GP2 must undergo a high-to-low transition
(GP2DL = 1).

Example 5: GPINT based on low-to-high and high-to-low transitions on
both GP1 and GP2

� GPHM setup: GP1HM = 1, GP2HM = 1
� GPLM setup: GP1LM = 1, GP2LM = 1
� GPINT generation is caused by GP1DH, GP1DL, GP2DH, and GP2DL =

1.

� Regardless of initial state, both GP1 and GP2 must undergo transition
from original state back to original state.

Figure 17–17 shows the functional block diagram of the Delta AND mode.

Interrupt and Event Generation

 17-24

Figure 17–17. GPINT Generation, Delta AND Mode

Edge
detect

GP0DH

GP0DL

GP0HM

GP0LM

Edge
detect

GP1DH

GP1DL

GP1HM

GP1LM

Edge
detect

GP15DH

GP15DL

GP15HM

GP15LM

GPINT_AND

LOGIC

GPINTPOL

GPINT

GP0 pin

GP1 pin

GP15 pin

0

1
0

1

GPINT_OR

from Delta OR
function output

Note: The functional block diagram shows the mask logic as an OR with an inverter on the mask bit. This forces the OR to
evaluate true when the mask bit is disabled. This is strictly a functional block diagram. The actual implementation pre-
vents the GPINT from being asserted in the case that all of the mask bits are disabled.

17.4.2.3 Value AND Mode (GPINTDV = 1; LOGIC = 1)

Value AND Mode allows the generation of an interrupt/event based on a set
of signals matching some given values. GPINT is driven active when BOTH
of the following conditions are true:

� All of the GPxVAL bits are high for the group of GPIO signals with the
GPxHM bits set.

� All of the GPxVAL bits are low for the group of GPIO signals with the
GPxLM bits set.

To generate an interrupt/event in Value AND Mode, the GPINTDV and LOGIC
bits in the GPIO Global Control Register must be configured as follows:

� GPINTDV = 1; Value Mode
� LOGIC = 1; AND Mode

Interrupt and Event Generation

17-25General Purpose Input/Output

In addition, the GPHM and GPLM registers must be configured properly to en-
able the corresponding GPxVAL bits to be inputs to the logic function. No
GPINT is generated if any given GPIO signal has both GPxHM and GPxLM
asserted. This is because no GPx (and the corresponding GPxVAL) can be
both high and low simultaneously. The following examples show the GPHM
and GPLM setup. All the given GPIO pins in these examples are enabled as
inputs (GPxEN = 1; GPxDIR = 0).

Example 1: GPINT based on GP1 = 1

� GPHM setup: GP1HM = 1
� GPLM setup: GP1LM = 0
� GPINT generation is caused by GP1 = 1

� If GP1 is high (GPxVAL = 1) when entering this mode, GPINT is imme-
diately asserted.

� If GP1 is low (GPxVAL = 0) when entering this mode, a low-to-high
transition (GPxVAL = 1) on GP1 will generate GPINT.

Example 2: No GPINT generated when GPxHM = GPxLM = 1

� GPHM setup: GP1HM = 1
� GPLM setup: GP1LM = 1
� No GPINT is generated because GP1 can never simultaneously be both

low (GPxVAL = 0) and high (GPxVAL = 1).

Example 3: GPINT based on GP1 = GP2 = 1

� GPHM setup: GP1HM = 1, GP2HM = 1
� GPLM setup: GP1LM = 0, GP2LM = 0
� GPINT generation is caused by GP1VAL = 1 and GP2VAL = 1

� If GP1 = GP2 = 1 when entering this mode, GPINT is immediately as-
serted.

� If GP1 = 1 and GP2 = 0 when entering this mode, a low-to-high transi-
tion on GP2 (GP2VAL = 1), as GP1 stays high, will generate GPINT.

� If GP1 = GP2 = 0 when entering this mode, GPINT is generated when
both GP1 and GP2 become high. If GP1 transitions high (GP1VAL = 1)
then low (GP1VAL = 0) before GP2 transitions high, no GPINT is gen-
erated.

Interrupt and Event Generation

 17-26

Example 4: GPINT based on GP1 = 1 and GP2 = 0

� GPHM setup: GP1HM = 1, GP2HM = 0
� GPLM setup: GP1LM = 0, GP2LM = 1
� GPINT generation is caused by GP1VAL = 1 and GP2VAL = 0

� As in previous examples, both GP1 and GP2 must simultaneously be
at the defined state: GP1VAL = 1 and GP2VAL = 0.

Figure 17–18 shows the functional block diagram of the Value AND Mode.

Figure 17–18. GPINT Generation, Value AND Mode

GP0HM

GP0LM

GP1HM

GP1LM

GP15VAL

GP15HM

GP15LM

GPINT_AND

LOGIC

GP1VAL

GP0VAL

GPINTPOL

GPINT

GP0 pin

GP15 pin

GP1 pin
0

1
0

1

GPINT_OR

from Delta OR
function output

Note: The functional block diagram shows the mask logic as an OR with an inverter on the mask bit. This forces the OR to
evaluate true when the mask bit is disabled. This is strictly a functional block diagram. The actual implementation pre-
vents the GPINT from being asserted in the case that all the mask bits are disabled.

Interrupt and Event Generation

17-27General Purpose Input/Output

17.4.3 GPINT Muxing With GP0 and/or GPINT0

The logic function output signal GPINT can be used by both the DSP and an
external device as follows:

� GPINT can generate a CPU interrupt and an EDMA event via GPINT0.

� In addition, if GP0 is configured as an output, GPINT can be driven out on
GP0 to be used by external devices.

Figure 17–19 shows the connection of the GPINT signal.

Figure 17–19. GPINT Connection to GP0 and GPINT0

1

0 GP0VALGP0 pin

0

1GP0M

GPINT0M

GPINT0_int

GPINT

GPINT0

To CPU and EDMA

from pass through mode logic

from logic mode logic

GP0DIR

When GP0 is configured as an output (GP0DIR = 1), the GP0M bit controls
whether the GP0 signal operates in GPIO Mode or in Logic Mode. In GPIO
Mode (GP0M = 0), the value of the GP0VAL bit is driven out on GP0. In Logic
Mode (GP0M = 1), GPINT is driven out on GP0. When GP0 is configured as
an input, GP0M has no effect.

The GPINT0M bit controls whether the GPINT0 signal operates in Pass
Through Mode or in Logic Mode. In Pass Through Mode, the GPINT0_int val-
ue from the Pass Through Mode logic is used to generate an interrupt/event
to the CPU and EDMA. See section 17.4.1 and Figure 17–14 for details on the
GPINT0_int signal. In Logic Mode, the Logic Mode output GPINT is used
instead to generate an interrupt/event to the CPU and EDMA.

If GP0 is configured as an output, Logic Mode is still supported and GPINT can
be generated. However, Pass Through Mode is disabled if GP0 is configured
as an output. No GPINT0_int is generated.

GPIO Interrupts/Events

 17-28

17.5 GPIO Interrupts/Events

The GPIO peripheral generates interrupts and events to the CPU and EDMA,
respectively, via the internal GPINTx signals. The GPIO interrupts/events are
summarized in Table 17–12. GPINT1 – GPINT15 can only be used in Pass
Through Mode, while GPINT0 can be used in either Pass Through or Logic
Mode. All GPINTx are available as synchronization events to the EDMA. Only
GPINT0 and GPINT[4:7] are available as interrupt sources to the CPU.

Table 17–12. GPIO Interrupts to CPU and Events to EDMA

Interrupt/Event Name Description

GPINT0 GPINT0 is the interrupt/event output from Pass Through Mode or Logic Mode. In
Pass Through Mode, GPINT0 reflects the value of GP0 or GP0 (GPINT0_int). In
Logic Mode, GPINT0 reflects the logic function output GPINT.

GPINT[1:15] GPINT[1:15] are the interrupt outputs from Pass Through Mode. They reflect the
value of GP[1:15] or GP[1:15] in Pass Through Mode.

18-1

UTOPIA Level 2 Interface

This chapter describes the UTOPIA (Universal Test and Operations Interface
for Asynchronous Transfer Mode [ATM]) interface on the C64x devices.

Topic Page

18.1 Overview 18-2.

18.2 UTOPIA Interface Signals and Registers 18-4.

18.3 UTOPIA Cell Transfer Format 18-7.

18.4 UTOPIA Slave ATM Controller 18-9.

18.5 EDMA Servicing UTOPIA 18-16.

18.6 CPU Servicing UTOPIA Interface 18-18.

18.7 UTOPIA Clocking and Clock Detection 18-21.

18.8 Special Transfer Conditions 18-23.

18.9 Endian Considerations 18-27.

18.10 Slave-Mode Endian Data Formats 18-28.

18.11 UTOPIA Reset 18-31.

18.12 ATM Adaptation Layer (AAL) Functions 18-32.

Chapter 18

Overview

 18-2

18.1 Overview

The C6000 UTOPIA peripheral is an ATM controller (ATMC) slave device that
interfaces to a master ATM controller. The UTOPIA port conforms to the ATM
Forum standard specification af-phy-0039.000. Specifically, this interface sup-
ports the UTOPIA Level 2 interface that allows 8-bit slave operation up to
50MHz for both transmit and receive operations.

The UTOPIA slave interface relies on the master ATM controller to provide the
necessary control signals such as the Clock, Enable and Address values. Only
cell-level handshaking is supported.

Both the CPU and the EDMA can service the UTOPIA peripheral. The ATM
Adaptation Layer (AAL) commonly called as Segmentation and Re-assembly
(SAR) functions should be performed in software.

All references to the term ”slave devices” are analogous to multi-PHYs
(MPHYs) as referenced in the ATM Forum specification.

Figure 18–1 shows the UTOPIA interface on some of the C64x.

Overview

18-3UTOPIA Level 2 Interface

Figure 18–1. TMS320C64x Block Diagram

C6000 DSP core

Instruction Fetch

Instruction Dispatch

Instruction Decode

Data Path A

A Register File

L1 S1 M1 D1

Control
Registers

Control
Logic

Test

In–Circuit
Emulation

Interrupt
Control

Data Path B

B Register File

L2S2M2D2

L1P Cache

L2
Memory

L1D Cache

Enhanced
DMA

Controller

Power Down Logic

Other
 Peripherals

EMIFB

UTOPIA

Boot Configuration

Interrupt
Selector

PLL

Note: Refer to the specific device datasheet for its peripheral set.

EMIFA

UTOPIA Interface Signals and Registers

 18-4

18.2 UTOPIA Interface Signals and Registers

The UTOPIA slave consists of the transmit interface and the receive interface.
Figure 18–2 shows the UTOPIA block diagram. The interface signals are de-
scribed in section 18.4.1.

Figure 18–2. UTOPIA Block Diagram

UXEVT

UREVT

UINT

Synchronization
Events to EDMA

Interrupt to CPU

UTOPIA

UXCLK

UXADDR[4:0]
UXCLAV

UXSOC
UXDATA[7:0]

Transmit
slave Slave Transmit Queue (UXQ)

EDMA controller
or peripheral bus

URCLK

URADDR[4:0]
URCLAV

URSOC
URDATA[7:0]

Receive
slave Slave Receive Queue (URQ)

EDMA controller
or peripheral bus

UXENB

URENB

The UTOPIA port is configured via the configuration registers listed in
Table 18–1. The data for transmit and receive queues are accessible via the
EDMA controller or CPU at the data port addresses shown in Table 18–2. The
UTOPIA sends notification of important interrupts to the CPU via UINT and
synchronization events to the EDMA controller via the UXEVT and UREVT sig-
nals.

UTOPIA Interface Signals and Registers

18-5UTOPIA Level 2 Interface

Table 18–1. UTOPIA Configuration Register

Acronym Register Name Address Section

UCR UTOPIA Control Register 01B4 0000h 18.2.1

– Reserved 01B4 0004h –

– Reserved 01B4 0008h –

UIER UTOPIA Interrupt Enable Register 01B4 000Ch 18.6

UIPR UTOPIA Interrupt Pending Register 01B4 0010h 18.6

CDR Clock Detect Register 01B4 0014h 18.7

EIER Error Interrupt Enable Register 01B4 0018h 18.8.1

EIPR Error Interrupt Pending Register 01B4 001Ch 18.8.1

Table 18–2. Utopia Data Port Address

Acronym Queue Name Address Section

URQ UTOPIA Receive Queue 3C00 0000h 18.4.5 and 18.5.2

UXQ UTOPIA Transmit Queue 3D00 0000h 18.4.3 and 18.5.1

18.2.1 UTOPIA Control Register (UCR)

The UTOPIA interface is configured via the UTOPIA Control Register (UCR).
The UCR contains UTOPIA status control bits. The UCR is shown in
Figure 18–3 and summarized in Table 18–3.

Figure 18–3. UTOPIA Control Register (UCR)

31 30 29 28 22 21 18 17 16

BEND Reserved SLID XUDC Rsvd UXEN

RW, +0 R, +0 RW,+0 RW, +0 R,+0 RW, +0

15 14 13 6 5 2 1 0

Rsvd MPHY Reserved RUDC Rsvd UREN

R, +0 RW, +1 R, +0 RW,+0 R, +0 RW, +0

UTOPIA Interface Signals and Registers

 18-6

Table 18–3. UTOPIA Control Register (UCR) Bit Field Description

Bit Field Description Section

31 BEND Endian Mode for data transferred via UTOPIA interface.

BEND=0: Data is assembled to conform to Little-endian format

BEND=1: Data is assembled to conform to Big-endian format

18.9

28:22 SLID Slave ID: Applicable in MPHY mode. SLID is a programmable 5-bit
PHY address used to identify the UTOPIA in a MPHY set up. Does
not apply to single-PHY slave operation.

18.4.7

21:18 XUDC Transmit User-Defined Cell

Valid values: 0 to 11. The remaining values are reserved.

XUDC = 0: The XUDC feature is disabled. The UTOPIA interface
transmits a normal ATM cell of 53 bytes.

XUDC = 1 to 11: The Utopia interface transmits the programmed
number (1 to 11) of bytes as extra header. A UDC may have a mini-
mum of 54 bytes (XUDC=1) up to a maximum of 64 bytes
(XUDC=11).

18.3

16 UXEN UTOPIA Transmitter Enable.

UXEN = 0: The UTOPIA port transmitter is disabled and in reset
state.

UXEN = 1: The UTOPIA port transmitter is enabled.

18.11.1

14 MPHY UTOPIA Receive/Transmit Multi-PHY mode

MPHY = 0: Single PHY mode selected for Receive and Transmit
UTOPIA

MPHY = 1: Multi-PHY mode selected for Receive and Transmit
UTOPIA. Default state.

18.4.7

5:2 RUDC Receive User-Defined Cell

Valid values: 0 to 11. The remaining values are reserved.

RUDC = 0: The RUDC feature is disabled. The Utopia interface ex-
pects a normal ARM cell of 53 bytes.

RUDC = 1 to 11: The Utopia interface expects to receive the pro-
grammed number (1 to 11) of bytes as extra header. A UDC may
have a minimum of 54 bytes (RUDC=1) up to a maximum of 64 by-
tes (RUDC=11).

18.3

0 UREN UTOPIA Receiver Enable.

UREN = 0: The UTOPIA port receiver is disabled and in reset state.

UREN = 1: The UTOPIA port receiver is enabled.

18.11.1

UTOPIA Cell Transfer Format

18-7UTOPIA Level 2 Interface

18.3 UTOPIA Cell Transfer Format

The ATM Forum specification for UTOPIA Level 2 specifies the order in which
header and payload information is sent across the ATM-PHY interface. The
header information is sent first followed by the 48-byte payload. A standard
ATM cell is 53 bytes (5-byte header + 48-byte payload). The UTOPIA peripher-
al also supports a non-standard ATM cell (R/XUDC = 1 to 11) of size 54 to 64
bytes. Figure 18–4 and Figure 18–5 show the standard and non-standard cell
transfer format, respectively, with reference to time.

Figure 18–4. Standard UTOPIA Cell Transfer Format for 8-Bit Mode

Bits7 … 0

Header 1 Time 0

Header 2 |

Header 3 |

Header 4 |

UDF |

Payload 1 |

Payload 2 |

:: |

:: V

Payload 48 Time N

Figure 18–5. Non-Standard UTOPIA Cell Transfer Format for 8-Bit Mode
Bits7 … 0

UDB 1 Time 0

UDB 2 |

:: :: |

UDB 11 |

Header 1 |

Header 2 |

Header 3 |

Header 4 |

UDF |

Payload 1 |

Payload 2 |

:: :: |

:: :: V

Payload 48 Time N

UTOPIA Cell Transfer Format

 18-8

For the C6000, each ATM cell must be aligned on a word-boundary. Therefore,
each ATM cell (53-Byte) in the DSP memory (internal or external) and in the
UTOPIA transmit/receive queues is padded with dummy bytes as necessary
before the ATM header. The standard 56-byte cell-packet consists of the
53-byte ATM cell, plus three bytes of dummy data before the ATM header. This
56-Byte packet is referred to as a cell-packet. See also section 18.10.

UTOPIA Slave ATM Controller

18-9UTOPIA Level 2 Interface

18.4 UTOPIA Slave ATM Controller

The UTOPIA interface can be used as an ATM controller slave in either a
single- or multi-PHY (MPHY) configuration. As a slave, the clock, address, and
enable signals of the transmit and receive interfaces are driven by the master.
An example configuration is shown in Figure 18–6.

Figure 18–6. TMS320C64x UTOPIA Slave Interface to Motorola PowerQUICC� Master
in 8-Bit Mode

MPC8260
(FCC1)

Master ATM
Controller

FCC1_TXCLK

FCC1_UTM_TXADDR[4:0]

FCC1_UTM_TXCLAV

FCC1_UTM_TXENB

FCC1_UT_TXSOC

FCC1_UT8_TXD[7:0]

FCC1_RXCLK

C64x
Slave ATM
Controller

FCC1_UTM_RXADDR[4:0]

FCC1_UTM_RXCLAV

FCC1_UTM_RXENB

FCC1_UT_RXSOC

FCC1_UT8_RXD[7:0]

UXClk

UXAddr[4:0]

UXClav

UXEnb*

UXSOC

UXData[7:0]

URClk

URAddr[4:0]

URClav

UREnb*

URSOC

URData[7:0]

18.4.1 UTOPIA Slave Pins

As a slave device in an ATM system, the UTOPIA will perform all ATM cell
transfers as and when directed by the master. The clock, address, and enable
signals are inputs. The master can configure the slave’s address in the UTO-
PIA Control Register (UCR) through the HPI/PCI interface. The pins and their
direction relevant to the UTOPIA slave interface are shown in Table 18–4.

The slave responds when it detects its assigned address on the address bus
by asserting its UXCLAV or URCLAV signal, if indeed a cell is available for
transmit or receive, respectively. If the slave does not have a cell to transmit
or cell space to receive, it does not assert the relevant CLAV signal. But the
master continues to poll the remaining slaves/PHYs in the system on the ad-
dress bus.

UTOPIA Slave ATM Controller

 18-10

Table 18–4. Slave UTOPIA Pin Descrition

Pin Direction Description

UTOPIA TRANSMIT INTERFACE (Slave mode)

UXCLK In UTOPIA Transmit Clock. An input driven by the master in the system.
Transmit data and transmit control signals are synchronous to this clock.

UXADDR[4:0] In 5-bit address input driven by the master ATM Controller to identify each
of the slave devices (up to 31) in the ATM system.

UXCLAV Out Transmit Cell Available status output signal of the slave. For cell-level
handshake, the following is true:

0: Indicates that the slave does not have a complete cell available for
transmit

1: Indicates that the slave has a complete cell available to transmit.

UXENB In UTOPIA Transmit Interface Enable input signal. Asserted active low by
the master to indicate that the slave should put first byte of valid data
and assert SOC signal in the next clock cycle.

UXSOC Out Transmit Start-Of-Cell signal (active high) output by the slave on rising
edge of UXCLK to indicate that the first valid byte of the cell is available
on the Transmit Data Bus UXDATA[7:0].

UXDATA[7:0] Out 8-bit Transmit Data Bus. Slave transmits ATM cells to the master using
this bus on rising edge of UXCLK.

UTOPIA RECEIVE INTERFACE (Slave mode)

URCLK In UTOPIA Receive Clock is an input signal driven by the ATM master.
Receive data and control signals are sampled and synchronous to this
clock.

URADDR[4:0] In 5-bit address bus input driven by the master to select a slave.

URCLAV Out Receive Cell Available status signal is an output from the slave to
indicate that it has space available to receive a cell from the master. For
cell-level handshake, the following is true:

0: No space available to receive a cell from the master

1: Space available to receive a cell from the master

URENB In UTOPIA Receive Interface Enable. An active low signal driven by the
master to enable the receive interface of the slave. It indicates to the
slave to sample Receive Data and SOC signal in the next clock cycle or
thereafter.

URSOC In Receive Start-Of-Cell signal driven by the master to indicate that the first
valid byte of the cell is available on the Receive Data Bus for the slave
to sample.

URDATA[7:0] In 8-bit UTOPIA Receive Data Bus. Data from the master is received on
this bus. Data is sampled on the rising edge of URCLK.

UTOPIA Slave ATM Controller

18-11UTOPIA Level 2 Interface

18.4.2 Slave-Transmit Operation

The UTOPIA slave-transmit block consists of a UTOPIA Level 2 pin interface
that interfaces internally to the slave-transmit queue. The UTOPIA slave–
transmit block diagram is shown in Figure 18–2.

The slave–transmit queue can be accessed via the UXQ data part, as shown
in Table 18–2. The CPU/EDMA services the slave–transmit queue with 32–bit
writes when a transmit interrupt/event is generated by the UTOPIA transmit
section.

When the UTOPIA slave interface detects its address on the transmit address
bus UXADDR[4:0], it drives the single UXCLAV signal to indicate to the master
whether or not a cell is available for transmit. In the following cycles when the
master chooses (after completion of any on-going data transfers) to get the
data from this UTOPIA slave, the master asserts the slave address along with
the Enable signal, UXENB. Next, the slave starts transmitting the data on its
UXDATA[7:0] pins. It does so by asserting the start-of-cell signal, UXSOC.
Figure 18–7 shows the UTOPIA slave transmit interface timing. The clock for
the UTOPIA slave transmit interface, UXCLK, is an input driven by the external
master.

Figure 18–7. ATM Controller Slave Transmit Timing

N+1 0x1F N+2 0x1F N+2 0x1F

N+1 N+2 N+2

P44 P45 P46 P47 P48 X H1 H5 P1 P2
Slave N+2 starts transmission to Master

Data Transmission

Slave N+2 selected

Master Polling
UXCLK(i)

UXCLAV(o)

UXSOC(o)

UXDATA[7:0](o)

UXENB(i)

UXADDR[4:0](i)

18.4.3 Slave-Transmit Queue

The Slave-Transmit Queue facilitates the UTOPIA interface to be ready to
transmit data whenever the master requests one. The slave-transmit queue
generates a UXEVT when it is not full. This transmit event triggers the EDMA
controller to perform 32-bit writes to the slave-transmit queue. A total of 14
word writes are required to fill one standard ATM cell-packet in the queue.

As soon as the first write to the queue occurs, the transmit event UXEVT is
cleared. The next UXEVT event is generated if the queue is not full. This allows

UTOPIA Slave ATM Controller

 18-12

for the EDMA to begin the next cell-packet write without having to wait for the
current cell to be fully written to the queue. This process repeats as described
below.

The transmit event (UXEVT) is generated and cleared as follows:

1) UXEVT is generated when the queue is not full. The queue is not full when
there is space for at least one cell-packet (56B).

2) UXEVT is cleared when the first write (by the EDMA) of that cell occurs

3) UXEVT is regenerated immediately (without waiting for the previous cell
to be fully written) if the queue is not full.

4) Go to step 2.

The CPU can also be used to service the UTOPIA via the UINT signal. See
section 18.5 for details.

UTOPIA Slave ATM Controller

18-13UTOPIA Level 2 Interface

The UTOPIA slave will agree for transmission to the master by asserting its
UXCLAV signal when there is at least one cell available in the slave-transmit
queue. If the slave cannot provide the next cell in a contiguous fashion, it de-
asserts its UXCLAV in the cycle following the completion of the current cell
transmission. The UXCLAV remains asserted if the slave has another cell
available to transfer to the master. The master may disable RxEnb* on its side
(connected to the UXENB pin for this ATMC slave), which causes the UTOPIA
slave to hold off the next cell transfer until the master indicates as such.

18.4.4 Slave-Receive Operation

The UTOPIA slave-receive block consists of a UTOPIA II pin interface that in-
terfaces internally to a Slave-Receive Queue. The UTOPIA slave-receive
block diagram is shown in Figure 18–2.

The Slave-Receive Queue can be accessed via the URQ data port, as shown
in Table 18–2. The CPU/EDMA controller services the slave-receive queue
with 32-bit reads when a receive interrupt/event is generated by the UTOPIA
receive section.

When the master polls for slaves in the system that can receive its cells, the
UTOPIA slave responds with an active cell-available signal on its URCLAV pin
if it has space in the slave-receive queue to receive a complete cell. The mas-
ter can choose to transmit to this slave or continue to poll to find a suitable slave
for its data. In any case, the UTOPIA slave responds to its assigned address
by asserting its appropriate URCLAV state a cycle after its address is detected
on URADDR[4:0] bus. The master will then output the slave address that has
an active RCLAV and also provides the enable signal (URENB on slave) to en-
able slave-receive operation. The UTOPIA receive slave will start receiving
data in the cycle when the master asserts its start-of-cell (SOC) signal. The
bytes are assembled into words and written into the slave-receive queue.
Figure 18–8 shows the UTOPIA slave receive interface timing. The clock for
the UTOPIA slave receive interface, URCLK, is an input driven by the external
master.

UTOPIA Slave ATM Controller

 18-14

Figure 18–8. ATM Controller Slave Receive Timing

N+1 0x1F N+2 0x1F N+2 0x1F

N+1 N+2 N+2

P45 P46 P47 P48 H1 H5 P1 P2
Slave N+2 receiving data from Master

Data Reception

Slave N+2 selected

Master PollingMaster Polling

URENB (i)

URCLK (i)

URADDR[4:0] (i)

URCLAV (o)

URSOC (o)

URDATA [15:0] (i)

18.4.5 Slave-Receive Queue

When the master initiates the transfers to the slave, the slave-receive queue
generates an UREVT to the EDMA or UINT to the CPU (if desired) when at
least one cell worth of data is available. The event is cleared as soon as the
first read is performed by the EDMA or CPU. The next event is generated when
the next cell is fully available and the process repeats. In summary, the receive
event is generated and cleared as follows:

1) UREVT is generated when a complete cell is available

2) UREVT is cleared when the first read (by the EDMA) of that cell occurs

3) UREVT is regenerated when the next complete cell is available in the
Slave-Receive Queue.

4) Go to step 2.

The CPU can also be used to service the UTOPIA via the UINT signal. See
section 18.5 for details.

The UTOPIA slave will agree for reception from the master by asserting its UR-
CLAV signal when there is at least one cell space available in the queue. If the
slave cannot receive the next cell immediately, it de-asserts its URCLAV at
least 4 URCLK cycles before the end of this cell transfer. If it remains asserted,
it indicates that the slave can receive another cell from the master. The master
may disable TxEnb* on its side (URENB for this ATMC slave) at its discretion.

UTOPIA Slave ATM Controller

18-15UTOPIA Level 2 Interface

18.4.6 UTOPIA Events Generation

The UTOPIA transmit and receive queues generate not-full and not-empty
events to the EDMA. The events are generated when the queues have space
available for at least one cell and not when the queues are completely full or
empty. This allows for more throughput and better performance because the
transmit and receive data can be continuously transferred without having to
wait for a full/empty queue. Refer to section 18.4.3 and section 18.4.5 for de-
tails on the generation of these events. Either the EDMA or the CPU can be
used to service the UTOPIA in response to these events, as discussed in sec-
tion 18.5 and section 18.6, respectively. Typically, EDMA is used to service
UTOPIA for performance considerations.

18.4.7 Multi-PHY (MPHY) Operation

The UTOPIA interface supports multi-PHY operation as per UTOPIA Level 2
specification. The MPHY mode is enabled when the MPHY bit in the UTOPIA
Control Register (UCR) is set to 1 (default state). In MPHY mode, the 5-bit
SLID (Slave ID) field in the UCR indicates the PHY address of the UTOPIA.
Either the DSP or the external master can program the SLID field. The pro-
gramming interface can be either the HPI/PCI.

MPHY operation is based on cell-level handshaking. As shown in Figure 18–7
and Figure 18–8, the external ATM master polls for available slave devices be-
fore the beginning of the actual data transaction. The UTOPIA output signals
URCLAV, UXCLAV, UXSOC, and UXDATA[7:0] are in high-impedance state
when the UTOPIA slave is not selected by the master. When the UTOPIA slave
detects its address at the UXADDR[4:0] or URADDR[4:0] pins, it asserts the
UXCLAV or URCLAV, respectively.

Note: When used in single-PHY mode (MPHY=0 in UCR), there is no need to
program the address.

EDMA Servicing UTOPIA

 18-16

18.5 EDMA Servicing UTOPIA

Typically, the EDMA is used to service the UTOPIA interface. Table 18–5 lists
the UTOPIA synchronization events to the EDMA and their corresponding
EDMA channel. The following sections describe the EDMA setup to service
the UTOPIA transmitter and receiver, respectively.

Table 18–5. EDMA Synchronization Events from UTOPIA

EDMA
Event

EDMA
Channel Synchronization Event Description

UXEVT 40 Transmit event from the UTOPIA to EDMA. UXEVT is asserted if the
Transmit Queue has space for at least one cell-packet.

UREVT 32 Receive event from the UTOPIA to EDMA. UREVT is asserted if a
complete cell-packet is available in the Receive Queue.

18.5.1 EDMA Setup for UTOPIA Transmitter

As mentioned in section 18.4.6, the UTOPIA transmitter generates an UXEVT
synchronization event to the EDMA when at least one cell-packet space is
available in the Slave-Transmit Queue. EDMA channel 40 is dedicated to the
UXEVT event. Per UXEVT synchronization event, one frame of cell-packet
data is transferred to the Slave-Transmit Queue. A standard cell-packet com-
prises of 14 words (56 bytes), while a non–standard cell-packet comprises of
14, 15, or 16 words (56, 60, or 64 bytes). The EDMA access to UTOPIA is al-
ways 32-bit.The EDMA source address should point to the UTOPIA source
buffer in the DSP memory (internal or external). The EDMA destination ad-
dress should point to the Slave-Transmit Queue data port UXQ. In summary,
the EDMA should have the following parameters setup for transmit operation:

� ESIZE = 00b; 32-bit elements

� SUM = 01b; Source address in autoincrement mode

� DUM = 01b; Destination address in autoincrement mode

� FS = 1; Frame synchronized transfer. A complete cell-packet is trans-
ferred to the UXQ per UXEVT synchronization event.

� SRC Address = Starting address of source buffer

� DST Address = Starting address of UXQ (3D00 0000h)

� Element Count = 14, 15, or 16; Transfer a cell-packet per UXEVT event

Other EDMA parameters can be setup as desired.

EDMA Servicing UTOPIA

18-17UTOPIA Level 2 Interface

18.5.2 EDMA Setup for UTOPIA Receiver

As mentioned in section 18.4.6, the UTOPIA receiver generates an UREVT
synchronization event to the EDMA when the slave-receive queue has space
for at least one cell-packet. EDMA channel 23 is dedicated to the UREVT
event. Per UREVT synchronization event, one frame of cell-packet data is
read from the Slave-Receive Queue via the data port URQ. A standard cell-
packet comprises of 14 words (56 bytes), while a non–standard cell-packet
comprises of 14, 15, or 16 words (56, 60, or 64 bytes). The EDMA destination
address should point to the destination buffer in the DSP memory (internal or
external). In summary, the EDMA should have the following parameters setup
for receive operation:

� ESIZE = 00b; 32-bit elements

� SUM = 01b; Source address in autoincrement mode

� DUM = 01b; Destination address in autoincrement mode

� FS = 1; Frame synchronized transfer. A complete cell-packet is read from
the URQ per UREVT synchronization event.

� SRC Address = Starting address of URQ (3C00 0000h)

� DST Address = Starting address of destination buffer

� Element Count = 14, 15, or 16; Transfer a cell-packet per UREVT event

Other EDMA parameters can be set up as desired.

CPU Servicing UTOPIA Interface

 18-18

18.6 CPU Servicing UTOPIA Interface

In addition to the EDMA, the CPU can also be used to service the UTOPIA in-
terface but is not recommended. The CPU can access the slave-transmit
queue and the slave-receive queue via the data ports UXQ and URQ, respec-
tively, as listed in Table 18–2. The UTOPIA interface generates a single CPU
interrupt, UINT, for both the transmit and receive interface.

The relevant interrupts for each queue are enabled in the UTOPIA Interrupt
Enable Register (UIER), which is shown in Figure 18–9 and summarized in
Table 18–6. Interrupts are captured in the UTOPIA Interrupt Pending Register
(UIPR), which is shown in Figure 18–10 and summarized in Table 18–7. The
transmit interrupt and receive interrupt are generated on the same conditions
that a UXEVT or UREVT is generated to the EDMA. See section 18.4.3 and
section 18.4.5 for details.

Figure 18–9. UTOPIA Interrupt Enable Register (UIER)

31 17 16

Reserved RQIE

R, +0 RW, +0

15 1 0

Reserved XQIE

R, +0 RW, +0

Table 18–6. UTOPIA Interrupt Enable Register (UIER) Bit Field Description

No. Field Description

16 RQIE Receive Queue Interrupt Enable

RQIE = 0: Receive Queue Interrupt disabled. No interrupts are sent to the CPU upon the
UREVT event.

RQIE = 1: Receive Queue Interrupt enabled. Upon UREVT, interrupt UINT is sent to the
CPU interrupt selector.

0 XQIE Transmit Queue Interrupt Enable

XQIE = 0: Transmit Queue Interrupt disabled. No interrupts are sent to the CPU upon the
UXEVT event.

XQIE = 1: Transmit Queue Interrupt enabled. Upon UXEVT, interrupt UINT is sent to the
CPU interrupt selector.

CPU Servicing UTOPIA Interface

18-19UTOPIA Level 2 Interface

Figure 18–10. UTOPIA Interrupt Pending Register (UIPR)

31 17 16

Reserved RQIP

R, +0 RW, +0

15 1 0

Reserved XQIP

R, +0 RW, +0

Table 18–7. UTOPIA Interrupt Pending Register (UIPR) Bit Field Descrition

No. Field Description

16 RQIP Receive Queue Interrupt Pending

RQIP = 0: No Receive Queue Interrupt pending.

RQIP = 1: Receive Queue Interrupt pending.

0 XQIP Transmit Queue Interrupt Pending

XQIP = 0: No Transmit Queue Interrupt pending.

XQIP = 1: Transmit Queue Interrupt pending.

18.6.1 Interrupt Generation and Servicing

The conditions that generate transmit and receive events to the EDMA are ex-
actly the conditions that generate transmit and receive interrupts to the CPU.
Therefore, the relevant interrupt pending bit in the UIPR is equivalent to the
UXEVT/UREVT to the EDMA. But the interrupt to the CPU is generated only
if the relevant enable bit is set in the UIER. For better system performance, the
EDMA should be used to service the UTOPIA. Table 18–8 lists the UTOPIA
events that cause the CPU interrupt, UINT.

Table 18–8. CPU Interrupt from UTOPIA

UTOPIA
Event

CPU
Interrupt

Interrupt
Number Interrupt Description

UXEVT UINT 23 Transmit interrupt from the Slave-Transmit Queue to the CPU

UREVT UINT 23 Receive interrupt from the Slave-Receive Queue to the CPU

Note: A single UTOPIA Interrupt is generated to the CPU, if the corresponding bit is set in the UTOPIA Interrupt Enable Register
(UIER). The interrupt from individual queues for both transmit and receive is read from the UTOPIA Interrupt Pending
Register (UIPR).

CPU Servicing UTOPIA Interface

 18-20

The generation and clearing of interrupts is as follows:

� The slave-transmit queue and slave-receive queue generate ready inter-
rupts that set the relevant UIPR bit as shown in Figure 18–10.

� If the relevant bit in the UIER is set and the UTOPIA interrupt to the CPU
called UINT (mapped to interrupt number 23) is enabled in the CPU’s Inter-
rupt Enable Register (IER), the CPU will be interrupted.

� Within the Interrupt Service Routine (ISR),

� Read the UIPR to find which queue(s) generated the interrupt.

� Service the queue(s) as required by performing a cell-packet read
from the URQ or a cell-packet write to the UXQ (14 words for a stan-
dard cell-packet; 14, 15, or 16 words for a non–standard cell-packet).
To service the receiver, a URQ read should always start at address
3C00 0000h. To service the transmitter, a UXQ write should always
start at address 3D00 0000h.

� The ISR clears the bit in UIPR upon servicing that interrupt, thereby
enabling recognition of further interrupts from the same queue. Writ-
ing a ’1’ to the relevant bit clears that interrupt in UIPR; writing a ’0’ has
no effect. Table 18–8 shows the interrupt numbers allocated and
Table 18–2 shows the location of data ports.

UTOPIA Clocking and Clock Detection

18-21UTOPIA Level 2 Interface

18.7 UTOPIA Clocking and Clock Detection

The transmit and receive clock for the UTOPIA interface is supplied by an ex-
ternal clock source such as the master ATM controller. This allows for accurate
clocks as required by most applications. Internal to the DSP, the UTOPIA reg-
isters and queues are synchronized to the DSP peripheral clock at a CPU/4
rate.

The Clock Detect Register (CDR) and the UTOPIA clock detection feature al-
lows the DSP to detect the presence of the URCLK and/or UXCLK. The CDR
is shown in Figure 18–11 and described in Table 18–9.

Figure 18–11. Clock Detect Register (CDR)

31 24 23 16

Reserved XCCNT

R, +0 RW, +FF

15 8 7 0

Reserved RCCNT

R, +0 RW, +FF

Table 18–9. Clock Detect Register (CDR) Bit Field Description

No. Field Description

23:16 XCCNT Transmit Clock Count: number of peripheral clock cycles in which the external
UTOPIA transmit clock (UXCLK) must have a low to high transition to avoid a reset of
the transmit interface.

XCCNT = 0: Transmit Clock Detect feature is disabled.

XCCNT = 1 to 255: Transmit Clock Detect feature is enabled. XCCNT is the number of
peripheral clock cycles before which the next UTOPIA clock edge (UXCLK) must be
present. If a UXCLK clock edge is undetected within XCCNT peripheral clock cycles,
the transmit UTOPIA port will be reset by hardware. The XCF error bit (XCFP) in the
Error Interrupt Pending Register (EIPR) will be set.

7:0 RCCNT Receive Clock Count: number of peripheral clock cycles in which the external UTOPIA
receive clock must have a low to high transition to avoid a reset of the receive
interface.

RCCNT = 0: Receive Clock Detect feature is disabled.

RCCNT = 1 to 255: Receive Clock Detect feature is enabled. RCCNT is the number of
peripheral clock cycles before which the next UTOPIA clock edge (URCLK) must be
present. If a URCLK clock edge is undetected within RCCNT peripheral clock cycles,
the receive UTOPIA port will be reset by hardware. The RCF error bit (RCFP) in the
Error Interrupt Pending Register (EIPR) will be set.

UTOPIA Clocking and Clock Detection

 18-22

If a URCLK or a UXCLK edge is not detected within the respective time period
specified in the CDR, an error bit, RCFP or XCFP, respectively, is set in the
Error Interrupt Pending Register (EIPR). In addition, the RCPP and XCPP bits
in the EIPR indicate the presence of the URCLK and UXCLK, respectively.
This is shown in Figure 18–12. See section 18.8 for usage of these interrupts
to the CPU.

Special Transfer Conditions

18-23UTOPIA Level 2 Interface

18.8 Special Transfer Conditions

This section explains how the UTOPIA slave interface handles some of the er-
ror conditions.

� Runt Cells: Runt cells are those cells that are shorter than the standard
ATM cell (53 bytes for 8-bit mode). This occurs when the device that sends
data asserts SOC in the middle of a cell transfer. In the C64x UTOPIA, runt
cells are handled in hardware. If the receive section of the UTOPIA detects
a SOC before a complete cell is received, the byte count is reset and the
runt cell is overwritten by the next new data. In the transmit direction, the
user cannot force SOC. In other words, intentional runt cell generation is
not supported.

� Absence of UTOPIA Clocks: If for any reason during a cell transfer in either
direction, the receive clock (URCLK) or transmit clock (UXCLK) stops tog-
gling, the corresponding section of the UTOPIA may be reset depending
on the duration of absence. This means the queues are returned to their
reset state, and all control registers are reset. In addition, the Receive
Clock Failed (RCFP) or Transmit Clock Failed (XCFP) bit, respectively, will
be set in the Error Interrupt Pending Register (EIPR). An interrupt UINT
is generated to the CPU if the corresponding bits in the Error Interrupt En-
able Register (EIER) are set. This helps in recovering from conditions
where the master card (that supplies the clocks) is pulled from the system.

The Receive Clock Present (RCPP) and Transmit Clock Present (XCPP)
bits in the EIPR are set if the URCLK and UXCLK are detected, regardless
of the state of the UTOPIA port. If the corresponding bits are enabled in the
EIER, an interrupt UINT is generated. This is useful in re-enabling the
UTOPIA ports once the UTOPIA clocks are detected.

� Abrupt Reset: In slave mode, typically the master issues a reset command
via the management interface to ensure graceful stop of transfers. But if
this is violated, data corruption will occur and the system software should
comprehend this. Summarily, abrupt reset causes data loss/corruption. It
is the user’s responsibility to avoid such conditions.

Special Transfer Conditions

 18-24

� Queue Read/Write Stall Conditions: There are two potential stall condi-
tions when the user attempts to read or write to the transmit/receive
queues when they are not ready (i.e. when UXEVT and UREVT are not
active). They are:

� Writes to a FULL Slave-Transmit Queue: Writing to the transmit queue
that is full will render the queue not ready. In other words, writes are
stalled until the queue is drained and space is available for further
writes. Therefore, data is not overwritten. When such a condition oc-
curs, the error status bit Transmit Queue Stall (XQSP) in the EIPR will
be set to indicate the stall condition. The XQSP bit a read-only bit. It is
cleared once the queue has space available and writes can continue.

� Reads from an EMPTY Slave-Receive Queue: Attempting to read a
queue that has no data results in stalling that operation until valid data
is available. This also sets the Receive Queue Stall (RQSP) bit in the
EIPR to indicate the read stall condition. This is a user error because a
read access is performed when there is no active UREVT. The RQSP
bit is a read-only bit. It is cleared as soon as valid data is available in
the receive queue and the read is performed.

18.8.1 Error Interrupt Registers (EIPR, EIER)

The UTOPIA error conditions are recorded in the Error Interrupt Pending Reg-
ister (EIPR), which is shown in Figure 18–12 and summarized in Table 18–10.
A user write of ‘1’ to the XCPP, XCFP, RCPP, or RCFP field clears the corre-
sponding bit. A user write of ‘0’ has no effect. The XQSP and RQSP fields are
read-only bits, and they are cleared automatically by the UTOPIA interface
once the error conditions go away. The error conditions in the EIPR can gener-
ate an interrupt to the CPU if the corresponding bits are set in the Error Inter-
rupt Enable Register (EIER), shown in Figure 18–13 and summarized in
Table 18–11.

Figure 18–12. Error Interrupt Pending Register (EIPR)

31 19 18 17 16

Reserved XCPP XCFP XQSP

R, +0 RW, +0 RW, +0 R, +0

15 3 2 1 0

Reserved RCPP RCFP RQSP

R, +0 RW, +0 RW, +0 R, +0

Special Transfer Conditions

18-25UTOPIA Level 2 Interface

Table 18–10. Error Interrupt Pending Register (EIPR) Bit Field Description

No. Field Description

18 XCPP Transmit Clock Present Interrupt Pending. XCPP indicates if the UTOPIA transmit clock
UXCLK is present. XCPP is valid regardless if the transmit interface is enabled or not
(UXEN = don’t care).

XCPP = 0: UXCLK not present.

XCPP = 1: UXCLK present. If the corresponding bit in the EIER is set, an interrupt UINT
is sent to the CPU.

17 XCFP Transmit Clock Failed Interrupt Pending. XCFP is activated only when the UTOPIA
transmit interface is enabled (UXEN = 1).

XCFP = 0: UXCLK present.

XCFP= 1: UXCLK failed. No UXCLK is detected for a period longer than that specified in
the XCCNT field of the CDR. If the corresponding bit in the EIER is set, an interrupt
UINT is sent to the CPU.

16 XQSP Transmit Queue Stall Interrupt Pending.

XQSP = 0: No Transmit Queue stall condition.

XQSP = 1: Transmit Queue stalled—a write is performed to a full transmit queue. The
write is stalled until the queue is drained and space is available. Data is not overwritten.
XQSP is cleared once the queue has space available and writes can continue.

2 RCPP Receive Clock Present Interrupt Pending. RCPP indicates if the UTOPIA receive clock
URCLK is present. RCPP is valid regardless if the receive interface is enabled or not
(UREN = don’t care).

RCPP = 0: URCLK not present.

RCPP = 1: URCLK present. If the corresponding bit in the EIER is set, an interrupt UINT
is sent to the CPU.

1 RCFP Receive Clock Failed Interrupt Pending. RCFP is activated only when the UTOPIA
receive interface is enabled (UREN = 1).

RCFP = 0: URCLK present.

RCFP = 1: URCLK failed. No URCLK is detected for a period longer than that specified
in the RCCNT field of the CDR. If the corresponding bit in the EIER is set, an interrupt
UINT is sent to the CPU.

0 RQSP Receive Queue Stall Interrupt Pending

RQSP = 0: No Receive Queue stall condition.

RQSP = 1: Receive Queue stalled—a read is performed from an empty receive queue.
The read is stalled until valid data is available in the queue. RQSP is cleared as soon as
valid data is available and the read is performed.

Special Transfer Conditions

 18-26

Figure 18–13. Error Interrupt Enable Register (EIER)

31 19 18 17 16

Reserved XCPE XCFE XQSE

R, +0 RW, +0 RW, +0 RW, +0

15 3 2 1 0

Reserved RCPE RCFE RQSE

R, +0 RW, +0 RW, +0 RW, +0

Table 18–11. Error Interrupt Enable Register (EIER) Bit Field Description

No. Field Description

18 XCPP Transmit Clock Present Interrupt Enable.

XCPP = 0: Transmit Clock Present interrupt disabled.

XCPP = 1: Transmit Clock Present interrupt enabled

17 XCFP Transmit Clock Failed Interrupt Enable.

XCFP = 0: Transmit Clock Failed interrupt disabled.

XCFP = 1: Transmit Clock Failed interrupt enabled.

16 XQSP Transmit Queue Stall Interrupt Enable.

XQSP = 0: Transmit Queue Stall interrupt disabled.

XQSP = 1: Transmit Queue Stall interrupt enabled.

2 RCPP Receive Clock Present Interrupt Enable.

RCPP = 0: Receive Clock Present interrupt disabled.

RCPP = 1: Receive Clock Present interrupt enabled.

1 RCFP Receive Clock Failed Interrupt Enable.

RCFP = 0: Receive Clock Failed interrupt disabled.

RCFP = 1: Receive Clock Failed interrupt enabled.

0 RQSP Receive Queue Stall Interrupt Enable

RQSP = 0: Receive Queue Stall interrupt disabled.

RQSP = 1: Receive Queue Stall interrupt enabled.

Endian Considerations

18-27UTOPIA Level 2 Interface

18.9 Endian Considerations

For 8-bit operation, bytes are assembled into words in the UTOPIA queues.
Device endian configuration is selected during reset. See Chapter 11, Boot
Modes and Configuration, of TMS320C6000 Peripherals Reference Guide
(SPRU190) for details. Pin-level endian configuration ensures the desired en-
dian mode for the DSP/CPU. In order for the UTOPIA interface to present the
data transferred across its interface to the DSP/CPU in accordance with the
DSP’s device endian mode, the endian bit BEND in UCR has to be pro-
grammed. By default/reset, the UTOPIA data is presented to the DSP in little-
endian format. If big-endian is preferred, BEND should be programmed to ‘1’.
The data bytes are swapped in hardware based on BEND value.

The following sections explain how the data to/from the ATM buffers are stored
in the UTOPIA queues based on endianness.

Slave-Mode Endian Data Formats

 18-28

18.10 Slave-Mode Endian Data Formats

When the DSP is a UTOPIA Slave in a system, it only communicates to the
master. Therefore the communication from the slave’s perspective is always
point-to-point. The standard cell-packet transfer format is shown in
Figure 18–4. A non-standard cell-packet transfer format is shown in
Figure 18–5.

Depending on the user-defined cell and endian format chosen [(R/X)UDC and
BEND in UCR], bytes are placed in the transmit and receive queues as shown
in Figure 18–14 through Figure 18–19.

The cell-packet format in Figure 18–14 through Figure 18–19 indicate the data
stored in the DSP memory (internal or external) and in the transmit/receive
queues. Only the ATM data, including the header and payload information but
not the reserved bytes (as shown in Figure 18–4 and Figure 18–5), is actually
sent or received across the UTOPIA pins.

Slave-Mode Endian Data Formats

18-29UTOPIA Level 2 Interface

Figure 18–14. Little-Endian (BEND=0) and RUDC/XUDC=0 in 8-Bit UTOPIA Slave Mode

Queue Bits 31:24 23:16 15:8 7:0

Address n Header 1 Dummy Dummy Dummy Word 0

Address n+4 UDF Header 4 Header 3 Header 2 Word 1

Address n+8 Payload 4 Payload 3 Payload 2 Payload 1 |

:: :: :: :: :: :

Address n+48 Payload 44 Payload 43 Payload 42 Payload 41 |

Address n+52 Payload 48 Payload 47 Payload 46 Payload 45 Word 13

Figure 18–15. Big-Endian (BEND=1) and RUDC/XUDC=0 in 8-Bit UTOPIA Slave Mode

Queue Bit s 31:24 23:16 15:8 7:0

Address n Dummy Dummy Dummy Header 1 Word 0

Address n+4 Header 2 Header 3 Header 4 UDF Word 1

Address n+8 Payload 1 Payload 2 Payload 3 Payload 4 |

:: :: :: :: :: :

Address n+48 Payload 41 Payload 42 Payload 43 Payload 44 |

Address n+52 Payload 45 Payload 46 Payload 47 Payload 48 Word 13

Figure 18–16. Big-Endian (BEND=1) and RUDC/XUDC=1 in 8-Bit UTOPIA Slave Mode

Queue Bits 31:24 23:16 15:8 7:0

Address n Dummy Dummy UDB 1 Header 1 Word 0

Address n+4 Header 2 Header 3 Header 4 UDF Word 1

Address n+8 Payload 1 Payload 2 Payload 3 Payload 4 |

:: :: :: :: :: :

Address n+48 Payload 41 Payload 42 Payload 43 Payload 44 |

Address n+52 Payload 45 Payload 46 Payload 47 Payload 48 Word 13

Slave-Mode Endian Data Formats

 18-30

Figure 18–17. Little-Endian (BEND=0) and RUDC/XUDC=7 in 8-Bit UTOPIA Slave Mode

Queue Bits 31:24 23:16 15:8 7:0

Address n UDB 4 UDB 3 UDB 2 UDB 1 Word 0

Address n+4 Header 1 UDB 7 UDB 6 UDB 5 Word 1

Address n+8 UDF Header 4 Header 3 Header 2 :

Address n+12 Payload 4 Payload 3 Payload 2 Payload 1 |

:: :: :: :: :: :

Address n+56 Payload 48 Payload 47 Payload 46 Payload 45 Word 14

Figure 18–18. Little-Endian (BEND=0) and RUDC/XUDC=11 in 8-Bit UTOPIA Slave
Mode

Queue Bits 31:24 23:16 15:8 7:0

Address n UDB 4 UDB 3 UDB 2 UDB 1 Word 0

Address n+4 UDB 8 UDB 7 UDB 6 UDB 5 Word 1

Address n+8 Header 1 UDB 11 UDB 10 UDB 9 Word 2

Address n+12 UDF Header 4 Header 3 Header 2 :

Address n+16 Payload 4 Payload 3 Payload 2 Payload 1 |

:: :: :: :: :: :

Address n+60 Payload 48 Payload 47 Payload 46 Payload 45 Word 15

Figure 18–19. Big-Endian (BEND=1) and RUDC/XUDC=11 in 8-Bit UTOPIA Slave Mode

Queue Bits 31:24 23:16 15:8 7:0

Address n UDB 1 UDB 2 UDB 3 UDB 4 Word 0

Address n+4 UDB 5 UDB 6 UDB 7 UDB 8 Word 1

Address n+8 UDB 9 UDB 10 UDB 11 Header 1 Word 2

Address n+12 Header 2 Header 3 Header 4 UDF :

Address n+16 Payload 1 Payload 2 Payload 3 Payload 4 |

:: :: :: :: :: :

Address n+60 Payload 45 Payload 46 Payload 47 Payload 48 Word 15

UTOPIA Reset

18-31UTOPIA Level 2 Interface

18.11 UTOPIA Reset

The UTOPIA interface is in reset state during device reset. The UTOPIA inter-
face can also be reset through software by programming the UREN and UXEN
bits in the UTOPIA Control Register (UCR) when the device is out of reset.

Table 18–12 shows the reset values of the UTOPIA pins. The UTOPIA pins
have no internal pull-up or pull-down resistors. The pins should be pulled ex-
ternally to bring inputs to a known state when not driven. At reset, all outputs
are driven to a high-impedance state to facilitate MPHY operation. The ad-
dress pins are pulled high to give the address of a null PHY/slave (which is
11111b) during reset.

Table 18–12. UTOPIA Pin REset Values

UTOPIA Pins ATM Controller SLAVE (Dir) Reset Values

UXCLK In Low

UXADDR[4:0] In High

UXCLAV Out Hi-Z

UXENB In High

UXSOC Out Hi-Z

UXDATA[7:0] Out Hi-Z

URCLK In Low

URADDR[4:0] In High

URCLAV Out Hi-Z

URENB In High

URSOC In Low

URDATA[7:0] In Low

ATM Adaptation Layer (AAL) Functions

 18-32

18.11.1 UTOPIA Slave Enable Sequence

A device reset or a programmable reset via the UCR resets the UTOPIA inter-
face. To initialize the UTOPIA interface for slave operation, the following steps
are required:

� The UTOPIA master device in the system provides the clock input to
URCLK and UXCLK. UTOPIA port can not be initialized without these
clocks.

� Ensure that DSP/chip is out of reset.

� Program EDMA channel(s) for data transmission and reception to/from
the UTOPIA interface.

� Set up the UTOPIA configuration registers as required.

� Either the DSP or the external ATM master can write the address of this
slave/PHY in the UCR. The external ATM master can write to the UCR via
the HPI/PCI or McBSP interfaces.

� Take the interface out of reset by setting the UREN bit to 1 to enable Re-
ceive interface and UXEN to 1 to enable the transmit interface. Note that
the transmit and receive interfaces are independent of each other. In typi-
cal systems, both are used.

18.12 ATM Adaptation Layer (AAL) Functions

The UTOPIA interface provides a standard hardware interface between an
ATM Layer device (master) and a PHY device (slave). The ATM adaptation
layer functions such as segmentation and re-assembly (SAR) for AAL2, AAL5
should be implemented in software.

A-1

Appendix A

EDMA Transfers

This appendix describes all of the different types of EDMA transfers.

Topic Page

A.1 Element Synchronized 1-D to 1-D Transfers A-2.

A.2 Frame-Synchronized 1-D to 1-D Transfers A-6.

A.3 Array Synchronized 2-D to 2-D Transfers A-10.

A.4 Block–Synchronized 2-D to 2-D Transfers A-13.

A.5 Array Synchronized 1-D to 2-D Transfers A-16.

A.6 Block–Synchronized 1-D to 2-D Transfers A-19.

A.7 Array Synchronized 2-D to 1-D Transfers A-22.

A.8 Block–Synchronized 2-D to 1-D Transfers A-25.

Appendix A

Element Synchronized 1-D to 1-D Transfers

 A-2

A.1 Element Synchronized 1-D to 1-D Transfers

The possible 1-D to 1-D transfers, along with the necessary parameters using
element synchronization (FS=0), are shown in Figure A–1 through
Figure A–16. For each, only one element is transferred per synchronization
event.

Figure A–1. Element Synchronized 1-D (SUM=00b) to 1-D (DUM=00b)

AllAllSource address Destination address
0x20000000

Source address

Destination address
fr_cnt = 0x2 el_cnt = 0x4

Don’t care Don’t care
cnt_rel = 0x4 Don’t care

31 0

0001 00 00 0 00 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 0
15 2 1 0

Reserved LINK FS

16

Figure A–2. Element Synchronized 1-D (SUM=00b) to 1-D (DUM=01b)

AllSource address Destination address 0_1 0_2 0_3 0_4 1_1 1_2 1_3

1_4 2_1 2_2 2_3 2_4

0x20200000
Source address

Destination address
fr_cnt = 0x2 el_cnt = 0x4

Don’t care Don’t care
cnt_rel = 0x4 Don’t care

31 0

0001 00 00 0 01 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 0
15 2 1 0

Reserved LINK FS

16

Figure A–3. Element Synchronized 1-D (SUM=00b) to 1-D (DUM=10b)

AllSource address

Destination address

0_10_20_30_41_11_21_3

1_42_12_22_32_4

0x20400000
Source address

Destination address
fr_cnt = 0x2 el_cnt = 0x4

Don’t care Don’t care
cnt_rel = 0x4 Don’t care

31 0

0001 00 00 0 10 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 0
15 2 1 0

Reserved LINK FS

16

Figure A–4. Element Synchronized 1-D (SUM=00b) to 1-D (DUM=11b)

AllSource address

Destination address 0_1 0_2 0_3 0_4

1_1 1_2 1_3 1_4

2_1 2_2 2_3 2_4

EIX

FIX

FIX

EIX EIX

0x20600000
Source address

Destination address
fr_cnt = 0x2 el_cnt = 0x4

fr_index = FIX el_index = EIX
cnt_rel = 0x4 Don’t care

31 0

0001 00 00 0 11 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 0
15 2 1 0

Reserved LINK FS

16

Element Synchronized 1-D to 1-D Transfers

A-3EDMA Transfers

Figure A–5. Element Synchronized 1-D (SUM=01b) to 1-D (DUM=00b)

AllSource address Destination address
0x21000000

Source address

Destination address
fr_cnt = 0x2 el_cnt = 0x4

Don’t care Don’t care
cnt_rel = 0x4 Don’t care

31 0

0001 00 01 0 00 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 0
15 2 1 0

Reserved LINK FS

16

0_1 0_2 0_3 0_4 1_1 1_2 1_3

1_4 2_1 2_2 2_3 2_4

Figure A–6. Element Synchronized 1-D (SUM=01b) to 1-D (DUM=01b)

Source address Destination address0_1 0_2 0_3 0_4 1_1 1_2 1_3

1_4 2_1 2_2 2_3 2_4

0_1 0_2 0_3 0_4 1_1 1_2 1_3

1_4 2_1 2_2 2_3 2_4

0x21200000
Source address

Destination address
fr_cnt = 0x2 el_cnt = 0x4

Don’t care Don’t care
cnt_rel = 0x4 Don’t care

31 0

0001 00 01 0 01 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC
00000000000000 0 0

15 2 1 0

Reserved LINK FS

16

Figure A–7. Element Synchronized 1-D (SUM=01b) to 1-D (DUM=10b)

Source address

Destination address

0_1 0_2 0_3 0_4 1_1 1_2 1_3

1_4 2_1 2_2 2_3 2_4

0_10_20_30_41_11_21_3

1_42_12_22_32_4

0x21400000
Source address

Destination address
fr_cnt = 0x2 el_cnt = 0x4

Don’t care Don’t care
cnt_rel = 0x4 Don’t care

31 0

0001 00 01 0 10 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC
00000000000000 0 0

15 2 1 0

Reserved LINK FS

16

Figure A–8. Element Synchronized 1-D (SUM=01b) to 1-D (DUM=11b)

Source address

Destination address 0_1 0_2 0_3 0_4

1_1 1_2 1_3 1_4

2_1 2_2 2_3 2_4

EIX

FIX

FIX

EIX EIX

0x21600000
Source address

Destination address
fr_cnt = 0x2 el_cnt = 0x4

fr_index = FIX el_index = EIX
cnt_rel = 0x4 Don’t care

31 0

0001 00 01 0 11 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC
00000000000000 0 0

15 2 1 0

Reserved LINK FS

16

0_1 0_2 0_3 0_4 1_1 1_2 1_3

1_4 2_1 2_2 2_3 2_4

Element Synchronized 1-D to 1-D Transfers

 A-4

Figure A–9. Element Synchronized 1-D (SUM=10b) to 1-D (DUM=00b)

AllDestination address

0x22000000
Source address

Destination address
fr_cnt = 0x2 el_cnt = 0x4

Don’t care Don’t care
cnt_rel = 0x4 Don’t care

31 0

0001 00 10 0 00 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 0
15 2 1 0

Reserved LINK FS

16

Source address

0_10_20_30_41_11_21_3

1_42_12_22_32_4

Figure A–10. Element Synchronized 1-D (SUM=10b) to 1-D (DUM=01b)

Destination address

Source address

0_10_20_30_41_11_21_3

1_42_12_22_32_4

0_1 0_2 0_3 0_4 1_1 1_2 1_3

1_4 2_1 2_2 2_3 2_4 0x22200000
Source address

Destination address
fr_cnt = 0x2 el_cnt = 0x4

Don’t care Don’t care
cnt_rel = 0x4 Don’t care

31 0

0001 00 10 0 01 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 0
15 2 1 0

Reserved LINK FS

16

Figure A–11. Element Synchronized 1-D (SUM=10b) to 1-D (DUM=10b)

Destination addressSource address

0_10_20_30_41_11_21_3

1_42_12_22_32_4

0_10_20_30_41_11_21_3

1_42_12_22_32_4

0x22400000
Source address

Destination address
fr_cnt = 0x2 el_cnt = 0x4

Don’t care Don’t care
cnt_rel = 0x4 Don’t care

31 0

0001 00 10 0 10 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 0
15 2 1 0

Reserved LINK FS

16

Figure A–12. Element Synchronized 1-D (SUM=10b) to 1-D (DUM=11b)

Source address

Destination address 0_1 0_2 0_3 0_4

1_1 1_2 1_3 1_4

2_1 2_2 2_3 2_4

EIX

FIX

FIX

EIX EIX

0x22600000
Source address

Destination address
fr_cnt = 0x2 el_cnt = 0x4

fr_index = FIX el_index = EIX
cnt_rel = 0x4 Don’t care

31 0

0001 00 10 0 11 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 0
15 2 1 0

Reserved LINK FS

16

0_10_20_30_41_11_21_3

1_42_12_22_32_4

Element Synchronized 1-D to 1-D Transfers

A-5EDMA Transfers

Figure A–13. Element Synchronized 1-D (SUM=11b) to 1-D (DUM=00b)

AllDestination address

Source address 0_1 0_2 0_3 0_4

1_1 1_2 1_3 1_4

2_1 2_2 2_3 2_4

EIX

FIX

FIX

EIX EIX

0x23000000
Source address

Destination address
fr_cnt = 0x2 el_cnt = 0x4

fr_index = FIX el_index = EIX
cnt_rel = 0x4 Don’t care

31 0

0001 00 11 0 00 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC
00000000000000 0 0

15 2 1 0

Reserved LINK FS

16

Figure A–14. Element Synchronized 1-D (SUM=11b) to 1-D (DUM=01b)

Destination address

Source address 0_1 0_2 0_3 0_4

1_1 1_2 1_3 1_4

2_1 2_2 2_3 2_4

EIX

FIX

FIX

EIX EIX

0_1 0_2 0_3 0_4 1_1 1_2 1_3

1_4 2_1 2_2 2_3 2_4
0x23200000

Source address

Destination address
fr_cnt = 0x2 el_cnt = 0x4

fr_index = FIX el_index = EIX
cnt_rel = 0x4 Don’t care

31 0

0001 00 11 0 01 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 0
15 2 1 0

Reserved LINK FS

16

Figure A–15. Element Synchronized 1-D (SUM=11b) to 1-D (DUM=10b)

0_10_20_30_41_11_21_3

1_42_12_22_32_4

Destination address

0x23400000
Source address

Destination address
fr_cnt = 0x2 el_cnt = 0x4

fr_index = FIX el_index = EIX
cnt_rel = 0x4 Don’t care

31 0

0001 00 11 0 10 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 0
15 2 1 0

Reserved LINK FS

16

Source address 0_1 0_2 0_3 0_4

1_1 1_2 1_3 1_4

2_1 2_2 2_3 2_4

EIX

FIX

FIX

EIX EIX

Figure A–16. Element Synchronized 1-D (SUM=11b) to 1-D (DUM=11b)

Source address Destination address 0_1 0_2 0_3 0_4

1_1 1_2 1_3 1_4

2_1 2_2 2_3 2_4

EIX

FIX

FIX

EIX EIX

0x22600000
Source address

Destination address
fr_cnt = 0x2 el_cnt = 0x4

fr_index = FIX el_index = EIX
cnt_rel = 0x4 Don’t care

31 0

0001 00 10 0 11 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 0
15 2 1 0

Reserved LINK FS

16

0_1 0_2 0_3 0_4

1_1 1_2 1_3 1_4

2_1 2_2 2_3 2_4

EIX

FIX

FIX

EIX EIX

Frame-Synchronized 1-D to 1-D Transfers

 A-6

A.2 Frame-Synchronized 1-D to 1-D Transfers

The possible 1-D to 1-D transfers, along with the necessary parameters using
frame synchronization (FS = 1) are shown in Figure A–17 through
Figure A–32. For each, an entire frame of elements is transferred per synchro-
nization event.

Figure A–17. Frame-synchronized 1-D (SUM=00b) to 1-D (DUM=00b)

AllAllSource address Destination address
0x20000001

Source address

Destination address
fr_cnt = 0x2 el_cnt = 0x4

Don’t care Don’t care
Don’t care Don’t care

31 0

0001 00 00 0 00 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 1
15 2 1 0

Reserved LINK FS

16

Figure A–18. Frame-synchronized 1-D (SUM=00b) to 1-D (DUM=01b)

AllSource address Destination address 0_1 0_2 0_3 0_4 1_1 1_2 1_3

1_4 2_1 2_2 2_3 2_4

0x20200001
Source address

Destination address
fr_cnt = 0x2 el_cnt = 0x4

Don’t care Don’t care
Don’t care Don’t care

31 0

0001 00 00 0 01 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 1
15 2 1 0

Reserved LINK FS

16

Figure A–19. Frame-synchronized 1-D (SUM=00b) to 1-D (DUM=10b)

AllSource address

Destination address

0_10_20_30_41_11_21_3

1_42_12_22_32_4

0x20400001
Source address

Destination address
fr_cnt = 0x2 el_cnt = 0x4

Don’t care Don’t care
Don’t care Don’t care

31 0

0001 00 00 0 10 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 1
15 2 1 0

Reserved LINK FS

16

Figure A–20. Frame-synchronized 1-D (SUM=00b) to 1-D (DUM=11b)

AllSource address

Destination address

EIX

FIX

FIX

EIX EIX

0_1 0_2 0_3 0_4

1_1 1_2 1_3 1_4

2_1 2_2 2_3 2_4

0x20600001
Source address

Destination address
fr_cnt = 0x2 el_cnt = 0x4

fr_index = FIX el_index = EIX
Don’t care Don’t care

31 0

0001 00 00 0 11 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 1
15 2 1 0

Reserved LINK FS

16

Frame-Synchronized 1-D to 1-D Transfers

A-7EDMA Transfers

Figure A–21. Frame-synchronized 1-D (SUM=01b) to 1-D (DUM=00b)

AllSource address Destination address
0x21000001

Source address

Destination address
fr_cnt = 0x2 el_cnt = 0x4

Don’t care Don’t care
Don’t care Don’t care

31 0

0001 00 01 0 00 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 1
15 2 1 0

Reserved LINK FS

16

0_1 0_2 0_3 0_4 1_1 1_2 1_3

1_4 2_1 2_2 2_3 2_4

Figure A–22. Frame-synchronized 1-D (SUM=01b) to 1-D (DUM=01b)

Source address Destination address0_1 0_2 0_3 0_4 1_1 1_2 1_3

1_4 2_1 2_2 2_3 2_4

0_1 0_2 0_3 0_4 1_1 1_2 1_3

1_4 2_1 2_2 2_3 2_4

0x21200001
Source address

Destination address
fr_cnt = 0x2 el_cnt = 0x4

Don’t care Don’t care
Don’t care Don’t care

31 0

0001 00 01 0 01 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC
00000000000000 0 1

15 2 1 0

Reserved LINK FS

16

Figure A–23. Frame-synchronized 1-D (SUM=01b) to 1-D (DUM=10b)

Source address

Destination address

0_1 0_2 0_3 0_4 1_1 1_2 1_3

1_4 2_1 2_2 2_3 2_4

0_10_20_30_41_11_21_3

1_42_12_22_32_4
0x21400001

Source address

Destination address
fr_cnt = 0x2 el_cnt = 0x4

Don’t care Don’t care
Don’t care Don’t care

31 0

0001 00 01 0 10 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC
00000000000000 0 1

15 2 1 0

Reserved LINK FS

16

Figure A–24. Frame-synchronized 1-D (SUM=01b) to 1-D (DUM=11b)

Source address

Destination address

0_1 0_2 0_3 0_4 1_1 1_2 1_3

1_4 2_1 2_2 2_3 2_4

EIX

FIX

FIX

EIX EIX

0_1 0_2 0_3 0_4

1_1 1_2 1_3 1_4

2_1 2_2 2_3 2_4

0x21600001
Source address

Destination address
fr_cnt = 0x2 el_cnt = 0x4

fr_index = FIX el_index = EIX
Don’t care Don’t care

31 0

0001 00 01 0 11 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC
00000000000000 0 1

15 2 1 0

Reserved LINK FS

16

Frame-Synchronized 1-D to 1-D Transfers

 A-8

Figure A–25. Frame-synchronized 1-D (SUM=10b) to 1-D (DUM=00b)

AllDestination address

0x22000001
Source address

Destination address
fr_cnt = 0x2 el_cnt = 0x4

Don’t care Don’t care
Don’t care Don’t care

31 0

0001 00 10 0 00 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 1
15 2 1 0

Reserved LINK FS

16

Source address

0_10_20_30_41_11_21_3

1_42_12_22_32_4

Figure A–26. Frame-synchronized 1-D (SUM=10b) to 1-D (DUM=01b)

Destination address

Source address

0_10_20_30_41_11_21_3

1_42_12_22_32_4

0_1 0_2 0_3 0_4 1_1 1_2 1_3

1_4 2_1 2_2 2_3 2_4 0x22200001
Source address

Destination address
fr_cnt = 0x2 el_cnt = 0x4

Don’t care Don’t care
Don’t care Don’t care

31 0

0001 00 10 0 01 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 1
15 2 1 0

Reserved LINK FS

16

Figure A–27. Frame-synchronized 1-D (SUM=10b) to 1-D (DUM=10b)

Destination addressSource address

0_10_20_30_41_11_21_3

1_42_12_22_32_4

0_10_20_30_41_11_21_3

1_42_12_22_32_4

0x22400001
Source address

Destination address
fr_cnt = 0x2 el_cnt = 0x4

Don’t care Don’t care
Don’t care Don’t care

31 0

0001 00 10 0 10 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 1
15 2 1 0

Reserved LINK FS

16

Figure A–28. Frame-synchronized 1-D (SUM=10b) to 1-D (DUM=11b)

Source address

Destination address

0_10_20_30_41_11_21_3

1_42_12_22_32_4

EIX

FIX

FIX

EIX EIX

0_1 0_2 0_3 0_4

1_1 1_2 1_3 1_4

2_1 2_2 2_3 2_4

0x22600001
Source address

Destination address
fr_cnt = 0x2 el_cnt = 0x4

fr_index = FIX el_index = EIX
Don’t care Don’t care

31 0

0001 00 10 0 11 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 1
15 2 1 0

Reserved LINK FS

16

Frame-Synchronized 1-D to 1-D Transfers

A-9EDMA Transfers

Figure A–29. Frame-synchronized 1-D (SUM=11b) to 1-D (DUM=00b)

AllDestination address

Source address

EIX

FIX

FIX

EIX EIX

0_1 0_2 0_3 0_4

1_1 1_2 1_3 1_4

2_1 2_2 2_3 2_4

0x23000001
Source address

Destination address
fr_cnt = 0x2 el_cnt = 0x4

fr_index = FIX el_index = EIX
Don’t care Don’t care

31 0

0001 00 11 0 00 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC
00000000000000 0 1

15 2 1 0

Reserved LINK FS

16

Figure A–30. Frame-synchronized 1-D (SUM=11b) to 1-D (DUM=01b)

Destination address

Source address

0_1 0_2 0_3 0_4 1_1 1_2 1_3

1_4 2_1 2_2 2_3 2_4
0x23200001

Source address

Destination address
fr_cnt = 0x2 el_cnt = 0x4

fr_index = FIX el_index = EIX
Don’t care Don’t care

31 0

0001 00 11 0 01 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 1
15 2 1 0

Reserved LINK FS

16

EIX

FIX

FIX

EIX EIX

0_1 0_2 0_3 0_4

1_1 1_2 1_3 1_4

2_1 2_2 2_3 2_4

Figure A–31. Frame-synchronized 1-D (SUM=11b) to 1-D (DUM=10b)

0_10_20_30_41_11_21_3

1_42_12_22_32_4

Destination address

0x23400001
Source address

Destination address
fr_cnt = 0x2 el_cnt = 0x4

fr_index = FIX el_index = EIX
Don’t care Don’t care

31 0

0001 00 11 0 10 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 1
15 2 1 0

Reserved LINK FS

16

Source address

EIX

FIX

FIX

EIX EIX

0_1 0_2 0_3 0_4

1_1 1_2 1_3 1_4

2_1 2_2 2_3 2_4

Figure A–32. Frame-synchronized 1-D (SUM=11b) to 1-D (DUM=11b)

Source address Destination address

EIX

FIX

FIX

EIX EIX

0_1 0_2 0_3 0_4

1_1 1_2 1_3 1_4

2_1 2_2 2_3 2_4

EIX

FIX

FIX

EIX EIX

0_1 0_2 0_3 0_4

1_1 1_2 1_3 1_4

2_1 2_2 2_3 2_4

0x22600001
Source address

Destination address
fr_cnt = 0x2 el_cnt = 0x4

fr_index = FIX el_index = EIX
Don’t care Don’t care

31 0

0001 00 10 0 11 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 1
15 2 1 0

Reserved LINK FS

16

Array Synchronized 2-D to 2-D Transfers

 A-10

A.3 Array Synchronized 2-D to 2-D Transfers

The possible 2-D to 2-D transfers, along with the necessary parameters using
array synchronization (FS=0), are shown in Figure A–33 through Figure A–41.
For each, a single array of elements is transferred per synchronization event.

Figure A–33. Array Synchronized 2-D (SUM=00b) to 2-D (DUM=00b)

AllSource address

0x44800000
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

Don’t care Don’t care
Don’t care Don’t care

31 0

1010 00 00 1 00 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 0
15 2 1 0

Reserved LINK FS

16

Destination addressAll

Figure A–34. Array Synchronized 2-D (SUM=00b) to 2-D (DUM=01b)

Destination address 0_1 0_30_2 0_4

1_1 1_31_2 1_4

2_1 2_32_2 2_4

AIX

AIX
0x44A00000

Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

1010 00 00 1 01 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 0
15 2 1 0

Reserved LINK FS

16

Source address All

Figure A–35. Array Synchronized 2-D (SUM=00b) to 2-D (DUM=10b)

Source address All

0_10_3 0_20_4

1_11_3 1_21_4

2_12_3 2_22_4

AIX

AIX

Destination address

0x44C00000
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

1010 00 00 1 10 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 0
15 2 1 0

Reserved LINK FS

16

Array Synchronized 2-D to 2-D Transfers

A-11EDMA Transfers

Figure A–36. Array Synchronized 2-D (SUM=01b) to 2-D (DUM=00b)

0_1 0_30_2 0_4

1_1 1_31_2 1_4

2_1 2_32_2 2_4

AIX

AIX

All

Source address

0x45800000
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

1010 00 01 1 00 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 0
15 2 1 0

Reserved LINK FS

16

Destination address

Figure A–37. Array Synchronized 2-D (SUM=01b) to 2-D (DUM=01b)

Destination address0_1 0_30_2 0_4

1_1 1_31_2 1_4

2_1 2_32_2 2_4

AIX

AIX

0_1 0_30_2 0_4

1_1 1_31_2 1_4

2_1 2_32_2 2_4

AIX

AIX
0x45A00000

Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

1010 00 01 1 01 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 0
15 2 1 0

Reserved LINK FS

16

Source address

Figure A–38. Array Synchronized 2-D (SUM=01b) to 2-D (DUM=10b)

0_10_3 0_20_4

1_11_3 1_21_4

2_12_3 2_22_4

AIX

AIX

0_1 0_30_2 0_4

1_1 1_31_2 1_4

2_1 2_32_2 2_4

AIX

AIX
0x45C00000

Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

1010 00 01 1 10 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 0
15 2 1 0

Reserved LINK FS

16

Destination address

Source address

Array Synchronized 2-D to 2-D Transfers

 A-12

Figure A–39. Array Synchronized 2-D (SUM=10b) to 2-D (DUM=00b)

All

Source address

0x46800000
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

1010 00 10 1 00 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC
00000000000000 0 0

15 2 1 0

Reserved LINK FS

16

Destination address

0_10_3 0_20_4

1_11_3 1_21_4

2_12_3 2_22_4

AIX

AIX

Figure A–40. Array Synchronized 2-D (SUM=10b) to 2-D (DUM=01b)

Destination address 0_1 0_30_2 0_4

1_1 1_31_2 1_4

2_1 2_32_2 2_4

AIX

AIX
0x46A00000

Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

1010 00 10 1 01 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC
00000000000000 0 0

15 2 1 0

Reserved LINK FS

16

Source address

0_10_3 0_20_4

1_11_3 1_21_4

2_12_3 2_22_4

AIX

AIX

Figure A–41. Array Synchronized 2-D (SUM=10b) to 2-D (DUM=10b)

0_10_3 0_20_4

1_11_3 1_21_4

2_12_3 2_22_4

AIX

AIX 0x46C00000
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

1010 00 10 1 10 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 0
15 2 1 0

Reserved LINK FS

16

Destination addressSource address

0_10_3 0_20_4

1_11_3 1_21_4

2_12_3 2_22_4

AIX

AIX

Block-Synchronized 2-D to 2-D Transfers

A-13EDMA Transfers

A.4 Block-Synchronized 2-D to 2-D Transfers

The possible 2-D to 2-D transfers, along with the necessary parameters using
block synchronization (FS=1), are shown in Figure A–42 through Figure A–50.
For each, an entire block of arrays is transferred per synchronization event.

Figure A–42. Block-synchronized 2-D (SUM=00b) to 2-D (DUM=00b)

Source address All AllDestination address

0x44800001
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

Don’t care Don’t care
Don’t care Don’t care

31 0

1010 00 00 1 00 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 1
15 2 1 0

Reserved LINK FS

16

Figure A–43. Block-synchronized 2-D (SUM=00b) to 2-D (DUM=01b)

Source address All

Destination address

AIX

AIX

0_1 0_30_2 0_4

1_1 1_31_2 1_4

2_1 2_32_2 2_4

0x44A00001
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

1010 00 00 1 01 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 1
15 2 1 0

Reserved LINK FS

16

Figure A–44. Block-synchronized 2-D (SUM=00b) to 2-D (DUM=10b)

Source address All

Destination address

AIX

AIX

0_10_3 0_20_4

1_11_3 1_21_4

2_12_3 2_22_4

0x44C00001
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

1010 00 00 1 10 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 1
15 2 1 0

Reserved LINK FS

16

Note: The AIX is a negative value in this example.

Block-Synchronized 2-D to 2-D Transfers

 A-14

Figure A–45. Block-synchronized 2-D (SUM=01b) to 2-D (DUM=00b)

All

Source address

0x45800001
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

1010 00 01 1 00 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 1
15 2 1 0

Reserved LINK FS

16

Destination addressAIX

AIX

0_1 0_30_2 0_4

1_1 1_31_2 1_4

2_1 2_32_2 2_4

Figure A–46. Block-synchronized 2-D (SUM=01b) to 2-D (DUM=01b)

Destination addressSource address

AIX

AIX

0_1 0_30_2 0_4

1_1 1_31_2 1_4

2_1 2_32_2 2_4

AIX

AIX

0_1 0_30_2 0_4

1_1 1_31_2 1_4

2_1 2_32_2 2_4

0x45A00001
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

1010 00 01 1 01 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 1
15 2 1 0

Reserved LINK FS

16

Figure A–47. Block-synchronized 2-D (SUM=01b) to 2-D (DUM=10b)
Destination address

Source address

AIX

AIX

0_1 0_30_2 0_4

1_1 1_31_2 1_4

2_1 2_32_2 2_4

AIX

AIX

0_10_3 0_20_4

1_11_3 1_21_4

2_12_3 2_22_4

0x45C00001
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

1010 00 01 1 10 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 1
15 2 1 0

Reserved LINK FS

16

Block-Synchronized 2-D to 2-D Transfers

A-15EDMA Transfers

Figure A–48. Block-synchronized 2-D (SUM=10b) to 2-D (DUM=00b)

All

Source address

0x46800001
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

1010 00 10 1 00 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC
00000000000000 0 1

15 2 1 0

Reserved LINK FS

16

Destination addressAIX

AIX

0_10_3 0_20_4

1_11_3 1_21_4

2_12_3 2_22_4

Figure A–49. Block-synchronized 2-D (SUM=10b) to 2-D (DUM=01b)

Destination address

Source address

AIX

AIX

0_1 0_30_2 0_4

1_1 1_31_2 1_4

2_1 2_32_2 2_4

AIX

AIX

0_10_3 0_20_4

1_11_3 1_21_4

2_12_3 2_22_4

0x46A00001
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

1010 00 10 1 01 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 1
15 2 1 0

Reserved LINK FS

16

Figure A–50. Block-synchronized 2-D (SUM=10b) to 2-D (DUM=10b)

Destination addressSource address

AIX

AIX

0_10_3 0_20_4

1_11_3 1_21_4

2_12_3 2_22_4

AIX

AIX

0_10_3 0_20_4

1_11_3 1_21_4

2_12_3 2_22_4

0x46C00001
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

1010 00 10 1 10 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC
00000000000000 0 1

15 2 1 0

Reserved LINK FS

16

Array Synchronized 1-D to 2-D Transfers

 A-16

A.5 Array Synchronized 1-D to 2-D Transfers

The possible 1-D to 2-D transfers, along with the necessary parameters using
array synchronization (FS=0), are shown in Figure A–51 through Figure A–59.
For each, a single array of elements is transferred per synchronization event.

Figure A–51. Array Synchronized 1-D (SUM=00b) to 2-D (DUM=00b)

AllSource address

0x40800000
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

Don’t care Don’t care
Don’t care Don’t care

31 0

0010 00 00 1 00 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 0
15 2 1 0

Reserved LINK FS

16

Destination addressAll

Figure A–52. Array Synchronized 1-D (SUM=00b) to 2-D (DUM=01b)

Destination address 0_1 0_30_2 0_4

1_1 1_31_2 1_4

2_1 2_32_2 2_4

AIX

AIX
0x40A00000

Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

0010 00 00 1 01 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 0
15 2 1 0

Reserved LINK FS

16

Source address All

Figure A–53. Array Synchronized 1-D (SUM=00b) to 2-D (DUM=10b)

Source address All

0_10_3 0_20_4

1_11_3 1_21_4

2_12_3 2_22_4

AIX

AIX

Destination address

0x40C00000
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

0010 00 00 1 10 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 0
15 2 1 0

Reserved LINK FS

16

Note: AIX is a negative value in this example.

Array Synchronized 1-D to 2-D Transfers

A-17EDMA Transfers

Figure A–54. Array Synchronized 1-D (SUM=01b) to 2-D (DUM=00b)

AllSource address

0x41800000
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

Don’t care Don’t care
Don’t care Don’t care

31 0

0010 00 01 1 00 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 0
15 2 1 0

Reserved LINK FS

16

Destination address0_1 0_2 0_3 0_4 1_1 1_2 1_3

1_4 2_1 2_2 2_3 2_4

Figure A–55. Array Synchronized 1-D (SUM=01b) to 2-D (DUM=01b)

Destination address 0_1 0_30_2 0_4

1_1 1_31_2 1_4

2_1 2_32_2 2_4

AIX

AIX
0x41A00000

Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

0010 00 01 1 01 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 0
15 2 1 0

Reserved LINK FS

16

Source address 0_1 0_2 0_3 0_4 1_1 1_2 1_3

1_4 2_1 2_2 2_3 2_4

Figure A–56. Array Synchronized 1-D (SUM=01b) to 2-D (DUM=10b)

Source address 0_1 0_2 0_3 0_4 1_1 1_2 1_3

1_4 2_1 2_2 2_3 2_4

0_10_3 0_20_4

1_11_3 1_21_4

2_12_3 2_22_4

AIX

AIX

Destination address

0x41C00000
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

0010 00 01 1 10 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 0
15 2 1 0

Reserved LINK FS

16

Figure A–57. Array Synchronized 1-D (SUM=10b) to 2-D (DUM=00b)

All

Source address

0x42800000
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

Don’t care Don’t care
Don’t care Don’t care

31 0

0010 00 10 1 00 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 0
15 2 1 0

Reserved LINK FS

16

Destination address

0_10_20_30_41_11_21_3

1_42_12_22_32_4

Array Synchronized 1-D to 2-D Transfers

 A-18

Figure A–58. Array Synchronized 1-D (SUM=10b) to 2-D (DUM=01b)

Destination address 0_1 0_30_2 0_4

1_1 1_31_2 1_4

2_1 2_32_2 2_4

AIX

AIX
0x42A00000

Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

0010 00 10 1 01 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 0
15 2 1 0

Reserved LINK FS

16

Source address

0_10_20_30_41_11_21_3

1_42_12_22_32_4

Figure A–59. Array Synchronized 1-D (SUM=10b) to 2-D (DUM=10b)

0_10_3 0_20_4

1_11_3 1_21_4

2_12_3 2_22_4

AIX

AIX

Destination address

0x42C00000
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

0010 00 10 1 10 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC
00000000000000 0 0

15 2 1 0

Reserved LINK FS

16

Source address

0_10_20_30_41_11_21_3

1_42_12_22_32_4

Block-Synchronized 1-D to 2-D Transfers

A-19EDMA Transfers

A.6 Block-Synchronized 1-D to 2-D Transfers

The possible 1-D to 2-D transfers, along with the necessary parameters using
block synchronization (FS=1), are shown in Figure A–60 through Figure A–68.
For each, an entire block of arrays is transferred per synchronization event.

Figure A–60. Block-Synchronized 1-D (SUM=00b) to 2-D (DUM=00b)

Source address All AllDestination address

0x40800001
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

Don’t care Don’t care
Don’t care Don’t care

31 0

0010 00 00 1 00 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 1
15 2 1 0

Reserved LINK FS

16

Figure A–61. Block-Synchronized 1-D (SUM=00b) to 2-D (DUM=01b)

Source address All

Destination address

AIX

AIX

0_1 0_30_2 0_4

1_1 1_31_2 1_4

2_1 2_32_2 2_4

0x40A00001
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

0010 00 00 1 01 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 1
15 2 1 0

Reserved LINK FS

16

Figure A–62. Block-Synchronized 1-D (SUM=00b) to 2-D (DUM=10b)

Source address All

Destination address

AIX

AIX

0_10_3 0_20_4

1_11_3 1_21_4

2_12_3 2_22_4

0x40C00001
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

0010 00 00 1 10 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 1
15 2 1 0

Reserved LINK FS

16

Note: AIX is a negative value in this example.

Block-Synchronized 1-D to 2-D Transfers

 A-20

Figure A–63. Block-Synchronized 1-D (SUM=01b) to 2-D (DUM=00b)

Source address 0_1 0_2 0_3 0_4 1_1 1_2 1_3

1_4 2_1 2_2 2_3 2_4
AllDestination address

0x41800001
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

Don’t care Don’t care
Don’t care Don’t care

31 0

0010 00 01 1 00 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 1
15 2 1 0

Reserved LINK FS

16

Figure A–64. Block-synchronized 1-D (SUM=01b) to 2-D (DUM=01b)

Source address 0_1 0_2 0_3 0_4 1_1 1_2 1_3

1_4 2_1 2_2 2_3 2_4

Destination address

AIX

AIX

0_1 0_30_2 0_4

1_1 1_31_2 1_4

2_1 2_32_2 2_4

0x41A00001
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

0010 00 01 1 01 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC
00000000000000 0 1

15 2 1 0

Reserved LINK FS

16

Figure A–65. Block-synchronized 1-D (SUM=01b) to 2-D (DUM=10b)

Source address 0_1 0_2 0_3 0_4 1_1 1_2 1_3

1_4 2_1 2_2 2_3 2_4

Destination address

AIX

AIX

0_10_3 0_20_4

1_11_3 1_21_4

2_12_3 2_22_4

0x41C00001
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

0010 00 01 1 10 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 1
15 2 1 0

Reserved LINK FS

16

Note: AIX is a negative value in this example.

Figure A–66. Block-synchronized 1-D (SUM=10b) to 2-D (DUM=00b)

Source address

0_10_20_30_41_11_21_3

1_42_12_22_32_4

AllDestination address

0x42800001
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

Don’t care Don’t care
Don’t care Don’t care

31 0

0010 00 10 1 00 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 1
15 2 1 0

Reserved LINK FS

16

Block-Synchronized 1-D to 2-D Transfers

A-21EDMA Transfers

Figure A–67. Block-synchronized 1-D (SUM=10b) to 2-D (DUM=01b)

Source address

0_10_20_30_41_11_21_3

1_42_12_22_32_4

Destination address

AIX

AIX

0_1 0_30_2 0_4

1_1 1_31_2 1_4

2_1 2_32_2 2_4

0x42A00001
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

0010 00 10 1 01 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 1
15 2 1 0

Reserved LINK FS

16

Figure A–68. Block-synchronized 1-D (SUM=10b) to 2-D (DUM=10b)

Source address

0_10_20_30_41_11_21_3

1_42_12_22_32_4

Destination address

AIX

AIX

0_10_3 0_20_4

1_11_3 1_21_4

2_12_3 2_22_4

0x42C00001
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

0010 00 10 1 10 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC
00000000000000 0 1

15 2 1 0

Reserved LINK FS

16

Note: AIX is a negative value in this example.

Array Synchronized 2-D to 1-D Transfers

 A-22

A.7 Array Synchronized 2-D to 1-D Transfers

The possible 2-D to 1-D transfers, along with the necessary parameters using
array synchronization (FS=0), are shown in Figure A–69 through Figure A–77.
For each, a single array of elements is transferred per synchronization event

Figure A–69. Array Synchronized 2-D (SUM=00b) to 1-D (DUM=00b)

AllDestination address

0x44000000
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

Don’t care Don’t care
Don’t care Don’t care

31 0

1010 00 00 0 00 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 0
15 2 1 0

Reserved LINK FS

16

Source address All

Figure A–70. Array Synchronized 2-D (SUM=00b) to 1-D (DUM=01b)

0_1 0_2 0_3 0_4 1_1 1_2 1_3

1_4 2_1 2_2 2_3 2_4

Destination address

0x44200000
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

Don’t care Don’t care
Don’t care Don’t care

31 0

1010 00 00 0 01 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 0
15 2 1 0

Reserved LINK FS

16

Source address All

Figure A–71. Array Synchronized 2-D (SUM=00b) to 1-D (DUM=10b)

0_10_20_30_41_11_21_3

1_42_12_22_32_4

Destination address

Source address All

0x44400000
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

Don’t care Don’t care
Don’t care Don’t care

31 0

1010 00 00 0 10 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 0
15 2 1 0

Reserved LINK FS

16

Array Synchronized 2-D to 1-D Transfers

A-23EDMA Transfers

Figure A–72. Array Synchronized 2-D (SUM=01b) to 1-D (DUM=00b)

Source address

AllDestination address

0x45000000
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

1010 00 01 0 00 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 0
15 2 1 0

Reserved LINK FS

16

0_1 0_30_2 0_4

1_1 1_31_2 1_4

2_1 2_32_2 2_4

AIX

AIX

Figure A–73. Array Synchronized 2-D (SUM=01b) to 1-D (DUM=01b)

0_1 0_2 0_3 0_4 1_1 1_2 1_3

1_4 2_1 2_2 2_3 2_4

Destination address
Source address

0x45200000
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

1010 00 01 0 01 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC
00000000000000 0 0

15 2 1 0

Reserved LINK FS

16

0_1 0_30_2 0_4

1_1 1_31_2 1_4

2_1 2_32_2 2_4

AIX

AIX

Figure A–74. Array Synchronized 2-D (SUM=01b) to 1-D (DUM=10b)

Source address

0_10_20_30_41_11_21_3

1_42_12_22_32_4
0x45400000

Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

1010 00 01 0 10 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 0
15 2 1 0

Reserved LINK FS

16

0_1 0_30_2 0_4

1_1 1_31_2 1_4

2_1 2_32_2 2_4

AIX

AIX

Destination address

Array Synchronized 2-D to 1-D Transfers

 A-24

Figure A–75. Array Synchronized 2-D (SUM=10b) to 1-D (DUM=00b)

AllDestination address

0x46000000
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

1010 00 10 0 00 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC
00000000000000 0 0

15 2 1 0

Reserved LINK FS

16

0_10_3 0_20_4

1_11_3 1_21_4

2_12_3 2_22_4

AIX

AIX

Source address

Note: AIX is a negative value in this example.

Figure A–76. Array Synchronized 2-D (SUM=10b) to 1-D (DUM=01b)

0_1 0_2 0_3 0_4 1_1 1_2 1_3

1_4 2_1 2_2 2_3 2_4

Destination address

0x46200000
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

1010 00 10 0 01 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 0
15 2 1 0

Reserved LINK FS

16

0_10_3 0_20_4

1_11_3 1_21_4

2_12_3 2_22_4

AIX

AIX

Source address

Note: AIX is a negative value in this example.

Figure A–77. Array Synchronized 2-D (SUM=10b) to 1-D (DUM=10b)

0_10_20_30_41_11_21_3

1_42_12_22_32_4

0x46400000
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

1010 00 10 0 10 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC
00000000000000 0 0

15 2 1 0

Reserved LINK FS

16

Destination address

0_10_3 0_20_4

1_11_3 1_21_4

2_12_3 2_22_4

AIX

AIX

Source address

Note: AIX is a negative value in this example.

Block-Synchronized 2-D to 1-D Transfers

A-25EDMA Transfers

A.8 Block-Synchronized 2-D to 1-D Transfers

The possible 2-D to 1-D transfers, along with the necessary parameters using
block synchronization (FS=1) are shown in Figure A–78 through Figure A–86.
For each, an entire block of arrays is transferred per synchronization event.

Figure A–78. Block-synchronized 2-D (SUM=00b) to 1-D (DUM=00b)

AllDestination address

0x44000001
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

Don’t care Don’t care
Don’t care Don’t care

31 0

1010 00 00 0 00 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 1
15 2 1 0

Reserved LINK FS

16

Source address All

Figure A–79. Block-synchronized 2-D (SUM=00b) to 1-D (DUM=01b)

0_1 0_2 0_3 0_4 1_1 1_2 1_3

1_4 2_1 2_2 2_3 2_4

Destination address

0x44200001
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

Don’t care Don’t care
Don’t care Don’t care

31 0

1010 00 00 0 01 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 1
15 2 1 0

Reserved LINK FS

16

Source address All

Figure A–80. Block-synchronized 2-D (SUM=00b) to 1-D (DUM=10b)

0_10_20_30_41_11_21_3

1_42_12_22_32_4

Destination address

Source address All

0x44400001
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

Don’t care Don’t care
Don’t care Don’t care

31 0

1010 00 00 0 10 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 1
15 2 1 0

Reserved LINK FS

16

Block-Synchronized 2-D to 1-D Transfers

 A-26

Figure A–81. Block-synchronized 2-D (SUM=01b) to 1-D (DUM=00b)

Source address

AllDestination addressAIX

AIX

0_1 0_30_2 0_4

1_1 1_31_2 1_4

2_1 2_32_2 2_4

0x45000001
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

1010 00 01 0 00 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 1
15 2 1 0

Reserved LINK FS

16

Figure A–82. Block-synchronized 2-D (SUM=01b) to 1-D (DUM=01b)

0_1 0_2 0_3 0_4 1_1 1_2 1_3

1_4 2_1 2_2 2_3 2_4

Destination address
Source address

AIX

AIX

0_1 0_30_2 0_4

1_1 1_31_2 1_4

2_1 2_32_2 2_4

0x45200001
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

1010 00 01 0 01 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC
00000000000000 0 1

15 2 1 0

Reserved LINK FS

16

Figure A–83. Block-synchronized 2-D (SUM=01b) to 1-D (DUM=10b)

Source address

AIX

AIX

0_1 0_30_2 0_4

1_1 1_31_2 1_4

2_1 2_32_2 2_4
0_10_20_30_41_11_21_3

1_42_12_22_32_4
0x45400001

Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

1010 00 01 0 10 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 1
15 2 1 0

Reserved LINK FS

16

Destination address

Block-Synchronized 2-D to 1-D Transfers

A-27EDMA Transfers

Figure A–84. Block-synchronized 2-D (SUM=10b) to 1-D (DUM=00b)

AllDestination address

0x46000001
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

1010 00 10 0 00 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC
00000000000000 0 1

15 2 1 0

Reserved LINK FS

16

AIX

AIX

0_10_3 0_20_4

1_11_3 1_21_4

2_12_3 2_22_4

Source address

Note: AIX is a negative value in this example.

Figure A–85. Block-synchronized 2-D (SUM=10b) to 1-D (DUM=01b)

0_1 0_2 0_3 0_4 1_1 1_2 1_3

1_4 2_1 2_2 2_3 2_4

Destination address

0x46200001
Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

1010 00 10 0 01 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC

00000000000000 0 1
15 2 1 0

Reserved LINK FS

16

AIX

AIX

0_10_3 0_20_4

1_11_3 1_21_4

2_12_3 2_22_4

Source address

Note: AIX is a negative value in this example.

Figure A–86. Block-synchronized 2-D (SUM=10b) to 1-D (DUM=10b)

0_10_20_30_41_11_21_3

1_42_12_22_32_4
0x46400001

Source address

Destination address
ar_cnt = 0x2 el_cnt = 0x4

ar_index = AIX Don’t care
Don’t care Don’t care

31 0

1010 00 10 0 10 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC
00000000000000 0 1

15 2 1 0

Reserved LINK FS

16

Destination address

AIX

AIX

0_10_3 0_20_4

1_11_3 1_21_4

2_12_3 2_22_4

Source address

Note: AIX is a negative value in this example.

Index

Index-1

Index

A
A register file, 8-4
AC97 bit timing near fram synchronization, figure,

12-29
AC97 dual-phase frame format, figure, 12-28
access

asynchronous, 10-96
DMA to program and data memory, 2-1
host, 7-28
host read/write, 8-8
read, 7-41
ROM mode, 10-94
TMS320C6202 read/write, 8-8
write, 7-41

access off-chip peripherals, 8-1
address

logical mapping of cache
(C6201)/C6204)/C6205/C6701), 2-11

logical mapping of cache
(C6202/C6202B/C6203), 2-11

memory mapped, 8-8
address and data registers, 8-3
address generation

direct memory access, 4-24
using frame index, 4-26
programmable, 4-3
sorting, 4-28
transferring a large single block, 4-27

address generation hardware, 6-22
address mapping

internal data RAM, 2-16, 2-18, 2-19, 2-20
RAM in cache mode, 2-9

address modification, 6-17, 6-18
address phase (Ta), 8-37
Address pin EA[12], 10-8
address range, 6-13
address shift, 10-49

address signals, 8-3, 8-11
address space, 1-7
addresses must be aligned, 6-32
adjustment, address, 4-24
alignment, 6-32
analog interface chips (AICs), 1-13
applications

TMS320 family, 1-2
TMS320C6x family, 1-4

arbitration mode, 8-9
architecture

cache, 2-8, 2-10
TMS320C6000, 2-4

memory, 2-3
RAM-based, 6-13
register-based, 6-13
two level memory, 3-1

arithmetic logic units (ALUs), 1-5
array, definition, 6-5
ASRAM interface summary , C6000, 10-94
asynchronous

control, 10-6
devices, 10-2
interface, 10-7, 10-20

asynchronous host port mode, 8-42
asynchronous interface, 10-91

reads, 10-97
ready input, 10-100
writes, 10-99

asynchronous mode, 8-5
asynchronous or synchronous FIFOs, 8-2
asynchronous peripheral FIFO interface, 8-2
asynchronous peripherals, 8-2
asynchronous read timing example, figure, 10-98
auto-initialization feature, 6-20
autoincrement, 7-32
auxiliary port, 8-3

Index

Index-2

B
B register file, 8-4

bandwidth optimization , time requirments, 5-21

big endian (BE), 7-11

bit descriptions, HPI control register, 7-26

bit ordering, 12-46

bits, HOLD and HOLDA, 10-58

block, definition, 6-5

block diagram
EMIF, 10-6, 10-7
expansion bus, 8-2
external memory interface in

TMS320C621x/C671x, 10-4
external memory interface in TMS320C64x, 10-4
externalmemory interface in

TMS320C620x/C670x, 10-3
GPIO, 17-3
host port interface, 7-5
internal memory, 3-4
McBSP, 12-4
SBSRAM interface

TMS320C620x/C670x, 10-74
TMS320C621x/C671x, 10-74
TMS320C64x, 10-75

timers, 13-3
TMS320C6201/C6701 program memory control-

ler, 2-2
TMS320C6202 program memory controller, 2-6
TMS320C6202C6202B data memory controller,

2-19
TMS320C6203 data memory controller, 2-20
TMS320C620x/670x, 1-10
TMS320C620x/C670x, 7-2
TMS320C6211, 1-11
ZBT SRAM interface, 10-84

block transfer, 4-2

block transfers, 4-15

Boot configuration, 1-9

boot configuration, 1-12
boot process, 11-21
HPI boot process, 11-22
memory at reset address, 11-9
memory maps, 11-3
overview, 11-2
ROM boot process, 11-21
TMS320C620x/C670x summary, 11-10
TMS320C621x/C671x summary, 11-15

boot configuration , TMS320C64x summary, 11-16
boot configuration control via expansion bus, 8-50
bootload operation, 2-11
BSP serial port control extension register (SPCE)

CLKP bit, 12-13
FSP bit, 12-13

buffered signals, JTAG, 16-9
buffering, 16-8
bus arbitration scheme, 8-2
bus arbitration signals, 8-2
bus data, 8-8
bus devices, 16-3
bus hold, interface, 10-6
bus protocol, 16-3
buses

data, 7-9
external, 10-108

byte enable pins, 7-10

C
C6000 ASRAM interface summary, 10-94
C64x, GPIO, 17-2
cable, target system to emulator, 16-1–16-24
cable pod, 16-4
cache, 1-7, 2-1

architecture, 2-10
bypass, 2-7
fetch packet figures, 2-10
flush, 2-11
freeze, 2-7
logical mapping of address

(C6201/C6204/C6205/C6701) , 2-11
logical mapping of address

(C6202/C6202B/C6203), 2-11
miss, 2-7, 2-11
usage of CPU address, 2-10

cache , flush, 2-11
cache operation, 2-9
cache RAM, 3-4
CE space control register, 10-19
CE space secondary control register diagram, 10-21

figure, 10-21
chaining EDMA channels by an event, 6-46
Channel Chain Enable Register (CCER), figure,

(C621x/C671x), 6-46
channel chain enable register (CCER), 6-6, 6-47

Index

Index-3

Channel Completion Conditions, table, 6-39
Channel Interrupt Enable Register (CIER), figure,

6-43
channel interrupt enable register (CIER), 6-6, 6-41
Channel Interrupt Pending Register (CIPR), figure,

6-42
channel interrupt pending register (CIPR), 6-6, 6-41
channel/event entry, 6-16
channels, 6-54

chaining, 6-46
circular buffering, 6-38
CLKRM, 12-54
clock output enabling, 10-113
clock source selection, 13-8
communication between the host device and the

CPU, 8-8
companding data format, 12-45
companding hardware, 12-44

nonDLB method, 12-46
companding internal data, 12-45
complex sorting, circular buffering, 6-38
conditions, serial port exception, 12-36
conditions for channel completion, 6-39
configuration

element length, 12-25
frame and clock, 12-21
frame length, 12-24
multiprocessor, 16-11
serial port, 12-7

configuration of the interrupt selector, 14-10
connector

14-pin header, 16-2
dimensions, mechanical, 16-12
DuPont, 16-3

connector, 14-pin, dimensions, 16-13
contention on the data bus, 8-11
contiguous elements, 6-5
control, asynchronous, 10-6
control and status register (CSR), 2-7
control pins, SDRAM, 10-41
control register boundary conditions, 13-10
control registers, 1-10, 8-4, 10-6, 10-7, 10-8, 10-10

EDMA, 6-4, 6-6
control status register, 2-8

figure, iii
controller, 2-7

data memory, 1-7
direct memory access, 1-7
DMA, 2-1
DMA controller, 4-4
peripheral bus, 1-9
program memory, 2-2, 10-6, 10-7

count events, 13-2
counting, 13-8
CPU

conflict with DMA , 5-22
core, 1-5
servicing UTOPIA, 18-18

CPU accesses, 5-6
CPU control status register, 2-9
CPU interrupts, 12-20
CPU servicing of EDMA interrupts, 6-45
CPU write to the ESR, 6-22
CPU-initiated EDMA, 6-22
CPU-initiated EDMA transfers, 6-10, 6-22
CSR, figure, iii
cycle description, 8-37

D
data access controller, 1-10, 8-4
data address, 3-4
data and program memories, 1-7
data bus, 3-1

HD, 7-9
data cache controller, 3-4
data clock generation, 12-51

bit clock, 12-52
CLKRM, 12-54
CLKSM, 12-51, 12-54
frame synchronization, 12-52
input clock source mode, 12-51
receive clock selection, 12-54

data delay, 12-27
figure, 12-27

data delay used to discard framing bit, figure, 12-28
data latches, 7-7, 7-8
data memory, internal, 1-7
data memory, 2-3

alignment, 2-21
DMA accesses to, 2-24
dual CPU access of, 2-21
endianness, 2-24

Index

Index-4

organization, 2-15
TMS320C6201 revision 3, figure, 2-16
TMS320C6201/C6204/C6205 , 2-15
TMS320C6201/C6204/C6205, figure, 2-18
TMS320C6204/C6205 table, 2-15
TMS320C6701, 2-16
TMS320C6701, table, 2-17

data memory controller, 1-7, 2-14, 10-6, 10-7
data memory controller (DMEMC), 2-19, 2-20
data packing, 12-25, 12-34
data path A, 2-19, 2-20, 8-4
data path B, 2-19, 2-20
Data Paths, TMS320C620x, 5-3
data RAM address mapping, 2-16, 2-18, 2-19, 2-20
data receive (DR) pin, 12-5
data receive register (DRR), 12-5
data reception, 12-18
data register, 7-11
data register, HPID, 7-10
data registers, 1-13
data transfe, 6-22
data transfer, 6-6
data transfers, cache controller ,

TMS320C6211/C6711, 6-64
data transmission, 12-18
data transmit (DX) pin, 12-5
data write access, 7-11
deactivation, SDRAM, 10-63
debugger, interface, 1-5
decision tree response to receive frame sync pulse,

figure, 12-39
default interrupt mapping, 14-9
definitions, EDMA, 6-5
delay, data, 12-27
Destination / source (address) update mode, 6-17,

6-18
destination address registers, 4-24
destination dimension , 6-18
destination update mode (DUM), 6-37
determining ready status, 12-19
device differences, host port interface, 7-4
device reset, 11-2, 12-19
diagnostic applications, 16-23
diagram

expansion bus block, 8-2

expansion bus host port interface block, 8-22
expansion bus interface in

TMS320C620x/C670x, 8-4
expansion bus XCE (0/1/2/3) space control regis-

ter, 8-10
host port interface block of

TMS320C6211/C6711, 7-7
host port interface block of TMS320C64x, 7-8
internal memory block, 3-4
TMS320C6201/C6701, 1-11
TMS320C6202 program memory controller, 2-6
TMS320C6202/C6202B data memory controller

block, 2-19
TMS320C6203 data memory controller block,

2-20
TMS320C620x/C670x, 1-10
TMS320C621x/C671x/C64x block, HPI, 7-3

digital loop back (DLB), 12-46

digital signal processors (DSPs), 1-1

digital subscriber loop (DSL), 1-4

dimensions
12-pin header, 16-18
14-pin header, 16-12
mechanical, 14-pin header, 16-12

direct memory access, 1-9

direct memory access (DMA), 1-7, 1-8, 1-10
action complete pins, 4-45
address generation, 4-24
autoinitialization, 4-15
automated event clearing, 4-21
synchronization, 4-19
block transfers, 4-15
channel condition, 4-35
channel control registers, 4-8
channel event flags, 4-20
channel reload registers, 4-16
emulator mode, 4-46
endianness, 4-25
memory map, 4-14
overview, 4-2
performance limits, 4-44
priority configuration, 4-32
register access protocol, 4-14
registers, 4-5
split channel operation, 4-30
structure, 4-38
transfer counting register, 4-18

direct memory access (DMA) controller, 1-7, 1-8, 4-2

direct memory access channels, 4-1

Index

Index-5

direct memory access controller, 2-1
DMA. See direct memory access
DMA , conflict with CPU, 5-22
DMA accesses, 5-7
DMA auxiliary channel, 7-6, 7-28
DMA bus controller, 2-6, 2-16, 2-18, 2-19, 2-20
DMA channel control register, 4-8
DMA channel primary control register, 4-25

figure, 4-8
DMA channel secondary control registers, figure,

4-11
DMA channel transfer counter register, figure, 4-18
DMA controller, 1-12, 10-2, 10-6, 10-7, 12-18

access to program memory, 2-12
DMA controller interconnect to

TMS320C6201/C6701 memory mapped mod-
ules, figure, 4-4

DMA global count reload register used as a transfer
counter reload, figure, 4-18

DMA global index register, 4-25
DMA interrupt mapping, 6-44
DMA interrupt mapping , C64x, 6-44
double-rate clock, 12-61
double-rate ST-BUS clock, 12-59
DSPINT, 6-23, 6-24
dual-phase frame example, 12-23
DUM, 6-18
DuPont connector, 16-3

E
E1 standards, 1-13
EDMA

performance, 6-58
QDMA, 6-58
servicing UTOPIA, 18-16
transfer parameters, 6-16

EDMA Channel Association with Sync Events
(TMS320621x/C671x), table, 6-23

EDMA Channel Association with Sync Events
(TMS32064x), table, 6-24

EDMA Channel Options Field Description, table
C621x/C671x/C64x, 6-17
C64x, 6-19

EDMA channel transfer, 6-47
EDMA channels, 6-46

EDMA control registers, table, 6-4, 6-6
EDMA Controller, figure, 6-3
EDMA controller, 1-12, 6-8, 6-13, 6-34, 6-38, 6-41,

6-47, 7-6
EDMA DST Address Parameter Updates, table,

6-37
EDMA Element and Frame/Line Count Updates,

table, 6-33
EDMA Element Synchronization Transfer, figure,

6-27
EDMA interrupt generation, 6-41
EDMA interrupt servicing by the CPU, 6-45
EDMA parameter RAM, 6-20, 6-23, 6-33
EDMA Parameter RAM Contents, table, 6-14
EDMA SRC Address Parameter Updates, table,

6-36
EDMA stalls, 6-54, 6-58
EDMA terminology, 6-5
EDMA transfer, 6-10

initiating, 6-22, 6-40
EDMA Transfer with Array Synchronization, figure,

6-30
EDMA transfers, synchronization of, 6-22
EDMA transfers, linking, 6-38
EDMA_TCC10, 6-23
EDMA_TCC11, 6-23
EDMA_TCC8, 6-23
EDMA_TCC9, 6-23
EEPROM, PCI port interface, 9-41
effects of a power down, 15-5
element index (EIX), 6-15
element and frame/line count updates, 6-33
Element Count, 6-19
element count, 4-18, 6-38, 6-40
element count reload, 6-15
element count (EC), 6-27, 6-33
element count reload, 6-20, 6-34
element index, 8-11
element index (EIX, 6-28
element index (EIX), 6-27, 6-33
element length, 12-25
Element size, 6-17
element size, 6-32
element transfer, 4-2, 6-5, 6-28
element transfers, 6-58

Index

Index-6

EMA transfer parameter entry, 6-14

EMIF differences summary , 10-5
EMIF global control register diagram, figure, 10-15
EMIF interface, SDRAM, 10-34
EMIF SDRAM control register diagram, figure, 10-23
EMIF SDRAM timing register diagram, 10-26

figure, 10-26

EMIF to 16-bit ROM interface, figure, 10-93
EMIF to 8-bit ROM interface, figure, 10-93
EMIF to SRAM interface, figure, 10-92
EMU0/1

configuration, 16-19, 16-22
emulation pins, 16-18
IN signals, 16-18
rising edge modification, 16-21

EMU0/1 signals, 16-2, 16-5, 16-6, 16-11, 16-16
emulation

JTAG cable, 16-1
timing calculations, 16-6–16-7, 16-16–16-25

emulation halt, 10-114
emulator

connection to target system, JTAG mechanical
dimensions, 16-12–16-24

designing the JTAG cable, 16-1
emulation pins, 16-18
signal buffering, 16-8–16-11
target cable, header design, 16-2–16-3

emulator mode, direct memory access (DMA), 4-46
emulator pod, JTAG timings, 16-5
enabling counting, 13-7
endianness, 6-32

data memory, 2-24
direct memory access, 4-25

enhanced data memory controller, 10-8, 10-10
enhanced direct memory access (EDMA), 1-8
enhanced DMA controller, 6-13
ER bit, 6-10
error condition, 6-9
ESIZE, 6-17

ESIZE field, 6-32
even N parameters, 6-38, 6-40
event

chaining EDMA channels, 6-46
GPIO, 6-24
McBSP0 receive, 6-23, 6-24
McBSP0 transmit, 6-23, 6-24

Event Clear Register (ECR), figure, 6-9
event clear register (ECR), 6-6
Event Enable Register (EER), figure, 6-8
event enable register (EER), 6-6, 6-8
event encoder, 6-13, 6-22
event flags, 4-20
Event Polarity Register (EPR), figure, 6-12
Event Processing and EDMA Control Registers, 6-6
Event Register (ER), figure, 6-7
event register (ER), 6-6, 6-7
Event Set Register (ESR), figure, 6-11
event set register (ESR), 6-6, 6-10
event set register, ESR, 6-22
event-triggered EDMA, 6-22
events, synchronization, 12-7
example, dual-phase frame, 12-23
Example of the Expansion Bus Interface to Four

8-Bit FIFOs, figure, 8-12
Example of the Expansion Bus Interface to Two

16-Bit FIFOs, figure, 8-13
example, complex , bandwidth calculation , 5-16
example, simple, using timing information , 5-14
examples

DMA single frame transfer, 8-20
DMA transfer, 8-20
transfer with frame synchronization, 8-21
two-dimensional transfer with frame sync, 6-31

expansion bus, 1-10, 8-1
arbitration, 8-45
block diagram, 8-2
boot configuration, pullup and pulldown resistors,

11-12
boot configuration control, 8-50
data, 8-8
data (XBD) register, 8-8
data register, 8-23
description, 1-12
external address, 8-8
external address (XBEA) register, 8-7
external address register, 8-24
global control register, 8-9
global control register fields, 8-9
host channel, 8-2
host port control, 8-8
host port interface control register, 8-25
host port registers, 8-23
I/O port operation, 8-11

Index

Index-7

interface in TMS320C620x/C670x, block dia-
gram, 8-4

internal master address (XBIMA) register, 8-7
internal master address register, 8-8, 8-24
internal slave address, 8-8
internal slave address (XBISA) register, 8-8
internal slave address register, 8-23
pin description

asynchronous host port mode, 8-42
synchronous host port mode, 8-27

space control register diagram, 8-10
TMS320C62x master, 8-29
TMS320C62x slave, 8-36

expansion bus (XB), 1-9

Expansion Bus Block Diagram, figure, 8-2

Expansion Bus Boot Configuration via Pull Up/Pull
Down Resistors on XD[31:0], figure, 11-12

expansion bus data (XBD), 8-23

expansion bus data (XBD) register, 8-36, 8-42

Expansion Bus Global Control (XBGC) Register, 8-7

expansion bus global control register, 8-45

expansion bus host port control (XBHC), 8-29

Expansion Bus Host Port Interface Block Diagram,
figure, 8-22

Expansion Bus Host Port Interface Control (XBHC)
Register, 8-7
figure, 8-25

expansion bus host port operation, 8-22

expansion bus host port registers, 8-8

expansion bus internal address (XBIA) register, 8-42

expansion bus internal slave address (XBISA) regis-
ter, 8-36

Expansion Bus Master Writes a Burst of Data to
DSP, figure, 8-38

Expansion Bus Pin Description (Asynchronous Host
Port Mode), figure, 8-42

expansion bus signals, 8-5

Expansion Bus XCE(0/1/2/3) Space Control Regis-
ter Diagram, figure, 8-10

EXT_INT4, 6-23, 6-24

EXT_INT5, 6-23

EXT_INT6, 6-23

EXT_INT7, 6-23

external address register, 8-7

external arbiter, 8-2

external bus, 10-108

external data communications, 12-5
external decode, 8-3
External Device Requests the Bus From ‘C6202

Using XBOFF. (Note that internal bus arbiter is
enabled, figure, 8-34

external DMA, burst interruptions , 5-10
external interfaces, 10-8, 10-10
external interrupt, signal timing, 14-6
external IO port accesses, 8-11
external memory, 11-2
External Memory Interface, 5-4
external memory interface, 2-16, 2-18, 2-19, 2-20
External memory interface (EMIF), programmable

synchronous interface, C64x, 10-83
internal memory interface (EMIF), programmable

synchronous interface, C64x, 10-83
external memory interface (EMIF), 1-9, 1-10, 2-6,

2-7, 2-19, 2-20, 8-3, 8-4
external memory interface (EMIF), 10-6, 10-7, 10-8,

10-10, 10-74, 10-75
16-bit ROM , 10-95
Activate read or write, 10-65
ASRAM parameters, 10-96
asynchronous writes, 10-99
asynchronous interface, 10-91
asynchronous reads, 10-97
boundary conditions for registers, 10-112
CE space control register, 10-18
clock output enabling, 10-113
emulation operation, 10-114
global control register, 10-15
hold interface, 10-108
memory request priority, 10-110
power down, 10-114
overview, 10-2
ready input, 10-100
registers, 10-14
resetting, 10-107
ROM modes, 10-94
SBSRAM interface, 10-72
SBSRAM reads, 10-77
SBSRAM write, 10-80
SDRAM control register, 10-23
SDRAM deactivation, 10-63, 10-69
SDRAM address shift, 10-49
SDRAM initialization, 10-43, 10-55
SDRAM mode register set, 10-58
SDRAM page boundaries, 10-43
SDRAM read, 10-66

Index

Index-8

SDRAM timing register, 10-26
SDRAM timing requirements, 10-61

external memory interface CE0, 11-6
external memory interface CE1, 11-6
external memory interfaces (EMIFs), 10-2
external shared-memory device controller, 10-2
External switching times , ASRAM, SDRAM,

SBSRAM, 5-8

F
features, 1-5
field

arbitration, 10-16
arbitration mode, 8-9
bootmode, 11-13
clock rate, 10-16
expansion bus arbiter, 11-13
external master to DSP interrupt, 8-26
FIFO clock enable (XFCEN), 8-9
FIFO mode, 11-13
FIFO mode set by boot mode selection (FMOD),

8-9
frame synchronization (FS)

C621x/C671x/C64x, 6-17
C64x, 6-19

host mode, 11-12
interrupt source, 8-26
LINK

C621x/C671x/C64x, 6-17
C64x, 6-19

little endian mode, 11-13
memory map, 10-16
memory type, 8-10
MTYPE , 10-20
polarity of expansion bus read/write signal, 11-12
polarity of the XBLAST signal, 11-12
RBTR8, 10-16
SSCEN, 10-16
start bus master transaction, 8-26
TCC

C621x/C671x/C64x, 6-17
C64x, 6-19

TCINT
C621x/C671x/C64x, 6-17
C64x, 6-19

transfer counter, 8-26
XBHC register, 8-26
FIFO clock rate (XFRAT), 8-9

field descriptions, 4-8
DMA channel secondary control register, 4-11
pin control register, 12-11
receive control registers, 12-14
SPCR , 12-8
transmit control registers, 12-16

FIFO control register, 8-7
FIFO Read Mode - Read Timing (glue-less case),

figure, 8-18
FIFO Read Mode - With Glue, figure, 8-19
FIFO Write Cycles, figure, 8-17
first-level data cache, 3-2
First-level program cache, 3-2
flag monitoring, 8-20
flags, event, 4-20
frame, definition, 6-5
frame count, 4-18, 6-38, 6-40
frame example, figure, 12-23
frame frequency, 12-31
frame index, 6-38, 6-40, 8-11
frame index (FIX), 6-27, 6-28
frame/array index (FIX), 6-33
frame sync signal generation, 12-56

frame period (FPER), 12-56
frame width (FWID), 12-56
FSGM, 12-57
FSRM, 12-57
FSXM, 12-57
GSYNC, 12-57
receive frame sync selection, 12-57
transmit frame sync signal selection, 12-57

frame synchronization (FS) , field, 6-18
frame synchronization ignore, 12-32
frame synchronization phases, 12-23
 framesynchronization signal (FSR), 12-30
Frame Synchronized 2-D Transfer, figure, 6-31
frame synchronized non-2D transfer, 6-28
frame-synchronization signal generation, 12-5
frame/array count (FC), 6-33
frame/array count, FC, 6-5
Frame/Line Count, 6-20
frames, 6-5

G
general purpose input/output, GPIO, 17-1
general-purpose registers, 1-5
general-purpose timers, 1-13

Index

Index-9

generate pulses, 13-2

global control register, 8-9
global control register diagram, 10-15
Glue-Less Read FIFO Interface, figure, 8-18

Glue-Less Write FIFO Interface, figure, 8-16
glueless interface, 1-12, 10-2
GPINT4, 6-24
GPINT5, 6-24

GPINT6, 6-24
GPINT7, 6-24
GPIO

block diagram, 17-3
Function, 17-12
general purpose input/output, 17-1
interrupt and event generation, 17-14
registers, 17-4

GPIO interface in TMS320C64xmodules, figure,
17-2

H
hardware reset, 10-107
header

14-pin, 16-2
dimensions, 14-pin, 16-2

header, 14-pin
header signals, 16-2
JTAG, 16-2

history of the TMS320 DSPs, 1-2
hold disable, 8-9
hold state, 8-9
host access, 7-28

host device, 1-12
host port interface, 1-10, 8-2

bus access, 7-15
external , 7-5
transfer priority queue, 7-41

host port interface data write access, 7-11

host-port interface (HPI), 1-9
host-port interface (HPI)

access control selection, 7-10
access sequences, 7-28
block diagram, 7-5
byte enables, 7-11
control register, 7-25
data bus, 7-9

halfword identification select, 7-10
initialization, 7-28
interrupt by CPU, 7-27
memory access during reset, 7-41
overview, 7-2
read with autoincrement, 7-32
read without autoincrement, 7-30
interrupt to host, 7-14
read/write select, 7-12
ready pin, 7-12
registers, 7-24
signal descriptions, 7-9
software handshaking, 7-26
strobes, 7-12
write with autoincrement, 7-36
write without autoincrement, 7-34

HPI, 1-12
HPI , device differences, 7-4
HPI Block Diagram of TMS320C6211/C6711, figure,

7-7
HPI Block Diagram of TMS320C64x, figure, 7-8
HPI control register (HPIC), 7-7, 7-8

I
I/O port, 8-2
I/O port operation, 8-11
Idle modes, 11-1, 14-2
idle modes, 15-1
IEEE 1149.1 specification, bus slave device rules,

16-3
ignore frame synchronization, 12-32
in-circuit emulation, 8-4
inactive cycles, 8-11
index value, 4-24
initialization, SDRAM, 10-43
initiate data transfer, 6-22
initiating an EDMA transfer, 6-22, 6-40
instruction decode, 1-10
instruction fetch, 1-10, 8-4
interface

asynchronous, 10-7
bus hold, 10-6
EMIF to 16-bit ROM, 10-93
EMIF to 16M-bit SDRAM

TMS320C620x/C670x, 10-36
TMS320C621x/C671x, 10-36

EMIF to 64M-bit SDRAM, TMS320C620x/C670x,
10-37

Index

Index-10

EMIF to 8-bit ROM, 10-93
EMIF to SRAM, 10-92
EMIFA to 64M-bit SDRAM, TMS320C64x, 10-37
glueless, 10-2
GPIO, 17-2
read FIFO, 8-18
synchronous, 10-7
TMS320C620x/C670x external memory, 10-6,

10-7
TMS320C620x/C670x SBSRAM, 10-74
TMS320C621x/C671x SBSRAM, 10-74
TMS320C64x SBSRAM, 10-75
TMS320C64x ZBT SRAM, 10-84
UTOPIA, 18-1
write, 8-16

interface chips, 8-1

internal arbiter, 8-2

internal bus arbiter disabled, 8-46

internal bus arbiter enabled, 8-45

Internal configuration bus timer 0 registers, 11-6

internal data memory, 5-3

internal data movement, 12-5

internal data RAM address mapping, 2-16, 2-18,
2-19, 2-20

internal master address register, 8-7

internal memory, 1-7, 3-4

Internal Memory Block Diagram, figure, 3-4

internal memory configuration, TMS320C6204, 2-3

internal memory configuration
TMS320C6202B, 2-3
TMS320C6203, 2-3
TMS320C6205, 2-3
TMS320C6701, 2-3

internal peripheral bus interrupt selector registers,
11-4

internal program memory, 1-10, 2-3, 8-4
modes, 2-7

internal program RAM, 2-8

internal program RAM address mapping, 2-9

Internal Program RAM Address Mapping in Memory
Mapped Mode, table, 2-9

internal program space, 2-9

internal transfer controller, 7-7, 7-8

interrupt
channel chain enable register (CCER),

(C621x/C671x), 6-46

channel interrupt enable register (CIER), 6-43
channel interrupt pending register (CIPR), 6-42
configuring, 14-10
default mapping, 14-9
EDMA generation, 6-41
EDMA servicing, 6-45
EMIF SDRAM timer, 6-23, 6-24
external pin, 6-23
host port host to DSP , 6-23, 6-24
multiplexer register, 14-8
polarity register, 14-7
registers, 14-7
SDINT, 10-26
signal timing, 14-6
source between DSPINT and XFRCT counter,

8-26
sources, 14-2, 14-3
TCC to DMA mapping, 6-44

C64x, 6-44
timer 0 , 6-23, 6-24
xBHC register field DSPINT, 8-26

interrupt
EDMA transfer complete code, 6-23
timer 1, 6-23, 6-24

interrupt enable register, 6-41
interrupt multiplexer high register diagram, figure,

14-8
interrupt multiplexer low register diagram, figure,

14-8
interrupt pending register, 6-41
interrupt processing, 6-8
Interrupt selector, 1-9
interrupt selector, 1-10
interrupt sources, 1-14
interrupt the CPU, 13-2
interrupts

CPU, 12-20
timer, 13-11

introduction, iii–x, 1-1
TMS320 family overview, 1-2

J
JTAG emulator

buffered signals, 16-9
connection to target system, 16-1–16-24
no signal buffering, 16-8
pod interface, 16-4

Index

Index-11

L
L1 program cache controller, 3-4

L2 controller, 1-8

latching, 4-20

level-one data cache (L1D) controller, 1-7

level-one program cache (L1P), 1-7

line/frame count (FC), 6-15

line/frame index (FIX), 6-15

link address, 6-20

Linked EDMA Transfer, figure, 6-38

linking EDMA transfers, 6-38

linking events, 6-18

little endian (LE), 7-11

lock-up or error condition, 6-9

logical addressing, 8-11

LSB address bits, 7-11

M
manual start operation, 4-15

map
of cache address (C6201/C6204/C6205/C6701),

2-11
of cache address (C6202/C6202B/C6203), 2-11

mapping, default interrupt, 14-9

maximum frame frequency, 12-31

maximum frame frequency transmit receive, figure,
12-32

maximum number of elements in a frame, 6-33

McBSP CPU interrupts and DMA synch, 12-7

McBSP data, 11-6

McBSP standard operation, figure, 12-30

memory
access through the HPI during reset, 7-41
CPU, 7-2
data, 1-7
first level, 3-2
internal, 1-7, 3-2
internal program, 2-3
map, 4-14
program, 1-7
program memory controller block diagram, 2-6
range, 2-19, 2-20
second level, 3-2

summary of C6202/C6202B memory map, 11-4
summary of C6203 memory map, 11-5
TMS320C6000, internal configurations, 2-3
TMS320C6201, 2-3
TMS320C6202, 2-3
TMS320C621x/C671x memory map summary,

11-6
TMS320C64x memory map summary, 11-7
two-level internal, 3-2

memory
TMS320C6202B, 2-3
TMS320C6203, 2-3
TMS320C6204, 2-3
TMS320C6205, 2-3
TMS320C6701, 2-3

memory architecture, 3-1

memory map, boot configuration, 11-3

memory mapped operation, 2-8

memory request priority, 10-110

memory timings , 5-5

memory type field (MTYPE), 8-10

memory, external interface, 10-2

memory width and byte alignment, 10-29

memory-mapped registers, 8-8, 10-14

million instructions per second (MIPS), 1-4

mode
asynchronous, 8-13
synchronous host port, 8-27

modes
16-bit ROM, 10-95
asynchronous host port, 8-42
asynchronous I/O, 8-3
cache, 2-9
cache enabled, 2-7
destination update mode (DUM), 6-37
FIFO output enable signal, 8-15
host port (mutually exclusive), 8-5
host port interface, 8-3
I/O port (non-exclusive), 8-5
internal program memory, 2-3
mapped, 2-8
power down, 15-7
pulse and clock, 13-10
slave, 8-3
source update mode, 6-36
synch FIFO, 8-14
synchronous FIFO, 8-3

monitoring , flag, 8-20

Index

Index-12

multichannel buffered serial port (McBSP, introduc-
tion, 1-13

multichannel buffered serial port (McBSP), 1-10, 8-4
channel enable diagram, 12-67
channel enable register, 12-70
CLKP bit, 12-13
clock configuration, 12-21
clocking examples, 12-59
companding data formats, 12-45
companding DLB method, 12-46
companding hardware, 12-44
companding nonDLB method, 12-46
configuration, 12-7
control register, 12-8
CPU interrupts, 12-20
data delay, 12-27
data packing, 12-34
data reception, 12-18
data transmission, 12-18
double-rate clock, 12-61
double-rate ST-BUS clock, 12-59
element length, 12-25
end-of-block interrupt, 12-72
end-of-frame interrupt, 12-72
exception conditions, 12-36
features, 12-2
frame configuration, 12-21
frame frequency, 12-31
frame generation, 12-47
frame sync signal generation, 12-56
frame synch ignore bits, 12-34
interface signals, 12-4
multi hannel enable , 12-66
multichannel selection operation, 12-62
multiphase frame example: AC97, 12-28
overrun, 12-36
pins as general-purpose I/O, 12-84
programmable clock, 12-47
RDATDLY, 12-27
receive control register, 12-13
frame synchronization, 12-32
receive operation, 12-30
registers, 12-4
reset, 12-18
RFULL, 12-36
rsyncherr, 12-37
sample rate generator, 12-47

reset procedure, 12-50
sample rate generator register (SRGR), 12-48
sample rate generator reset, 12-19

single-rate ST-BUS clock, 12-60
SPI protocol (CLKSTP), 12-79
standard operation, 12-29
transmit control register, 12-13
transmit data companding, 12-45
transmit ready , 12-20
transmit with data overwrite, 12-39
unexpected frame sync pulse, 12-32
XDATDLY, 12-27
XSYNCERR, 12-41

multichannel buffered serial ports (McBSPs), 1-9
multiphase frame example, 12-28
multiplexed address, 8-3
multiplexed device control, 10-8, 10-10
multiplier, 1-5
multivendor interface protocol, 1-13
MVIP networking standards, 1-13

N
Non-2D EDMA Transfer With Frame Sync, figure,

6-28
non-2D transfer, definition, 6-5

O
off-chip memory, 10-1
off-chip peripherals, 8-1
on-chip data memory controller, 10-2
on-chip peripherals, 1-7, 1-8, 1-9, 7-2
on-chip program memory controller, 10-2
on-chip peripherals, TDM serial port, 12-72
one-dimensional transfers, 6-26
operation

bootload, 2-11
cache, 2-9
DMA, 4-15
I/O port, 8-11
McBSP standard, 12-29
memory mapped, 2-8

operation
receive, 12-30
transmit, 12-31

Options Bit-Fields, figure, 6-16
options parameter in the EDMA channel/event entry,

6-16
order of processing, 6-13

Index

Index-13

output strobes, 8-3
overview

TMS320 family, 1-2
UTOPIA, 18-1

P
page boundaries, monitoring, 10-43
PAL, 16-19, 16-20, 16-22
parameter entry of an EDMA event, 6-14
Parameter RAM, 6-14
parameter RAM (PaRAM), 6-13
parameter reload space in EDMA parameter RAM,

6-28
Parameter Storage for an EDMA Event, figure, 6-15
parameters of the expansion bus, 8-9
pause operation, 4-15
PCC field, 2-8
PCI

registers, 9-9
TMS320C62x/C67x block diagram, 9-4
TMS320C64x block diagram, 9-5

PCI bridge chips, 8-2
PCI interface chips, 8-1
PCI port

architecture, 9-6
block diagram, 9-8
boot, 9-40
configuration registers, 9-60
device differences, 9-5
EEPROM interface, 9-41
error handling, 9-48
interrupts, 9-31
master transfers, 9-23
memory map, 9-16
power management, 9-50
slave transfers, 9-20
TMS320C6000, 9-1

PCI port , resets, 9-39
performance, 6-58
peripheral bus, 1-9, 2-27

byte and halfword access, 2-27
causing CPU wait states, 2-28
CPU/DMA arbitration, 2-28

peripheral bus , 5-4
peripheral bus controller, 2-16, 2-18, 2-19, 2-20
Peripheral device transfers, C64x, 10-103

Peripheral device transfers (C64x), 10-103
peripherals, 1-9
phases, frame synchronization, 12-23
pin control register (PCR), figure, 12-11
pins, asynchronous interface, 10-91
polarity register, 14-7
power down, 10-114
power down logic, 8-4
Power-down logic, 1-9
power-down logic, 15-1

overview, 15-2
PRWD field, 15-5
triggering, 15-5
wake-up selection, 15-5

Power-down logic, 11-1, 14-2
PRI, 6-17
Priority levels for EDMA events, 6-17
priority processing, 6-54
Priorty Queue Register (PQSR), figure

C621x/C671x, 6-55
C64x, 6-55

processing of events, 6-6
program access/cache controller, 8-4
program address, 3-4
program and data memory, 2-1
program bus, 3-1
program cache control (PCC), 2-7
program fetch, 2-6, 2-7
program memory, 2-3

internal, 1-7, 2-3
internal mode summary, 2-8

program memory , DMA controller access, 2-12
program memory controller, 2-2, 10-6, 10-7
program RAM address mapping, 2-9
programmable clock and framing

double-rate clock, 12-61
double-rate ST-BUS clock, 12-59
examples, 12-59
single-rate ST-BUS clock, 12-60

programmable parameters, 10-96
Programmable Priority Levels for Data Requests,

table, 6-54
programmable synchronous interface, C64x, 10-83
protocol, bus, 16-3
pullup and pulldown resistors on XD, 11-12
pulse generation, 13-9

Index

Index-14

Q
QDMA Pseudo Registers, figure, 6-59
quick DMA (QDMA), 6-58

performance, 6-61
registers, 6-58

R
R/WSYNC Non-2D Transfer , 6-27
RAM, 2-19, 2-20
RAM address mapping, 2-9
RAM-based architecture, 6-13
read access with autoincrement, 7-32
read FIFO interface, 8-18
Read/Write FIFO Interface With Glue, figure, 8-17
ready signals, 8-28
ready status, 12-19
receive buffer register (RBR), 12-5
receive control register, 12-13
receive data clocking, figure, 12-23
receive data justification, 12-43
receive event, 6-23, 6-24
receive interrupt (RINT), 12-20
receive operation, 12-30
receive shift register (RSR, 12-5
reception, data, 12-18
recovery phase (Tr), 8-37
refresh, SDRAM, 10-55
register file, 8-4
register-based architecture, 6-13
registers

boundary conditions, 13-10
CE space secondary control, field descriptions,

10-22
channel chain enable, 6-6

(C621x/C671x), 6-46
channel interrupt enable , 6-6, 6-43
channel interrupt pending, 6-6, 6-42
control and status, 2-7
CSR , 15-5
data transmit register (DXR), 12-5
destination address, 4-24
DMA, 4-5
DMA channel control, 4-8
DMA channel primary control, 4-25

DMA channel reload, 4-16
DMA channel secondary control, 4-11
DMA control by address, 4-6
DMA control by name, 4-7
DMA differences, 4-4
DMA global count reload, 4-18
DMA global index, 4-25
EDMA control, 6-6
EMIF, 10-14
EMIF CE space control, 10-18

field descriptions, 10-20
EMIF global control, 10-15
EMIF global control , field descriptions, 10-16
EMIF SDRAM control, 10-23
EMIF SDRAM timing, 10-26
EMIF SDRAM timing , field descriptions, 10-26
event, 6-6
event clear, 6-6, 6-11, 6-12
event enable, 6-6, 6-11, 6-12
event processing, 6-6
event set, 6-6, 6-10, 6-11, 6-12
expansion bus, 8-7

data, 8-23, 8-36
external address, 8-24
host port interface control, 8-25
internal slave address, 8-23, 8-36

expansion bus external address, 8-7
expansion bus FIFO control, 8-7
expansion bus global control, 8-7, 8-9
expansion bus host port, 8-7, 8-8
expansion bus host port interface control, 8-7
expansion bus internal master address, 8-7, 8-24
external interrupt polarity register, 14-7
general purpose, 1-5
GPIO, 17-4
host-port interface, 7-24
HPI control, 7-25
HPIC, 7-28
interrupt, 14-7
interrupt multiplexer, 14-8
McBSP interface, 12-4
mode register set, 10-58
multichannel buffered serial port, 12-4
multichannel control register (MCR), 12-6
page information, 10-55
pin control register (PCR), 12-6, 12-11
receive buffer register (RBR), 12-5
receive channel enable register (RCER), 12-6
receive control register (RCR), 12-13
receive shift register (RSR), 12-5

Index

Index-15

register access protocol, 4-14
reload, 4-26
sample rate generator register (SRGR), 12-6
serial port control register (SPCR), 12-6, 12-7
space control, 8-10
timer, 13-4
timer counter, 13-6
timer period, 13-6
TMS320C621x/C671x/C64x SDRAM extension,

field descriptions, 10-28
transfer counter, 4-18
transmit channel enable register (XCER), 12-6
transmit control register (XCR), 12-13
transmit shift register (XSR), 12-5
UTOPIA, 18-4
writing to EMIF, 10-112
XCE space control, 8-10
XCE1 space control, 8-7
XCE2 space control register, 8-7

relevant registers (single frame transfer), 8-20

reload field, 6-34

reload parameters, 6-21, 6-38, 6-40

reloading element count, 6-34

remote access servers (RAS), 1-4

reset, 11-2
device, 12-19
McBSP, 12-19
memory access through HPI, 7-41
sample rate generator, 12-19
serial port, 12-18

resetting the timer, 13-7

resource arbitration, 6-54

resource contention, DMA or CPu, 5-7

resource contention , DMA or CPU, 5-7

REVT0, 6-23, 6-24

REVT1, 6-23, 6-24

ROM
16-bit, 10-95
modes, 10-94

run/stop operation, 16-8

RUNB, debugger command, 16-18, 16-19, 16-20,
16-21, 16-22

RUNB_ENABLE, input, 16-20

S
sample rate generator

clocking and framing, 12-47, 12-51
reset procedure, 12-50
register, 12-48

sample rate generator reset, 12-19
SBSRAM, 10-74, 10-75

control, 10-6
interface, 10-72
reads, 10-77
write, 10-80

scan path linkers
secondary JTAG scan chain to an SPL, 16-15
suggested timings, 16-21

scan paths, TBC emulation connections for JTAG
scan paths, 16-23

scratch pad RAM, 6-13
SCSA standards, 1-13
SD_INT, 6-23, 6-24
SDA10 pin, 10-8
SDRAM

address shift, 10-49
control, 10-6
control pins, 10-41
deactivation, 10-63
EMIF interface, 10-34
EMIF timing register, 10-26
initialization, 10-43, 10-55
mode register set, 10-58
page boundaries, 10-43
read, 10-66
timing requirements, 10-61
TMS320C620x/C670x compatible, 10-38
TMS320C621x/C671x compatible, 10-39
TMS320C64x compatible, 10-40
write, 10-69

SDRAM commands, EMIF, 10-34
SDRAM commands truth table, EMIF, 10-35
SDRAM control register diagram, 10-23
SDRAM interface summary , 10-42
selection of clock sources, 13-8
send synchronization events to the DMA, 13-2
sequential host accesses, 7-32
serial port, reset, 12-18
serial port configuration, 12-7
serial port control register, figure, 12-8
serial port exception conditions, 12-36
serial ports, time-division multiplexed (TDM), 12-72
shared signals, 8-2
sign extension, 12-43

Index

Index-16

signal descriptions, 14-pin header, 16-2

signal timing interrupt, 14-6

signals
acknowledge, 8-27
address strobe, 8-28
address/data bus, 8-27
ARDY, 10-99
asynchronous, 8-5
buffered, 16-9
buffering for emulator connections, 16-8–16-11
burst last, 8-28
bus back-off, 8-28
byte enable, 8-28, 8-42
chip select, 8-27, 8-42
clock input, 8-27
control, 8-28, 8-42
data, 8-15
data bus, 8-42
description, 14-pin header, 16-2
EMIF signal descriptions, 10-11
expansion bus, 8-5
FIFO clock output, 8-15
FIFO output enable, 8-15
FIFO read enable, 8-15
FIFO read enable/write enable/chip select, 8-15
FIFO write enable, 8-15
frame sync, 12-21
handshake, 10-108
hold request, 8-27
host port interface, 7-9
McBSP, 12-4
McBSP interface, 12-5
read/write, 8-28, 8-42
ready out/ready in, 8-28
receive interrupt (RINT), 12-20
synchronous, 8-5
timing, 16-5
transmit interrupt (XINT), 12-20
XCNTL, 8-8
XHOLD and XHOLDA, 8-45

signals
expansion bus address, 8-15
ready out, 8-42

single frame transfer, 8-20, 8-21

single phase fram of four 8-bit elements, figure,
12-26

single phase frame of one 32-bit element, 12-26

single-rate ST-BUS clock, 12-60

slave address , 8-8
slave devices, 16-3
slave mode, 8-3
snoop address, 3-4
software handshaking, 7-26
source dimension, 6-17
source or destination address update, 6-35
source update mode (SUM), 6-36
source/destination address, 6-19
sources of interrupts, 14-2, 14-3
space control register, 8-7
space control registers, 8-7
SPI Protocol: CLKSTP, 12-79
SRC Address, 6-15
SRC address parameter updates, 6-36
SRC/DST Address, 6-19
SRC/DST address updates, 6-34
SSRAM/SBSRAM, 10-74
standard McBSP operation, 12-29
stop operation, 4-15
straight, unshrouded, 14-pin, 16-3
SUM, 6-17
SUM/DUM fields, 6-34
summary

TMS320C620x/C670x boot configuration, 11-10
TMS320C621x/C671x boot configuration, 11-15
TMS320C64x boot configuation, 11-16

summary of C621x/C671x memory map, 11-6
summary of C64x memory map, 11-7
switching

DMA channels, 5-9
external DMA accesses, 5-10

switching from one peripheral to the next, 8-11
synchronization, 4-19

frame phases, 12-23
synchronization , DMA channels, 5-11
synchronization of EDMA transfers, 6-22
synchronous, interface, 10-7
Synchronous burst SRAM (SBSRAM), 1-12
Synchronous DRAM (SDRAM), 1-12
synchronous DRAM (SDRAM), 10-2
synchronous host port mode, 8-27
synchronous master/slave interface, 1-12
synchronous mode, 8-5
synchronous-burst SRAM (SBSRAM), 10-2

Index

Index-17

T
T1 standards, 1-13

target cable, 16-12

target system, connection to emulator, 16-1–16-24
TCINT bit, 6-41

TCK signal, 16-2, 16-3, 16-5, 16-6, 16-11, 16-16,
16-23

TDI signal, 16-2, 16-3, 16-4, 16-5, 16-6, 16-7, 16-10,
16-11, 16-16, 16-17

TDM serial port control register (TSPC)
TXM bit, 12-14, 12-17, 12-49
XRDY bit, 12-9

TDM serial port interface, 12-72

TDO output, 16-3

TDO signal, 16-3, 16-4, 16-6, 16-7, 16-17, 16-23

test bus controller, 16-20, 16-23

test clock, 16-10

The Bus Master Reads a Burst of Data From DSP,
figure, 8-40

The Expansion Bus Interface in the TMS320C6000
Block Diagram, figure, 8-4

time events, 13-2

timer, 8-4

timer control register, 13-4

timer interrupt, 6-23, 6-24
timer operation in clock mode, figure, 13-9

timer operation in pulse mode, figure, 13-9

timers, 1-9, 1-10
block diagram, 13-3
clock source selection, 13-8
counter register, 13-6
counting, 13-8
emulation operation, 13-11
enabling counting, 13-7
interrupts, 13-11
overview, 13-2
period register, 13-6
pulse generation, 13-9
register boundary conditions, 13-10
registers, 13-4
resetting, 13-7

timing, requirements, 10-61

timing calculations, 16-6–16-7, 16-16–16-25

timing diagram, expansion bus master writes a burst
of data, 8-38

Timing Diagrams for Asynchronous Host Port Mode
of the Expansion Bus, figure, 8-44

Timing Diagrams for Bus Arbitration XHOLD/XHOL-
DA (Internal bus arbiter is disabled), figure, 8-46

timing example, simple, 5-14
TINT0, 6-23, 6-24
TINT1, 6-23, 6-24
TMS320C6203 Memory Map Summary, table , 11-5
TMS signal, 16-2, 16-3, 16-4, 16-5, 16-6, 16-7,

16-10, 16-11, 16-15, 16-16, 16-17, 16-23
TMS/TDI inputs, 16-3
TMS320 DSPs, applications, table, 1-3
TMS320 family, 1-2

characteristics, 1-2
overview, 1-2

TMS3206202B, cache architecture, 2-4
TMS320C6000

internal memory configurations, 2-3
peripherals, 1-9

TMS320C6000 (‘C6000) platform, 1-1
TMS320C6000 cache architectures, 2-4
TMS320C6000 devices, features, 1-5
TMS320C6201

cache architecture, 2-4
data memory controller, 2-19
internal memory configurations, 2-3

TMS320C6201/C6701 block diagram, 1-11
TMS320C6202

cache architecture, 2-4
data memory controller, 2-19
data memory controller block diagram, 2-19, 2-20
internal memory configuration, 2-3

TMS320C6202 program memory controller block
diagram, 2-6

TMS320C6202/C6202B, data memory controller,
2-19

TMS320C6202/C6202B Memory Map Summary,
table, 11-4

TMS320C6202B
internal memory configuration, 2-3
memory, 2-3

TMS320C6203
cache architecture , 2-4
data memory controller, 2-20
internal memory configuration, 2-3
memory , 2-3

TMS320C6204

Index

Index-18

cache architecture , 2-4
internal memory configuration , 2-3
memory , 2-3

TMS320C6205
cache architecture , 2-4
internal memory configuration , 2-3
memory , 2-3

TMS320C620x, data paths, 5-3

TMS320C620x/C670x
external memory interface, figure, 10-6, 10-7
MTYPE field configurations, 10-20
SBSRAM interface, figure, 10-74

TMS320C620x/C670x Block Diagram, figure, 8-4

TMS320C620x/C670x block diagram, 1-10

TMS320C620x/C670x Boot Configuration Summary,
table, 11-10

TMS320C620x/C670x compatible SDRAM, 10-38

TMS320C620x/C670x EMIF to 16M-bit SDRAM in-
terface, 10-36

TMS320C620x/C670x EMIF to 64M-bit SDRAM in-
terface, 10-37

TMS320C6211 Internal Memory Block Diagram, fig-
ure, 3-4

 TMS320C621x/C67x/C64x, two level internal
memory, 3-1

TMS320C621x block diagram, EDMA, 6-2

TMS320C621x/C671x
external memory interface, figure, 10-8
SBSRAM interface, figure, 10-74

TMS320C621x/C671x Boot Configuration Summary,
table, 11-15

TMS320C621x/C671x compatible SDRAM, 10-39

TMS320C621x/C671x EMIF to 16M-bit SDRAM in-
terface, 10-36

TMS320C621x/C671x Memory Map Summary,
table, 11-6

TMS320C621x/C671x/C64x
MTYPE field configurations, 10-20
two-level internal memory, 3-2

TMS320C621x/C671x/C64x block diagram, HPI,
figure, 7-3

TMS320C621x/C671x /C64x SDRAM extension reg-
ister diagram, 10-27

TMS320C621x/C671x/C64x SDRAM extension reg-
ister diagram, figure, 10-27

TMS320C62x slave on expansion bus, 8-36

TMS320C62x/C67x/C64x EMIF CE space control
register diagram, figure, 10-19

TMS320C64x
block diagram, EDMA, 6-2
external memory interface, figure, 10-10
SBSRAM interface, figure, 10-75
ZBT SRAM interface, figure, 10-84

TMS320C64x compatible SDRAM, 10-40
TMS320C64x Configuration Summary, table, 11-16
TMS320C64x EMIFA to 64M-bit SDRAM interface,

10-37
TMS320C64x interface, UTOPIA, 18-1
TMS320C64x Memory Map Summary, table, 11-7
TMS320C6701

cache architecture, 2-4
internal memory configuration, 2-3
memory, 2-3

transfer, element, 6-5
transfer complete code, 6-18, 6-23
)transfer complete code (TCC, 6-41
transfer complete code (TCC) field, 6-47
Transfer Complete Code (TCC) to DMA Interrupt

Mapping, table, 6-44
transfer complete code value, 6-44
transfer complete interrupt, 6-18
transfer parameter entry, 6-14
transfer parameters, 6-13, 6-16
transfer with frame synchronization, 8-21
read transfer, 4-2
transfers

2-dimensional, 6-29
block, 4-15
DMA, 4-19
DMA examples, 8-20
EDMA, 6-22, 6-40
EDMA linking, 6-38
element, 4-2, 4-25, 6-5
frame index, 4-25
frame synchronized non-2D, 6-28
linking EDMA, 6-38
read, 4-2
single frame example, 8-20
transfer complete code, 6-44

C64c, 6-44
two-dimensional example, 6-31
types, 6-26
with frame synchronization, 8-21
write, 4-2

Index

Index-19

transmission, data, 12-18
transmit control register (XCR), 12-13
transmit data companding format, 12-45
transmit empty, 12-40

figure, 12-41
transmit empty avoided, 12-41
transmit event, 6-23, 6-24
transmit interrupt (XINT), 12-20
transmit operation, 12-31
transmit shift register (XSR), 12-5
transmit with data overwrite, 12-39
triggering a power-down, 15-5
TRST signal, 16-2, 16-5, 16-6, 16-11, 16-16, 16-24
TSTAT parameters, 13-10
two level memory architecture, 3-1
two-dimensional (2D) transfers, 6-26
two-dimensional transfer, definition, 6-5
two-dimensional transfers, 6-29
types of EDMA transfers, 6-26

U
unexpected frame sync pulses, 12-32
unexpected transit frame sync, 12-41
unsynchronized transfers, 6-10
unused RAM, 6-13
user-accessible peripherals, 1-9
UTOPIA

ATM adaption layer interface, 18-32
cell transfer format, 18-7
clocking , 18-21
CPU servicing, 18-18
EDMA servicing, 18-16
registers, 18-4
slave ATM controller, 18-9
slave pin descriptions, 18-10
special transfers, 18-23

UTOPIA , overview, 18-2
UTOPIA interface

signals, 18-4
TMS320C64x block diagram, 18-3

V
VelociTIt advanced VLIW architecture, 1-1
very long instruction word (VLIW), 1-1

W
wait/data phase (Tw/Td), 8-37
wake up from a power down, 15-5
word aligned, 8-11
write interface, 8-16
write transfer, 4-2

X
XARB bit value, 8-45
XBD register, 8-8
XBEA register, 8-7, 8-8
XBHC register, 8-7, 8-8
XBHC register descriptions, 8-26
XBIMA register, 8-7, 8-8
XBISA register, 8-8
XCE space control registers, 8-10
XCE spaces, 8-3
XCE0 Space Control Register, 8-7
XCE1 Space Control Register, 8-7
XCE2 Space Control Register, 8-7
XCE3 Space Control Register, 8-7
XCNTL signal, 8-8
XDS510 emulator, JTAG cable. See emulation
XEVT0, 6-23, 6-24
XEVT1, 6-23, 6-24
XSREMPTY bit, 12-9

Z
ZBT SRAM interface, 10-84

	IMPORTANT NOTICE
	Read This First
	About This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Trademarks

	Contents
	Figures
	Tables
	Introduction
	TMS320 Family Overview
	History of TMS320 DSPs
	Typical Applications for the TMS320 Family

	Overview of the TMS320C6000 Platform of DSPs
	Features and Options of the TMS320C6000 Devices
	Overview of TMS320C6000 Memory
	Overview of TMS320C6000 Peripherals

	TMS320C620x/C670x Internal Program and Data Memory
	Program Memory Controller
	Internal Program Memory
	Internal Program Memory Modes
	Memory Mapped Operation
	Cache Operation
	Cache Architecture
	Cache Usage of CPU Address
	Cache Flush
	Line Replacement

	Bootload Operation
	DMA Controller Access to Program Memory

	Data Memory Controller
	Data Memory Access

	Internal Data Memory
	TMS320C6201/C6204/C6205
	TMS320C6701
	TMS320C6202(B)
	TMS320C6203(B)
	Data Alignment
	Dual CPU Accesses to Internal Memory
	DMA Accesses to Internal Memory
	Data Endianness

	Peripheral Bus
	Byte and Halfword Access
	CPU Wait States
	Arbitration Between the CPU and the DMA Controller

	TMS320C621x/C671x/C64x Two-Level Internal Memory
	Overview
	TMS320C621x/C671x/C64x Cache Definitions
	TMS320C621x/C671x Two-Level Memory
	L1P Description
	L1D Description
	L2 Description
	TMS320C621x/C671x Data Alignment
	Control Registers

	TMS320C64x Two-Level Memory
	L1P Description
	L1D Description
	Pipelining Cache Misses
	Memory Banking Structure
	Memory Ordering Support
	L1D - L2 Write Buffer
	L2 Description
	TMS320C64x Data Alignment
	Control Registers

	L1P Operation
	TMS320C64x L1P Miss Pipelining

	L1D Operation
	Read Allocate
	L1D Invalidation
	TMS320C64x L1D Miss Pipelining

	L2 Operation
	L2 Interfaces
	L2 Organization
	L2 Read Requests
	L2 Write Requests
	L1D Cache in all L2 SRAM Mode
	L1D and L2 Host-Processor Interface
	Host Access of L2 registers
	External Coherency
	EDMA Service
	EDMA Coherency
	Invalidation

	Direct Memory Access (DMA) Controller
	Overview
	DMA Registers
	DMA Channel Control Registers (PRICTL and SECCTL)
	DMA Channel Primary Control Register (PRICTL)
	DMA Channel Secondary Control Register (SECCTL)

	Register Access Protocol

	Memory Map
	Initiating a Block Transfer
	DMA Autoinitialization
	DMA Channel Reload Registers

	Transfer Counting
	Synchronization: Triggering DMA Transfers
	Latching of DMA Channel Event Flags
	Automated Event Clearing
	Synchronization Control

	Address Generation
	Basic Address Adjustment
	Address Adjustment With the Global Index Registers
	Element Size, Alignment, and Endianness
	Using a Frame Index to Reload Addresses
	Transferring a Large Single Block
	Sorting

	Split-Channel Operation
	Split DMA Operation
	Split Address Generation

	Resource Arbitration and Priority Configuration
	DMA Auxiliary Control Register (AUXCTL) and Priority Between Channels
	Switching Channels

	DMA Channel Condition Determination
	Definition of DMA Channel Secondary Control Register (SECCTL) Conditions

	DMA Controller Structure
	TMS320C6201/C6701/C6202 (1.8V devices) DMA Structure
	Read and Write Buses
	Shared FIFO
	Internal Holding Registers

	TMS320C6202B/C6203(B)/C6204/C6205 (1.5V Devices) DMA Structure
	Read and Write Buses
	Channel FIFOs
	Split Mode

	Operation
	DMA Performance

	DMA Action Complete Pins
	Emulation

	DMA and CPU Data Access Performance
	Overview
	Accessing Data
	Internal Data Memory
	Peripheral Bus
	External Memory Interface (EMIF)
	Memory Timings
	CPU Accesses
	DMA Accesses

	Resource Contention
	Switching Between DMA Channels
	Burst Interruptions
	Multiple Frames and Auto-initialization
	Servicing a McBSP or Host Access
	Internal Auxiliary Channel Access

	DMA Synchronization
	Transferring To/From Same Resource

	Bandwidth Calculation
	Simple Timing Use Example
	Complex Bandwidth Calculation Example
	DMA Channel Selection
	Comparison of 1.8V/2.5V Devices to 1.5V Device

	Bandwidth Optimization
	Maximize DMA Bursts
	Minimizing CPU/DMA Conflict

	EDMA Controller
	Overview
	EDMA Terminology
	Event Processing and EDMA Control Registers
	Event Register (ER, ERL, ERH)
	Event Enable Register (EER, EERL, EERH)
	Event Clear Register (ECR, ECRL, ECRH)
	Event Set Register (ESR, ESRL, ESRH)
	Event Polarity Register (EPRL, EPRH) (C64x)

	Event Encoder
	Parameter RAM (PaRAM)
	EDMA Transfer Parameter Entry

	EDMA Transfer Parameters
	Options Parameter (OPT)
	SRC/DST Address (SRC/DST)
	Element Count (ELECNT)
	Frame/Array Count (FRMCNT)
	Element Index (ELEIDX) and Frame/Array Index (FRMIDX)
	Element Count Reload (ELERLD)
	Link Address (LINK)

	Initiating an EDMA Transfer
	Synchronization of EDMA Transfers

	Types of EDMA Transfers
	1-Dimensional Transfers
	Element Synchronized 1D Transfer (FS=0)
	Frame Synchronized 1D Transfer (FS=1)

	2-Dimensional Transfers
	Array Synchronized 2D Transfer (FS = 0)
	Block Synchronized 2D Transfer (FS=1)

	Element Size and Alignment
	Fixed Address Mode Transfer Considerations

	Element and Frame/Array Count Updates
	Element Count Reload (ELERLD)

	Source/Destination (SRS/DST) Address Updates
	Linking EDMA Transfers
	Terminating an EDMA Transfer
	EDMA Interrupt Generation
	EDMA Interrupt Servicing by the CPU
	TMS320C64x Alternate Transfer Complete Code Interrupt

	Chaining EDMA Channels by an Event
	TMS320C621x/C671x EDMA Transfer Chaining
	TMS320C64x EDMA Transfer Chaining
	TMS320C64x Alternate Transfer Chaining
	C64x Alternate Transfer Chaining Example
	Servicing Input/Output FIFOs with a Single Event
	Breaking up Large Transfers with ATCC

	Peripheral Device Transfers (TMS320C64x only)
	Resource Arbitration and Priority Processing
	Priority Queue Status Register (PQSR)
	Transfer Request Queue Length
	TMS320C621x/C671x Transfer Request Queues
	Priority Queue Allocation Registers (PQAR) (C64x only)

	EDMA Performance
	Quick DMA (QDMA)
	QDMA Registers
	QDMA Register Access
	Initiating a QDMA Transfer
	QDMA Performance
	QDMA Stalls and Priority

	Emulation Operation
	Transfer Request Submission
	Request Chain
	L2 Controller Transfer Requests
	HPI/PCI Transfer Requests
	EDMA Channel Transfer Requests

	Transfer Crossbar
	Address Generation/Transfer Logic

	Transfer Examples
	Block Move Example
	Sub-frame Extraction Example
	Data Sorting Example
	Peripheral Servicing Examples
	Non-bursting Peripherals
	Bursting Peripherals
	Continuous Operation
	Receive Channel
	Transmit Channel

	Ping-Pong Buffering
	Synchronization with the CPU

	Host-Port Interface
	Overview
	HPI External Interface
	TMS320C620x/C670x HPI
	TMS320C621x/C671x HPI
	TMS320C64x HPI16 or HPI32

	HPI Signal Descriptions
	Data Bus: HD[15:0] or HD[31:0]
	Access Control Select: HCNTL[1:0]
	Halfword Identification Select: HHWIL
	Byte Enables: HBE[1:0] (C620x/C670x only)
	Read/Write Select: HR/W\
	Ready: HRDY\
	Strobes: HCS\, HDS1\, HDS2\
	Address Strobe Input: HAS\
	Interrupt to Host: HINT\

	HPI Bus Access
	HPI Bus Access for C620x/C670x
	Latching Control Signals
	C620x/C670x HPID Read
	C620x/C670x HPID Write
	C620x/C670x HPIC or HPIA Access

	HPI Bus Access for C621x/C671x
	Latching Control Signals
	C621x/C671x HPI Read
	C621x/C671x HPID Write
	C621x/C671x HPIC or HPIA Access

	HPI Bus Access for C64x

	HPI Registers
	HPI Address Register (HPIA)
	HPI Control Register (HPIC)
	Software Handshaking Using HRDY and FETCH
	Host Device Using DSPINT to Interrupt the CPU
	CPU Using HINT\ to Interrupt the Host

	Host Access Sequences
	Initialization of HPIC and HPIA
	Initialization of HPIC and HPIA – C62x/C67x HPI and C64x HPI16
	Initialization of HPIC and HPIA — HPI32

	HPID Read Access in Fixed Address Mode
	HPID Read in Fixed Address Mode — C62x/C67x HPI and C64x HPI16
	HPID Read in Fixed Address Mode — HPI32

	HPID Read Access in Autoincrement Mode
	HPID Read in Autoincrement Mode – C62x/C67x HPI and C64x HPI16
	HPID Read in Autoincrement Mode – HPI32

	Host Data Write Access Without Autoincrement
	HPID Write in Fixed Address Mode – C62x/C67x and C64x HPI16
	HPID Write in Fixed Address Mode — HPI32

	HPID Write Access in Autoincrement Mode
	HPID Write in Autoincrement Mode – C62x/C67x HPI and C64x HPI16
	HPID Write in Autoincrement Mode – HPI32

	Single Halfword Cycles (C620x/C670x only)

	HPI Transfer Priority Queue — TMS320C621x/C671x/C64x
	Memory Access Through the HPI During Reset

	Expansion Bus
	Overview
	Expansion Bus Signals
	Expansion Bus Registers
	Expansion Bus Host Port Registers
	Expansion Bus Global Control Register (XBGC)
	XCE Space Control Registers (XCExCTL)

	Expansion Bus I/O Port Operation
	Asynchronous Mode
	Synchronous FIFO Modes
	Write Interface
	Read FIFO Interface
	Programming Offset Register
	Flag Monitoring

	DMA Transfer Examples
	Example 1 (single frame transfer)
	Example 2 (transfer with frame synchronization)

	Expansion Bus Host Port Operation
	Expansion Bus Host Port Registers Description
	Expansion Bus Data Register (XBD)
	Expansion Bus Internal Slave Address Register (XBISA)
	Expansion Bus Internal Master Address Register (XBIMA)
	Expansion Bus External Address Register (XBEA)
	Expansion Bus Host Port Interface Control Register (XBHC)

	Synchronous Host Port Mode
	TMS320C62x Master on the Expansion Bus
	Burst Read Transfer
	Burst Write Transfer
	Preventing Deadlocks with Backoff

	TMS320C62x Slave on the Expansion Bus
	Cycle Description
	Burst Write Transfer
	Burst Read Transfer

	Asynchronous Host Port Mode

	Expansion Bus Arbitration
	Internal Bus Arbiter Enabled
	Internal Bus Arbiter Disabled
	Expansion Bus Requestor Priority

	Boot Configuration Control via Expansion Bus

	PCI
	Overview
	PCI Architecture
	PCI Registers
	PCI Configuration Registers (Accessible by External PCI Host Only)
	PCI I/O Registers (Accessible by External PCI Host Only)
	Host Status Register (HSR)
	Host-to-DSP Control Register (HDCR)
	DSP Page Register (DSPP) Bit Field Description

	PCI Memory-Mapped Peripheral Registers

	TMS320C6000/PCI Memory Map
	Byte Addressing
	PCI Address Decode
	PCI Transfers to/from Program Memory (TMS320C62x/C67x)
	Slave Transfers
	DSP Memory Slave Writes
	DSP Memory Slave Reads
	Non-Prefetchable Slave Reads
	Prefetchable Slave Reads

	PCI Target Initiated Termination

	Master Transfers
	DSP Master Address Register (DSPMA)
	PCI Master Address Register (PCIMA)
	PCI Master Control Register (PCIMC)
	Current DSP Address Register (CDSPA)
	Current PCI Address Register (CPCIA)
	Current Byte Count Register (CCNT)
	PCI Transfer Halt Register (HALT) — C62x/C67x only
	DSP Master Writes
	DSP Master Reads

	Interrupts and Status Reporting
	PCI Interrupt Source Register (PCIIS)
	PCI Interrupt Enable Register (PCIIEN)
	DSP Reset Source/Status Register (RSTSRC)
	PCI Interrupts
	Host Interrupt to the DSP
	DSP to Host Interrupt

	Reset
	PCI Reset of DSP
	FIFO Resets
	PCI Configuration Register Reset

	Boot Configuration for PCI Port
	PCI Boot

	EEPROM Interface
	PCI Autoinitialization from EEPROM
	EEPROM Memory Map
	EEPROM Checksum
	DSP EEPROM Interface

	Error Handling
	PCI Parity Error Handling
	PCI System Error Handling
	PCI Master Abort Protocol
	PCI Target Abort Protocol

	Power Management (TMS320C62x/C67x only)
	Power Management for PCI
	DSP Power Management Strategy
	DSP Resets
	DSP Support for Power Management
	PMCSR Sticky Bits (PMESTAT and PMEEN)
	3.3 Vaux Presence Detect Status Bit (AUXDETECT)
	PCI Port Response to PWR_WKP\ and PME Generation
	DSP Interrupt Indicating that PWRSTATE has Changed

	PCI Configuration Registers Bit Field Descriptions

	External Memory Interface
	Overview
	EMIF Signals
	TMS320C6201/C6701 External Memory Interface
	TMS320C6202(B)/C6203(B)/C6204/C6205 External Memory Interface
	TMS320C621x/C671x External Memory Interface
	TMS320C64x External Memory Interface

	EMIF Registers
	Global Control Register (GBLCTL)
	EMIF CE Space Control Registers
	EMIF SDRAM Control Register
	EMIF SDRAM Timing Register (SDTIM)
	TMS320C621x/C671x/C64x SDRAM Extension Register (SDEXT)

	Memory Width and Byte Alignment
	C620x/C670x Memory Width and Byte Alignment
	C621x/C671x Memory Width and Byte Alignment
	C64x Memory Width and Byte Alignment

	Command-to-Command Turnaround Time
	SDRAM Interface
	SDRAM Initialization
	Monitoring Page Boundaries
	C620x/C670x Monitoring Page Boundaries
	C621x/C671x Monitoring Page Boundaries
	TMS320C64x Monitoring Page Boundaries

	Address Shift
	SDRAM Refresh
	SDRAM Self Refresh Mode (C64x Only)
	Mode Register Set
	Timing Requirements
	SDRAM Deactivation (DCAB and DEAC)
	Activate (ACTV)
	SDRAM Read
	TMS320C620xC670x SDRAM Read
	TMS320C621x/C671x SDRAM Read
	TMS320C64x SDRAM Read

	SDRAM Write
	TMS320C620xC670x SDRAM Write
	TMS320C621xC671x SDRAM Write
	TMS320C64x SDRAM Write

	SBSRAM Interface
	SBSRAM Reads
	C620x/C670x SBSRAM Reads
	C621x/C671x SBSRAM Read
	TMS320C64x SBSRAM Read

	SBSRAM Writes
	C620x/C670x SBSRAM Write
	C621x/C671x SBSRAM Write
	C64x SBSRAM Write

	Programmable Synchronous Interface (TMS320C64x)
	ZBT SRAM Interface
	ZBT SRAM Read
	ZBT SRAM Write

	Synchronous FIFO Interface
	Standard Synchronous FIFO Read
	Standard Synchronous FIFO Write
	FWFT Synchronous FIFO Read
	FWFT Synchronous FIFO Write

	Asynchronous Interface
	TMS320C620x/C670x ROM Modes
	8-Bit ROM Mode
	16-Bit ROM Mode

	Programmable ASRAM Parameters
	Asynchronous Reads
	Asynchronous Writes
	Ready Input

	Peripheral Device Transfers (PDT) (TMS320C64x)
	PDT Write
	PDT Read

	Resetting the EMIF
	Hold Interface
	Reset Considerations With the Hold Interface

	Memory Request Priority
	TMS320C620x/C670x Memory Request Priority
	TMS320C621x/C671x/C64x Memory Request Priority

	Boundary Conditions When Writing to EMIF Registers
	Clock Output Enabling
	Emulation Halt Operation
	Power Down

	Boot Modes and Configuration
	Overview
	Device Reset
	Memory Map
	TMS320C6201/C6204/C6205/C6701 Memory Map
	TMS320C6202(B) Memory Map
	TMS320C6203(B) Memory Map
	TMS320C621x/C671x Memory Map
	TMSC64x Memory Map
	Memory at Reset Address

	Boot Configuration
	TMS320C6201/C6701 Boot and Device Configuration
	TMS320C6202(B)/C6203(B)/C6204 Boot and Device Configuration
	TMS320C6205 Boot and Device Configuration
	TMSC621x/C671x Boot and Device Configuration
	C64x Boot and Device Configuration
	C6414 Device Configuration
	C6415 Device Configuration

	Boot Processes

	Multichannel Buffered Serial Port
	Features
	McBSP Interface Signals and Registers
	Serial Port Configuration
	Receive and Transmit Control Registers: RCR and XCR
	Receive Control Register: RCR
	Transmit Control Register: XCR

	Data Transmission and Reception
	Resetting the Serial Port: (R/X)RST\, GRST\, and RESET\
	Determining Ready Status
	Receive Ready Status: REVT, RINT, and RRDY
	Transmit Ready Status: XEVT, XINT, and XRDY

	CPU Interrupts: (R/X)INT
	Frame and Clock Configuration
	Frame and Clock Operation
	Frame Synchronization Phases
	Frame Length: (R/X)FRLEN(1/2)
	Element Length: (R/X)WDLEN(1/2)
	Data Packing using Frame Length and Element Length
	Data Delay: (R/X)DATDLY
	Multiphase Frame Example: AC97

	McBSP Standard Operation
	Receive Operation
	Transmit Operation
	Maximum Frame Frequency

	Frame Synchronization Ignore
	Frame Sync Ignore and Unexpected Frame Sync Pulses
	Data Packing using Frame Sync Ignore Bits

	Serial Port Exception Conditions
	Reception With Overrun: RFULL
	Unexpected Receive Frame Synchronization: RSYNCERR
	Transmit With Data Overwrite
	Transmit Empty: XEMPTY\
	Unexpected Transmit Frame Synchronization: XSYNCERR

	Receive Data Justification and Sign Extension: RJUST
	32-Bit Bit Reversal: (R/X)WDREVRS

	u-Law/A-Law Companding Hardware Operation
	Companding Internal Data
	Bit Ordering

	Programmable Clock and Framing
	Sample Rate Generator Clocking and Framing
	Sample Rate Generator Register (SRGR)
	McBSP and Sample Rate Generator Reset Procedure

	Data Clock Generation
	Input Clock Source Mode: CLKSM
	Sample Rate Generator Data Bit Clock Rate: CLKGDV
	Bit Clock Polarity: CLKSP
	Bit Clock and Frame Synchronization
	Digital Loopback Mode: DLB
	Receive Clock Selection: DLB, CLKRM
	Transmit Clock Selection: CLKXM

	Frame Sync Signal Generation
	Frame Period and Frame Width: FPER and FWID
	Receive Frame Sync Selection: DLB, FSRM, GSYNC
	Transmit Frame Sync Signal Selection: FSXM, FSGM
	Frame Detection for Initialization

	Stopping Clocks
	Clocking Examples
	Double-Rate ST-BUS Clock
	Single-Rate ST-BUS Clock
	Double-Rate Clock

	Multichannel Selection Operation
	Multichannel Control Register (MCR)
	Enabling Multichannel Selection
	Enabling and Masking of Channels in Normal Multichannel Selection Mode
	Channel Enable Registers: (R/X)CER
	Changing Element Selection
	End-of-Subframe Interrupt

	Enhanced Multichannel Selection Mode (C64x only)
	Channel Enable Registers for Enhanced Multichannel Selection

	DX Enabler: DXENA

	SPIProtocol: CLKSTP
	McBSP Operation as the SPI Master
	McBSP Operation as the SPI Slave
	McBSP Initialization for SPI Mode

	McBSP Pins as General-Purpose I/O

	Timers
	Overview
	Timer Registers
	Timer Control Register (CTL)
	Timer Period Register (PRD)
	Timer Counter Register (CNT)

	Resetting the Timers and Enabling Counting: GO and HLD
	Timer Counting
	Timer Clock Source Selection: CLKSRC
	Timer Pulse Generation
	Boundary Conditions in the Control Registers
	Timer Interrupts
	Timer Pins as General-Purpose Input/Output
	Emulation Operation

	Interrupt Selector and External Interrupts
	Overview
	Available Interrupt Sources
	External Interrupt Signal Timing
	Interrupt Selector Registers
	External Interrupt Polarity Register (EXTPOL)
	Interrupt Multiplexer Register

	Configuring the Interrupt Selector

	Power-Down Logic
	Overview
	PowerãDown Mode Descriptions
	Triggering, Wake-Up, and Effects
	Peripheral Power-Down Mode for TMS320C6202(B)/C6203(B)

	Designing for JTAG Emulation
	Designing Your Target Systemós Emulator Connector (14-Pin Header)
	Bus Protocol
	IEEE 1149.1 Standard
	JTAG Emulator Cable Pod Logic
	JTAG Emulator Cable Pod Signal Timing
	Emulation Timing Calculations
	Connections Between the Emulator and the Target System
	Buffering Signals
	Using a Target-System Clock
	Configuring Multiple Processors

	Mechanical Dimensions for the 14-Pin Emulator Connector
	Emulation Design Considerations
	Using Scan Path Linkers
	Emulation Timing Calculations for SPL
	Using Emulation Pins
	Performing Diagnostic Applications

	General Purpose Input/Output
	Overview
	GPIO Registers
	GPIO Enable Register (GPEN)
	GPIO Direction Register (GPDIR)
	GPIO Value Register (GPVAL)
	GPIO Delta Registers (GPDH, GPDL)
	GPIO Mask Registers (GPHM, GPLM)
	GPIO Global Control Register (GPGC)
	GPIO Interrupt Polarity Register (GPPOL)

	General Purpose Input/Output Function
	Interrupt and Event Generation
	Pass Through Mode
	Logic Mode
	(GPINTDV = 0; LOGIC = 0)
	(GPINTDV = 0; LOGIC = 1)
	Value Mode (GPINTDV = 1; LOGIC = 1)

	GPINT Muxing With GP0 and/or GPINT0

	GPIO Interrupts/Events

	UTOPIA Level 2 Interface
	Overview
	UTOPIA Interface Signals and Registers
	UTOPIA Control Register (UCR)

	UTOPIA Cell Transfer Format
	UTOPIA Slave ATM Controller
	UTOPIA Slave Pins
	Slave-Transmit Operation
	Slave-Transmit Queue
	Slave-Receive Operation
	Slave-Receive Queue
	UTOPIA Events Generation
	Multi-PHY (MPHY) Operation

	EDMA Servicing UTOPIA
	EDMA Setup for UTOPIA Transmitter
	EDMA Setup for UTOPIA Receiver

	CPU Servicing UTOPIA Interface
	Interrupt Generation and Servicing

	UTOPIA Clocking and Clock Detection
	Special Transfer Conditions
	Error Interrupt Registers (EIPR, EIER)

	Endian Considerations
	Slave-Mode Endian Data Formats
	UTOPIA Reset
	UTOPIA Slave Enable Sequence

	ATM Adaptation Layer (AAL) Functions

	EDMA Transfers
	Element Synchronized 1-D to 1-D Transfers
	Frame-Synchronized 1-D to 1-D Transfers
	Array Synchronized 2-D to 2-D Transfers
	Block-Synchronized 2-D to 2-D Transfers
	Array Synchronized 1-D to 2-D Transfers
	Block-Synchronized 1-D to 2-D Transfers
	Array Synchronized 2-D to 1-D Transfers
	Block-Synchronized 2-D to 1-D Transfers

	Index

